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Abstract 
The CONE-LCA framework is a promising framework that can be used to assess the impact of 
food items on human health and the environment. However, the nutrition-health 
assessment in the CONE-LCA framework quantifies the health impacts of food at the level of 
food items with the use of an indicator that is based on only few nutrients and otherwise 
broad food groups. Given that food items within food groups can have different impacts on 
health, disaggregating health impacts can be of added value and was explored here. An 
extended version of the Nutrients Rich Food index is used for both downscaling and cluster 
analysis. 
 
The correlation coefficient at the aggregated levels with the NRF index (-0.93) was 
substantially higher than the original health impact indicator of food items with the NRF 
index (0.36). These results illustrate that the use of a downscaled indicator improves the 
health impact assessment of food items. The downscaling analysis showed that downscaled 
health impacts can differ substantially between food items within food groups. Furthermore, 
the cluster analysis showed that some food groups (e.g. fruits, vegetables and red meat) are 
highly variable in nutrient density and therefore prioritizing these food groups for clustering 
can be of added value in future epidemiological studies.  
 
The improved nutrition health assessment model is not only relevant within the CONE-LCA 
framework but can be used on its own to assess health impacts of food items. The model 
may be very useful in policy applications as it enables comparison of food items on impact 
on human health and the environment, which can be the basis for sustainable dietary 
guidelines. Future research can focus on further development and validation of the model.  
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1 Introduction 
Environmental sustainability and non-communicable diseases are inextricably linked through 
dietary choices (Reinhardt et al., 2020; Tilman & Clark, 2014). Non-communicable diseases 
are also known as chronic diseases which cannot be passed from person to person, such as 
cardiovascular diseases, cancers, and chronic respiratory diseases (World Health 
Organization, 2021). The average western dietary pattern is associated with negative health 
outcomes. Underconsumption of nourishing foods and overconsumption of harmful foods 
are the most important contributors to the health burden in the US (Afshin et al., 2019) as it 
results in non-communicable diseases (Gakidou et al., 2017). At the same time, current 
western dietary patterns drive detrimental environmental impacts including climate change, 
deforestation, land degradation, ocean acidification, and air pollution, all pressuring the 
earth’s boundaries (Willet et al., 2019). Impacts on human health and the environment are 
further expected to increase due to the growth of the global population and we are already 
starting to see food supply security being threatened (Godfray et al., 2010). Therefore, there 
is a need for evidence-based policymaking to support a food production and consumption 
system that is sustainable and positively affects human health (Davis et al., 2014; Reinhardt, 
2020). Consequently, the need for a joint environmental and health assessment of dietary 
choices has been acknowledged and literature is expanding (Doran-Browne, 2015; Tilman 
and Clark, 2014; Reinhardt et al., 2020; Springmann et al., 2018; Vega Mejia et al., 2018; 
Willet and Stampfer, 2019).   
 
Although the impact of foods on human health and the environment has extensively been 
researched independently, research jointly assessing health and environmental impacts of 
dietary choices is scarce. The environmental impacts of diets have been researched 
extensively, in which health effects are often underexposed (Andrew et al., 2016; Behrens et 
al., 2017; Jones et al., 2016; Ritchie et al. 2018). On the other hand, health impacts of dietary 
choices have been researched thoroughly, but environmental impacts are often neglected 
(Afshin et al., 2019; Forouzanfar et al., 2015; Gakidou et al., 2017; Lim et al., 2012; Micha et 
al., 2011; Micha et al., 2017; Springmann et al., 2018; Willet and Stampfer, 2013). In the 
latter studies mostly wholesale diets are researched, including nationally recommended 
diets, national average diets, flexitarian, pescatarian and vegetarian diets. Although such 
comparisons are helpful to research the greatest potential beneficial impacts, their practical 
applications are limited because policies are bound to diverse food systems and resource 
availability and cultural preferences (Green et al., 2020; Reinhardt et al., 2020). Thus, 
literature suggests that more research should be conducted into health and environmental 
impacts of marginal dietary adjustments instead of wholesale comparisons between diets 
(Green et al., 2020; Reinhardt et al., 2020). Besides, Jones et al. (2016) recommended that 
future research should focus on streamlining the integration of nutrition into Life Cycle 
Analysis (LCA).  
 
This research gap was filled when Stylianou et al. (2021) developed the Combined 
Nutritional and Environmental Life Cycle Assessment (CONE-LCA) framework to assess the 
impact of food items on human health and the environment. Resource use and 
environmental emissions, and dietary risks and benefits are quantified to estimate the 
impact of food on the environment and human health over its life cycle. The environmental 
impact assessment in the framework follows the traditional environmental LCA method. The 
nutritional assessment of foods builds on epidemiological studies (Stylianou et al., 2021). 
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Epidemiology is the study of the distribution of diseases and other health-related conditions 
in populations, and the application of this study to control health problems (National 
Research Council, 2012). 
 
In the nutrition-health assessment of food items in this framework, dietary risk factors 
(DRFs) for only a few nutrients and otherwise broad food groups are considered. Although 
the Dietary Guidelines for Americans have shifted from nutrient requirements to food 
recommendations, food items within a food group differ in nutrient content and can 
therefore have different effects on health (U.S. Department of Agriculture, 2020; Lampe, 
1999). For example, bananas contain more starch than oranges, and oranges contain more 
vitamin C than bananas (Khachatrian, 2021). Consequently, it can be of added value to 
differentiate between food items within food groups in health impact assessment. This may 
be of particular importance in developing countries where dietary diversity is low, and the 
populations often depend on staple foods (Sibhatu et al., 2015). Additionally, food items 
with different processing categories are combined within food groups (e.g., oat flakes and 
sweetened breakfast cereals or raw nuts and roasted and salted nuts) while the type of 
processing may have different effects on health (Fardet et al., 2015). Lastly, only few 
nutrients are included in the CONE-LCA framework and key nutrients, like vitamins, 
magnesium, iron, iodine, potassium, and zinc are missing (World Health Organization, 2017). 
Consequently, there is a need for an improved nutrition-health assessment method as part 
of the CONE-LCA framework.  
 
The CONE-LCA framework builds on dietary risks reported in the Global Burden of Disease 
(GBD) 2016 study. Quantification of the health burden attributable to specific dietary risks 
has been researched extensively in GBD studies (Forouzanfar, 2015; Gakidou et al., 2017: 
Lim et al., 2012; Afshin et al., 2019). The GBD studies estimate these dietary risks based on 
data from epidemiological studies, which gathered their primary data based on the 
consumption of food groups as opposed to food items. Consequently, dietary risks in the 
GBD study, and therefore the indicators used in the CONE-LCA framework, are food group-
based. If epidemiological studies would make use of clusters of food items with similar 
nutritional properties within these broad food groups, the quality of health impact estimates 
associated with food consumption could be improved. Another approach to refining dietary 
risks of food items is to downscale the health impacts of food groups to the level of food 
items, based on nutritional profiles of food items.  
 
Ample literature on nutritional assessment of food items using nutrient profiles exists. 
Various nutrient profile (NP) models have been developed by the food industry, researchers 
and governments (Kourlaba et al., 2009) such as the Overall Nutritional Quality Index (Katz 
et al., 2010), Nutrient Rich Food Index (Fulgoni et al, 2009), Nutritional Quality Index 
(Sonesson, 2019) or Nutrient Balance Concept (Fern et al., 2015). NP models assess foods on 
nutrient quantity, nutrient quality and/or nutrient diversity. Nutrient quantity metrics are 
most commonly used in sustainability assessments (Green et al., 2020). They measure 
nutrient amounts, such as macronutrients, vitamins and minerals. These indices are 
informative, but they do not directly evaluate the impact of these foods on human health, as 
it only evaluates nutrient quantity. To assess the impact on human health, nutritional 
metrics should be translated to health metrics. Health metrics are used to quantify the 
impacts of nutrient consumption on human health. Disability-Adjusted Life Years (DALYs) are 
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the most used health metric in sustainability studies, as nutrition and pollution-induced 
mortality and morbidity can be compared directly (Green et al., 2020). DALYs represent the 
burden of disease and are the sum of years of life lost due to premature mortality and years 
of healthy life lost due to disability (World Health Organization, 2013). The CONE-LCA 
framework could make use of such NP models to translate the nutrient content of food 
items to downscaled health impacts.  
 
In summary, the nutrition-health assessment in the CONE-LCA framework quantifies the 
health impacts of food at the level of food items with the use of an indicator that is based on 
only few nutrients and otherwise broad food groups. Given that food items within a food 
group can have different impacts on health, disaggregation of food groups can be of added 
value and was explored in this thesis. The corresponding research question of this thesis is: 
How can the health impacts of food groups be disaggregated based on nutrient profiles to 
improve the nutritional health assessment of food items? The research objective of this 
thesis is to explore two approaches. Firstly, downscaling group-based health impact 
indicators to the level of food items based on the nutrient profiles of these food items. 
Secondly, prioritizing food groups with high variation in nutrient profiles for clustering. These 
clusters can then be used in subsequent epidemiological research.   
 
The subsequent sub-questions are:  
Sub-question 1: Which NP model is most suitable for this research? 
Sub-question 2: Does the selected NP model improve the estimation of health impacts in the 
nutrition health assessment of food items? 
Sub-question 3: What are the downscaled nutrition-related health impacts of food items 
compared to other food items within its food group? 
Sub-question 4: Which food groups show high variability in nutritional content and could be 
prioritized for clustering?  
 
