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1. Onze westerse cultuur veronderstelt dat we allen in dezelfde wereld leven
waarvan ieder individu zijn eigen voorstelling maakt.
Deze gedachte veroorzaakt een door filosofen veel beschreven verschil
tussen het ‘wezen', de unieke wereld zoals deze voor iedereen noodzakelijk

" hetzelfde moet zijn, en de 'schijn’, een wereld zoals deze voor ieder individu
anders kan zijn.
In tegenstelling echter tot wat in onze cultuur wordt verondersteld leven
individuen in verschillende werelden waarin de wereld zoals deze voor ieder
individu werkelijk is overeenkomt met de wereld zoals deze voor ieder
individu lijkt te zijn:

Het verschil tussen wezen en schijn is in wezen schijn.

2. Illusie is niet een andere kijk op realiteit, maar de enige manier van leven.

3. Communicatie veronderstelt een niet aantoonbare overeenstemming tussen
werkelijke en geprojecteerde gevoelens.

4, Tijdens de Renaissance is de ruggengraat van de westerse samenleving
overgegaan van de dogma's van de kerk naar de dogma's van de
experimentele wetenschap. Het is echter zeer de vraag of de gangbare
dogma's van de experimentele wetenschap de ontwikkeling van de
menselijke geest niet evenvee! in de weg staan als de dogma's van de kerk
tijdens de Middeleeuwen.

5. Niemand weet waarom een bal valt.

6. Er zijn zowel echte en onechte sporters als echte en onechte intellectuelen,
zij die zichzelf vitdagen en zij die anderen willen overtreffen.

7. Een universiteit is als een klooster, waarin niet novices maar studenten, niet
monniken maar wetenschappers zich overgeven aan een geloof, het geloof
dat we de wereld nog beter zullen begrijpen als we haar nog beter
beschrijven. Echter, de wereld is als de liefde, zelfs een perfecte beschrijving
mist volledig de kern.

8. Een absolute betekenis van de begrippen 'waar’ en 'onwaar' en de begrippen
‘goed' en 'slecht’ zal nooit objectief vastgesteld kunnen worden.

9. De motivatie achter het bedrijven van wiskunde is dezelfde als die achter de
liefde: het verlangen naar een volmaakte toestand waarin werkelijkheid en

vanzelfsprekendheid fuseren.
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Preface

This thesis is the result of five years research in the Systems Theory Group of the section
of Applied Analysis at the department of Technical Mathematics and Computer Science
of the Delft University of Technology in the Netherlands.

I am the result of twenty-eight years of support from family and friends and education in
schools. My education started in Gouda with two years nursery school, six years primary
school followed by six years secondary school. Next, for reasons that are a combination of
interest in puzzles and talent, I chose to study Applied Mathematics and be a student for
five years at the Delft University of Technology. Having finished this period successfully,
I was asked by Prof. dr. G.J. Olsder to continue studies for another four years as a PhD
student in an academic research project team for optimization of a production line of a
well-known lamp manufacturer. After some hesitation, for reasons that are a combination
of pride, unawareness of other possibilities, the feeling that I would never have a similar
second offer and my endless interest in mathematical puzzles, I decided to take this oppor-
tunity.

The personal consequences of this decision for me were big during the next five years. I
think that because of my background, growing up in a protected surrounding, and my
talent for mathematics at school, until the time of the decision I never needed to put men-
tal effort in reaching goals. Until then I was used to putting mental effort in things only
because of the mental pressure of people who expected me to do so. As a PhD student,
however, there appeared to be practically no one with expectations about the results of
my work and there appeared to be very few people around who could assist or with whom
I could communicate about the fundamental problems that I met. I think that this was
partly due to my own attitude: I could have searched better in the existing literature and I
could have searched for and met more people around this planet who are busy with similar
problems. However, this was not my style. I have tried to tackle the fundamental problems
in my own personal way.

The most difficult problems that I met, however, were not in the field of mathematics, but
in the field of my personal philosophy, psychology and management. I doubted the purpose
of science and had problems finding the corresponding personal goals and motivation to
reach them. One of the main problems that I met and that I would like to discuss here is



of a pure philosophic nature.

I think that, unconsciously, my interest for mathematics came from the urge to gain in-
sight into the phenomena of the world around me. It is only now that I see clearly that
mathematics is a nice tool to describe phenomena of this world, but will never be able to
reveal the answer to the more interesting question “Why ¢°.

It is maybe because of too high expectations that I feel disappointed in the answers that
science offers to mankind. In my view science only records and simplifies phenomena, but
does never explain. Take for instance the reasoning that objects fall on earth becouse of
the gravitational field and Newton’s laws. I find that this abuse of reasoning is charac-
teristic of the scientific method. Strictly spoken, the only thing that Newton’s laws and
the gravitational field can do for us is accurately describe observations of falling objects
in the past. Most scientists are satisfied with Newton’s description and behave as if this
were an explanation. But they do not see that Newton’s description does not relate to the
answer to the question: “Why did objects fall towards earth?”. The scientific answer to
the last question is not deeper than “Because objects have always fallen towards earth.”
No matter how accurately we can describe objects that fell in the past, is this really an
answer to our question? Should we call this an explanation? My personal answer to the
last question is clearly “No!”.

Description of phenomena can be seen as a first step towards understanding. The problem
is that after-the first scientific step of description already we are facing the frontiers of pure
science. A reasoning that is still contained within this first step could be “If future objects
in the year 2000 fall in a similar way as we have observed in the past then objects in the
year 2000 will fall towards earth.” A next step however, 1 think unconsciously taken by
almost all scientists, is almost necessarily a step over the borders of science into religion. I
think for instance that it should be seen as religion to remove the condition and reason that
“Objects in the year 2000 will fall towards earth because all observed objects in the past
have done so” (Which is what we basically do if we ezplain falling objects in the year 2000
by means of gravitational fields and Newton’s laws.) No one has observed falling objects
in the year 2000, but still we believe that these future observations will be similar to the
experiences that we have with falling objects in the past: we feel confident that in the year
2000 objects will fall towards earth as well. This religion is a subtle but deeply rooted
unconscious belief of mankind in the necessity of the continuity of the world in which we
live. This belief is natural because everyday life would become impossible if we doubted
the direction of falling objects, but that does not contradict my fundamental point here.
In this sense, I am convinced that science itself is in fact a pre-eminent religion. Science
is a religion that claims the necessity of unobserved phenomena based on the continuation
of observed ones.

A most interesting question to me is what the world would look like if we refused this




dogma and refused the way in which science deals with the necessity of continuation of
observed phenomena. If we refuse this dogma we have an infinite number of possible de-
scriptions based on the same set of observations of which I will distinguish three different

types:

* Rejection of continuation in the future (Extrapolation to the future)
Science tells us only for reasons of continuity that objects will fall towards earth in
the year 2000. If we drop the dogma of continuation we can believe that objects
will continue falling towards earth in accordance with past experiences until the year
2000 and then stop doing so. We can believe that, because of a sort of apocalypse,
objects will suddenly start falling towards the sky from the year 2000 on.

¢ Rejection of continuation between observations (Interpolation)

Refusing the dogma of continuation, we can even refuse conclusions from continuation
between the observed phenomena. Science tells us for instance that objects have
always fallen towards earth. This includes a claim on the past behaviour of all
unobserved falling objects as well. If we refuse the dogma of continuation we can
believe for instance that on a day in the year 1900, even if somewhere on an island
near the equator people have observed hundreds of coconuts falling towards the earth,
still one unobserved coconut did not fall towards earth but fell towards the sky. In this
way we may believe for instance that there are or might have been a lot of unobserved
objects falling towards the sky between the observed ones that fell towards the earth.
There could even be a causal relation between the fact of the observation itself and
the behaviour that falling objects have: maybe objects fall towards earth if and only
if they can be observed!

¢ Rejection of continuation in the past (Extrapolation to the past)

An interesting and classic example that refuses the dogma of continuation is taken
from the Bible. We can join some (other) religious people and believe that the earth
has been created by a “higher power” about 40.000 years ago. The consequences of
this creation is that obviously before 40.000 years ago objects did not fall towards
earth because they did not even exist. By a discontinuous act of creation suddenly
there was an earth with objects in it. These objects were given the property to
sustain falling towards earth just as we have observed during the last few thousands
of years.

I think that most scientists do not take these solutions as serious alternatives, but they
forget that they do not have better arguments, because as long as solutions are in accor-
dance with past observations they just cannot be rejected.

My conclusion is that an infinite number of different continuous and discontinuous descrip-
tions exist that match with all past observations! Each of these descriptions are as likely
as the others! Science has no fundamental arguments other than a belief in continuity to
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claim a best. (I use the adjective likely on purpose because it is often used as a counter-
argument in this context but has in fact no fundaments other than expressing the same
feeling of continuity in a different way.)

However, if we have a closer look at the arguments of science, we see that they are even
weaker than I have just described since even if we accept to believe in the continuity of
phenomena in our world then we are still facing a fundamental problem of non-uniqueness.
My point here is that there are also an infinite number of different continuous descriptions
that match with all observations from the past, just as there exist an infinite number of
continuous functions that match with a function of which we do not know the behaviour
on an interval. The solution that science finds for this problem is an additional beliefin the
validity of the most “elegant” description: if a shorter continuous description can describe
more observed phenomena then scientists believe that it will necessarily give better ezpla-
nations. Again there is no other argument than a belief in the necessity of the shortest and
simplest description.

In order to overcome all these fundamental problems of science, science itself comes up
with a solution by means of a new concept denoted by mathematical model. The concept
of the mathematical model is the solution that should bridge the philosophic gap between
the descriptions by means of mathematics and reality (whatever that may be). But, even
though the concept of the mathematical models certainly makes the description less pre-
tentious, it does not change the religion of science. It does not stop scientists from believing
in the necessity of a continuous world and it does not stop scientists from believing in the
necessity of the shortest and simplest descriptions.

I think that science does serve a fundamental service to mankind, a service that in my
view can basically be described by the following psychological effects that it has:

e the satisfaction of the need to feel a basic structure.

the satisfaction of the need to improve in life.

the satisfaction of the need to control phenomena in order to maintain society.

the satisfaction of the vanity and curiosity of scientists.

*

the reassurance against fear for the future.

However, no matter how well scientists have been able to predict and control phenomena, it
is my belief that science will always be unable to find a unique description just as mankind
will always be unable to reveal the answer to the question “Why ¢°.

The purpose for me of finding solutions to mathematical puzzles therefore is not anymore
the satisfaction of gaining insight in the phenomena of our world. Mathematics in my
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present view does not relate to explanations of phenomena in this world. The purpose of
applied mathematics in science is only to give mankind a psychological service by means
of reassurance with structures, improvements and predictions of phenomena. It is not so
important whether these structures, improvements and predictions come from real expla-
nations or from a beliefin a best choice taken from an infinite number of possible structures.
The only thing that really matters is that they have the reassuring psychological effects.

In this way I lost my believe in the concept of understanding better “reality” by means
of mathematical descriptions. Reality in my present view is a personal perception of a
world based on a personal set of past and present experiences and therefore it cannot be a
unique entity. Each of these personal realities is as valuable, as good or bad, as likely and
as true or false as the other. Religions, in my view, try to unify personal realities into a ,
collective reality. This unification certainly serves the psychological and social needs in a
stable society, but does not make a collective reality better, more likely, or more true than
any personal one. If someone has a perception of reality in which tomorrow this thesis
will fall towards the sky then this perception is as good as, as likely as, and as true as a
perception of scientists in which it will fall towards the earth.

I hope that this personal perception of science will not demotivate the reader as it once
demotivated myself. It is obvious that every structure of the world around us starts neces-
sarily in a belief and that a stable society just needs a clear structure. Moreover, science
has facilitated life and increased the expectations of lifetime. It controls and predicts
phenomena better than ever before. Even though this doesn’t change my mind on basic
philosophic points, it certainly offers the opportunity to reach goals and satisfy people’s
needs. One of my personal goals, that I seem to have reached here, is the construction of
a PhD thesis. I admit that I am proud of it.

EvB

Delft
August 1996
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Chapter 1

Introduction

1.1 The Scope of this Thesis

This thesis is the result of five years study on the subject of production lines with blocking.
The main purpose of the research was to obtain a computable mathematical model that
describes a real production line in a car lamp factory.

If we have a first look at the car lamp production line that we want to describe then
we distinguish machines that manipulate products and product parts that wait for their
manipulations, just like a post office where we can distinguish counters with receptionists
and customers who wait for service in lines in front of them. The receptionists serve
customers just like the machines serve product parts with manipulations. The receptionists
and the machines can therefore be denoted by the more general term server. The lines
of customers or product parts in front of the servers can be denoted by a the general
term gueue. In other words, in order to describe the car lamp production line, we have
to find the most suitable description of a well-known phenomenon called waiting. This is
why we enter a huge field in probability theory that is involved in finding mathematical
descriptions of objects that are waiting in lines. This field in probability theory is called
queueing theory.

1.1.1 The Level of the Mathematics in this Thesis

In this thesis we assume that the reader has some basic knowledge of mathematical proba-
bility theory and stochastic processes. For an introduction into basic mathematical proba-
bility theory there exist an enormous amount of books. Between those, for the unsuspecting
layman who has the courage to start at the lowest level, we recommend to use [HL64] or
[Blo89]. Apart from knowledge of basic probability theory it is useful to have some knowl-
edge about stochastic processes. Books that we recommend because they take the step
from probability towards stochastic processes in a most comprehensible manner are [GS87],
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[Goo88] and [All90]. In fact in this thesis we aim at readers who do not have a higher level
than required for these last three references. Therefore, the knowledge of stochastic pro-
cesses that one needs in order to read this thesis is minimal. This is also because we tried
to increase the accessibility of this thesis by the inclusion of a long section in the intro-
duction that contains a description of the most simple class of stochastic processes: the
homogeneous discrete-time finite Markov chains. It is only in the last chapter, Chapther 6,
that we make a small step beyond this class and use more complicated stochastic processes.
In a lot of proofs in this thesis, of which most are mentioned in Appendix A and Appendix
B, we assume a sufficient level in basic calculus.

1.1.2 Zooming Into the Field

The field of queueing theory is so extensive that we can by no means give a clear overview.
Therefore it is wise to examine the properties of the car lamp production line in order to
zoom into smaller specialized fields. If we have a closer look at the car lamp production
line we observe

e several servers and several queues that are linked in such a way that product parts
that have been served by machines are put in next queues in front other machines.
This means that we are not dealing with a single server (as extensively described in
[Coh69], and for Markovian queues in [Sha90]), but with a more complicated queueing
network of servers.

e raw product parts that enter into the queueing network from outside, and finished
lamps that leave the network into the outside world. This implies that the car lamp
production line is an open queueing network.

e queues that have a finite capacity. This means that queues can become full which
introduces one of the most complicated phenomenon in queueing networks: blocking.

e only one machine that takes product parts from two different queues. This implies
that the car lamp production line is not a serial queueing network, but a queueing
network that has a configuration with merging.

e short term failures that occur with the manipulations on product parts and long
term failures that occur if machines break down. These breakdowns make that the
machines are unreliable. This requires special properties of the service time distribu-
tions.

e machines that have fixed cycle times, which is also denoted by the term “indexing
machines”. At the end of each cycle exactly one product part comes from a machine.

We conclude that we have to focus on open queueing networks with blocking, which is still
a big area, but which is small enough to obtain a reasonable overview.
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1.1.3 Methods to Solve Queueing Networks with Blocking

It we examine the literature in this area, for this we refer for instance to [PA89], then we
come to the conclusion that it deals with one of the hardest problems in queueing theory.
The problem with blocking is that it induces complex correlations between the behaviour
of two subsequent servers. As far as we know there has not yet been found an elegant
solution by means of which these complex correlations can be described. All methods
in this area are focused on finding better numerical approximations and improvement of
theoretical upper and lower bounds for the stationary behaviour of such networks. What
makes this area of research so interesting is that one has the feeling that the mechanisms of
its queueing systems are simple, common and natural but each attempt to solve for simple
and exact analytic solutions ends up in a failure.

There are some directions in which researchers have tried to find solutions. We think that
the mainstreams of these directions are the following.

e The direction of the Perturbation Analysts, which in fact is a technique that estimates
sensitivities and gradients from real time measurements in the network. For this
method we refer to [HC91], [HET79] and [Cas93].

e The direction of the Product Form Solutions, which assumes that the stationary
distribution can (approximately) be written in the special product form. This product
form turns out to give exact solutions in a well-defined area of non-blocking networks.
For these product form solutions we refer to [Dij93], [Wal88] and [Dij89).

e The direction of the Petri nets and Timed Event Graphs, for which we refer to
[BCOQ92]. In this direction we obtain very “elegant” descriptions of queueing net-
works with blocking. It even gives nice expressions in the setting of a new algebra
that can be used for queues with deterministic service times. However, the expres-
sions that we obtain in this direction for queues with stochastic service times are still
very complicated, so complicated that solving the exact stationary distributions an-
alytically or numerically is still beyond our reach. Even though it is yet not possible
to apply the methods in this direction for stochastic queueing networks, we think
that this direction should be seen as the hardest but most promising one. In the last
chapter in this thesis we will make a small step into this direction.

e The direction of Decomposition Techniques in queueing networks. This is the most
classic direction that tries to project the behaviour of queues in the network on the
behaviour of a predefined class of single server queues. There is a large amount of
methods in this diréction. For an extensive overview of methods in this direction we
refer to [DG92).

Of course we can think of other directions and directions that consist of combinations of
the ones that we just described. We just consider these four directions as the leading
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ones at this moment. The last direction, the direction of Decomposition Techniques, is the
direction that we chose in order to find the stationary behaviour of the car lamp production
line in this thesis. We refer to [MT90], [HB67], [DRXL88|] and [Ger93] in particular for
descriptions of methods for queues with blocking in series with “unreliable” servers. Similar
serial queueing networks with “unreliable” servers will also be treated in this thesis. These
articles therefore address similar problems. A fundamental difference of the methods in
this thesis with the methods derived in those articles, is the discrete-time nature of the
models here versus the continuous time nature of similar models in [HB67], [DRXL88] and
[Ger89]. We have chosen for the less usual discrete time models in (the main part of) this
thesis because they fit better with the discrete time nature of the “indexing machines” in
the car lamp production line.

It is obvious that the modest list of the author’s own publications is related to this thesis
as well, see [BOW91, Bra9l, Bra93, Brad4, Bra9s].

1.1.4 An Outline of this Thesis

This thesis is divided in two parts. The first big part contains Chapter 1 up to Chapter 5.
The second small part consists of Chapter 6 only.

The target of the first part is to find a suitable description by means of a mathematical
model of a real car lamp production line by means of the most simple subclass of Markov
chains, the homogeneous discrete-time finite Markov chains. We use discrete-time finite
Markov chains in order to obtain a better model of the discrete behaviour of the “indexing
machines” in the car lamp production line. These “indexing machines” have fized cycle
times. Although the discrete-time Markov chains can model better this discrete-time be-
haviour, we have to cope with the problem that they model machines with the same cycle
time. An essential difference with most other models for such lines that we found in the
literature is that most of them use continuous- time stochastic processes.

This first big part can be divided into three smaller parts:

e Chapter 1 that contains this section about the scope of this thesis and a rather long
introduction into the principles that we use for our mathematical models, such as a
description of the notions production line and discrete-time Markov chain.

e Chapter 2, Chapter 3 and Chapter 4 in which we describe how we use decomposition
methods in combination of the principles from Chapter 1 in order to derive com-
putable mathematical models for serial production lines. The first chapter in this
part, Chapter 2, describes how we deal with short term failures (geometric service
time distributions) in serial production lines. The second chapter in this part, Chap-
ter 3, describes how we deal with long term failures (breakdown) in serial production
lines. The third and last chapter in this part, Chapter 4, describes how we can com-
bine the ideas from the previous two chapters and describes therefore how we deal
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with a combination of short term (geometric service times) and long term failures
(breakdown) in such lines.

o Chapter 5 that describes how we extend the decomposition methods from the serial
configurations in previous chapters and apply them to the real non-serial car lamp
production line.

In a way we have never been satisfied with the solutions and methods that come from
the mathematical models in the first part. We felt dissatisfied for reasons that are a
combination of a feeling of a lack of “elegance” and awareness of the limitations of the
descriptions in the first part. Therefore we have spent most of our research in a completely
different direction in spite of the fact that it most probably would not lead to a possible
application in the car lamp production line. This other direction that deals with stochastic
timed event graphs is decribed in Chapter 6. We believe that in this direction the most
interesting new results can be found. A lot of current research is already in this field at
the moment.

In this last part in Chapter 6 we introduce a new model for serial queueing networks with
blocking based on stochastic timed event graphs. We believe that the concept in this model
in which we do not make a fundamental difference between the positions in a queue and
the positions in servers can be seen as a small breakthrough. Therefore we believe also
that reasoning along the lines of this concept deserves more research, because it is likely
to offer new methods to approximate or maybe even find exact waiting time distributions
in queueing networks with blocking.

1.2 Production Lines

In the previous section we described the scope of this thesis and argued that the scope of
the research is the area of queueing networks with blocking. Because in this thesis we are
dealing with manufacturing systems only we will not use the notion open queueing network
with blocking but from now on we will use the equivalent notion production line instead.
Therefore we will not use the terms gueue and server, but from now on we will use the
equivalent terms buffer and machine instead.

Before we examine production lines and the special possible properties we have to describe
what we exactly mean here with the notion production line in general. We will describe
this notion accurately in the next subsection.

1.2.1 Configuration

Whenever we use the notion production line we refer to a directed graph that consists of
a set of items called machines denoted by M, a set of items called buffers denoted by B
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and a set of arcs denoted by A C (M x B) U (B x M) such that VM € M, 3Bi,, Bow € B
such that (B, M) € A and (M, Boy,) € A.

In other words a production line is a collection of machines and buffers connected by arcs.
Buffers and machines are never directly connected among themselves. Machines always
have both input and output arcs.

Example.

Q_,-\B©<T\:3© - = Machine
M, / -“ Vs / = Arc

- = Buffer
e

Figure 1.1: An arbitrary production line.

A picture of an arbitrary production line is shown in Figure 1.1.
In this example

M = {My, My, Mz, M},
B = {Bla B2a B3> B4: B57 B6}1

A = {(Bi, M), (By, My), (B3, Ms), (B3, M), (By, Ma)}U ...
{(MlvB3)v (Mg,Bz), (MzzB3)7 (M3v35)’ (M‘hBS)}'

O

If (z,y) € A then we say that = is upstream with respect to y and y is downstream with
respect to z. In the example of Figure 1.1 machine M, has two upstream buffers By and
B, and buffer B; has two downstream machines Mz and M,.

A buffer without an upstream machine is denoted by the term input buffer or source, a
buffer without a downstream machine is denoted by the term output buffer or sink. The
example of Figure 1.1 has three input buffers By, By, Bs and it has two output buffers Bs,
Bs.



1.2.2 Products and Product Parts

The notion “production line” makes us think that something is produced. Of course the
purpose of a production line is to produce certain things called products that can be sold
to customers in order to satisfy their needs and to make profit. So far the production line
considered as a directed graph is a static object, but if we zoom inside the line we can
see discrete parts moving from machines to buffers and from buffers to machines following
the directions of the arcs. We put raw parts into the input buffers, then the product
parts go through the production line following the arcs, are disconnected, manipulated or
reconnected each time they visit a machine in such a way that after some time they may
end up as finished products as soon as they reach an output buffer.

It is assumed that the products and product parts are of a discrete nature, that means that
they cannot be handled in any amount other than natural numbers. (This is in contrast
with “liquid” product parts for instance in a paint factory.)

1.2.3 Machines

As we explained before a production line consists partly of machines. Machines are entities
that are supposed to work on product parts. They are supposed to repeat the following
three actions continuously:

e Examine if all upstream buffers have a product part. If so then take one new product
part from all downstream buffers.

e Manipulate the product parts if taken.

e Examine if all downstream buffers have space left for a manipulated product part. If
so then put one manipulated product part in all upstream buffers.

The procedure of the three actions mentioned above we will denote as a cycle. Each
machine continuously repeats cycles with a certain speed, the time in which a machine
completes one cycle is denoted as cycle time.

Machine failures

The cycles as described in the previous paragraph consist of actions that machines are
supposed to do continuously. Unfortunately machines are prone to failure! When a major
failure occurs such that the machine is not able to continue manipulating new product
parts we talk about a machine failure. When a machine failure occurs the machine stops
its cycles and waits until an operator comes and fixes the problem. We say that the machine
is in down state. After having fixed the problem the operator restarts the machine and
the machine resumes its cycles. We say that the machine is in up state again. The
transition from a machine’s up to down state is denoted as breakdown. The transition from
a machine’s down to up state is denoted as repair.
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Product part failures

Within one cycle a machine manipulates one product part. Of course failures of manipula-
tions performed on the product parts can occur also: a product part can break during the
manipulations or a connection made between product parts is not made properly. These
product parts that fail manipulations are often useless for next manipulations in the pro-
duction process since they will never result in a product that fulfils the requirements of
customers. If such a product part failure occurs and is detected by the machine, then there
are two possibilities: either the product part is put back in the upstream buffer in order to
correct for the failure the next time that it will be taken, or the broken product part will
be totally removed from the production process because the failure cannot be corrected.
If the broken part will be removed from the production process then it will be put in a
garbage bin just after manipulation by the machine. The latter is denoted by the term
scrapping.

Notice that the difference between machine failures and product part failures is such that
when a product failure occurs the machine continues its cycles and when a machine failure
occurs machine cycles stop.

1.2.4 Buffers

Products and product parts in the production line are assumed to be stored in a buffer
whenever they are not under manipulation of a machine. Buffers are nothing more than
spaces for storage of products and product parts. Unfortunately space for storage is nat-
urally limited in almost every realistic situation. The maximal number of products that
a specific buffer can contain is denoted by the term capacity. The capacity of a buffer is
always a positive natural number.

It is assumed in this thesis, except for the models in the last chapter, that buffers don’t
have transportation times.

Buffers have a dynamically changing number of product parts in it. This implies that
buffers can become empty and full. When a buffer is empty and a machine tries to take a
part from it, we speak of starvation. When a buffer is full and a machine tries to put a part
in it we speak of blocking. Blocking and starvation are important notions for production
lines in which buffers have limited capacities.

1.3 Introduction to Markov Chains

In this section the notion of Markov chain will be described and basic tools dealing with
these chains will be explained. For a more thorough explanation and description of Markov
chains we refer to [GS87], [Goo88] and [All90].
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A random process is a family of random variables {X(t) : t € T} indexed by some set T'. To
make life easier we will assume that the random variables are discrete such that X (t) takes
values over a finite set S = {0,1,.., N } of states. Moreover, the set T' consists of natural
numbers only. This makes the random process a discrete time stochastic process. Amongst
the various types of stochastic processes we can distinguish a type that has proved to be
very useful for modelling real life systems: the Markov chain.

1.3.1 The Markov Chain

The very basic property of this type of processes is that it is memory-less in the following
sense:

Pr(X(t) = s|X(0), X (1),.., X(t - 1)) = Pr(X(t) = s| X (t = 1)) . (11)

When a stochastic process has the above property, it can be fully characterized by the
so called transition probabilities Pr(X(t+1) = j7|X(¢t) = 4). In general the transition
probabilities depend on i,5 and ¢. For the sake of simplicity we restrict ourselves to the
time independent homogeneous Markov chains, which means that the dependency on t is
dropped. This restriction brings us to to class of homogeneous discrete-time finite Markov
chains, in which the random process can be completely characterized by the transition
matriz P = (p;;) consisting of the transition probabilities

iy = piy = Pr(X(t+1) = 1| X (1) = j). (12)

In the following the comma is omitted in case it cannot cause confusion. This transition
matrix P belongs to the class of stochastic matrices, that means that P has the following
properties:

(a) P has non-negative entries, equivalently p;; > 0 ,

(by P haé column sums equal to one, equivalently Zp,-j =1.

To even refine the class of Markov chains more, we will deal only with the case where all
states are ergodic, which means that they are aperiodic and non-null persistent, such that
the set S of states is irreducible. We will not explain the exact meaning of these notions
from Markov chain theory here. For our class of homogeneous discrete-time finite Markov
chains the non-null persistent requirement is always satisfied if the chain is irreducible. In
order to check if a Markov chain in this class is irreducible do the following: draw a graph
that corresponds to the transition matrix such that the nodes are the states in S and the
directed arcs correspond to the non-zero entries in the transition matrix P. The Markov
chain is irreducible if and only if it is possible to go from any node to any other node by
means of a sequence of directed arcs. Such a graph is called a strongly connected graph in
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graph theory. A state in the graph is aperiodic if the number of arcs needed to go from
that state and return to the same state is not “necessarily” a multiple of a fixed prime
number. A-periodicity is assured if each node has an output arc directed to itself, which
is the case in almost all Markov chains in this thesis.

At each time t we have a random variable X (t) which takes its values from a finite set
S ={0,1,.., N}. Corresponding to each time ¢ € {0,1,2,..} there is a distribution vector
or briefly distribution n(t) = (m;(t) : i € S) such that 7;(t) = Pr(X(¢) = 7). In the class
of homogeneous discrete-time finite Markov chains the time evolution of the distribution
vector can easily described by the following matrix multiplication:

n(t+1) = Pn(t),
and, as a consequence:
n(t) = P'x(0) . (1.3)

So, given an initial distribution 7(0), the time evolution of the distributions is fixed by
means of the previous formulas.

A next question is what happens if time evolves: when time evolves does the distribution
vector converge to a limiting distribution or not? In the class of Markov chains that we
just described it has been proved that there always exists a stationary distribution vector
m = (m 1 € S) such that:

lim7(t) = n = Pn,
t—00
(1.4)

\%
o

T
Zﬂ'i = 1.

Remark Note that throughout this thesis we shall use distributions in the form of column
vectors. This means that for the description of a transition in a Markov process we shall
use a stochastic matrix and multiply it from the right with a column distribution vector.
This is not in accordance with the usual conventions in which distributions are row vectors
and multiplication is from the left.

A simple example

In the case of the example shown in Figure 1.2, S = {0,1,2} and

1-¢ 0
P= € 0
0 1




1/2—¢

Figure 1.2: Graph of a homogeneous discrete-time finite Markov chain.

Suppose that we start in state 0 “for sure” at time instant 0. That means that the initial
condition is as follows:

m(0) = Pr(X(0)=0)=1,

m(0) = Pr(X(0)=1)=0,
m(0) = Pr(X(0)=2)=0,
which gives the distribution vector:
1
7(0)=1] 0
0

When time evolves we go from random variable X (0) to X (1). At time 0 we were “sure”
to be in state 0, but as one can see from the graph, we can go to either state 0 again or
to state 1 from state 0. The probability of a transition to state 0 again has probability
1 — &, the probability of a transition to state 1 is equal to €. That means that after one
transition it is not known in which state the system is: it is either in state 0 again with
probability 1 — ¢ or in state 1 with probability £. So now we get:

m(l) = Pr(X(1)=0)=1-¢,
m(l) = Pr(X(1)=1)=¢,
(1) = Pr(X(1)=2)=0,

which gives the distribution vector:

1—¢ 1—¢ 0 2 1
(1) = € = e 0 i-¢ 0 | =Px(0).
0 0 1 1i-¢/\o

Now we can easily continue like this:

l—e 0 2 1-¢ (1-¢)?
7(2) = P'/r(l):( e 0 %—e)( € )2(8(1—6)),
0 1 3-¢ 0 €



m(3) = Pr(2)= e 0 % - e(l—¢) | =] e(1—e)?+e(t-¢) |,
0 1 3-¢ € el—e)+e(3-¢)
etcetera.

Since the corresponding graph is strongly connected (you can go from any node to any
other node by a sequence of arcs.), there must exist a stationary distribution vector =
which has strictly positive entries. To derive this stationary distribution we solve the
following equation:

1—-¢ 0
= € 0
1

1
}
0 2

— &

subject to the condition that the sum of the entries of m is equal to 1. The stationary
distribution for this example is:

1 4
= 1+2 . .
T e —; e (1.5)

1.3.2 Construction of Clusters

One of the biggest problems when modelling real world by means of Markov chains is that
the number of states in the state set S increases rapidly as the model tends to be more
realistic. A natural thing then to do is make groups of states acting as if they were just
one state on their own. This clustering principle can be applied successfully, as we shall
see in this thesis. How one can apply clustering will be described now.

Suppose we have a Markov chain with the (arbitrary) disjoint partitioning of the set S
together with a transition matrix P:

§ = 8+8+..+8,

peo py . . pOn)
pLo py . . pn)

P = : ‘ ‘ , (1.6)
proy pr1 . plnn)
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such that the partitioning in states corresponds to the partitioning in the transition matrix
P. Suppose we are also given a current distribution 7:
70
a1
T= . , (1.7)

()

whose partitioning again corresponds to the partitioning in the states. Then we can try to
setup a new state space § = {0, 1,..,n} with a new transition matrix P(w), such that each
state 7 in S corresponds to the cluster of states S' of the original system. If we define for
x € R™

I [ & iu (1)

we can formulate the following new clustered Markov chain structure:

s = {0,1,.,n},

P(r) = (py(m)),
69)7 ) |,
py(m) = ”}i_—”m ||1” , (1.9)
@ )y
| 7@ |y
T(m) = . ,
| 7))y

Note that the transition probabilities for the clustered version from the current state to
the next state are dependent on the current distribution of the non-clustered state! To
emphasize this dependency the 7 is added as an argument for the clustered transition
matrix P(r). In this way,

n(t+1)=P =n(t), (1.10)
corresponds directly to:
F(w(t+1)) = P(r(t) #(x(t)). (1.11)
With respect to stationary distributions we will drop the distribution 7 as an argument:
~def .. -
T = Jim 7 (r(t)),

) ) (1.12)
P ¥ lim P(r(t)).

t—o0
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Clustering and its notation for partitionings

The clustered version of a Markov chain of course depends on the partitioning chosen in
1.6. For the sake of convenient notation in this thesis we will define ﬁrst the set P(S) of
all disjunct partitionings of set S in clusters as:

PS) E{ (S0,81,-,54) | f;sps } (1.13)

Often we want to be clear which partitioning is chosen to reduce a certain Markov chain
and then we will use the following notation. Let p € P(S), then the clustered version that
corresponds to the partitioning p will be denoted by adding a tilde and a subscript p such
that the reduced Markov chain has state set S,, transition matrix P, »(7) and distribution
7o(m). If 7 is the stationary distribution then we drop the argument 7 and get transition
matrix P, and distribution 7.

Remark For two disjunct sets A and B we will use the notation A + B to denote the
unification instead of the more usual notation A U B. This is to emphasize the fact that
the intersection 4 N B is empty. (See for instance Expression (1.6) and Expression (1.13).

Example revisited

Next we try to apply the above clustering method to the example from the previous
subsection shown in Figure 1.3. In the case of the example S = {0,1,2} and

Cluster §° Cluster §!

Figure 1.3: Graph of the Markov chain of the example.

Suppose we have in mind to make one cluster from state 1 and 2 and one cluster from state
0, then we get the following disjoint partitioning p € P(S):

p = (SO’ Sl) = ({U}’ {1’2})1




poo) ploy
P =1 puo poy |

where
pl6.0)
PO = (0 2 ),

w) — €
P = (5)

0 :-¢
(1’1) - . .
P = (1172

Suppose we start again in the initial distribution 7(0):

1 7(0(0) 1
W(O)Z(g)z(ﬂ(n(o)): g

When we make the clustered version of this we get:

P00) (0) —e).
ﬁp,OO(Tr(O)) — “ H 71_(0)(0)(;?1) ||1 - (1 15) 1 —1—¢ ’

eo o (0 %) (o)
=@, (8) Iy

I g )1l
i | P19 20 (0) ||, _ (0> _
@) = mgn o 1

i ( 0 % ~ ) ( 0 ) Il
(1) (1) 1 1 o/ M
| PEY D 0) Il _ 2 = Not Determined .

S PO H(

Ppo1(m(0)) = = Not Determined ,

So we get:

~ 1 —¢e Not Determined
Fy(m(0)) = ( € Not Determined ) ’
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The problem that occurs here is that we have to divide 0 by 0, when that occurs it means
that the distribution is such that the probability is 0 to be in one of the clusters. When this
occurs “Not Determined” is put as an answer. This does not at all effect the generality and
use of the clustering method, since at last we will always end up in a distribution where
the probability to be in any cluster is and remains greater than 0.
So for the clustered Markov chain the first transition is as follows:

7 (r(1)) = 1—¢ Not Determined 1Y [1-¢
T\ - € Not Determined 0] € )

Since we “know” (1) from the example in the previous subsection we can compute B,(m(1))
in a similar way as we computed P,(7(0)):

| POV 701 [ _ (1-¢)-(1-¢)

Bt = rmmn - 1me ST
) Lpo0 sy, (O 25)(3)
Do (m(1)) = 0 - =0,
@) [ ”<a)”
O 1
I o) =&l
) PO 2Oy |, (0> _.
Pt = om0 1me
0 {—¢ £
~ _ HP“'”W“)(l)Ih:“(l %—e)(())”l_
pﬂ,ll(w(l)) - m =1.
0 1

So we get:

£

f’,,(ﬂ(l)):(l_e ;’)

The problem of dividing 0 by 0 has vanished and will not return when we proceed in the
same way. So for the clustered Markov chain the second transition is as follows:

ﬁp(w(Z))=<1;6 (1)) <1;6>=(6(£1~—6§)j-6).

Now we can even proceed equivalently for the third transition: Since we “know” 7(2) from
the example in the previous subsection we can compute F,(7(2)) in a similar way as we
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computed Pp(w(l)):

| PO 2O@) |y _ (1-e) (1-¢)

Pol@) = el - aser T
e(l—e)

5 n(2) = | POD z002) ||, (0 2) ( ¢ ) 2

Do RSO | ( 12 ) " =5

| Pu0 oy, | ( o | =2l

Ppao(m(2)) = BSOS (1-¢)2 =¢,
0 1—¢ e(l—¢)
5ot (m(2)) = || PY 7r(1)(2) I I ( 1 %_5 ) ( . ) I o
Pl = Trmen - (7)o e
€
So we get:
Py = (107 2 )

So for the clustered Markov chain the third transition is as follows:
3 1—-¢ = (1—¢)? (1—¢) +2¢?
— 2—e —
Tplm(3)) = ( e = ) ( e(l—e)+e )  \e(l—eP+e(2-¢) /-
This simple example shows us that when we have a non-varying constant Markov transition

matrix P originally, we get varying Markov transition matrices P,(n(t)) ¢t =0,1,2, .. if we
compute the corresponding clustered variant. Originally we had the non-varying chain:

(1) = Pn(0),
7(2) = Pr(1), (1.14)
7(3) = Pn(2),

etcetera.

But after clustering we “constructed” the following varying (non-homogeneous) chain:

o(m(1)) By(m(0) #(m(0)) ,

To(m(2)) = PBp(r(1)) 7w (1)), (1.15)
To(m(3)) = Fo(n(2)) 7o(7(2)),

etcetera.



But, when the overall Markov chain reaches its stationary distribution :

4

1
142 |,
2

:7+25

the clustered version of the chain will also become stationary (homogeneous), since the
clustered Markov transition matrix changes with the original distribution. Thus, when the
original distribution becomes stationary the clustered Markov chain will become stationary

also:
: | PO SO |, (1-0)
p ,00(7() = = = 1 -_ y
? “ W(D) ul 7_;_125
142
0 2 7+2s)
Bouln) = (| POV 7 | _ ( ) ( o _ 4
§ T2 T : ( S ) ,arE
2 1
T+2e
€ 4
I T LECT. (5) -+
Ppo\T) = = =€,
g ” 7 “1 7.:25
= l pD (1) Il I ( 1 i— ( 2 I 3— 2
Pulm) = = L R =
s 7]_(1) 1+2¢ 3+2€ :
= (7 )
T+2¢

So we get the following stationary transition matrix for the clusters:

im Fr) =B = (10 BE
i Pre) == (17 EE )

The stationary distribution of the stationary clustered transition matrix is:

S 1 4
PT712e\ 342 /)

1.3.3 Long and Short Term Behaviour

(1.16)

(1.17)

Suppose again we have a Markov chain with a set of states S again divided in subsets:

S = S+8+..+8,

18

(1.18)



but what is more, all subsets &' correspond to a “mode” of behaviour. That means that
whenever a cluster S° is entered the probability of staying in the same cluster is very high,
and the probability of a transition to another cluster is very low. So in fact each cluster
can be seen as a “mode” of behaviour, in which the system will stay for a long time until
a transition to another “mode” of behaviour will occur. For the transition matrix this
implies that it has the following structure:

PE(O,D) EPE(D’l) L. 5PE(0,n)
EPE(I'O) Pe(l’l) L. epe(l,n)

P = : : : : (1.19)
2,_:})s(n,()) {_:Pe(n,l) L. Pe(n,n)

e K 1.

In words: all off-diagonal sub-matrices have entries of an order ¢ smaller than the diagonal
sub-matrices. For the sake of simplicity we will assume that the graph of non-zero tran-
sitions in Py consists of sub-graphs that are strongly connected themselves. This kind of
Markov chain can be split into two kinds of behaviours. Each behaviour consists of one or
more Markov chains on its own. There are n + 1 sub-models each describing a short term
behaviour in a mode. The short term behaviour of mode ¢ consists of the set of states S
and the corresponding transition matrix P{"). Next to the short term behaviours of the
overall system, there also is one long term behaviour. The long term behaviour can be
seen as the clustered version corresponding to the clusters of the several modes. The long
term states are the separate modes. The long term behaviour describes how the overall
system jumps between the several modes. The transition matrix of the clustered version
is called the long term transition matrix. A special property of this kind of Markov chain
is that the stationary distribution of the chain can be approximated easily: it needs much
less computations to find a good approximation. In the sequel we will describe the approx-
imation method. The approximation method splits the problem of finding the stationary
distribution in more simple sub-problems: find the stationary distribution of the several
modes and then find the stationary distribution of the long term behaviour.

Thus, the first step is to solve the stationary distributions 7y for the behaviour in each
short term mode, as if they are behaving independently:

A = P i

; , (1.20)
I = 1 vi,

and then use this stationary “distribution” (not really a distribution since || 7 ||;= n+1) to
derive following approximated version of the clustered (=long term) stationary transition
matrix:

P2t = P (m) (1.21)
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Then solve with the approximated stationary version for the long term transition matrix
its approximated stationary clustered distribution #3PP":

~appr __ pappr sappr
FOPPT = PJPPT OPPL (1.22)
Notice that in the current notation 7,5 are real valued scalars and 7§ are sub-vectors

of the vector mg. With this in mind, the approximated version of the overall stationary
distribution can be formulated as:

o
e
APPT — . ) (1.23)

. appr (n)
ﬂ-p,ﬂ 71'0

It will take some time from the start until the transient behaviour is over and the system
reaches the stationary distribution. The time that it will take until the system is in its
stationary behaviour can be estimated by computing the next to largest absolute value of
the eigenvalue of the long term transition matrix. (Any stochastic matrix has an eigenvalue
1. Since we will only restrict ourselves to aperiodic Markov chains, there will be no other
eigenvalues on the complex unit circle. A sufficient condition for a chain to be aperiodic is
that all elements on the diagonal of the corresponding transition matrix are greater than
zero. All other eigenvalues therefore lie completely within the unit circle. This follows
from the Perron-Frobenius theorem. See [GS87] for further details on this subject.) So if
the n + 1 eigenvalues Ag, Ay, .., A1, An, Of the estimated long term transition matrix are
such that:

ol S (M| € S A <An=1. (1.24)

Then a conservative estimation for the transient time 73" (in a number of time slots)
until the distribution enters a J-sphere around the stationary solution therefore is:

irans ¢ Iné —Inn

Example revisited

Next we try to apply the above approximation method to the example from the previous
subsections again illustrated in Figure 1.4.
In the case of the example § = {0,1,2} and

1—-2 0
P = e 0
1




-~
i
|
)
1
1
1

Cluster S 0 Cluster S1

2e

Figure 1.4: Graph of the Markov chain of the example.

Suppose we have in mind to make one cluster out of state 1 and 2, then we get the following -
disjoint partitioning of S:

{0y u{L,2},
P P00 pOD
€ eptO)  pin o

where

PE(O,D)
PO = (0 2),

1
o = (5],
pon — (0 §-e
¢ 1 5——6 )

So, as shown now, the example indeed has the “mode” structure. There are two short term
behaviours or “modes”, which are shown in Figure 1.5

(b o

Mode 0 Mode 1

il
_
I
™

Figure 1.5: The two different modes: short term behaviour of the example.
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Both modes correspond to the graphs of the following transition matrices:

PD(O’O) - ]-7
(1) 0 3
= (1)

To approximate the stationary distribution we first determine the steady state distributions
of both modes and solve:

) = PO,
W[()n _ P0(1,1) 7r(()1),

(72, = 1 ¥

We solve and get:

)
S~
=
fl
AN

So we now have:

-

Now we are going to make the approximation of the clustered stationary long term tran-
sition matrix:

LIRS [
~——

0
| POO i |,  (1-¢)-1

ﬁP,OO(ﬂ-O) = ” 7r(()0) “1 = 1 = 1 - €,
| ePOD 2f) | (028)(5) 4
Dpor(mo) = — =-e,
7§ 1l 1 3

Dp,10(mo) = 7
1

£
|| ePO) =0, ~ I ( 0 ) “1h
| 7§ 1
1
1
2

Ponlm) = T, " (




So we get:
S aopr B l-¢ e
PPPT = P,(mp) = ( 1 3 g ) , (1.26)

and indeed this is very close to the real stationary clustered transition matrix we derived
earlier as shown in expression (1.16). The drawing in Figure 1.6 shows the approximation of
the long term behaviour of the system of our example. We can now solve an approximation

4/3 ¢

Figure 1.6: The long term behaviour of the example.

of the long term stationary distribution #3PP* from:

~appr _ pappr ~appr
PPt = Pp T

FIPT = ( ) . (1.27)

When we compare this approximation with expression (1.17) then we can see the resem-
blance with the exact solution. From this approximation of the long term stationary
distribution we can easily get the approximation of the overall distribution:

4,
7

TPPT — ( ) -
d

This approximation should be compared with the exact overall distribution vector in ex-
pression (1.5).

In order to get an estimation for the transient time of the example we will estimate the

time Ttrams (in number of time slots) until the distribution is in a {5 —neighbourhood of the

statlonary distribution. The eigenvalues of the long term transition matrix in expression
(1.26) are:

and get:

3o~

1
(1.28)

10 =
(DO =T

7
)\0:1—§€<1:/\1.
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So an estimation for the transient behaviour time is in this case:

pirens o 11200 _ 310200  2.27
™ %5 T e T e

(1.29)

1.3.4 Conclusions

In this subsection we described certain aspects of homogeneous discrete-time finite Markov
chains. In models of real life systems the number of states in a Markov chain is large.
As the number of states is large in general, reduction and simplification of the models is
a must in order to keep the amount of computations limited even if a large computer is
available. A tool to simplify a large Markov chain is to divide the states into clusters.
The construction of simplified Markov chains from bigger ones by clustering states was
explained. Another way to simplify a Markov chain even more is to divide the states
into clusters such that all clusters correspond to different modes of behaviour. If the last
division of states is possible, the overall stationary distribution can be approximated by a
simple method that needs less computations than finding the exact stationary distribution.
Of course, in such a case, the approximation found will not be equal to the exact stationary
distribution. However, for purposes in real life models in which the number of states is
very high the profit of finding the exact solution is low in comparison with the extra costs
of the effort of finding the exact solution. For these models the approximation method
in this section can be considered as very good tool to find a stationary distribution. The
division of Markov chains into clusters or even into long and short term behaviours can be
very useful for the simplification of large Markov chains.




Chapter 2

Serial Production Lines with Product
Failures Only.

In the next three chapters we will examine serial production lines. In order to be clear we
will first describe how a serial production line is defined.

A serial production line is a production line that has exactly one input buffer and one
output buffer and in which each buffer and each machine have precisely one input and
one output arc, except for the input and output buffer. As a consequence a serial pro-
duction line consists of m machines and m + 1 buffers which can all be given a number
in correspondence with their consecutive order in the line: M = {Mi, M,, ..., M,,} and
B = {Bi, B, ..., Buns1}. A picture of a serial production line is shown in Figure 2.1.

A serial production line can have several features. We divide serial production lines in
several classes depending on the kind of failures that can occur inside the line. In Chap-
ter 1 we have seen that we will make a difference between product failures and machine
failures. Therefore we can distinguish production lines with product failures only, produc-
tion lines with machine failures only and production lines with both product and machine
failures. In the following chapters we will deal with these different classes and show how
approximations of the steady state distribution of these classes of production lines can be

B, M, B, M, By

OO -0

Figure 2.1: A serial production line.
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calculated. The central concept used for approximation of the steady state distributions is
decomposition of a serial production line into smaller serial production lines consisting of
two machines only. The decomposition method for production lines with product failures
only and the method for the production lines with machine failures only look similar but
are totally different. The two different methods will be described and explained in this
chapter, Chapter 2, and in the next chapter, Chapter 3. After that a combination of the
two methods will be described in Chapter 4.

2.1 Description of a Serial Production line with Prod-
uct Failures Only

The serial manufacturing systems in this section are defined by the following eight assump-
tions:

1. One machine cycle consists of three activities:

o If present, pick up a product part from the buffer in front of the machine. In
case no part is present the machine is called starved.

e If a product part was picked up, manipulate the product part. Manipulation
completes with a probability referred to as completion probability. Manipulation
fails with a probability referred to as failure probability.

o If there is space available and the manipulation is successfully completed put the
product part into the next buffer, otherwise put the product part back into the
last position of the buffer in front of the machine. (This procedure is because
we assume that there is not a position to store a product part inside a machine,
this position is considered to be the last position in the previous buffer.) In case
there is no room in the next buffer the machine is called blocked.

2. The time is slotted with a fixed slot duration Ty,,. Within a single time slot the
machines perform a single cycle in parallel. However, because of conflict situations
that can occur in case buffers are empty or full, we have to specify an order in which
machines take and put product parts in buffers. Therefore we specify the following
order: In a conflict situation at buffer B; the next machine M; always has priority
over the previous machine M;_,.

3. At the end of a time slot there are no product parts within any machine. Therefore
it is impossible for the product parts to accumulate within machines.

4. The capacity of each buffer B; is N; € IN*, ¢ = 1,..,m. We will assume that the
first and the last buffers have infinite capacity: Ny = N,y = o0.

5. Machine M, is never starved, machine M,, is never blocked.
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_ p,=1/2
N,=00 1 =1 =1 N,

Figure 2.2: The simple three-machine production line.

6. Machine M; has completion probability p;, and failure probability q; = 1—p; i =1, .., m.

7. The failures at the machines are independent with respect to time, independent with
respect to each other and independent with respect to the present or past state of
the production line.

Remark. Note that by these assumptions the completion probability p; of a machine M;
is equal to the average production rate of machine M; if the machine is never starved or
blocked. Note also that by means of these assumptions, in fact we obtain a model of a serial
queueing network with blocking that has machines with discrete geometrically distributed
service times.

