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Performance Analysis of Spatial Filtering of RF
Interference in Radio Astronomy
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Abstract—Radio astronomical observations are increasingly
contaminated by man-made RF interference (RFI). If these signals
are continuously present, then they cannot be removed by the
usual techniques of detection and blanking. We have previously
proposed a spatial filtering technique, where the impact of the
interferer is projected out from the estimated covariance data. As-
suming that the spatial signature of the interferer is time-varying,
several such estimates can be combined to recover the missing
dimensions. In this paper, we give a detailed performance analysis
of this algorithm. It is shown that the spatial filter introduces a
small increase in variance of the estimates (because of the loss in
information) and that the algorithm is unbiased in case the true
spatial signatures of the interferers are known but that there may
be a bias in case the signatures are estimated from the same data.
Some of the bias may be removed, and moreover, the bias only af-
fects the auto-correlations, whereas the astronomical information
is mostly in the cross-correlations.

Index Terms—Algorithm performance, eigenvalues, interference
cancellation, radio astronomy, RF interference, spatial filtering.

I. INTRODUCTION

RADIO astronomical observations are increasingly con-
taminated by man-made RF interference. In bands below

2 GHz, we find TV and radio signals, mobile communication
(GSM), radar, satellite communication (Iridium), and local-
ization beacons (GPS, Glonass), etc. Although some bands
are specifically reserved for astronomy, the stopband filters
of some communication systems are not always adequate.
Moreover, scientifically relevant observations are not limited
to these bands. Hence, there is a growing need for interference
cancellation techniques.

The output of a radio telescope is usually in the form of corre-
lations: the auto-correlation (power) of a single telescope dish,
split into frequency bins and integrated over periods of 10–30
seconds or more, and/or the cross-correlations of several dishes.
The astronomer uses several hours of such correlation obser-
vations to synthesize images and to create frequency-domain
spectra at specific sky locations (in particular for the study of
spectral emission and absorption lines). Most interference can-
cellation today is done at the post-correlation level by rejecting
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suspect correlation products or by specialized imaging algo-
rithms, but these techniques have their limits and interference
rejection at shorter time scales is needed.

Depending on the interference and the type of instrument,
several kinds of radio frequency interference (RFI) mitigation
techniques are applicable. Overviews can be found in [2] and
[3], e.g., intermittent interference such as radar pulses can be
detected using short-term Fourier transforms and the contam-
inated time-frequency cells omitted during long-term integra-
tion [2]. However, many communication signals are continuous
in time. For a single-dish telescope, there are not many other
options1 than to consider an extension by a reference antenna
that picks up only the interference, so that adaptive cancellation
techniques based on output power minimization can be imple-
mented [5]–[7].

With an array of telescope dishes (an interferometer), spa-
tial filtering techniques are applicable as well. The desired in-
strument outputs in this case are correlation matrices, in-
tegrated to, e.g., 10 s (in practice, this can range from a fraction
of a second up to several minutes, and only the nonredundant
entries are computed and retained). Based on short-term corre-
lation matrices (integration to e.g., 10 ms) and narrow subband
processing, the array signature vector of an interferer can be
estimated and subsequently projected out. The resulting long-
term averages of these matrices are mostly interference-free, but
a correction is needed to take into account that some dimen-
sions were underrepresented. This algorithm was introduced in
[8]—we describe it in more detail in Section II.

The goal of the present paper is to give a detailed performance
analysis of this algorithm. It has to be demonstrated that the in-
formation the astronomer is looking for is unaffected by the spa-
tial filter—a delicate affair because this information is at least
15 dB below the noise level and typically much more.

In Section III, we derive the bias and standard deviation of the
final covariance estimate. We then analyze the effect of the inter-
ferer stationarity on the performance of the filter (Section IV).
The bias is studied in more detail in Section V, and the theo-
retical performance equations are verified with simulations. We
also show that much of the bias can be corrected. Conclusions
are in Section VI.

Notation: An overbar denotes complex conjugate, super-
script denotes matrix transpose, and denotes complex con-
jugate transpose. vec denotes the stacking of the columns of a
matrix in a vector, the Kronecker product, the column-wise
Kronecker product (Khatri–Rao product), and the entrywise
multiplication of two matrices of equal size. is the identity

1An exception is a technique based on higher order statistics [4].
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matrix, and is a vector with all ones. The covariance of an es-
timated matrix is defined as

cov vec vec

where .