The scope of this research is limited to the research boundaries of the study by Stylianou et 
al. (2021). The geographical scope of this research covers the consumption of food items in 
the US, since the impact indicators used in the CONE-LCA framework are US-based DRFs. 

Only impact on human health (expressed in DALY or HENI) is covered by the indicator used 
in this thesis. The DRFs build on the dietary risks from the GBD 2016 study, which are 
constituted for 7 food groups and are based on a limited number of non-communicable 
diseases only. The number of food items analyzed in this thesis was limited to the availability 
of food items in the FoodData Central database. Only 144 of 167 food items emphasized on 
in the paper of Stylianou et al. (2021) were analyzed due to availability. Additionally, for the 
analysis of food items in the 7 food groups, a total of 908 food items were available in 
FoodData Central and were analyzed.  
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2 Methods 
2.1 The CONE-LCA framework 
In this section background information on the CONE-LCA framework will be discussed.  
 
The CONE-LCA framework can be used to assess the impacts of food on human health and 
the environment over its lifecycle (Figure 1). The environmental impact assessment follows 
the traditional environmental LCA method. Starting from a functional unit, the related 
environmental emissions and resource extractions are analyzed, from which impact results 
are calculated, such as resources & ecosystem services, ecosystem quality and human health 
impacts & benefits. Health impacts related to nutritional effects of foods are assessed in 
parallel, with DALYs as a common endpoint metric. The preliminary CONE-LCA framework 
was tested in two case studies, on milk (Stylianou et al., 2016) and on fruit and vegetables 
(Stylianou et al., 2017). In 2021, the framework was further developed and tested in the 
assessment of 5,853 meals typically consumed in the US (Stylianou et al.,2021).  
 
 

 
Figure 1: CONE-LCA framework (Stylianou et al., 2016) 

In the GBD studies, DALYs associated with the consumption of 15 dietary risk components 
were identified across 195 countries. The primary data in the GBD study was retrieved from 
94 systemic reviews, meta-analyses and pooled analyses dated from 1990 to 2016 (Gakidou, 
et al., 2017). The dietary risk components cover food groups, including nuts and seeds, 
processed meat, red meat, milk, whole grains, legumes, sugar-sweetened beverages (SSB), 
fruits and vegetables and nutrients including calcium, fibres, omega 3 fatty acids, 
polyunsaturated fatty acids (PUFAs), trans fatty acids (TFAs) and sodium. Building on these 
dietary risks from the GBD studies, Stylianou et al. (2021) developed DRFs to quantify health 
burden (mortality and morbidity) associated with a small intake shift from the baseline diet. 
These DRFs are quantified per consumed risk component for the average population and are 

expressed in DALY per gram of intake. The health outcomes associated with these 15 
dietary risk components are based on non-communicable diseases only. Communicable 
diseases and injuries are not considered in the calculations of these DALYs. Detailed 
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information on the health endpoint methodology can be found in the supplementary 
materials of the study by Stylianou et al. (2021). 
 
Integration of health impact indicators into LCA allows for comparison of environmental 
emissions and resource use, and dietary impacts of food on human health expressed in a 
common endpoint-unit, DALYs. Since DALYs can be abstract for non-experts to interpret, the 
Health Nutritional Index (HENI) score is used to translate the health impacts to a more 
tangible metric. “HENI is a continuous single score that quantifies the net minutes of healthy 
life gained (+) or lost (−) from all-cause mortality and morbidity per reference amount of 
food (for example, a standard serving size)” (Stylianou et al., 2021).  
 
In the example of Figure 2, the environmental and health impacts of a serving of chicken 
wings are calculated. The right side represents the environmental LCA of this product. The 
left side represents the nutritional evaluation of the product. In a serving of chicken wings of 
85 grams, an X amount of nutrients are present. These nutrients are, with the use of dietary 

risk factors (DALY per gram of risk component), translated into health impacts (DALY) and 
rescaled into the HENI score (minutes of life gained or lost) per serving. 

 
Figure 2: Extended CONE-LCA framework (Stylianou et al., 2021) 

Important to note is that the food items are individually assessed in the environmental 
assessment. For example, for the environmental assessment of bananas and oranges, the 
life cycle stages of bananas and oranges are analyzed respectively. This individual 
assessment is missing in the nutritional evaluation. DRFs are based on only a few nutrients 
and otherwise broad food groups. Although food items in thousands of dishes are analyzed, 
in the health impact assessment these ingredients are assigned to the DRFs of the respective 
food groups. For example, both bananas and oranges are assigned to the DRF of “fruits” as a 
group.  
 



 8 

2.2 Nutrient profile models  

2.2.1 Background 
Nutrient quantity of foods can be assessed using a NP model. NP models rank foods based 
on their nutrient content (Drewnowski and Fulgoni, 2008). The models usually consider 
nutrients to encourage which are known to be beneficial for health, or nutrients to limit 
which are known to be detrimental to health, or a combination of both (Drewnowski and 
Fulgoni, 2008). In this analysis, the use of two NP models, the Nutrient-Rich Foods (NRF) 
index and the Nutritional Quality Index (NQI), for assessing the health impacts of food items 
were explored.  
  

2.2.2 Nutrient-Rich Foods Index  
The NRF index was used in this study since it is a validated and commonly used nutritional 
quantity index and it is easily extendible (Fulgoni et al. 2009). The concept of this nutrient 
density score was first explored in 2005 and further developed to its current form 
(Drewnowski, 2005; Drewnowski and Fulgoni, 2008; Fulgoni et al., 2009; Maillot et al. 2007). 
A family of NRF indices were validated against the Healthy Eating Index (HEI), which is an 
extensively analyzed, accepted measure of diet quality (Fulgoni et al., 2009). Moreover, the 
NRF index has been validated against all-cause mortality (Streppel et al., 2014).  
 
The NRF index measures nutrient quantity, calculating a joint score from nutrients to 
encourage and nutrients to avoid. The NRF index, calculated from both macro and 
micronutrients, attributes a score to food items based on their nutrient content. It sums 
nutrients that are beneficial for health and subtracts nutrients to limit into a joint score 
(NRFn.3), where n represents a variable number of beneficial nutrients and three nutrients 
to limit: saturated fat, added sugars and sodium (Drewnowski and Fulgoni, 2008). Scores are 
calculated based on recommended daily intake values (e.g. region-specific or global) and 
reference amounts (e.g. 100 g, 100 kcal or serving size) (Fulgoni et al., 2009). The advantage 
of this model is that it is easily extendible to other countries and various numbers of 
nutrients.  
 
The NRF9.3 version scored best in the validation against the HEI (Fulgoni et al., 2009). In 
NRF9.3 the nine beneficial nutrients included are, protein, fibre, iron, calcium, potassium, 
magnesium and vitamins A, C and E and three nutrients to limit included are, sodium, added 
sugars and saturated fat. As an example, the NRF9.3 score is calculated for the US, by 
summing the ratio of the nutrient in the food item (g) to the recommended daily value of the 
nutrient (g) for beneficial nutrients and by subtracting this ratio for detrimental nutrients 
(Fulgoni et al., 2009) (Equation 1). 

 
Equation 1: 𝑁𝑅𝐹9.3 =  (𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑔/50𝑔 +  𝑓𝑖𝑏𝑟𝑒 𝑔/25 𝑔 +  𝑣𝑖𝑡𝑎𝑚𝑖𝑛 𝐴 𝐼𝑈/5000 𝐼𝑈 +
 𝑣𝑖𝑡𝑎𝑚𝑖𝑛 𝐶 𝑚𝑔/60 𝑚𝑔 +  𝑣𝑖𝑡𝑎𝑚𝑖𝑛 𝐸 𝐼𝑈/30 𝐼𝑈 +  𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑚𝑔/1000 𝑚𝑔 +  𝑖𝑟𝑜𝑛 𝑚𝑔/18 𝑚𝑔 +
 𝑚𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚 𝑚𝑔/400 𝑚𝑔 +  𝑝𝑜𝑡𝑎𝑠𝑠𝑖𝑢𝑚 𝑚𝑔/3500 𝑚𝑔 –  𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑓𝑎𝑡 𝑔/20 𝑔 –  𝑎𝑑𝑑𝑒𝑑 𝑠𝑢𝑔𝑎𝑟𝑠 𝑔/
50 𝑔 –  𝑠𝑜𝑑𝑖𝑢𝑚 𝑚𝑔/2400 𝑚𝑔)  100    

 

2.2.3 Nutritional Quality Index  
Nutritional quality is dependent on dietary context. For example, in countries where calcium 
intake is typically low in the average diet, dairy is beneficial to health impacts. On the other 
hand, intake of products high in calcium will add little extra beneficial health impacts in 



 9 

countries with a high intake of dairy products (Sonesson et al., 2019), such as the 
Netherlands. Consequently, it is important to consider the dietary context in the nutrition-
health assessment of foods.  
 