2.2 A Simple Example

We have shown the most simple three-machine production line in Figure 2.2. The parame-
ters for the machines and buffers in the system are also mentioned in the figure. We can see
in the picture that we are dealing with three machines M = {M;, M5, M;} and four buffers
B = {Bi, By, B3, B,}. The capacities of buffers By, By, Bs, B, are 0o, 1, 1, oo respectively.
In the figure we also mention the parameters p;, p; and p; corresponding to the features
of the service times of machines M;, M, and M; respectively. These parameters will be
called the completion probabilities of their machines.

As mentioned in the previous chapter we will assume that the simple production line can
be modelled by means of a homogeneous finite discrete time Markov Chain. First of all
this implies that we assume that time is divided in time slots and that transitions take
place at the end of each slot.

The procedure for this three-machine production line inside one time slot consists of the
three following cycles:

Mjs-cycle At the beginning of each time slot machine M; starts its cycle. That means
that it looks in upstream buffer Bj if there is a product part waiting. If there is no product
part waiting the cycle of machine Mz ends. If a product part is waiting then it takes the
part and the cycle continues by manipulating the product part. Manipulation succeeds
1 1

with completion probability p; = 5 and fails with failure probability g3 = 1 —ps = 5. If

manipulation fails then machine Mj puts the product part back in upstream buffer B; and
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stops its cycle. If manipulation succeeds then machine M3 looks in the downstream buffer
By if there is room available for the manipulated product part. By assumption the last
buffer is never full. Therefore there is always room available in buffer B,. Since buffer
By is not full machine Mj; can put the product part in downstream buffer By and ends its
cycle.

Ms-cycle Next it is machine M5’s turn to do one cycle. It looks in upstream buffer B,
if there is a product part waiting. If there is no product part waiting the cycle of machine
M, ends. If a product part is waiting then it takes the part and the cycle continues by
manipulating the product part. Manipulation succeeds with completion probability p, = %
and fails with failure probability o =1 — p2 = % If manipulation fails then machine M,
puts the product part back in upstream buffer By and stops its cycle. If manipulation
succeeds then machine M; looks in the downstream buffer Bs if there is room available for
the manipulated product part. If buffer Bs is full, which is the case here if there is already
N3 = 1 product part in Bj, then machine M, puts the product part back in upstream
buffer By and stops its cycle. If buffer B, is not full then machine M, puts the product
part in downstream buffer B; and ends its cycle as well.

Mi-cycle Finally it is machine M;’s turn to do one cycle. It looks in upstream buffer B,
if there is a product part waiting. By assumption there are always product parts waiting
in the first buffer B; and therefore machine M, takes a product part and continues its
cycle by manipulating it. Manipulation succeeds with completion probability p, = % and
fails with fatlure probability ¢ =1 —p; = % If manipulation fails then machine M; puts
the product part back in upstream buffer B, and stops its cycle. If manipulation succeeds
then machine M, looks in the downstream buffer B, if there is room available for the
manipulated product part. If buffer By is full, which is the case here if there is already
N, = 1 product part in B,, machine M; puts the product part back in upstream buffer
B, and stops its cycle. If buffer B, is not full then machine M; puts the product part in
downstream buffer B, and ends its cycle as well.

At this moment each machine has completed one cycle and the time slot ends. A new time
slot can start and the whole procedure starts all over again.

0

2.3 Problem Statement

The following problems, concerning the analysis and synthesis of serial production lines
with product failures only, will be dealt with in this chapter:

1. Given the completion probabilities p;, 1 = 1,..,m and the buffer capacities N;, 1 =
2,..,m — 1, find a method to approximate the stationary distribution of the system.
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From the approximation of the stationary distribution we can find an approximation
for the average production rate which is the number that production line managers
are most interested in. This problem is referred to as the problem of analysis.

2. Given a required and beforehand specified average production rate R of the system,
find the optimal completion probabilities pi, .., p. such that the total workforce W =
> Pi is minimized. A system that satisfies this condition is called dynamically
balanced.

3. Find the optimal distribution of the total buffer capacity C = ¥_; N;, C given, over
the separate buffers B;, i = 1,..,m —1, under the condition that the resulting system
will be dynamically balanced.

In this chapter a non-asymptotic theory is developed that approximates the solutions to
problems 1-3. Asymptotic versions of the theory in the sense that it examines limiting
behaviour of the systems described here can be found in [MT90]. In the article of this
last reference a method is derived for similar production lines in which the machine failure
probabilities ¢; are very small. Exact analytic solutions for the production lines that we
describe here have, as far as the author knows, never been obtained. Problem 1 is referred
to as the problem of analysis. Problems 2 and 3 are referred to as the problem of synthesis.
In the next sections we deal with the problems of analysis and synthesis respectively.

2.4 Analysis

2.4.1 First Approach to the Problem

The situation at the beginning of time slot [nTyet, (7 + 1)yt ) is fixed with the contents
of each buffer. Since the system has m + 1 buffers of which buffers B; and B,,,, have an
infinite capacity and are assumed to contain an infinite number of product parts all the
time, the following state space X will be assigned to the system:

X ={0,1,.., N2} x {0,1, .., N3} x ..... x {0,1,.., Np}. (2.1)
Now we can describe the system in terms of the stochastic sequence: {zq, z1, 3, ...} where
z; € X fori=0,1,2,.... When we examine this stochastic sequence, we conclude that
it satisfies the following Markov-property (for the theory of Markov chains see [GS87):
Pr(z, = ulzo, 21, .., Zn1) = Pr(z, = ulzn1), Vu € X, Vn € V. (2.2)
Further we notice that the chain X is homogeneous:

Pr(zn41 = ulz, =v) =Pr(z; =ulzg =v), Vu,v € X, ¥Vn € IN. (2.3)
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Figure 2.3: The simple three-machine production line.

Now we define:
Y ={0,1,2,.,A—1}, (2.4)

where
A= (Ny+1).(N3+1).(Ng+1)..(Np, + 1).

State space X and set Y have the same finite number of elements. Therefore there exists
a bijection F from X to Y. There exist as many bijective mappings F' as there are
permutations of A elements. Although many bijective mappings F exist, any of these
mappings will do for our purposes. By this means we create a new state space Y of which
the elements are natural numbers. The stochastic sequence {zqg, =1, Z2,...} has the image
under F: {F(zp), F(z1), F(z2),..} = {y0, %, ¥2,..}. The sequence {yo, y1, ¥2,..-}
describes the evolution of the system as well.

We will show that for our problem that there exists a transition matrix P = (p;;) with the
transition probabilities:

Pij = IPr(yl = Z}yO = J)? 27] €Y (25)

From this transition matrix we can compute the stationary distribution or steady state =
of the chain by solving the equations:

Pr = m,
ig/ﬂi = 1 (2.6)

m > 0, VieY

2.4.2 The Simple Example Revisited

Consider again the simple example from a previous section, Section 2.2, as again shown in
Figure 2.3. In this simple example we have four buffers B = {B,, B, Bs, B4} which have
the capacities 00, 1,1, 0o respectively and three machines M = {M;, M, M3} which have
the completion probabilities £, , 1 respectively.

What determines the state at the beginning of each time slot, is only the contents of buffers
B, and B;. The contents of buffer B, and Bs is either 0 or 1 product parts. This means for

our example that the state set X is equal to: X = {0,1} x {0,1}. Since it is inconvenient

30




Figure 2.4: The Markov chain corresponding to the simple three-machine line.

to deal with pairs of numbers we make a new state set Y with four natural numbers only:
Y = {0,1,2,3}. Next we define a bijection F that maps X on Y as follows:

P(0,0) = 0
F((0,1)) = 1,
FE §1,0>> Y @7
F((L1) = 3.

Then we can setup the transition matrix P = (p;;) by determining all the transition
probabilities p; ; = Pr(yn41 = tlyn = 5):

11
= 7 00
o f 1
P=l1111 (28)
2 4 2
ot 1
The corresponding Markov chain is shown in Figure 2.4.
Next we solve Pm = 7 and get the stationary distribution solution:
1
1] 2
= — 2.9
4

From the stationary distribution we can easily derive the average production rate of the
simple three-machine production line. We look at the output of the production line and
we see that there can only be output just after states 1 and 3. This is because these
are the only two states with a product part in buffer By, If at the beginning of a time
slot we are in either states 1 or 3 we have the probability of p; = % that there will be
a product part added to the output buffer B, at the end of the time slot. This means
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that in the case of our example we have an average production rate R ezactly equal to
p3(m +m3) = 3(Z + ) = & product part per time slot.

0

In principle this example shows a method to find the steady state of every possible produc-
tion line of this nature. However, the example deals with a simple production line with four
states only. Notice that the number of states increases rapidly with the buffer capacities.
For example if we have m buffers (apart from input and output buffers) with capacity N
each then we can count (N + 1)™ states in total (see state space X in Expression (2.1)).
For a production line with five buffers of capacity 100 each, which is not an uncommon
situation, we have to deal with more than 10 states in the state set. An amount of 10°
states in the state set will give some problems for the straightforward method that we have
just described:

1. We have to determine each element of a 10'° x 10'° transition matrix P that corre-
sponds to the production line. (Even if most of the elements are 0.)

2. We have to store a 10!° x 10 transition matrix P.

3. We have to compute a stationary distribution vector 7 of length 10'° corresponding
to the 101 x 101° transition matrix P.

Another drawback of the straightforward method is that it only computes the stationary
distribution, but does not give insight into more simple relationships between variables
and does not give insight in the sensitivity of the average production rate for changes in
the parameters.

We conclude that because of the large dimensions and the complexity of the transition
matrix P it is a problem to find an analytic solution for 7 in general. In order to obtain
more insight into the problem we will examine the smallest possible system first: the
two-machine system.

2.4.3 The Two-Machine System

We now examine the simple case of two machines and three buffers of which there is an
input buffer and an output buffer that have infinite capacity. In this case we have two
machines M; and M, with completion probabilities p; and p, respectively. Since there is
only one main buffer with finite capacity we will simply call it B. Tts capacity is assumed
to be equal to N. A picture is shown in Figure 2.5.

The state space Y of this simple system is:

Y ={0,1,2,3,..,N —1,N}. (2.10)
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Figure 2.5: A two-machine production line.

The transition matrix of the system has therefore the dimensions (N +1) x (N +1). The
transition matrix has the following nice tri-diagonal structure, which is common for similar
queueing models:

7 QP2 0 0 . . 0
»1 P2+ 1g2 QD2 0 .
0 na P12+ q1G2 1D2
p=| - : . (211)

: D12 b2+ Q1G2 Q1D2
0 : : ' 0 P14z 1—-qp>

Of course we are interested in the stationary distribution of this system. Therefore we solve
the right eigenvector 7 corresponding to eigenvalue 1 of transition matrix P, as defined
in Equation (2.6). The author succeeded to find an analytic formula for the stationary
distribution of this system:

— l—o
o = Q1-”1—j1—'7‘+—17
- —.0
92 (2.12)
o= Mo P
T = a0 fori=1,..,N,
where
o= (2.13)
Y1041

Notice that the stationary distribution in (2.12) is not defined if p; equals po. fp; = p, =p
(and consequently g, = ¢, = ¢), then the stationary distribution is:

1

B o (2.14)
T = m, fOI'Z—l,..,N.

For the sake of abbreviation we introduce the functions ¥ for N € IN*:
Uy : [0,1] x [0,1] — [0,1],
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[ ySm o @we@ ity
Z
1 L
Ntz for (z,y) € (0,1 withe =y
e] : + T 1 3 y
\IIN(xvy) d:f o (215)

max(2 — N,0).(1 - z), for (z,y) € [0,1]% with ﬂyl__—;) =0,

k 1, for (z,y) € [0,1]* with %1__792 =0,
where
z(1-y)
a(z,y) = ————.
@) (1-2)y

The exact properties of the functions ¥y are described in Appendix A in Section A.1 of
this thesis. The functions ¥y are continuous except for the points (0,0) and (1,1). This
will soon be made clear.

With (2.15) we can reformulate Equations (2.12), (2.13) and (2.14) as follows:

T = q.¥n(g,q),
Nei (2.16)
o= (g—%) '\I,N(qlan)v fori= 1,..,N.

The interpretation of the function ¥ follows from 7y in Expression (2.16): ¥y represents
the probability that buffer B with capacity MV is full if the corresponding two-machine line
behaves stationary. In order to get more feeling for the functions ¥y we have done some
numerical computations and made some three-dimensional graphs of the first four of them.
The functions ¥, ¥y, V3 and ¥4 are shown in Figures 2.6, 2.7, 2.8 and 2.9 respectively.

If we examine formula (2.16) and see the interpretation of ¥y in terms of mp or 7y then
the exceptions on the edge of the functions ¥y will become clear:

e In case ¢; = 1 or q; = 0 the contents of the buffer can only decrease, which means
that all states except the empty one are transient. Therefore mp = 1 and 7y = 0
holds.

o In case g; = 0 or g; = 1 the contents of the buffer can only increase, which means
that all states except the full one are transient. Therefore 7y = 0 and 7y = 1 holds.
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e Very special cases are the case ¢g; = 0 and ¢» = 0 and the case ¢ =1 and ¢, = 1. In
these two cases the contents of the buffer will remain unchanged in every time cycle.
In these cases it is impossible to derive the stationary distribution of the system from
¢ and go only! We have to know the initial contents of the buffer to derive a “steady
state”. In this section we assume the initial contents of the buffer to be 1. Therefore
mo=0and 7y =0 (if N> 1, 7y =1if N =1) in these two cases.

e The discontinuity of ¥y for N > 1 in (0,0) is clear since if ¢ = 6 and g, = 0 then
my=0andif ¢y =0and g =8 thenmy =1. (0 << 1).

e The discontinuity of ¥y in (1,1) is clear since if g =1 — 6 and g = 1 then 75 =1
andif ¢y =landg=1-dthenay =0. (0 <dK1).

With (2.16) we can derive the average production rate R of the two machines one buffer
system. We can derive the average production rate by two means: from the input and
from the output of the system.

First we derive it by means of the input. Therefore we examine the occurrence that machine
M, succeeds in taking, manipulating, and putting a product part in the buffer B within
one time slot. Taking a product part will not be a problem, since there are product parts
available at any time. Manipulating a product part within one time slot happens with a
completion probability p;. Putting a product part in buffer B can only happen if there is
room available in it, this is always the case, except when buffer B was full at the beginning
of the operation, and machine M, fails manipulating its taken product part. Hence we can
formulate the following expression for the average input production rate:

- R™ = p (1~ gomy) = p1.(1 - ¢2.9(q1, 2)). (2.17)

Next we derive the average production rate by means of the output. Therefore we examine
the occurrence that machine M5 succeeds in taking a product part out of buffer B, ma-
nipulating it and putting it out of the system. Taking a product part out of buffer B is
only possible if the buffer is not empty at the beginning of the time slot. Manipulating the
product part within one time slot happens with a completion probability p,. Delivering
the product part to outside the system will not be a problem, because we presume infinite
storage room at the output of the system. Hence we can formulate the next expression for
the average output production rate:

RO = py (1 — mp) = pa.(1 — ¢1.¥(qa, q1)). (2.18)

Of course it should be true that the average input rate R™" in (2.17) equals R°"P* in
(2.18). This is obvious if we realize the necessity of the property that says: “what comes
in must come out”. Indeed we can prove that the following always holds:

input . output
R = R

pl'(l—QZ-‘I’(Qh(ZZ)) = pz.(l—ql.\ll(qz,ql)), (2'19)
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The production rate R = R™P* = R°U'P* a3 3 function of p; and p, will play an important
role in further analysis. Therefore we will define the functions Ry for N € IN* as follows:

Ry : [0,1]x [0,1] — [0,1],

Ry(z,y) ¥ o(1-(1-y)Ux(l-21-y) = (2.20)

- = y(1-(1-2)¥y1-y,1-2)) = Rn(yz) '
The functions Ry and its most important properties can be found in Appendix A in Section
A.2. A technical demonstration of the symmetry of Ry with respect to its arguments is
shown under “Ry property 4” in Theorem 9. In order to obtain some feeling we have done
some numerical computations and made three-dimensional representations of the first four
functions Ry. We can see the functions R;, R, R3 and Ry in Figures 2.10, 2.11, 2.12 and
2.13 respectively. We can see clearly from these figures that our functions Ry all have a
“pyramid shape” of which the “edge” sharpens as N increases.

The blockage and starvation probabilities are easy to find: machine M, is blocked when
B is full and machine M, fails to complete a product part. Machine M, is starved when
buffer B is empty.

IPr(M1 is blOCked) = (. Ty = q2~‘IIN(q11 q2)1

Pr(M, is starved) = m = ¢1.Un(g2,q1). (2.21)

The results derived in the preceding paragraphs can be extended with the following three
observations:

1. From the point of view of the average steady state production rate, the two machines
one buffer system is equivalent to a single aggregated machine characterized by:

 Paggregation = P2-(1 — q1¥n (g2, q1)) = p1-(1 — 22¥n (g1, 3))- (2.22)

2. If N =1 (which is the smallest possible buffer capacity), the aggregated machine is

characterized by:
D1P2

1-qig
(See also “Ry property 3” in Theorem 8, from Appendix A in Section A.2.)
This is easy to verify since in this case we are dealing with the following transition

matrix:
p(n am ) (2.24)
p 1—qp2

, HN=1 (2.23)

Paggregation =

3. If N — oo (which is the “largest” possible buffer capacity), the aggregated machine
is characterized by:

Daggregation = 1\}1_1;1’100 RN(plaPZ) = min(pl:pZ)' (225)
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(See “Ry property 10” in Theorem 15 from Appendix A in Section A.2 for an exten-
sive proof.)

This was to be expected since it is obvious that the machine with the smallest com-
pletion probability determines the total production rate when there is no limit to the
buffer capacity.

2.4.4 Simplification of the General Model

After this thorough investigation of the two-machine production line we return to our
more general m-machine production line. Consider again a line with m machines and
m + 1 buffers. Our aim is to derive an algorithm that approximates the stationary distri-
bution of the total production line, using the results of the two-machine production lines
from the previous subsection.

Consider again the state space X corresponding to the m-machine production line men-
tioned in Expression (2.1):

X ={0,1,..,N3} x {0,1, .., N3} x ... x {0,1,.., N, }. (2.26)

This state space X corresponds via a bijective mapping F with state a space Y that consists
of natural numbers, see Expression (2.4):

Y ={0,1,2,.,A-1}. (2.27)

In order to “reduce” the Markov chain corresponding to the m-machine production line
we make partitionings of the state space X. (Note that for reduction of Markov chains we

N »

will use the notation with a tilde and the corresponding partitioning as a subscript “(.) o
introduced in Subsection 1.3.2). For the reduction we first we define the following subsets:

X (2t tm) € X |2 =3), i € {2,3,.,m}, § € {0,1,.,N;}, (2.28)
by means of which we can define partitionings ¢ as follows:

™ € P(X),

i def i ' i (229)
(X5, X, X

(See also the definition in (1.13) for notation.) The partitionings 7° of state space X induce
by means of bijective mapping F' corresponding partitionings p* of the state set Y. If

4 def i . .
ViEFR(X), i€ {23.m}je{01,.,N}, (2.30)

then similarly )
e P(Y),
pi def (z ) i i (2.31)
= (Yz)v}/lvaNi)'
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Figure 2.14: The simplified model for buffer B; with virtual machines M/ | and M?.

We denote the overall Markov transition matrix corresponding to state set ¥ by P. Let us
now focus on the transition matrix of the reduced Markov chain Ppi. The structure of this
transition matrix 13,,1- is tri-diagonal as well. This is obvious since it is impossible for the
contents of a buffer to increase or decrease by more than one part within one time slot:

Poioo Ppion
~ Poito Dei11 Dpi12
Ppi = Dpi21 DPpi22 Dpi23 . (232)

pp‘,N@,N,'—l ﬁpi,N;,Ni

Now we compare the transition matrix Ppi of Expression (2.32) with the transition matrix
of the two-machine production line in Expression (2.11). The two matrices both have a
tri-diagonal structure. We ask ourselves if there exist values for the parameters p; and p;
that make P in (2.11) exactly equal to 15,,;. Some analysis shows however that in general
such values for p; and p, can not be found since in general:

?Zpi,n—l,n 7 ﬁp‘,n,n+1a for n € {17 2,.,N; — 1}1 (2 33)
Dpimn—1 % ﬁp",n+1,na forne {2, ,N, . 1}. :

This is in contrast to all transition matrices P = (p; ;) of Expression (2.11), since there it
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Figure 2.15: The simple three-machine production line.

is clear that equality holds indeed:

Pn—1n = DPapt+l = Q1P2, for all n € {1721 “yN - 1}7 (2 34)
mae, foraline {2,.,N—1}. :

I

Pan-1 = DPntln

The simplification of our m-machine production line model lies exactly in the difference
between the two transition matrices since instead of the exact transition matrix pr we
take the “best fitting” transition matrix P of the two-machine production line model
from Expression (2.11) for certain “best values” of parameters p; and ps. These “best
values” of parameters p; and p; in order to approximate Ppi will be denoted by p{_l and
p° respectively. How these “best values” are computed will be explained in the following
subsection. Both p{_l and p? will have the interpretation of completion probabilities of
virtual aggregated machines Mz-f_l and M} respectively. A picture with the interpretation
of the virtual machines is shown in Figure 2.14.

2.4.5 The Simple Example Revisited

Consider again the simple example from a previous section, Section 2.2, as again shown in
Figure 2.15. In this simple example we have four buffers B = { By, By, B, B4} which have
the capacities 0o, 1,1, 0o respectively and three machines M = {M;, M2, M3} which have
the completion probabilities 3, 3, 3 respectively.

For this system we found that the state set is X = {0,1} x {0,1}. We also determined
a set of natural numbers Y = {0,1,2,3}, and a bijective mapping F : X — Y as

follows:

F((0,0)) = 0,
F((0,1)) = 1,
F((1,0)) = 2, (2:9)
F((1,1)) = 3.
For this simple system we derived already the exact transition matrix
110
o 1L 1 1
P=1, 1181, (2.36)
2113
011 %

1=
—



and the exact stationary distribution

1

= (2.37)

R N

In the previous subsection we have defined the clusters X;: as follows

Xi ¥ (29 @iy Tm) € X | mi=j}, i € {2,3,.,m}, j € {0,1,., N},

For our example this makes:

Xz = {(0,0), (0
X; = {(00), O

which makes the following subsets of Y

Y, XE

1 {(1,0), (1, 1)},
0}, X}

{0, 1), (1L, D},

Il
Il

Y02 = {0’ 1} ) Yl2 = {2> 3}7
Y03 = {07 2} ) Y13 = {1’ 3}

The definition of partitionings 7* is as follows:

™ e PX),
; def
PER-

= (X5, X1, ., Xk
This makes for our example that
= ({(an)v (0,1)}7 {(1’0)7 (1)1)} ),
o= ({(an)z (1a0)}> {(0v1)1 (171)} )’
and therefore with mapping £ we get the partitionings
= ({0, 1}, {2, 3}),
i = ({0, 2}, {1, 3}).

Having determined the partitionings of the state sets X and Y we can derive the reduced
Markov chains corresponding to them:

1

- 1 3
2 = ( i _}g ), (2.38)
2 16
and
. 3 1
= ( % % ) (2.39)
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Figure 2.16: The Markov chain with partitionings 7% and 7° for “projections” on buffer B,
and Bs.
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By the nature of the partitionings we can consider the last two reduced Markov chains
with transition matrices P 2 and P s in (2.38) and (2.39) as a kind of projections of the
original Markov chain w1th transmon matrix P. To illustrate this we have made a picture
of the two “projections” in Figure 2.16.

It is clear that the “projected Markov chains” with transition matrices f’pz and 15,,3 both are
again Markov chains corresponding to a single queue with capacity 1. Unfortunately it is
not true that the “projected Markov chains” both correspond to a two-machine production
line model with a buffer of capacity 1. If the “projected Markov chains” both did correspond
to a two-machine production line model with a buffer of capacity 1 then we could freely
decompose the three-machine production line into two two-machine production lines as
shown in Figure 2.17. That means that we could find parameters p{ , q2f with pj + q{ =1,
and pb, g5 with p§ + ¢} = 1 such that

] Y 1 l.p
P = 2 = 2 2 ,
o= (L) = (1227%)
- 3 1 ! 1..f
P3 = gg) = <q2 2q2 )
’ (5 5 rh1-5d

The first of these two equations has a solution for p§ = g but the second equation leads
to a contradiction since both ¥ = ¢} and =3 ¢} cannot hold simultaneously. It turns
out that we cannot put the “projected Markov chains” into a two-machine production line
model without making small adaptations.

0

2.4.6 A Closer Look at the Simplified Model

It is our aim to derive the average production rate R of the total production line. Since
we are dealing with a serial production line the average production rate R of the total
production line equals the average production rate of any machine within the line.

When the average production rate of the total line equals 3 1 product part per time slot,

then the mean production rate of each machine within the hne equals = product part per
time slot as well. If two adjacent machines would have different average production rates,
then there would be a continuous increase or decrease of product parts in a buffer between
two machines. A continuous increase or decrease of product parts in a buffer is impossible,
because the buffers have limited capacities. Therefore the average production rates of the
separate machines have to be equal to each other and equal to the average production rate
of the total production line. This principle is denoted by the term conservation of flow.

Now we look at the average production rate of machine M;. Machine M; produces a
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Figure 2.17: The decomposition of the system into two two-machine production lines.
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product part within one time slot if the following three situations occur simultaneously:
machine M; is not starved, completes manipulation of the product part and is not blocked.
Therefore, if we assume that the processes of blocking and starvation for the same machine
are independent, the expression for the average production rate of machine M, is as follows:

R = Pr(M; is not starved).p;.IPr(M; is not blocked). (2.40)

We define the average input production rate p?, and the average output production rate
p! of machine M; as follows:

€ piIPr(M; is not blocked),

2.41
pl ¥ p.Pr(M; is not starved). (2.41)
These definitions will soon be elucidated.
From (2.40) and (2.41) follows directly:
b
R= p—;fﬁ. (2.42)

Now we look at the total production line as two machines M;f_l,Mf’ and one buffer B; in
between, as explained in the Subsection 2.4.4 and shown in Figure 2.14. An important
question is: what should we take for the completion probabilities that belong to the aggre-
gated machines M; | and M}? The reasoning that we follow in order to determine these
completion probabilities is as follows:

The completion probability p{,l of the imaginary machine M/ | should be equal to the
average production rate of machine M;_; (which is equal to R) with blocking due to buffer
B, left out of consideration. Similarly, the completion probability p? of the imaginary ma-
chine M? is equal to the average production rate of machine M; (which is also equal to R)
with the starvation due to buffer B; left out of consideration.

The term “left out of consideration” here will be translated into a conditional probabil-
ity. This conditional probability transforms into a division under the assumption that the
event of a successfull production of a part and phenomena such as blocking or starvation
are independent. Therefore:

L, = 1
-l Pr(M;_, is}.:'z not blocked)’

. (2.43)
Pi = (M is not starved)

When we examine definition (2.41), we notice that it is in accordance with Expressions
(2.40) and (2.43).

46




For the sake of abbreviation we define the complements of p,-f and p? as follows:

f o def f

%@ = 1- bi,
; (2.44)

¢ < 1-ph

Now we have all ingredients to apply Expressions (2.20) and (2.21) to our imaginary two
machine one buffer system. We get the following from Expression (2.20):

R = Ry.(pl1,p}) = Ru(p},0), fori € {2,.,m}. (2.45)
From Expression (2.21) we get:

Pr(M;_; is blocked) = ¢*.Wn. (¢l 1,¢0), fori € {2,.,m},

Pr(M,y, is blocked) 0 (2.46)

il

and:
Pr(M; is starved) = ¢, . Un.(¢b, gl ), fori € {2,.,m},

Pr(M is starved) = 0 (2.47)

Expressions (2.40) up to (2.47) form the basic expressions of this chapter.
When we now combine Expression (2.46) and Expression (2.47) with ¢ =:—1 in (2.41) we
get:

pl = p(l— el On(aal), fori € {2,.,m},
p? = pi.(l—q§+1-‘1/N,»+1(q{,qf+1)), fori € {1,.,m—1}, (2.48)
po= Pn = Pm

For the sake of abbreviation we define the following functions Q. n for ¢ € (0,1} and
N e IN*:
Qen : [0,1]x[0,1] — ]0,(],

Qc,N(z,y) déf C(l - y‘IJN(x7y))

The exact properties of these functions are mentioned in Appendix A in Section A.3. By
means of these functions 2,y we can describe (2.48) as follows:

(2.49)

pzf = Qpi,Ni(qzb!q{—l)7 fori € {21"7m}=
P = QPhNi-H(qif’qf-H)’ fori € {1,.,m-1}, (2.50)
ol = p, P = Pm

The question is now how to compute p.{ and p? for alli € {1,.,m} in such a way that they
satisfy Expression (2.50)7 Do such real numbers p/ and p? exist anyway? If a solution
exists, will this solution be unique? Does a solution of Expression (2.50) automatically
satisfy Expression (2.45)7
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Figure 2.18: The decomposition of the system into two two-machine production lines.

2.4.7 The Simple Example Revisited

Consider again the simple example from a previous section, Section 2.2. In this simple
example we have four buffers B = {By, By, Bs, B} which have the capacities 0o, 1, 1, 0o re-
spectively and three machines M = { M, My, M3} which have the completion probabilities
,%,, %, % respectively. A picture of the example, this time together with its decomposition,
is shown in Figure 2.18. For this system we have made a simplified model of which the
decomposition is again shown in Figure 2.18. Because of the conservation of flow property
we want that both two-machine production lines have exactly the same average production

rate. Therefore we get:

RNz(plrpg) = R’
Ry, (p5, ps)

I
G
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Next to these two equations we require that according to Expression (2.42), which links
the two two-machine models, we get:

R B
P2

Since Ny = N3 = 1 we can use for our equations that

zy

Ry(z,y) = EER——

(See also “Ry property 3” in Theorem 8, from Appendix A in Section A.2.)
If we use this and substitute the parameters p; = py = p3 = % then we get the following -
equations:

1
5173
= R
Lo, 1, '
§+P2"'2‘p2
1
§p£
= R
o5 1y ’
5""?2”5?2
S0
P2 Py
—T = R
2

It is not difficult to solve this system of equations and to show that there exists a unigue
solution (p},p§) € [0,1]%:

b ;o Y3-1

p, = pp = 2;

R = 2-3

What we have found now is a “best decomposition” of a three-machine production line into

two two-machine production lines. The “exact” solution of the three-machine production

line can now be compared with the approximation of the two two-machine models.

First of all with the two two-machine model approximation we obtain an average production

rate R = 2 — /3. Earlier we have computed the exact average production rate R = %

of the three-machine production line. We conclude that the relatgve( Zerf/(g we make in our
i

example by decomposition for the average production rate equals T—5—2.100% =~ 1.75%.

O
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2.4.8 Solving for p! and p! in General

In total we have 2m equations in Expression (2.50). We have m unknowns of the form p/
and we have m unknowns of the form p?, which makes 2m unknowns in total. The con-
clusion is that we have a system of 2m equations with 2m unknowns. A routine numerical
procedure might be used to solve the system. Because of the particular structure of the
equations the following special procedure is developed.

In the procedure we start with an array pf(0) of conservative estimates of p/. We suggest
to start with the most conservative estimates p/ (s) =0fori=1,2,..,m. After this initial-
ization we begin with a cycle that makes new arrays of estimates p?(s) and pl(s+1) from
the old array of estimates p! (s). The cycle is divided into two stages: first the backward
aggregation and then the forward aggregation.
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Figure 2.19: Mlustration of the backward aggregation procedure.

The backward aggregation procedure

The backward aggregation procedure is illustrated in Figure 2.19. It makes an array of
new estimates pl(s), ¢ = m — 1,m — 2,..,1 using the information in array p{(s), i€
{1,...,m}. All new estimates in the backward aggregation process are obtained by applying
the second equation of (2.50) repeatedly. First the backward aggregation makes a new
estimate pb,_,(s) by “aggregating” the last two machines M?, (= M,,) and M,,_;. Next it
makes a new estimate pl, , by “aggregating” machines M®_, and M,,_,. This process of
aggregation continues until it ends with “aggregating” machines M? and M, to find p8(s),
which is the backward estimate R°(s + 1) of the overall production rate R of the total
production line.
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Figure 2.20: Illustration of the forward aggregation procedure.

The forward aggregation procedure
The forward aggregation procedure is illustrated in Figure 2.20. It makes an array of new
estimates p{(s + 1), ¢ = 2,3,..,m using information in array pt(s ), @ € {1,...,m} (which
we have made in the previous backward aggregation process). All new estimates in the
forward aggregation process are obtained by applying the first equation of (2.50) repeatedly.
First the forward aggregatlon process makes a new estimate p£ (s+1) by ¢ aggregatmg
the first two machines M ( M) and M,. Next it makes a new estimate pJ(s + 1) by
“aggregating” machines MJ and M. This process of aggregation continues until it ends
with “aggregating” machines M7 _, and M,, to find estimate pf.(s+1), which is the forward
estimate Rf(s + 1) of the overall production rate R of the total production line.




To resume we formulate the algorithm as follows:

Boundary conditions :

p{(s) = P, pl:n(s) = me V s € Wy
Initial conditions :

pl(0)=0, Vie {2,.,m},
(2.51)

Backward aggregation fori=m—-1,m—-2,..,1:

pf(S) = Qpi,N.’-H (Q{(S)7 qz">+l (S))’

Forward aggregation for i = 2,3,..,m :
P(s+1) = Qun (&), alr (s + 1)),

IMlustrations of the forward and backward aggregation can be found in Figures 2.20 and
2.19.

We have proved that all variables p{ (s) and pi(s) in this algorithm converge to a limit as s
increases. The fact that the limit is a solution to Equations (2.50) has been proved as well.
As a consequence it has been shown that the solution to Equations (2.50) does exist. We
have also proved that this solution to Equations (2.50) is unique and that it automatically
satisfies Expression (2.45). The exact theorems and proofs are given in Appendix B. In
the literature we have also found proofs for similar methods. It is not clear to the author
if the proofs found in [DF93], which are put in a very general setting, also apply to the
forward and backward aggregation method that we described here. Though of mathemat-
ical importance, the proofs that we found can be skipped and are not necessary for the
remainder of the thesis.

Remark. In this section we have followed a decomposition procedure based on two-
machine production line models in which the machines have geometrically distributed
service times. The decomposition procedure in this section, including the forward and
backward aggregation procedures, is not new since it has been used for similar manufac-
turing systems with continuous service times in the past. It corresponds for instance to the
procedure mentioned in [HB67] and many following articles in which we can find a similar
method for servers with exponentional or other continuous service times. The method
here is new in the sense that we cannot find preceding articles with applications to serial
production lines with machines that have discrete geometrically distributed service times.
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2.5 Synthesis: the Minimum Workforce Problem

Consider a serial production line with product failures only, of which we described the
properties already in Subsection 2.1. Machine M; has completion probability p;, and
buffer B; with capacity [V; is located between machines M;_; and M;. In the previous
section we described an algorithm to approximate the average production rate R of the
total production line. The completion probability of a machine is related to the effort of
the operator(s) working on it. So the completion probability of a particular machine can
be seen as a measure for the workforce. We can therefore define the total workforce W as
the sum of the completion probabilities:

wo € S (2.52)

The question in this subsection is: is it possible to obtain the same total production rate
R, with the same buffer capacities NV;, but with less workforce? To examine this we will
first approach the problem on the two-machine production line.

2.5.1 The Minimum Workforce Problem for a Two-Machine Pro-
duction Line

We focus on two-machine production lines to examine again the average production rate
Ry of the system as a function of the completion probabilities p; and p, of the machines.
The relationship between p;, p; and the average production rate Ry in case of buffer ca-
pacities N = 1,2, 3,4 are again shown in Figures 2.21, 2.22, 2.23 and 2.24. The figures
correspond to the figures that we have already shown in Figures 2.10 up to 2.13. The
difference with Figures 2.10 to 2.13 is that in Figures 2.21 to 2.24 we have drawn lines with
equal workforce. From these figures we can see clearly that for every buffer capacity N on
each “iso-workforce” line we obtain the highest average production rate if we take equal
completion probabilities for both machines: p; = p,. This can also be proved analytically.

Suppose we have a constant total workforce W and a first machine with completion prob-
ability z. This implies that the second machine has a completion probability W — z. It is
our aim to find for which z the average production rate Ry (z, W — z) takes its maximum
value. To find the maximum we differentiate Ry(z, W — ) to the variable z and get:

d%{RN(a:,W—:c)} OBy w8

Ry
W —x).
Oz y (=, 7)

15

Now we can use “Ry property 11”7 in Theorem 16 from Appendix A in Section A.2 several
times.




If z > 1 W then £ > W — z and from “Ry property 11" follows

8RN aRN
W(ﬂf,W‘—x) > —gy—(.fl},w—x),
ORN ORy
-E(IL‘,W—I)) a—y(ﬂi,w—ﬂ?) > 0,

% {Ry(z,W —2)} > 0.

If 2 <1 W then £ <W — z and from “Ry property 11” follows

BRN 8RN

Ew (z,W-2) < ¥ (z,W — ),
3RN aRN
-%(.’L‘,W— ) 8—y($,W——.’E) < 0,

gdg; {Ry(z,W —2)} < 0.

This can only imply that the maximum for Ry (z, W—z) can be obtained for z = % W which
means that for a maximal average production rate with a constant workforce both machines
must have equal completion probabilities. Now we have found that the maximal average
production rate R for a fixed workforce W is obtained when we take equal completion
probabilities p; and p,. As a consequence we can conclude that the minimal workforce W
for a fixed average production rate R is obtained for equal completion probabilities p; and

P2 as well.
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2.5.2 The Minimum Workforce Problem for a Multi-Machine
Production Line

Is it possible to apply this result of the two-machine production line to systems with more
machines? The answer to this question is quite simple if we realize that we already made
a decomposition of a multi-machine production line into several two-machine production
line models. For the minimum workforce problem of the multi-machine production line
we just require that the all two-machine production models from the decomposition have
equal completion probabilities. In other words, for all 4 € {2,3,...,m} we require that
p!_, = p’. Hence for the minimal workforce the following relation holds:

¥pl =00 Vie {23.,m}) (2.53)

We can also derive the production rate of the two-machine production line model for buffer
B;.

R = Ry, (pi, bi). (2.54)

From “Ry property 2” in Theorem 7 from Appendix A in Section A.2 we derive that

Nip;
Ry.(pi,p;) = ——PF 2.55
W) = e (2:55)
From (2.54) and (2.55) we derive:
N;+1

h=nir ® (2:56)

From (2.48) and (2.53) follows: _

B = pi(1 = Gip1 Y niy, (Ginr, Gig))- (2.57)
When we combine this with

1
YNy (Gitr, Giv1) = T———
N,+1(q +1 Q+1)‘ Nevr + Gine

then we conclude from (2.57) that
Ni1pi

= P 2.58
P N1+ 1= 0in (2.58)
From (2.56) and (2.58) we can finally derive a remarkable balance equation:
_Ni+1 Ny +1
P=NFR Na+R 259

vie {1,2,.,m} M ¥, Npp ¥ oo
The answer to the minimum workforce problem is now solved. To obtain a required pro-
duction rate R with minimum workforce we have to manage the completion probabilities
of the machines so that (2.59) is satisfied. A production line that satisfies (2.59) will be
called dynamically balanced.
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Figure 2.21: Three-Dimensional plot of Figure 2.22: Three-Dimensional plot of
R;. R;.
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Figure 2.23: Three-Dimensional plot of Figure 2.24: Three-Dimensional plot of
Rs. Ry.
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2.6 Synthesis: the Buffer Allocation Problem

In the previous subsection we presumed that the capacity of each buffer B; was fixed to be
N;. The subsection resulted in an optimal distribution of the total workforce in separate
completion probabilities as in (2.59). In this subsection we therefore examine the class of
dynamically balanced production lines. We want to continue the optimization to find the
best distribution of buffer capacities over the different buffers B;. It is possible to approach
this problem in two different ways:

1. We have m — 1 buffers. Each buffer has a fixed capacity. What is the optimal order
of succession of these buffers in the production line?

2. We have a total buffer capacity C. What is the optimal distribution of the total
capacity C over the different buffers?

In both approaches the buffer capacities are assumed to be natural numbers.

Since we optimize within the class of dynamically balanced systems, (2.59) holds. The total
workforce, as a function of the production rate R and buffer capacities IN; is therefore:

W N;+1 Ny +1
W(R, Ny, N3,..,N,,) = R. . . 2.60
( s ) (;NZ‘-FR N,’+1+R) ( )
Now we can reformulate the questions 2.6 and 2.6 as follows:
Problem 1: Given m — 1 fixed buffer capacities C; < C3 < Cy < ... < Cp,. What

permutation N; = C; of these capacities minimizes the function W in (2.60)?

Problem 2: Given a total buffer capacity C. Find the buffer capacities /V; that minimize
function (2.60) with the constraint that 3°, V; = C.

We approached both problems with the help of a computer. We made a program that
generated all possible permutations and found the solutions with specific parameters. All
the results from the computations were in accordance with the following:

Solution to problem 1: Independent of the average production rate R, the optimal
permutation for the minimization of the workforce in case m > 9 is:

C3Cimy CiCims, - , Comga, . , CnsCs, Cr_1Cs, if m mod 4 =2,
CaCrny CaCinos, .. , Cnga Cmgs, . ConsCs, Cm_1Cs, if m mod 4 = 3,
Csz, C4Cm_2, - 5 C%C_r_n_zﬁ, C#, . y Cm-3C5, Cm_lcg, if mmod 4= 0,
CoCpy CiCra, .. Cm_z—l_cr_n_gﬁ, sz—_gc%tl,.. y Om-3C5, Cm1C3, if mmod 4 =1.
(2.61)
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An intuitive explanation for this procedure is that the larger a buffer the better it can
compensate the drawback of a small buffer next to it. Therefore it is reasonable that it
is best to put the smallest capacity (which is the biggest drawback) next to the largest
capacity (which is the best compensator). In fact we start with two buffers with infinite
contents: N; = 0o and N,,41 = co. Next to these infinite capacities, which are the best
compensators, we put the smallest capacities, which are the worst bottlenecks. Ny = C,
and N,, = C3. Next to the smallest capacity C, we put the largest capacity N3 = C,,.
Next to the second smallest capacity C3 we put the second largest capacity Np—1 = Cpy.
If we continue this procedure of putting capacities from both ends to the middle, we will
obtain the same permutation as the best permutation stated in Expression (2.61). From
(2.60) we can see that reversing the order of the capacities will not change the workforce.
Therefore the reverse order of the permutation of capacities that we have found here will
also be an optimal solution.

Solution to problem 2: Cut the total buffer capacity C in m — 1 separate buffer ca-
pacities. It is best to divide the total capacity in equal parts. Since the buffer capacities
are natural numbers, it is not always possible to equalize all separate capacities, but it
is possible to permit a maximal difference of 1 product part between any two capacities.
If not all capacities are equal, then apply the algorithm described in Solution to problem 1.

2.7 The Average Buffer Contents in a Dynamically
Balanced System

Theorem 1 The average steady state buffer contents in a dynamically balanced production

line is: N+ R
IE (Contents B;) = 1;— , Vie {1,2,.,m-1}, (2.62)

where R is the average production rate of the production line.

Proof. With (2.14) and (2.56) follows:

N;
IE (Contents B;) = Y_ jIPr(Contents B; = j)

=0




Buffer | Capacity || Buffer | Capacity
Bl o0 312 11
B2 1 313 10
B; 20 By 13
B, 3 Bys 8
Bs 18 Bis 15
Bs 5 By, 6
By 16 Big 17
Bg 7 Bio 4
By 14 By 19
Bio 9 By 2
Bu 12 Bgz o0

Table 2.1: The best buffer allocation to obtain minimal workforce.

_ 1 Ni(Ni-i-l)

- N+1_ 2
N,+(1—Ni+RR)

_ N;+R

= =5

2.8 Example and Evaluation

Suppose that we have a serial production line of 21 machines and 20 buffers. The produc-
tion line satisfies all assumptions mentioned in Section 2.1. Suppose also that the buffer
capacities are fixed to be the natural numbers from 1 to 20: C; =i —1, Vi€ {2,3,.,21}.
The allocation of the buffer capacities is to be chosen. Let us assume that the required
average production rate for the total production line is restricted to be at least 0.5 product
part per time slot. When we synthesize the production line the following questions arise:

a. What is the best arrangement of the buffer capacities in the line?
b. What is the minimal workforce to meet the requirements?
c. What completion probabilities correspond to the minimal workforce?

For the answer to question a we have to apply the result mentioned in Expression (2.61)
from the previous subsection. This expression results in the best permutation of the buffer
capacities shown in Table 2.1. For the answer to question ¢ we have to make the system
dynamically balanced. Therefore we can find the best completion probabilities by means of
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Compl. Compl.
prob. | value | approx. | prob. | value | approx.

2} 2 6667

P2 B | 6829 P12 % | 5466
ps 188 | 5854 P13 81 5432
P4 122 1 5869 jon %2 | 5490
Ds 28 | 5602 Pis | 5465
e 24 | 5620 Pis 28 | 5558
pr 1 5495 pir B2 | 5538
Ps 22| 5517 || pus B | 5714
Po | 5445 | p | 2 5698
po | B | 5474 || px | 12 | 6154
pu 2| 5426 | pa 2 | .6000

Table 2.2: The completion probabilities to obtain a dynamically balanced system.

Expression (2.59). Using (2.59) we obtain the completion probabilities in Table 2.2. In this
table we can observe a phenomenon that is known as the bow! phenomenon in the literature
(See [Rao76]). This phenomenon says that the lowest completion probabilities are in the
central stages and increase progressively towards either side of the line. From Table 2.2 we
can derive the answer to question b: the minimal total workforce W = ¥, p; ~ 12.0313.
The minimal average workforce W/m = 120818 ~ 0.5729. '

Since the formulas in this section are based on approximations, we want to evaluate the
accuracy of the previous solution. Therefore we made a program for simulation of our
production line in C programming language. The most important tool for the simulations
is the random generator used. For our simulations in C we used the drand{8 command
which according to the manual pages generates pseudo-random numbers using a well-
known linear congruential algorithm and 48-bit integer arithmetic. The pseudo-random
number generator is initialized by means of a time dependent argument so as to generate
an independent sequence each time it is invoked.

The structure of the program is as follows. First we simulate the production line for one
million time slots in order to estimate the average buffer contents of the separate buffers.
Next we execute 10 independent runs of the production line, one million time slots per run.
The buffer contents at the beginning of each of these runs is taken such that it is close to
the overall average buffer contents. This is to get rid of the influence that the transient
behaviour has on the results for the stationary behaviour of the system. Each of the 10
independent runs ends with an estimate of the average production rate R, and an estimate
of the average buffer contents of the separate buffers. In this manner we have found 10
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Estimates of average production rate R by simulation

Run 1 Run 2 Run3 | Run4 Run 5 Run 6 Run 7 Run 8 Run 9 [ Run 10

R 0.494148 | 0.494314 | 0.494651 | 0.494199 [ 0.494239 | 0.494575 | 0.494705 | 0.494403 [ 0.494400 | 0.494200

Estimates of the average buffer contents by simulation

Buffer Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

B; 0.7529 0.7524 0.7536 0.7527 0.7521 0.7527 0.7524 0.7528 0.7527 0.7527
B3 11.9460 11.7575 12.1317 11.9803 11.9498 12.0927 11.7341 11.7967 11.8360 11.8487
By 1.8004 1.8000 1.8012 1.8024 1.8072 1.7999 1.7889 1.7996 1.7917 1.7950
Bs 10.3001 10.4912 10.6484 10.6032 10.6194 10.7129 10.2754 10.4872 10.2054 10.3577
Bg 2.8446 2.8550 2.8772 2.8607 2.8746 2.8740 2.8356 2.8407 2.8500 2.8467
By 8.8378 8.9662 9.0997 9.0966 9.1252 9.0747 8.8213 8.8959 9.0804 8.8871
Bg 3.8508 3.8843 3.8971 3.8920 3.9159 3.8927 3.8557 3.9057 3.8920 3.8482
By 7.6536 7.6016 7.6100 7.5340 7.7646 7.5009 7.5015 7.6491 7.4747 7.4825
Byo 4.8670 4.8932 4.9247 4.8404 4.9445 4.8639 4.8515 4.8281 4.8220 4.8061
Bn 6.2793 6.3186 6.4725 6.3563 6.4396 6.3045 6.3273 6.3042 6.3429 6.2486
Bi2 5.7146 5.7751 5.8804 5.7649 5.7589 5.7879 5.7741 5.7475 5.7044 5.6749
Bis 5.0797 5.1860 5.2800 5.2267 5.1714 5.1878 5.1442 5.1867 5.1573 5.0745
By 6.4708 6.6435 6.7272 6.6682 6.6134 6.6042 6.5135 6.5750 6.5987 6.4073
Bs 4.0695 4.1562 4.1756 4.1636 4.1297 4.1132 4.1147 4,1022 4.1786 4.0965
Bis 7.1769 7.3221 7.3946 7.3381 7.2222 7.2582 7.2976 7.1730 7.5197 7.1957
By7 3.1264 3.1122 3.1635 3.1368 3.1005 3.1179 3.1330 3.1136 3.1747 3.1364
Big 7.8876 7.7368 8.0619 7.7668 7.8088 7.9237 7.8038 7.8810 8.0231 7.7920
Big 2.1628 2.1658 2.1843 2.1714 2.1764 2.1782 2.1690 2.1684 2.1809 2.1684
Bao 8.4867 8.3243 8.8084 8.3466 8.5155 8.4995 8.3785 8.4214 8.8619 8.4074
B2 1.2320 1.2308 1.2349 1.2308 1.2330 1.2315 1.2310 1.2343 1.2337 1.2318

Table 2.3: The results of 108 time steps simulations for the 21-machine-production line

independent estimates of the average production rate and the corresponding average buffer
contents for each buffer. This procedure allows us to do some simple statistical analysis
such as estimate of mean value and variance. The direct simulation results are shown in
Table 2.3. The computed mean values and standard deviations are shown in Table 2.4.
The results in Table 2.4 are quite representative for the performance of the decomposition
method presented here. The estimate of the average production rate R by means of the
decomposition method usually stays within a range of 2 % relative error ( 1.14 % in our
example ), while the estimate of the average buffer contents can reach a relative error of
more than 10 % ( up to 14.6 % for By in our example ).