II. DATA MODEL AND ALGORITHM SUMMARY

A. Received Data Model

Assume we have a telescope array with elements. We con-
sider the signals received at the antennas in a
sufficiently narrow subband. For the interference-free case, the
array output vector is modeled in complex baseband form
as

where is the vector of telescope
signals at time , is the received sky signal possibly due to
many astronomical sources, assumed on the time scale of 10 s
to be a stationary Gaussian vector with covariance matrix
(the astronomical “visibilities”), and is the noise
vector with independent identically distributed Gaussian entries
and covariance matrix (this implies accurate calibration).
The astronomer is interested in the nonredundant off-diagonal
entries of .

If an interferer is present the output vector is modeled as

where is the interferer signal with spatial signature vector
, which is assumed stationary only over short time intervals.

Without loss of generality, we can absorb the unknown ampli-
tude of into and, thus, set the power of to 1.

We make the following additional assumptions on this model:

A1) The noise variance is known from calibration, e.g.,
from observations of nearby uncontamined frequen-
cies.

A2) , so that . This is reason-
able as even the strongest sky sources are about 15 dB
under the noise floor. This condition will be made more
precise in (6).

A3) The processing bandwidth is sufficiently narrow,
meaning that the maximal propagation delay of a
signal across the telescope array is small compared to
the inverse bandwidth so that this delay can be repre-
sented by a phase shift of the signal. For a maximal
baseline , the condition on the maximal bandwidth
is , where is the speed of light,
e.g., for a maximal baseline of 3000 m,
32 kHz. Without this assumption, it does not make
sense to define an interferer signature vector . If
the assumption is not satisfied, as for many existing
telescopes, a form of subband processing has to be
implemented.

A4) The interferer signature is stationary over short
processing times (say 10 ms).

A5) is varying over periods longer than the short-term
integration time. Note that even interferers fixed on
earth will appear to move as the earth rotates and the
telescopes track in the opposite direction. This effect
is worked out in Section IV-B.

This was the model considered in [8]. The model is easily
extended to multiple narrowband interfering sources, in which
case, we obtain

where has columns corresponding to interferers,
and is a vector with entries.

B. Covariance Model

Suppose that we have obtained observations
, where is the sampling period. We assume that

is stationary at least over intervals of , and construct
short-term covariance estimates

where is the number of samples per short-term average. The
interference filtering algorithm in this paper is based on ap-
plying operations to each to remove the interference, fol-
lowed by further averaging over resulting matrices to obtain
a long-term average.

Considering the as deterministic, the ex-
pected value of each is denoted by . According to the
assumptions, has model

(1)

where is the interference-free covariance matrix,
and is assumed to be known from calibration. The objective
is to estimate the interference-free covariance .

C. Spatial Filtering Using Projections

In [8], a spatial filtering algorithm based on projections was
introduced. In summary, it is as follows.

Momentarily suppose that an orthogonal basis of the
subspace spanned by interferer spatial signatures span is
known. We can then form a spatial projection matrix

(2)

which is such that . When this spatial filter is applied
to the data covariance matrix, all the energy due to the interferer
will be nulled. Indeed, let

then
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When we subsequently average the modified covariance ma-
trices , we obtain a long-term estimate

(3)

is an estimate of , but it is biased due to the projection.
To correct for this, we first write the two-sided multiplication
as a single-sided multiplication employing the matrix identity
vec vec . This gives

vec vec (4)

where

If the interference was completely removed, then

vec vec vec (5)

where

In view of this, we can apply a correction to to obtain
the corrected estimate

unvec vec

If the interference was completely projected out, then is an
unbiased estimate of the covariance matrix without interference.
This was the algorithm introduced in [8].

In practice, span is not known, and it has to be esti-
mated. As usual in array processing, this is done by computing
an eigenvalue decomposition of the sample covariance matrix

and letting in (2) contain the dominant eigenvectors. The
underlying assumption is that, without interference, ,
so that eigenvalues significantly larger than indicate the pres-
ence of interferers, and at the same time, the corresponding
eigenvectors span the subspace to be projected out. For this to
work, it is essential that the astronomical contribution is
small compared with the noise [viz. assumption A2)]; other-
wise, it would disturb the eigenvalues and the eigenvector direc-
tions. This assumption can be made more precise by requiring
that the entries of are much smaller than the standard devi-
ation of the entries of due to finite sample noise, or

(6)

For a known signal-to-noise ratio (SNR), this translates into a
limit on the short-term integration length , e.g., the strongest
astronomical source has SNR dB, for which we obtain

. Usually, the value of is limited to a lower value
by the (non-)stationarity of the interferer.