The nutritional quality index (NQI) indicates the nutritional value of a product in a given 
dietary context. The NQI model uses a similar approach to the NRF9.3 model, including the 
same beneficial and detrimental nutrients (Sonesson et al., 2019). Yet, the NQI model 
assigns higher scores to nutrients that are deficient in the studied diet, by comparing the 
ratio of nutrients in the product to the ratio of nutrients in the diet and the total 
consumption ratio. Equations 2-4 are used to calculate the NQI index (Sonesson et al., 2019): 
 
Equation 2:  𝑁𝑄𝐼𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  ∑(𝑁𝑄𝐼𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1– 9) – ∑(𝑁𝑄𝐼𝑑𝑖𝑠𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1– 3) 

Equation 3:  𝑁𝑄𝐼𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1 =  (𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡/𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑑𝑖𝑒𝑡)/𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 

Equation 4:  𝑁𝑄𝐼𝑑𝑖𝑠𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1 =  (𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡/𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑑𝑖𝑒𝑡)  ×  𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 

 
Where: 

 Ratio in product = total content of nutrient in mass divided by total mass of product 
(g/g) 

 Ratio in diet = total intake of nutrient in mass divided by total dietary intake in mass 
(g/g) 

 Consumption ratio = ratio of dietary intake to dietary need for the nutrient 
 
Similar to the NRF index, nutrients can be added and removed from the NQI index, which 
makes it easy to adjust the index to the aim of this study. This NQI model is the first 
presented version and is not verified yet (Sonesson et al., 2019). Therefore, in this study use 
of the NQI model to score a broad range of food items on nutritional quality will be explored 
and compared to the NRF model.  
 

2.2.4 Approach 
The original NRF and NQI models (Equation 5) were extended to reflect a more complete set 
of important nutrients. Literature highlighted a degree of arbitrariness in the exclusion of 
nutrients in other NP models (Ridoutt, 2021). To be as free as possible from this bias, all 
nutrients for which (1) US-specific recommended intake value was available and (2) the 
nutritional data was available in the FoodData Central database, were included in the model. 
This database provides detailed information on food items and their nutritional composition 
(USDA, 2019a). Based on these criteria, the original models were extended with 15 extra 
nutrients to encourage and one nutrient to limit (Fout! Verwijzingsbron niet gevonden.). 
Consequently, the extended models include 24 qualifying and four disqualifying nutrients 
and could be written as NRF24.4 and NQI24.4 (Equation 6). Moreover, nutrients did not 
meet the criteria and were excluded (appendix A). Additionally, data on added sugar was not 
available in the FoodData central database (USDA, 2019) and therefore added sugar was 
substituted by total sugar.  
 
For the NQI model, ratio in product was retrieved from the food composition tables of 
FoodData Central (USDA, 2019a), which was also used for calculating the NRF Index. For the 
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ratio in diet, total nutrient intake was retrieved from balance sheets from WWEIA (USDA, 
2019b), where average consumption of adult males and females was used ((adult males + 
adult females)/2). To calculate total dietary intake in mass, the ratio between actual total 
protein intake and total protein supply was taken and applied to the total food supply food 
balance sheets from FAOstat (FAO, 2019). Total protein intake was retrieved from What We 
Eat In America (USDA, 2019b) and total protein supply from FAOstat food balance sheets 
(FAO, 2019). For the consumption ratio, the dietary intake is the same value as mentioned 
before. The dietary need for the nutrient is the daily value which was also used to calculate 
the NRF indices (Fout! Verwijzingsbron niet gevonden.).  
 
In the equations of both models, the ratio between qualifying and disqualifying nutrients in 
the extended indices is different compared to the original ones. To resemble the ratio of 
qualifying and disqualifying nutrients in the original indices, a second version of the 
extended indices was tested, where more weight was attributed to disqualifying nutrients by 
multiplying the detrimental nutrients with a factor of 2 (Equation 7). Whether the extended 
formula with or without extra weight was used in this research, was based on the correlation 
analysis (chapter 2.3). 
 
Equation 5:  𝑁𝑅𝐹 & 𝑁𝑄𝐼𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  ∑(𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1– 9)– ∑(𝑑𝑖𝑠𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1– 3) 

Equation 6:  𝑁𝑅𝐹 & 𝑁𝑄𝐼𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  ∑(𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1– 24)– ∑(𝑑𝑖𝑠𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1– 4) 

Equation 7:  𝑁𝑅𝐹 & 𝑁𝑄𝐼𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  ∑(𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1– 24)– 2 ∑(𝑑𝑖𝑠𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡1– 4) 

 
The NQI index assumes an exponential relation for qualifying nutrients and a linear relation 
for disqualifying nutrients, see Equations 3-4 (Sonesson et al., 2019). Therefore, the NQI can 
attribute a relatively high score to food items with both high contents of beneficial and 
detrimental nutrients. To test whether this assumption indeed improves the prediction of 
health impacts, two NQI versions that assume linear relations only or exponential relations 
only (Equations 8-9) were applied to all NQI models (Equations 5-7) and tested in the 
correlation analysis (chapter 2.3).  
 

Equation 8:  𝑁𝑄𝐼𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡, 𝑁𝑄𝐼𝑑𝑖𝑠𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 =  
𝑟𝑎𝑡𝑖𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑑𝑖𝑒𝑡
/ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 

Equation 9:  𝑁𝑄𝐼𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡, 𝑁𝑄𝐼𝑑𝑖𝑠𝑞𝑢𝑎𝑙𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 =  
𝑟𝑎𝑡𝑖𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑑𝑖𝑒𝑡
×  𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 
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Table 1: Nutrients and recommended daily values. 

Nutrient Recommended Value Source Comment 

Nutrients to encourage 

Fiber 28g (FDA, 2022)  

Protein 50g (FDA, 2022)  

Vitamin A (RAE) 900mcg RAE (FDA, 2022)  

Vitamin C (Ascorbic acid) 90mg (FDA, 2022)  

Vitamin E (alpha-
tocopherol) 

15 mg alpha-tocopherol (FDA, 2022)  

Magnesium 420mg (FDA, 2022)  

Calcium 1300mg (FDA, 2022)  

Potassium 4700mg (FDA, 2022)  

Iron 18mg (FDA, 2022)  

Zinc 11mg (FDA, 2022)  

Vitamin B1 (Thiamin) 1.2 mg (FDA, 2022)  

Vitamin B2 (Riboflavin) 1.3mg (FDA, 2022)  

Vitamin B9 (Folate) 400mcg DFE (FDA, 2022)  

Vitamin B12 (Cobalamin) 2.4mcg (FDA, 2022)  

Monounsaturated fat 20g (FDA, 2022)  

Polyunsaturated fatty 
acids 

18.9g (WHO, 2010) 6-11%E; 

(6+11/2)  2000 kcal  
1g fat / 9 kcal 

Vitamin D 20mcg  (FDA, 2022)  

Phosphorus 1250mg (FDA, 2022)  

Vitamin K 120mcg (FDA, 2022)  

Copper 0.9mg (FDA, 2022)  

Vitamin B3 (Niacin) 16mg NE (FDA, 2022)  

Selenium 55mcg (FDA, 2022)  

Vitamin B6 (Pyridoxine) 1.7mg (FDA, 2022)  

Choline 550mg (FDA, 2022)  

Nutrients to limit 

Total sugar 125g (IOM, 2005  
in Fulgoni 2008) 

 

Sodium 2300mg (FDA, 2022)  

Saturated fat 20g (FDA, 2022)  

Cholesterol 300mg (FDA, 2022)  

 

2.2.4.1 NRF: Dietary context 
As discussed previously, although dietary context is very important in the assessment of 
foods, the NRF model naturally does not consider this. Therefore, the NRF model was 
adjusted to attribute less weight to overconsumed nutrients in the US. Overconsumed 
nutrients are capped by the ratio of the recommended daily value to the actual 
consumption, under two conditions. Firstly, the nutrient must not be a nutrient to limit. 
There is a clear dose-response relationship in the consumption of detrimental nutrients (Qin 
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et al., 2020). Where little extra beneficial health impacts are achieved after consuming more 
than 100% of the recommended value for beneficial nutrients, crossing 100% of the 
recommended daily value for detrimental nutrients is associated with additional negative 
health impacts. Secondly, the fat-soluble vitamins (e.g. vitamin A, D, E and K) are not capped. 
Fat-soluble vitamins are stored in the body and therefore consumption of more than 100% 
of the recommended DV is still associated with extra beneficial health impacts (Blomhoff et 
al, 1990; Card et al., 2013). For simplification in this research, several assumptions have been 
made in the capping method. It is assumed that consumption of more than 100% daily value 
is associated with no extra beneficial health effects. Secondly, for the nutrients to 
encourage, negative health impacts after crossing the daily maximum upper limit are 
ignored.  
 
In the following example, the capping approach is illustrated: The recommended daily intake 
of copper is 0.9 mg and the actual US intake of copper is 1.3 mg. Thus, copper is 
overconsumed in the US. Copper is not detrimental and not fat-soluble. Therefore, 
overconsumption of this nutrient is associated with few additional health impacts. 
Consequently, copper quantity in food items is capped by a factor 0.69 (= 0.9 mg / 1.3 mg). 
This approach of capping is preferred over only capping at 100% DV because in the latter 
approach, capping or not is dependent on the functional unit. Therefore, downscaled health 
impacts could not be extrapolated to mixed dishes or daily food patterns since nutritional 
quantity is always capped for that fixed functional unit. This will be illustrated with an 
example: a FU of 100 g is used to calculate the health impacts and nutrients are capped at 
100%. If one would want to use these downscaled health impacts in the CONE-LCA 
framework to calculate the total health impact of a mixed dish, the weight should be 
rescaled to the recipe. If one would simply rescale the health impacts with the weight used 
in the mixed dish, the health impacts of food items with high nutrient density could be 
underestimated. This is because the original health impact score, although rescaled, is used 
in which nutrients were capped at 100% for 100 g. But, when using only a small amount in a 
dish, the recommended DV would probably not have been crossed and therefore it should 
not have been capped. This also works the opposite way, when one eats more than 100 g 
per day and capping should be done but is not done so when capping 100% for 100 g. This 
example illustrates that capping at 100% is always bound to a specific functional unit.  
 