2.9 Conclusions

In this chapter we described a decomposition method for a discrete synchronous serial
production line with product failures only. Such a production line is in fact a serial queueing
network with blocking in which service times are geometrically distributed. We used the
decomposition method to derive the stationary distribution and the average production
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Results for the average production rate R
mean value | std. deviation | decomp. model | abs. err. | rel. err.
R 0.494383 0.000200 0.500000 0.005617 | 0.0114
Results for the average buffer contents

Buffer | mean value | std. deviation | decomp. model | abs. err. | rel. err.
B, 0.7527 0.0004 0.7500 -0.0027 | -0.0036
B; 11.9073 0.1360 10.2500 -1.6573 | -0.1391
B, 1.7986 0.0053 1.7500 -0.0486 | -0.0270
Bs 10.4701 0.1767 9.2500 -1.2201 | -0.1165
Bs 2.8559 0.0151 2.7500 -0.1059 | -0.0371
B; 8.9885 0.1195 8.2500 -0.7385 | -0.0821
Bg 3.8834 0.0237 3.7500 -0.1334 | -0.0344
By 7.5772 0.0947 7.2500 -0.3272 | -0.0432
By 4.8641 0.0449 4.7500 -0.1141 | -0.0235
By 6.3394 0.0691 6.2500 -0.0894 | -0.0141
By 5.7573 0.0560 5.7500 -0.0073 | -0.0013
B3 5.1694 0.0617 5.2500 0.0806 0.0156
By, 6.5822 0.0953 6.7500 0.1678 | 0.0255
Bis 4.1300 0.0370 4.2500 0.1200 0.0291
Big 7.2898 0.1096 7.7500 0.4602 | 0.0631
By 3.1315 0.0231 3.2500 0.1185 0.0378
By 7.8685 0.1086 8.7500 0.8815 0.1120
By 2.1726 0.0070 2.2500 0.0774 | 0.0356
By 8.5050 0.1856 9.7500 1.2450 0.1464
By, 1.2324 0.0015 1.2500 0.0176 0.0143

Table 2.4: The compound results of the simulations for the 21-machine-production line
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rate R of such production lines. The method consists of an algorithm with alternate
forward and backward aggregation procedures. Similar algorithms have been used for
queueing networks with blocking for about thirty years and can be considered classic.
Nevertheless we think that the method described in this chapter is new, since preceding
applications of these classic concepts to queueing networks with geometric service times
have not been found. We proved convergence, existence, uniqueness and conservation of
flow of the solution of the algorithm for every possible combination of parameters in the
line.

Moreover, as a result from the decomposition method, we could easily derive properties
for an optimally balanced production line, including a method for the optimization of the
placement of buffers. These properties of optimallly balanced production lines appear to
be in accordance with the “bowl phenomenon” described in the literature.

In order to evaluate the method we compared its results with results from simulations.
It turned out that the estimate of the average production rate R usually was within a
range of 2 % relative error, which can be considered as quite accurate. The estimate of the
average buffer contents however could be worse, up to more than 10 % relative error. The
big advantage of the method is that it takes very few computations to find the stationary
distribution for the decomposed production line. An average PC can do all computations
within seconds.




Chapter 3

Serial Production Lines with
Machine Failures Only

In the previous chapter we have examined serial production lines with product failures only,
which in fact are serial production lines in which machines have geometrically distributed
service times. In this chapter we will drop the geometically distributed service times and try
to describe machines that have constant service times. Instead we introduce new stochastic
phenomena: machines that are prone to breakdown and repair. Therefore in this chapter
we examine serial production lines with machine failures only. Before we examine this kind
of production line we will first describe how such production lines work.

3.1 The Description of a Production Line with Ma-
chine Failures Only

The dynamics of the production line with machine failures only that we will describe here
are basically the same as the dynamics of a production line with product failures only
described in Section 2.1. The difference between the model described in Section 2.1 and
the model we use for production lines with machine failures only is as follows. Since we
assume here that product failures do not occur, we assume that the completion probabilities
p; of all machines M;, ¢ € {1,2,...,m} switch between 0 and 1. A completion probability
pi = 0 represents the stand still of a machine because of a machine failure. A completion
probability p; = 1 represents the completion probability of a machine in progress without
product failures. In contrast with the production lines with product failures only, here we
do not assume that completion probabilities p; are constant in time. Therefore we assume
that the completion probabilities p; alternately change in time from 1 to 0 and back from
0 to 1. The “state” of a machine in which the completion probability equals 1 is called up.
The state in which the completion probability equals 0 is called down. The transition from
state up to state down is called breakdown. The transition from state down to state up is
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1-B;

Figure 3.1: The breakdown-repair model of a machine M;.

called repair. The transitions for all machines M; between up and down are governed by a
machine breakdown-repair model.

3.2 The Machine Breakdown-Repair Model

The machine breakdown-repair model is very simple: We assume that a machine M; can
only be in two different states: it is either up or down.

When up, the machine has a certain probability to go down during the current time slot.
This probability is called the breakdown rate o;. If the machine does not break down in
the current time slot it will be up when the next time slot starts. When the machine does
break down during the current time slot, it will be down at the beginning of the next time
slot. ‘

When down, the machine has a certain probability to go up during the current time slot.
This probability is called the repair rate §;. If the machine will not be repaired during
the current time slot it will be down when the next time slot starts. When the machine is
repaired during the current time slot, it will be up at the beginning of the next time slot.

An illustration of the breakdown-repair model is shown in Figure 3.1.

The breakdown-repair process for one single machine M; can be described by the following
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B, M, B, M; B

Figure 3.2: A part of the production line, focused on buffer B;.

simple Markov chain:
- i
Tt +1) = ( N 1fﬂi )w(t) . (3.1)

The stationary distribution 7 of this Markov chain is:

= (@>. (3.2)

- o+ 5\ o

Now the breakdown-repair model of the separate machines has been fully explained.

3.3 The Model for Buffers: the Equivalent of the
Two-Machine Production Line Model

We now examine the buffer behaviour closely. For examining this behaviour we focus on
a buffer B; from the production line together with two surrounding machines and buffers.
In this manner we get an arbitrary piece of a production line as shown in Figure 3.2. We
will derive a Markov chain for buffer B; by means of Figure 3.2. We therefore distinguish
between buffer B; and its environment. The environment of buffer B; consists of two
neighbouring machines M;_; and M; and two neighbouring buffers B;_; and B;,;.

3.4 The State Set of a Buffer

We focus on buffer B;. The contents of this buffer be any natural number from 0 up to
N;. We closely examine what determines the changes in the buffer contents. What causes
the buffer contents to increase, remain unchanged or decrease after a transition? Is it the
current contents of the buffer that determines an increment or decrement after a transition,
or is there more? First of all, the contents of buffer B; after a transition is determined by:

o The contents of buffer B; before the transition.

It turns out that it is not the contents of buffer B; only that determines the contents of this
buffer after a transition. Other important factors that determine the contents of buffer B;
after a transition are:

e Is the previous buffer B;_; starved?
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e Is the previous machine M;_; down?
e Is the next machine M; down?
o Is the next buffer B;,; blocked?

The five items above determine the situation, the state that buffer B; is in at a specific
moment. These five items determine the state set of the buffer, they determine the state
set of the Markov chain corresponding to buffer B;. We will denote the Markov chain
corresponding to buffer B; by the term two-machine Markov model for B;. 1f we combine
the previous observations and define the sets

; def
SContents B; <& {0’ l, --7Ni} ,
Blocking B; def —-bl pbl
S £on = {Bi+1)Bi+1} ) (33)
i . def -
goorns By o g gy

SState M;  def {M;p’Mfown} , J=1i=i-1,

we can define the total state set of buffer B;, the state set of the two-machine Markov
model for B;, as follows:

. def i . ) ) g i ,
SBz def SStarvmg B;.1 X SState M;_y x SContents B; % SState M; x SBlockmg Bit1 , (34)

where X stands for the Cartesian product of sets.
In the above definitions B;™, BP', B and Bf* are used. These are defined as follows:

BY ¥ {(a,bc,de) € ST |c=N;A(d=MP"ve= B )}

B ¥ {(abcde) € 8% (abcde) ¢ B} (3.5)
B ¥ {(abcde) € SF|c=0A(b=M"Vva=Bg)}

B ¥ {(a,b,c,de) € S%|(ab,c,de) & B}

Notice that the above definitions are of a recursive nature. The structure of the recursion is
important for understanding the links between the buffer models. It justifies the recursive
numerical aggregation method chosen in one of the next sections. Notice also that

BY n B=g,
B n B™#¢,
B! c B™,
B < B™.

With the definition of the state set S5 of buffer B; in mind we can, for a fixed contents
c of the buffer, distinguish 16 different states in the state set. A table of these states is
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State Corresponding state in SZ¢

in RB: By M;_q B; M; B
(e,1) —starved up ¢ up —blocked
(¢,2) -starved up ¢ up blocked
(¢,3) —starved up c down —blocked
(c4) —starved up ¢ down blocked
(e,5) starved up c up —blocked
(c,6) starved up c up blocked
(e,7) starved up c down —blocked
(¢,8) starved up ¢ down blocked
(¢,9) —starved down c up —blocked
(c,10) —starved down ¢ up blocked
(c,11) —starved down c down —blocked
(c,12) —starved down ¢ down blocked
(c,13) starved down c up —blocked
(c,14) starved down c up blocked
(c,13) starved down ¢ down —blocked
(c,16) starved down ¢ down blocked

Table 3.1: The one to one correspondence of S and R?:.

shown in Table 3.1. In this table we redefine the state set in another form. The new form
simplifies the notation in future expressions. In the new definition a state is a combination
of two numbers, the first number determines the contents of the corresponding buffer, the
second number determines the state of the surrounding buffers and machines also denoted
by the term environment. Each of the 16 possible combinations of states of the environment
has as specific number listed in Table 3.1. The new state set RZ, that has a one to one
correspondence to the old state set SP is defined as:

REB 1o 1 2., N}x{1,2. 16} (3.6)
In special circumstances when ¢ = 0 or ¢ = N; in Table 3.1 a conflict can occur:

e When ¢ = 0 then it can happen that M,;_; puts a part in B; and at the same time M;
attempts to take a part from B;. This only occurs in conflict situation (0,1) € R,

e When ¢ = N; then it can happen that M,;_; attempts to put a part in B; and
at the same time M, takes a part from B;. This only occurs in conflict situation
(N, 1) € RB:. '

In these situations the order in which machines M;_; and M; put and take a part is crucial
for the resulting transition. In case of such conflicts we impose that within one time cycle
machine M; attempts to take a part before M;_; can put one.

Having imposed this order we can conclude in accordance with definitions (3.5) that buffer
B; is starved in all cases with ¢ = 0 in Table 3.1. Buffer B; is blocked in case of a
combination of ¢ = N; with states 2 — 4, 6 — 8, 10 — 12 and 14 — 16 in Table 3.1. The
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combination of ¢ = N; and 1,5,9 or 13 are not considered to be blocked states. This is
because in these states machine M; will first take a product from buffer B; and reduce the
number of parts in it to N; — 1. Next machine M;_; “has the opportunity” to put a part
in the last position of the buffer and therefore it can not be considered blocked. In total
we have 16(V; + 1) states in the state set R5: for a single buffer B;.

3.5 Useful Partitionings in the Set P(R?)

In total we consider four main and three intermediate partitionings of R%. The main
partitionings all correspond to a combination of a subsequent machine and buffer. In order
to be precise the partitionings are described in detail in this section. From the name of
each subset it will be clear in the following to what situation it corresponds. See also Table
3.1.

The first main partitioning p%i~1M:-1 ¢ P(RB) is as follows:

Bt Moy el (pBILME) (B MT) p (BELMENT) o (BILMET)
where
—gt up
R(B’ DM {(a,b) € RZ |b € {1,2,3,4} },
st up
R(B 1:1 %) - {(a,b) € RB|p € {5,6,7,8}}7 (37)
R(Bz PME - ((ab) € RE b € {9,10,11,12} },
down
R<B=—1*M = {(a,b) € R% |b € {13,14,15,16} } .
The second main partitioning pf-w wBi o P(RP:) used is as follows:
pliobios (RPN M) R )
where
up —-b!
R(M B = {(a,b) € RE lb € {11539)13} }7
up
(.M B ) {(a,b) S RBi |b € {2,6710714} }1 (3 8)

Zdown =bl
RS~ ((ah) € RP[b € {3,7,11,15}},

b down pgbl
RMETBR) _ fab) € RB | b € {4,8,12,16) } .
The third main partitioning pr" -5 € P(RE) is

up —bl “P bl down —bl down bl
ple 1,Bi d=ef (REM‘_I’Bl ),Rz(M B2 ,RM B R(M B} ))’
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where

up —bl
RMEVETD o 0, 0) eRBi|(a< Ny Ab < 9)V (a=N; Abe{1,5})},
up bl
RMEVED — ((a,0)eRBi|a = N, Abe{2,3,4,6,7,8}}, 59)
down p-bl .
RMETVETD (0, ) eRB|(a< N Ab > 8) V (a=N; Abe {9,131),
down bl
RMEED _ r(a, ) eRBia = N; Abe{10,11,12, 14, 15,16} ).
The fourth main partitioning p2°™ € P(R5) is:
p;;Bi,Mi Cléf ( REB;“'MLPP),R’EB?’M;IP)’R‘EB:St’Mgown)y REB?t,M?own) ) ’
where
RETMT) - ((a,8) € RB|a > 0Ab € {1,2,5,6,9,10,13,14}},
st up
REEMT . f(a,0) e RB|ja=0Ab € {1,2,5,6,9,10,13,14}}, (5.10)

€ RB|a>0Abe {3,4,7,8,11,12,15,16}},
e RBla=0Abe {3,4,7,8,11,12,15,16}}.

Pud N NN

b
R(_B;Stvaown) _ {(a b
RUEME e

Next to the main partitionings we also use the following intermediate partitioning pf™" €
P(RP) of the environment of buffer B;:

p?nv def (RgEnv,1)7R$Env,2)7W’REEnv,w) )

’

where )
RgEnV,J) = {(a,b) € RB|b = j}. (3.11)

Another intermediate partitioning p$°™ € P(R?P) corresponds directly to the contents of
the buffer B;:

pgont d__gf ( Rl(Cont,O), Rl(Cont,l), RgCont,Q)’ - RgCont,N;) )

k3 H

where

RO = {(a,b) € RB|a = j}. (3.12)

3.6 Construction of the Transition Matrix PZ of the
Two-Machine Markov Model for Buffer B;

In the previous subsections we have made a thorough description of the separate states
and clusters of states that we can distinguish for the two-machine Markov model for buffer
B;. Determining the states of a Markov chain however is not enough for a Markov chain
model description. The next step is to describe how the transition probabilities between
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the different states should be determined. If we recall the construction of the Markov
chain corresponding to a two-machine production line with product failures only described
in Chapter 2, then we can say that there the Markov chain model is “driven” by the com-
pletion probabilities of the two machines in the model. These completion probabilities
were considered to be independent. For the two-machine production lines with machine
failures only that we describe here we will assume that the Markov chain model is “driven”
by the Markov sub-chains corresponding to partitionings pf oMot and le #Bit1 defined in
Expressions (3.7) and (3.8). These two Markov chains again correspond to both machines
M;_; and M respectively. Again we will assume that the two processes that drive our
model are independent processes. A picture of the two independent Markov chains that
“drive” the two-machine Markov model for buffer B; is shown in Figure 3.3.

For the construction of transition matrix P% we have to determine how transitions be- .
tween the states in R take place. We described two intermediate partitionings o and

p°" in the previous subsection. The transitions in partitioning pF™, which consists of
. . Bi—1,M;_ M;,B; . .
combinations from p; """ and p; 7, “drive” the two-machine Markov model and the

transitions in partitioning p°™ depend on the current state in pEov.

k3

In this chapter, as well as in the following two chapters, we will assume a specific order in
the transitions. We will assume that one transition in R in one time slot is split in two
subsequent transitions:

1. Firstly there will be a transition between clusters in partitioning pS°™ and

2. Secondly there will be a transition between clusters in partitioning pF.

(3

The combination of both transitions determines the total transition in RE: for one time
slot. In the next subsections we will:

e Firstly describe how we determine transitions in pf™, described by means of the
environment transition matrices P,ee and PBE of which the last will be defined
later. '

o Next we will describe the relation between the state in p°*" and the resulting tran-
sition in p{°"*. This will result in a transition matrix for the transitions in contents

denoted by PF:Cont defined later.

e After that we will be able to construct the whole transition matrix P53 of the two-
machine Markov model for buffer B; by means of simple multiplication of the two
transition matrices P> and PB-Cont that we obtained in the two previous steps.
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3.6.1 The Construction of the Environment Transition Matrix
Ppg?nv for Buffer B;

In order to construct the transition matrix PZ+*" for the transitions in the environment
of the two-machine Markov model for buffer B; we first construct the Markov model for
the environment of buffer B;. For that purpose we will use the Kronecker product.

If two homogeneous discrete-time finite Markov chains Markov processes with transition
matrices P; and P; are totally independent then the transition matrix P°°™® corresponding
to all combinations of the states of both Markov processes can be obtained by means of
the so called Kronecker product of matrices: PC°™ = P, @ P;. This Kronecker product of
two matrices A and B, denoted by “A ® B”, is defined as follows:

(leB auB s alnB

st anB apB - axB
A®B= . - ‘

amlB a'm2B e amnB

By the assumption that both Markov processes shown in Figure 3.3, which have transition
matrices P  BimLiMiy and P ' MiBiy AT€ independent we can now construct the transition

matrix for the environment P Eav, which is the combined Markov process, by means of the
Kronecker product:

Pp?nv = pri_l,Mi_l & Plei'Bi+l . (3.13)

By means of this transition matrix P,e. we can easily construct the bigger transition

matrix PBoe for the transitions in the environment of the two-machine Markov model for
buffer B;. This will be done in Subsection 3.6.4.

3.6.2 The Relation Between the Environment State in pf™ and
the Transitions in pfont

In the previous subsection we described how to determine probabilities of the transitions in
oP™. In this subsection we assume that there are no transitions in o™, but only transitions
in pCor induced by a fixed state in pF™. A transition in pF°™ means that we start in a
certain state R{C™ and jump to another state R{°™*). (See also Expression (3.12).) In

general there are only three possibilities:

e The contents of buffer B; increases by one product after a transition.

E=j+1,
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o The contents of buffer B; remains the same after a transition.
k=7,

e The contents of buffer B; decreases by one product after a transition.

k=j-1,

Of course not all three possibilities exist in case the contents of buffer B; before the transi-
tion equals 0 or /V; since the contents of an empty buffer cannot decrease and the contents
of a full buffer cannot increase. That is why these two cases are examined separately. In
the next two paragraphs we will describe the three different cases for increment, no change, -
decrement separately:

The general case: starting position non-empty and non-full.

For the case that we start with a non-empty and non-full buffer, so in case of a starting
N;—1
position in |
Jj=1

R we have the following transitions:

e Increment.
The contents of buffer B; increases by one product if buffer B;_; is not starved and
machine M;_; is up and either machine 3 is down or buffer B;,, is blocked. We can
describe (See Table 3.1 and Expression (3.12) ) this case as follows as a set of states
in pfov:

{RE™ | j e {2,3,4}}.
We translate this case in a corresponding diagonal matrix Ay as follows:

Ap ¥ diag(0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)

e No change.
The contents of buffer B; remains the same in two sub-cases

- In the sub-case that buffer B;_; is not starved and machine M;_; is up and
machine M; is up and buffer B;,; is not blocked. We can describe {See Table
3.1 and Expression (3.12) ) this case as follows as a set of states in pEov:

T

{RE™) | je {1y},
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- In the sub-case that buffer B;_; is starved or machine M;_; is down and either
machine M; is down or buffer B;,; is blocked. We can describe (See Table 3.1

and Expression (3.12) ) this case as follows as a set of states in p™":

{RE™I | 5 € {6,7,8,10,11,12,14,15,16} }.
‘ We translate both these sub-cases in a corresponding diagonal matrix Ap as follows:

AD (‘iéf diag(lyovoy 0107 17 1’ 1707 1) 17 1707 1’17 1)

e Decrement.
The contents of buffer B; decreases by one product if buffer B;._, is starved or machine
M;_; is down and both machine M; is up and buffer Bj;; is not blocked. We can
describe (See Table 3.1 and Expression (3.12) ) this case as follows as a set of states
in pFov:

{RE™I | j € {5,9,13} }.
We translate this case in a corresponding diagonal matrix A¢ as follows:
Ac ¥ diag(0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0)

? The special cases: starting position empty or full.

Next we will describe the two separate cases in which we start with either an empty or a
full buffer B;, so the case of a starting position in RECW’O) or in Rﬁ“““”"). In these cases
we have to be very careful because they include the “conflict situations” (0,1) and (NV;, 1)
in RP which we described earlier.

Empty starting position
First we will describe the case with an empty buffer B; as a starting position, a starting
position in Rﬁc"‘“”). In that special case we have the following transitions:

e Increment.
The contents of buffer B; increases by one product in two sub-cases:

- In the sub-case that buffer B;_; is not starved and machine M;_; is up and either

machine M; is down or buffer B;,; is blocked. We can describe (See Table 3.1

and Expression (3.12) ) this case as follows as a set of states in pF™:

(RE™) | j e {2,3,4} }.

- In the sub-case that we are in conflict situation (0, 1) in R®* which here corre-
sponds to:

Env,j .
{RE™ | j e {1} ).
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We translate both sub-cases in a corresponding diagonal matrix Ag as follows:
Ap % diag(1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)

e No change.
The contents of buffer B; remains the same in all cases in which either buffer B;_;
is starved or machine M;_; is down. We can describe (See Table 3.1 and Expression
(3.12) ) this case as follows as a set of states in pF™:

(R | j e {5,6,7,8,9,10,11,12,13,14,15, 16} }.
We translate this case in a corresponding diagonal matrix A, as follows:
Ax ¥ diag(0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1)

e Decrement.
Impossible.

Full starting position
Last we will describe the case with a full buffer B; as a starting position, a starting position
in R{™™) 1In that special case we have the following transitions:

¢ Increment.
Impossible.

e No change.
The contents of buffer B; remains the same in the following two sub-cases:

- The sub-case in which either machine A; is down or buffer B;,; is blocked. We
can describe (See Table 3.1 and Expression (3.12) ) this case as follows as a set
of states in pf™:

(RE™) | j € {2,3,4,6,7,8,10,11,12,14,15,16} }.
- The sub-case of conflict situation (N;, 1) in R which here corresponds to:
(R | je{1} ).
We translate both sub-cases in a corresponding diagonal matrix Ag as follows:
Ac ¥ diag(1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1)

If we examine A and the diagonal matrices Ap and Ag that we defined earlier, then
we can conclude that:

Ac=Ap+Ag,
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e Decrement.
The contents of buffer B; decreases by one product in case buffer B;_; is starved or
machine M;_; is down and both machine M; is up and buffer B;,; is not blocked.
We can describe (See Table 3.1 and Expression (3.12) ) this case as follows as a set
of states in pF™:

{RE™) | j e {5,9,13} }.
We translate both sub-cases in a corresponding diagonal matrix Ar as follows:
Ar ¥ diag(0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0)

If we compare Ay with the diagonal matrix A¢ which we defined earlier, then we can
conclude that they are equal:

Ap = Ac.

3.6.3 The Transition Matrix PP-C°" for Transitions in pF°"* With-

out Transitions in pf™"

If we combine the results from the previous subsections we can construct the transition
matrix PB: of the two-machine Markov model for buffer B; excluding possible transitions
Cont in the following way:

in pP"’. We order the states in p;
Cont,0 Cont,1 Cont,2 Cont,N;
(R, R, R™S, LRy ) (3.14)
P Cont,j
where inside R; we assume the natural order

RE™ = { (4,1), (5,2), (5,3), -, (4,16)}.

If we assume that transitions in pZ™ do not occur then we combine results from the

previous paragraphs and construct the following transition matrix P&Cont:
Ay Ac
Ap Ap Ac
Ap Ap Ac
PBi’Cont déf .. ., .. (315)
AE AD Ac
AE AD AC

Ap Ap+Ag




3.6.4 The Transition Matrix PZE® for Transitions in p™ With-

Cont

out Transitions in p;

If we use the transition matrix PpiEnv which we constructed earlier, and use it as a building

block, then we can construct the transition matrix PP of the two-machine Markov model
for buffer B; excluding possible transitions in p{°**. We order again the states in pC™ as
follows:

Cont,0 Cont,1 Cont,2 Cont,N;
(Rz ’ Rz 3 Ri PR Ri )’ (316)

. . t,7
where inside RE°™ we assume the natural order

RE™ ={ (5,1), (,2), (,3), - (5,16) }.

If we assume that transitions in p{°* do not occur then we construct the following diagonal -
block structure in the following transition matrix P8P,

Pen
P Eov
Py
PpBi By def Int ® Pp?nv = . (3'17)
Ppan
P,

3.6.5 The Transition Matrix PZ for Transitions in the State Set
RP with Transitions in p* and Transitions in p°* Com-
bined

As we described earlier we will assume that within one time slot there will be first a
transition in p$°" and nezt a transition in pP™. Since matrix multiplication is from the
right to the left we get that the combined transition matrix PP is a multiplication of the

matrices PB+En and PBiCont a5 follows:

B; def B; Env | B;,Cont
P = P P

Ax Ac
Ap Ap A¢
Ag Ap Ac
= IN;+1®PP:31-_1»M;'—1@PPI{W{,BiM -
Ag Ap Ac
Ag Ap  Ac
A Ap+Ag

(3.18)
where the following properties hold:

4 X4
Ppgi_l,Mi_l , PpM;.Bi+1 e R,
; ;
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AC) ADa AE € RISXIG s
Ac+Ap+Ag = I,

AA+AB = I, . _ _
Ahp = 0, ACAD—ACAE—ADAzE = 0, (3.19)

2 AC = AC>

AA = AA) 2

Ay = Ag Ap = Ap,

5 : AL = Ag,

and

Aa = diag(0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1),
Ap = diag(1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0),
Ac = diag(0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0), (3.20)
Ap = diag(1,0,0,0,0,1,1,1,0,1,1,1,0,1,1,1),
As = diag(0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0).

3.7 The Stationary Distribution for the Two-Machine
Markov Model at Buffer B;

In this section we will examine the ways in which we can find the stationary distribution
of the matrix P? that we constructed in the previous section. In the following we will
approach the problem of finding the stationary distribution in two different ways: first the
analytic approach and then the numerical approach.

3.7.1 The Stationary Distribution Analytically

For the sake of simplicity of notation in this subsection the matrix M denotes the environ-
ment transition matrix P,s.. We will assume that this transition matrix M is invertible.
The problem for finding the stationary distribution can be formulated mathematically as

follows: find the stationary distribution # = (mg 7{ 75 ... ... my)' such that:
A C o o
B D C T m
E D C
E D C
) = , (3.21)
E D C
E D C :
E D+E ™ TN

where the following shorthand notations have been used:

A Mas, B M, © ¥ MAc, DY MAy, B Y MAs  (322)

80




Similar problems, called “matrix geometric problems”, were studied in [Neu8l]. If the
matrix M is non-singular then we can reformulate the main problem as follows:

find the stationary distribution 7 = (n{ #j 7y ... ... my) such that:

As Ac o M
As Ap Ac m M71m

Ap Ap Ac : :

Ap Ap A
v o = . (3.23)
Ag Ap Ac

A Ap  Ac : :

A Ap+Ag ™ Moy

We have noticed earlier the following properties that are general properties of orthogonal
projections on orthogonal subspaces:

e The A’s are projections, and therefore idempotent:

Ay = Ay

AL = Ap,

22%' i ﬁ(% (3'24)
D - D>

AL = Ap,

e and the A’s project on orthogonal subspaces:

AxAs = Ag Ay 0,
Ao Ap = ApAe = 0.
ApAs = AghAp = 0, (3.25)
AcAp = AghAe = 0.

These properties give us the possibility to manipulate the equations in Expression (3.23).
The equations in Expression (3.23) can be formulated as:

AA o + Ac m = M‘l o, (326)

A.B 7T0+AD 7T1+AC My = M_1 ™, (327)
Ag 7Ti_1+AD 7i’i+AC Tit1 = ]M_1 Ty for 1 <’i<N, (328)
Ap Ty + (AD + AE) ™ = M TN- (329)
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Now we pre-multiply each of the equations in Expressions (3.26), (3.27), (3.28) and (3.29)
by the matrices Ag, Ap and Ap and get using (3.24) and (3.25) that:

AcAamo+Acm = Ac M1 0,
Ap AA T = Ap M1 o,
Ap Ay m = Ag M1 0,
Ac Apmo+Acm = Ac M1 T,
Ap Apmy+Apm = Ap M1 T,
AE AB To = AE M__1 T,

Acmiyy = AcMtm, forl<i<N,

Apm = ADM—l'ﬂ'Z', for1 <i< N,
Apmi_1 = Ag M i, for1<i< N,

0 = Ac M~ TN,
AD ™ = AD M_l TN,
Ap (my_i+7y) = Ag M~ !y,

Next we reorder the previous set of equations and we obtain:

ApAam = Ap M 0,
AgAamg = Ag M1 m,

AcAgmp+Acm = Ac M 0,
ApApmg+Apm = Ap M1 1,
AE AB Ty = AE ]\4_1 1,

AcApgmo+Acm = A¢ M1 1,
Apm = Ap M1 iy fori =2,
Agpmi_1 = Ag M1 iy for i =2,

Ac Titl = Ac M- iy f0r1<i<N——1,
Apm = Ap M-! iy for2<i< N,
Agmi = Ag M1 i, for 2 <1< N,

Ac iy = AgMta, fori=N-1,
Ap 7y = Ap M7!my,
Ag (tyoi+7n) = Ag M 7y,
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0 = ACMRI TN,

and if we adapt the counter ¢ in some “blocks” of equations we get:

Ap M1 0,
AE M1 o,

ApApm =
AE AA o =

AC AA To +AC T
Ap Ag my+ Ap m
Ag Ag

Ac Ag Ty + Ac m
AD T2
AE T

-1
Aemy = Ac M~ my,
Ty
Ty

AD T, = AD ]\/./[”1
Agmi, = Ag M1

AC ™ =
Apmy =
AE (7I'N_1 + TI'N) =

Ac M1 7o,
AD ]\4_1 1,
AE ]\/I_l T,

AC ]\J_1 Ty,
Ap M1 T2,
Agp M1 T2,

for 2<i < N,
for2 <i< N,
for2 < i< N,

Ac M~ my_y,
AD M1 TN,
Ag M TN,

0 = Ac M-t TN

Next we add up the equations in the separate “blocks” and get:

(AD + AE) AA’HO

(AcAA + ApAp + AEAB)ﬂ'() + (AC + AD)ﬂ'I
AcApmo+ Apmy + (Ac + Ap)my

for2<i< N ,AEﬂ',‘_l-i”(Ac’f'AD)ﬂ'i
Agmy_i+ 7N

(AD + AE) M_lﬂ'g,
AcM_l’/To + (AD + AE)M_I’/I'I,
AcM_lﬂ'l + (AD + AE)M_lﬂ'g,

0 = AC ]\/1'_1 TN.
From the last expressions we derive:
(AD + AE)(AA - M_l)’ITo = 0,
[Ac +Ap — (AD -+ AE)M_I]Wl = [Ac]\{[_1 - (AcAA + ApAp + AEAB)} 0,

[Ac +Ap — (AD + AE)M_I} T
[Ac +Ap — (AD + AE)M_I} s
[I— (AD-FAE)M_l]ﬂ'N

Ac M- ™

Il

fl

0.
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—AcApmy + (AcM—l - AE)TI'l,
(AcM_'l —AE)ﬂ'i_l, for 2 < ¢ < N,
(ACAM_I — AE)TI'N_I

AcM—lﬁi_l + (AD + AE)M_IW,',
AcM 7 my_1+ (Ap + Ag)M 7y,

(3.30)

(3.31)



If we now define
Yo £ (Ap+Ag)(As- M),
Yw & Ao MY
X ¥ Ac+Ap—(Ap+Ag)MY,

Xy & I-(Ap+Ag)M7, (3.32)
Zy det A/\C]W_1 — (AcAA +ApAp + AEAB),
Zl d:ef —ACA37

Z ¥ AcM™ = Ag,
then we can reformulate the stationary distribution problem as follows:

I/{) To = 07
X T, = Zo 0,
X T = 21 7T0+Z Ty,

X m = 7 w1, for2<i<N, (333)
XN v = Z mN-o1,
YN ™ = 0.
In matrix block form this is equal to:
Yy )
—Zo X ™
—Z1 -7z X o
-z X :
: = 0. (3.34)
X TN_2
-7 XN TN—-1
YN TN

The solution for four possible cases.

In the previous derivations we have shown that the problem can be reformulated as follows:

Find the unique vectors m; for 0 < ¢ < N such that

KJ Ty = 07
X ™ = ZO To,
X m = Zy mg+2Z m,
X m = Z m_y, for2<i<N
¢ R ’ 3.35
XN ™n = Z Ty_1, (3:35)
YN TN = 0,

N
Llimlh = 1
=0




The solution to this kernel problem is simple in case the matrices X or Xn both are
non-singular. The questions that arise naturally are the following two.

1. Do cases exist in which either X or Xy are singular?
2. If such cases exist, how does one solve the problem in these cases?

In the following we will show that all possible combinations of singular and non-singular
X and Xy do exist. We also show how in each of these cases the unique solution can be
found.

Case 1: X and Xy are both non-singular.

It is easy to find an example that proves that this case exists since this case consists of
almost all random examples.

Example.
z % 0 100 000
M = %§%,AA= 000l, Ag = (010},
0 3 3 000 0 01
(3.36)
100 000 000
A = 0 00|, Ap = 01 0], Ag = 000 [,
000 000 001
leads to the following non-singular X, non-singular Xy and Z
1 0 0 1 0 0
X = (-3 4 -3, xy=1|-3 4 3],
2 -2 0 2 =2 1
(3.37)
0 2 -2
Z = 00 ©0¢{.
00 -1
O

If the matrices X and Xy are invertible then we can solve for the 7;, ¢ € {0,1,2,..., N} as
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follows:

Y;) Ty = 09
m = X1 2y T,
Mg = X1 Z 7|'()-|-4X-1 Z m
= X! (Z1+Z X! Z()) 0,
T = X! Z.7r,-_1, for 2 < i< N,
- X Z X (242 X' Zy) m, for2<i<N,  (338)
™ = X]\_jl A TN-1
= X' Z2 (X' ZNT X (Zy+Z X7V Zo) o,
Yv oy = Yy X3t Z X2V XY (2,42 XV Zy) ™
= 0
So the “solution” to the problem is first to find a 7y such that:
}/0 o = 07
Yo X3! [ZX0V? (242 X7 Z) m = O, (3:39)
and then compute the other 7; for 0 < i < N by means of the following formula’s:
T = X! Zy o,
7 = X' Z mp+ Xt Z om,
m o= XV 7 m_,, for2<i<A, (3.40)
Ty = X;rl Z TN_1.
Case 2: X and Xy are both singular.
An example that shows that this case exists is as follows.
Example.
% %l 10 1000
i 2 00 0100
= 4 =
M % 0 3 % » A4 0000 [
1304 0000
00 00O 1 000
0 00O 0 100
A2 = logo10f A =10000] (341)
0001 0000
0000 0000
_loooo _loooo
A = 1loo10f = |0000|
0000 0001




leads to the following singular X, singular Xy and Z:

1 00 O 1 00 0
0 10 0 0 10 0
X=1_4 90 1|0 =410 1|
0 4 0 -2 4 0 -1
(3.42)
-6 10 2 -2
6 —6 —2 2
Z = 0 0 0 0
0 0 0 -1

O
The solution to the problem in this case is first to find the matrix L which has the maximal
number of independent rows in the left nullspace of matrix X:

LX =0 (3.43)

If we pre-multiply the corresponding equations in Expression (3.35) by L then we obtain
“extra” restrictions:

LX m = LZ() o = 0,
LX m = LZ m+LZ m = 0, (3.44)
LX w = LZ m_, = 0, for2<i<N,

If we combine the “extra” restrictions in (3.44) with the original equations in Expression
(3.35) then we get:

(YO T = 0,

L Z,

X - Zo .

Lz )™ = \-Lz | "™

X _ A n Zy

rz)™= o)™ 0o )™

X [z o (3.45)
(LZ>7U = 0 )T for2<i< N-1,

X TN-1 = Z TN=2,



Notice that the matrix ( LXZ ) has full column rank. This allows us to premultiply the

corresponding equations with a left inverse of ( LXZ ) denoted by K:

K € (X'X+2z'ULZ)" (X 2L,

3.46
o (X _ (3.46)
LZ -
‘We obtain:
Y, _
L%)““Q
_ Z
m = K _I Z1 o,
A VA
My = K 0 7T1+K(01>7Tg,
mn = K g i1, for2<i< N -—1. (347)
X wnor = Z Ty,

(3 ) = (ﬁ)w

The last equations give us the possibility to express my_5 in terms of g:

e = (e (5)) o (L2 )+ [ (2)) ()

If, for the sake of convenience of notation, we denote the matrix in the last expression by

J:
N-3 N-4
def Z Zs Z Z
72 (w(3)) w(Ln )6 (D)) w (D) e
then we can express the solution to our problem as follows:

Find the vectors 7y, my.; and 7y such that the following equations hold:

Yy

L Z() a
ZJ -X TN-1 = 0. (349)

—-Z Xy
Yy




Then compute the other m; for ¢ =1,2,3, ..., N — 2 by means of the equations:

m™ =

Ty =

]

s

A
K —'L Z1 ) o,
k(% m+ K <Zl )m], (3.50)
0 0
VA .
K 0 i1, for2<i<N-—1.

Case 3: X non-singular and X singular.

An example that shows that this case exists is as follows.

Example.
1
i
M = 1
i
8
0
0
Ap = 0
0
0
0
Ap = 0
0

which leads to the following non-singular X, singular Xy and

1 0

0 1

X = 0 4
-1 -1

-6 10

6 —6

z = 0 0
60 0

The solution to the problem i

[== ] NPT BN
[ i N e B e

[ ol e B )

[l e B e R

oo oo
- o o

0

0
0
-1
1

OO N

n this

As =

B O O
oo O -
oo o
OO O o
o O oo

, (3.51)

oo o
QOO
S o QO
[N e I an i o
oo o

) Ap =

o o o

oo oo
= o OO

00
00
00
0 00
Z.
0
0
0’
-1

X]\T =

e = e
=]
oo oo

1
0
0
~1

(3.52)

O

case is similar to the solution in the case that both

matrices X and Xy are singular as we discussed in the previous Case 2. The difference
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with the solution in the previous Case 2 is that, since matrix X is non-singular, here we
matrix L is non-existent or in other words L is an “empty matrix”. If we consider L to be
an “empty matrix” we can translate the solution from Case 2 into the following solution:

We defi
. I (x12) T x g+ (x2) T X 2 (3.53)

and we can express the solution to our problem as follows:

Find the vectors 7y, my_1 and 7wy such that the following equations hold:

Yo v
zJ =X 0
_z XN TN-1 = 0. (354)
Yy ™

Then compute the other «; for i =1,2,3,..., N — 2 by means of the equations:

m = X' Z m,
w2 = X_l A T+ X—l Zl 7o, (355)
m o= X 1Z m_,, for2<i<N-L

Case 4: X singular and Xy non-singular.

An example that shows that this case exists is as follows.

Example.

%%%%0 10000
¥Z00% 01000

M = §ogoo,AA= 00O0O0O]/,
5 00 30 00000
1 1
0500 3 00000
00000 10000
00000 01000

Ap = [00 100, Ac = [0000O0/, (3.56)
00010 00000
00001 00000
00000 00000
00000 00000

Ap = {00 100]{, Ag = [00000],
00 000D 00010
00000 00001




which leads to the following singular X, non-singular Xy and Z:

1 0000 1 0000
0 1000 0 1000
X =]-1 1011}, Xy =|-1 -1011],
-6 -6 2 4 6 -6 —6 2 5 6
-6 —10 2 6 8 -6 —-10 2 6 9
(3.57)
6 —6 2 6 6
6 —-10 2 6 10
Z = 0 00 0 0
0 00 -1 0
0 00 0 -1
]

The solution to the problem in this case is similar to the solution in the case that both
matrices X and Xy are singular as we discussed in Case 2 in this subsection:

First we define L as a matrix with a maximal number of independent rows in the left
nullspace of matrix X:

LX = 0. (3.58)

Then we define the matrices K and J as follows:

K ¥ (x'x+27UL2)7" (X' 2L,

N-3 N-4 (3.59)
def Z Zo . ( Z Z1
v ((§)) w () (D)« (T)
and then we can express the solution to our problem as follows:
Find the vectors mg, mny—; and 7y such that the following equations hold:
Yy
L ZO To
ZJ =X TN_1 = 0. (3.60)
—Z XN TN
Yy
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Then compute the other =; for i = 1,2,3,..., N — 2 by means of the equations:

- Zo
m™ = K _I Zl ) o,
Mg = K g T+ K ( ZOI )71'0, (361)
A )
m = K 0 Ti—1, for2<i< N —1.

3.7.2 The Stationary Distribution Numerically

In this subsection we try to find the stationary distribution numerically. The stationary
distribution, by definition, satisfies:

PErx = 1,

hmlh = 1,

For the sake of simplicity of notation again in this subsection the matrix M denotes the
environment transition matrix P,e.. We repeat the problem for finding the stationary

distribution as follows: find the stétiona.ry distribution 7 = (7w} 7 ... ... 7y) such
that:
A C 7o Ty
B D C m M
E D C
E D C
. = , (3.62)
E D C
E D C
E D+FE ™ ™
where

AY MA,, BY MAp, C ¥ MAc, DY MAp, E Y MAg.

It is known that the matrix PP has exactly one eigenvalue equal to 1. We know also that
PP as a well known property of stochastic matrices, has all (possibly complex) eigenvalues
denoted by );, 7 € {1,2,...,16(JV; + 1)}, in the unit circle of the complex plane :

[A] < [Ae] € o S PAsvigny-1l < Msviany = 1,

A # L for j # 16(N; + 1).
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There also is exactly one eigenvector (stationary distribution) 7 corresponding to the eigen-
value 1. To solve for the stationary distribution we first subtract the matrix (1 + §}I,6 €
IR, 0 < 6 < 1, from the original transition matrix P%. The result is a non-singular tri-
diagonal matrix that has an eigenvalue equal to § which is the smallest eigenvalue in the
absolute sense. Next we solve the eigenvector that corresponds to this smallest eigenvalue
6 by means of the inverse power method. The inverse power method implies for our case
that we perform the the following iteration process:

(PB—(1+0)I)cH =x*, £=0,1,2,., (3.63)
or, equivalently,
LAk &
A-(146)I c mt mt
B D—(1+68)] c : :
E D—(146)I c
E D—(1+68)I c
E D+E—(1+6)I : :
ki %

with an initial distribution 7§ = m(l,l,l,...,l)’, Vi € {0,1,...,N;}. Notice that
the iteration procedure is implicit. We have to solve a linear set of 16(/V; + 1) equations
to solve for the next distribution 7*+! in each iteration step in (3.63). Luckily we can
take advantage of the tridiagonal block structure of the matrix P% — (1 + 4)I in order to
solve the equations: the iteration in Expression (3.63) can be executed with the help of
the following blockwise LU-decomposition of P& — (14 6)I:

I X, C
i I X, C
Y, I Xy C
PB (14 6)] = vl T ,
» Xn-1 C
Yy, [ X,
where
Xo = A-(Q1-§I,
i = BX;',
X, = D-(1-8I-Y,C
s ’ E=1,2,.,N;—1,
/k+1 = EXkl,
Xy, = D+E-(1-6I-YyC.
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We implemented the procedure by means of the well known easy-to-use MATLAB software
(short for Matrix Laboratory) by the company “The Mathworks Inc.”. It turned out that
our numerical procedure is quick and efficient. We used the value § = 1078 and found
that four iteration steps from Expression (3.63) were more than enough to find a solution
within machine accuracy.

3.8 Reduction of the Transition Matrix P5:

In Section 3.5 we described four main partitionings of which so far we used only the first
two for the construction of the two-machine Markov model for buffer B;. In this section we
will use the third and fourth main partitionings for reduction of the two-machine Markov
model for buffer B;. Next to this reduction we will also introduce two functions and some
notions that will make the descriptions in the following sections easier.

3.8.1 Reduction

Reduction to every possible partitioning of a Markov chain model is possible using the
transition matrix and the stationary distribution as we have shown in Section 1.3.2. Both,
the construction of the transition matrix P? and the determination of its stationary dis-
tribution have been thoroughly described in the previous subsections. Therefore we now
have all tools in hands for reduction. For reduction of Markov chains we will use the
notation with a tilde and the corresponding partitioning as a subscript “(.),”, introduced
in Subsection 1.3.2. The two partitionings we focus on in this subsection correspond to
partitionings p2*-"% and pP™ in P(RB:). A picture of both partitionings is shown in
Figure 3.4. Reduction to the transition matrices of the Markov chains shown in this figure,
as a consequence of the notation introduced Subsection 1.3.2, can simply be denoted by
15’?&‘._1,3‘. and f’;‘;‘M‘..

3.8.2 Construction, Determination of Stationary Distribution and
Reduction Compressed in Two Functions

In the previous subsections we have followed the following procedure. We started with the

two transition matrices PpBi_l,M,‘_x and PpMi,B,'_H corresponding to partitionings p; i-1,Mi-1
M;,B; - . ’ . . .
and p; "7 also shown in Figure 3.3. On the basis of these two transition matrices

we constructed the transition matrix of the two-machine Markov chain model for buffer
B;. Then we described how the stationary distribution of the Markov chain model can be
computed. Finally, in the previous subsection we described that by means of the transition
matrix P and the corresponding stationary distribution = we can reduce the transition

matrix P5 in two different ways, corresponding to two different partitionings !~ and
B;,M;
Py :
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Figure 3.4: The two sub-chains for reduction to partitionings pZM 1B and pZiMs
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Now we assume that instead of the “driving” Markov transition matrices P Bi_1.M;_ and
P ;5. We have arbitrary transition matrices X and Y. We can describe the transition
matrlx PBi as a function of the two “driving” Markov transition matrices X € IR* x IR*
and Y € R* x R* similar to Expression (3.18):
PE(XY) =
As Ac
Ap Ap Ac
A Ap Ac

3.64
v ®XQY] - g (5.0

where

e
n
==
L o
BB
=
= o
- o
=
o =
:Or—‘
O
o=
=N
o
uOH
o =
o
o
uo'_l
O =
= —

-

T O

[

2 e

g &
Ol—‘»O
-0 o
- oo
= oo
oo
oo
oo
OVI—‘O
oo
oo
(==
o= o
o Qo
o~ o
oo
o = O

The reduced transition matrices corresponding to partitionings pZM =B and 0; as a

function of the variable “driving” sub-chains X and Y can then be described concisely as
PB' 5 (X,Y) € R* x R* and P (X, Y) € R* x R*. In the following we will call

PB ;1.8 (X, Y) the forward reduced Ma:rkov sub-chain of the model at B; and P o, (X, Y)

the backward reduced Markov sub-chain of the model at B;. Transition matnces Xand Y
in this context will be called “driving” Markov sub-chains of the model at B;.

B;,M;

3.9 Linkage of the Two-Machine Markov Models: the
Forward and Backward Aggregation

Now we have fully described the construction, stationary distribution and reduction of
the two-machine Markov model of buffer B;. We did not yet describe the connections

between two consecutive models: the model for buffer B; and the model for buffer B;,; for
instance. In fact the way to link the models, using the tools we described earlier, is very
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straightforward. Between two neighbouring buffer models we impose the following ties:

Pp%ﬂ/f - PB M
i+1

(3.65)
PM Bipl T PB;‘?}%H

Next we try to describe these ties in terms of the construction functlon in (3.18). The for-
ward reduced Markov sub-chain from the model at B;, denoted by P (P Bi_1Mip, P M1 ),

is equal to a “driving” Markov sub-chain for the model at Bz+1, denoted by PB M

Similarly, the backward reduced Markov sub-chain from the model at B;yq, denoted by
Pﬁ}*fgt - (P 5; M,,P Mot B2 ), 18 equal to a “driving” Markov sub-chain for the model at
Piy

B;, denoted by P My By
In one expressmn we obtain the following equations equivalent with (3.65):

Poe.m = PB’;.,MI. (P Biymiyy Paeiyy),
i Py Pi

Pii1

(3.66)
_ pBin
prthm = Puisin (prliM“Ppﬁ?l’Bi”)'

it1
Of course, in order to make sense on the level of the breakdown-repair models, we also
have the following restrictions for all ¢ € {1,2,...,m}:

(P 2 )u = (Ppy;ml)# = ( ! w b 5 ) : (3.67)

w= { {172}1 {314} } € 'P({l,2,3,4}).

Next to the linking Equations (3.66) we also have boundary conditions for the backward
reduced Markov sub-chain of the first and the forward reduced Markov sub-chain of the
last machine. These sub-chains are fixed and are determined by the external process at the
input buffer and the external process at the output buffer. We will assume in the following
that starvation of the input buffer and blocking of the output buffer both do not occur.
This can be expressed by means of the following boundary conditions:

- 1-a1 B By

where

P B 0 0 0 0
gttt T 0 ap 1-=06 15 |’
0 0 0 0
1- QU 1- Um ﬁm ﬁm (368)
0 0 0 0
prm,3m+l - O O 1— /Bm 1 - ﬂm
0 0 0 0

97



Notice that the structure of the combination of Expressions (3.66) and (3.68) is similar to
the structure of Expressions (2.50) in the previous chapter about serial production lines

with product failures only! The unknown matrices P s, and PpMi,BH_l in (3.66) and (3.68)
i+l i

correspond directly to the unknown scalar completion probabilities p{ and p! in (2.50). The
forward and backward aggregation iteration process to solve the equations in Expression
(3.66) and (3.68) therefore will be chosen similar to the iteration process described in
Section 2.4.8 to solve Equations (2.50). The forward and backward aggregation iteration
process therefore can here be described similarly as follows:

o Initialization:

P s.;(0) = P mpiyq (0)
Pig1 P
l—a 1= B Bi

- o Q; 1—/81 1__51 s forl—-172’,,,m’

szBl,Ml(S) = pr,,Ml 0), fors=1,2,..

PPM,,“Berl (s) = PpMm,Bm+1 (0), fors=1,2,.. .

e Forward aggregation, for ¢ = 2,3,..,m:

PPEiuMi (S + ]_) = ]nghMi (Pp?i-l’Mi—l (S + 1), Pp{vf,—,Bi_H (S)) (369)

i+1
e Backward aggregation, fori=m,m —1,..,2.

Pu_y15(s+1)= ]5531._1,51. (Pp?i.Mi_l (s +1), Ppyi,B,-H (s +1)). (3.70)

-1

Note that although the alternate forward and backward iteration process is similar to the
forward and backward process in Section 2.4.8, here we have not been able to prove the
convergence of the algorithm or uniqueness of the solution.

3.10 Determination of the Average Production Rate
R

Determination of the average production rate R is very straightforward. Again, as we have
also seen in Subsection 2.4.3 in expressions (2.17) and (2.18), we can derive the average
production rate of a two-machine model either from the average input rate or from the
average output rate.
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In order to determine the average input rate we examine in which states in the state set
RB: a product part will enter the two-machine system model of buffer B;. The conditions
under which there will be input from the two-machine model at buffer B; of a product part
can be described as follows:

e The previous buffer B;_; is not starved.
e The first machine in the model M;_; is up.
e The buffer B; is not blocked.