A detection metric for the presence of interferers, and their
number can be derived from statistical principles (e.g., the clas-
sical sequential hypothesis tests [9]–[11], the AIC [12], or Ris-
sanen’s MDL test [13]; see [14, ch.7.8] for additional refer-
ences). A test which is simpler to implement is that which puts
a threshold on the eigenvalues

(7)

(this equation is based on an asymptotic formula for the largest
singular value of a white Gaussian noise matrix by
Edelman [15]). The number of eigenvalues larger than indi-
cates the number of interferers. The eigenvalue threshold test is
used here because it is easier to relate it to and to the interfer-
ence-to-noise ratio (INR), which gives a useful insight. The test
does not have a known false-alarm rate, but for the threshold in
(7), it is about 2% over a wide range of and .

The algorithm relies on the invertibility of , which is
constructed from projection matrices. Each projection matrix
is rank deficient. Hence, is invertible only if the spatial
signature vectors that are projected out are sufficiently varying.
In [1], it was noted that for , usually, three different
projections are already sufficient to guarantee that is full
rank.

III. SIGNAL COVARIANCE ESTIMATE ERROR ANALYSIS

The result of the algorithm is , which is an estimate of the
true covariance matrix . As a measure of accuracy, we will
determine the covariance of in three cases: i) interference
free, ii) the spatial signatures are known, and iii) the spatial
signatures are estimated from the data.

The covariance of the short-term averages is defined by

cov vec vec

where

Assuming Gaussian sources (sky signals, interference and
noise), the covariance of the short-term averages is given by the
standard result (e.g., [16, eq. (A4)])

cov (8)

A. Case I: Interference-Free

In the interference-free case, without filtering, is given by

Then, from (8), the covariance of is given by

cov
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where . Because

cov (9)

Hence, all entries of are disturbed by uncorrelated noise with
variance . This interference-free result gives a refer-
ence performance for the estimation of .

B. Case II: Interference With Known Spatial Signatures

Suppose the subspace spanned by the spatial signatures
of the interferers is deterministic and perfectly known. In that
case, the interference will be completely removed, and the al-
gorithms are unbiased by design. According to the algorithm in
Section II-C, the estimate of is given by

vec vec vec vec

(10)

where , , and is the
projection onto the orthogonal complement of . (Note that
and are Hermitian.) Thus, the covariance of the long-term
estimate is

cov cov

where

cov vec vec (11)

and . The estimation errors and are
uncorrelated for , and ;
hence

cov vec vec

Multiplication by projects out the contribution of the inter-
ferers so that

cov

Thus

cov cov (12)

Compared to (9), this indicates that determines the relative
performance of the spatial filtering algorithm of Section II-C.

In turn, depends on the variability of , which are the
spatial signatures of the interferer. If is sufficiently varying
and the number of antennas is sufficiently large, then for large

, , and the performance is similar as in the interference-
free case [see also (16) later in the paper]. In practice, a moderate

is sufficient. Even for stationary located interferers, will
change because of earth rotation. A more detailed discussion on
the conditioning of in that case is found in Section IV-B.

C. Case III: Interference With Unknown Deterministic
Spatial Signatures

In practice, the spatial signatures are unknown, and their
column span will be estimated from eigendecompositions of the

. Because of the estimation error, the projection is not per-
fect, and there will be a residual that might affect the perfor-
mance. In previous work [1], we have presented a first-order
perturbation analysis, which said that the performance is the
same as in (12): It is in first order unchanged, even if the pro-
jections are estimated. Obviously, this cannot be entirely true.
A more detailed second-order analysis presented in this subsec-
tion reveals that, with projections estimated from an eigenvalue
decomposition, a bias is introduced on the main diagonal of ,
which in certain cases can be significant compared with the stan-
dard deviation. We also show that for reasonably large , the
covariance of the estimate is as derived before in (12), i.e., not
affected by the interference subspace estimation.

In this section, we assume for simplicity that the noise power
has been normalized to . The main results of the second-
order perturbation analysis are summarized in the following the-
orem, and proofs are in the Appendices.

Theorem 1: Let be a Taylor series
expansion of . Assume that . Let be the th eigen-
value of (sorted in descending order) and the number of
dimensions that are projected out in the th interval. Assume
that the largest eigenvalues are distinct. Then

vec

vec (13)

The bias on is given by . If the eigenvalues of are
stationary (independent of ), the bias is

(14)

For sufficiently large

cov vec vec

Proof: See Appendix B.
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Clearly, (13) and (14) indicate that there is a bias term. Under
the assumption that the eigenvalues are stationary and the sky
signal powers are much below the noise power, (14) also shows
that only the diagonal entries of are biased, even if the inter-
ferer is not uniformly distributed over space (in fact, even if
is almost stationary). This is acceptable for most astronomy ap-
plications (e.g., imaging, spectral analysis). The bias is studied
in more detail in Section V.

The variance of the estimates is the same as we obtained be-
fore in (12). The effect of the projections is described entirely
by . The properties of are analyzed in the next section.