2.3 Correlation analysis 

2.3.1 Objective  
The objectives of this analysis were to (1) select the most suitable NP model for further 
analyses and (2) to test whether the use of NP models improves the health impact 
assessment of food items.  
 

2.3.2 Approach 
First, all NP models described in section 2.2.4 were tested against the health impacts of the 
144 food items emphasized in the paper of Stylianou et al. (2021). To select the most 
suitable versions of both the NRF and NQI models, all models were compared to each other 
based on Pearson correlation coefficients. Moreover, to justify whether the extended 

versions (24.4 and 24.42) improve the original versions (9.3), the original versions were also 
included in this analysis.  
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Afterwards, the two models with the highest Pearson correlation coefficients were tested in 
an additional correlation analysis at the level of 908 food items within seven food groups. 
The indicators used in the CONE-LCA framework are DRFs. These DRFs represent the average 
US-population-weighted risks (Table 2). A consumption weighted average nutrient index is 
calculated for each food group, which is considered equivalent to the DRF. The Pearson 
correlation coefficient between the nutrient index and dietary risk factors at the aggregated 
level was compared to the Pearson correlation coefficient between the nutrient index and 
the original health impact indicators of food items used by Stylianou et al. (2021). A higher 
correlation at the aggregated level would suggest that the use of a nutrient index to score 
food items improves the estimation of health impacts better compared to the use of the 
original aggregated indicator at the level of food items. The NP model with the highest 
correlation was selected for further analyses in this thesis. 
 
Table 2: Dietary risk factors in for all food groups (Stylianou et al., 2021) and number of items in food group. 

Food group Dietary risk factor (DALY/g) Number of items in food group 

Fruits -0.18 93 

Legumes -0.23 51 

Milk -0.01 30 

Nuts & seeds -1.50 61 

Red meat 0.10 295 

Vegetables -0.08 346 

Whole grains -0.34 32 

 

2.3.3 Data on food items 
Stylianou et al. (2021) highlighted 167 food items, from the Food and Nutrient Database for 
Dietary Studies (FNDDS) dataset within the FoodData Central database, in their paper. Food 
items in this database are marked by codes from the What We Eat In America (WWEIA) 
survey, which was conducted as a partnership between the U.S. Department of Agriculture 
(USDA) and the U.S. Department of Health and Human Services (DHHS) (USDA and DHHS, 
2019). The 167 food codes were searched in this database to be used in this thesis. However, 
21 food items were excluded because the corresponding WWEIA codes were not existing 
anymore in FoodData Central (Appendix B). Moreover, two food items were excluded 
because they were duplicated in the report of Stylianou et al. (2021) (Appendix B). The 
extended NRF and NQI indices were calculated for all remaining 144 food items.  
 
For the additional correlation analysis, food items and their nutritional information were 
also retrieved from FoodData Central to be consistent with the research method of Stylianou 
et al. (2021). Moreover, the DRFs from the CONE-LCA framework were US-specific (Stylianou 
et al., 2021). Consequently, US consumption data was used in this research. The food 
groups, which include fruits, milk, nuts and seeds, red meat, vegetables, legumes, and whole 
grains, the corresponding DRFs and the associated health outcomes were retrieved from 

their study. The associated health outcomes of the dietary risk factors (in DALYs) for these 
food groups were based on a limited number of non-communicable diseases only (Appendix 
C). Communicable diseases and injuries are not considered in the health endpoints. The 
inclusion and exclusion criteria for food items in a food group, defined by Stylianou et al. 
(2021) were used (Appendix C). Based on these criteria a total of 908 food items were 
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selected from the FoodData Central database (Table 2) (USDA, 2019a). A detailed list of all 
items is included in Appendix D.  
 
Stylianou et al. (2021) calculated DRFs based on consumption levels using National Health 
and Nutrition Examination Survey (NHANES) 2011–2016 (CNC, 2018). However, this raw data 
from the survey is not translated to average daily consumption values. Given the limited 
timeframe of this thesis, it was chosen to retrieve US consumption data elsewhere. 
Consequently, consumption data is retrieved from the GeNUS database (Smith and Matt, 
2018). The GeNUS database was preferred over FAO food balance sheets because it predicts 
consumption more accurately. Firstly, because in this database broad food groups from the 
FAO food balance sheets are disaggregated into smaller sub-groups, which makes it possible 
to estimate consumption values for food items more accurately than when one can only 
equally divide the consumption data of the broad food group over food items. Secondly, 
consumption is estimated using the Global Dietary Database which is based on national 
household surveys (Smith et al., 2016). This gives a more realistic estimation of what is 
consumed than estimating consumption based only on food balance sheets.  
 
The consumption data in GeNUS was sometimes very specific and sometimes aggregated to 
small food groups. In the latter case, the consumption value had to be distributed over the 
food items belonging to that group. For example, the category “fresh fruit, not elsewhere 
specified’ includes 9 fruits. The total consumption value was equally divided over the 9 
fruits. Of these 9 fruits only 2, pomegranate and tamarinds, were present in the FoodData 
Central database. In such a case, pomegranate, and tamarinds each received 1/9 of the 
consumption value from GeNUS since the other fruits are different sorts of fruit.  
 
In this thesis, it is assumed that the consumption data from GeNUS applies to raw food items 
and is therefore assigned to the raw food items from FoodData Central. However, when a 
food item in FoodData Central was not present in raw form but only in cooked form, it was 
chosen to allocate the consumption values to the cooked item. In this way, the consumption 
weighted average can be calculated as accurately as possible. Excluding the consumption 
value at all would have given a distorted consumption weighted average.  
 

2.4 Downscaling health impact indicators 

2.4.1 Objective 
The selected NP model from the correlation analysis is applied to score all food items in the 
food groups fruits, milk, nuts and seeds, red meat, vegetables, legumes and whole grains. 
These scores are used to downscale the health impacts of these food groups to food items.  
 

2.4.2 Approach 
The selected NP model was used applied to the food items (total of 908) in the seven food 
groups. For all food groups, a consumption weighted average is calculated with the following 
(Equation 10). The ratio of the selected indices to the consumption weighted average is used 
to calculate the downscaled HENI scores for all items (Equation 11). 
 

Equation 10: 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑖𝑛𝑑𝑒𝑥 =
𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑖𝑛𝑑𝑒𝑥

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 



 15 

Equation 11:  𝐻𝐸𝑁𝐼 =  −0.53  𝐷𝑅𝐹 (
𝐷𝐴𝐿𝑌𝑠

𝑔
)  𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑡𝑒𝑚 (𝑔)  

𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑖𝑛𝑑𝑒𝑥

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 
𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑖𝑛𝑑𝑒𝑥

   

Red meat is the only food group that is associated with negative health impacts and 
therefore the corresponding DRF is negative. Therefore, an inverse ratio is used to calculate 
the HENI score for red meat. However, for the very unhealthy red meats with a negative NP 
score, this method yields a positive HENI score, which would suggest a positive health 
impact. Therefore, the HENI scores for food items with negative NP scores are calculated 
differently. The relation between the NP score and HENI score for positive items was 
calculated with a simple linear equation. To calculate the HENI score for the food items with 
negative NP scores, this equation was subtracted from an item with positive scores 
(Appendix D). 
 

2.4.2.1 Functional unit 
The NP scores are calculated per gram, and automatically, health impacts are also calculated 
per gram. In literature, the most commonly used functional units in the nutritional 
assessment are per mass unit (usually 100 g) or per energy unit (usually 100 kcal) 
(Grigoriadis et al., 2021). Therefore, health impacts are also rescaled to these functional 
units. It was chosen to calculate the initial NP scores and health impacts per gram so it can 
be built into the CONE-LCA framework and used for other research aims. For example, if one 
would calculate the health impact of a mixed dish, only multiplication by the weight in a 
recipe is needed.  
 

2.5 Cluster analysis 

2.5.1 Objective 
In this analysis, it is explored whether food groups show high variability in NP scores. 
Clustering subsets food items with similar properties in such food groups can be of added 
value for improving nutrition health assessment. Thus, food groups with high variability were 
prioritized for the cluster analysis. The results of this analysis can be used in subsequent 
epidemiological studies. 
 

2.5.2 Approach  
For each food group, the minimum, maximum and coefficient of variation of the NP scores 
were calculated to explore whether clustering could be relevant for the food groups with 
high variation. A coefficient of variation measures relative variability in relation to the 
average and is calculated by the ratio between the standard deviation and the average 
(European Commission, n.d.). A coefficient of variation greater than one shows relatively 
high variability (Frost, 2020). Therefore, the food groups with a coefficient of variation 
greater than 1 were selected for cluster analysis. Moreover, if a coefficient of variation is 
close to 1 (e.g., >0.9), the range was considered as a second criterium for cluster analysis.  
 
Jenks Natural Breaks classification method is used for this cluster analysis. A cluster analysis 
explores whether data can be grouped into subsets based on their similarities and 
differences (Johnstone et al., 2010). Jenks Natural Breaks is a one-dimensional data 
clustering method designed to find the optimal arrangement of values in a given number of 
clusters. The method splits the data into contiguous clusters in which the squared deviation 
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within each cluster is minimized. The sum of the minimum squared deviation of each cluster 
is used to calculate the goodness of variance fit (GVF) (Equation 12). 
 