These conditions can be translated (See Table 3.1) in the following subset RI"P“* of R5::

R (0 B e RE [a< N, be {1,2,3,4)} U { (N, 1) }. 3.71)

The average input rate of buffer B; can simply be obtained by adding up all elements of
the stationary distribution that correspond with R*™*:

input  def
I YL (3.72)
a,b)ER;

where 7 is the stationary distribution such that:
PB r = g

In order to determine the average output rate we examine in which states in the state
set R5: a product part will depart from the two-machine system model of buffer B;. The
conditions under which there will be output from the two-machine model at buffer B; of a
product part can be described as follows:

e The next buffer B;,; is not blocked.
e The second machine in the model M; is up.
e The buffer B; is not starved.

These conditions can be translated (See Table 3.1) in the following subset R™P™ of RB::
RO (4 b) e R% |0 >0, be {1,59,13} }. (3.73)

The average output rate of buffer B; can simply be obtained by adding up all elements of
the stationary distribution that correspond with R,

tput def
Riou pu = 7T16a+ba (3 74)
(a b)en?utput *
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where again 7 is the stationary distribution such that:
P37 = g

If the stationary distribution of the two-machine Markov model at buffer B; has been
computed correctly then the average input rate and the average output rate will be equal.
They will be equal to the average production rate R; of the model at buffer B;:

R, % Rt — powed (3.75)

Notice however that the linkage equations in Expression (3.66) do not imply conservation
of flow:

R; # R;, for ¢ # j. (3.76)
This is in contrast with the equations in Expression (2.50) for the production lines with
product part failures only, as described in Chapter 2, where conservation of flow follows
from the restrictions as shown in Theorem 29 in Appendix B. Since conservation of flow
is not automatically satisfied here, we obtain several different estimates of the average
production rate, as many estimates as there are two-machine production line models in the
production line. If the estimates are good then the differences between the estimates from
the production rates of the different two-machine models are very small. If the estimates are
bad then the differences between the estimates from the production rates of the different
two-machine models are big. In this way, the differences in flow are a measure for the
accuracy of the two-machine production line models.

3.11 An Example

We apply the forward and backward itération aggregation method described in this sec-
tion to a simple serial production line with 4 machines and 5 buffers. A picture of this
production line is shown in Figure 3.5. We can see in the picture that we are dealing
with four machines M = {M;, Ma, M3, M,} and five buffers B = {By, By, B3, By, Bs}. The
capacities of buffers By, B;, Bs, By are 0o, 10, 20, 30, co respectively. In the figure we also
mention the parameters sy =y =3 =as = and fy =13, fo =3, B3 =} and B, = ¢
which correspond to the breakdown and repair of machines M;, M,, Mz and M,. In the
figure the breakdown and repair rates are written under the machines, first the breakdown
and then the repair rate. The buffer capacities are written under the corresponding buffers.
The idea behind the parameters in this example is to try to compensate for the effect of de-
creasing repair rates by increasing buffer capacities. One iteration of the iteration method
consists of one forward aggregation as expressed in (3.69) and one backward aggregation as
expressed in (3.70). We apply the iteration method to the production line with parameters
shown in Figure 3.5 for 10 iteration steps (s = 1,2, ..,10) and examine what happens.

First we examine the convergence of the iteration method and therefore we keep track of
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inf 111,12 10 111, 1/3 /11, 1/4 30 i, 15 inf

Figure 3.5: The production line in the example.

° norm{ PAB2,M2)(s)-PNB2,M2)(s-1) ) o nome{ PA{B3 M3){s)-PAB3,M3){s-1) )

L

SRR RN

- N ? v - *
10 10" \
Figure 3.6: Logarithmic  plot  of Figure 3.7 Logarithmic  plot  of
I prZ»Mz (s) - prz:% (s—=1) . | prmMs (s) - P,,favMa (s=1) 1

the subsequent differences of transition matrices along the iteration process. By taking the
matrix norms of the subsequent differences PpB;,Mi(.S) — P s, (s —1) and PpM,-_l,B,- (s) —
i1 i1 i—1
PPMH,}:«i (s — 1) we are able to draw conclusions about the convergence of the iteration
i1
process for this case. For this simple serial production line we try to solve the follow-
ing 6 different 4 x 4 Markov transition matrices: the three forward reduced Markov sub-
chains P B2tz P B33 P  BasiMs and the three backward reduced Markov sub-chains P MsBas
Py
P M2, B3 P M1.B2 Takmg the norm of differences during the iteration process results i m the
plots on a loganthrmc scale shown in Figures 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11.

If we examine each single plot from Figures 3.6 up to 3.11 then we we conclude that
the points of the differences in subsequent norms tend to lie on a straight line. Notice
that if these points after some iteration steps lie on one monotonic descending line on the
logarithmic scale then convergence of the iteration method is assured. Therefore the plots
show that from the first 10 iteration steps we may conclude that convergence is attained
for all matrices involved in the iteration method.

The approximations of the solutions to the combination of Expressions (3.66), (3.67) and
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nom( PA(B4,M4)(s)-PNB4,M4)(s-1) ) 2 norm({ PAM3,B4)(s)-PAM3,B4)(s-1) }

10 ——————

f("(21 2 3 4 5 s € 7 ] 9 10
Figure 3.8 Logarithmic plot of Figure 3.9 Logarithmic  plot of
I Pp?4.M4(S) - pr,,,M,, (s—=1) . | Pp;vfa,B., (s) — Ppéwa,m (s—1) .

nom( PA(M2,B83)(s)-PA(M2,B3)(s-1}) nonm{ PAM1,B2)(s)-PAM1,B2)(s-1) )

Figure 3.10: Logarithmic plot of Figure 3.11: Logarithmic plot of
I Pp§”2'33 (s) — Pp;/fz,Bg (s—=1) ] [| Ppiwl'B’ (s) — Ppil\/ll,Bg (s—=1) .
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Figure 3.12: The computed stationary distri-
bution of the contents of buffer B,: frpgm.
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Figure 3.14: The computed stationary distri-
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Figure 3.13: The simulated stationary distri-
bution of the contents of buffer B,.
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Figure 3.15: The simulated stationary distri-
bution of the contents of buffer B;.
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Distibution of contents buffer B4 Simulated distribution contents bufier B4
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Figure 3.16: The computed stationary distri- Figure 3.17: The simulated stationary distri-
bution of the contents of buffer By: ﬁ'p?ont. bution of the contents of buffer By.

(3.68) for this case after 10 steps of forward-backward iteration are:

0.9065 0.4545 0.3333 0.1667
0.0026 0.4545 0 0.1667
0.0907 0.0455 0.6667 0.3333
0.0003 0.0455 0 0.3333

P Bg,Mg (10) =
£3

0.0030 0.6050 0 0.1664

P, 55015 (10) 0.0906 0.0304 0.7500 0.2507

0.0003 0.0605 0 0.4993

0.0067 0.6815 0 0.1500
0.0902 0.0228 0.8000 0.2001
0.0007 0.0682 0 0.5999

il

pr.,,M,, (10)

0.8904 0.1818 0.2500 0.0500
0.0187 0.7273 0 0.2000
0.0890 0.0182 0.7500 0.1500
0.0019 0.0727 0 0.6000

Pp243,E4 (10)

(0.9061 0.3041 0.2500 0.0836)
(0.9024 0.2275 0.2000 0.0500)
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0.8684 0.2074 0.3333 0.0756
0.0407 0.7017 0 0.2577
0.0868 0.0207 0.6667 0.1513 |’
0.0041 0.0702 0 0.5154

I

Pp;\lz,Ba (10)

0.8358 0.2450 0.5000 0.1337
0.0733 0.6641 0 0.3663
0.0836 0.0245 0.5000 0.1337
0.0073 0.0664 0 0.3663

szlvll 8, (10) =

After the numerical computations of the backward and forward aggregation steps we are
also able by means of simple manipulations of the different stationary distribution vectors
to make plots of the stationary distribution of the buffer contents for each separate buffer.
By means of these plots the usage and performance of each buffer can be examined. The
computed distribution of the contents of the buffers B,, B; and B, can be denoted by ﬁpgom,

T pont. and T yGont They are shown in the plots in Figures 3.12, 3.14 and 3.16 respectively.

Of course, the solution to the restrictions of our decomposed production line does not
give the exact stationary distribution of the original production line. In order to evaluate
the accuracy of the previous solution we have also done some simulations of the original
production line. Therefore we have made a program for simulation of our production
line in C programming language. We use again the same program as we have used for
simulations earlier for the production lines with product failures only, we only changed
the parameters such that they suit for our example here. The most important tool for the
simulations is the random generator used. For our simulations in C we used the drand48
command which according to the manual pages generates pseudo-random numbers using
a well-known linear congruential algorithm and 48-bit integer arithmetic. The pseudo-
random number generator is initialized by means of a time dependent argument so as to
generate an independent sequence each time it is invoked.

The results with respect to the stationary distribution of the buffer contents of buffers
By, By and B, are shown in Figures 3.13, 3.15 and 3.17. These figures are put next to
the figures of the computed stationary distribution of the buffer contents for comparison.
Other results concerning average production rate and average buffer contents of the 10
independent “runs” of simulation are shown in Table 3.2. The compound results are
shown in Table 3.3.
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Estimates of average production rate R by simulation

Run 1 Run 2 Run 3 Rund | Runb5 | Runb Run 7 Run 8 Run 9 | Run 10
R " 0.672420 | 0.669433 | 0.671803 | 0.672932 —|70.672168 | 0.671453 | 0.671952 | 0.671538 | 0.670532 l 0.670932
Estimates of the average buffer contents by simulation
Buffer Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
By 8.2476 8.2551 8.2359 8.2393 8.2429 8.2556 8.2546 8.2409 8.2812 8.2473
B3 14.9346 15.0348 15.0310 14.9436 15.1433 15.0402 15.1815 15.1242 15.1523 15.1616
By 18.3049 18.6510 18.4637 18.5147 18.5068 18.2870 18.4086 18.5036 18.6024 18.4881

Table 3.2: The results of 10° time steps simulations for the 4-machine-production line

Results for the average production rate R
mean value | std. deviation | decomp. model | abs. err. rel. err.
By | 0.6711962 | -0.0003201 | -0.0004767
R 0.6715163 0.0010095 B; | 0.6714088 | -0.0001075 | -0.0001601
B,y | 0.6715286 | 0.0000123 | 0.0000183 |
Results for the average buffer contents
Buffer | mean value | std. deviation | decomp. model | abs. err. rel. err.
B, 8.2500 0.0130 8.3138 0.0638 0.0077
B, 15.0747 0.0904 15.2040 0.1293 0.0086
By 18.4731 0.1152 18.7134 0.2403 0.0130

Table 3.3: The compound results of the simulations for the 4-machine-production line
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3.12 Conclusions

In this chapter we described a decomposition method for a discrete synchronous serial
production line with machine failures only. The machines in these production lines are
prone to breakdown and repair only. By means of the decomposition method presented
here we are able to estimate the average production rate R of such production lines. The
method constists of alternate forward and backward aggregation steps and has the same
structure as the method described earlier in Chapter 2 for production lines with product
failures only. In spite of some attempts, we have not been able to prove convergence of
the algorithm and uniqueness of the solution. All examples, of which one is treated in
this chapter, show that the algorithm does converge and that the method is surprisingly
accurate. Accuracy can be examined by comparison with the results from simulations. We
did not yet find examples in which the accuracy of the algorithm was poor, which of course
does not mean that such examples do not exist.

~ The solutions from computations with the algorithm show that in general they do not

satisfy exactly the well-known “conservation of flow” property of serial production lines
with blocking. The lack of this property makes the method less elegant, but not necessarily
less accurate. Computations of the iteration method have been done in the MATLAB
software environment. In this environment the actual numerical computations such as
inversion of 16 x 16 matrices is quick and efficient. Inefficient however is the memory
management of the MATLAB software. That is why MATLAB spends too much of the
total execution time in data management tasks. The computations for the example treated
in the previous section for instance take some minutes of computation time on a HP 720
workstation. A tremendous speed up of the iteration method therefore could be obtained
by translation of the method in a lower level programming language such as C. However,
this was outside the scope of this research.

Due to the decomposition method there is a linear relation between the complexity of
the algorithm and an increment in capacity of a buffer in the line. This property makes
it possible to compute approximated versions of the stationary distribution even if the
capacities of the buffers are large.
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Chapter 4

Serial Production Lines with Machine |
and Product Failures Combined

In this chapter we will make an attempt to combine the model for product part failures only
from Chapter 2 and the model for machine failures only from Chapter 3. This implies that
we obtain a model in which machines have both features: the geometrically distributed
service times and the breakdown and repair. Before we examine this kind of production
line we will first describe how production lines with machine and product failures work.

4.1 Description of a Production Line with Machine
and Product Failures

The production line with machine and product failures basically has all properties of the
production line with machine failures only from the previous chapter, Chapter 3. The
only difference with the model of machine failures only is the completion probability p;,
0 < p; < 1 in the up state of machine M;. Instead of a completion probability that switches
between 1 and 0, as was the case in the model of machine failures only described in Section
3.1, here we assume that the completion probability of machine M; switches between a
machine dependent completion probability p; for the up state and 0 for the down state.
A picture of the Markov chain that governs the breakdown-repair model here is shown in
Figure 4.1.
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Figure 4.1: The breakdown-repair model of a machine M;.

4.2 Adaptations to the Two-Machine Markov Chain
Model for Production Lines with Machine Fail-

ures Only

Basically the structure of the two-machine Markov model for production lines with machine
failures and product failures combined, is the same as the structure of the two-machine
Markov model for production lines with machine failures only as we described in Chapter
3. That means that we assume that the two-machine Markov model for buffer B; has again
the same state set R® as described in Table 3.1, and again we use the same partitionings
in { pf""M"‘l, pf»”"’B‘“, pli-uBi PR pComi 1« P(RB) as defined in Expressions (3.7),

(3.8), (3.9), (3.11) and (3.12).

One partitioning however, partitioning ,oiB"’M", we did not mention in the previous para-
graph. This is because in this partitioning pf “Mi we will introduce a change concerning
states (0,1), (0,2), (0,3) and (0,3) in RZ:. In contrast with the definition in Expression
(3.10), although buffer B; is empty in these states, they will not be considered as starved
states of buffer B;. This is because in these states the fact that buffer B; is empty will be
of a “shert term nature” since the previous machine is up and the previous buffer is not
starved. For a buffer to be starved we will only take “long term arguments” into account.
Therefore the new definition of p2*™ will be:

Bi,M;  def (R(B:“,M,?“’) R (BIMT) ,R(B‘?‘",Mf“’ﬂ)
- 1 3 I¥g 3 Mg

s (et g
k3 k)

? H
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where
R(Bi—-st’M:lP)

i

{(a,b) € RP|(a >0A b€ {1,2,56,9,10,13,14}) V...
la=0Abe {121},
RECMT) — f(a,b) € RBa=0Abe {586,9,10,13,14}},
BIUSME™™) . f(a,b) € RB|(a > 0Ab € {3,4,7,8,11,12,15,16}) V...
(a=0Abe {3,4})},
a=0Abe{7,811,12,15,16}}.

R (4.1)

Rngt,MEj°w") _ {(a’ b) c REB:

The rest of the description in Chapter 3 on production lines with machine failures only is
also valid for our system here until the point where we describe the relation between the
environment state pP™ and transitions in pS°™ in Subsection 3.6.2.

The relation between the environment state pP™ and transitions in p°* translated in the

diagonal matrices A4, Ag, Ac, Ap and Ag changes for the new model here. The new
model will not have constant diagonal matrices A4, Ag, Ac, Ap and Ag, but they will be
dependent on two parameters p; and p, which denote the completion probabilities of the
two machines involved in the model. The way in which the diagonal matrices depend on
the completion probabilities py, p2 € [0,1] and ¢; =1 — py, go = 1 — p, is as follows:

AA(phPZ) déf diag(‘]thQl:‘Zl, l’lylala 11171)17 171a171)7
AB(ppr) déf diag(PlaphPhPlv 010307()’ 07030707 0707010)7

. 4.2
AC(plapZ) d=ef dla’g( q102 ’ 07 0’ 07 p2,0>0301 D2, 07070, p2701070)1 ( )
AD(phPZ) déf diag(p1p2+qIQ27(I11Qqula (12,171,1, Q2>1u1,17 g2, lalal):

AE(ppr) ZEf dla‘g( P192 yP1,P1, D1, 07070:07 0,0,0,0, 07010:0)-
On the basis of these definitions, as an extension of Expression (3.15), we are now able to

construct the new transition matrix PZ+C°" for transitions in pS°™ without transitions in
P, as a part of the new two-machine Markov chain model for buffer B; as follows:

(=5

i
Env

. def
pBi,Cont (sz.,pp? del

AA(P;‘f—pPg) AC(P{—DP?)
As(plyp) Ap(pLyp) Ac(ly,ph)
AE(P{—hP?) AD(P{—hP?) AC(P{—hP?)
As(l .t Ap(li,p?) + As(pl,,p0)
where p/_; and p? will be chosen such that they are in accordance with the forward and

backward completion probabilities of “virtual machines” M | and M? as described in Ex-
pression (2.43) for lines with product failures only. How we will determine the forward and
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backward completion probabilities p{_l and p? will be explained later in the next section,
Section 4.3 in Expression (4.9).

Apart from the extension described in the previous paragraph, the new model described
here is constructed in exactly the same way as we constructed the total transition matrix
P3: for the two-machine Markov chain model for production lines with machine failures
only. That means that we construct exactly the same transition matrix PZ®™ for tran-
sitions in pF™ without transitions in p°™, as in Expression (3.17):

2

. def
pBuE INi+1 ® Pp'Bi—lvM'—l ®Pp{\4i-5i+1
f i

= INu® Ppw

Pyen (4.3)
Ppan

Pn
P g

The overall Markov transition matrix for the new extended model here then can be defined
here in accordance with Expression (3.18).

B; def B, E B;,Cont b
pB = pBifnv. pBComt(pl | pb),

(4.4)

Aa(ply.ph) Acpl,.ph)
= Iy ® Pp{;i_l,ﬂ/[,-_1 ® pr”ivBiH . .
As(l_y,0t) Ap(l_y.pY) + As(pl,,0?)
Notice that the matrices A4, Ag, Ac, Ap and Ay that we introduced in the earlier model

from the previous chapter in Subsection 3.6.2 are consistent with the matrices that we
obtain here if we take p{_, = 1 and p? = 1 in the new definitions:

Aa(1,1) = Ay,
AB(l,l) = ABy
Ac(L,1) = Ag,
Ap(1,1) = Ap,
Ap(1,1) = Ag.

This shows that the old two-machine Markov model for buffer B; for machine failures only,
as described in Chapter 3, is contained in the new two-machine Markov model for buffer
B; here.
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On the other hand, if we consider a case in which for some positive values 8;_; and §;

11 1-6a 1-8 11 1-8 1-5
00 0 0 00 O 0
pri_l'Mi_l B 00 B Bi-1 ’ Ppiwi'ai“ - 00 B Bi
00 0 0 00 0 0
(4.5)

holds, then all states of R{™™*?) of partitioning pF* (See Expression (3.11) ) except R{E™:1)
will be transient. In such a case it is useful to consider the non-transient part of the two-
machine Markov chain model. The transition probabilities of the non-transient part is

determined by the (1,1) elements of the matrices A4(pl_1,p?), A(pl_1,0%), Ac(p! 4, pb),
Ap(ply,pt) and Ap(pL_y, pt) which are ¢/, pl . ¢/ 1p?, p_ 9! +af_1q and pf ! respec- -
tively. If we put these elements corresponding to the non-transient part of the Markov
chain in a transition matrix we get the following structure for some values of p/_, and ot

g, ol 0 0 . : 0
pl, plipt+ql . alypt 0 :
0

P{_qu pif—lp? + ‘Iif-—ﬂi" qu—lp?

3’{—1‘15 P{_lplf + qif—qu ‘1{—117?
0 : : . 0 sz-—l‘lzb 1- ‘1{—117?

which corresponds directly to the two-machine production line model for production lines
with product part failures only as described in Expression (2.11). We conclude that that
for any buffer B; the two machines production line model for product part failures only,
as described in Chapter 2, is also contained in the combined two-machine Markov chain
model that we describe now.

4.3 Linkage of the New Combined Model

For the linkage of the combined two-machine Markov chain models we first describe the
combined two-machine Markov chain model as a function of its “driving” variables, in
a similar way as did in Expression (3.18) for the two-machine Markov chain model for
production lines with machine failures only. The difference with Expression (3.18) is that
here we have to introduce two extra “driving variables” corresponding to the completion
probabilities of both machines:

PBi(z,y,X,Y) ¥
(46)
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Aa(z,y) Ac(z,y)
In41© X ®Y] Ag(.y) ADFx’y) Ac‘(x,y)

As(zy) Ap(e,y) + As(z,y)

For the link between the two-machine Markov models we can repeat the linking equations
for the model for production lines with machine failures only, as described in Expression
(3.66): )
PpﬁfiMi = PffBii!Mi (plf—l7pg7PpiBi—l’Mi—17PPjV1i‘Bi+1)7
4.7)
— pbBi b
Pp?/l.',B;H = pf\i’}ai“ (pi y Pig1s Ppit;leiaPP‘Mi+lei+2)~
Of course, in order to make sense on the level of the breakdown-repair models, we also
have the following restrictions for all ¢ € {1,2,...,m}:

) _ ) 1= B
(PplB';iMl>p - (pr/li’Bi+l)p B ( Q 1- Bz ) ' (48)

p=1{{12} {3,4} } € P({1,2,3,4}).

Next to these links we also have to make another link that determines the completion
probabilities p{_l and p? of the “forward and backward aggregated machines” from the
neighbouring two-machine models as an extension to the definitions in Expression (2.41).

where

It is difficult to extend Expression (2.41) because the notions “blocked” and “starved”
have changed with the introduction of machine failures. We could argue that with the
introduction of machine failures, we have two different kinds of “blocked” and “starved”.
We have a “long term blocked” and “long term starved” which means that a buffer is full
or empty due to a machine failure. We also have a “short term blocked” and “short term
starved” which means that a buffer is full or empty not due to a machine failure but due
to a succession of product part failures.

For the production lines with product part failures only, as described in Chapter 2, we used
the notions “blocked” and “starved” in a manner that we call “short term blocked” and
“short term starved” now. For the production lines with machine failures only, as described
in Chapter 3, we used the notions “blocked” and “starved” in a manner that we call “long
term blocked” and “long term starved” now. It is important to realize the differences in
meaning of the notions “blocked” and “starved” when we try to extend Expression (2.41)
here.

The most useful extension that we could find is as follows:

P % p.(1—Pr(M, is short term blocked) ),
)

pl % p.(1— Pr(M; is short term starved) ).

114



or, equivalently,

p? = p;(1 —Pr(M; is blocked | M; is up, not long term blocked or starved) ),

;of pi-(1 — Pr(M; is starved | M; is up, not long term blocked or starved) ). (4.9)

In order to work this out more precisely we focus on the two-machine Markov chain model
for a buffer B;. All states in which machine M;_; is up and M;_; is neither long term blocked

—st up ~bl up —bl st
nor long term starved can be denoted by REB"‘“M*""B‘ ) = ”REM“"B" ) ﬂ”R(B PM) (See
also Table 3.1 and Expressions (3.7) and (3.9) ):
=8t up
REFAMILET) del () by e RBja< N, Ab < 5} U{(N,, 1)} (4.10)

All states in which machine A; is up and J; is neither long term blocked nor long term .
(B MPPBIR) (Bt MP) (M;®, B
starved can be denoted by R; =R, TN R; (See also Table 3.1

and Expressions (3.8) and (4.1) ):

~st AfUP
RUETTMIERD det g ) e RE:

(a>0nbe{1,59,13N}u{(0,1)}. (411)

By means of these definitions we are able to extend the expressions from Chapter 3 and
ﬁnd the correspondmg expressions for the forward and backward completion probabilities
p! and pb. In analogy with Expression (2.21), where conditional fractions take over the
roles of my and 7, we derive that

IPr(M;_, is blocked | M;_y is up, not long term blocked or starved) =
—st u bl
»  Pr(B is in state (N;, 1) € R; (B2, M}®, B )

7 Bt MYP ’B-bl »
IPr(B; is in a state from R( Tl ))

and

IPr(M; is starved | M; is up, not long term blocked or starved) =

R(B M, Bb )

Pr(B; is in state (0,1) €
IPr(B; is in a state from R,

(B—wt M“P B—ubl)) *

For the sake of convenience of notation we will define the following functions ¥f! and
lIlempty

full/ f b def
\Iji (pi—17piypp?i—1,Mi~1aPpMi’BiH) =

UP —bl
Pr(B; is in state (N;,1) € R B M BT

B —bl
st M:‘P] B )

Pr(B; is in a state from 72

)
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— T16N;+1 (4.12)
= 7r16a+b,
‘ (B —.s: Mur: B-bl)
(ap)er; !

empty ¢ _f b def
U (pi_1, Py, Pp_Bi—lxMi—l ) PpMisz‘+1) =
; :

—st up p-bl
‘ Pr(B; is in state (0,1) € R(B MP.B)
—st_pfUP  p—bl
Pr(B; is in a state from &; (BZ M2 B
1
B ’ 4.13
> T16a+b ( )

(B, MPP,BPD)
OO

where 7 is the stationary distribution vector of transition matrix P?(p/_,, p?, szai,l,M,_1 , PpML-,B,v 1)
i i
B; (. f b _
P (pi—l,pivPp_Bi—l’M‘—anMs»BiH) o= 7.

The function ¥ could be considered as an “extension” of the function ¥y that we used
in Chapter 2 and defined in Expression (2.15). We have used a similar symbol because the
functions ¥ and TT™P have similar interpretations as the function ¥y in Chapter 2.

As an extension of the formulas in Chapter 2 we can now derive for the model at B; the
following formulas in order to link the models on the level of the aggregated completion

probabilities:
il o= g (- w),
(4.14)
Py = pior o (1 - g IR
(Here we have omitted arguments and simply wrote W™ and ¥l
To resume, arguments included, we can formulate the following linking equations:
PB My = PBlji,M;(pif—hp?vPBi—lvMi—l)PMi-Bi+1)7
Pid1 p; Py P
f o= p o1 — gy b p . Pun
p; Di [ % (pz—-l’pm p,Ei—l'Mn-ly pszBz+l) ],
(4.15)
PpMi'Bi-i-l = pﬂ'}+lB,+1 (pz 7pz+1? P B Mz ) P Mz+1 B‘+2)
; i1
pﬁ‘) = D [1 - qg+1 \I/fi“l(p{,pfﬂ, Ppﬁi’MnPMiH»Bi-;-z)]-
i1 Pit1
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with the following boundary values
l-ap 1-a S I

P _ 0 0 0 0
pprt o o 1= 1-56 |’
0 0 0 0
1-— O, 1- (7% /Bm ﬁm
_ 0 0 0 0 (4.16)
prm’s"‘“ - O, Cm  1=fm 1=0n |’
0 0 0 0
p{ = DN
P = Pm
and restrictions . - 5
1 - i
o L Mt

where

p={{1,2}, {3,4} } € P({1,2,3,4}).

4.4 The Forward and Backward Aggregation

In order to solve the previous equations for matrices Pp?i,M; and PpMi,BH_l and scalars p{

i+1 i
and p?, such that they satisfy all Equations (4.15), (4.16) and (4.17), we will again use
an iteration method that consists of successive forward and backward iteration steps. We
use the variable s as the iteration counter as usually. The alternate forward and backward

iteration method is as follows:

e Initialization:

Ppﬂ-iMi 0y = ij"[i-Bi+1 (0)
-0 1= 5 Bi
0 0 0 0 .
= a; o 18 1-8 |’ fori=1,2,..,m,
0 0 0 0

szsl,Ml (S - prl,Ml (0)

PPMm'Bm+1 (5 PPMm,Bm+1 (U) } ’ for s = 1! 27 -
pzf(o)'—:p?(o) i, f()rz':l,z’“,m,

f
111(5) P , fors=1,2,..
n(8) = Pm

I
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e Forward aggregation, for ¢ = 2,3,..,m:

PpBi,M,- (S +1) =

i+1

fgﬁ;i.M; (pif—l(s -+ 1)7p?(5)7 Pp?i—lvMi-l (s + 1), PpMirBi+1 (5))7

pls+1) =

pi (1= T (pLy (s + 1), 58(5), P pcsttics (5 + 1), P e (5))]-

o Backward aggregation, for i =m,m-1,..,2.

Py (s + 1) =
Py
Pff_\fri_l,B,v (pli(s+1),pb(s + 1),Pp§,~_1,M,»,1 (s+ 1):Pp%'3i+1 (s +1)),

Pi"—l(s +1) =

pior [L—gi(s+1)-

SOl (s + 1), ph(s + 1), P sy (54 1), Paesin (s +1))):

4.5.1 The Average Input Rate

(4.18)

(4.19)

4.5 Determination of the Average Production Rate R

Determination of the average production rate R is straightforward. Again, as we have
also seen in Subsection 2.4.3 in Expressions (2.17) and (2.18) as well as in Section 3.10 in
Expressions (3.72) and (3.74), we can derive the average production rate of a two-machine
model either from the average input rate or from the average output rate.

In order to determine the average input rate we examine under which conditions a product
part will enter the two-machine system of buffer B;. The conditions under which there will
be input from the two-machine model at buffer B; of a product part can be split in two
different cases as follows:

1. The previous buffer B;_; is not long term starved, the first machine in the model
M;_; is up, completes a product part with probability pzf_1 and buffer B; contains

less than N; product parts.
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2. The previous buffer B;_; is not long term starved, the first machine in the model
M;_, is up, it completes a product part with probability p{_l, buffer B; contains Nj;
product parts and the second machine in the model M; is up, completes a product
part as well with probability p? and the last buffer B;,, is not long term blocked.

The probability that the first case occurs can be formulated as follows:
Pr(case 1) = p/_, - ( > Ti6atb), (4.20)
(a,b) € R

a<N;
b<5b

the probability that second case occurs can be formulated as follows:
Pr(case 2) = p! | - mign,41 - 77, (4.21)
where 7 is the stationary distribution vector such that:
PE(pl | pb, pr,-_l,M,-_l , Pp?/ri,sm) STo= 7.

In total, with the same distribution vector 7, we can now define the average input rate of
the two-machine model as follows as the sum of both cases:

R pl L (ph - miewpar + > Mi6atb)- (4.22)
(a,b) € RB:
a < N;
b<5

4.5.2 The Average Output Rate

The conditions under which there will be output from the two-machine model at buffer B;
of a product part can be described in one case as follows:

1. Buffer B; contains at least one product part, the second machine in the model M;
is up, completes a product part with probability p? and the next buffer B;11 is not
long term blocked.

If we translate this in a formula we obtain:

Roveut def o p > Tl6ath), (4.23)
(a,b) € RE:
a>0
be{l,5,9,13}

where again 7 is the stationary distribution vector such that:

Bi(,.f b —
P '(Pi—bpi, Pp?i—lrMi—thMi:Biﬂ) C .= m.
s f
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4.5.3 Conservation of Flow

If the stationary distribution of the two-machine Markov model at buffer B; has been
computed correctly then the average input rate Ry'™ and the average output rate R

will be equal: ]
R;nput — R?UtPUt. (424)

They will be equal to the average production rate of the model at buffer B;.

Notice however that the linkage equations in Expression (4.15) do not imply conservation
of flow. This is in contrast with the equations in Expression (2.50) where conservation of
flow follows from the restrictions as shown in Theorem 3 in part 29. Since conservation
of flow is not automatically satisfied, we obtain several different estimates of the average
production rate, as many estimates as there are two-machine production line models in
the production line. If the estimates are good then the differences between the estimates
from the production rates of the different two-machine models will be very small. If the
estimates are bad then the differences between the estimates from the production rates
of the different two-machine models will be big. In this way, the differences in flow are a
measure for the accuracy of the two-machine production line models.

4.6 An Example

Again we will apply the forward and backward iteration aggregation method described in
the previous section to a simple serial production line with 4 machines and 5 buffers. The
production line in this example is similar to the production of the example in the previous
chapter, except that the machines here have completion probabilities as well. A picture of
this production line is shown in Figure 4.2. We can see in the picture that we are again deal-
ing with four machines M = {M;, M5, M3, M4} and five buffers B = { By, By, B3, By, Bs}.
Again the capacities of buffers By, B,, Bs, By are 0o, 10, 20, 30, oo respectively. Also
the parameters for breakdown and repair rates of machines My, M, M3 and M, are the
same, 0y = oy =03 = oy = & and fy = &, B =1, B3 =  and B, = ;. In the figure the
breakdown and repair rates are written under the machines, first the breakdown and then
the repair rate. The buffer capacities are written under the corresponding buffers. The
completion probabilities introduced for machines M;, M, M3 and M, are p; = 0.40625,
pa = 0.50000, ps = 0.50000 and ps = 0.50000 respectively.

The first idea behind the introduction of completion probabilities is to see what happens
if completion probabilities are in the middle between 0 and 1. It turned out that the case
of taking all completion probabilities p; = 0.5 was not interesting enough because the last
machine was too “simple” a bottleneck because of its smallest repair rate. Therefore we
introduced a second bottleneck at the first machine M; by means of a smaller completion
probability p; = 0.40625. In this way we created two different bottlenecks in the same line:
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Figure 4.2: The production line in the example.

a bottleneck for the completion probability at the first machine M; and a bottleneck for
the repair rates at the last machine My. The two bottlenecks are chosen such that both
the first and last machine, considered in isolation, would produce exactly the same average
amount of products per time slot.

With the introduction of the second bottleneck the number of iterations needed for accurate
results increased. It turned out that for 8-digits accurate results here we needed at least 19
subsequent forward and backward iteration steps (s=0,1,..,19). First we examine the con-
vergence of the iteration method and therefore we keep track of the subsequent differences
of transition matrices along the iteration process. By taking the matrix norms of the subse-
quent differences PB+M (s)— PB M (s—1)fori=2,3, 4andPM By (8)— PM Biyy (5—1) for

1 =1,2,3 we are able to draw concluswns about the convergence of the 1terat10n process for
this case. For this simple serial production line we try to solve the following 6 different 4 x 4
Markov transition matrices: the tree forward reduced Markov sub-chains P BaMz P BaMas
P ' Ba, My and the three backward reduced Markov sub-chains P ' M35, PpMz By, Ple By. ‘New
in 5our model are the “aggregated” forward and backward comslemon p?obablhties that we
also try to solve in our iteration process: the three forward aggregated completion prob—
ablhtles ol p} and p4 and the three backward aggregated completion probabilities p§, p}
and p}. Taking the norm of subsequent differences during the iteration process results in
the plots on a logarithmic scale shown in Figures 4.3, 4.4, 4.5, 4.6. The solutions for all
forward and backward reduced Markov chains, as well as the solutions for all aggregated
forward and backward completion probabilities after 19 iteration steps are listed below.

0.8959 0.4545 0.3322 0.1667

0.0132 0.4545 0.0012 0.1667 f
0.0896 0.0455 0.6643 0.3333 | ° P2 (19)
0.0013 0.0455 0.0024 0.3333

PPBQ,MQ (19) =(.4477,
3

(t

0.9011 0.3071 0.2497 0.0843
0.0080 0.6020 0.0003 0.1657 f
Prama(19) = | 0901 00307 0.7490 0.2529 | » Ps(19) =0.4790,

0.0008 0.0602 0.0010 0.4971
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11 PABI, Mi)(s)-PABIMi)(s~1)

Figure 4.4: | p{(s) — p{(s — 1) | for
i=2,3,4 we used “0",“x”,“4” respec-
tively.

Fxgure43 ”PB M( ) PB M(S-—l) || for
Pig1
i=2,3,4 we used “0o”,“x” “+” respectlvely

0.9038 0.2274 0.1999 0.0500
0.0053 0.6817 0.0001 0.1500 fo
Prow(19) = | 00004 00227 0.7095 0.1999 | @ Pa(19)=0.4889.

0.0005 0.0682 0.0005 0.6001

0.9033 0.1818 0.2498 0.0500
0.0058 0.7273 0.0002 0.2000 ,
Pus=(19) = | 0003 0.0182 07495 01500 | @ Pe(19) = 0.4927,

0.0006 0.0727 0.0005 0.6000

0.9032 0.2184 0.3330 0.0799
0.0059 0.6907 0.0003 0.2534

_ bi1g) —
Panes(19) = 1 0903 00218 0.6660 0.1599 | ° pa(19) = 04922,
0.0006 0.0691 0.0006 0.5068
0.9023 0.2874 0.4992 0.1578
_ | 0.0068 0.6217 0.0008 0.3422 by
P, p?“"”(lg) = | 0.0002 0.0287 0.4992 0.1578 | ° p1(19) = 0.3979.

0.0007 0.0622 0.0008 0.3422

If we examine each single plot from Figures 4.3 up to 4.6 then we we conclude that the
points of the differences in subsequent norms tend to lie on a straight line. Notice that
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. 1 prb_is}-pro_ifs—1) 1

norm

; . Do) — pb(a _
Figure 45: || Pyusias(5) = P (s—=1) || T8 460 | mls) = pils ~ 1) | for
Piy1 i=1,2,3 we used “x”,“0”,“x” respec-
for i=1,2,3 we used “x7 “0” “x” respectively. tively.

if these points after some iteration steps lie on one monotonic descending line on the
logarithmic scale then convergence of the iteration method is assured. Therefore, the plots
show that from the first 19 iteration steps we may conclude that convergence is attained
for all matrices and scalars involved in the iteration method.

After the numerical computations of the backward and forward aggregation steps we are
also able by means of simple manipulations of the different stationary distribution vectors
to make plots of the stationary distribution of the buffer contents for each separate buffer.
By means of these plots the usage and performance of each buffer can be examined. The
computed distribution of the contents of the buffers B,, Bs and B, can be denoted by # pCont,
T pont and 7, Gont . They are shown in the plots in Figures 4.7, 4.9 and 4.11 respectlvely

Of course, the solution to the restrictions of our decomposed production line does not
give the exact stationary distribution of the original production line. In order to evaluate
the accuracy of the previous solution we have also done some simulations of the original
production line. Therefore we have made a program for simulation of our production
line in C programming language. We use again the same program as we have used for
simulations earlier for the production lines with product failures only, we only changed
the parameters such that they suit for our example here. The most important tool for
the simulations is the random generator used. For our simulations in C we used again
the drand{8 command which we have used also in examples from Chapter 2 and Chapter
3 in Section 2.8 and Section 3.11 respectively. The simulations are performed here in a
similar way as we performed the simulations in the corresponding sections in Chapter 2
and Chapter 3. That means that again the pseudo-random number generator is initialized
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Figure 4.7: The computed stationary distri- Figure 4.8: The simulated stationary distri-
bution of the contents of buffer Bs: ﬁpgom. bution of the contents of buffer Bs.
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Figure 4.9: The computed stationary distri- Figure 4.10: The simulated stationary distri
bution of the contents of buffer By: 7 pGent- bution of the contents of buffer Bs.
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Figure 4.11: The computed stationary distri- Figure 4.12: The simulated stationary distri-
bution of the contents of buffer By: ﬁpfom. bution of the contents of buffer B,.

Estimates of average production rate R by simulation

[ Runl Run 2 Run 3 Run 4 Run5 [ Runb Run7 [ Run8 Run9 [ Ruan 10

R ]0.326933 | 0.326695 | 0.326830 | 0.326206 | 0.326701 | 0.327282 | 0.325595 | 0.32668C | 0.327027 | 0.327372

Estimates of the average buffer contents by simulation

Buffer Run 1 Run 2 Run 3 Run 4 Run Run 6 Run 7 Run 8 Run 9 Run 10

B, 4.1966 4.2264 4.2552 4.1548 4.2637 4.1873 4.2378 4.1224 4.1965 4.1603
B3 8.7108 9.0105 8.9637 8.6200 9.0101 9.0029 9.0877 8.7750 8.8884 8.9243
By 14.0084 14.2376 13.9422 13.3544 14.1551 14.4926 14.0685 13.9570 13.6391 13.9521

Table 4.1: The results of 10° time steps simulations for the 4-machine-production line

by means of a time dependent argument so as to generate an independent sequence each
time it is invoked.

The results with respect to the stationary distribution of the buffer contents of buffers
By, Bs and B, are shown in Figures 4.8, 4.10 and 4.12. These figures are put next to
the figures of the computed stationary distribution of the buffer contents for comparison.
Other results concerning average production rate and average buffer contents of the 10
independent “runs” of simulation are shown in Table 4.1. The compound results are
shown in Table 4.2.
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Results for the average production rate R
mean value | std. deviation | decomp. model | abs. err. rel. err.
B, | 0.3296359 | 0.0029038 | 0.0088874
R 0.3267321 0.0005189 B3 | 0.3297002 | 0.0029681 | 0.0090842
B, | 0.3297481 | 0.0030160 | 0.0092308
Results for the average buffer contents
Buffer | mean value | std. deviation | decomp. model | abs. err. rel. err.
B, 4.2001 0.0460 4.0633 -0.1368 -0.0326
By 8.8993 0.1508 9.2000 0.3007 0.0338
B, 13.9807 0.3125 15.1104 1.1297 0.0808

Table 4.2: The compound results of the simulations for the 4-machine-production line

4.7 Conclusions

In this chapter we described a decomposition method for a discrete synchronous serial
production line with product part failures and machine failures. This means that the
machines in the line have geometrically distributed service times and also that machines
are prone to breakdown and repair. By means of the decomposition method presented
here we are able to estimate the average production rate R of such production lines. The
method constists of alternate forward and backward aggregation steps and has the same
structure as the methods described in Chapter 2 and Chapter 3 for production lines with
product failures only or production lines with machine failures only. In fact the method
that we described in.this chapter can be seen as an integration of the method that we
described in Chapter 2 with the method that we described in Chapter 3. Because it was
already impossible for the more simple method in Chapter 3, we have again not been able
to prove convergence of the algorithm in this chapter and uniqueness of the solution. All
examples however, of which one is treated here, show that the algorithm does converge
and that the method is quite accurate.

Accuracy can be examined by comparison: with the results from simulations. For the
accuracy we distinguish between the estimates of the average production rate R and the
estimates of the average contents of the separate buffers. The estimates of the average
production rate R are within a range of 2 percent error normally, which we do consider
as good. The estimates of the average contents of the buffers however, as we have already
seen in Chapter 2 Section 2.8, can exceed 10 percent relative error for the worst cases.

Of course, since the decomposition method in this chapter is a direct combination of
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the decomposition methods from the previous chapters, the method here cannot be more
accurate than the methods there. Therefore our method here is at least as inaccurate as
the method that we described in Chapter 2. However, it appears that the accuracy of the
method in this chapter is simzlar to the accuracy of the method in Chapter 2, which seems
reasonable because the method described in Chapter 3 was much more accurate.

Computations of the iteration method were done in the MATLAB software environment.

“In this environment the actual numerical computations such as 16 x 16 matrix inversion
is quick and efficient. Inefficient however is the memory management of the MATLAB
software. That is why MATLAB spends a lot of the execution time in data management
tasks. The example treated in this section, just as the example treated in the previous
chapter in Section 3.11, costs some minutes of computation time on a HP 720 workstation. )
We repeat that a tremendous speed up of the iteration method therefore could be obtained
by translation of the method in a lower level programming language such as C. However,
this was outside the scope of this research.

It is due to the decomposition method that there is a linear relation between the complexity
of the algorithm and an increment in capacity of a buffer in the line. This property makes
it possible to compute approximated versions of the stationary distribution even if the
capacities of the buffers are large.
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Chapter 5

An Application with Merging in a
Car Lamp Factory

In this chapter we will describe how the method of alternate construction and reduction
of Markov chains can be used in a car lamp production line that has a configuration with
merging. That means that there is a machine that merges different product parts from two
upstream buffers into one product part and puts the result in a single downstream buffer.

5.1 The Car Lamp Production Line

A schematic picture of the car lamp production line is shown in Figure 5.1. In this car
lamp production line we have two machines that construct separately but parallel in time
the inner metal parts and the outer glass bulbs of a car lamp. The inner metal parts,
simply called inner parts, are produced by the so-called mounting machine. The outer
bulb parts, simply called bulbs, are produced by the so-called stemming machine. The
stemming machine and the mounting machine put the bulbs and inner parts in separate
buffers which lead to the so-called pump&pinch machine that takes both, the inner and
outer parts. In this pump-and-pinch machine the bulbs are pumped vacuum, refilled with
a special gas, heated and then pinched with the metal parts inside. This machine pinches
bulbs in order to close each bulb and hold the inner metal part to end up as a low voltage
lamp that is able to give light, simply called a burner. The burners are again put in a
buffer that leads to the so-called testing machine which tests if the burners have sufficient
quality and puts a parabolic shaped reflecting cone around the burner for the finishing
touch to a ready-for-use car lamp.
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Parts Mounting
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Figure 5.1: The car lamp production line schematically.

5.2 Description of the Car Lamp Production Line Model

| The description of the model here is slightly different from the description of the models
in previous chapters. The main differences between the model in the car lamp production

l line here and the previous models is the different handling of product part failures with the

| introduction of scrapping, and the new interpretation of the completion probability as the
machine speed. The rest of the differences is due to the new configuration with merging
which causes more administration during the computations.

|

5.2.1 A Formal Description of the Configuration

In order to avoid repetition of the long names of the machines and buffers we will rename
them and give each machine and buffer a number or a combination of two numbers in case
of machines or buffers that work in parallel. The new names of the machines and buffers
and their number are listed in Table 5.1 together with the real names of the corresponding
machines and buffers. As a result we obtain the translated version of the same production
line as shown in Figure 5.2.

Formally, for the configuration of this car lamp production line we have a set of 4 machines
denoted by M, a set of 6 buffers denoted by B and a set of nine arcs denoted by .A defined
as follows:
M d:'ef {Ml,la M1,21 M21 MS}:
B déf {Bl,h B?,l’ B1,27 B2,2, B3, B4}7

A Y (B3, M), (Big, Mi2), (Bay, Ms), (Ba2, Ma), (Bs, Ms)...
(Ml,laB2,l)u (M1,2132,2)7 (M21B3)a (M31B4)}-
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Short name | Real name of machine or buffer
My, Stemming Machine
M, Mounting Machine

M, Pumpé&Pinch Machine
M3 Testing Machine

B, Raw glass Tubes Buffer
By, Bulbs Buffer

Bis Raw metal Parts Buffer
By, Inner parts Buffer

Bs Burners Buffer

B, Car Lamps Buffer

Table 5.1: The short names and the corresponding real names in the car lamp production
line.

B 12 My B 2.2

Figure 5.2: The car lamp production line with short names.
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Buffers By ; and B, , are considered to be infinite capacity input buffers and buffer By is
considered to be an infinite capacity output buffer.

5.2.2 Description of the Machine Model

A difference with machine models in previous chapters is that in the previous models we
assume that if no failures would occur then every machine produces exactly one product
part per time slot. This would mean, apart from the failures, that in principle all machines
produce parts with exactly the same speed. The different completion probabilities of
separate machines however took care of the fact that the actual production per machine
per time slot changed to different rates lower than one.

From completion probability to machine speed

To clarify how we will deal with the relation between production rate, speed and completion
probability of a single machine we will introduce two different machines.

e Machine number one that attempts to manipulate product parts with a speed of
exactly one product part per second. Suppose also that this machine one has a com-
pletion probability of %, which means that manipulation every time cycle fails with a
probability of % A product part that failed manipulation will be manipulated again
in exactly the same manner in the next time cycle. The overall average production
rate of this single machine one would be % product parts per second.

e Machine number fwo that is not prone to failures, but produces product parts with
a speed of exactly one part every two seconds. The actual average production rate
of this single machine two would also be % product parts per second.

Of course we realize that there are fundamental differences between the machines one
and two that we just described, but on the level of average production rates they behave
similarly. It is in this step that the model here is potentially liable to criticism. However, in
order to be able to apply our Markov chain methods we need its convenient “memoryless”
properties such that the same transitions occur with the same probabilities each time slot,
which implies here that we can do three things

1. We study and construct more complex kinds of Markov chain models in which con-
current events with variable durations can take place. This means that we step from
the idea that time is slotted in equal time slots and that we step from the idea that
each time slot is similar with respect to the events and transitions that may occur.

2. We increase the number of states in our Markov chain models such that a recent
part of the history is “included” and modeled as extra states in a new Markov chain
model. This will keep our models based on time slots that are similar with respect to
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size and with respect to the events and transitions that may occur. The procedure
allows us also to make a clear distinction between machine number one and machine
number two. The price that we pay for that is again an increase of the number of
states in the state set.

3. We model machine number one by means of machine number two because this will
still make sense on the level of average rates and continue as if this were correct.

In this chapter we have chosen for the last solution in 3. In the next chapter, Chapter 6,
we will try to develop more complex Markov chain models as we just described in 1.

The choice that we just made for the solution in 3 implies that the notion completion
probability changes to the notion machine speed. In other words, from now on in this -
chapter a completion probability % does not imply that product manipulation fails with
probability %, it only implies that it takes 2 time slots for the machine to produce one
product part.

The time slot size

The relation between completion probabilities and machine speeds gives us the freedom
to “choose” the size of the time slots for our overall Markov chain model. We can choose
any size as long as the length of one time slot is smaller than the cycle time of the fastest
machine M; € M, such that all completion probabilities p; will be smaller than 1. For the
car lamp production line we notice that the fastest machine which is mounting machine
M, 5 that has a cycle time over 1 second. This is why we decided to choose for a time slot
with a length of 1 second for all the following Markov chain models.

The product part failures and scrapping

Unfortunately, the fact that the completion probability p; of a machine M; € M does
not relate to product part failures does not mean that product part failures do not occur
in this machine. Product part failures do occur for machine M;, but the way that the
machine handles with these failures is different from the models that we used in the previous
chapters. In the previous chapters if a product part manipulation failure occurred in
one time slot we tried to finish manipulation in the next time slot with the same failure
probability. If a product part manipulation failure occurs in a machine M; of the car
lamp production line here then the product part will immediately be thrown away in a
garbage bin and will not return in the line. This way of dealing with failures of product
part manipulations is called scrapping. Since the completion probability p; now deals
with machine speed only we introduce a new parameter c; that deals with the product
part failures with scrapping for machine M;. This new parameter will be called the scrap
probability of M; and denotes the probability that machine M; fails manipulation and
throws away a certain product part. We will assume that the same scrap probability ¢;
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Figure 5.3: A machine M; with scrap probability c;.

of a machine M, applies to every product part that passes M; for manipulation, totally
independent of time and totally independent of the state of other machines and buffers
in the production line. The scrapping of product parts by a machine will be depicted
symbolically by means of an extra diagonal downstream arc from the the machine that
does not point at a downstream buffer. A picture of a machine with scrapping is shown in
Figure 5.3.