IV. EXPECTED VALUE OF

From the covariance expression (12), it is seen that de-
termines the penalty on the estimation performance due to spa-
tial filtering. The main diagonal of contains the factors by
which the variance of is multiplied compared with the inter-
ference-free case. only depends on the projected directions,
i.e., on the collection of , the spatial signatures of the inter-
ferer over time. We consider a single interferer and two extreme
cases: I) the are independent random vectors, with normally
distributed entries, and II) the are the spatial signatures of an
interferer fixed to earth.

A. Case I: Interferer With Normally Distributed Spatial
Signatures

If a ground-based interferer without direct line-of-sight is
moving, then due to fast fading effects, it is reasonable to model
the corresponding spatial signature vectors
as a collection of i.i.d. random vectors with directions uni-
formly distributed over the -dimensional unit sphere.2 From
this model, we can determine . For , converges
to ; hence, converges to .

Thus, assuming and i.i.d. for different , let

Then, is uniformly distributed over the unit sphere. Note that

To evaluate this expression, we need to establish the second-
and fourth-order moments of . Denote by the -th entry
of . Due to symmetry, is zero, except when .
Let ; then, has a beta distribution with parameters

[17, p. 487] for which

var

2In other cases, this model may represent a workable simplification which
allows for a meaningful analysis.

It follows that

and subsequently

All other cases of are 0 due to symmetry. In sum-
mary

vec vec

vec vec (15)

The inverse is given by

vec vec (16)

For large , converges to . The variance of the
entries of is determined by the main diagonal of . In
particular

var

var (17)

e.g., with antennas, the variance of the diagonal entries
of is multiplied by approximately 1.29, and the variance of
the off-diagonal entries is multiplied by 1.31, or an increase of
about 1.1 dB. Alternatively, we can say that if one dimension
is always projected out, then 31% more samples are needed to
compensate for the loss of information.

B. Case II: Stationary Interferers

For to be invertible, the spatial signatures need to be
sufficiently variable. For stationary interferers (not moving, no
multipath), the only source of variability is the geometric delay
compensation. This is a delay placed between each telescope
and the correlator to correct for the different path lengths of the
astronomical signal to each of the telescopes: After the correc-
tion, signals arriving from the look direction will arrive in-phase
and will be processed coherently. The geometric delay de-
pends on the locations of the telescopes and the direction of the
observed field in the sky. Due to the daily rotation of the earth,
the stars are moving along the sky, and hence, the geometric
delay is time varying.
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For practical reasons, the compensating delay is usually
inserted only after frequency downconversion. In this case,
the downconversion of an RF signal with carrier frequency

and delay introduces a phase shift . For coherent
processing of the sky signals, it is therefore necessary to apply
an additional time-varying phase correction to each telescope
signal after downconversion, which is called fringe stopping
[18], [19]. This correction will make interferers fixed on earth
appear to have a telescope-dependent time-varying phase-shift.

For a uniform linear East–West array of telescopes, the ge-
ometrical delay is , where is
the longest baseline length in wavelengths, is the declination
of the sky source ( for a source at the celestial pole),
and is the “hour angle” (azimuth) of the source
( rad/s is the earth rotation speed based
on a siderial day) [19]. For time scales of a few seconds, the re-
quired phase correction can be approximated by a linear-phase
progression , where is called the “fringe fre-
quency” [19]

The effect of the time-varying fringe correction on the spatial
signature of an interferer can thus be modeled as

...

(18)

where is the spatial signature vector of the inter-
ferer without fringe correction.

For a stationary interferer and sufficiently large , de-
pends mostly on the number of antennas and the total fringe
rotation over the longest baseline and over the complete in-
tegration period of duration

(19)

Simulations [see Fig. 1(a) and (b)] show how the asymp-
totic value of diag depends on and . In
Fig. 1(a), the initial interferer signature vector is

. It is seen that a reasonably good performance is
already obtained once the total fringe rotation is larger than
about two cycles (other simulations indicated that this result is
independent of the number of samples per fringe cycle). The
asymptotic values actually correspond to the same levels as
predicted in (16) for the uniformly distributed case. In Fig. 1(b),

is selected randomly, and confidence intervals for
diag are shown for telescopes.