Equation 12:  𝐺𝑉𝐹 =   𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 /  𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡.  

GVF retains a value from 0 to 1, where 0 indicates no fit and 1 indicates a perfect fit (Zaiontz, 
n.d.). The analysis is performed with an excel Add-In (Zaiontz, n.d.). The model is used to 
explore a maximum of five clusters. No minimal cut-off GVF value to decide on the number 
of clusters was found in literature. Therefore, the cut-off was based on the fact that the GVF 
is a coefficient, just like a correlation coefficient which indicates no relation at 0 and a 
perfect relation at 1. For the Pearson correlation coefficient, literature indicates that a 
coefficient greater than 0.8 indicates a very good relation (Udovicic et al., 2007). Therefore, 
it was assumed that a GVF greater than 0.8 indicates a very good fit for this research. 
Consequently, a threshold GVF value of 0.8 in combination with a GVF difference of <0.1 to 
the GVF of a lower cluster, is chosen in determining the number of clusters. Moreover, the 
number of items in at least two clusters must be larger than 1. This is chosen to prevent 
positive and negative outliers from filling an entire cluster.  
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3 Results 
3.1 Correlation analysis 
Starting with the NRF model, the results show that the correlation between the adjusted 

NRF24.42 model and health impacts is 0.36 compared to 0.31 for the unweighted NRF24.4 

version (Table 3). Furthermore, the NRF24.42 model correlates better with the health 
impacts than the original NRF9.3 model, although only with a slight difference of 0.02. Thus, 
the highest correlation was found in the model that was both extended and weighted. The 

correlation of the NRF24.42 model with health outcomes is significant (p-value <0.0001). 
 
For the NQI model, the results show that the addition of weight to the extended models 
improves the correlation with health impacts in all formulas compared to the models that 
were only extended (Table 3). Nevertheless, versions that were both extended and weighted 
all correlate worse with health impacts than the NQI9.3 versions (unadjusted, exponential 
and linear). Moreover, the results show that the unadjusted NQI formulas correlate slightly 
better with health impacts than the adjusted linear and exponential formulas. Thus, of the 

extended NQI models, the highest correlation was found in the unadjusted NQI24.42 model. 

The correlation of the unadjusted NQI24.42 model with health outcomes is significant (p-
value <0.0001).  
 

Consequently, NRF24.42 and unadjusted NQI24.42 were selected for the additional 

correlation analysis. The unadjusted NQI24.42 will be referred to as NQI24.42 from now on. 
 
The detailed results including nutrition sheets and NP indices of all 144 food items are added 
in Appendix E.  
 
Table 3: Pearson correlation coefficient of NP score with health impacts (HENI score). Highest scores of NRF model and NQI 
model marked in green.  

  NP model Pearson correlation coefficient 

N
R

F 

NRF24.4 0.31 

NRF24.42 0.36 

NRF9.3 0.34 

N
Q

I NQI24.4 0.29 

NQI24.42 0.33 

NQI9.3 0.35 

Ex
p

o
n

en
 

N
Q

I NQI24.4 0.27 

NQI24.42 0.29 

NQI9.3 0.31 

Li
n

ea
r 

 N
Q

I NQI24.4 0.27 

NQI24.42 0.31 

NQI9.3 0.33 

 

3.1.1 Correlation between aggregated health impacts and indicators 
The DRFs retrieved from Stylianou et al. (2021) and consumption weighted average NP 
scores, calculated in the downscaling analysis, are displayed in table 4. The Pearson 
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correlation coefficient between these DRFs (health impacts) and the consumption-weighted 
NRF scores is -0.93 (p-value 0.003). The Pearson correlation coefficient between these DRFs 
(health impacts) and the consumption-weighted NQI scores is -0.81 (p-value 0.03). Thus, the 
NRF model correlates better with health impacts than the NQI model and was selected for 
further analyses.  
 
Table 4: Dietary risk factors and consumption weighted average NP scores per food group. 

Food group Dietary risk factor 

(DALY/g) 

Consumption 
weighted average 
NRF (1/g) 

Consumption 
weighted average 
NQI (1/g) 

Fruits -0.18 0.54 16.03 

Legumes -0.23 1.63 42.89 

Milk -0.01 0.31 17.95 

Nuts & seeds -1.50 4.65 129.18 

Red meat 0.10 1.48 71.28 

Vegetables -0.08 1.17 26.27 

Whole grains -0.34 1.65 38.82 

 

3.2 Downscaling analysis 
In the next sections, the results of the downscaled health impacts are summarized for red 
meat and vegetables. Detailed results of all food groups are added in appendix D.  
  

3.2.1 Red meat 
Downscaled health impacts for a subset of commonly consumed red meats from all animals 
in this food group are displayed in Table 5. The results show great variety in and between 
subgroups (e.g., salami scores more than 100 times worse than pork bacon, and sometimes 
beef scores better than pork and vice versa). Moreover, the relative ranking of food items is 
dependent on functional unit. For example, ham scores better per 100 grams while pork 
bacon scores better per 100 kcal. 
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Table 5: Health impacts of a selected subset of commonly consumed red meats. 

Main food description 
HENI 
per g 

HENI per 
100 g 

HENI per 
100 kcal 

Pork       

Pork, tenderloin, baked -0.04 -4.18 -2.72 

Pork, spareribs, cooked -0.07 -6.81 -1.73 

Chorizo -0.10 -9.67 -2.79 

Ham, smoked or cured, cooked, lean and fat eaten -0.13 -13.40 -9.00 

Pork bacon, smoked or cured, cooked -0.14 -13.53 -2.89 

Salami -17.41 -1740.76 -460.52 

Beef       

Beef steak, NS as to cooking method, NS as to fat eaten -0.04 -4.19 -2.28 

Beef brisket, cooked, NS as to fat eaten -0.05 -4.87 -2.26 

Ground beef, cooked -0.06 -6.15 -2.37 

Frankfurter or hot dog, beef -29.87 -2987.48 -902.56 

Veal       
Veal cutlet or steak, NS as to cooking method, lean only 
eaten -0.05 -4.98 -2.75 

Lamb       

Lamb chop, NS as to cut, cooked, lean only eaten -0.05 -4.98 -2.33 

Lamb, ribs, cooked, lean only eaten -0.13 -12.86 -3.59 

Goat      
Goat ribs, cooked -0.05 -5.11 -3.60 

 

3.2.2 Vegetables 
The downscaled health impacts for a selected subset of diverse vegetables are displayed in 
Table 6. Detailed results for all food items within vegetables can be found in appendix D. The 
results show that consuming spinach is associated with the highest beneficial health impacts 
and summer squash with the lowest beneficial health impacts compared to the other 
vegetables in this selection. Moreover, the canned vegetables in this selection are associated 
with lower beneficial health impacts than frozen or fresh vegetables of the same sort. In this 
food group again is visual that the relative performance of food items is dependent on the 
functional unit (e.g. raw spinach scores better per 100 kcal while fresh cooked spinach 
scores better per 100 g). 
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Table 6: Health impacts of a selected subset of diverse vegetables prepared in different forms. 

Main food description HENI per g HENI per 100 g HENI per 100 kcal 

Asparagus        

fresh, cooked, no added fat 0.05 5.03 23.98 

frozen, cooked, no added fat 0.07 6.52 36.20 

canned, cooked, no added fat 0.04 4.34 22.85 

Broccoli       

raw 0.10 9.98 29.37 

fresh, cooked, no added fat 0.09 9.27 26.48 

frozen, cooked, no added fat 0.07 6.80 24.27 

Carrots      
raw 0.06 5.83 14.21 

fresh, cooked, no added fat 0.05 5.36 12.47 

frozen, cooked, no added fat 0.05 5.33 14.39 

canned, cooked, no added fat 0.04 3.54 14.15 

Spinach       

raw 0.24 23.94 104.11 

fresh, cooked, no added fat 0.27 26.67 98.79 

frozen, cooked, no added fat 0.25 24.79 72.90 

canned, cooked, no added fat 0.21 20.79 90.38 

Summer squash       

fresh, cooked, no added fat 0.02 2.33 11.08 

frozen, cooked, no added fat 0.01 1.48 7.03 

canned, cooked, no added fat 0.00 0.41 3.14 

 

3.3 Cluster analysis 

3.3.1 Variation in food groups 
The coefficient of variation, minimum and maximum of NRF scores were calculated for all 
food groups per gram (Table 7). A coefficient of variation greater than 1 was found in red 
meats (20.60) and fruits (1.04). A coefficient of variation greater than 0.9 was found in 
vegetables (0.94). The range between maxima and minima is greater for vegetables than for 
fruits.  
 
Table 7: Coefficient of variation within food group, minimum and maximum NRF score and range. Coefficients of variation 
greater than 1 marked in green. Coefficient of variation greater than 0.9 marked in yellow.  