The breakdown-repair model

The breakdown-repair model that we use for the separate machines M; € M in the car
lamp production line is exactly the same as the breakdown-repair model that we used in
the serial production lines with machine and product part failures combined in the previous
chapter. The only difference with the model in the previous chapter is the interpretation
of the completion probability as the machine speed. We assume that a machine M; can
only be in two different states: it is either up or down.

When up, the machine is in progress and manipulates product parts with a completion
rate, i.e. a speed, given by the completion probability related to the machine. When down,
the machine is not in progress and does not manipulate product parts. The completion
probability, i.e. speed, in down state evidently equals 0.

The transitions between the states up and down are organized as follows:

When up, the machine has a certain probability to go down during the current time slot.
This probability is called the breakdown rate «;. If the machine does not break down in
the current time slot it will be up when the next time slot starts. When the machine does
break down during the current time slot, it will be down at the beginning of the next time
slot.

When down, the machine has a certain probability to go up during the current time slot.
This probability is called the repair rate 3;. If the machine will not be repaired during
the current time slot it will be down when the next time slot starts. When the machine is
repaired during the current time slot, it will be up at the beginning of the next time slot.
The simple Markov chain corresponding to the breakdown repair model is shown in Figure
5.4.
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Figure 5.4: The breakdown-repair model of a machine ;.

Simple calculus shows that the average consecutive up time (in time slots) is as follows:

E[ UP time M; ] = a; Y. j (1— o)
j=0
1—'61’,;
= 1
. 5)

In exactly the same way the average consecutive down time can be derived:

E[DOWN time M; ] = & ij (1- )
7=0
1-5
g

Suppose one wants to cunstruct such a breakdown-repair Markov chain model given real
data about breakdown and repair times in practice. Then we can use Equations (5.1)
and (5.2) to determine the breakdown and repair rates o; and f;. The procedure is very
simple: First compute (in time slots) the average consecutive up time as well as the average
consecutive down time by means of the data. The result will be denoted by z; and ¥;
respectively. Then compute, as follows from Expressions (5.1) and (5.2), the breakdown
and repair rates o; and §;:

(5.2)




1
B = 1_+—yi' (5.3)

The breakdown-repair process for one single machine M; can be described by the following
simple Markov chain:

r(t+1) = ( 1;;” . fi 5 )wm . (5.4)

The stationary distribution 7 of this Markov chain is:

_ 1 Bi
W—Oz,-—i-ﬁi(ai). (5.5)

5.3 Decomposition of the Car Lamp Production Line:
Three Different Buffer Models with Sub-Models

In the car lamp production line we deal with three finite capacity buffers, buffer Bs;, buffer
B, and buffer Bs. In order to make computation less complicated we decompose the
total car lamp production line model into three overlapping sub-models. Each sub-model
corresponds to one of the buffers with finite capacity and its environment which consists
of the closest up- and downstream machines and buffers. The way of reasoning for each
of these buffer models is similar to the way of reasoning in Chapter 3, especially Section
3.3, except that here we have for each buffer model an extra buffer in the environment.
This extra buffer can be in two extra states which implies that the number of states of
each buffer environment here is twice the number of states in the environment of the buffer
models in Chapter 3. The description of the three different buffer models starts naturally
with the description of the states inside each of the models. For the description of the
states we will assume that the finite capacities of buffers By, By 5 and B are Np; € INT,
Noy € INT and N3 € INT respectively. Just as in Chapter 3 Section 3.3 we will, for the
sake of convenience of notation, first define the following state sets of separate machines
and buffers:

Contents Bs 1 Starvi B def —st t
S {0,1,..,No1}, SStarving Bip € {Br%, Bi%} ,

def
Contents Bpp def i def -
SContents Bz <& {0’ 1’ s NZ,?} , SStarvmg By <& {32 szt’ B;t2 ,
def . ;

SContents B 9 {07 1’ - NS} , Ssmte Mia Ciéf {M;lf{v Mld’(iwn} :

SBlocking By def { ngl’ Bgl} ’ SState My, def { M{f‘ﬁ , Mf‘g‘”“ ’ (5.6)
SBlocking Bs def { B;bl, B}fl} , SState Mo def {M;p, Méiown} ’ .
SStarving Bia j:j; {Bislt’ Bifl} , SState My ciéf {Mélp’ Méiown} ’

SStarving B2,

{Byy, Bsh} -
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Figure 5.5: The three sub-models of the car lamp production line.
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Input sub-model

BI.]

22 Output sub-model

Figure 5.6: Buffer By and its environment: the input sub-model and the output sub-
model.

The decomposition in sub-models is shown in Figure 5.5.

In the following we will describe the three different models each in more detail.

5.3.1 The States of the Model for Buffer By; and the Input and
- Output Sub-Model

Buffer B, and its environment form the basis of the model for buffer B,;. A picture is
shown in Figure 5.6. For this model for buffer By, we define state sets SB21 gnd RB21 as
follows:

B def Starving B State M. Contents B: Starving Bg, 2 Blocking B: State M.
SH1 = g EPL1 « § L1y § 21 x S g X S E53 « § 2’

RB & 01,2, Noy} x {1,2,...,32}.

As defined, the state set RP2! consists of ordered pairs of numbers of which the first
number corresponds to the contents of the buffer and the second number corresponds to
one of the 32 states of the environment. In Table C.1 in Appendix C we show the one
to one correspondence between the states in set SP2! and the states in set RP21, similar
to the table in Table 3.1. Inside this model for buffer B,; we can again distinguish two
sub-models. As shown in Figure 5.6, we will call these sub-models the input sub-model and
the output sub-model of the model for buffer B;;. Both models do also have a state set
which we will describe in more detail in the next two subsections.
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Figure 5.8: The output sub-model of the model for buffer By ;.

The states of the input sub-model of the model for buffer B,

The input sub-model of the model is a model based on the combination of input buffer
Bi,; and machine M; ;. A picture of this combination is shown in Figure 5.7.

B2,1,in def Starving B, State M,
SP2.1y = S g Ly & 1 L7

REvin & 1193 4).

The one to one relation between states in SP21" and states in RB21" can be found in
Table C.2.
The states of the output sub-model of the model for buffer B,

The output sub-model of the model is a model based on the combination of buffer B,
buffer B; and machine M,. A picture of this combination is shown in Figure 5.8.

SBz,l,out d___Gf SStarving By % SB]ocking B3 % SState Mz’
B t def
RBarowt & 1193 4567 8).
The one to one relation between states in SB212 and states in RB21°% can be found in

Table C.3.

5.3.2 The States of the Model for Buffer B;, and the Input and
Output Sub-Model

Buffer B3 and its environment form the basis of the model for buffer By2. A picture is
shown in Figure 5.9. For this model for buffer B, , we define state sets SP22 and R?22 as
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Output sub-model

Input sub-model

Figure 5.9: Buffer B,, and its environment: the input sub-model and the output sub-

model.
B, M2
Figure 5.10: The input sub-model of the model for buffer B, .
follows:

532,2 déf SStarving Bz SState M2 % SContent.s By « SStarving B21 SBlocking By SS(:aCe Mz’
B def
R522 = {0,1,2,...,N2’2} X {1,2,,32}

As defined, the state set R522 consists of ordered pairs of numbers of which the first number
corresponds to the contents of the buffer and the second number corresponds to one of the
32 states of the environment. In Table C.4 we show the one to one correspondence between
the states in set SP22 and the states in set R522, similar to the table in Table 3.1. Inside
this model for buffer By, we can again distinguish two sub-models. As shown in Figure
5.9, we will call these sub-models the input sub-model and the output sub-model of the
model for buffer Byo. Both models do also have a state set which we will describe in more
detail in the next two subsections.

The states of the input sub-model of the model for buffer B,

The input sub-model of the model is a model based on the combination of input buffer
B, ; and machine M 5. A picture of this combination is shown in Figure 5.10.

By p,n def Starving B State M 2
§B22 2N g B2 o & L2

RB2zin & f1 93 4},
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M, B3

Figure 5.11: The output sub-model of the model for buffer B .

The one to one relation between states in SB2»i0 and states in R5B22® can be found in
Table C.5. ’

The states of the output sub-model of the model for buffer B; >

The output sub-model of the model is a model based on the combination of buffer B, ,
buffer B3 and machine M,. A picture of this combination is shown in Figure 5.11.

By g,0ut  def Starving Bg Blocking B State Mo
&7 = & 852l x S E5 xS )

R Ba,2.0ut déf {1’2,3’4’5,6,7,8}.

The one to one relation between states in §522°% and states in RE22°% can be found in
Table C.6.

5.3.3 The States of the Model for Buffer B; and the Input and
Output Sub-Model

Buffer B; and its environment forms the basis of the model for buffer B;. A picture is
shown in Figure 5.12. For this model for buffer B; we define state sets & and R5: as
follows:

Bz def  oStarving By,o Starving Ba, 2 State Mo Contents B3 Blocking By State M:
S = & J x & g X 8 x 8 x 8 E5 % S 3

RBB (i_e:f {07 1’ 27 .y N3} X {17 2, ieey 32}

As defined, the state set RP? consists of ordered pairs of numbers of which the first number
corresponds to the contents of the buffer and the second number corresponds to one of the
32 states of the environment. In Table C.7 we show the one to one correspondence between
the states in set SB* and the states in set RP2, similar to the table in Table 3.1. Inside this
model for buffer B we can again distinguish two sub-models. As shown in Figure 5.12, we
will call these sub-models the input sub-model and the output sub-model of the model for
buffer B;. Both models do also have a state set which we will describe in more detail in
the next two subsections.
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Figure 5.12: Buffer B; and its environment: the input sub-model and the output sub-
model.

BZ,I

B 2,2

Figure 5.13: The input sub-model of the model for buffer Bj.

The states of the input sub-model of the model for buffer B;

The input sub-model of the model is a model based on the combination of input buffer
B, 5, buffer B> and machine M, 3. A picture of this combination is shown in Figure 5.13.

Bj,in def Starving B2,; Starving Bs 2 State Ms

S = S x 8 X S ,
B3 def

REP = {1,2,3,4,5,6,7,8}.

The one to one relation between states in SB35 and states in RE»™ can be found in Table
C.8.

The states of the output sub-model of the model for buffer B;

The output sub-model of the model is a model based on the combination of buffer B, and
machine M;. A picture of this combination is shown in Figure 5.14.
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M, B,
Figure 5.14: The output sub-model of the model for buffer B;.

Bz,out def Blocking By State Mj

S = 8 xS ,
def

RBeo = {1,2,3,4}.

The one to one relation between states in SPs°" and states in RZ#°" can be found in
Table C.9.

5.3.4 States of the Model for the Overlap Between the Buffer
Models

In Figure 5.5 we can see that the three buffer models overlap. The overlap of the buffer
models consists of the buffers By, Bya, Bs and machine M. For this combination of
machines and buffers, which we will call the overlap from now on, we will make a separate
mode] as well. We distinguish two state sets of the overlap as follows:

def i i i

Soverlap il SStarvmg Ba 1 % SStarvmg Bj 2 % SBlockmg B3 X SState Mrz7
def

Roveler £ £1.2.3,...,15,16}.

The one to one relation between the states in SV and states in R°™?P can be found
in Table C.10.

5.4 The Relations Between the States of the Various
Models

In the previous section we described the state sets of three buffer models each with an input
and an output sub-model. Next to these buffer models with sub-models we also described
the state set of the overlap model. Obviously, the models that we described have strong
relations with each another. The relations between the models are such that the states of
a smaller model or sub-model represent groups of states from bigger models. This means
that the Markov chain for such a bigger model can be reduced by means of a partitioning,
as is described extensively in Chapter 1 Section 1.3, in order to obtain the Markov chain
for the smaller model. Next in this section we will describe in detail the partitionings that
we need for the bigger models in order to reduce them to one of the smaller models.

First we will start with the most obvious partitionings, the partitionings of states in the
big buffer models that correspond with the states of their input and output sub-models.
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5.4.1 The Clusters in R?2! for Reduction to RF2in

For the relation between the states of the model for By ; and the states of the input sub-
model for B,; we define the following partitioning sz i o P(REB2),

By M)

Byy,in  def ( B, M%) o (BTS, M)
P21 = (Ray

( (B3t Migmn)
; R2,1 R2 1

R ),

where

REMD . _ (g b) € RB b € {1,2,..,7,8} },

Rzﬁ?“Mﬁ) = {(a,0) € RP21|b € {9,10,...,15,16} } ,

(BIEMETY {0 € BP9 b e {17,18,...,23,24}},
{ (@) €

R?l
RB2'1 I b € {251267a31132} } .

(Bl 1»Mii1w") _
2,1 -

5.4.2 The Clusters in R?>! for Reduction to RPz1.0ut

For the relation between states of the model for By ; and the states of the output sub-model
for B, we define the following partitioning pB2 DO e P(RBa),

By yout  def (R(B;’s"’t’agbl’M;P) R(B;‘szt‘B;bl,Mzdnwn) (Bﬂst BY! MEPY
2,1

21 = 2,1 y v2,1 L
R -xst Bbl Mdown) R(BSfZ’B;bIJM“P) Rngt B-‘bl Mdown)
2,1 L re
bi up st bl asdown
Rg lzzB "M3T) RzBlzzBa M3 ))’
where (B By M) Boa
RIS (o) € P b e o)),
a;t —1 M own
R2 223 bl ) { (G,, b) € RBZ'I l b e {2’10’18’26} } ?
-5t B M“P
7139; tBblj\,d 2 = { (CL, b) € RBx | b e {3’11’19’27} } ’
e gdown
'R,( 22 ) { (a,b) € RB2 | b € {4,12,20,28} }, (5.8)
st p-bl prup ’
R () € R (b e st}
Rg 22}; 3 BY ) = { (a,b) € RB“ l b€ {6’ 14’ 22’ 30} } ’
MY
R(t122bjs d 2 ) { (a’b) S RBZJ | b € {7’ 15’23’31} } ’
RZB B M3 ) — { (a, b) c RBz,l I b [ {8, 16, 24, 32} }

5.4.3 The Clusters in R?22 for Reduction to RB:»in

For the relation between the states of the model for B22 and the states of the input sub-
model for B,, we define the following partitioning o5 5 Ja2in ¢ P(RB22),

B;\szt Mdown
2,2

By z.in  def (,R (Brs M5) ,R(Bl 2 M%) R R(B” M)

P22

),
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where

R2 SraMis) {(a,0) € RB2|b € {1,2,..,7,8} },
R“Z’ = {(a,b) € RP2 |b ¢ {9,10,...,15,16}}, 59
RGAMED = f () € RPe (b € {17,18,..,23,24} } ,
down
R‘B”M“ ' = {(a,b) € RBa2|b € {25,26,..,31,32) } .

5.4.4 The Clusters in RP>2 for Reduction to RB22out

For the relation between the states of the model for B, and the states of the output
sub-model for B, » we define the following partitioning sz 2out ¢ p(RE22).

—~st B;bl M;P) (Bﬂst B;bl Mdown (B—vs Bbl M“P)

5;’2)0ut def (R Rzz R22 -
R B"“ Bbl Mdown) Rgi;fl’B;M’M;p) R2 21,B§“,M;°w"),
RgB;pBb‘ M) BB BEME)
where
B BePLMP) By
RZ = {(a,b) € RP22|b € {1,9,17,25} },
—|st =bl down
RZ“B ,Mgovn) {(a,b) € RP22 |b € {2,10,18,26} } ,
R(B—-st Bbl MUP) _ By
22 = {(a,b) € RP2|b € {3,11,19,27} },
R(stlt’Bbl Mdown) _ Bas
= {(a,b) € RP2|b € {4,12,20,28} } , (5.10)
st —bl .
R(B;vBs M= () € RPe b ¢ {5,13,21,20} }
st —bl down
REFPFTMET L a,b) € RB | b € {6,14,22,30} }
(321BMM;p) B
72 {(a,b) € RP2|b € {7,15,23,31} },
st bl down
Rog M o ab) € RP2 (b e {8,16,24,32) ).

5.4.5 The Clusters in R5: for Reduction to RBsi

For the relation between the states of the model for B; and the states of the input sub-
model for By we define the following partitioning o5 3 23" € P(REBs).

st B—»st Mup) (B;slt,B.:,'szt,Mg"w") (B;,githger;p)
5

R3 ’ ' 7R3

(B2 B3 M3 1 (Bshy,B73 M;®)

Bz,in def (B3
3 = (Rg™
BSY . Byy M5

172,
R Ry RS -
(B3t B M3®) 1 (B Bgty MEo™)
Ry RYE ),
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where e ot rrup
(BZTBz3 M;")

R = {(a,0) € R®|b € {1,2,3,4} },
( B;,slt , B;‘:zzt' Mélown) Bs
Rs {(a,b) € RP|b € {5,6,7,8}},
—st st up
R Pha M {(ab) € R5 |b € {9,10,11,12} },
st st down
RPETPEMT _ r () € RP | b € {13,14,15,16} }, (5.11)
st st up -
RS ) € RE b e {17,18,19,20} },
5t —8t down
RPECEEEMET (g b) € RBe | b € {21,22,23,24} },
st st up
RIEEEEMT) g p) € RBs | b e {25,26,27,28) },
(Bsty By, M3¥™) Ba
Ry = {(a,b) € R |b e {29,30,31,32} }.

5.4.6 The Clusters in R5® for Reduction to RPsout

For the relation between the states of the model for B; and the states of the output
sub-model for Bs we define the following partitioning pg 3ot € P(RBs).

Baout def (BYY,MyP) o (B7P M§™™™) 1o (B M) o (BY, Mgon)
P3 = (Rs R R R )

b
where

REMT) (a4 b) € RP b € {1,5,9,13,17,21,25,29} } ,

REIMET - (a,b) € RE | b € {2,6,10,14,18,22,26,30} } (5.12)

(BY'. My®) B
RS = {(ab) € RE:|b € {3,7,11,15,19,23,27,31} } ,
bl down
REEMT = [ (ab) € RB | b € {4,8,12,16,20,24,28,32} } .

The next partitionings are more difficult and more important. These partitionings reduce
the states of the three buffer models in clusters that correspond to the states of the model
for the overlap.

5.4.7 The Clusters in RP2! for Reduction to Rerlp

For the relation between the states of the model for B;; and the states of the overlap
model we define the following partitioning pgff“ap € P(RP21).
pg:lfrlap def (Rgiﬁc’B;’;t'B;bl’M;P)j 'R; ’B;zsl':,B;Et’B;bl,MgOWn),
(B;‘slt’B—vst Bé’l,M;p) (B;’sl",B;;t,Bé’l,Mg"w“)

2,20 5
"'R2,1 y R2’1 P

(B;’st’B;tz B;bl,M;p) B—'St,Bng ,B;H,M;’(’wn)

1:52,2: (B3]
-c.R211 3 R2,1 EICREY

(B73,Bytp. B . M;") B3 Bg,, BY Miow)
1 :

(
Ry , Ryt
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where
R(BZ 1 ’B;;’BSM’M"‘ )
R(B;;v B; zt B;” Mllnwn)

Ry
'R(B2 " 732 . B"‘ M(l owny
2,1

R(Bz T B, B MyT)

53B7E B MY

R(Bz T, B3t, By L MEO)

R(Blz YB3, By M3P)
R(Bz YB3 L By Mgy
R(Bz 1B By MyP)
Rng 1835 By MET™)

R(Bz 18375 By MP)
R(Bz 1’32—.;:3»1 Mown)

(32 11834, B3 MyP)
R(Bz 1152 ', BTV ME")
’R(B’ 18542, B3 0M3")

R(& 11 BSta, BY M)

(B5,B7% . B3P, My*)

y

(Bt .Byy, By Mzove)

, Ros

B;tl ,B_'St ,BH,M;p) B;‘?; Bgl 'Mzduwn)

( 2,2 73 Bg, )
...RQ‘]. ] Rz‘l ! PR

t pst pgobl pup -
(B3t B3ty B3 ™, M) £ B3ty By Mgowm)

Wi , Ry

R(B2 1»Bsty, BSL, M;P) Bt BE, Mgown) )
1

R(Bg 11

{(a,b) eR®21 | (a>0Ab€ {1,9,17,25}) V(e =0Ab=1)},
{(a,b) e RP21 | (a>0Ab € {2,10,18,26}) V(a=0Ab=2)},
{(a,b) e RB22 | (a>0ADb€ {3,11,19,27T) V(@ =0Ab=3)},
{(a,b) e RB22 | (a>0Ab € {4,12,20,28}) V(a=0Ab=4)},
{(a,b) e RP21 | (a>0Ab € {513,21,20}) (a=0Ab=5)},
{(a,b) e RP2: | (a > 0D € {6,14,22,30}) V(e =0Ab=6)} ,
{(a,b) e RB21 | (a > 0Ab € {7,15,23,31}) Ve =0AD =T},
{(a,b) e RP21 | (a>0/A\b€ {816,24,32})\V@a=0Ab =8)} ,
{(a,b) e RB21 | a=0Abe€ {9,17,25}},
{ (a,b) € RB21 | a =0 A b€ {10,18,26}},
{{a,b) e RP21 | a =0Abe {11,19,27}},
{(a,b) e RB23 | a =0 A b€ {12,20,28}},
{(a,b) e RB21 | o = O A\ b€ {13,21,29}},
{ (a,b) € RB21 | a =0\ b € {14,22,30}},

b)

b) €

(5.13)

{ (a,b) e RB22 o =0 Ab e {15,23,31}},
{(a,b) e RP21 | a = O\ b€ {16,24,32}} .
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5.4.8 The Clusters in R%2? for Reduction to RoP

For the relation between the states of the model for B,, and the states of the overlap
model we define the following partitioning 9 gverlap ¢ p(RB22),

- —bl up —st pg-st p-bl -down

overlap  def (B75',B3y, By M) (B7Y B35 B3 Mgo"?)
o (RS . Rad
‘ —st p-s Bé’ ’Mup) 32 slt,,B;szt’Bbl Mdown)

21’ 2,2
RZ b RZ 3o

(B; st B;tz,B“bl Mup) B;ait Batszz lMclown)

2
LR Ry

,
BB (0 )

RSP BT

| (B3t By BEP M;T) o (B3 B By M)

,2>73
wRaz » Rao .
R 2 I,BE';,B M;P) Bst. Bost Bbl Mdown)

, RZ B31:B2e -
R(Bzprgfz’BEblvM;p) R(Bz 1B, By®L Mgovn)
ae ) 2'2

5 B8t B )

. Ros )

PR

R(B;l ’B§t2’BM M;P)

where

| RETLE BT (g ) e RB22 | (a> OAb € {1,9,17,25) V(e =0Ab=1)},
‘ R(B“*B?"Z"B""'M“’w"’ = {(a,b) € R [ (a>0AbE {2,10,18,26)) V(a=0Ab=2)},

R‘B“' BB (a,8) e RBa2 | (a> OADE {3,11,19,27) V(a = 0Ab=3)} ,
i R(B“tB"’ BEMET)  C(ah) € RP2 | (a > OADE {4,12,20,281) V(a = OAD = 4)} ,

Sbi up
R‘B“’B“’Ba M (a,b) e RP22 [a=0\b e {9,17,25)} ,
(B 32 2,B;Il M(Iown)

Rog” 07 "% = {(ab) Rz [a=0AbE{10,18,26}},
R(le ,Bg" 2:}‘33 j:[w ) = { (a,b) = RB2.2 , a= 0/\b e {11'19727}},
'R(zE;zl,B 2BEME {0 b) e RP2 [ a = O\ b € {12,20,28)) ,.

ot g g (5.14)
RyFBEETM o () e P23 | (a > 0Ab € {5,13,21,29) V(@ = O\ b=5)} ,

-y bl down

BEBTOME™ [ (a,b) € RP22 | (a> OAb € {6,14,22,30}) V(@ =0 A b =6)}

«-R'(leY =
= {(a,b) € RP22 | (a>0Ab€{7,15,23,31) V(@a=0Ab=7)},

R(Bz B3, By MZP)

(B;a B33 B M) 5

RS = {(a,b)eRP | (a>0Abe (816,24,32)) Via=0Ab=28)},
R(B’ pBE BT o ) e RBro |a= 0 Ab € {13,21,29}}

R(B“ B BMEY g b) e RBa2 | a=0Ab e {14,22,30}) ,
R‘32 0B B3 M) { (a,b) e RB22 [a =0 Abe {15,23,31}}

bl down
R(% pBERBSLMET f(a,b) € RB22 | a = OAb € {16,24,32}} .
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5.4.9 The Clusters in R? for Reduction to Roverlap

For the relation between the states of the model for B; and the states of the overlap model
we define the following partitioning p3'™*® € P(R5s).

P3

where
(BZ3 B33 By M)
(33;3‘ ,B;»; ,B;M Moy
RUBET B BY M)
RUBET R B g
(B3Y' B35, B3 M37)
R{BEE Bl B M)
R{PE Bz B AG)
(B2 BYa BS M)

3
R (B BT BT M7
3

R{PEa BB ML)

RUPE BB M)
RUESn BB M)
AP B BT )
(BS'1,B552,B5" , M3~™™)
R{BE BB M)
BB B M)

overlap def R(Bz"j‘>32"5‘,3§b':Mz“p) R(B;,?,B;,?,BEWM;'W“)
- ( 3 ) 3

RS RS

S
(B7%t.By%, BEL M}'P) (B35, B8, BY Mgowm)

(B3 BEo By MyT) o, (BrSB B M)
? 3 y e

. -R3
T3BEBEMST) o (B3 Bgh, BY o)

"RY , R

t —st p-—bl up st —st -bl down
(B3t Bys, By MyT) 51,825,857 MFovR)

R , R .

R(Bgtl ’B;Et ,B?‘,M;p) st Bzfzt’Blsal’Méiawn)
.oe 3

(82 1y
) Rs PR
(B B3y B3ULMLP) o (Bghy By B, Miewm)

RS . Ry

(BSfl ,B;fz,Bgl,M;p) st pst B:I;I,Mgown)

(BZ 1:72,2>
Ry Ry

{(a,b) e R (a < N3 Ab € {1,2,3,4)V(e=Ns Ab=1)},
{(a,b) e R®*| (a < N3 \b € {5,6,7,8}) V(a = Ns Ab=5)},
{(a,b) € RBs| a = N3 Ab e {2,3,4}},

{(a,b) e RBs| a = N3 \b € {6,7,8}},

{(a,b) € RP3| (a < Ny Ab € {9,10,11,12}) \V(a = N3 A b = 9)},
{(a,b) € RP| (a < N3 \b € {13,14,15,16}) V(a = N3 A b= 13)},
{(a,b) € R®3| a = N3 Ab € {10,11,12}},

{(a,b) € RB2| a = N3 A b € {14,15,16}},

{(a,b) € RP2| (a < N3 A b€ {17,18,19,20}) V(e = N3 A b =17)},
{(a,b) € RP2| (a < N3 \ b € {21,22,23,24}) VV(a = Ns A b = 21)},
{(a,b) € RP2| a = N3 \ b € {18,19,20}},

{{a,b) e RB3| a = N3 A b € {22,23,24}},

{(a,b) € R5[ (a < N3 A\ b € {25,26,27,28}) V(a = Ns A b = 25)},
{(a,b) € R%s| (a < N3 A b € {29,30,31,32}) \(a = Ns A b = 29)},
{(a,6) € RB2| a = N3 A b € {26,27,28}},

{(a,b) € RB2| o = N3 A b € {30,31,32}}.

(5.15)
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Next we have the more straightforward relations between clusters of states of the overlap
and the states of the two output sub-models for buffers By; and Bzs and the relation
between the clusters of states of the overlap and the states of the input sub-model for

buffer Bj.

5.4.10 The Clusters in R°2P for Reduction to RBz1.0ut

For the relation between the states of the overlap model and the states of the output

sub-model for By; we define the following partitioning

By,iout  def R(Bi;‘,B;bl‘M;P) R(B;’S;,B;bl,Mzdown) (B;,szt'B:l;l’M;p)
overlap - ( overlap overlap » "Voverlap P
B—‘“,Bbl,Mdcw" Bst ,B_'b],M“p) Bst ’B-bl
R 2,273 M2 RT22 3 2 2,2:53
<+ Noverlap » "Voverlap » "overlap
R(Bifz»B}éﬂsM;P) (Bstp, By Msow™)
«++ overla, » "Voverlap
lap 1
where
<B;SZt'B;bI'M;p) overlaj
, P
Roverlap { a € R la‘ € {1)9} } ’
(B;SZt’B;bl’Mgawn) overlap
7zoverla.p { a € R I a € {27 10} } *
(Bisﬁt 'Bl‘i’l’M ;P) overlap
Roverlal J { a €R | a € {3’11} } )
(B;s;!Ba WM™ overlaj
7aoverlap { a € R P l a € {4’ 12} } b
(Bgtz )B;bx’M;p) overlap
Roverla.p { a € R | a < {5, 13} } ,
(Bng‘B;H’Mgown) overlap
Roverlap { a € R | a € {6: 14} } )
(B;tz’Bgl'M’rp) overlap
Roverlap { a € R l a € {7? 15} } ’
(BitZ'Bé’l’Mgown) overlap .
Rover]ap { a € R | a € {87 16} }

5.4.11 The Clusters in R for Reduction to RBzz0ut

By 1,0ut
12 overlap

I= P (Roverlap) .

,M2d°w“)

(5.16)

For the relation between the states of the overlap model and the states of the output

sub-model for B, we define the following partitioning

By%t, By MyP)

Ba 2,0ut d:ef (R( 2,17

overlap overlap » “Voverlap » “Voverlap LN
R(B;,slt ,Bgl)Mzdown) (B;fl ,B;bl,M;p) R(B;tl 7B;bl)]\,!;lnwn)
-+ Noverlap » "overlap » “Yoverlap
R(B§f1:B§I»M;p) R(Biané".Mzdw“)
++-"overlap » "Voverlap

(B;j‘,B;b‘,Mg“’“’")
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where
(B3, By, M;P)

Roverion = {a € R [q ¢ {1,5}},
dﬁf“wt’={aenmm\aewﬁH,

ol g L0 R la € {48 ] (5.17)
Riff;f;fs MY o e R g € {9,13) },
R%fﬁmm)Z{aEWMWME{MMH,

7355&;‘;53 MO (e RO 4 e {11,15) ),

REELEDMET) () e R |4 € {12,16) ).

5.4.12 The Clusters in R°!# for Reduction to R5+"

For the relation between the states of the overlap model and the states of the input sub-
model for B; we define the following partitioning p23™% e P(Roverlep),

overlap

(B;,slc ,BZ’;,M;P) (BZ slt ’B—wst Mdown) (B; lt’32t2 ,M;P)

Bsin def
poverlap - (Roverlap 7Roverlap overlap [
R(Biﬁt:ggfz,M§°w“) (BéprZ?:M;p R(Bz 1,825 M)
-+ "overlap s "Voverlap overlap LA
(B;fl 'B;fva;P) (BsfllB:s’fz:Mgown)
. 'Roverlap ) Roverlap ’
where
(B;?,B;szt’M;% overla,
,R‘ovt:r]ap 4 = { a € R P I a € {173} } )
’R,(stl :Bzva o) _ { c Roverlap l € {2 4} }
overlapt up = a a 3 B
(By¥, B3l My®) overla)
, , —_ P
Roveérlapt 4 - { a € R | a < {5, 7} } R
(B;sl B3, 2:M5°"") overla,
Rugigg = ) = {a € R™™ a0 € {6,3)}, 65.18)
B31:B3% vMu overlaj ’
Roverlap “ = {a € R P l a € {9311} } 3
(B ,B ’M own)
,R'ovezrllapzz : = { a € Reverlep l a € {10, 12} } R
(B5%1, B3, M;")
7?’ovezrllap 2 a ? = { e & Roverlap | a < {137 15} } )
(B3, Bslg, M5™™™)
RUEBLBEMETD _ rg ¢ R g e {14,16) }.

5.5 Construction of the Markov Chains for the Three
Buffer Models

In this section we will describe how we construct the Markov chains for the three buffer
models. The construction of each of the Markov chain models for a buffer is based on the
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) assumption that both the process corresponding to the input sub-model and the process

‘ corresponding to the output sub-model are independent Markov processes. Next we will
describe the construction of each of the three buffer models: the model for buffer B, ;, the

model for buffer By, and the model for buffer Bs.

5.5.1 Construction of the Markov Chain of the Model for Buffer
By

First we define five diagonal matrices of size 32, denoted by A%, A3, A%' A%' and AR
each as a function of two scalars py1,p2 € [0,1] with ¢1; =1 —p1; and go =1 —p; as

| follows:
2,1 def .
Ay (pr,p2) = diagla,, @001, 0,1,911,0,,¢,1, 1,1,151L,1L,1L,1,1,.
1.1 1,1 ,1, ,1,1, 1,1,LL1,1,1,1),
def .
ABpi1,p2) € diag(pr1,p11,P11,P11,P11,P1,1,P11,P11,  0,0,0,0,0,0,0,0,

..0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 0,0,0,0,0,0,0,0 ),

Aél(pl,laPQ) déf diag(PMl,l:O,O,O,O:O’OaO, p27070’0701010a07"'
“'p270,0a0,07070307 p270a0,01070:010 ), (5 19)

4
AR p1a,p2) =

diag(p11p2 + q1,192, 1,1, 41,1, 91,1, @11, 41,1, 41,1, 41,1, 2, 1,1, L5, 1,11,
g2 ;1 71 11 71 71 al 71 3 q271111171a1)171)7

def .
A%’I(pljlaPZ) ; dlag(Pl,lQ27P1.l7P1,17101,1ypl,l,pl,lypl,lypl,la 0)0707();0:030:0;'"
0,0 ,0 ,0 ,0 ,0,0,0 , 0,0,0,0,0,0,0,0).

Suppose that the Markov transition matrix of the input sub-model for buffer B, ; is equal
to the 4 x 4 stochastic matrix X. Suppose that the Markov transition matrix of the output
sub-model for buffer By, is equal to the 8 x 8 stochastic matrix ¥. Suppose also that
machine M 1, in case it is up and buffer By is not starved, puts x product parts per time
slot in buffer By ;. Suppose that machine My, in case it is up and buffer By is not starved
and buffer Bj; is not blocked, takes y product parts per time slot from buffer B, ;. Under
these circumstances, and under the assumption that the input and output sub-processes
are totally independent, the Markov transition matrix P22 of the model for buffer By,
as a function of z, ¥, X and Y can be formulated as follows:
PBLI (xv:%X: Y) déf
A;{i(z,y) A?;i(m,y) o
A (z,y) AP (z,y) Ag(zy 5.20
v s xov] | 45" e | 6

A (z,y) ABNzy) + AR (z,y)
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5.5.2 - Construction of the Markov Chain of the Model for Buffer
By

bl

First we define five diagonal matrices of size 32, denoted by Aff, A%z, Aé’z A%z and Ai{z,
each as a function of two scalars pyo,ps € [0,1] with 10 =1 ~pj2 and ¢; = 1 — p, as
follows:

AP (pra.p2) = diaglai2, 01262 @12, 12, 12, G2, qr2e 1,1,1,1,1,1,11,

1,1 .1 1,0 ,1 1,1, 1,1,1L,1L,L,1L,1,1),

def .

A%’2(P1,27P2) ze dla'g(pl,2>p1,2)p1,27p1,27p1,27p1,27p1,27pl,?a 0a0>07070705070a---

..0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 0,0,0,0,0,0,00),
A2,2 def .
C(p1,27p2) = dla'g(pqu,?v0a01070’030707 p2?0707070707010)"'

'“p2>0’030707030707 p2705070701070,0)7 (521)

2,2 def
A (pro,p2) =

diag(l’l,zpz+41,2CI27QI,27(11,2a41,2,%,2:‘11,2;(11,2,‘11,27 42, 11171)111)1117'"
g2 ’1 71 71 71 71 71 1 ) q21171’1>1715171)7

def .
A%Z(pl,27p2) ; dlag(p1,2q2apl,27pl,z,pl,z»p1,21p1,27p1,21pl,z: 070507070,0,0)07"'
.. ,0 ,6 ,0 ,0,0 ,0,0 , 0000,0,0,0,0).

Suppose that the Markov transition matrix of the input sub-model for buffer B, is equal
to the 4 x 4 stochastic matrix X. Suppose that the Markov transition matrix of the output
sub-model for buffer By, is equal to the 8 x 8 stochastic matrix- Y. Suppose also that
machine M 5, in case it is up and buffer B; , is not starved, puts z product parts per time
slot in buffer By 2. Suppose that machine My, in case it is up and buffer B, , is not starved
and buffer By is not blocked, takes y product parts per time slot from buffer By . Under
these circumstances, and under the assumption that the input and output sub-processes
are totally independent, the Markov transition matrix P522 of the model for buffer By
as a function of z, y, X and Y can be formulated as follows:

PPa(z,y,XY) ¥

AP (@,y) AR (z,y)

A (zy) AR (z,y) A (zy) 5.22
oxoy]| W e ew ] em

AZ(zy) AF(z,y) + A% (2,y)
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5.5.3 Construction of the Markov Chain of the Model for Buffer
B;

First we define five diagonal matrices of size 32, denoted by A%, A}, AL A}, and A}, each
as a function of two scalars ps, ps € [0,1] with g3 =1 — p; and g3 = 1 — p3 as follows:

A?Q(pZaPS) q; diag(q2:q21q27q2: l,lalyla 1a1,1711 lalalala"'
.1,1,1,1, L,1,1,1, 1,1,1,1, 1,1,1,1),

def .
AsB(P27P3) = dlag(pZaP27P2:P2a 0)07();0: 0,0,0,0, 0:0>070}"'
..0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0),

A%(P%PS) déf diag(p?}q%oaﬂaow p3»01070a p3>0)0101 p3a070701 (523)
"'p3v0a010a PS,O,O,O, PS:O’O,O; P3,O:D, 0)7
A%(P2’P3) = diag(PzPs"’QMB»Q%Q%QZ, q37lalalx 113,1,1,17 113,1,1=1,-~
---q3 1,11 q3a171a17 q3717171’ Q3,1a1)1)7

f .
AF}:(?%PB) dé dlag(P?‘B»P%PZ:pZ’ 0305070~ 070’0307 01070707'-'
...0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0).

Suppose that the Markov transition matrix of the input sub-model for buffer By is equal
to the 8 x 8 stochastic matrix X. Suppose that the Markov transition matrix of the
output sub-model for buffer B; is equal to the 4 x 4 stochastic matrix Y. Suppose also
that machine Ms, in case it is up and both buffers By; and B;, are not starved, puts
z product parts per time slot in buffer B;. Suppose that machine Ms, in case it is up
and buffer B, is not blocked, takes y product parts per time slot from buffer B;. Under
these circumstances, and under the assumption that the input and output sub-processes
are totally independent, the Markov transition matrix PZ# of the model for buffer B; as a
function of z, y, X and Y can be formulated as follows:

PB(z,y,x,Y) ¥

Ah(zy) Ad(@y)

3 3 3 ’
Iy, X® V] Ag(z,y) Aul(‘x,y) Ag(z,y) ' . (5.24)

A(z,y) Ad(z,y) + ALz, y)

5.6 Linkage of the Three Buffer Models

In this section we describe the relations between the three buffer models for buffers By,
Bs and Bs. The relations between the three buffer models can be divided into two kinds:
long term relations and short term relations. The long term relations describe the long
term phenomena such as blocking and starvation of buffers and breakdown and repair of
machines. The short term relations describe the short term phenomena such as machine
speed, scrapping, short term blocking and short term starvation. Next we will describe the
long and short term relations between the three buffer models separately.
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5.6.1 The Long Term Relations Between the Three Buffer Mod-
els

The most natural restriction to make for the linkage of the three buffer models is the
restriction that reduction of the Markov chains of each of the three buffer models to a
Markov chain for the overlap model results in models for the overlap that are equal. In
terms of equations, if we denote the transition matrix of the Markov chain of the overlap
by P°¢%P we can formulate that as follows:

1 B2 HB2,2
peoveriap — Ppoverlap =P overla.p P overlap (5~25)
2,1

This restriction should also be consistent with the construction of the Markov chains for
buffers B, ;, Bz2 and B; by means of the input and output sub-models. If we denote the
Markov transition matrices corresponding to the input and output sub-models for buffers
By1, By and B3 by PBavin pBaiout pBasin pBigout apgq pBain PBS""Jt then we can

formulate that as follows:
pPBa PB2,1(:L-2 LY l,PBz,l,in’ J:)Bz,I,out)7
Pszz — PBz,z ($2,2’ y2‘2, PBz,z,in’ PBZ,Q,out)’ (526)

— B )i Bs,out
PBS - P3($37y3aPBSmJP30u)7

where @21, 3,2, 73 stand for the numbers of parts per time slot that enter, and y21, y2.2, ¥3
stand for the numbers of parts per time slot that leave the buffers By 1, B, 5, Bj respectively.
The last parameters adjust for instance for the different speeds and the scrapping of the
separate machines. We will return to the subject of fine-tuning the model with these
parameters in the next subsection on short term relations.

Next to these restrictions we have the restriction that the Markov chain model for the
overlap can be reduced in three ways. Each way corresponds with one of the following
Markov chains: the Markov chain of the output sub-model for buffer B, ,, the Markov
chain of the output sub-model for buffer B, ; or the Markov chain of the input sub-model
for buffer Bs:

PBZ,I,OM — Poverlap

By 1,0ut>
P overlap

Bzz2,0ut _ Hoverlap
P - PBZ;;_,out: (527)

poverlap

Bizin __  poverlap
pEem = PRULE.
overlap

155



5.6.2 The Short Term Relations Between the Three Buffer Mod-

els

In this subsection we discuss the short term relations between the three buffer models,
which means that we focus on situations in which machines are up and buffers are not
long term starved or blocked. For the description of the short term relations we need the
stationary distributions of the three buffer models for buffers By;, By and Bs which we
will denote by 7821, 7822 and 7B respectively. Therefore, by definition, the following
relations hold:

Bsy - Bai _ B

PBa1 pBar = gBi,

PPz gBrz = gBe2 (5.28)
PBs B = gBs,

By means of these stationary distributions we can derive the short term starvation and short
term blocking probabilities. Here we will focus on three of these probabilities: the short
term starvation probability of buffer B, ;, the short term starvation probability of buffer
B, 5 and the short term blocking probability of buffer Bs. These probabilities, as a function
of the corresponding transition matrix, will be denoted by U5>!(PB21), ¥2*?(pB22) and
\1133 (g3, PP3). For the definitions of these probabilities we will use the following subsets
that restrict the system to short term situations in which machines are up and buffers are

not long term starved or long term blocked:
—st p-st bl up
RyFEEEETMT) _ (0 1) € RP2 | (a > 0AbE {1,9,17,251)V(a=0Ab = 1)},

- - — u
(B73 B3B3, M}7)

Ry ={(e,0) e RP22 | (a>0Ab€{1,9,17,25}) Va=0Ab=1)},

—st p-st p-bl up
Rng,x BREByYMyT) _ {(a,b) € RB | (a < NsAb€{1,2,3,4})V(a=NsAb=1)} .
These subsets are equal to the subsets that we have used in Expressions (5.13), (5.14) and
(5.15). The definitions are as follows:

Bs,1

B2 pByyy  def s
L (P ) - 7rB2’1 )
320+b
(BoSt,Bost Bobl Py
(a,b)ER. 2,172,273 M2
DIER, |
B B def B2
2,2 del
\I,st (P 2'2) - 1 Bag
T326+b (5.29)
S 0 K
y 2,2
Bj
Bs Bgy def 33 * T39Ns 41
r (g3, P72) = B
T32a+b

(B7st,Bost, Bobl ArUPy
(ab)eRr, 21 22T
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By means of these short term starvation and blocking probabilities U221, ¥222 4nq Ui

we can more easily formulate the short term relatlons that we will use between the three
buffer models:

o1 = pa-(1—e1n),
T35 = pro-(1—cig),
Ys = pP3,
Yor = po- (1 . 22 2) (1 _ \IfB ) ’ (5.30)
Yoo = p2-(1—Tg™M)-(1-Tf),

23 = pp-(1—c) (1- B“) (1— g2

(Note that for convenience of notation here we have omitted the arguments of the functions
T2t (PBa), WEP2(PB22) and WE? (g5, PP3).)
We translate the equations in Expression (5.30) as follows:

e The number of product parts per time slot that enter buffer By; (z2;) equals the
number of manipulated product parts by machine M, per time slot (p; ;) times the
fraction of product parts that remains after testing and scrapping (1 —¢; ;).

e The number of product parts per time slot that enter buffer By (z24) equals the
number of manipulated product parts by machine My,; per time slot (p; 5) times the
fraction of product parts that remains after testing and scrapping (1 — C1,2)-

e The number of product parts per time slot that leave buffer By (y3) is simply deter-
mined by the speed (p3) of machine M.

e A product part leaves buffer B, with the speed of machine M, (p;). This speed
(y2,1) however is corrected and multiplied by the fraction of time that buffer By, is
not short term starved (1 — ¥52?) and multiplied by the fraction of time that buffer
By is not short term blocked (1 — ).

e A product part leaves buffer By, with the speed of machine M, (p;). This speed
(y2,2) however is corrected and multiplied by the fraction of time that buffer By, is
not short term starved (1 — g2 ) and multiplied by the fraction of time that buffer
Bj is not short term blocked (1 — Uds).

e The number of product parts per time slot that enter buffer B; (z3) equals the
number of manipulated product parts by machine M, per time slot (p;) times the
fraction of product parts that remains after testing and scrapping (1 — ¢;). This
number however should also be corrected and multiplied by the fraction of time that
buffer B,; is not short term starved (1 — ¥5*') and multiplied by the fraction of

time that buffer B, is not short term starved (1 — ¥5*?).
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5.7 The Average Input and Output Rates in the Three
Buffer Models

In order to determine the average production rate of the car lamp production line it is
important to have insight in how the average input and output of each buffer can be
computed by means of the corresponding buffer model.

Note for the determination of the average input and output rates that, for each of the three

‘ buffer models, there are states with a conflict. The model for buffer B2 has conflict states
(0,1) € RB21 and (Nyj,1) € RP21. The model for buffer B, has conflict states (0,1) €
RE22 and (Ny3,1) € RP22. The model for buffer Bs has conflict states (0,1) € REs and
(N3, 1) € R%s. In each of these conflict states the order in which the up- and downstream
machines operate determines the next state in the buffer model. In these conflict situations
we will assume that the downstream machine always tries to take a product part before
the upstream machine tries to put one.

5.7.1 The Average Input and Output Rate of Buffer B;;

Input in buffer By can only occur in one of the following two cases:

1. Buffer By contains less than Ny, product parts, buffer By is not starved, machine
M ; is up and produces a (non-scrapped) product part.

2. Buffer By contains exactly No; product parts, buffer By is not starved, machine
M 1 is up and produces a (non-scrapped) product part and buffer By is not starved,
buffer Bs is not blocked, machine 3> is up and takes a product part.

The probability that the first case occurs can be formulated as follows:

Pr(case 1) = x2, * ( > n;’;i;;b), (5.31)
(a,b) € RB2»
a< Ng,l
b<9

the probability that second case occurs can be formulated as follows:
B
Pr(case 2) = a1 - Taony 41 * Y2,1s (5.32)
where 782 is the stationary distribution vector such that:

pBer . pB1 — B2
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In total, using the same distribution vector 7521, we can now define the average input rate
of the model for buffer B, ; as follows as the sum of both cases:

RYPM (221,401, PP2) ¥ 1y - (1 -wﬁ“jv‘ml + > Toiks)- (5.33)
(a,b) € REB21
a< N2,1
b<9

Output from buffer B, ; can only occur in the following case:

1. Buffer By ; contains at least one product part, buffer B, is not starved, buffer Bj is
not blocked, machine A, is up and takes a product part.

If we translate this in a formula we obtain:
def B
RSP (g, PR21) > T35045)s (5.34)
(a,b) € RP2
a>0
b€ {1,9,17,25}
where again 7521 is the stationary distribution vector such that:

P58 . 7rBz,1 — 71.32,1.

For the stationary distribution of a buffer model we always have the conservation of flow
property, which means that:

RiZI?Ut(l?,hyll) PBz’l) = Rgflltpm(yz,l»PBz‘lf (5.35)

5.7.2 The Average Input and Output Rate of Buffer B,;
Input in buffer By 5 can only occur in one of the following two cases:

1. Buffer B, contains less than N, 5 product parts, buffer B, is not starved, machine
M, 5 is up and produces a (non-scrapped) product part.

2. Buffer B;; contains exactly N, product parts, buffer B 5 is not starved, machine
M, 5 is up and produces a (non-scrapped) product part and buffer Bs 1 is not starved,
buffer By is not blocked, machine M, is up and takes a product part.

The probability that the first case occurs can be formulated as follows:
Pr(case 1) =z - ( > T2, (5.36)
(a,b) € RB22

a<N2,2
b<9
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the probability that second case occurs can be formulated as follows:
Pr(case 2) = z22 - wﬁzj\gw Y22, (5.37)

where wB22 is the stationary distribution vector such that:

PBz,z . 71_Bz,z — ﬂ,Bz,z.

In total, using the same distribution vector 7822 we can now define the average input rate
of the model for buffer B, as follows as the sum of both cases:

REE™ (222,422, PP?) £ 1ap- (127 st + > Tomns).  (5.38)
(a,b) € RP22
a< NZ’Q
b<9

Output from buffer By > can only occur in the following case:

1. Buffer By, contains at least one product part, buffer By > is not starved, buffer Bj is
not blocked, machine M, is up and takes a product part.

If we translate this in a formula we obtain:

RSP (g, PP22) & 4y ( > Trmls), (5.39)

(a,b) € RB22
a>0
be{1,9,17,25}

where again 7522 is the stationary distribution vector such that:

PBz,z . 7.‘.32,2 — ,R.Bz,z.

For the stationary distribution of a buffer model we always have the conservation of flow
property, which means that:

Ry (22,2, Y22, PP2?) = RSS™" (12,2, PP22). (5.40)

5.7.3 The Average Input and Output Rate of Buffer Bj

Input in buffer B; can only occur in one of the following two cases:

1. Buffer B; contains less than N3 product parts, both buffers B, and B, are not
starved, machine M, is up and produces a (non-scrapped) product part.
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2. Buffer B; contains exactly N3 product parts, both buffers By, and By, are not
starved, machine M; is up and produces a (non-scrapped) product part and buffer
By is not blocked, machine M3 is up and takes a product part.