This condition on can be translated into a division of the
sky in an “observable” and an “unobservable” area (sky loca-
tions that cause insufficient fringe rotations to tolerate the pro-
jection of stationary interferers). Let be an angle such that

. In view of (19), a condition for sufficient
fringe rotation corresponds to a certain minimum value of .
Translating this to values for and , it can be shown that this
corresponds geometrically to a band from the East horizon over
the celestial pole to the West horizon, as is shown in Fig. 1(c),

Fig. 1. (a) max(diag(C )) as function of fringe rotation � . (b) Con-
fidence intervals for a random initial signature vector (p = 8). (c) Unobservable
area of the sky due to a fixed interferer.

which depicts the sky as seen above the observatory in a coor-
dinate system relative to the observatory; the vertical direction
corresponds to zenith, and the latitude of the observatory was
assumed to be 52 . The black ring is the unobservable area.

Let be the smallest value of that is acceptable. The
width of the unobservable band is given by

(20)
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Fig. 2. Observation of 3C48 in the presence of an interfering signal from a
GPS satellite. (a) Eigenvalues of ^R for varying short-term integration length.
(b) Eigenvalues ofC for varying long-term integration length.

e.g., if rad, s, cm (corresponding
to an observation frequency of about 1 GHz), and m,
then the width of this band is 16 .

C. Experimental Results

The preceding results can be illustrated further using two
measurement sets taken at the Westerbork Sythesis Radio Tele-
scope (WSRT) in The Netherlands. The measurements consist
of correlation products of telescopes with a maximal
baseline of m, split into subbands of 40 kHz and
subsequently short-term integrated over samples, thus
corresponding to a short term integration time of ms.
We will consider only a single subband channel. The observed
source was 3C48 at declination . The data was offline
calibrated to have noise power .

The first data set was measured at MHz and con-
tained interference from a GPS satellite. Fig. 2 shows the re-
sults. In Fig. 2(a), the eigenvalues of the short-term data covari-

ance matrix are shown for increasing levels of integration
. For an integration length shorter than 0.5 s, the eigen-

values indicate a single interferer plus white noise. After 0.5 s,
the interfer starts to occupy more than one spatial dimension
because its motion changes the direction of the instantaneous
spatial signature vector .

Since this clearly shows that the spatial signature is constant
over the short-term integration interval of 10 ms, we subse-
quently do our spatial filtering at that level and vary the long-
term integration length. The question now is whether the re-
sulting is invertible. Fig. 2(b) shows the eigenvalues of
for various levels of long-term integration (the short-term inte-
gration length is fixed at 10 ms). For integration lengths shorter
than 0.5 s, has eigenvalues that are close to zero. After 0.5
s, these eigenvalues start to grow, and after about 3 s, is well
conditioned. At the same time, the value of diag
drops to about 1.5.

The GPS satellite is in the far field and moves at a constant
speed. Its spatial signatures can also be modeled by (18), i.e.,
by a linear phase progression, although the “fringe frequency”
now does not correspond to the earth rotation. Indeed, we
have verified that the data satisfies this model well and have
estimated the corresponding frequency. The dotted vertical line
shows where the condition is met, and it is seen
that it coincides with the integration length above which is
well conditioned.

The second data set, shown in Fig. 3, was measured at
MHz and contained interference from a stationary inter-

ferer, possibly an AM amateur broadcast. The stationarity of the
source and the lower observing frequency result in a low fringe
frequency. In this case as well, increasing the long-term inte-
gration period causes the smallest eigenvalues of to rise and

diag to drop but at a later time than in the previous
case.

In this case, it is seen that at (dotted ver-
tical line), diag has not dropped, as low as in the
previous case. The reason is that one antenna was receiving
most of the energy, and such an imbalance was not considered
in the analysis of the previous section.3 Still, at s,

diag has dropped to 2.8 and to 2.1 at s.
Integration times of this length are not uncommon for the an-
tenna configuration used for this experiment. Indeed, in radio
astronomy, a condition that is used to estimate the longest per-
missible integration time is [19]

where is the antenna diameter (here 25 m) and the longest
baseline length (here 1296 m); as before,

rad/s. As a result, s. For s
and MHz, (20) gives an unobservable band with
width 10 .

3Moreover, this measurement was done 2 hr after the fringe frequency reached
its maximum value so that better results can still be achieved.
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Fig. 3. Observation of 3C48 in the presence of a stationary interferer.
(a) Eigenvalues of ^R for varying short-term integration length. (b) Eigenvalues
of ^C for varying long-term integration length.

V. BIAS EXPRESSIONS AND CORRECTIONS

A. Bias for Low SNR

The final result of Section III was an expression for the bias
of the spatial filtering algorithm (14), viz

(21)

which is valid for stationary eigenvalues but otherwise indepen-
dent of the interferer statistics (a normalized noise power
is assumed). To gain some insight in this expression for the bias,
we specialize to the case of a single interferer and very small
SNR. In that case, . All eigenvalues are 1, ex-
cept for . If the interference power is constant
over time, we can define the average interference-to-noise ratio
per antenna as INR so that INR, and

INR
(22)

The bias is independent of and smallest for large INR: In
that case, it converges to . For , this is signif-
icant compared with the standard deviation, which is of order

. This is even more so for small values of the INR since
the bias will be larger.