Food group Coefficient of variation Min Max Range 

Fruits 1.04 -1.65 3.35 5.00 

Legumes 0.18 1.07 3.05 1.97 

Milk 0.47 -0.16 0.92 1.08 

Nuts & seeds 0.52 -2.16 20.66 22.83 

Red meat 20.60 -16.65 36.94 53.59 

Vegetables 0.94 -0.11 17.16 17.27 

Whole grains 0.51 0.02 0.32 0.31 
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3.3.2 Cluster analysis 
A cluster analysis was performed on fruits, red meat and vegetables. Results of the Jenks 
Natural Breaks analysis for these three food groups are summarized in Table 8. Detailed 
results of the analysis can be found in appendix F. The GVF threshold was crossed at three 
clusters for red meat and vegetables, and at four clusters for fruits. However, the second 
criterion, that in at least two clusters the number of items must be greater than 1, was not 
met at three clusters for red meat (Table 9). Consequently, the selected number of clusters 
is four for red meat.  
 
Table 8: GVF values from Jenks Natural Breaks analysis of red meat and vegetables. Scores at cut-off marked in green.  

Food group 2 clusters 3 clusters 4 clusters 5 clusters 

Fruit 0.51 0.71 0.84 0.90 

Red meat 0.68 0.84 0.91 0.95 

Vegetables 0.72 0.83 0.91 0.94 

 
Table 9: Number of items in clusters based on the first criterion. If the second criterion is not met, the food group is marked 
in red.  

Food group Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Fruits 2 57 33 1 

Red meat 1 293 1 - 

Vegetables 244 54 48 - 

 
Within the clusters, it was explored whether subgroups could be identified (Figure 3). Clusters 
are ascending order of nutrition score. In the food group fruits, the two unhealthiest 
processed fruits were found in cluster 1; canned fruits, other processed fruits, fresh citrus 
fruits and fresh prunus fruits in cluster 2; fresh berries and fresh tropical fruits in cluster 3, 
and only fresh guava in cluster 4. In the group of red meat, only brains filled cluster 1; ultra-
processed beef and pork were found in cluster 2; processed beef and pork and all goat, lamb 
and veal meat in cluster 3; and only beef liver in cluster 4. In the group vegetables, beans, 
tomatoes, asparagus, carrots, lettuce, artichoke, and peppers were mainly found in cluster 1; 
broccoli and mustard greens in cluster 2; and spinach, kale, collards, and cress in cluster 3. 
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Figure 3: Results of cluster analysis for fruits, red meat and vegetables. NRF scores of all items (dots) in food 
groups are displayed on Y-axis. In coloured boxes clusters are displayed including subgroups of items that were 
mainly identified in the cluster.   
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4 Discussion 
4.1 Key findings and interpretation 

4.1.1 Correlation analysis 
The results of the first analysis show that the addition of weight to detrimental nutrients, to 
resemble original ratios in the NP models, improves the correlation of the NP scores with 

health impacts. Regarding the NQI models, the linear NQI24.42 version correlates best with 
health impacts, with a correlation coefficient of 0.33 (P-value 0.0001). This confirms the use 

of the original NQI formula in literature. Regarding the NRF model versions, the NRF24.42 
correlates best with health impacts with a correlation coefficient of 0.36 (P-value 0.0001).  
 

Although the NRF24.42 model correlates better with health impacts than NQI24.42 in the 
first correlation analysis, the difference in correlation coefficients is very small (0.03). Yet, 

the results of the second correlation analysis also showed that the NRF24.42 model 

correlates better with health impacts than the NQI24.42 model (-0.93 vs. -0.81), with a 
larger difference in correlation coefficients (0.12). Besides these differences, other 
arguments were considered to determine which model was most suitable for this research. 
Namely, the NRF model is a verified method which is validated against the HEI. On the 
contrary, the NQI model is not yet verified at all. Moreover, the NRF model is a widely used 
method in many peer-reviewed articles (Drewnowski, 2005; Drewnowski and Fulgoni, 
Drewnowski et al., 2021; 2008; Fulgoni et al., 2009; Maillot et al. 2007; Ridoutt, 2021; 
Sugimoto et al., 2022). Also, its secondary use to assess other important parameters like 
affordability and sustainability is tested in literature (Drewnowski et al., 2021; Maillot et al. 
2007; Ridoutt, 2021; Sugimoto et al., 2022). On the contrary, the NQI method is not widely 
used in peer-reviewed articles yet. Based on these considerations, the NRF model was 
considered most suitable for this research.   
 
Finally, the correlation coefficient at the aggregated levels with the NRF index (-0.93) is 
substantially higher than the original health impact indicator of food items with the NRF 
index (0.36). This shows the added value of downscaling health impact indicators to the level 
of food items with the use of nutrient profiles of food items. It can be concluded that the 
NRF model captures the health impacts even though it assesses individual nutrients only.  
 

4.1.2 Downscaling analysis 
The food groups red meat and vegetables were selected to discuss in the report. The results 
show that health impacts differ substantially per item in the food group red meat. For 
example, in the subgroup pork, salami scores considerably worse than bacon. Moreover, 
across animal meats from the same body origin such as pork ribs, goat and lamb ribs health 
impacts differ. Besides this, the results indicate the importance of a functional unit.  
 
The results in the vegetable food group show that health impacts differ substantially per 
vegetable sort. Moreover, it shows that not only the type of vegetable is important for its 
nutritious properties, but also its condition (raw/cooked, fresh/frozen/canned). Canned 
vegetables are often less beneficial for health than fresh or frozen items. Moreover, some 
vegetables are more nutritious when eaten raw, others are more nutritious when cooked.   
Concluding, health impacts can differ strongly between food items within food groups.  
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4.1.3 Cluster analysis 
Coefficients of variation were greater than 1 in red meat and fruits, thus it can be concluded 
that these food groups show relatively high variability. Consequently, prioritizing these food 
groups for clustering can be relevant for epidemiological studies. Moreover, the coefficient 
of variation in vegetables was close to 1 and therefore the range was considered. This 
showed that, compared to fruits, the range is relatively large. Consequently, it was 
concluded vegetables should also be prioritized for clustering.  
 
Following the Jenks Natural Breaks analysis, a GVF greater than 0.8 was found at four 
clusters for fruits and at three clusters for red meat and vegetables. However, based on a 
second criterium that prevents a single outlier from filling an entire cluster, the number of 
clusters for red meat was raised to four. Subgroups of food items with similar properties 
were found in these clusters. These results suggest that using these clusters in subsequent 
epidemiological research can be relevant.  
 

4.2 Reflection on methodology 

4.2.1 Data quality 
All data used in this study originates from secondary sources. Data on food items and their 
nutritional composition were retrieved from FoodData Central (USDA, 2019a), which was in 
line with the research method of Stylianou et al. (2021). This database is widely used and is 
fit for the purpose of this research. Yet, this database is limited to certain nutrients and 
some important nutrients are missing (appendix A). Iodine is a particularly important missing 
nutrient in this database since iodine deficiencies are very common word wide (American 
Thyroid Association, 2021). Iodine is an essential mineral for thyroid gland function (National 
Institutes of Health, 2021). Moreover, in relation to total energy consumption, trans fats and 
added sugars are two nutrients, currently missing in the NP model, that are important to 
consider because of their detrimental health impacts and high consumption in the American 
diet (Ganguly and Pierce, 2015; Marriott et al., 2010; Remig et al., 2010; Vos et al., 2017). 
Nevertheless, most health impacts will be covered by all the other nutrients in the index, 
since food items that are high in trans fats or added sugars are often also low in beneficial 
nutrients and high in detrimental nutrients (Smith, 2020).  
 
Despite gaps in consumption data of some specific food items, the GeNUS database is fit for 
the purpose of this research. This mainly results from high-quality, open-access, US-specific, 
detailed daily consumption data being scarce in the literature. Consumption data reliability 
can be improved by further development of such a database. Besides, data on total dietary 
mass in the US, which was needed for the NQI model, was not found in the literature and 
therefore assumptions have been made. The ratio between actual total protein intake and 
total protein supply was taken and applied to the total food supply food balance sheets from 
FAOstat (Chapter Fout! Verwijzingsbron niet gevonden.). Thus, it was assumed that the 
ratio between actual protein intake in the US and total protein supply in the US was the 
same as the ratio between actual dietary mass and total supply. The quality of the data 
could be improved with reliable literature on total dietary mass in the US.  
 
The dietary risk factors developed by Stylianou et al. (2021) build on the dietary risks from 
the GBD studies. These dietary risks are based on rather few health outcomes (Appendix C). 
For example, the positive health impact of milk consumption builds on a decreased risk at 
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colorectal cancer only, while consumption of milk is possibly associated with other health 
outcomes as well. Moreover, only non-communicable diseases are considered in the DRFs 
while infectious diseases are not considered at all. Nutrient deficiencies play an important 
role in immune system functioning and are therefore associated with communicable 
diseases (Bhaskaram, 2002). Also, overconsumption of certain nutrients is associated with 
certain health outcomes (Combet and Gray, 2019). Thus, it is important to balance out the 
impact of undernutrition and overnutrition on diseases. Consideration of more diseases in 
the GBD for the development of DRFs would improve the validity of the results. 
 

4.2.2 Use of NP models 
Dietary guidelines have shifted from nutrient requirements to food recommendations (U.S. 
Department of Agriculture, 2020). However, nutrient profiling methods naturally focus on 
isolated nutrients only. Consequently, scientists argue for a hybrid approach to nutrient 
profiling, where both the health impacts of food groups and isolated nutrients are 
considered (Drewnowski et al., 2019; Drewnowski and Fulgoni, 2020). In this research, such 
a hybrid approach is explored: Dietary risks of food groups, building on epidemiological 
studies, were combined with nutrient profiles of food items into a joint health metric, 
expressed in HENI. Still, for some scientists downscaling the health impacts to individual 
food items remains controversial because of these new recommendations (National 
Institutes of Health, 2022). Therefore, besides downscaling health impacts to individual food 
items, it is explored whether clusters of items with similar properties within food groups 
with high variation can be found. The result of this analysis can be used in subsequent 
epidemiological studies.  
 