The probability that the first case occurs can be formulated as follows:

Pr(case 1) = z3 - ( > Tageb)s (5.41)
(a,b) € RB:
a < Nj
b<b

the probability that second case occurs can be formulated as follows:
IPr(case 2) = T3 - Taghy 41 * Uss (5.42)
where 7% is the stationary distribution vector such that:
PBs . pBs = gBs

In total, using the same distribution vector 782, we can now define the average input rate
of the model for buffer Bs as follows as the sum of both cases:

R (23,45, P%) 25+ (s T + > T ts)- (5.43)
(a,b) € RP:
a < N3
b<5

Output from buffer By can only occur in the following case:

1. Buffer B; contains at least one product part, buffer By is not blocked, machine M;
is up and takes a product part.

If we translate this in a formula we obtain:
R (g3, PP) - ( )y Toas)  (5.44)
(a,b) € RBs
a>0
be{1,5,9,13,17,21,25,29}
where again 752 is the stationary distribution vector such that:
PBs . gBs = B3

For the stationary distribution of a buffer model we always have the conservation of flow
property, which means that:

RY™ (x5, y3, P%) = R (ya, P). (5.45)
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5.8 The Algorithm that Searches for Parameters that
Meet the Restrictions

In order to find the parameters that satisfy the restrictions as much as possible we developed
an algorithm that we will describe in this subsection. For the long term relations, the
Markov transition matrices PZ21in and P82 of the input sub-models for buffers By
and Bj,, as well as the Markov transition matrix PBsout of the output sub-model for
buffer B; are supposed to be given boundary conditions. For the short term relations the
input rates x»; and xoo of buffers By and By, as well as the output rate y; are also
supposed to be given boundary conditions.

The problem that the next algorithm tries to solve is: which are the long term Markov
transition matrices PBzuout  pPBazout and pBsout and which are the short term rates yo 1,
Y22 and z3 such that both, the short term and long term restrictions are satisfied best?

5.8.1 A Detailed Description of the Algorithm

Step 1. .
Initialization of the three 4 x 4 sized Markov transition matrices

1l—a1 Ay l—ouy B

PBarin(g) = 01[1),1 1 —0’81’1 04[1),1 1 _Oﬁ“ , forall s € N,
0 0 0 0
l-—aiy b2 l1—o2 b
PBasin(g) = a(l)'2 1 _061’2 a6‘2 1 —051,2 , forallse N,
0 0 0 0
l—a3 B l—oaz G5
PBg,out(S) = ao3 1 _Oﬁa %3 1 'E)ﬂfi , for all s € N,
0 0 0 0

corresponding to the input sub-model for buffer By ;, the input sub-model for buffer B;
and the output sub-model for buffer Bs.
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Initialization, using equalities from (5.30), of the three scalars
221(s) = pi-(l—c11), forallse NV,

P2 (1—c2), forall selN,

Il

.’Cg’g(S)
ys(s) = ps, for all s € IV.

All these transition matrices and scalars remain unchanged during the whole algorithm
and operate as boundary conditions.

Step 2.
Initialization of the 8 x & sized Markov transition matrices

l—a B l1-o B l-ay [ l1-ag B

a 1=-f o 1-0 o 1-f @ 1-5
0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0
PRt (0) = 0 0 0 0 0 0 0 0 ’
0 0 0 0 0 0 0 0
0 0 0 Q 0 0 0 0
0 0 0 0 0 0 0 0
-y B l-aw f l1-a B l-a B
oz l=f a 1-0 o 1-5 a 1-p
0 0 0 0 0 0 0 0
" 0 0 0 0 0 0 0 0
PR2e(Q) = 0 0 0 0 0 0 0 0 ’
0 0 0 0 0 0 0 0
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corresponding to the output sub-model for buffer B, ;, the output sub-model for buffer
B, > and the input sub-model for buffer B;.
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Initialization of the three scalars:

Y21(0) == py,
Y22(0) = pa,
1173(0) = Do (1 - Cz) .

These transition matrices and scalars change during the algorithm until a satisfactory con-
vergence is reached. '

Step 3.
Initialization of the number s of the iteration step s := 0.

Step 4.
Construction of transition matrix P%21(s+ 1), using the appropriate equality from (5.26):

PBu(s41) = P2 (g5 (5 + 1), y2.1(8), PBZ-”“(S + 1), PBarevt(s)),

of the model for buffer By ;. An illustration for this step is shown in Figure 5.15.

B (2,1)

O O

Input sub-model B_(2,1}
Output sub-model B_(2,1)
\Tonstruction

Model for buffer B_(2,1)

Figure 5.15: Step 4 of the algorithm.

Step 5.

Reduction in two steps of the'transition matrix PB21(s + 1) of the model for buffer By
to the transition matrix PB#%(s 4+ 1) of the input sub-model for buffer B;, using the
appropriate equality from (5.27):
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P;‘x{erlap(s + 1) = ppﬂ;\zr;t‘la.p (3 + 1) ’
2,1

PBs'in(S + 1) = (on’\;erlap(s + 1)) Bg,in

overlap

and computation of the new parameter z3(s + 1) that determines the input rate for the
number of product parts per time slot that enters buffer Bj, using the appropriate equality
from (5.30):

z3(s +1) = g2 (1= eg) - (L= W (PP (s + 1)) - (1= WG (PP2(s)) .

An illustration for this step is shown in Figure 5.16.

Model for buffer B_(2.1) \: eduction

O Input sub-model B_3

Figure 5.16: Step 5 of the algorithm.

Step 6.
Construction of transition matrix PP#(s + 1), using the appropriate equality from (5.26):

PP(s+1) = PP(z3(s + 1), ys(s + 1), PP (s + 1), PPoovt(s 1 1)),

of the model for buffer Bs. An illustration for this step is shown in Figure 5.17.
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63

Output sub-model B_3

Input sub-model B_3 .
Construction

OO

Model for buffer B_3

Figure 5.17: Step 6 of the algorithm.

Step 7.

Reduction in two steps of the transition matrix P?¢(s + 1) of the model for buffer B; to
the transition matrix PP22°%(s + 1) of the output sub-model for buffer Bs,, using the
appropriate equality from (5.27):

Pyrte(s 4 1) = P s (s +1)
PRat(s 4 1) = (P(s +1)) mpp

poverlap

and computation of the new parameter ys2(s + 1) that determines the output rate for
the number of product parts per time slot that leaves buffer B, ,, using the appropriate
equality from (5.30):

OO

Model for buffer B_
Reduction

o

Output sub-model B_(2,2)

Figure 5.18: Step 7 of the algorithm.
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Yool +1) == pp - (1 — W5 (PP (s + 1)) - (1 — UE (g5, PPo(s + 1)) ,

and the computation of the average production rate of the production line. The average
production rate of the production line is equal to the fraction of the average output rate
of buffer B as described in Expression (5.44) that remains after scrapping of machine Ms:

Ry(s+1) == (1 —c3) - RS"™ " (ys(s + 1), PP3(s + 1)).

An illustration for this step is shown in Figure 5.18.

Step 8.
Construction of transition matrix P#»?(s + 1), using the appropriate equality from (5.26):
PB22(s4+1) = PP2(z55(s + 1), yaals + 1), PP2ain(5 4 1), PP2ao% (g 4 1)),

of the model for buffer Bys. An illustration for this step is shown in Figure 5.19.

( ) Output sub-model B_(2,2)

O O

B_(2,2)
Input sub-model B_{2,2) L(2.2)

Construction

Model for buffer B_(2,2)

Figure 5.19: Step 8 of the algorithm.

Step 9.

Reduction in two steps of the transition matrix P?22(s + 1) of the model for buffer By,
to the transition matrix PP (s + 1) of the input sub-model for buffer Bj, using the
appropriate equality from (5.27):

overlap(s + 1 = ézeflap (S + 1)

(PZO,‘éerlap(s + 1)) Bsin

overlap

PBa’i“(s +1)

il
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and computation of the new parameter Z3(s + 1) that determines the input rate for the
number of product parts per time slot that enters buffer B;, using the appropriate equality

from (5.30):
Ta(s+1) =po- (1= ) (1= U (PP (s + 1)) - (1 - U3 (PP2(s + 1)) .

An illustration for this step is shown in Figure 5.20.

Model for buffer B_(2,2) \‘e duction

Input sub-model B_3

Figure 5.20: Step 9 of the algorithm.

Step 10. .
Construction of transition matrix P23(s + 1), using the appropriate equality from (5.26):

PBs(s+1) = PP (Z3(s +1),y3(s + 1), PE#(s + 1), PPovt (5 4 1)),

of the model for buffer B3. An illustration for this step is shown in Figure 5.21.

53

Output sub-model B_3

Input sub-model B_3 A
Construction

208 20

Model for buffer B_3

Figure 5.21: Step 10 of the algorithm.
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Step 11.

Reduction in two steps of the transition matrix P?3(s + 1) of the model for buffer B; to
the transition matrix PP21°9(s + 1) of the output sub-model for buffer B, ;, using the
appropriate equality from (5.27):

P;verlap(s + 1)

PBz’l’OUt(S-{— 1) e (p;verlap(s+ 1)) By.out -

poveﬂap

~ B3
P pgmmp(s +1),

i

and computation of the new parameter y,;(s + 1) that determines the output rate for
the number of product parts per time slot that leaves buffer By, using the appropriate
equality from (5.30):

you (s +1) i= pao- (1 = WH*2 (PP22(5 + 1)) - (1 — WE (1 — ya(s), PP(s + 1)) .

and the computation of the average production rate of the production line. The average
production rate of the production line is equal to the fraction of the average output rate
of buffer B; as described in Expression (5.44) that remains after scrapping of machine Mj:

Rafs +1) 1= (1 - cg) - R"™"(ya(s + 1), PP (s + 1)).

An illustration for this step is shown in Figure 5.22.

OO

Model for buffer B_.
\eduction

Output sub-model B_{2,1)

Figure 5.22: Step 11 of the algorithm.

Step 12.
If no satisfactory convergence is reached yet then s := s+ 1 goto Step 4.

Step 13.
Stop.
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Figure 5.23: The algorithm schematically.

5.8.2 Some Comments on the Algorithm

A more schematic illustration of the algorithm is shown in Figure 5.23. Each arrow in
the illustration links two elements. The relation between these elements is such that the
element at the beginning of the arrow is needed, in a way that is described in the previous
subsection, in order to compute the element at the end of the arrow. Crossing the dashed
line implies that the number s of the iteration cycle increases by one. We can see in this
illustration that within one iteration cycle s we obtain four separate estimates, P{{erlap(s),
Py (), PyytiaR(s), PP () for the Markov transition matrix of the model for the
overlap. As stated in Expression (5.25) we would like, as the iteration cycle number s
increases, that these estimates of the transition matrix of the model for physically the
same object will converge to the same matrix as well. However, this is not the case in
general. It turns out that, in all cases that we have examined, the algorithm converges
numerically in the sense that the following limits appear to exist:

: overlap def overlap . overlap def overlap
lim Ppy"(s) = Py, lim Py, (s) = Py %,

$—00

. overlap def overlap - poverlap def  poverlap
lim PB (5) — P3 ’ }H&PS (S) - P3 )

5300
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and

lim 4p1(s) = p21, lm wna(s) = 122,
. def . - def _
lim z3(s) = 25, lim 75(s) £ 7s.

We have to accept that the Markov transition matrices for the overlap model generated
by means of the algorithm do not converge to equality. Therefore we cannot find the
matrices P;‘{er]ap, pyYerier  poveniaP and Py verl?P that satisfy Expression (5.25) by means of
this algorithm:

on:;erlap # on)\éerlap # P;verlap # P;)verlap. . (5 4 6)
Apart from that, the algorithm computes two different scalars x3 and T3 which both cor-
respond to the number of product parts per time slot that enter buffer B;. The algorithm
does not guarantee either that these scalars end up equal:

The fact that we do not find the equal transition matrices for the model of the overlap
makes us suspect that the solution to the combination of all restrictions in (5.25), (5.26),
(5.27) and (5.30) does not exist. The fact that we cannot find equal transition matrices
is probably due to the way of construction of the transition matrices P521, PB22 and
PBs based on independent input and output sub-processes. The input and output sub-
processes of each of the buffers are in fact not independent. The fit of our buffer models,
and with that the success of the algorithm is therefore totally dependent on the level of
interdependence of the input and output sub-models for each of the buffers.

The fact that we do not find equal transition matrices does not at all mean that our
algorithm is useless since, fortunately, in the cases that we have examined the differences

overlap

. ] 1 Hoverl .
between the matrices Pyy 7, Py o 0, Pyg 0 and Py P, as well as the difference between
z3 and %3, these differences remained very small.

5.9 Application of the Algorithm to the Car Lamp
Production Line

In order to apply our algorithm to the car lamp production line we have to find the
best fitting parameters for the breakdown and repair rates and for the speeds and scrap
probabilities of all the machines that are involved in the production line.

5.9.1 The Identification Procedure

From three machines in the production line we have been able to collect detailed data
about events that occurred in the car lamp production line during some hours. However, it
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Figure 5.24: The parameters that we use in this chapter for the car lamp production line.

turned out that these data were not sufficient to perform a proper identification procedure
for the parameters involved. Several problems had to be tackled in a poor identification
procedure. According to the data, for instance, machines went down when they were in
down state already or went up when they were already in up state. Next to that the time
of recording was too short to draw conclusions and determine breakdown and repair rates.
Another problem was the recording of the data we used which was not performed in parallel
for the separate machines as we wished. From the machines we received data from totally
different epochs in time. In spite of all these problems we tried our best to make our model
fit best with the processes in the car lamp production line. Parameters that could have
come from our identification procedure are shown in Figure 5.241. For the production line
with these parameters we applied the algorithm that we have described before in full detail.

5.9.2 Application of the Algorithm

The first thing that is important to examine is the convergence of the algorithm as the
iteration cycles increase. This convergence in the sense that we described in Expressions
(5.46) and (5.46) was examined by taking the norms of differences between corresponding
objects from subsequent iteration cycles. The results for the four different Markov tran-

IThe values in Figure 5.24 are not the values from the identification procedure. For reasons of industrial
secrecy we have changed the values.
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norm

Figure 5.25: || X(s) = X(s = 1) || for X = Figure 5.26: | z(s) — (s — 1) | for
Pf{erl&p, Pg’”“‘ap, Pi;er]ap and P;Verlap we used T = Y21, T3, Y22 and Tz we used

“*” 7“0” ,“X” and ‘¢+’7 respectively. “*7’ ,“0” ’“x” a'nd “+7’ respectively.

sition matrices for the model of the overlap are shown in Figure 5.25. The results for the
four different input or output rates are shown in Figure 5.26. From the fact that the subse-
quent differences persist in lying on a straight descending line we draw the conclusion that
convergence is attained for all the transition matrices and input and output rates involved
in the algorithm.

The result, after 12 iteration cycles of the algorithm, of scalars y1(12), 23(12), ya.2, Z3(12)
matrices P{‘{e’lap(12), Pveriap(19), {V;rlap(12) and P{Y™'*P(12) are listed in Appendix C in
Tables C.11, C.12, C.13, C.14 and C.15 respectively. For each of these 4 Markov transition
matrices of the overlap we computed also the stationary distributions which are shown in
the last row of each of the tables. From the stationary distribution we can compute, for
each of the transition matrices for the overlap, some probabilities for blocking and starva-
tion of the buffers. The results from each of the transition matrix of the overlap is shown
in Figure 5.2.

The next thing that we examine is the differences between the four transition matrices for
the overlap that come from the algorithm. We explained already that the algorithm does
not guarantee the desired equalities in Expression (5.25). In order for our results to make
sense we need that the differences between the matrices are relatively small. A table of
distances between the different Markov transition matrices for physically the same overlap
is shown in Table 5.3. In this table we can see that the norms of the differences between the
different Markov transition matrices are all less than 0.003. The fact that these differences
fortunately are very small gives us the strength to continue with our examinations.
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P;:;erlap ( 1 2) P;verlap ( 1 2) P2o:éerlap ( 12 ) Pg)verlap ( 1 2)

Pr(B;%) 0.9847 0.9847 0.9847 0.9847
]Pr(B;fl) 0.0153 0.0153 0.0153 0.0153
Pr(By) 0.9583 0.9583 0.9583 0.9583
Pr(Bs,) 0.0417 0.0417 0.0417 0.0417
Pr(B;%) 0.9938 0.9938 0.9938 0.9940
Pr(BY) 0.0062 0.0062 0.0062 0.0060
Pr(M;*) 0.8547 0.8547 0.8547 0.8547
Pr(Mgo™®) 0.1453 0.1453 0.1453 0.1453
Table 5.2: The states for the separate objects in the overlap and their computed probability.
X\Y on\{erlap(lz) Paoverlap ( 12) on:éerlap(12) Psoverlap ( 12)
°"e'lap(12) 0 0.0005 0.0021 0.0021
PSP (12) | 0.0005 0 0.0019 0.0019
PSym®(12) || 0.0021 0.0019 0 0.0018
°"erlap(12) 0.0021 0.0019 0.0018 0

Table 5.3: A distance table. For combination X and Y we used distance || X — Y ||,.
|z3(12) — Z3(12)| =~ 1.5 107°.

5.9.3 Computation Results Compared with Simulation Results

The computed stationary distributions 7521, 7521 and 7% will be represented by means
of the distributions of the contents of the three buffers. In order to evaluate the results
from the algorithm we performed also simulations of the car lamp production line with the
parameters as shown in Figure 5.24. An important tool for such simulations is the random
generator used. For our simulations in C we used again the drand{8 command which
we have used also in examples from Chapter 2, Chapter 3 and Chapter 4 in Section 2.8,
Section 3.11 and Section 4.6 respectively. The simulations are performed here in a similar
way as we performed the simulations in the corresponding sections in Chapter 2, Chapter
3 and Chapter 4. During a simulation of 10 million time slots we kept track of the relative
frequencies of the contents of each buffer. We also derived the steady state distribution of
the contents of each buffer as a result from the computations by means of the algorithm. In
order to compare the simulation results with the results from the algorithm, for each buffer,
we have put the computed stationary distribution of the contents next to the estimated
stationary distribution by means of relative frequencies from the simulation. The results
for the stationary distribution of the contents of buffer B, ; are shown in Figures 5.27 and
5.28. The results for the stationary distribution of the contents of buffer B, 5 are shown in
Figures 5.29 and 5.30. The results for the stationary distribution of the contents of buffer
B3 are shown in Figures 5.31 and 5.32.
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Figure 5.27: The computed stationary distri- Figure 5.28: The simulated stationary distri-
bution of the contents of buffer B ;. bution of the contents of buffer B, ;.

Actually the computed distribution of the contents of buffer B; in Figure 5.31 is one of
the two distributions for this buffer computed by means of the algorithm. The algorithm
produces after 12 iteration cycles (s=12) two Markov transition matrices of the model for
buffer Bs: the model PB3(12) as constructed in the last time that Step 6 was executed,
and the model P?3(12) as constructed in the last time that Step 10 was executed. Both
transition matrices are not equal, and neither are the corresponding stationary distribution
vectors for the contents of the buffer. The stationary distribution vector in Figure 5.31 is
based on the stationary distribution of the last transition matrix P¢(12). The stationary
distribution vector for the contents of buffer Bs based on the matrix P?2(12) is similar
to the stationary distribution vector shown in Figure 5.31. The differences between the
two stationary distributions are invisible on the same scale since the norm of the differ-
ence between both distribution vectors is less than 5.10™%. The difference between the two
distribution vectors is shown in Figure 5.33. We subtracted the stationary distribution
with P5:(12) from the stationary distribution with P53(12). The fact that we obtain two
different Markov transition matrices for buffer B; has the consequence that we will obtain
also two different average production rates R3(12) and R3(12) of the car lamp production
line from the algorithm, each of them based on one of the two models.

Next to the simulation for the stationary distribution of the buffer contents we also per-
formed 10 independent runs of simulations of one million time slots each. Before we did
these 10 independent runs we first performed one initial run of one million time slots in
order to estimate the average contents of each buffer. Each of the following 10 indepen-
dent simulation runs start in a position with average buffer contents so as to minimize the
influence that the transient behaviour has on the estimates of the stationary distribution.
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Figure 5.29: The computed stationary distri- Figure 5.30: The simulated stationary distri-

bution of the contents of buffer By . bution of the contents of buffer B ,.
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Figure 5.31: The computed stationary distri- Figure 5.32: The simulated stationary distri-
bution of the contents of buffer Bs. bution of the contents of buffer B;.
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Figure 5.33: The difference between the two computed stationary distribution vectors of
the contents of buffer Bs.

BEstimates of average production rate R by simulation

Run 1 Run 2 Run3 | Run4 Run 5 Run 6 Run7 | Run38 Run 9 Run 10
R 485872 | .486399 | .483776 ’ 484725 | .487023 | .485598 | .485463 l 486402 | .483572 | .484293

Estimates of the average buffer contents by simulation

Buf. Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Ba 227.644 | 223.791 | 198.044 | 186.975 | 248.812 | 210.532 | 213.515 | 276.495 | 263.490 | 201.926
B3 222.564 | 192.972 | 207.458 | 208.946 | 218.099 | 230.123 | 218.592 | 227.462 | 199.608 | 209.647
By 98.611 | 100.060 | 103.241 | 100.897 | 101.037 | 96.458 | 100.969 | 99.289 | 109.221 | 102.080

Table 5.4: The results of 10 runs of simulation for the car lamp production line simulating
108 time steps each

By means of these 10 independent runs we computed 10 independent average production
rates and for each of the three buffers 10 independent numbers for the average contents.
By means of each of these corresponding 10 independent numbers we can calculate the
mean and the standard deviation of the average production rate and the average buffer
contents. The results from the 10 independent runs of simulation are shown in Table 5.4.
The means and standard deviations, compared with the mean values that come from our
algorithm, of the average production rate of the car lamp production line and the average
contents of each buffer are shown in Table 5.5.

5.9.4 Sensitivity Analysis for the Car Lamp Production Line

1t is nice that we now have an algorithm, described in Section 5.8, by means of which, given
the breakdown and repair rates, machine speeds, scrap probabilities and buffer capacities
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Results for the average production rate R
mean value | std. deviation | decomp. model abs. err. | rel. err.
R 0.4853123 0.0011778 }_23(12) 0.4871643 | 0.0018520 | 0.0038016
R3(12) | 0.4870366 | 0.0017243 | 0.0035395 J
Results for the average buffer contents
Buffer | mean value | std. deviation | decomp. model abs. err. | rel. err.
By, 213.5 12.0 206.4 -7.1 -0.033
Bss 101.2 3.4 99.3 -1.9 -0.019
B3 225.1 29.4 1 259.2 34.1 0.151
2 257.7 32.6 0.145

Table 5.5: The compound results of the simulations for the car lamp production line

we can compute an average production rate of the production line as a whole. But, for
purposes in practice, it is even more interesting to know what happens if we change the
values of these variables by addition or subtraction of small numbers. If we know how small
changes of the values of variables in the production line effect the overall production rate
then we have a measure for how “critical” these variables are. In such a way we obtain a
measure for the importance of those variables for the performance of the production line
in question. Such a measure for the importance of a variable in the model for the overall
performance of the production line will be denoted by the term sensitivity.

In order to find these sensitivities we simply changed each of the values of the 19 vari-
ables in the model, one at a time, by addition and substraction of small numbers. Then
we recompute with each new set of values the average production rate by means of the
algorithm that we described in Section 5.8.

Note that by means of the algorithm in Section 5.8 from each set of values we obtain two
estimates of the average production rate denoted by R3 and Rj, which ideally are identical.
The fact that they are not identical implies that we also obtain fwo sets of sensitivities,
each of which corresponds to either R; or R;. Within each of these two sets we destinguish
between two kinds of sensitivies, the absolute sensitivity and the relative sensitivity. Ab-
solute sensitivity here denotes the actual increase of the average production rate divided
by the actual increase of the value of the variable in question. Relative sensitivity here
denotes the percentage of increase of the average production rate divided by the percentage
of increase of the value of the variable in question. The results of the sensitivity analysis
for the long term variables, the short term variables and the buffer capacities are shown in
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R3 Sensitivity R Sensitivity
Var. Base 0.4871643 0.4870366
Value +10% -10% Abs. | Rel. +10% -10% Abs. | Rel.
1072 |-

ay; || 0006756 || .4856931 | 4883913 || —~20.0 | —2.77 || .4855283 | .4882954 || —20.5 | —2.84
a2 | 0095554 || .4817892 | 4904740 || —4.54 | —8.91 || .4816156 | 4903966 [ —4.59 | —9.01
az 0028437 || .4844819 | 4895572 || —8.92 | —5.21 || .4843648 | .4894243 || —8.90 | —5.19
a3 .0100000 || .4843582 | 4882123 || —1.92 | —3.96 || .4843092 | .4880223 || —1.86 | —3.81
Bi,1 i) 0081801 || .4885983 | 4850601 || 2.16 3.63 || 4885138 | .4848667 || 2.23 3.74
Br2 || 0258732 || .4907356 | 4801535 || 2.04 | 10.86 | .4906577 | .4799847 | 2.06 | 10.96
B2 0167295 || .4900520 | .4831509 | 2.06 7.08 | .4899256 | .4830297 || 2.06 7.08
B3 .0420000 || .4882013 | 4837146 || 0.53 4.60 | 4880133 | .4836725 || 0.516 | 4.45

Table 5.6: Sensitivities of the long term variables: the breakdown and repair rates.

Rs Sensitivity Ry Sensitivity
Var. || Base 0.4871643 0.4870366

Value +1% | —-1% Abs. Rel. +1% -1% Abs. Rel.

P11 .680 || 4882692 | 4856943 | .189 .264 | .4881664 | 4855365 || .193 .270
P12 990 || 4883986 | 4856437 | .139 283 || 4882872 | .4854994 || .141 .286
P2 740 || .4883056 | .4858834 || .164 .249 || 4881704 | .4857650 || .163 .247
p3 685 | 4878158 | 4860615 || .128 180 || 4876528 | .4859755 || .122 172

c1,1 .050 || .4870968 | 4872308 || —.134 | —.014 || 4869677 | 4871045 || —.137 | —.014
1,2 .150 || .4869181 | .4874015 | —.161 | —.050 || .4867875 | 4872768 || —.163 | —.050
c2 .070 || 4868614 | .4874645 | —.431 | —.062 || 4867308 | 4873398 || —.435 | —.063
c3 100 || .4866230 | .4877056 | —.541 | —.111 || .4864954 | 4875777 || —.541 | —.111

Table 5.7: Sensitivities of the short term variables: the speeds and scrap probabilities.

Table 5.6, Table 5.7 and Table 5.8 respectively.

5.10 Conclusions

In this chapter we tried successfully to adapt and apply the methods developed in previous
chapters for serial production lines to a non-serial production line in a car lamp factory
with merging.

We decomposed the car lamp production line in three big Markov chain models, of which
each corresponds to a single buffer and of which each consists of several Markov chain
sub-models. The long term relations between the Markov chain models were dealt with by
means of reduction to clusters that correspond to states of an overlap between the models.
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R3 Sensitivity R Sensitivity
Variable || Base 0.4871643 0.4870366

Value +10% -10% Abs. | Rel. +10% -10% Abs. | Rel.
103
Ny, 400 4877289 | .4864855 || 1.55 | 12.8 || .4876153 | .4863414 || 1.59 | 13.1
Nyo 200 4882321 | 4858318 || 6.00 | 24.6 | .4881187 | .4856889 || 6.07 | 24.9
N3 600 4874186 | .4868406 || 0.48 5.9 4872827 | 4867219 || 0.47 5.8

Table 5.8: Sensitivities of the buffer capacities.

The short term relations were dealt with by means of compensation of the speed for the
rates in which the buffers are short term blocked or starved. In this way we found restric-
tions for the connections between the Markov chain models for the three buffers.

On the basis of these restrictions we developed an iterative algorithm that searches for
unknown transition matrices and rates such that most of the restrictions are satisfied. We
applied this algorithm to the car lamp production line and conclude that it does converge
in the following sense. The algorithm does not converge to a single limit, but it ends up
switching alternately between two limits that are very close to each other. This implies
that the solution from the algorithm does not satisfy all the restrictions. Therefore we
think that, because of approximate assumptions on independency of input and output
sub-processes, in general a solution that meats all the restrictions does not exist. For-
tunately, for the application in the car lamp production line the two solutions from the
algorithm are very close. They both meet most restrictions and, because they are close,
they meet almost the rest of the restrictions. A measure for the way in which the solution
meets restrictions is shown in a distance table.

As a consequence of the special way of convergence the algorithm finds two different esti-
mates, R3 and R, of the average production rate. These two estimates correspond to two
stationary distributions that are very close to each other.

We also compared the computed stationary distribution with simulations and conclude
that the results from computations are accurate. Only one estimate was slightly out of
range, this was the estimate of the average contents of buffer Bj.

Next to the computation of the average production rate we did computations in order to
estimate the sensitivity to small changes in the values of the parameters in the model. The
sensitivities that came from the computations are listed in tables and can be used to make
decisions for changes in the car lamp production line.
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Chapter 6

An Approach with Timed Event
Graphs

In the previous chapters we have tried to estimate the average production rate of production
lines in which machines go up and down by means of a simple breakdown-repair model with
parameters called breakdown and repair rate. In up state the service times of machines
were geometrically distributed with a parameter called completion probability. This means
that the service times of the machines (including the up and down transitions) in the
models from previous chapters have very specific properties, such that they can easily be
described by means of Markov chains. In this chapter we will introduce a totally new
description of serial production lines with blocking using stochastic timed event graphs
which are a subclass of the stochastic timed Petri nets. This new approach allows us to
introduce service times as well as transportation times with arbitrary distributions. Before
we describe serial production lines by means of stochastic timed event graphs we will first
explain some elementary properties of timed event graphs and how they work. For a more
thorough description of Petri nets and stochastic timed event graphs we refer to [BCOQ92].

6.1 Introduction to Stochastic Timed Event Graphs

6.1.1 Description of a Timed Event Graph

A timed event graph is a graph that consists of places, transitions, arcs, holding times and
tokens. Symbols for these items are shown in Figure 6.1. The properties of such a graph
are as follows:

e Arcs connect the places and transitions. Arcs can only be directed from transitions to
places or from places to transitions. There are no arcs from transitions to transitions
or from places to places.
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place \_, = arc
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O

holding time

transition

token

Figure 6.1: The parts of a timed event graph

Each transition has upstream places and downstream places. An upstream place is a
place from which an arc is directed to the transition. A downstream place is a place
to which an arc is directed from the transition.

Each place has upstream transitions and downstream transitions. An upstream tran-
sition is a transition from which an arc is directed to the place. A downstream
transition is a transition to which an arc is directed from the place.

Places have at most one upstream and at most one downstream transition. (This
distinguishes an event graph from a Petri net. For Petri nets this property should be
dropped.)

Every place has-its own holding time which can be either stochastic or deterministic.
Transitions or arcs do not have holding times.

A token travels through the graph with special rules for traveling. By means of the
rules tokens can “split up” and ”join”, which means that the total number of tokens
in a timed event graph is not a constant in time. Tokens travel in such a way that
at every possible moment every token belongs to a single place.

The rules for the traveling of tokens are such that they keep repeating the following
procedure. This prevents tokens from overtaking:
— Enter a place.

— Wait until all previous tokens in the same place have left and until additional
conditions for firing of the next transition are satisfied.

— Leave the place.

Transitions can fire as soon as all upstream places have at least one token that has
waited longer than a prescribed holding time. If a transition fires one token leaves
from each of its upstream places and one token enters in each of its downstream
places.

182



7, A c
v v
(a) Situation before firing (b) Situation after firing

Figure 6.2: Firing of a transition

An example is shown in Figure 6.2.

Example.

Figure 6.2 shows two similar timed event graphs with three transitions t;, #,, ¢; and three
places py, p2, p3. Let us focus on transition ¢5. It has two upstream places, namely places
1 and py, and it has only one downstream place, place p;. In the following we explain a
firing of this transition. Suppose that transition ¢; fired at time z and transition ty fired
at time y, then at time z one token was put into place p; and at time y one token was
put into place p,. This situation is shown in Figure 6.2 (a). The token in place p; has
to wait there for A time units, since the holding time of place p; is A, whereas the token
in place p; has to wait there B time units, since the holding time of place p, is B. The
next transition ¢3 fires as soon as both tokens have finished waiting. Transition ¢, fires at
time z. Now it is easy to derive the relation between z, y and z: z = max(z + A,y + B).
When transition ¢3 fires one token is subtracted from all upstream places, places p; and
P2, and one token is added to all downstream places, place ps. The situation after firing
of transition t3 is shown in Figure 6.2 (b). There is only one token that arrives in place
ts after firing, since there is only one downstream place. This token arrives in place p; at
time z and has to wait there C' time units, since place p; has holding time C... etcetera.

O

6.1.2 A Simple Autonomous Stochastic Timed Event Graph

The subject of this subsection is a simple timed event graph with only two transitions, t;
and t; and four places, p;, p2, ps and p, as shown in Figure 6.3. The holding times of
the k-th token that arrives at places pi, pa, ps, ps are Ay, By, Ck, Dy respectively. The
index k stands for the &-th token that arrives, so A, denotes the holding time of the k-th
token that arrives at place p; etcetera. z;(k) denotes the time instant of the k-th firing of
transition ¢;, whereas z(k) denotes the time instant of the k-th firing of transition #,. The
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Figure 6.3: The two-dimensional timed event graph model

following assumptions are made on the stochastic holding times of the timed event graph
in Figure 6.3.

e w(k) is for all k € IV a random vector on a probability space (?, F, IP), where Q =
IR* and P is a probability measure on a o-algebra F associated with €, such that
Ap = wi(k), By = wy(k), Cx = wa(k), Dy = wy(k). For the sake of convenience we
will take F = B(IR*), the collection of Borel sets on IR*. Note that in this description
Ay, By, C and Dy may be dependent.

e w(i) is independent of w(j) for all 4 # j.

6.1.3 A Mathematical Description of the Mechanism

From Figure 6.3 it is easy to derive the equations that govern the system introduced in the
previous subsection. Transition ¢; can fire for the k + 1-st time only if the k-th token in
place py and the &-th token in place p» have finished their holding times. The k-th token
in place p; finishes its holding time after it has arrived in place p; at time z,(k) and then
has waited for A; time units. The k-th token in place p; finishes its holding time after it
has arrived in place p, at time z3(k) and then has waited for By time units. All this can
be put in the following formula:

xl(k -+ 1) = max( $1(k) + A, l‘z(k) + By ). (61)
In a similar way we can derive the formula for the & + 1-st firing of transition #,:
zo(k +1) = max( z1(k) + Cy , x2(k) + Dy ). (6.2)

Equations (6.1) and (6.2) completely define the mechanism for the simple stochastic timed
event graph. We will assume that the initial conditions in the timed event graph are such
that exactly at time 0 both transitions t; and t, fire for the 0** time:

z(0) = 0,

I
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6.1.4 The Evolution of Distributions of z
First we define the joint distribution function of z1(k) and z,(k):
Fopy(w,v) ¥ Pr(a(k) <u A zo(k) <v).

Then, evidently:
1, foru>0Av>0
Fagyy(w,v) = { 0  elsewhere '

(6.3)

(6.4)

It is not difficult to derive an iteration of joint distribution functions of z;(k) and z;(k) by

means of the formulas (6.1) and (6.2):

Fyiiny(u,v) = Pr(z(k+1) <u A 2(k+1) <w),

= Pr(max(z((k) + A, z2(k) + By) <u A
max(z1(k) + Ck, 2(k) + Di) < v),

Pr(z;(k) < min(u — Ax,v — Cy) A
z2(k) < min(u — By, v — Dy)),

= /Fx(k)(min(u — Ag,v — Ci),min(u — By, v — Dy)) dIP.  (6.5)
i)

Given the initial joint distribution Fy), the distribution function Fy1.) is formally fixed
by Equation (6.5). It is possible to numerically perform the integration step in Equation
(6.5) and iterate for k = 1,2,3, ..., but that would not give much insight in the throughput
of the system. In order to obtain more information about this behavior, we use a slightly

different approach in the following subsection.

6.1.5 A Partial De-Coupling of the System

To de-couple the system partially we perform the following linear transformation and

introduce the variables y; (k) and y2(k):

(i) =2 () (26

Now we can combine (6.1), (6.2) and (6.6) and get the following mechanism:
nk+1) = y(k) + 3{max(Ag + y2(k), Bx — ya(k))+
max(Cy + y2(k), D — y2(k))},
ylk+1) = %{ma}((A,rc +y2(k), By, — ya(k))—

max(Cy + y2(k), Dy — y2(k))}
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Figure 6.5: The function gep,cq¢(x)

Although mechanism (6.7) looks more complicated, it will give more insight in the limiting
behaviour of the system. Notice that we managed to de-couple the evolution of y»(k) from
the evolution of y; (k). The evolution of y,(k) is autonomous and does not depend on y; (k).
The evolution of y:(k) however is not independent of y»(k), therefore we call it a partial
de-coupling. Now we define the following functions: »

faped(@) & Hmax(a+2,b—2) + max(c + z,d - 2)},
(6.8)
Gaped(r) = %{max(a +x,b—z) — max{c+z,d — z)}.

Sketches of these functions f,4cqa and g,5.c4 are shown in Figures 6.4 and 6.5. By means
of the definitions in (6.8) we can reformulate Equation (6.7) as follows:

hn (k + 1) = yl(k) + fAk,Bk:Ck»Dk(yQ(k))
(6.9)
va(k+1) = ga,.8.0.0.(%2(k))

From (6.9) follows that

186



w(k) = 3 famcon (i) (6.10)

1=1

6.1.6 A Coordinate Transformation in the Sample Space

For a more convenient notation we transform the sample space 2 by means of the linear
coordinate transformation defined by matrix M:

ok) ¥ Mwk),
where

-1 1 -1
1 1 1 -1 -1

M=71 111 1]
1 1 1 1
M = 4M'.
With this transformation in the sample space we will define 4 new random variables:
X & ok,
Ye ¥ ayk),
T & @y(k),

A ¥ @y(k).

By means of the new random variables X, Y}, 'y and Ay we can simplify the evolution of
y(k) and yo(k) from Expression (6.9):

yi(k+1) = yi (k) + Ay + [(yo(k) — Xi) + Tl '5 [(yalk) — Xi) — Pki’
(6.11)

ok +1) = Y; + [(ya(k) — X&) + T4l - [(ya(k) — Xi) — Te|
If we define a new state variable 72(k) as follows:
Ba(k) = ya(k) — X,
and we define a new random variable
Z ¥ Y- X,
then we can reformulate the evolution of ¥, (k) and y»(k) in the most convenient way:

vk +1) = yi(k) + Ay +max( [Te| , [72(k)] )

- i (6.12)
galk+1) = |72(k) + Tx| _leQ(k) — [y +Z.
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y = CD].’Z(x) for T >0 y = CDF,Z(x) for T <0

Figure 6.6: The function y = ®r z(z).

If we define, for v, z € IR, the kernel function ®,, : R + IR as follows:

®.(z) ¥ ———————Ix+7‘;‘$—7|+z, (6.13)

then we obtain the following for Expression (6.12):

nk+1) = w(k)+ Ap +max(|Ti], [7205)])
(6.14)

Dk +1) = Prz(52(k)).

A picture of the function y = ®p z(z) is shown in Figure 6.6.

Remarks

Expression (6.14) is an interesting result because it shows that:

o The concurrency in the system, represented by the evolution of 7(k), is determined
only by the two sequences {['+}, Tx = 2(Ax — Bx — C + Dy) and {Zx}, Zy =
1(Ax — Dy). For examination of the concurrency in the original system it is best to
examine the concurrency in the following equivalent system:

.’El(k-i-l) = max( xl(k)+rk+Zk, xg(k)—rk )

(6.15)
zo(k+1) = max ( x1(k) — T, zo(k) + Tk — Zp ).
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e The evolutions of the systems corresponding to the sequences (A, By, Cy, D;,) and
(Ak, Bx + Vi, Cx — Vi, Dy), for some sequence {V;} with V; € IR, are completely
equal. As a consequence, without loss of generality, we can restrict ourselves to the

“symmetric” sequences (A, Eﬂ—"z'—gh, Ek—"igh, Dy).

6.1.7 The Evolution of Distributions of

If we examine Expression (6.14) closely we see that the distribution of §,(k + 1) depends,
by means of the function ®r, z, and the values of I'; and Zj, on the previous distribution
of ga(k). As an extension of the transition matrices for homogeneous discrete-time finite
Markov chains, here we come up with the #ransition kernel for homogeneous discrete time
infinite Markov chains. Such a transition kernel can transform distribution functions on
an interval into other distribution functions on another interval. This operation can not be
described by means of matrix multiplication, but can be described by means of an integral
notation. The transition kernel here is a two-dimensional function, and will be denoted by
K (s,t). Properties of a transition kernel K (s,t) are as follows:

K(s,t) < K(s,u), foralls,forallt<u,

lim K(s,t) = 1, for all s € R,
t—o0

Il

t_l}ir_nooK(s, t) 0, for all s € R.

The integral notation for the transformation, corresponding to one time step, of a distri-
bution function 7 into a distribution function v is as follows:

W) = /]RK(s,t) dn(s).

In order to find the transition kernel K (s,t) for the transition from (k) to Z2(k 4 1) we
examine, for (s,t) € IR?, the set W{(s,t) C JR? such that

W(s,t) ¥ {(1,2) € R | ®,.(s) < t}. (6.16)
It is easy to see with the definition of function ®. ,(s) that then
Wist) = {(n2) R |z < &y ()}
By means of these sets we can construct the kernel K'(s,t) of the system:

K(s,t) & /Q Tw(eey( (Th(w), Ze(w)) ) d PP.
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By means of this kernel we derive the evolution of the distribution functions Fy, ) defined
as:

Fhm(s) € Pr (k) < s),
as follows:

Fran(®) = [ K(s.2) dFg0(s). (6.17)

6.1.8 The Case for Z; = 0 Almost Always for all &£

In case that Z; = 0 almost always for all k, which is the case if the measure of the subspace
with w; = wy of the sample space Q equals 1,

fn Tntiymon(oy (@(k) AP = 1.
In this case we can construct a distribution function I'(z) as follows:
Mz) /Q Tn (k) -teoa (k) -wa(k)—ws (k) <z} (W(E)) AIP.
If we now construct the set W (s, t) excluding sets of measure 0 we get:
0, for ¢t < —|s|,
{(z,0)|z€e R}, for t> s,

{(z,0) |z e[-t, =)}, for s<—[t|] A s# —t,
{(z,0) |ze (4, t]}, for s> || A s# ¢t

Wi(s,t) =

Taking the measure of these sets leads to the kernel K (s, t):

0, for ¢ < —|s|,
1, for t> s,

K(s,t) = 1—1}{511“(—1?—6), for s < —t| A s#—t,
INGD for s> |t| A s# ¢

If we substitute this in Expression (6.17) then we obtain:

Fgarrn)(t) = Fgagn(t) +T(t) — lim [Foater (£) T(J + 81) + Fryay(—t — 6) T(— [t + o},
(6.18)

which, if we assume that Fy,(y(t) and T'(¢) are continuous, transforms to:

Fraes(t) = F(®) +T() = [Frgw (8) T(#) + Frye(—t) T(=Jt)] . (6.19)
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If we define the distribution functions of the absolute values of §2(k) and Ty as follows:

P (t) def Fy (k)(t) - lgﬂ")l Fﬂz(k)("t - 5)7 for ¢ >0,
s 0 for t<0
— i —t - >
INGI) lgﬁ)l I'(-t-4¢), for t>0,

0, for ¢ <0,

b

ITj(t) {

Then the continuous case in (6.19) can be transformed in:
Figaesny(t) = {1 =ITI(®)} Figyen(t) +IT1(2). (6.20)
Now we define |I'|pin, the minimum value of |T'x| as follows:
Dloin & inf{teR| [TI(t)>0}.

By means of |['|min we can deduce how the distribution of |g2(k)| evolves in a pointwise
limit:

. _ N for t> lF(mim
klgroloﬂﬁz(kﬂ(t) = { Flzjz(l)l(t)y for ¢ < |D)min, (6.21)
For t = |T|sin we deduce:
; 1 if lrl(lrlmm) > O,
lim Fj Dlmin) = . 6.22
52, Fn (T i) { Finco (Tlain) i€ [T1(Tlie) = 0, (622)
From Expression (6.22) we can conclude that in the limit the following holds:
Jim - Pr(|gk)] < ITl) = 1, (6.23)
—00
Or equivalently:
jim  Pr(max([Tel, [0)]) =I04) = 1. (6.24)
If we combine this with Expression (6.14) we obtain:
klim Pr(y(k+1)—y(k) = A +1T]) = 1. (6.25)
— 00

The last expression tells us that, for Ay = Dy, the properties of the time between two
subsequent firings of each transition are determined by the the random variable
max{ Ap+ Dy, B, +Cy }

nk+1) —pk) = A+ [T = 5 : (6.26)

Expression (6.14) shows also that if Ay # D then this random variable is a lower bound
for the time time between two firings.
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Figure 6.7: The timed event graph of a serial production line with blocking.

ji+1 it!
t I7i+1,i t t pi+1,i
i i+1 i i+
Position ¢ ‘free’ Position i ‘occupied’

Figure 6.8: The two states of a single position with number 1.

6.2 The Stochastic Timed Event Graph of a Serial
Production Line with Blocking

The most general timed event graph of a serial production line with a “blocking after
service” policy is shown in Figure 6.7. In this figure we can see a timed event graph
with n € IN* transitions t; with ¢ € {1,2,3,...,n}, and 2(n — 1) places p;; with ¢,j €
{1,2,3,...,n} and | — j| = 1. The subscripts ¢, j of a place p; ; denote that the place takes
tokens from upstream transition t; and feeds tokens to a downstream transition ¢;. The
timed event graph in Figure 6.7 consists of several identical smaller event graphs that we
will denote by means of the term position. Such a basic smaller event graph is shown in
Figure 6.8.

In Figure 6.8 we can see clearly that, for any ¢ € {1,2,3,...,n — 1} at any time instant
either place p; ;11 has one token and p;11; has none, or place p;;, ; has one token and p; ;44
has none. It is impossible for places p;i;1 and pii1; to have a token at the same time
instant. It is also impossible for each place to have more than one token. If a position
with number ¢ has a token in place p; ;41 then we will say that the position is occupied. If
a position with number ¢ has a token in place p;41; then we will say that the position is
free.

Furthermore we will assume that:
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o the k-th token that arrives at a place p;j, |t — j| = 1, has a stochastic holding
time denoted by T; ;(k). T;;(k), for each k, is a sample from the probability space
(R,B(IR), IP, ;), where IR is the sample space, B(IR) is the collection of Borel sets in
IR, and IP;; is a corresponding probability measure.

e T; ;(m) is independent of Ty (n) for n # m or (3,7) # (k,1).

o z;(k), i € {1,2,..,n}, £ € IN denotes the time instant of the firing of transition
number ¢ for the k-th time.

e the initial conditions are as follows:
z;(0) = 0 for all even i € {1,2,3,...,n}, 2;(0) = —oc for all odd ¢ € {1, 2,3,...,n}.
(This corresponds to the token distribution from Figure 6.7 in the case that n is odd.)

6.2.1 Examples: Timed Event Graphs of Production Lines from
Previous Chapters

In order to show that the stochastic timed event graph indeed is of the most general form
we will give some examples of serial production lines from previous chapters and describe
them by means of a similar stochastic timed event graph model.

Example: the two machines production lines

In Figure 6.9 we can see a stochastic timed event graph that is equivalent to a two machines
production line with a buffer between the machines that has capacity n — 2. The two
machines production line is equivalent to the “basic” two machine production lines that
we considered in Chapters 2 up until 4.

e Since we assumed in previous chapters that there is no transportation time inside
the buffers, we will assume that the probability measure JP; ; is such that the holding
times T; j(k) = 0 almost always forall k € IV, [i —j|=1and i+ j ¢ {3, 2n — 1}.
However, this restriction on zero transportation times is not necessary in our stochas-
tic timed event graph model. In our stochastic timed event graph model we allow
any possible stochastic transportation time we want. The main restrictions on the
stochastic transportation times inside the buffer are on the level of the independencies
as described before.

e We will assume that the holding time T 2(k) equals the service time of the k-th
product part that enters machine M;. This service time can have any possible dis-
tribution determined by the probability measure IP; . Since we assumed in previous
chapters that the machine is ready to serve the next product part just after it has
finished the part before, we will assume that 751 (k) = 0 almost always for all k € IV.
Again, this is not a real restriction. In our timed event graph model we can allow
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Figure 6.9: The timed event graph equivalent to a two machines production line with a
buffer capacity n — 2.

machine M to need some stochastic time in order to do some preparations for each
next product part.

We will assume that the holding time T, (k) equals the service time of the k-
th product part that enters machine M,. This service time can have any possible
distribution determined by the probability measure IP,_;,. Since we assumed in
previous chapters that the machine is ready to serve the next product part just after
it has finished the part before, we will assume that T, ,—1(k) = 0 almost always for
all k € IV. Again, this is not a real restriction. In our timed event graph model we
can allow machine Ms to need some stochastic time in order to do some preparations
for each next product part.

We can see clearly in Figure 6.9 that in the Chapters 2 up until 4 we assumed that
the position inside machine M; is counted as one position in the upstream buffer B;.
(It is shown most clearly for ¢ = 2.)

Example: the simple three machines production line from Chapter 2

In Figure 6.10 the stochastic timed event graph equivalent to the simple three machines
production line from Chapter 2 is shown. Because of the buffer sizes equal to 1, which
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Figure 6.10: The timed event graph equivalent to the simple three machines production
line from Chapter 2.

should include the position in in the following machine, there are no positions other than
those inside the machines. Here, in order to obtain a production line equal to the one
shown in Chapter 2, we will assume that:

e that a machine is able to start manipulation of a new product part as soon as the
previous product part is finished. This implies that P ; for ¢ € {1,2,3} is such
that T;.1:(k) = 0 almost always for all k£ € IV.

o that IP;;4; for i € {1,2,3} is such that it corresponds to the service time distribution
of machine M;.

0

6.2.2 Mathematical Descriptions of the Evolution of the Stochas-
tic Timed Event Graphs for Serial Production Lines

There are several different mathematical descriptions for the evolution of the stochastic
timed event graph that we discuss here. The three possible descriptions that we describe in
the following three subsections are denoted by the terms odd-even, forward and backward
descriptions respectively.

The odd-even description

For the odd-even description we have several assumptions:
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e We add the dummy variables defined as follows:

zo(k) & —00,  Tpyi(k) ¥ oo,
0( ) def +1( ) def ) Vk S W, (6‘27)
T()’l(k) = —OO, Tﬂ+1,n<k) = —0

With these variables we can more easily setup the odd-even description of the stochas-
tic timed event graph.

e The initial conditions are, as shown in Figure 6.7, such that we start with a token
distribution with all odd positions free and all even positions occupied.
All the tokens have just started their holding times. The even transitions just fired
for the 0-th time: z;(0) = 0 for all even ¢ € {1,2,3,...,n}, the odd transitions have
not fired z;(0) = —oo for all odd ¢ € {1,2,3,...,n}.

The corresponding odd-even description is as follows:

:El(k) = max{ Ti—1 (k) +T‘_1,i(k), Tit1 (k) + Ti+1yi(k) }, for all odd ¢,
(6.28)
zi(k+1) = max{ zi_1(k) + Tim1i(k), ziz1(k) + Tigr4(k) },  for all even 4,

where i € {1,2,3,...,n} and k € IV.

Example.