B. Bias for Low INR

For low INR (say zero INR), the result in (22) is obviously not
valid. The reason is that the analysis assumed that the eigenvec-
tors are unique, whereas for zero INRs, all eigenvalues of
are the same and cannot be distinguised—and the corresponding
eigenvectors are no longer unique. Hence, the analysis has to be
modified for this case.

If the interference is not detectable but, nonetheless, a pro-
jection is made, it will be in the direction of the largest instanta-
neous eigenvector of . The direction of that vector is random,
but systematically, the component with the largest energy is re-
moved, and this sorting effect will lead to a bias.

An estimate of this bias for the case is obtained as
follows. Assume very low INR and SNR; hence, ,
. With projections computed from the largest eigenvector, we

have

For large

(23)

since for vectors with an arbitrary direction
(see Section IV-A), and the eigenvalues are statistically inde-
pendent from the eigenvectors. With the asymptotic value of

from (15), we can derive

vec vec (24)

Thus, for sufficiently large

vec vec vec

vec

vec

The expectation of the largest eigenvalue is approximately [15]4

(25)

Inserting this and taking only the dominant terms, we obtain that
the bias for undetectable low INR is approximately

(26)

This is the bias caused by doing projections when they are not
needed. It is of order but only affects the main diagonal
of .

4It is known that this expression is an overestimation.
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Fig. 4. (a) Bias and (b) standard deviation of the on-diagonal entries of ^			 versus input INR. (c) Bias and (d) standard deviation of the off-diagonal entries.

From simulations, it is seen that the combined bias for any
INR can be estimated rather well as the minimum (in absolute
value) of the two estimates (22) and (26).

In the above, we set for all . In practice, a different
algorithm is used: The number of interferers is detected from
the eigenvalues, and a projection is only done if the interference
is seen. This avoids most of the bias in (26). However, some bias
remains due to false alarm, as will be seen in the simulations.

C. Simulations

To verify the results in this section, we performed a simula-
tion with interferer of varying INR. There is one astro-
nomical source SNR dB and telescopes. The
spatial signature of the interferer in each interval is a random
vector with i.i.d. complex normal distributed entries, all with
the same average power (INR). The statistics are computed over
4000 Monte Carlo runs.

In Fig. 4, we show the bias and standard deviation of three
algorithms: i) a direct covariance estimate with no spatial filter,
ii) the covariance estimate using the spatial filter with projec-
tions computed from the eigenvectors, with fixed , and iii)
the spatial filter with detected from the eigenvalues using a
threshold as in (7). A vertical “threshold” line indicates the

INR that is barely detected, i.e., where INR
(assuming large ), or

INR

Fig. 4(a) is the bias of the on-diagonal entries of . The the-
oretical curve is the minimum (in absolute value) of (22) and
(26). It matches very well with the experimental bias of the spa-
tial filter algorithm without detection. Note that the bias is much
larger ( 10 to 20 dB) than the contribution of the astronom-
ical signal ( 25 dB) and is also larger than the standard devia-
tion ( 20 dB). The bias of the spatial filter with detection looks
a bit erratic because it changes signs two times . For
very small INR, it is equal to the value in (26) times the false
alarm rate of the detector: approximately 0.031 in this simula-
tion; hence, it is 15 dB lower than the filter without detection.
For large INR, the interference is always detected, and it is the
same as (22). In between, the bias is caused by the fact that the
interference is present but not detected, i.e., it follows the “no
filter” line.

Fig. 4(c) shows the bias of the off-diagonal entries of . The-
oretically, it is zero, but the eigenfilter without detection has
a very small nonzero bias for small INR: It is caused by the
nonzero SNR, which gives a small preferred direction to the
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Fig. 5. (a) Bias. (b) Standard deviation of the on-diagonal entries of ^			 versus
input INR after bias correction.

eigenvectors. Thus, the spatial filter tends to remove a small
fraction of the astronomical signal. The filter with detection did
not show a bias because it would be 15 dB lower.

In all cases, the variance of the covariance estimate is as pre-
dicted (17).

D. Bias Removal

Since the preceding expressions give quite an accurate idea
about the bias, it is natural to try to remove the bias using them.
A complication is that the bias is dependent on the INR, on
the detected number of interferers in each interval, and on the
threshold and the corresponding false alarm rates (these are also
dependent on the number of interferers). We have derived some
experimental techniques that were able to reduce the bias to
below 35 dB for low INRs or INRs above the threshold [see
(35) and (36) in Appendix C] . These results are not completely
general and depend on knowledge of the false alarm rates of the
detectors for various numbers of interferers.