The NRF index is a validated and commonly used nutritional quantity index and it is easily 
extendible (Fulgoni et al. 2009), which makes it fit for the aim of this study. The NQI model 
uses a similar approach to the NRF9.3 model, including the same beneficial and detrimental 
nutrients (Sonesson et al., 2019). The advantage of the NQI over the NRF is that the original 
model already takes dietary context into account, although this can also be accomplished 
indirectly with the NRF model through capping. This is important considering that the health 
impacts of nutrients, among other things, depend on dietary context (Hess et al., 2017). 
However, the NQI model is not verified yet (Sonesson et al., 2019). Therefore, both models 
were tested in this research. 
 
Using NP models like the NRF in the nutritional-health assessment of foods comes with 
limitations. These models only consider isolated nutrients in the assessment of foods. 
However, people do not consume isolated nutrients or even isolated food items, but 
combinations of foods that contain various nutrients and non-nutrients (Kourlaba and 
Panagiotakos, 2009). Non-nutrients are important no-calorie substances that play vital roles 
in our body, such as anti-inflammatory and antioxidant actions, increased insulin sensitivity 
and reduction of intestinal absorption of glucose and fat (Ribeiro et al., 2019). These vital 
non-nutrients are not captured in NP models. On the other hand, substances that are 
detrimental to health, like the carcinogenic features in red meat (Bouvard et al., 2015), are 
also not captured in these NP models. Furthermore, considering that total energy intake 
remains the same, high consumption of one food may be associated with low consumption 
of other foods (Kourlaba and Panagiotakos, 2009). Besides, nutrients interact with each 
other, influencing bioavailability and absorption (Combet and Gray, 2019; Kourlaba and 
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Panagiotakos, 2009). For example, fat promotes the absorption of vitamin D (Dawson-
Hughes et al., 2015). Consequently, equal weighing of nutrients in these NP models may not 
be a valid method for assessing overall nutritional value. Different nutrients may not 
contribute equally to health impacts or to the nutritional value of a food item, which is also 
dependent on interactions and dietary context (Hess et al., 2017). This might be the biggest 
challenge from a methodological point of view. On top of this, accurately estimating the 
nutrient intake of food items is challenging. Firstly, because the nutrient content of food 
items varies due to seasonality (Kumar et al., 2015; Waswa et al., 2021). Secondly, because 
the recipes of mixed dishes can vary over time and across places (Afshin et al., 2019). All 
things considered, attribution of health impacts to food items or individual nutrients remains 
very complicated.  
 

4.2.2.1 Capping of nutrients in NRF 
Naturally, the NRF model does not take dietary context into account. Therefore, capping 
overconsumed nutrients in the US was integrated in the NRF model. In this way, more 
weight is assigned to under-consumed nutrients. Various aspects of the capping method can 
be improved to increase validity of the results. Firstly, once the recommended DV of a 
nutrient is crossed, the curve for beneficial health impacts flattens (Institute Of Medicine, 
2011). For simplification in this research, it was assumed that consumption of a nutrient 
after the recommended DV was reached, was associated with no additional beneficial health 
impacts. Namely, nutrients are capped at 100% of the recommended DV. The method could 
be improved by incorporating a more realistic relationship between health impacts and 
consumption after reaching the recommended DV. Furthermore, fat-soluble vitamins are 
excluded from capping based on the assumption that excess of these vitamins are stored in 
fat tissue and can be used in periods with lower dietary intake or higher demand due to 
sickness etcetera (Blomhoff et al, 1990; Card et al., 2013). The fact that the relationship 
between vitamin intake and health impacts changes after reaching a certain intake of these 
vitamins is ignored in this research for simplification. The validity of the method would be 
improved when the flexibility in storage and absorption from fat tissue of these vitamins was 
considered. Also, MUFA and PUFA are capped following the basic capping method in this 
research. However, these nutrients compete for the same enzymes (Mariamenatu and 
Abdu, 2021). Therefore, in future research, a more comprehensive capping method could be 
explored to improve the validity of this method. Lastly, crossing the upper daily limit for 
some ‘beneficial’ nutrients (e.g. iron) is not only associated with little extra beneficial health 
impacts, but with detrimental health impacts from this point on (Qiao and Feng, 2013). This 
is especially important when one would study fortified foods. Since this research is based on 
unfortified foods, this fact is not considered. However, if this method would be applied to 
study fortified foods, it would be recommended to account for detrimental effects after 
reaching the upper daily limit. This applies especially to poorer countries where they have 
fortified programs and supplementation (World Health Organization, 2003). 
 
Moreover, it was chosen to cap overconsumed nutrients according to the ratio between 
recommended DV and actual daily consumption over capping at 100% for a fixed FU. The 
latter was not preferred since this approach is highly dependent on the FU and rescaling 
impacts to dishes or daily diet would underestimate or overestimate the impacts.   
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4.2.2.2 Assumptions energy intake 
In this research, a normal energy intake of approximately 2000 kcal is assumed. However, in 
a country with high obesity prevalence, which is the case in the US, individuals often 
consume extreme energy intakes (Chooi et al., 2019). Although the nutrient intake of these 
individuals might be satisfactory, the extreme energy consumption will negatively affect 
their health impacts (Chooi et al., 2019). Currently, this is not considered in this research. 
The validity of the method could be improved by adding a correction factor on health 
impacts based on the obesity prevalence or average energy intake in a country. Similarly, 
physical activity affects the health impacts of dietary choices (Rhodes et al., 2017), but in this 
case positively. A similar correction factor could be applied to health impacts based on 
average physical activity in a country. 
 

4.2.3 Method for cluster analysis 
Jenks Natural Breaks works similar to K-means clustering. Yet, K-means is usually applied to 
multivariate data and Jenks Natural Breaks to univariate data. Therefore, the Jenks Natural 
Breaks method is fit for the aim of this research. For the cut-off GVF value, no literature was 
found and therefore assumptions have been made. The validity of the GVF cut-off value can 
therefore be improved when a minimal GVF value for a good fit is found in the literature.  
 

4.2.4 Choice of functional unit 
NP scores and health impacts are calculated per gram. In this way, the results can be 
incorporated into the CONE-LCA model or used for other purposes. Nevertheless, health 
impacts were also rescaled to a functional unit of 100 g and 100 kcal, which are common FUs 
in nutritional assessment of foods (Grigoriadis et al., 2021), to show what results will look 
like in a nutritional LCA. This showed the substantial impact of a FU on the results in 
comparative analysis. For example, pork bacon scored worse than lamb ribs with a FU of 100 
g, while lamb ribs scored worse than pork bacon with a FU of 100 kcal. It was chosen to use 
these FUs to show the variance within a food group and make a case for downscaling and 
making food items easily comparable. Nevertheless, these results can give a distorted 
picture of the health impacts of foods that are consumed in very small or large amounts. 
Although the results are limited to these FUs in this research, in future research the health 
impacts can also be rescaled to serving sizes or portions to assess the role of a food item in 
an actual diet.  
 

4.3 Societal relevance 
The improved CONE-LCA model may be useful in policy applications, since healthy and 
sustainable diets are very relevant issues in politics. Healthy diets are also very relevant from 
an economical perspective, as lifestyle-induced health care costs are enormous and still 
rising (Edington, 2020). Consequently, the is a need for evidence-based policy making for a 
transition towards healthy diets that are also sustainable (Davis, D’Odorico, and Rulli, 2014; 
Reinhardt et al., 2020). The model makes it possible to compare food items on human health 
and environmental benefits, which can be the basis for sustainable dietary guidelines. 
Sustainability, however, encompasses not only environmental concepts but also social and 
economic issues. Considering food security and inequalities, a sustainable and healthy diet is 
from a policy point of view quite a challenge, since sustainable diets are not affordable for 
certain income groups (Green et al., 2020). Therefore, future research can build on this 
thesis by integrating the economic aspect into the model to assess trade-offs.  
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4.4 Academic relevance and future research 
This work provides a comprehensive approach to study the impacts of marginal dietary shifts 
on human health. The research builds on the results of Stylianou et al. (2021) by refining the 
health impact assessment of food items. The research contributes to improvements in the 
nutritional-health assessment within the CONE-LCA framework since the results show that 
downscaling health impacts using nutrient profiles of food items, better predicts health 
impacts related to consumption of food items than the original indicators. LCA is a valued 
and often used tool within the field of Industrial Ecology (IE) (Guinee et al., 2002). Therefore, 
improvement of the CONE-LCA framework is highly relevant to the field of Industrial 
Ecology. This thesis served as a first exploration of how nutrition-health assessment within 
the CONE-LCA framework can be improved. Therefore, the results of this study are not 
intended to be prescriptive and should be interpreted with caution. Nevertheless, the added 
value of downscaling health impacts to the level of food items is demonstrated in this thesis.  
 