In order to obtain a “feeling” for what is happening in such a system we have made two
illustrations shown in Figures 6.11 and 6.12. In Figure 6.11 we can see evolutions in
time of four single positions in isolation, which means that each position does not wait for
synchronization with neighbouring positions. We see that a token at position number ¢ goes
back and forth between transitions ¢; and ¢;,, without waiting at each of them. Figure 6.12
shows us the evolution in time for the same case but then with the synchronization obtained
by means of the synchronization method in Expression (6.28). Here we can see a token at
position number 7 go back and forth between transitions ¢; and ¢;1, with an appropriate
waiting time at each of them. The synchronization rules in (6.28) seem simple, but the
relations between the stochastic times T} ;(k), for i,5 € {1,2,..,n}, li—j| =1, k€ IN
and the waiting times for the tokens are quite complicated.

O

The forward description

In Figure 6.13 we can see the initial conditions corresponding to the forward description of
timed event graph for the evolution of serial production lines. The initial conditions can
be formulated as follows:

e All positions are free.
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Figure 6.11: An example of a behaviour Figure 6.12: The behaviour from Fig-

before synchronization.

Figure 6.13: The initial token distribution corresponding to the forward description.
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Figure 6.14: The initial token distribution corresponding to the backward description.
e All the tokens have just started their holding times. z;(0) = 0 for all ¢ € {2,3,...,n},
The corresponding forward description is as follows:
.'El(k + 1) = SCQ(]C) + T2)1(k),

zi(k+1) = max{ zi1(k+ 1)+ Tim14(k), Tiga(k) + Tipra(k) }, fori € {2,3,...,n}.
(6.29)
The backward description

In Figure 6.14 we can see the initial conditions corresponding to the backward description
of timed event graph for the evolution of serial production lines. The initial conditions can
be formulated as follows:

e All positions are occupied.

e All the tokens have just started their holding times. z;(0) = Oforalli € {1,2,3,...,n—
1}, z,(0) = —o0.

The corresponding backward description is as follows:

Talk+1) = zpo1(k) + Taornlk),

(6.30)

6.2.3 An Approximation Method for the Distribution of Times
Between Firings

We have found an appealing method in order to approximate the distribution of the times
between two subsequent firings at a transition in the stochastic timed event graph. The
distributions of times between subsequent firings of transitions determine the distribution
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Figure 6.15: The Wait & Switch system with its initial token distribution.

of the production rate of the corresponding production line. Before we describe the method
we will first examine a small and simple basic timed event graph that we will denote by
the term Wait & Switch system.

The Wait & Switch system

The Wait & Switch system is a simple stochastic timed event graph that consists of one
single position plus two “external” loops, as shown in Figure 6.15.

For this Wait & Switch system we have the following extra assumptions:

o A, By, C; and Dy are stochastic holding times of the k-th token that arrives at
places p1, pa, p3 and p, respectively. (See Figure 6.15.)
Ay, for all k, is a sample from a probability space (IR, B(IR), IP,),
By, for all &, is a sample from a probability space (IR, B(IR), IPg),
Cr, for all k, is a sample from a probability space (IR, B(IR), Pc) and
Dy, for all k, is a sample from a probability space (IR, B(IR), IPp).

Apg, By, Ci and Dy are mutually independent for every & € IV.

(Ak, Bi, Ck, Di) and (A,,, Bm, Cpm, Dy,) are independent for k £ m.

(k) for k € IN represents the time of the k-th firing of transition ¢;,
z2(k) for k € IN represents the time of the k-th firing of transition %,.

The initial conditions are such that the initial token distribution is as shown in Figure
6.15 and tokens have just started their holding time. z;(0) = ~oco and z,(0) = 0.

The mathematical description of the evolution of the Wait & Switch system for k € IV is
as follows:
zi(k+1) = max{ z(k) + A, z2(k) + By },
(6.31)
z2(k+1) = max{ z1(k+1)+ Cx, zo(k) + Dy }.
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If we now define for & € IN* the variables b(k) and f(k) as follows:

b(k) £ zy(k) - za(k),
(6.32)
FR) ¥ z(k+1) - 0o(k),

then we can transform the evolution in (6.31) in the following more interesting description:

l‘l(k + 1) = xl(k) +max{ Ag, b(k) + By }7

2ok +1) = (k) +max{ Dy, f(k)+Ci },
(6.33)
f(k‘) = max{ _Ak - b(k), Bk },
b(k + 1) = max{ Dk - f(k)a Ck }a
or, equivalently, totally de-coupled as follows:
z1(k+1) = z1(k)+ max{ Ag, b(k) + Bx },
. (6.34)
b(k‘ + 1) = max{ Dy — ma,x[ Ap — b(k), By ], Ch }
in combination with
zo(k+1) = x2(k) +max{ Dy, f(k)+Ci},
(6.35)

f(k + 1) = max{ Ak+1 —max[ Dk - f(k), C’k ], Bk+1 }

The new descriptions in (6.34) and (6.35) are interesting because they de-couple the original

system in two very simple subsystems. A figure of this de-coupling is shown in Figure 6.16.
One could argue that this only is a “virtual” de-coupling because of the coupling between
the variables b(k) and f(k). Note that the stochastic variables b(k), Ax and Bj in one
subsystem are mutually independent for a fixed k, and that the stochastic variables f(k),
Cr and Dy, in the other subsystem are mutually independent for a fixed k as well. This
means that if we “know” the stochastic processes of b(k) and f(k) for all k£ € IN then,
although b(k) and f(k) are dependent, we can view each of the two smaller subsystems in
Figure 6.16 as autonomous processes on themselves.

In order to obtain the distribution functions for 8(k) and f(k) for k € IN we examine the
last two equations from Expression (6.33) in more detail. If we define the distribution
functions Fy)(u) and Fyy(u) for u € R and the distribution functions for Ag, By, Ck

200



Figure 6.16:

and D, as .follows:
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Pe(Ce<u),
Pp( Dy <u),

(6.36)

then, by means of the description in the last two equations of Expression (6.33), we can

describe the evolution for k£ € IV of the distributions of b(k) and f(k) as follows:

Fro(w) = Fa(w) [ Fals+u) dFigy(s),

Fb(k+1)(u) = Fc(u) /R FD(S-I-’U,) de(k)(S).

(6.37)

In fact this completes the de-coupling for the Wait & Switch system because from Expres-
sion (6.37) we can derive everything we need of the stochastic processes for b(k) and f(k)
for all £ € IN. By means of the the two sequences of distribution functions Fy()(u) and
Fyxy(u) we can derive independently the distribution functions for z;(k + 1) — z1(k) and
z2(k +1) — z2(k), which we will denote by Fy,x) and Fi,) and define for k € IN as follows:

def
Fumy(u) =

def
Fomu) =

Pr(z1(k+1) —x1(k) <u),

Pr( zo(k +1) — zo(k) < u).
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We derive, by means of the first two equations in Expression (6.33), that

Fowy(u) = Fa(u) fIR Fp(u — s) dFys(s),
(6.39)
Fuw(®) = Fo(w) [ Folu—s) dFyp(s),

However, we are also interested in what happené if kK — co. We are interested in the limit
(in case it exists) of the distribution functions Ffy(u) and Fyy(u) for & — co. Therefore
we will define: st
Fb(u) = kh_I){)lo Fb(k)(“)a
(6.40)
def .
Fy(u) = lim Fyy(u).
This means that these two limit distribution functions F(«) and Fy(u) are solutions to
a fixed point problem under the transformations in Expression (6.37). The fixed point

problem is to find two distribution functions X(s) and Y(s) such that the following two
equations hold simultaneously:

X(w) = Fglu) /R Fals +u) dY(s),
) (6.41)
Y(u) = Fe(u) /}R Fp(s+u) dX(s).

If we have found the distribution functions F¢(u) and F;(u) we can easily find the stationary
distribution of the time between two firings of transitions ¢; and t;, Fy (u) and Fi,(u)
respectively, defined by:

Ftl (u) q__ef IclLH;o Ftl(k)(u)a

(6.42)
Fy(w) ¥ lim Fyo ().
We derive by taking the limit in Expression (6.39) that
Fo(u) = Fa(w) /m Fa(u — s) dFy(s),
(6.43)

Fu(w) = Fpu) [ Fo(u=s)dFy(s),

which gives the desired distributions for the time between two firings of transitions ¢, and
ts.
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Remark Note that the distribution functions of the time between two firings for transi-
tion ?; and £, are not equal in general:

F, (U) # th(u)' (6.44)

But the expectation of the time between two firings must be equal under all circumstances
for both transitions:

kh_)rgo]E [21(k+1) —z1(k)] = ’}Lr{)lo]E[xQ(k +1) — za(k)], (6.45)
or equivalently
/R wdF,(v) = /]R u dF,, (u). (6.46)

This property is equivalent to the conservation of flow property mentioned in earlier chap-
ters.

Application of the Wait & Switch system in larger chains

Suppose that we have a stochastic serial production line that can be described by means
of one of the descriptions in (6.28), (6.29) or (6.30). Such a stochastic timed event graph
is again shown in Figure 6.17. In this figure we have put the stochastic variables T; ;(k)
that represent the stochastic holding time next to the places that correspond to it. (In
Figure 6.17 we have omitted the counter k everywhere in order to make it more surveyable.)
Suppose that for each position in the line we construct a separate Wait & Switch system
that corresponds to it in a certain way also shown in Figure 6.17. We suppose that the
behaviour of each position can be described by a Wait & Switch system. In order to
construct the Wait & Switch model of the i-th position in the line we isolate the i-th
position and add two “self loops” to it. In this way each of the two transitions ¢; and
ti+1 from position ¢ receives one extra “self loop” represented by two places pz{ ; and p? 1t

with corresponding stochastic holding times Tﬂ(k) and sz+11 11(k) respectively. (Of course,
again, the superscripts f and b stand for the first letters of the words forward and backward
respectively.) The stochastic holding times Ti{i(k) and T, ;,,(k) of each of these “self
loops” are considered to represent the stochastic holding time of the “rest of the line” in
a similar way as By, + b(k) and C + f(k) represented the stochastic holding times of the
“rest of the line” for the Wait & Switch model from Figure 6.16 that we have examined

before.
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Figure 6.17: The timed event graph of a serial production line with blocking decomposed

in several Wait & Switch systems.
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If we define for k € IN and for 4,5 € {1,2,3,...,n} that
Fr,(uw) % Pr,(Tyk)<u), forli—j|=1,

Frs(w) = lim Pr( T%(k) < u ),
r(w) ¥ lim Pr( T(k) <u),

bi(k) &z (k) = zi(k),
(6.47)
fiR) € zi(k+1) ~ g k),

Fo(u) ¥ lim Pr( bk) <u),

k—oo

Fiw) ¥ lim Pr( fik) <u),

Fy(w) ¥ lim Pr( ok +1) - zi(k) Su).

then we can write down the equations for the i-th Wait & Switch model corresponding to
the i-th position.

First we write down Fjy,(u) and FY,(u) as the solution the fixed point problem equivalent
to Expression (6.39):

Fulw) = Fro.(@) [ Fy(u+s) dFy(s),
(6.48)
Fulw) = Froo( [ Fry  (u+s)dFy(s)
Then we can formulate an expression for Fy, (u) and F;,,, (u), similar to Expression (6.43):
Fu(w) = Pro(w) [ Fro,(u—s) dF()
(6.49)
Ffi+1 (u) = FT.'+1,;+1 (u) /]R FTs,i+1 (u - 5) dei (5)7

In order to “link” two neighbouring Wait & Switch models with numbers ¢ — 1 and 7 we
define the following restrictions for linking:

Thk) < fia(k) + Timpa(k)
(6.50)
Th(k) = bi(k) + Topra(k).

K2
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We assume that f;_;(k) and T;_;;(k) are independent variables. We will also assume that
bi(k) and T;y,:(k) are independent variables. As a consequence from (6.50) we can derive
that:

Fpy (u) = / Fr_, (u—s) dFy,_(s),
(6.51)

Fro(w) = [ Pro(u—s) dfy(s),
The following conditions for Tlf, , and T?, are considered as obvious boundary conditions:
Tf(k) = Tt.(k) = 0, forallkelN. (6.52)

If we translate this in corresponding distribution functions we get:

Fps (u)

11

FT,‘:_,L (u)

{ 0, foru <0, (6.53)

0, foru <0,
1, foru>0,"’

1, foru >0.

The equations in Expressions (6.48), (6.49) and (6.51), with the boundary conditions in
(6.53), are the basic equations that we will try to solve in order to compute the distribution
functions for the time between two firings of each transition t;, Fi.(u) for i € {1,2,3,...,n}.
If we have found a s6lution to the equations then, as a consequence of a property of all
Wait & Switch systems described in Expression (6.46), we conclude that conservation of
flow holds as follows for all 4,7 € {1,2,3,...,n},

T 4 fIR wdFy(u) = /R u dF, (u), (6.54)

which is equivalent to the approximated average time needed by the production line to
produce one single product. The average production rate denoted by R is then determined
by: .

R = T (6.55)

An algorithm to solve the equations.

We have found equations in Expressions (6.48), (6.49) and (6.51), with the boundary
conditions in (6.53), but we did not yet describe a method to find a solution. In order to
find a solution we suggest the following algorithm:

1. Take as initial conditions the following distribution functions for all
1€{1,2,3,.,n—-1}:

F Of (u) =

{ 0, foru<0, (6.56)

1, foru >0,
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and the following distribution functions for all 7 € {2,3,...,n}:

(6.57)

qug..(“) _ { 0, foru <0,

1, foru > 0.

Initialize also the boundary conditions for T7j / 11 and T, such that they hold for all
iteration steps s € IV:

{ 0, forwu <0, (6.58)

s 0, foru <0,
1, foru >0, FTﬁ,n (u) {

s
T{I(u) 1, foru >0.

2. Initialize iteration step number s with s := 1.
3. Forward aggregation, do for i =1,2,3,....n— 1:
a. Compute F{*(u) and F ffs(u), the fixed point solution with counter ¢ of the
following equations that correspond to the equations in Expression (6.48):
FiP(w) = Fry,) [ Fy(w+r) dEf(m),
(6.59)

F{s(u) Fs Vo(u+7) de’:’s(T).

+1 i+l

Il

1+1

b. Compute F.,  (u) by means of the first equation in Expression (6.51) and
1+1 i+1
the solution F7 (u) found in a. as follows:

Yy / Fr,,(u—7) dF5(7) (6.60)

;+1 1+1
4. Backward aggregation,dofori=n—-1,n-2,n-3,..., 1
a. Compute F,f’s(u) and F}’s(u), the fixed point solution with counter ¢ of the
following equations that correspond to the equations in Expression (6.48):
Ftlw) = Fro () [ Fiy(utr) dFp(n),
(6.61)
FbS(u) = Fr,, (u) o (u+T1) dFIf’l;S(T).

R tidtnitl

b. Compute F, ( u) by means of the second equation in Expression (6.51) and the

solution Fy (u) found in a. as follows:

) = [ Fr(u-r) dE(D) (6.62)
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5. If sufficient convergence is not reached then increase iteration counter s with s := s+1
and go to 3. If sufficient convergence is reached then continue here and go to 6.

6. Compute F¢(u) for i = 1,2,3,...,n by means of the following equations that corre-
spond to equations from Expression (6.49) as follows:

Fiw) = Fiy(w) [ Pro,(u—s) dR2(o). (6.63)
7. Stop.

Remark We did not describe a method to find the fixed point distributions as described
in 3.a and 4.a. This fixed point problem is similar to the fixed point problem as described
in Expression (6.41). A straightforward way to find the fixed point solution in (6.41) is to
start with the initial condition

0, foru<0,
Fb(O) (u) = { 1, for U Z 0. 3 (6.64)

and continue the iteration for k = 1,2, 3, ... in Expression (6.37) until sufficient convergence
is reached.

Note also that it is ngt necessary to find an exact solution each time we perform steps 3.a
and 4.a and that we can re-use the solutions of steps 3.a and 4.a from iteration cycle s for
the same steps in the next iteration cycle s + 1. If we play with these ideas we can come
up with algorithms that are much more efficient. The purpose of this algorithm, however,
is just to offer a method to compute the solution to our equations. Efficiency was not our
aim.

6.3 Conclusions

In this chapter we introduced the concept of the stochastic timed event graph. First we
described the basic properties of such graphs. Then, for the purpose of illustration, we
treated a simple two-dimensional autonomous stochastic timed event graph. In spite of
its simplicity, however, we were not able to solve the stationary behaviour of this simple
two-dimensional system in the most general form. This illustrates the complexity of these
graphs and shows that explicit expressions for the stationary distribution of such graphs
is still beyond our reach.

After this illustration of the complexity we give a very convenient description of serial
queueing networks by means of stochastic timed event graphs. This most elegant de-
scription of serial queueing systems is more general than the descriptions that come from
standard queueing theory because it allows each position in a queue to have arbitrary
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transportation time distributions, it allows every possible collection of waiting time distri-
butions for the servers and it allows also an arbitrary distributed repair time between two
services. This new approach does not make a fundamental difference between parts waiting
inside a server and parts waiting at a position in a queue: positions in queues are dealt with
in exactly the same way as positions inside servers. In fact the new description considers
each single position as being a small server in itself. Some examples of how production
lines from previous chapters can be described by means of event graphs were given.

This elegant description by means of stochastic timed event graphs is useless if it does not
lead to a method my means of which we can solve its stationary behaviour. It appears
possible to decompose the serial queueing system into smaller graphs that we denote by
the term Wait & Switch System. By means of thorough examination of the small Wait
& Switch Systems we can solve their stationary distributions. The decomposition of the
serial queueing network in Wait & Switch Systems, of which we can solve the stationary
distributions, allows us to find expressions for the stationary distribution of the total net-
work. Then an alternate forward and backward iteration algorithm is described by means
of which we can find an estimate that satisfies all the restrictions in the expressions. The
solution from the algorithm allows us to estimate the overall average production rate and
any possible waiting time distribution that we are interested in.

Results from the algorithm are not given in this chapter. This is because it is our aim
to find an ezact solution method the stationary distributions. It can be shown that the
solution to the restrictions that we find by means of the algorithm is not an exact solution
to the stationary distribution of the overall queueing network. Therefore it is more inter-
esting to look for better methods than to examine the solution from the algorithm.

The descriptions and the methods that we describe here offer a brand new approach to
serial queueing networks with blocking. It is a promising method that certainly needs
further research in a near future.
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Appendix A

Used Functions and their Properties

In Chapter 2 and Appendix B we use the rather complicated functions ¥y, Ry, £ 5 and
Qn- In this appendix we will describe these functions and their properties in full detail.
Each of the functions will be described in a separate section.

A.1 The Function ¥y and Its Properties

The function ¥y is introduced in Expression (2.15) and is used throughout Chapter 2 and
Appendix B as one of the basic functions.

Definition 1

Uy : [0,1] x[0,1] ~ [0,1],

lTl——ra%’ for (z,y) € (0,1)? withz £y ,
z
1 ”
for (z,y) € [0,1? withz =y
o m7 ’ ) ’
Un(z,y) ¥ (A1)

max(2 — N,0).(1—z), for (z,y) € [0,1]* with %}T’f—) =0,

) 1-—
1, for (z,9) € [0,1% with =) — o,
where
z (1-vy)
a(z,y) = ———.
E =Ty
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Theorem 2 (¥ property 1)

x

‘ 1
‘ "I,N(x1y) = a ’ I+ a+a2+ + OZN’ V(.’L’, y) € (011)2, (Az)
i where
z(1-y)
olz,y) =
(z,9) T-2)y

Proof. First we observe that:
z=y < oalzy=1.
In case (z,¥) € (0,1)? and & = y then the right side of (A.2) reduces to

1 T 1

- = =\1} y L),
r z4+1+1°+.. +1¥ N4z n(z,2)

which is in accordance with definition (A.1).

In case (z,y) € (0,1)? and z # y then, since a # 1, the right side of (A.2) can be rewritten

as follows:
1 T oz l-« 1
Yy z4+a+at+.. +a y l—a z+a+a®+..+a"
_z 11—«
y (1-a)z+a—ao*
Since (1—&).x+a:%we conclude that
T 11—« _ l-«
vy (I—-a)zt+a—-a ¥t — gy T _ N0
Yy
_ 11—«
- 1 y_aN-H
= ¥Uy(z,y),

which is also in accordance with definition (A.1).
This completes the proof of “¥y property 1”.
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Theorem 3 (¥y Property 2) The functions Uy satisfy the following recurrent relation
in N € IN for all (z,y) € (0,1)%:

‘IIO ($» y) = %»
Un(z.) (A.3)
— N, Y
\IIN-(-I(':U’y) = \IIN x’y)_}_a:
where
z (1-y)
oz, y
(@9) 1-2)y
Proof. First of all it is easy to check from the definition that ¥y(z,y) = %
Now let (z,y) € (0,1)* and
z (1-—
an=—L—ﬂ.
1-z)y
Then by using “¥y Property 17 we conclude that
“I/N(‘r’ y) _ 1
\IIN(:c,y)+a - 1+L
‘IIN ($, y)
_ 1
1+a~%~(x+a+...+aN)
1 T
y g—i—ax-i—a(aQ—f-...—l—aN).
Since % = a + (1 — o).z we conclude that
1 x 1 T
Y E—Fozac+oz(az+...+ozN) y at+(l-ajg+ar+ale®+.. +a)
Y
_ 1 z
y :c+a+a2+...+aN*f1
= \pN+1 (I, y)
The last step uses again “¥y Property 17,
This completes the proof of “¥y Property 2”.
=
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Theorem 4 (Vy Property 3) ¥y is continuous on [0,1]* except for points (0,0) and

(1,1).

Proof. It is easy to see that U (z,0) = 0 and ¥n(0,z) =1 for all z € (0,1]. This implies
that ¥y is discontinuous in (0, 0).
Similarly we notice that ¥x(z,1) = 1 and ¥x(1,z) = 0 for all z € [0,1) which implies
discontinuity in (1,1).

n

Theorem 5 (Uy Property 4) Uy and all its partial derivatives of any order are con-
tinuous on (0,1)2.

A.2 The Function Ry and Its Properties

The function Ry is introduced in Expression (2.20) and is used throughout Chapter 2 and
Appendix B as one of the basic functions.

Definition 2
Ry : [0,1] x[0,1] ~ [0,1],
Rylz,y) € 2. (1- (1-p)¥n(l-21-y) ) (A4)

Theorem 6 (Ry property 1)

l1—z
R 3 = . 1 — , V , ,1 2’ .
w5y : { 1—x+ﬂ+ﬁ2+...+ﬁN} @y € @17 (A5)
where
y (1-2)
Blz,y) = F——.
@) (1-9)z
Proof. This follows directly from the definition of Ry and “¥y property 1”.
[
Theorem 7 (Ry property 2)
( N+1 _ ﬁ
. 2 .
z Ej\’?rffm, V(z,y) € (0,1)2 withz £y
l—y
Rn(z,y) = 5 (A.6)
2 V(z,y) € (0,1) with z =
zy, Y(z,y) € 0,1 with zy(1 — z)(1 —y) =0
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where

_y(-2)
,B(xvy) - (1 _‘y) T
Proof. Let (z,y) € (0,1)? and let
_y(-2)
ﬂ(ac,y) - (1 _ y) x'

Then follows from “Ry property 1”7 that

B4+ ...+ 8"

Bv@y) = e 0 i m .

In case that = y then 8 =1 and Ry(z,y) reduces to

1+12+ .. 4+17
= T 2 N
1—z4+1+1°4+...4+1
Nz
N+1-2’

RN(xa y)

which is in accordance with “Ry property 2”.

In case that z # y then B # 1 and we can conclude that

oo BHE+ 4B f-1 B4+
l—z+B+F+..+8% 7 B—1 1-z+f+0+..+6"
ﬂN+1—,6

B B (-1 B)}

If we now use that 8+ (1 - 8)(1 —z) = 1 :f/ we get that

. ﬁN+1_ﬁ . ﬁN+1__ﬂ
PTG a5~ e 12
-y

Z

This ends the proof of “Ry property 2” for the interior (z,y) € (0,1)2.
For the edge expressed by all (z,y) € [0,1]* with zy(1 — z)1 — y) = 0 it is simple to check
the result. This completes the proof of “Ry property 2”.

L]
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Theorem 8 (Ry property 3) The functions Ry satisfy the following recurrent relation
in N € IN for all (z,y) € (0,1)*
Ro(z,y) = 0,

1-— RN(‘ra y) (A7)

r+y—zy— Ry(z,y)

Ryu(zy) = zy-

Proof. Let (x,y) € (0,1)2. First of all it is easy to check from the definition that
Ry(z,y) =0.
From the definition of Ry follows that
Byu(zy) = 2z(1-(1-y)¥yvn(l~-z,1-y).
With “Uy property 2" this transforms to
Uy(l—2,1-y)
\IIN(l—a:,l—y)+ﬁ

Ryii(z,y) =z(1-(1-y) ) (A.8)
y(1—2)

z (1-y)

If we transform the definition of Ry such that we get an explicit formula for ¥ (1—2,1—y)
in terms of Ry(z,y) we obtain

where ((z,y) =

z — RN(‘T: y)
Iy(l—z,1-9y) = ———2=-,
R ) P
Using the last expression for Uy (1 — 2,1 — y) we get that
T — RN(x>y)
Uy(l-z1-y) _ z(1 —y)

lI’N(l—fL',].—y)‘i‘,B B QU—RN(-T,y) y(l—iﬂ)
zl-y) z(l-y)
x_RN(xvy)v
z - Ry(z,y) +y(1 - z)

z = Ry(z,9)
z+y—zy— R(z,y)
Now we continue by substituting this in Expression (A.8) and we get that

z — Ry(z,y)
z(l - (1- y)xw _xyN_ Ry(z, y))

1—RN($ay)
Y- :
z+y—zy— Ry(z,y)

Ryi(z,y)

This completes the proof of “Ry property 3”.
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Theorem 9 (Ry property 4)

Ry(z,y) = Ry(y, z),

Proof. In case that (z,y) € (0,1)? and z # y let

Y(z,y) € [0, 1) (A.9)

y (1-2z)

Then follows from “Rpy property 2” that for z # y

RN(xu y)

-2y

. IBN+1($, y) - :6(1:7 y)

1=
,8N+1(93,y) _ . _Z'
-y
. B(z,y) - ﬁN+1(x,y) ' T 8 (N+1)(.’E,y)
T e e R T
z (11—

Y (5N, y) - 1)

1-y
~(N+1) _
8 (@y) ~ 17—

B (a,y) — fa,y)

1-y
1—2z

:H~(N+1)(-737 y) -

BV (y,5) - fly, )

1-—
N+1 _ Y
By ) —

Ry (y,z).

The second last step in the proof uses the fact that B(y,z) = 87!(z, ), the last step uses

again “Rpy property 2”.

The case z = y obviously is not important for this symmetry property.
What is left to check are the cases in which z or y are either 0 or 1.

From “Ry property 2” follows that Ry(2,y) = zy = Ry (v, z) in these cases.
This completes the proof of “Ry property 4”.

Theorem 10 (Ry property 5)

0< Ry(z,y) < =,

¥(z,y) € (0,1)% (A.10)
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Proof. Let (z,y) € (0,1)? and let

y (1-2)
Bz, y) = 77—
(= 9) -9z
Then obviously 8 > 0 and 1 — z > 0 and therefore also

| -z > 0.
1—z+8+8+...+8Y

And we conclude that
1—-z
148+ P+ .48
1 11—z
l—z+B8+8+..+6"Y

x. { 1 - -2 }
1—2+B8+8+..+8"
Ry(z,y)
The last step uses “Ry property 17.
On the other hand agr.ain ;ince >0,1—z>0andz >0

.. B+p2+ .. +pY
I1-z+8+5+...+8Y

. {1 B 1-2 }
' l—z+ B8+ 8+ +8Y
RN(x7y)

The last step again uses “Ry property 1”.
This completes the proof of “Ry property 5”.

Theorem 11 (Ry property 6) Ry and all its partial derivatives of any order exist and

are continuous on (0,1)2.

Theorem 12 (Ry property 7)

('96@&(73 y) = (%;QY.1+2a+3a2+4a3+_,.+NaN—1
z D -

(1—y+0z+cv2+oz3+...+aN)27
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where

oz (l-y)
)= gy
Proof. Let (z,y) € (0,1)? and
z(1-y)
a(z,y) = T-dy
A combination of “Ry property 17 and “Ry property 4" makes that
l-y
RBy(z, = .1 = .
v(@9) v { 1—y+a+a2+...+aN}

If we differentiate both sides to the variable z we obtain

M o) =~y (1-1)- 2 1
oy Y= 7Y YI" 3z l-y+a+a®+..+a" )’

i(1—y+oz+oz2+...+cz1")

ox
= y(1l-y)- ,
(l-y+at+a®+o®+.. +a)’
d 0
—(a+a2+...+aN)-—a
= y(l_y)' do 3 (9$N 3
(I-y+a+a®+a®+.. +a")
(1+2a+3a2+...+NaN'1)~—l—l2
y(1—z)

= y(l-y)-

b

(1—y+o¢+012+013+...+ch)2

(1—y)2 (l+2a+3a2+...+NozN_l)
I-2/ (Q-y+a+a®+o®+..+a™)

This completes the proof of “Ry property 7”.

Theorem 13 (Ry property 8)

aRN ) RN ('T: y)
oy (&) < .

Proof. Let (z,y) € (0,1)? and

0< , V(z,y) € (0,1)2. (A.12)

z(1-y)
(1-=z)y’
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then obviously & > 0,1 —y > 0 and 1 — z > 0 and therefore

(1_y>2 (1+2a+3a2+...+1\fa”‘1) .
. > ,
1-2) (l-y+a+d®+0®+..+a")
ORN
= > 0.
e & Y) 0

This is a direct consequence from “Rpy property 7”.
The other inequality in “Ry property 8” is more difficult. In order to show that Q(%M(x, y) <

M%ﬂl we consider 3 cases for (z,y) € (0,1): z <y, z>yand z =y.

Let (z,y) € (0,1)* and z < y.
i : + 1 _ l—z  _z .
Then we use that o* <1, Vie Nt 1—-qa > 0, and T—y ®=7 < 1 and derive

l4a+?+al+..+a"¥ 1 < N,

1—
. a-(ltata’+ad+..+a¥l) < N,
-y
1-—
- ;‘-a,(1;La+a2+a3+...+a”-1)(1—a) < N1 -a)
l1—=x N
1 y»a-(l—a) < N1 -a)

We want to derive the same result for the case (z,y) € (0,1)% and z < y.
Therefore we use that of > 1, Vi€ INT, 1 —a <0, and —%{—5 L= % > 1 and derive

l+a+a’+a+..+a" 1 > N,

1 -
1_;-a»(1+a+a2+a3+...+aN‘1) > N,
1—
1~z-a-(1+a+a2+a3+...+aN‘1)(1—a) < N(1-a),
177 ai-a¥) < N(-a)
Ty Q).

We conclude that the inequality

l1—z
1-y

ca-(1-a") < N1-a),
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holds for all (z,y) € (0,1)? with z # y.

Now let us therefore combine the cases z > y and z < y and consider the case that
(z,y) € (0,1)? with z # y. Then we continue with what we have just derived

1—
x-a-(l—aN)
I-y

< N1 -0a),

1-2 N+1.(

1_y-a M > —NoV(1-a),

11—«

(1—aN)~1_$-aN+1-(l—ozN) > 1-0ao")=Na"(1-a),

1-—
(1——aN)(1—F_—z-ozN+1) > 1— (N +1)a" + Ne¥*,

1- 1-
(1- aN)(—% —aMy s (1 (N4 1) + Na'H),

1- l1—x

For the following step we use the fact that %—:% =(1-0a){(1-y)+aandso

1-— 1-
a- aN)(l—_—Z —ay) > _i (1= (N +1)a" + Na™+y,

(1 —aN){(l—a)(l—y)Jra—ozN“} > ! _y'(l— (N + 1o + Na ),

l1-z
1-a¥ (1-a)1-y)+a-H S 1-y 1—(N+1)a" +NaN*
1—-a 1—-a -z (1—a)? '

After some calculus you can conclude that this is exactly similar to

+a+a’+...ta
1 2 N-1

1_
l-y+atao®+..+a") > —1——;—:%(1+2a+3a2+...+NaN"1),

-y l4+a+d®+..+a""! o (1—y>2 1420 +30%+ ...+ No™™?
-z l—-y+a+a’+..+a" 1-z/) (I-y+a+a®+..+a")?

On the left side we now use that %%% = % -« and we get

a+al+ad+ .. +a” (1—y)2 1+2a+3a%+ ...+ No'1

Y
T 1—-y+ataol+.. +a” l1-z/ (l-y+a+a®+..+a™)"
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Al

v [, _ 1-y } (1-—-y>2‘1+2a+3a2+...+NaN_1
T l-y+a+a®+..+a” 1-z/ (I-y+a+a®+.. +a")?
RN(yaz) 8]%N
Ry(z,y oR
N(x ) > N(x y)-

The last two steps use “Ry property 17, “Ry property 7” and “Ry property 4” respectively.
Now we have shown that le > 811; (z,y) for all (z,y) € (0,1)? and x # y. What is

left to prove is that Eﬂ;ﬁ,_y) > %N—(ac, y) also holds for (z,y) € (0,1)? and z = y. If we
use “Rpy property 2” for z =y then we get

Nz
Ry(zs) _ Nti—z
T T ’
_ N
 N+1-z
And if we use “Ry property 77 for z = y we get
aRNMA) B <1—3:)2 14214312 4+41%+ ..+ N1V
oz l-z Ql-z+14+12+13+ . +1V)

1+2+434+4+...+N
(l—z+1+14+1+...4+1)%

%N(N +1)
(N+1—-2)°

bl

To check that in this case also Bx (x Enlz,y) > Qa%m (z,y) we examine therefore

N . EN(N-FI)
N+l-z (N+1-2)*

IN(N+1-2) > N(N+1),

%N(N +1) > o

which obviously holds for all z € (0,1) and all N € IN*,
This completes the proof of “Ry property 8”.
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The author is grateful to his colleague Peter Sonneveld, a fellow researcher who works and
teaches at the Delft University of Technology at the department of “Applied Mathematics
and Computer Science”. Mr Sonneveld has put a lot of effort in finding the proof of the
following theorem denoted by “Ry property 9”. It is a version of his proof that follows
the theorem hereafter. Ideas from his proof have led to the derivation of the recursive
properties described in “¥y property 2” and “Ry property 3" as well.

Theorem 14 (Ry property 9) For all N € INt and (z,y) € (0,1)? the following holds:

2R
_a_I'QAL('Z‘a y) < 01

(A.13)
DBy (zy) < 0.
dy° 7
Proof. Let a function v, v for y € (0,1) be defined as follows:
Yyn ¢ (0,00) = (0,1),
(A.14)
Wy n(a) 1-—y+ya

- 1—y+af~|—a2+,..+aN
. 1 - : : «“ ”
Then, since 1 —y+ya = 1—_—%, it can easily be shown by means of “Uy property 1” that

z(1-y)\ _
¢y,N (m) = ‘I’N(l -y,1 -:C).

Then, as a consequence of “W¥y property 2”, we can conclude that

Yy, v (@)
’l,[)y,N(CY) +a

A combination of the definition of Ry and “Ry property 4” has the following result:

wy,N-}—l(O‘) =

Iy = orly (1= (1= 01,1~ 2)),
2
=~y (1~ Dyn(a),
where
_z(1-y)
=Ty
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If we continue we find a remarkable result, found by Mr Sonneveld:

2 (= @) = v (i) + L) 2 (1= ).

z
d o d 9 (0
= (e H e (5 0 0)
Pyn, | [0
+ o (%) (1—:c>),
diy N da 0
o '(a (ax (- ))“5:5)

AL (a—“)2<1—x>,

I

do* Oz
N da\* &, n
= (%) a-0- e

The last step is remarkable because it uses the fact that = (gﬁ (1- x)) - %% =0.

If we summarize the previous arguments we conclude that

PR (o) = ~y(3—”‘)2<1— 7y Tl )

oz? ox da?

2
and since y > 0, (%%) > 0 and 1 — z > 0 it suffices for our property to show that
d2
%ﬁ(a) > 0, Vo € (0,00) .

We are going to proof this by means of induction and the fact that

1/)14,1 (a) = ll:—t%%a
_ _Yyn(a)
Yy ns1(e) = m%m-

We will prove first that
ax(1—a,0) < Py n(a) <1, Vae (0,00),
then we will prove that

dwy,N

1<
doe

(@) <0, Vae (0,00),
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and then we have all ingredients to show that

dzwy,N
do?

(@) >0, Vae(0,00).

First we show that these three properties all hold for ¢, .
Obviously, since 1 ~y >0, >0and y >0

l-y+ya
= —— >0
Uya(a) l-y+a
and also since y <1 and o > 0
yo—ao? < Yo < o

l-y+ya—a? < l-y+ya < l-y+aq,
l-a)l—y+a) < 1—y+ya < l-y+a,
1-a < i=Etue o
_y+a 9

I—-a < Pyi(a)

A
—

This proves that max(1 — a, 0) < ¢y,1(a) < 1.
It is easy to derive that
dyr, \ 1-y \*
da (@) = <1—y+a '

Since 1 —y > 0 and « > 0 it is easy to see that

0 < 11—y < l-y+a,

o
A
TN
[ =
)|
+

Q

SN
A
-



This ends the proof of the second property for 1, ;.
Since 1 —y > 0 and o > 0 is easy to derive that

P,y 21— y)?
il YT T oytar

This ends the proof for the case N = 1 that for all & € (0,1)
max(l - a,0) < Yyn(e) < 1,

-1 < %ﬂ(a) < 0,

%%gﬂ(a) > 0.

Now we prove by induction that this property holds for every N € INt.
For this we use only the fact that

_ Yyn(e)
¢91N+1(a) - 1’[)%;(&) +Of‘

Suppose that for an arbitrary N € IN* the property max(1 — «,0) < #, y(a) < 1 holds
then, since o > 0, obviously

0 <  Yyn(e) < Yynla)+a,

Yy n(2)
° < Gal+a < T
0 < YPynnla) < 1,
But also the following holds since ¢, y(a) > max(l — «,0) and a >.0

z‘by;N(a) > 1- a,

dyn(@) = (1-a) > 0,

o- Yyvla) —(1-a)

wy,N(CY) + 0,
_ Yyn(a)—(1—a) 3
l-a+a Don(a) +a 1-a,
Yy (a) _
byn(a) + o 1-a,

Pynpila) > 1—-a.

226



which proves by means of induction that for all N € INt

max(l —,0) < ¢Yyn(a) < 1, Vae(0,00),
Let us now assume that for an arbitrary N € INT for all o € (0,00) —1 < éz5%2&(@) <0
holds. From

Yy n1(a) = %

follows directly that

d
82 (0) o~ ()
%y (a) + 2)?
If we now start with our assumption and then proceed as follows

-1 < %QLN(Q) < 0,

d

—a < %&ﬂ(a%a < 0,

dwy,NH
do

() =

~Wun(a) +a) < BNG) .0y u(a) < —Py(a),
dwy,N
—2=(a) a— Yy n(a)
_ 1 da ¥ Y ~(a)
@ ¥a = 7 @@ ta® S Wyala) + o)
1 dipy N1 Py~ ()
—wy,NiaH—a < dézv+ (@) < _( o (@) + @)’

We already have proved that

'l,by’N(Oé) > 1-— «,

Pyn(a)+a > 1,

%_N(a) + @

" Yyn(a) +a
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We also have proved that ¥, x(a) > 0 and since also o > 0 it is obvious that

_ Py, (@)
T

If we combine the previous expressions we can now conclude that

dy v 11
-1 < —éa—(a) < 0
This ends the proof by induction of the fact that for all N € IN* and & € (0,00) —1 <

¢§N+I(a < 0.

By means of the properties of 1, n(a) and —wL—( ) shown in the previous part we are
now able to derive the property that we are most mterested in. Again we use the argument
of induction.

Assume that for an arbitrary N € IV the property —MJL( } > 0 holds for all @ € (0,1).
We show that this implies that this property also holds for N + 1. Our recurrent relation
for 1y, n(cr) can be written as follows:

Py, N41 (a).[d)le(Oz) +a] = Yyn(a)
We can differentiate the equation one time as follows

Ay N1 dipy N
da da (@) +1

] = B

() [yn(0) + o] + Yy nsila) [
If we differentiate this equation again we obtain

d2
TE (0 (e + 0] +
dwy,N +1 [d% Y (o
do

d2¢ny(a) _ d? wy,

)+1]+wy,N+l(0‘)~ do? Tdo? ( )-

We rewrite the last equation and get that

d%y d
P D () [1 = v ()] — 220041 (T

d 2
(o) = =2 Py () + o

dwy N

()+1]

Now we will use all properties again.
First we assume that

dzwy,N

dO{Z (Oé) > Oa



next we have shown that

wy:N'Fl (a) < 1>

l—wy,N+1(a) > 0>

which makes

d2
L4 (0). 1 = By v (@)] > 0
We have also shown that
dwy N+1
T 0
do <5
_9. d¢y,N+1 N O,
do
| and that
dwy N
: -1
() > -,
d
Wl () 41 > o,

do
which also makes

_o. Bynn [dlﬁy,N

. N () +1]>0.

If we combine this we get that the numerator is positive:

iy N [dlby,N
da? da

(a).[1 — Py ne1(a)] = zﬁzﬂ_ﬂ,

0n (a) +1] > 0.

Because we have shown that ¢, ny(a) > 0 and o > 0 we conclude that the denominator is
also positive:

Py n(a) +a >0,

And thus we have shown that

d2 d d
Py “dlin’N(a)-[l = Py (o)) - Q%ﬂ.[—‘gi(a) +1] L,

do? Yyn(a) +a
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By induction we now have proved that for all N € IN* the following holds
dzwy,N

do?
We remind the reader that we have already derived that

8°R da\’ &
azZN (xzy) = Y ('a_:-) (1_33) ' dll/:{lz,N (0!),

(a) >0, Va € (0, c0).

And therefore we have also shown that for all N € IN* and for all (z,y) € (0,1)?
&Ry
oz?

Because of the symmetry of Ry described in “Ry property 4” it is obvious that the
following is also true for all N € IN* and for all (z,y) € (0,1)%

(z,y) <0.

*Ry
a—yz(l', ’y) < 0.

This completes the proof of “Ry property 9”.
]

Theorem 15 (Ry property 10) For all N € IN* and (z,y) € (0,1)? the following holds:

. 1
| min(,y) - Ru(@y) | < (A15)

Proof. First we define

Dy : (0, 1)2 [ d (0, 1),
(A.16)
Dy(z,y) o min(z,y) — Rn(z,y).

Then it is obvious from “Ry property 4” that functions Dy are symmetric:
Dy(z,y) = Dn(y,2), V(z,y) € (0,1)%
“Ry property 5” combined with the symmetry of Ry implies that
0 < Dy(z,y) < 1, ¥(z,y) € (0,1)%

Because of the symmetry of Dy and because Dy is strictly positive it is sufficient for the
proof to show that for all N € IN*

1
Dy(z,y) < g VY@y)€(0,1)" with z<y.
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Therefore we consider a pair (z,y) € (0,1)% with # < y. In this case the function Dy
reduces to

Dy(z,y) = z-— Rn(z,y),
and from the recursive equation of “Ry property 3” we derive that
2
(1 —
Dl (xa y) = _‘—(——y_)—’
z+y(l—=z)

DN+1($7y) = - RN+1($>y)a

. 1'—RN(:E7y>
t+y—zy— Ry(z,y)

= r—z-y

. 1—z+ [z — Ry(z,y))
:C_l_y_xy—x-l—[l‘—RN(x,y)]’

= z—z-y
1—z+ Dn(z,y)
y(1—z)+ Dn(z,y)’

'T(l _y)DN(‘T:y)
y(1— )+ Dy(z,y)

Since 0 < z < y we derive for all z € IR, z > 0 that

= x—z.y.

z £y,
—y £ -T,
—zy < -2,
z—zy < :c—xz,
H1-y) < a(l-2)<
dz(l—y) < 1,

N
)
_
|
&
™
IA
n



z—zy+4z(l —y)z

IN

y—zy+z,

z(l —y) +42(1 — y)z

IA

y(l—z) +z,

(1 —y)(1 +4z2)

IA

y(l—2) + 2,

z(1—y) 1
y(l—z)+z 1+42°

IA

z(l —y)z z
yl—z)+2z — 1+4z

We can easily derive that 7% is a monotonically increasing function of 2.
Therefore let again (z,y) € (0,1)%, 21 € R and 2; € IR such that z; < z,, then

21 < 2,
21+ 42520 < 25+ 422,

z1[1 +420] < [l +4z),

21 < )
1442z 1442

We can now prove by induction that Dy(xz,y) < ZL%V

For N =1 we have

z(l—y)z < 2 z 1 -1

Di(z,y) = z_1_1
(@ y) yl—z)+2xz ~ 1+4z 4z 4 4N

If we assume for an arbitrary N € IN* that Dy(z,y) < Z%V then we derive by monotonicity
z
of m} that

1
z(1 - y)Dn(z,y) Dy(z,y) AN 1
D N — < < = .
w8 ) = S ) Do) S T+ 4Da(ey) | L4 L AN+
4N

By the induction argument we have now shown that for all N € IN* and for all (z,y) €
(0,12 withz < y

1
Dn(z,y) < v
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This ends the proof of “Ry property 10”.
=

Theorem 16 (Ry property 11) For all N € IN* and (z,y) € (0,1)? the following holds:

ey = ey > ey,
2>y = ey < Py

Proof. Again we will use induction to proof this property.
Therefore we first show the property for Ry with N = 1. From

(A.17)

- Y
Rl(xuy) - ‘T'{"y _myv
follows directly that
Q&(w )= ¥
oz VT vy —a)?

From the symmetry between arguments z and y in Ry(z,y) it is clear that then also

Q@l(x y) = _9“'2__
dy (z+y—zy)*

And therefore we can conclude that

(9R1 aRl y2 - 1,2
= x7 - Ta ‘/I:ﬁ -_—_——__’
T+ Yy
= —_7) —m——
v )($+y—xw”
and since obviously for all (z,y) € (0,1)?
+
_sty o,
(z+y—=y)
the property is shown for the case N = 1.
From “Ry property 3” we know that

R s = Sy .
N+1(T y) z-y z+9—2y— Ru(z,7)
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From this property we can derive that

V(1= R(a,u))(y — Ru(z,9) + 231 = 2)(1 ~ )% 2 (z,9)

ORN11
z (z+y—=y)’

T(%y) =

Because of the symmetry property denoted by “Ry property 4” we can conclude that then
also

(0~ (o) = Ra(a9) + ay(1 = 2)(1 =) 5 o)

(z+y—zy)°

ARyt _
Ty—(ﬂﬁ y) =

If we combine these two expressions we get

ORwss(g,y) - Msty,y) = (y-a) Lo BnllEry Ralry))

(z+y—zy)’
+ (%%M(x,y) - %M(x,y)) . xJ__J__T_zé;;yxi i;,s y).
(A.18)

It is easy to see from Ry properties 3 and 4 that for all (z,y) € (0,1)%, 1 — Ry(z,y) > 0
and 7 +y — Ry(z,y) > 0 and that therefore for all (x,y) € (0,1)?

(1= Ry(z,y))(@+y — Ry(z,9))

> 0.
(z+y—zy)*

It is also obvious that for all (z,y) € (0,1)2

zy(l — z)(1 - y)

>0,
(z+y—zy)?

Let us assume now that the property that we want to prove holds for an arbitrary N € IN*.

Then first let (z,y) € (0,1)? such that z < y.
Then y — z > 0 and by assumption

ORy ORy
or (xly) —5y_(x1 y) > 0.

This combination in Expression (A.18) makes that

aFiN—l—l ($ ) _ 8}%N-}-l (I y)

= 3 > 0.

This shows the first part of the property for N + 1.
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Finally let (z,y) € (0,1)2 such that z > y.
Then y — z < 0 and by assumption

ORN
oz

ORN

(m,y)——ég-(a:,y) < 0

This combination in Expression (A.18) makes that

ORn 11 IRN1

AL Bk 0.
ECR) By (z,y) <

This shows the second part of the property for NV + 1.

We conclude that the property also holds for N + 1.
By the induction argument we conclude that our property holds for every N € IN*.
This ends the proof of “Ry property 117.

Theorem 17 (Ry property 12) For all y € [0,1] and for all N € IN*

lim RN (xy y)
0 T

=1

Proof. Let N € INT, then according to “Ry property 3”

lim Ry(z,y) — fim 1—Ry_1(z,y)

210 x {0 y.x+y—zy—RN_1(ar,y)'

The functions Ry_; are continuous on [0, 1]? for all N € IN*, and

IZIEII RN_)_(QZ, y) =0.

Therefore
1—Ry_ -
lim y- N-1(2,y) =10
=0 z+y—zy— Ry_i(z,y) 0+y—0y—0
1
= y--,
Y
= 1.

This ends the proof of “Ry property 12”.
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A.3 The Function . y and Its Properties

The function Qu is introduced in Expression (2.49) and is used throughout Chapter 2 to
describe the equations that link neighbouring two-machine-systems.

Definition 3 Letc€ R, c € (0,1] and N € IN7, then

Qc,N : [07 1] X [0, 1] — [O,C],
(A.19)
Qw(z,y) E c(l-yIn(zy).
Theorem 18 (Q.n property 1) For dall (z,y) € (0,1)*, for all ¢ € (0,1] and for all
NelN*

Ry(l—2z,1—
Qo(zyy) = c- AL=BLZY) (A.20)
11—z
Proof. This is a direct consequence of the definitions of Ry and Q. n.
[ ]

Theorem 19 (0, v property 2) Q. n and all its partial derivatives of any order exist
and are continuous on (0,1)2.

Proof. This is a direct consequence of “¥y property 4”.
[ ]

Theorem 20 (Q,y property 3) For dall (z,y) € (0,1)?, for all ¢ € (0,1] and for all

Ne N+
Bl (z,y) > 0,
- (A.21)
—6%—(:6’9) < 0.
Proof. From “Q. v property 1” follows that
Qewlz,y) =c- EN_(I__M

1~z
If we differentiate both sides of this expression to the variable x we obtain
ORN

N ~(1-2) =1 -zl-y)+Ry(l-21-y)
oz @y) = e (1-z)? '
From “Ry property 8 with (1 —z,1 — y) substituted for (z,y) follows
8RN RN(l_xvl—y)
TN —z1— AS I L
5y L= @l-y) < - :

R
—(1—z)-aa—ZN(l—x,l——y)—FRN(l——:c,l—y) > 0.

236



This combined with the fact that (1 — z)? > 0 makes that for all (z,y) € (0,1)? for all
ce€(0,1] and for all N € INT

0 N
—(z, 0.
e (DY) >
From “Q, v property 17
RN(I -, 1- y)
Q.n(z,y)=¢c —m—T—=2
Nz y)=c -
follows that
ey ¢ ORy
: = -1 —y).
From “Ry property 8” with (1 — x,1 — y) substituted for (z,y) follows
ARy
—1-2z,1—y}>0
3y (1-21-y)>0,

and therefore we have shown that for all (z,y) € (0,1)% for all ¢ € (0,1] and for all
Ne Nt
00 v
dy

(z,¥) < 0.

This ends the proof of “Q2, y property 3”.