Fig. 5 shows the results after this bias correction. Compared
to Fig. 4(a), it is seen that most of the bias is removed, except in
a region around the detection limit: Interference below this limit
is not removed; hence, the bias line follows that of the unfiltered
curve, but above the limit, the interference is quickly filtered
out completely. Hence, the remaining bias directly corresponds

to the remaining (averaged) interference. Whether the bias is
above the standard deviation (hence visible) depends on ; the
bias is independent of , but the standard deviation scales as

. Hence, for long integration lengths, there is always an
INR window where the interference remains and will be visible
after integration.

The bias is only present on the main diagonal of . For many
astronomical applications, this is acceptable, e.g., astronomical
imaging does not use the auto-correlations. For spectral line ob-
servations, there is usually a single source of interest in the co-
variance data, for which the power can be recovered from the
off-diagonal entries using factor analysis techniques (a form of
self-calibration); see, e.g., [20]. Thus, we expect that the bias on
the auto correlations will not be a major impediment, even if it
is not removed.

VI. CONCLUSIONS

Spatial filtering can give a significant reduction in unwanted
interference. Its effectiveness depends on the strength of the in-
terferer: Stronger interference is more easily detected and can
be better estimated and removed. The quality (covariance) of
the resulting estimate is given by (12) and is almost as good as
the unperturbed estimate in case the projection direction is suf-
ficiently nonstationary. There is a small increase in variance due
to the loss of information in the dimensions that were projected
out.

Assuming the noise power is normalized to , a detec-
tion threshold can be defined as

INR

where is the number of antennas and the short-term in-
tegration length. Interference with INR above this threshold is
usually detected and filtered out. Below the threshold, the INR is
usually too weak to be seen and will not be filtered out, leading
to a bias on the diagonal entries of the covariance estimate. The
most difficult interference has INR at this threshold.

In addition, for higher INR, spatial filtering can give some
bias in the on-diagonal entries of the covariance estimate. This
is because the projection directions and sample covariance ma-
trices are estimated from the same data. Some of the bias can
be removed, but there are two remaining effects that are hard to
compensate for:

• In case of very weak/no interference, the false-alarm
rate of the detector (a few percent) will lead to projec-
tions in random directions.

• Interference just below the detection threshold will not
be reliably detected and will remain present in the co-
variance estimate. For randomly oriented interference,
the effect will only be visible on the main diagonal of
the final covariance estimate.

The use of reference antennas can improve the detection of weak
interference and the estimation of its projection vectors, can
handle interference with stationary projection directions, and
is expected to generate smaller bias. Hence, this is an impor-
tant direction for further research. Algorithms for this have been
studied in [21], [22], and in our recent work.
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APPENDIX A
PRELIMINARY RESULTS

In the proof of Theorem 1 in Appendix B, we use a few re-
sults on eigenvalue perturbation theory. They are listed in this
section. The results are known—see, e.g., [16], [23]–[26]—but
often derived and written in indexed form (i.e., in terms of indi-
vidual matrix entries). We will write them in an integrated form
using Kronecker products.

To set some notation, let be the true covariance matrix
for the th interval and be the corresponding finite sample
estimate. All our estimates, eigenvalues, eigenvectors etc., are
functions of and can be written in terms of the true
function value and a Taylor series expansion on the error

, or , where ,
etc. We will only consider the first-order perturbation and
second-order perturbation .

Let be an eigenvalue decomposition of ,
where is unitary, and is diagonal with entries sorted in
descending order,5 and define

Lemma 2: For the unique eigenvectors (i.e., those corre-
sponding to distinct eigenvalues)

Proof: See, e.g., [24] and [25, eq. (C.2)].
Lemma 3: For Gaussian sources

vec vec

vec vec

Proof: For the first line, see, e.g., [16, eq. (A4)]. The
second line is derived from the first as follows: Let denote
the th column of an identity matrix; then, a specific entry of

is

vec vec

Apply the expectation operator and use the first line to obtain

vec vec

5The phase ambiguity on the columns of U is resolved in some default
manner; see [27].

The following result is a direct result of the preceding two
lemmas and appears, e.g., in [16] and [25] where it is written
using summations.

Lemma 4: For the unique eigenvectors of the covariance ma-
trix of Gaussian sources

Proof: Using Lemma 2

vec vec

Using Lemma 3

If , then , else .

APPENDIX B
PROOF OF THEOREM 1

In this section, for simplicity of notation, we assume that the
noise power has been scaled to unity .