The improved nutrition health assessment with downscaled health impact indicators is also 
highly relevant outside of the CONE-LCA framework and can be used on its own to assess the 
health impacts of food items. Although the scope of this research was limited to the US, the 
model can also be applied to other countries or to assess the health impacts of food items 
on a global level. The strength of this model lies in its wide applicability, as it can be adjusted 
to not only assess the health impacts of marginal dietary shifts, but also to compare broader 
dietary patterns within and across countries. Furthermore, the results of the cluster analysis 
showed that use of clusters of food items within food groups (e.g. fruits, vegetables and red 
meat) might be relevant for epidemiological research. 
 
In future research, further development and validation of the nutrition health assessment 
method would be recommended. Future research should focus on: (i) further development 
of the NP model. Ideally, the NP model should account for interactions between nutrients. 
Moreover, the method for capping can be further improved. Also, incorporating important 
nutrients excluded in this research like iodine and trans fats would further improve the 
model; (ii) validating the NP model against a verified health assessment metric like the HEI; 
(iii) consideration of more diseases in the DRFs and specifically also communicable diseases; 
(iv) incorporating fish and seafood, dairy and processed foods into the model; (v) using 
clusters of food groups in epidemiological research; and (vi) affordability of healthy and 
sustainable diets.   
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5 Conclusion 
In this thesis, the use of NP models to refine DRFs in the nutrition-health assessment of food 

items was explored. The results showed that the NRF24.42 correlates slightly better with 
health impacts than the original NRF9.3 model and the NQI models and was therefore 
selected for further analysis. The fact that the correlation coefficient at the aggregated levels 
with the nutrient index is substantially higher than the original health impact indicator of 

food items with the nutrient index, shows that NRF24.42 model captures health impacts 
even though it assesses individual nutrients only. Consequently, the added value of 
downscaling health impact indicators to the level of food items with the use of NP models 
was demonstrated. Concluding, in the nutritional health assessment of food items, the 

NRF24.42 model used in this research is a better predictor for health impacts than the 
method used by Stylianou et al. (2021) which is based on aggregated DRFs only. 
 
Further analysis showed that downscaled health impacts can differ substantially between 
food items within food groups. Moreover, not only the type of food item is important for its 
nutritious properties, but also its condition (e.g. raw/cooked, fresh/frozen/canned/dried). 
Furthermore, since some food groups (e.g. fruits, vegetables and red meat) are highly 
variable in nutrient density, prioritizing these food groups for clustering can be of added 
value in future epidemiological studies.  
 
The improved nutrition-health assessment model is not only relevant within the CONE-LCA 
framework but can be used on its own to assess the health impacts of food items. The model 
is widely applicable, as it can be adjusted to assess the health impacts of marginal dietary 
shifts as well as to compare broader dietary patterns within and across countries. The model 
may be very useful in policy applications, as it enables the comparison of beneficial impacts 
of food items on human health and the environment, which can be the basis for sustainable 
dietary guidelines. Future research can focus on further development and validation of the 
model as well as the incorporation of the economic dimension in the model for policy 
purposes.  
 
Overall, this research provides a deepening step toward a further improved nutrition health 
assessment of food items, within the CONE-LCA framework and on itself. 
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Appendices  
 

A. Nutrients excluded from the nutrient profile model 
All nutrients from which (1) US-specific recommended intake value was available and (2) the 
nutritional value was available in FoodData Central were included in the NP model. Based on 
these criteria, 12 nutrients were excluded and 1 nutrient was substituted (table A1). 
 
Table A1: Nutrients substituted or excluded from NP model. 

Nutrient Recommended Daily Value Available in Food Data 
central 

Excluded nutrients 

Vitamin B7 (Biotin) 30mcg   (FDA, 2022) No 

Chloride 2300mg  (FDA, 2022) No 

Chromium 35mcg   (FDA, 2022) No 

Iodine 150mcg  (FDA, 2022) No 

Molybdenum 45mcg   (FDA, 2022) No 

Vitamin B5 (Pantothenic 
acid) 

5mg   (FDA, 2022) No 

Manganese 2.3mg   (FDA, 2022) No 

Trans fatty acids <1%E  (FAO, 2010) No 

Lycopene n/a Yes 

Lutein + zeaxanthin n/a Yes 

Alcohol n/a Yes 

Theobromine n/a Yes 

Caffeine  n/a Yes 

Substituted nutrient 

Added sugars 50g   (FDA, 2022) No 

 
 

B. Food items excluded from correlation analysis 
The researched food items by Stylianou et al. (2021) were included in the correlation 
analysis. Stylianou et al. (2021) used WWEIA Food codes from the FoodData Central 
database for the 167 dishes. In this research 21 food items were excluded because they 
were not existing in the Food Data bank (table A1). Moreover, 2 food items were excluded 
because they were duplicated in the dataset of Stylianou (table A2).  
 
Table A1: Food items excluded due to unavailability in FoodData Central. 

WWEIA code Food Description 

24122120 Chicken, breast, roasted, broiled, or baked, skin not eaten 

24144210 Chicken, drumstick, fried, no coating, skin eaten, NS as to type of fat 
added in cooking 

25230310 Chicken or turkey loaf, prepackaged or deli, luncheon meat 

27150100 Shrimp curry 

27510225 Cheeseburger, 1 medium patty, with condiments, on bun, from fast food / 
restaurant 
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27510251 Cheeseburger, 1 medium patty, with condiments, on white bun 

27510330 Double cheeseburger (2 patties), with tomato and/or catsup, on bun 

27540150 Chicken fillet, breaded, fried, sandwich with lettuce, tomato and spread 

27540190 Chicken patty sandwich, with lettuce and spread 

41103020 Lima beans, dry, cooked, fat not added in cooking 

54401080 Salty snacks, corn or cornmeal base, tortilla chips 

56203010 Oatmeal, cooked, regular, fat not added in cooking 

56203030 Oatmeal, cooked, instant, fat not added in cooking 

58132310 Spaghetti with tomato sauce and meatballs or spaghetti with meat sauce 
or spaghetti with meat sauce and meatballs 

58146110 Pasta with meat sauce 

63135150 Peach, cooked or canned, drained solids 

71201015 White potato chips, regular cut 

71403000 White potato, home fries 

72119224 Kale, cooked, NS as to form, made with oil 

75207001 Bean sprouts, cooked, from fresh, NS as to fat added in cooking 

81104560 Vegetable oil-butter spread, reduced calorie, tub, salted 

 
Table A2: Food items excluded due duplication in dataset.   

WWEIA code Food Description 

75111000 Cucumber, raw 

74101000 Tomatoes, raw 

 
C. In- and exclusion criteria of food groups, effective intake and associate health 

outcomes  
 

Food items were selected from FoodData Central based on the in- and exclusion criteria 
defined by Stylianou et al. (2021) (Table A3). Moreover, food groups can compose of 
different items based on the country of reference (Drewnowski and Fulgoni, 2008). 
Therefore, here US guidelines for some items are clarified. Firstly, corn is considered a 
starchy vegetable when soft and a grain when fully mature (USDA, 2019c). Avocado is 
considered a vegetable (USDA, 2019d). Kidney beans, pinto beans, black beans, pink beans, 
black-eyed peas, garbanzo beans (chickpeas), split peas, pigeon peas, mung beans, and 
lentils are considered legumes (USDA, n.d.). Red meats include beef, veal, pork, lamb, 
mutton, horse, or goat meat (Farvid et al., 2018). However, the WWEIA database does not 
include horse meat (USDA, 2019a).  
Moreover, effective intake and health outcomes associated with consumption of food 
groups are displayed in table A3. 
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Table A3: In and exclusion criteria, effective intake and associated health outcomes per food 
group (Stylianou et al., 2021). 

Food group Criteria Effective 
intake 

Associated health 
outcomes 

Fruits 
Including fresh, frozen, cooked, 
canned, or dried. Excluding fruit 
juices and salted or pickled fruits. 

<250 g/day 10* 

Legumes 
Including fresh, frozen, cooked, 
canned, or dried. 

<60 g/day IHD 

Milk 
All milks including non-fat, low-fat, 
and full-fat milk. Excluding plant 
derivatives.  

<435 g/day CRC 

Nuts and 
seeds 

Including all nuts and seeds <20.5 g/day T2DM, IHD 

Red meat 
Beef, pork, lamb and goat. Excluding 
poultry, fish, eggs. 

>22.5 g/day T2DM, CRC 

Vegetables 

Including fresh, frozen, cooked, 
canned, or dried. Excluding legumes, 
salted or pickled vegetables, juices, 
and starchy vegetables.  

<360 g/day 
Hemorrhagic stroke, 
IHD, IS 

Whole grains 
Including whole grains from cereals, 
bread, rice, pasta, muffins, tortillas 
and other sources.  

<125 g/day 
T2DM, Hemorrhagic 
stroke, IHD, IS 

T2DM=Type 2 Diabetes mellitus; IHD=Ischemic heart disease; IS=Ischemic stroke; Other CVD=Other 
cardiovascular, CRC=Colorectal cancer and circulatory disease” 
*The ten health outcomes associated with fruits are: T2DM; Esophageal cancer; Hemorrhagic stroke; IHD; 
IS; Larynx cancer; Lip and oral cavity cancer; Nasopharynx cancer; Other pharynx cancer; Tracheal, 
bronchus, and lung cancer 

 
 

D. Results downscaling analysis 
The results of the downscaling analysis can be found in the excel file below.  
 
 

E. Results correlation analysis  
The results of the correlation analysis can be found in the excel file below.  
 
 

F. Results cluster analysis 
The results of the cluster analysis can be found in the excel file below.  
 
 
 