A.4 The Function Qy and Its Properties

The function @y is used only in the proof of Theorem 30 in Appendix B. For the definition
of functions Qu for N € IN we first define the sets U and V as follows:

Definition 4
U¥{(z,9)€(0,1)x(0,1) |z>y},

(A.22)
VE{(zy) €0,1]x(©0,1] |22y}
By means of this definition we define the functions @ for N € IN implicitly by
Definition 5
QN H Vv — [0, 1] N
(A.23)
RN(xaQN(xﬂy)) = v (xiy) ev.
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The implicit definition of functions @ is consistent since it can easily be shown by means
of the properties of the functions Ry that,

Lemma 1 For all (a,b) € V the following equation has a unique solution for z in [0,1]:
Ry(a,z) =b.

Proof. In order to show that such a function @y exists uniquely we show that for two
given constants a € (0,1] and b € [0, a] there exists a unique solution for z € [0,1] in the
equation:

Ry(a,z) =b. (A.24)
To show that there exists a solution we construct the function gy q4(z):
dN,ab : [O, 1] > [—b, a— b],
(A.25)
avep(@) ¥ Ryla,z)—0b.
Then obviously:
Qnep 1 continuous,
Inep (0) = -b <0, (A.26)

Cqnep (1) = a-=b > 0.

This combination makes that there exists a root = € [0,1] of function gy q4(z). From the
properties of Ry in Appendix A it is easy to see that the derivative of gn o () exists for
all z € (0,1). From the fact that Q(%M(:c,y) > 0 from “Rpy property 8” in Appendix A
follows that if a € (0,1) then gy, ;(z) > 0 for all z € (0,1). As a direct consequence of
the mean value theorem we can conclude that, if a € (0,1] and b € [0, a] then gy q4(z) has
a unique root, and therefore there exists a unique solution z € [0, 1] for Equation (A.24).

We now have shown that there exists a unique function @ that has the following proper-
ties:

QN : V — [O, 1] s
(A.27)
RN(Z,QN(J:,:U)) =Y v (l’,y) ev.
-
Theorem 21 (Qu property 1) For all z € (0,1) and for all N € IN*
QN(.T,O) = 07
Qn(z,z) = 1, (A.28)
Qn(l,z) = =z
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Proof. This is obvious if we combine the definition of Qn with

RN(ZL‘,O) = 0,
Ry(z,1) = =z,
RN(l,.IJ) = Z.

This ends the proof of “Qx property 1”.
[

Theorem 22 (Qy property 2) Qn and all its partial derivatives of any order ezist and
are continuous on U.

Theorem 23 (Qu property 3) For all (z,y) € U and for all N € N*
ORN

_—('TvQ (CL‘, ))
Braw = % <
y (vaN(m)y))

o (A.29)
0QN 1
—%(x,y) = > 0.
Y 2 2, Qu(a.)

Proof. The definition of functions Qu states that for all (z,y) € U and for all N € IN*

Ry(z,Qn(z,y)) =y
If we differentiate this equation to the variable z we obtain

OB (o Qi 9)) + 22 (2, Qu(z.v)) -

Oz Ay
which leads directly to the first equation.
If we differentiate the equation to the variable y we obtain

ORN

T Qula) - P @) = 1,

which leads directly to the second equation.

From Ry properties 8 and 4 follows that

oR
S (@Qn(z.y) > 0,

QN _
8$ (x>y) - 0:

ORN

—@(%QN(%ZJ)) > 0,
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which leads to the inequalities in this property.
This ends the proof of “Qy property 3”.
Theorem 24 (Qy property 4) For all (z,y) € U and for all N € IN*
Qn(zy) > v (A.30)

Proof. Let (z,y) € U.
From a combination of Ry properties 4 and 5 follows that for all (z,y) € (0,1)? and for
al N e Nt

Ry(z,y) < Y.
Since @n(z,y) € (0,1) on U we can substitute @y (z,y) for y in this inequality and we get
Ry(z,Qn(z,y)) < Qn(2,9),

By the definition of Qx(z,y) this reduces immediately to

y < Qn(z,y).
This ends the proof of “QN property 4”.
: u
Theorem 25 (Qy property 5) For all (z,y) € U and for al N € IN*
oQN Qn(z,y)
—(z,y > A3l
EeX) : (A31)

Proof. A combination of Ry properties 4 and 8 makes that for all (z,y) € (0,1)? and for
al Ne Nt

BRN RN(T,y)
x, < _—
By (z,y) ;

This means, since Qn(z,y) € (0,1) on U, that we may substitute Qy(z,y) for y and get

dRy Ry(z,Qn(z,y))
ay (SE QN(‘T y)) < QN(-’LZJ) .
Since 81%23’ z,Qn(z,y)) > 0, Ry(z,Qn(z,y)) > 0 and y > 0 we can rewrite this as follows
1 > QN($>y) .
&(:E Qn(z,y)) Ry (z,Qn(z,9))
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Because of the definition of Qn(z,y)), and because of “Qy property 3” the second part
we deduce that

Qw5 Q)

By y
This completes the proof of “Qy property 5”.

Theorem 26 (Qn property 6) For all z € (0,1) and for all N € IN*t

lim Y - 1.
yi0 QN(xyy)

Proof. We start with a combination of “Ry property 4” and “Ry property 12”.
For all z € 0,1] and for all N € IN*

lim RN (33, a’)
alld Q

=1

We can substitute Qu(z,y) for a

RN(CCa QN(a;: y))

m =1.
Qu(zy) 1 0 Qn(z,y)

Since for all z € (0,1], Qn(z,0) = 0 and since Qu is continuous on V and therefore
certainly continuous in points (z,0) we conclude that for some function f

f@Qn(z, ) = lim  f(Qn(z,y)).

lim
Qn(zy) 1 0
If we apply this on our equation we conclude that

. Rn(z,Qn(z,y))
l;ﬁ;l QN(x) y)

By the definition of @y this reduces to

=1.

. Y
lim ——— =1
o Qn(z,y)

This completes the proof of “Qy property 6”.
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Appendix B

Proofs for the Forward and Backward
Aggregation Method in Chapter 2

In this appendix we will state 4 theorems with their proofs. The theorems concern the
properties of the forward and backward aggregation algorithm that has been developed in
Chapter 2. The forward and backward aggregation algorithm is fully described in Expres-
sion (2.51).

First we will give a some definitions and two lemmas by means of which we reformulate

the algorithm in a setting of multi-dimensional functions. In this setting it is easier to
formulate and proof the theorems. That is what we will do next.

B.1 Some Definitions

We will start by collecting corresponding variables, and putting them in the shape of
vectors:

Definition 6

f ) p}{ (s) P‘}:(S) N,
P2 3 (s) P5(s) N3

p¥| - [ PO¥| . | peE| . | N (B.1)
Pm pL(s) ph(s) Npn

Then we define the vector function:
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Definition 7

B, N : 01" = 0,1,

1 Qpl.Nz(l -z,1- Qm,Ns(- .- (1 R QPm—],N.,.(]- —Zm-1,1— pm) .. )))
2 QpaNa (o (L= Tm2, 1 = N (1= Zime1, 1 = Pm) .. )
. def .
Bp, N =
Tm—1 Q1,0 (1 = T, 1 ~ D)
Tm Pm

And we define the vector function:

Definition 8
Fp N 01" = 0,17,

zy 21
T2 Q:ﬁz,Nz(l —172,1—171)
- def .
Fp,N = .
Tm-1 Dt W (- (1= 23,1 = Ry Ny (1 — 22,1 = 1) .. )
Tm npm,Nm (1 —&m,1 - QPm—l,Nm—l(' .. (1 — 3,1 - sz,Nz(l — 22,1 Pl} =)

We can compound the previous vector functions to get:

Definition 9
Cp,N : [0,1™ — [0,1]™,
(B.2)

def
CP,N = FP’NOBPaN'

By means of these vector functions it is possible to formulate the algorithm as follows:

Initial condition :

Backward aggregation :
(B.3)
pb(s) = Bp,N(pf(S)):
Forward aggregation :

p(s+1)=F, N(p'(s)).
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Or as follows:
Initial condition :

(B.4)

Iteration :

Pls+1)=Cp N(P/(s).
Therefore we will examine the vector functions defined in (B.2), (B.2) and (B.2):
Lemma 2
ifpe (0,1)™ then B p, N> Fp, N and Cp, p are differentiable, Va € (0,1)™. (B.5)
Proof. This follows directly from the following properties of the functions Q. for all
c € (0,1)and N € IN*:

Qun( (0,1) x (0,1) ) C (0, 1),
(B.6)

ek (2,y) and T— 2,3) both exist, V(z,y) € (0,1) x (0, 1).

n
Therefore we can define the derivatives of the vector functions that we have just defined:
Definition 10 For N € (INt)™™" and p € (0.1)™:

'

{b(x)i;} ¥ B, N(@),
{f@);) € F, nl=), (B.7)
{c)i;} & Cp Nla):

B.2 A Lemma

Lemma 3
b(w)i,j < Oa Vz € (Ovl)m: V(l,]) € {172) 7m}2
fl); <0, Ye e (0,)™, V(i,j) € {1,2,..,m}? (B.8)
c(z)i; > 0, Yz € (0,1)™, V¥ (i,7) € {1,2,..,m)?

Proof. First we refer to the Appendix A in “Q. y property 3” where we have shown that
the functions 2, 5 have the following properties for all ¢ € (0,1) and N € IN*:

T(w y) > 0, V(m’y) € (0’1)X(071);

9 (B.9)
c < 0, Y(z,y) € (0,1)x(0,1).

245



If we examine closely the structure of the vector functions Fp’ N and Bp, N> then we
conclude that:

b; i(z) Vi e {1,2,..,m} = biy(=)<0, Vj e {1,2,.,

(z) <
S0, v . mh o (B.10)
(@) <0, Ve {1,2,.,m} = fi{x)<0, Vi€ {1,2,.,m},
We will show this in the following.
In order to show statement (B.10) we first observe that:
{Bp N®@} | = Qi A—zi0,1-{Bp N(=)}), B
{Fp, N(m)}i+1 = QP{+17N1‘+1<1 = Zit1,1 — {Fp, N(m)}l)

If we now take the partial dirivatives and differentiate both sides of Expressions (B.11) to
the variable z;, j € {1,2,..,m} we get the following:

8, .
big(®) = ZB2N g, 1- (B, N(@)]) - 3%(1—xi_1)+..
8QPi—lyNi

o+ T 1~ By N(@)}) - 50-(1 - {By, N(=)}),

2

| 0,1 N,
firrj(®) _%M(l =T, 1 - {Fp, N(“’)}l) ’ 3%(1 — ZTiy1) + .-
... N,
B 1y,N1+1 (1— 21,1 — {Fp, N(m)}z) . 6%;(1 — {Fp, N(m)},)

(B.12)
This is equivalent to:
a 1— BQ i—1,4Vi
bioyie) = — ngl - Bl - gy, 1- {Bp, N(w)}i) +
0. | N,
= bige) - (L =g, 1~ {By N(@)]),
(B.13)
0 % aQe AL
fig(®) = — ngl c Rl (g g1 - {Fp, N(w)}i) + .
... N
L= o) - IR a1 - {Fp (@)},
Of course
Wi >
7 (B.14)



From (B.9) it follows that

O,y N,
— B (1- i, 1= {B), N(@)}) > 0,
., N,
=Rl —2,1- {By N(2)}) <0, 5.15)
0., N; ‘
D1~ .1 {Fp, (&)} > 0
0. N,
=2 (1= a1~ {Fp, N(2)}) < 0.
If we also assume that
bij{e) < 0, forallje{l,2,.,m}, (B.16)
fijl®) < 0, forallje{1,2,.,m}, '
then we can conclude from (B.13) that both
bioj(®) < 0, forallje{1,2,.,m}, (B.17)
firri(®) < 0, forallje{1,2,..,m}. '
This completes the demonstration of the statement in Expression (B.10).
Next we observe that:
bmjl) = 0, Vaxe(0,1)™ Vjie{l,2 .,m}, (B.18)

fl,j(w) = 07 V z E (01 1)m> v .7 6 {1725 7m}

A combination of the statements in Expressions (B.18) and (B.10) shows by means of
induction that:

bijlg) < 0, Vze(0,1)™ V(7)€ {l,2,.,m}?,

fule) < 0, VYae®U™ V(i) e L2 mp (8.19)
From the chain rule of differentiation of vector functions follows:
C, N(®) =(Fp NoBp N) ()= Fp NW).B, (@), (B.20)
where:
y= Bp, N(=) (B.21)
Therefore: ~
C,"j(m) = Z fi,k(y).bk,j(fl:). (B.22)
. k=1
Now we combine (B.22) with (B.19) and we get:
() >0, Yz € (0,1)™ V(i,5) € {1,2,.,m}% (B.23)
This completes the proof of the lemma.
™
Next we define:
Definition 11 (
z<y & i<y, Vie{1,2.,m} (B.24)
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B.3 Proof of Monotonous Behaviour

Theorem 27
p(s+1)
p’(s+1)

INV

Proof. From Lemma 3:

ci(®) >0, Yz € (0,)™ VY (i,5) € {1,2,.,m}?,

follows directly:

Therefore:

p'(s—1) <p/(s)
From the initial condition follows:

From (B.29) and (B.28) follows by means of induction:

p'(s+1)>p(s), Vs € IV.

From Lemma 3:

bij(x) <0, Ya € (0,)™ V(i,5) € {1,2,..,m}?,

follows directly:
z<y = Bp,N(m) > B p,N(y)-

Therefore:

pl(s)<p/(s+1) = ,N(Pf(S)) > By N(@(s+1))
= pbs) > pb(s+1).

From (B.30) and (B.33) follows:
p’(s+1)<p’(s), ¥Ys € IN.

This completes the proof of the theorem.
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B.4 Proof of Existence

Theorem 28

§—00
p* ¥ lim pi(s

5§00

both exist.

p’ ¥ lim p/(s),
), (B.35)

Proof. It is obvious that:
p/(s) <1, Vs € NN,

p’(s) >0, Vs € IN. (B.36)

From Theorem 27 follows:

pf(s+1)>pf(s), Vs € N,

pP(s+1)<p(s), Ys € IV. (B.37)

Therefore the forward sequence is ’increasing’ and has an upper bound. The backward
sequence is ’decreasing’ and has a lower bound. We can conclude that both sequences con-
verge in the maximum norm in JR™ for instance. Because all norms in JR™ are equivalent,
both sequences will converge in any norm. This completes the proof.

]

B.5 Proof of Conservation of Flow

Theorem 29 The combination of limit points p’ and p* together satisfy all conditions of
Expression (2.50), and therefore automatically satisfy Exzpression (2.45).

Proof. It is obvious that these limit points satisfy (2.50), since they are constructed by
means of this expression. That the limit points satisfy Expression (2.45) is to be proven.

First we define 7;:
r ¥ Ry (o, 1Y), Vi e {2,.,m}. (B.38)

Because of a basic property of function Ry(z,y) defined in (2.20), it is automatically true
that:
;= RNi(pf,p{_l), Vie {2,.,m} (B.39)

From (2.20), (2.48), (2.49) and (2.50) follows that:

pl, Tm pm’
of = Q,,, q“qz Bg Ry, ( p,:pz—l) = EE Ti-15 (B.40)

pf = Qpe,Ni+1 (qZ ) ql+1 %’ RN 41 (pz 7pz+1 % Ts.
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And thus:

T = p_;_{‘p‘?’
% (B.41)
—
t pi
And therefore:

T‘iIT‘j, VZ,j (S {2,3,..,77’).}. (B42)

This completes the proof of the theorem.
u

B.6 Proof of Uniqueness

Theorem 30 The solution of Equations (2.50) is unique.

Proof. For our proof we first define a new function Qun(z,y) that has the following
property:

Ry(z,y) =2z & Qn(z,2)=y & Qunly,z)== (B.43)
In order to show that such a function @y exists uniquely we have shown in Lemma 1 from
Appendix A in Section A.4 that for two given constants a € (0,1] and b € [0, a] there exists
a unique solution for € [0,1] in the equation:

RN((J, 1‘) =b. (B.44)

For the sake of convenient notation we will repeat the definition of the set V just as in
definition 4 of the half unit square:

VE{(z,9)e[0,1]x(0,1] [z>y} (B.45)
As we have shown in Lemma 1, there exists a unique function @y that has the following
properties:

Qn : V — [0,1],
wt (B.46)

RN(z)QN(Iay)) = Y, v (iL‘,’y) € V.
In the previous theorem we have proved that every solution of Equations (2.50) has the’
following property:

R = r, Vie{23,.,m},
(B.47)
ri = Ry(pl,,pb), Vie {23, . ,m}.
From a basic property in Expression (2.42) follows:
Fpb
R=22vie (o3 . ,m} (B.48)

(3
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From Expressions (B.47) we can derive by means of the functions @y that:

,'Dg =Qw (pzf-—-l’ R)v (B49)

and from Expression (B.48) we can derive that:

»R
pl = - (B.50)

If we combine the last two expressions we get:

f piR

pl=—2" vie{23, ., m} (B.51)
s QNi(p’Lf—l)R)

We also realize that for any solution of Equations (2.50) p{ = p; and p/, = R. This means
that all solutions of Equations (2.50) are also solutions of the equations:

R

f . .
i = —&,—" , Vie{23,..,m}
QNi(pi—bR) { }
B.52
ol = m, (B-52)
pl, = R.

By means of the first two equations in Expression (B.52) we can derive all p! recursively
as a function of R.
First we define, for a; = 1, p{ as a function of R:

p{ : (Oa al] axd [alphpl]a

(B.53)
p{(R) ¥ p.

For this function p} it is obvious that

L f _
%ﬂ% pi(R) = m > 0,
p{(al) = ap1 < o,

f
9LR) < 0, VRe(0,1).
Suppose we have defined pif_l as a continuous function of R for some a,; € (0, 1] as follows:
ple 0 (0e] & (@i Pl (B.54)
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And suppose that we know that

lim pf = -

lim pi1(R) Pi1 > 0,
pli(ai1) = a;-1Pi-1 < @i, (B.55)
dpzf—l

JE (R) < 0, VRG(O,Gi_l).

Then it is easy to show by means of these properties of pzf_l, because of continuity, mono-
tonicity and because the endpoints of pf_1 lie on either side of the function R, that there
exists a unique solution for R in the equation ’

p{—l(R) = R
This unique solution of R € (0, 1] is then denoted by a;:
plale) = a (B.56)
Since a; is in the domain of function p{_l, which is (0, a;_1], it is obvious that
a; < ai-1-
It is easy to see by the properties of p/_, that then for all R € (0, ;] the following holds:

p‘lf—-l(R> 2 Ra

and therefore we conclude that for all R € (0,a,] is (p{_,(R),R) € V.
This means that the following definition of the succeeding function p! (R) is well-defined:

pzf : (0,(11;] = [aipiapi]a

(B.57)
IRy o R
P (R) Qn(pl_1(R), R)

Again we see by “Qy property 6” in Appendix A that

R
lim p{(R) = lim pi- ——,
RS i R e PR )

= pi']-a
= Di
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We also see that

Di a;

Qn(pli(ai), )’

which reduces by means of Expression (B.56) to

pl(a) =

f bi a4
0 az‘ = .
P ( ) Qn (ai, ai)

Because of “Qy property 1” in Appendix A we conclude that Qn(a;,a;) = 1, and thus
P{(ai) = Di G;.

Last but not least we derive that

dol oy d i B
Bew) = (et )

QN
Oy

QN . dp{—l

(pzf—l(R%R) - R ™ (pzf—-l( )1 ) dR

Q% (»L1(R),R)

[QN(p{_l (R),R) - R. (R)

= Pi
(B.58)
Again we use the properties of @y in Appendix A.

Let R € (0,a;). This means that (p/(R), R) € U and therefore we can apply “Qu property
57, substitute the pair (p/(R), R) for (z,y) and get

QN , ¢ Qn(p{(R), R)
This implies that
f Qv ¢
Qn(pia(R), R) - R. By (pi1(R),R) < 0. (B.59)

From “Qn property 3” follows if we substitute the pair (p{ (R), R) for (z,y) the following
QN

SEELRLR) < o,

and from the predecessor function pf_l we know by assumption that
dp-{—l
—=(R) £ 0, VRe(0,a;-1).
PLR) < € (0,0:-1)
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These last two inequalities lead to the following inequality

OQn dpl_,
-R. F W(R) < 0 (B.60)

Now we can combine the inequalities of (B.59) and (B.60) and get for the numerator on
the right side of Expression (B.58)

QN
oy

(p{—l (R)> R) '

(PL1(R),R)| ~ R 6l (), )

. dp{-—l
dR

[QN<p{_1<R>,R>—R. B < o

The denominator on the right side of Expression (B.58) obviously is positive and therefore
we conclude that

dp{
R

To resume our story, we started with the assumption that we have defined a function
p{_l for which has the properties expressed in (B.55) and we have shown that then by
the definition in (B.57) we have a well-defined function p! that has the same properties
expressed in (B.55) but then for ¢ + 1 substituted for .

By the induction argument and the initial condition in Expression (B.53) we conclude that
we have found unique real numbers a;, © € {1,2,...,m},

(R) < 0, VYRe(0,a).

0 < Am g Am—1 S S 5] S a = 11
and we have defined functions
p{ : (Oa ai] = [aipi’piL L€ {1727-"1m}1

for which the following properties hold

i f = , >

lim 7 (R) pi 2 0,
pl(a;) = a;pi < a,
dpf

&(R) < 0, VYRE(0,a)

Because of these properties all of the following equations for ¢ € {1,2, ...,m} have a unique
solution for R € (0, 1]:

rl(R) = R

The solution for this equation is unique for i = m in particular.
This implies that there exists exactly one unigue R € (0, 1] that satisfies the last equation
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Figure B.1: A numerical example of functions p!(R) in case p; = 0.7 and N; = 1 for all i.

in Expression (B.52).
This completes the proof of the theorem.

Example.

For the sake of illustration we have numerically computed some functions p/ () for a
five machine production line that has p; = 0.7 for all i € {1,2,3,4, 5} and N; = 1 for
all i € {2,3,4,5}. The numerical result is shown in Figure B.1. We have taken an
example in Whlch all completion probabilities are equal. Therefore we can see that all
the functions p/ for ¢ € {1,2,3,4,5} start at the same point (0,0.7) and they all end
on the same line (2,y), y = 0.7 z. The numerical values for a, % e {1,2,3,4,5} are
1, 0.7000, 0.5385, 0.4541 and 0.4065 respectively. The final equation p} (R) R has the
numerical solutlon R =0.3774, which means that the estimated overall average production
rate R for this example is 0.3774 products per time slot. For R = 0.3774 we compute that
/ forie {1,2,3,4,5} is 0.7000, 0.5868, 0.5140, 0.4502 and 0.3774 respectively.
We can see clearly in this example that the functlons P (R) are decreasing for all ¢ €
{1,2,3,4,5} and that begin and end points of p/ (R) lie on either side of the line (z,y), y=
z, forallze{l 2,3,4,5}.

O
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Appendix C

Tables for the Car Lamp Production
Line in Chapter 5

In Chapter 5 we have omitted tables because they would decrease the readibility of the
text. Therefore we have decided to put these tables here in an extra appendix. This
appendix is divided in two sections: a section that contains the tables that correspond to
the text in Section 5.3, and a section that contains the tables that correspond to the text
in Section 5.9.

C.1 Tables with the State sets of the Various Models
and Sub-Models

In Chapter 5, in Section 5.3, we described several state sets of homogeneous discrete-time
finite Markov chains. Each time that we defined a new state set (denoted by a symbol
that contains a calligrafic S) as a cartesian product of several sets, for the convenience of
a shorter notation, we defined also a corresponding state set (denoted by a symbol that
contains a calligraphic R) that consists of (combinations of) natural numbers only. The
correspondence between each pair of sets are described in the following tables, Table C.1
up to Table C.10.
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State Corresponding state in SP23
in RB21 By M, B, Bo, B Mo
(1) —starved up c —starved —blocked up
(¢,2) —starved up c —starved —blocked down
(¢,3) —starved up c —starved blocked up
(c4) —starved up ¢ —starved blocked down
(¢,5) —starved up ¢ starved —blocked up
(c,6) —starved up c starved —blocked down
(e,7) —starved up c starved blocked up
(c,8) —starved up ¢ starved blocked down
(c,9) starved up ¢ —starved —blocked up
(¢,10) starved up c —starved ~blocked down
(c,11) starved up c —starved blocked up
(¢,12) starved up c —starved blocked down
(c,13) starved up ¢ starved —blocked up
(c,14) starved up ¢ starved —blocked down
(c,15) starved up c starved blocked up
(c,16) starved up c starved blocked down
(c,17) —starved down ¢ —starved =blocked up
(c,18) —starved down c —starved ~blocked down
(¢,19) —starved down c —starved blocked up
(c,20) —starved down c —starved blocked down
(c,21) —starved down ¢ starved —blocked up
(¢,22) —starved down ¢ starved —blocked down
(c,23) —starved down ¢ starved blocked up
(c,24) -starved down c starved blocked down
(¢,25) starved down c. -starved —blocked up
(c,26) starved down ¢ —starved —blocked down
(c,27) starved down ¢ —starved blocked up
(c,28) starved down ¢ —starved blocked down
(¢,29) starved down ¢ starved —blocked up
(c,30) starved down ¢ starved —blocked down
(c,31) starved down ¢ starved blocked up
| (e32) starved down c starved blocked down

Table C.1: The one to one correspondence of SB21 and RP2:.
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State Corresponding state in SBz1in
in RBz’l’in Bl,l M1’1
1 —starved up
2 —starved down
3 starved up
4 starved down

Table C.2: Corresponding states of the input sub-model for buffer B, ;.

State Corresponding state in SP21o%
in RBz’l’OUt Bz,z B3 M2

1 —starved —blocked up
2 —starved —blocked down
3 —starved blocked up
4 —starved blocked down
5 starved —blocked up
6 starved —blocked down
7 starved blocked up
8 starved blocked down
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State Corresponding state in SP22
in RB2:2 By, M2 By | B, B3 M,
(c,1) —-starved up c —starved —blocked up
(c,2) —starved up c -starved —blocked down
(¢,3) —starved up c —starved blocked up
(e,4) —starved up c —starved blocked down
(c,5) —starved up c starved —blocked up
(c,8) —starved up c starved —blocked down
(e, 7) —starved up c starved blocked up
(¢,8) —starved up c starved blocked down
(¢,9) starved up c —starved —blocked up
(¢c,10) starved up c —starved —blocked down
(e,11) starved up [ —starved blocked up
(c,12) starved up c —starved blocked down
(¢,13) starved up c starved —blocked up
(c,14) starved up c starved —blocked down
(c,15) starved up c starved blocked up
(c,16) starved up c starved blocked down
(c,17) ~starved down ¢ —starved —blocked up
(c,18) —starved down ¢ —starved —blocked down
(c,19) —starved down ¢ —starved blocked up
(e,20) —starved down c —starved blocked down
(¢,21) —starved down c starved —blocked up
(c,22) —starved down c starved —blocked down
(c,23) —starved down c starved blocked up
(c,24) —starved down ¢ starved blocked down
(c,25) starved down c —starved -blocked up
(c,26) starved down c —starved —blocked down
(¢,27) starved down c -starved blocked up
(c,28) starved down c —starved blocked down
(c,29) starved down ¢ starved —blocked up
{¢,30) starved down c starved —blocked down
(c,31) starved down c starved blocked up
L (¢,32) starved down c starved blocked down

Table C.4: The one to one correspondence of SZ22 and RP22.

State Corresponding state in SP22:n
in RB;,Z,in Blyg M172
1 —starved up
2 —starved down
3 starved up
4 starved down
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State Corresponding state in SPz2.0ut
in RBz’z’OUt B2,1 B3 Mg

1 —starved —blocked up
2 —starved —blocked down
3 —starved blocked up
4 —starved blocked down
3 starved —blocked up
6 starved —blocked down
7 starved blocked up
8 starved blocked down

Table C.6: Corresponding states of the output sub-model for buffer B; ,.
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State Corresponding state in 553
in T\’,B3 Bz)l Bz,z M2 B3 B4 M3
(c,1) —starved -starved up c -blocked up
(¢,2) —starved —starved up c —blocked down
(c,3) —starved —starved up c blocked up
(c,4) —starved —starved up c blocked down
(c,5) —starved —starved down c —blocked up
(¢.,8) ~starved —starved down c ~blocked down
(¢,7) —starved —starved down c blocked up
(c,8) —starved —starved down c blocked down
(c,9) —starved starved up c —blocked up
(¢,10) —starved starved up c —blocked down
(c,11) —starved starved up ¢ blocked up
(¢,12) —starved starved up c blocked down
(c,13) —starved starved down c —blocked up
(c,14) —starved starved down c ~blocked down
(¢,15) —-starved starved down c blocked up
{c,16) —starved starved down ¢ blocked down
(¢,17) starved -starved up c —blocked up
(c,18) starved —starved up ¢ —blocked down
(c,19) starved —starved up c blocked up
(,20) starved ~starved up c blocked down
(c,21) starved —starved down ¢ —blocked up
(c,22) starved —starved down c —blocked down
(c,23) starved —starved down ¢ blocked up
(c,24) starved —starved down c blocked down
(c,25) starved starved up c -blocked up
(c,26) starved starved up ¢ —blocked down
(c,27) starved starved up c blocked up
(c,28) starved starved up c blocked down
{c,29) starved starved down c —blocked up
(c,30) starved starved down c -blocked down
(c,31) starved starved down c blocked up
(¢,32) starved starved down c blocked down

Table C.7: The one to one correspondence of $5¢ and R53.
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State Corresponding state in SPs1
in RBa,m B2,l 32’2 M2

1 —starved —starved up |
2 —starved —starved down

3 —starved starved up

4 —starved starved down

5 starved ~starved up

6 starved —starved down

7 starved starved up

8 starved starved down

Table C.8: Corresponding states of the input sub-model for buffer Bj.

State Corresponding state in SP2°ut
in RBs-out B, M,
1 —blocked up
2 —blocked down
3 blocked up’
4 blocked down

Table C.9: Corresponding states of the output sub-model for buffer Bs.

State Corresponding state in S°veraP
in Roverlap Bg’l B2’2 Bg Mg
1 —starved —starved —blocked up
2 ~starved —starved —blocked down
3 ~starved —starved blocked up
4 —starved —starved blocked down
5 —starved starved —blocked up
6 —starved starved —blocked down
7 —starved starved blocked up
8 —starved starved blocked down
9 starved —starved —blocked up
10 starved —starved —blocked down
11 starved —starved blocked up
12 starved —starved blocked down
13 starved starved —blocked up
14 starved starved =blocked down
15 starved starved blocked up
16 starved starved blocked down

Table C.10: Corresponding states of the model for the overlap.
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C.2 Tables with the Results from the Algorithm for
the Car Lamp Production Line

After 12 iteration cycles with the algorithm described in Section 5.8 for the car lamp
production line with the parameters as in Figure 5.24 we obtain the results shown in the
following tables, Table C.11 up to Table C.15.

Value
y21(12) | 0.736260
z3(12) | 0.680686
y2,2(12) | 0.733072
73(12) | 0.680686

Table C.11: The average input and output rates as a result of the algorithm.

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9954 0167 0418 0007 0258 0004 0017 0000 0081 0001 0003 0000 0002 0000 0000 0000
0028 9833 0001 0413 0001 0254 0000 0011 0000 0080 0000 0003 0000 0002 0000 000
0003 0000 9540 0160 0000 0000 0247 0004 0000 0000 0078 0001 0000 0000 0002 0000
0000 0000 0027 9420 0000 0000 0001 0244 0000 0000 G000 8a77 | 0000 0000 0000 0002
0013 0000 0001 0000 9714 0163 0408 0007 0000 0000 0000 0000 0079 0001 0003 0000
0000 0000 0000 0000 0028 9578 0001 0402 0000 0000 0000 0000 0000 0078 0000 0003
0000 0000 0013 0000 0000 0000 9306 0156 0000 0000 0000 0000 0000 0000 0076 0001
0000 0000 0000 0000 0000 0000 0027 9176 0000 0000 0000 0000 0000 0000 0000 0075
0002 0000 0000 0000 0000 0000 0000 0000 987¢ 0166 0415 0007 0256 0004 0011 0000
10 0000 0000 0000 0000 0000 0000 0000 0000 0028 9752 0001 0410 | 0001 0252 Q000 0011
11 0000 0000 0000 0000 0000 0000 0000 0000 0003 0000 9462 0159 0000 0000 0245 0004
12 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0027 9343 0000 0000 0001 0242
13 0000 0000 0000 0000 0000 0000 0000 0000 0013 0000 0001 0000 9634 0162 0405 0007
14 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0027 9500 0001 0399
15 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0013 0000 0000 0000 9230 0155
16 0000 0000 0000 0000 0000 | 0000 0000 0000 0000 0000 0000 0000 0000 0000 G026 9101
[ 7968 1408 0056 0003 0384 0026 0002 0000 0132 0015 0001 0000 0005 0000 0000 0000

© OB O W

Table C.12: The Markov transition matrix Pyy™*?(12) and the stationary distribution.
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1 2 3 4 s 1.6 | 7 8 9 10 11 12 13 14 15 16 J

1 9954 0167 0418 0007 | 0258 0004 0011 0000 | 0081 0001 0003 0000 0002 0000 0000 0000
2 0028 | 9833 0001 0413 | 0001 0254 | 0000 | ©OO11 0000 | 0080 | 0000 0003 0000 0002 0000 0000
3 0003 0000 9539 0160 | 0000 0000 0247 0004 0000 | 0000 0078 0001 0000 0000 0002 0000
4 0000 0000 0027 9420 | 0000 0000 0001 0244 0000 | 0000 0000 0077 0000 0000 0000 0002
5 0013 0000 0001 0000 | 9714 0163 0408 0007 0000 0000 0000 0000 0079 0001 0003 0000
6 0000 0000 0000 0000 0028 9578 0001 0402 0000 0000 0000 0000 0000 0078 0000 0003
7 0000 0000 0013 0000 | 0000 0000 9306 0156 0000 | 0000 0000 0000 0000 0000 0076 0001
8 0000 0000 0000 0000 | 0000 0000 0027 9176 0000 | 0000 0000 0000 0000 0000 0000 0075
9 0002 0000 0000 0000 | 0000 0000 | 0000 0000 9877 | 0166 0415 0007 0256 0004 0011 0000
10 0000 0000 0000 0000 0000 0000 0000 0000 0028 | 9752 0001 0410 0001 0252 0000 0011
11 0000 0000 0001 0000 0000 0000 0000 0000 | 0000 | 00CO 9462 0159 0000 0000 0245 0004
12 0000 0000 0000 0000 | 0000 0000 | 0000 000G | 0000 | ©00C 0027 9343 0000 0000 0001 0242
13 0000 0000 0000 0000 | 0000 0000 0000 0000 0013 0000 0001 0000 9634 0162 0405 0007
14 0000 0000 0000 0000 | 0000 0000 0000 0000 0000 0000 0000 0000 0027 9500 0001 0399
15 0000 0000 0000 0000 | 0000 0000 0000 0000 0000 | 0000 0013 0000 0000 0000 9230 0155
16 0000 0000 0000 0000 | 0000 0000 0000 0000 0000 | 0000 0000 0000 0000 0000 0026 9101

7966 1408 0057 0003 0385 0026 0001 0000 0132 0016 0000 0000 0005 0000 0000 0000

Table C.13: The Markov transition matrix P *?(12)

and the stationary distribution.

| 1T [ 2 3 1 4 1 5 6 7 8 ] 9 [ 10 11 12 13 14 15 16

1 9953 0167 0419 0007 0258 0004 0011 0000 0082 0001 0003 0000 0002 0000 0000 0000
2 0028 9833 0001 0413 0001 0254 0000 0011 0000 0080 0000 0003 0000 0002 0000 0000
3 0003 0000 9551 0160 0000 0000 0247 0004 0000 0000 0078 0001 0000 0000 0002 0000
4 0000 0000 0027 9420 0000 0000 0001 0244 0000 0000 0000 0077 0000 0000 0000 0002
5 0014 0000 0000 0000 9709 0163 0408 0007 0000 0000 0000 0000 0079 0001 0003 0000
6 0000 0000 0000 0000 0028 9578 0001 0402 0000 0000 0000 0000 0000 0078 0000 0003
7 0000 0000 0000 0000 0003 0000 9304 0156 0000 0000 0000 0000 0000 0000 0076 0001
8 0000 0000 0000 0000 0000 0000 0027 9176 0000 0000 0000 0000 0000 0000 0000 0075
9 0001 0000 0000 0000 0000 0000 0000 0000 9890 0166 0415 0007 0256 0004 0011 0000
10 0000 0000 0000 0000 0000 0000 oooo 0000 0028 9752 0001 0410 0001 0252 0000 0011
11 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 9475 0159 0000 0000 0245 0004
12 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0027 9343 0000 0000 0001 0242
13 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 9634 162 0405 0007
14 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0027 9500 0001 0399
15 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 9230 0155
16 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0026 9101

7964 1408 G057 0003 0388 0026 0002 0000 0136 0016 0000 0000 0002 0000 0000 0000

Table C.14: The Markov transition matrix Pyy" **(12)

and the stationary distribution.

[ 1 [ 2 3 [ 4 5 ] 6 7 8 9 10 11 12 13 14 15 16

1 9953 0167 0418 0007 0258 0004 0011 0000 0082 0001 0003 0000 0002 0000 0000 0000
2 0028 9833 0001 0413 0001 0254 0000 0011 0000 0080 0000 0003 0000 0002 0000 0000
3 0003 0000 9538 0160 0000 0000 0247 0004 0000 0000 0078 0001 0000 0ooo 0002 0000
4 0000 0000 0027 9420 0000 0000 0001 0244 0000 0000 0000 0077 0000 0000 0000 0002
5 0013 0000 0001 0000 9712 0163 0408 0007 0000 0000 aooo 0000 0079 0001 0003 0000
6 0000 0000 0000 0000 0028 9578 0001 0402 0000 0000 0000 0000 0000 0078 0000 0003
7 0000 0000 0013 0000 0000 0000 9304 0156 0000 0000 0000 Q000 qggoa 0000 0076 Qo1
8 0000 0000 0000 9000 0000 0000 0027 2178 0000 0000 0000 0000 0000 0000 0000 0075
9 0001 0000 0000 0000 0000 0000 0000 0000 9830 0166 0415 0007 0256 0004 0011 0000
10 0000 0000 0000 0000 0000 0000 Q000 0000 0028 9752 0001 0410 0001 0252 0000 0011
11 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 9475 0159 0000 0000 0245 0004
12 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0027 9343 0000 0000 0001 0242
13 Q000 0000 [y 0000 | 0001 Q000 0000 Q000 | 0000 0000 0000 0000 9634 0162 0405 0007
14 0000 0000 0000 0000 0000 0000 0000 0000 0000 [ 0000 0000 0027 9500 0001 0399
15 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 9230 0155
16 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0026 9101

7964 1408 0056 0003 0388 0026 0001 0000 0136 0016 0000 0000 0002 0000 0000 0000

Table C.15: The Markov transition matrix P{**?(12) and the stationary distribution.
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Samenvatting (Summary in Dutch)

Dit proefschrift is het resultaat van vijf jaar onderzoek aan de Technische Universiteit
Delft. Het onderzoek is gestart in een academisch onderzoeksproject waarin verschillende
Europese universiteiten deelnamen in samenwerking met een bekende producent van lam-
pen. Het doel van dit onderzoeksproject was het optimaliseren van een bestaand autolam-
pen produktieproces.

Bij nadere beschouwing blijkt dat het autolampen produktieproces wordt gerealiseerd door
een produktielijn waarin metalen en glazen onderdelen in verschillende fasen worden be-
werkt door een aantal machines. Voor iedere fase onderscheiden we een aparte machine.
Tussen opeenvolgende bewerkingen door opeenvolgende machines worden de onderdelen in
een wachtrij gezet, waarin ze wachten tot de volgende machine klaar is met het bewerken
van alle voorgaande onderdelen. Het toelaten van wachtrijen is nuttig voor een zo groot
mogelijke ontkoppeling van de verschillende bewerkingen in de produktielijn. Door deze
ontkoppeling is het mogelijk dat een machine door een ongewenst probleem een beperkte
tijd stil staat terwijl de rest van de machines hun werkzaamheden voortzetten.

Bij een wiskundige beschrijving van zo’n produktielijn stuiten we onherroepelijk op het
feit dat de gebeurtenissen in de lijn afhangen van puur toeval. Er treden hoofdzakelijk de
volgende soorten toeval op in deze produktielijn:

o Op ieder moment kunnen er in werkende machines ongewenste fouten optreden, waar-
door de machine stil komt te staan totdat een “operator” komt om de fout te her-
stellen. Op deze wijze wordt zowel de aaneengesloten tijd dat een machine werkt als
de aaneengesloten tijd dat een machine ongewenst stilstaat door toeval bepaald. Een
simpel wiskundig model wordt gebruikt waarin alleen de gemiddelde aaneengesloten
werkzame tijd en de gemiddelde aaneengesloten tijd van stilstand per machine als
belangrijkste variabelen een rol spelen.

e In ieder onderdeel dat door een machine wordt bewerkt kunnen fouten optreden tij-
dens de bewerking. Vaak kan deze fout eenvoudig worden gesignaleerd. Als zo'n fout
wordt gesignaleerd is het mogelijk het betreffende onderdeel uit het produktieproces
te nemen. Deze fouten in de bewerking van produkten worden op zodanige manier
gemodelleerd dat alleen de gemiddelde uitval over een lange periode per machine als
variabele een rol speelt.
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Doordat toeval de gebeurtenissen in de produktielijn bepalen moeten we voor een wiskundige
beschrijving van de wachtrijen in de produktielijn gebruik maken van zogenaamde stochastis-
che processen. Voor de wiskundige beschrijving van zulke stochastische processen van
wachtende voorwerpen in een netwerk van wachtrijen komen we automatisch terecht in het
gebied van de wachtrijnetwerken.

Wachtrijnetwerken bestaan in vele verschillende vormen. Als we de wachtrijen in de auto-
lampen produktielijn nader bekijken constateren we dat hun capaciteit beperkt is. Dit heeft
als gevolg dat wachtrijen tijdens het produktieproces vol kunnen raken waardoor vooraf-
gaande machines stil komen te staan doordat ze de bewerkte produkten niet meer kwijt
kunnen raken. Dit fenomeen wordt met de term “blokkering” aangeduid. De conclusie
is dus dat we voor een wiskundige beschrijving ons moeten bezighouden met blokkerende
wachtrijnetwerken.

In de autolampen produktielijn is er een machine die onderdelen uit twee verschillende
wachtrijen tegelijk oppakt. Tijdens de bewerking worden deze twee onderdelen samengevoegd
en als één onderdeel in een volgende wachtrij geplaatst. Deze procedure word aangeduid
met de term “samenvoeging”.

Hoewel er in de autolampen produktielijn sprake is van samenvoeging proberen we eerst
inzicht te krijgen in meer simpele seriéle produktielijnen. Het blijkt mogelijk om seriéle
produktielijnen op te delen in een verzameling simpele produktielijnen met ieder slechts
twee machines. Door het bepalen van het stationaire gedrag van deze twee-machine pro-
duktielijntjes kunnen we zo conclusies trekken over het het stationaire gedrag van de hele
produktielijn. Een aantal methoden van opdeling van seriéle produktielijnen in kleine
twee-machine produktielijntjes zijn in de laatste dertig jaar geintroduceerd en mogen als
klassiek worden beschouwd. Voor zover bekend gaat het hier echter altijd om machines
met continu verdeelde bewerkingstijden. Omdat we in de autolampen produktielijn te
maken hebben met machines die met een wvast interval produkten afleveren, zogenaamde
geindexeerde machines, hebben we te hier niet te maken met continu maar met discreet
verdeelde bewerkingstijden. Om deze discreet verdeelde bewerkingstijden beter te mod-
elleren hebben we de klassieke methoden van opdeling in twee-machine produktielijntjes
grotendeels gehandhaafd, maar ook met succes aangepast zodat zij werken met de discrete
geometrische verdelingen. De nieuwe methode voor geometrisch verdeelde bewerkingstijden
hebben we aan een zeer grondige wiskundige analyse onderworpen. Het is ons zodoende
gelukt om existentie, eenduidigheid, convergentie en “behoud van gemiddelde doorstro-
ming” te bewijzen voor de oplossing van deze nieuwe methode. (Behoud van gemiddelde
doorstroming is een algemene eigenschap van seriéle produktielijnen die zegt dat over een
lange tijd iedere machine in de lijn gemiddeld evenveel onderdelen bewerkt.)

Voor de modellering van de autolampen produktielijn is deze modellering met behulp
van geometrische verdelingen echter nog lang niet voldoende. Het is met de geometrisch
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verdeelde bewerkingstijden namelijk niet mogelijk om de stilstand en reparatie van ma-
chines te beschrijven. Daarom proberen we allereerst inzicht te verkrijgen in seriéle pro-
duktielijnen waarin alleen stilstand en reparatie van machines een rol spelen. Voor dit soort
seriéle produktielijnen hebben we een geheel nieuwe methode ontwikkeld die intensief ge-
bruik maakt van een wiskundige methode om stochastische processen te reduceren door
het indelen van de grote toestandsruimte in minder toestandsgroepen. Vele voorafgaande
ideeén, zoals opdeling van seriéle produktielijnen in kleine twee-machine produktielijntjes,
zullen in deze nieuwe methode in een iets andere vorm worden hergebruikt. Deze nieuwe
methode blijkt in voorbeeldsituaties zeer goed in staat te zijn de stilstand en reparatie
van machines in een produktielijn te modelleren. De wiskundige “elegantie” van deze
methode laat echter wel wat te wensen over. Hoewel het gebruikte concept van reductie
van stochastische processen zeer eenvoudig is, is de complexiteit van de methode dermate
hoog dat we er niet in zijn geslaagd existentie, eenduidigheid, convergentie en “behoud
van gemiddelde doorstroming” te bewijzen. Wel is het duidelijk dat de resultaten van
deze methode niet precies voldoen aan het “behoud van gemiddelde doorstroming”. Dit
is echter geen praktisch probleem omdat alle bekende methoden een benadering van het
stationair gedrag bepalen. Zolang de gemiddelde doorstromingen voor de machines in de
produktielijn elkaar dicht naderen kan er nog steeds sprake zijn van een goede benadering
van het stationaire gedrag.

Vervolgens proberen we de modellen die zijn gebaseerd op discrete geometrische verdeelde
bewerkingstijden en de modellen die zijn gebaseerd op stilstand en reparatie van machines
te combineren en komen zo tot modellen van seriéle produktielijnen die beide stochastische
eigenschappen in zich verenigen. We ontwikkelen zodoende een methode waarmee we het
stationaire gedrag kunnen bepalen van seriéle produktielijnen waarvan de machines zowel
een discrete geometrisch verdeelde bewerkingstijd hebben als aan stilstand en reparatie
onderhevig zijn.

De laatste stap die we moeten zetten voor een wiskundig model van de autolampen pro-
duktielijn is de stap van een seriéle produktielijn naar een non-seriéle configuratie met
samenvoeging. Deze stap word genomen door opnieuw een aanpassing en uitbreiding van
de bestaande methoden voor seriéle configuraties. Het resultaat is de mogelijkheid om een
goede benadering te krijgen van het stationair gedrag van de autolampen produktielijn
op basis van de volgende vier verschillende parameters per machine: de gemiddelde aa-
neengesloten werkende tijd, de gemiddelde aaneengesloten reparatietijd, gemiddelde uitval
van onbruikbare onderdelen en de machinesnelheid. Naast deze parameters voor de ma-
chines is er nog één extra parameter per wachtrij: de maximale wachtrijlengte. Aan de
hand van de waarden van deze parameters zijn we nu in staat het stationaire gedrag van de
produktielijn te benaderen, inclusief de gemiddelde produktie van de gehele produktielijn.
Door opnieuw berekenen na het aanbrengen van kleine variaties in de parameters kunnen
we uitspraken doen over de gevoeligheid van de gemiddelde produktie voor deze variaties.
Deze gevoeligheden kunnen worden gebruikt ter ondersteuning van besluiten die worden
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genomen voor veranderingen in de autolampen produktielijn.

Naast deze lange weg waarlangs we een wiskundig model afleiden voor de berekening van
het stationair gedrag van deze specifieke produktielijn, wordt ook meer fundamenteel on-
derzoek beschreven in een aanverwante richting die in principe betere beschrijvingen kan
geven van wachtrijnetwerken. Deze richting is de richting van de stochastische systemen
met discrete gebeurtenissen, in het Engels “stochastic timed event graphs” genoemd, die
een subklasse zijn van de zogenaamde Petri netten. Het is mogelijk om een betere beschri-
jving van de autolampen produktielijn te maken met behulp van deze systemen. Echter,
de berekening van het stationaire gedrag van zulke systemen zijn zeer gecompliceerd. In
dit, proefschrift wordt een voorbeeld behandeld van een zeer eenvoudig twee-dimensionaal
autonoom “stochastic timed event graph”. Het blijkt dat het zelfs daar nog onmogelijk is
het stationaire gedrag van zo’'n eenvoudig systeem in een expliciete vorm uit te drukken.
Het zal daarom duidelijk zijn dat exacte berekening van het stationaire gedrag van een
soortgelijk systeem voor de complexe autolampen produktielijn buiten het bereik is van de
huidige wetenschap.

In dit proefschrift wordt toch een begin gemaakt met het modelleren van blokkerende
seriéle produktielijnen door middel van “stochastic timed event graphs”. Het blijkt dat
een zeer elegante beschrijving mogelijk is waarmee een zeer uitgebreide verzameling van
seriéle blokkerende wachtrijnetwerken met willekeurige verdeelde service tijden kunnen wor-
den beschreven.

Ook deze modellen voor wachtrijnetwerken met behulp van “stochastic timed event graphs”
worden vervolgens opgedeeld in kleinere systemen wij Wait & Switch Systems noemen.
Door grondig onderzoek van deze Wait & Switch Systems blijkt het toch mogelijk het
stationaire gedrag ervan te bepalen. Door gebruik te maken van de stationaire verdelingen
van de diverse Wait & Switch Systems kunnen we zodoende een stationaire verdeling van
de hele produktielijn benaderen. Voorbeelden van deze methode zijn nog niet behandeld
in dit proefschrift. Wel is een algoritme beschreven waarmee deze stationaire verdeling
met behulp van de Wait & Switch Systems kan worden benaderd. De auteur van dit
proefschrift ziet het als een enorme uitdaging om een exacte stationaire verdeling van het
model te bepalen. Het algoritme blijkt namelijk wel een goede benadering, maar zeker
nog geen exacte stationaire verdeling van het stochastische model op te leveren. Verder
onderzoek in deze richting lijkt zeer nuttig en kan misschien leiden tot een exacte oplossing
van het model dat hier wordt beschreven. Dit zou een doorbraak kunnen betekenen in de
beschrijving en berekening van het stationair gedrag van (blokkerende) wachtrijnetwerken.
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