We derive the perturbation on in the case that interferers
are present in the th period. More precisely, the algorithm com-
putes eigendecompositions and applies the
projection , where is the set of domi-
nant eigenvectors (spanning the “signal subspace”). Then, with
second-order accuracy

Let be the Taylor series expansion
of ; then, we can identify

.

Subsequently
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Define ; then, we can identify

.

Similarly

Note that has some entries on the main diagonal that are
always positive. Since these do not average to 0, does not
scale with .

Continuing, we have

vec vec vec

vec vec
vec vec

vec

vec vec
vec

As with , in addition, does not scale with because
certain entries of are always positive. Subsequently, we ob-
tain

vec

vec

vec

vec vec

vec vec vec

vec vec vec

vec

(27)

By expansion of , it can be shown that

(28)

To work out vec , we first show that vec
vec vec . Indeed

vec vec

and

so that

vec vec

Since , and
likewise for the third term, only the first term remains.

It follows that

vec vec vec

Inserting in (27) and using (28) gives

vec vec

vec vec

Since vec vec , the first two terms cancel, and we
remain, in first order, with

vec vec (29)

The second-order perturbation on is evaluated as

vec vec vec vec

vec

vec

vec vec
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If is large, then the second and third terms can be neglected,
and we obtain

vec vec vec

vec vec

vec

vec vec (30)

Each of the two terms inside the summation is . Using
(the “sky” contribution is

ignored, and the “noise” eigenvalues are 1), the first term is
worked out as

vec

vec

vec

vec

vec

vec

The expected value of this term is worked out as (the tedious but
straightforward derivation uses Lemmas 2–4)

vec vec (31)

The second term in (30) is worked out as

vec vec

vec

Using a similar derivation as before, this is worked out as

vec vec

Altogether, we obtain

vec vec

which is the result stated in the theorem. If the eigenvalues are
stationary (independent of ), this can be further simplified as

(32)

since, by definition of

vec vec

vec

vec

is with expected value 0, and is
with nonzero expected value. Thus

The bias is given by . The covariance of the estimate of
is given by

cov vec vec

In the evaluation of cov , for large , we can ignore , and
the covariance is equal to the case where the are known:

cov vec vec

(note that we scaled ). This performance depends only
on the total number of samples. A more detailed analysis shows
that this result is even valid for small (the covariance will
be larger by terms of , which can be ignored for

).

APPENDIX C
BIAS REMOVAL EQUATIONS

We try to remove the bias by adding correction terms to .
The complication here is that, even if we know quite precisely
the bias as function of INR, in practice, the INR is unknown.
Hence, we need to make corrections that are independent of
the INR. The idea is to use the eigenvalues to correct the
corresponding rather than the final .

For higher INRs, we can set, based on (13)

(33)
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The added term will increase by a term

and the premultiplication by will give the desired result.
Here, is the number of interferers in interval or the number
of detected interferers in case of eigenvalue filtering with detec-
tion. This correction removes most of the bias for higher INRs.

For very low INRs, we need a different correction. In that
case, we can set

(34)

Using (23), we obtain . Pre-
multiplication of vec by [cf. (24)] gives the required
result: .

For growing INRs, this term would grow linearly and be too
large. Hence, even if we always project out one dimension, a
correct bias removal still requires detection of the presence of
interference. If it is detected, we correct using (33); else (34).

A further refinement is needed to take into account the false
alarm rate. For very low INR, there are cases where the bias
was removed according to (33) instead of (34). The following
correction algorithms take this into account as well.

Bias Removal, Spatial Filtering of One Dimension

Consider the spatial filtering algorithm, where always,
dimension is projected out (independent of the actual INR). To
correct for the bias, assume that a detector is available, which,
in the th interval, detects and has false-alarm rate . Set

if

if (35)

then this removes the bias for low and high INR up to second
order terms. Indeed, for high INR, the interference is always
detected, and the correction is as in (33). For low INR, we have

in number of cases and in number
of cases. The expected value of is then

since for arbitrary 1-D projections. This
gives us back the situation in (34). For , we can take the
expression in (25).

Bias Removal, Spatial Filtering With Detection

Consider the spatial filtering algorithm where the number of
interferers is first detected and the corresponding eigen-
vectors projected out. Only if an interferer is detected, a cor-
rection using (33) is needed. If the interference is not detected,
then no correction is needed, except to correct for the bias due
to false alarm.

Let be the false alarm rate of detecting inter-
ferers when there are only , and let be the projection
matrix that projects out the first eigenvectors. Without further
motivation, we mention the following algorithm:

if

if

(36)

The algorithm tries to take into account that for interferer
and high INR (hence always detected), it might happen that a
second eigenvalue is larger than the threshold ( , with prob-
ability ).
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