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Chapter 1

Introduction

1.1 Background

1.1.1 Design Optimization
General Introduction

These days optimization has become a key aspect in design. This is mainly due to the increasing
product requirements and market competition. For example, in automobile and aerospace industries
design optimization has become vital. In case of extreme applications, such as space structures,
design optimization is playing an important role in order to make such missions feasible. Due to the
everlasting revolution in computer hardware and software, computerized tools are becoming more
and more popular. Use of analysis software, such as Finite Element Analysis (FEA), has become a
common tool in practical design processes. Because of the easy access to large computing power,
extension of such computer-based tools to more than just analysis is quite obvious, for example,
FEA based automated design optimization.

Several optimization techniques have been under development and are being used for design
optimization. To name a few, tools based on genetic algorithms, tools based on response surface
techniques, and many many others. Many of these tools require a large number of response evalu-
ations. Because of the underlying use of expensive computational modeling, such techniques may
suffer due to limitations on computing power. Due to the so called “curse of dimensionality”, this
problem can grow exponentially with the increase in design parameters. In addition, growing use of
complicated models and nonlinear analysis in order to bring the FEA closer to reality, is making the
optimization problem more and more computationally intensive. In such situations, approaches that
make use of approximations in order to reduce the required FEAs are mandatory. The Multipoint
Approximation Method which is based on Response Surface (RS) approximation is quite suitable
for use in design optimization of practical applications.

Multipoint Approximation Method

In general, design optimization involves evaluation of response functions. Quite often these re-
sponse functions are evaluated numerically using methods such as FEA. From optimization point
of view, application of computational modeling can either suffer from numerical noise or the large
computational times involved. In this situation direct coupling between optimizer and FEA can be
disadvantageous. Here approximations to the actual response functions, which are generally explicit
and very computationally inexpensive, can be used instead. Several techniques based on approxima-
tions are available in literature.

In the present thesis, the Multipoint Approximation Method (MAM), which is based on response
surface approximations, is used as a basis. The MAM is presented in detail in Toropov et al. [1,2]
and Van Keulen and Toropov {3,4]. A MAM-based framework for the optimization of practical
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applications is described in detail in Jacobs et al. [5]. The main advantage in using the MAM is
a reduction in computational costs and its insensitivity to noisy responses due to numerical inaccu-
racies, Van Keulen and Toropov [3,4]. The MAM is based on solving a sequence of approximate
optimization problems, Each individual approximate optimization problem involves a mathemati-
cal programming problem using computationally inexpensive explicit functions for responses. This
may result in a substantial reduction of overall computational costs. The detailed description of the
MAM is given in the Preliminaries, see Chapter 2.

1.1.2  Uncertainty-based Design Optimization
Uncertainties in Structures

In general design practice, one faces the problem of uncertainties of various kinds. Some uncer-
tainties are inherent or irreducible and have, for example, a physical origin. These type of uncer-
tainties are also termed as aleatory uncertainties, Oberkampf er al. [6]. Typical examples of such
uncertainties may represent loading conditions or variations in material properties. Other types of
uncertainties are of different nature and can be influenced by the designer. These uncertainties, also
termed as epistemic uncertainties by Oberkampf ez al. [6], originate from the lack of information or
impreciseness. A typical example is provided by manufacturing induced inaccuracies, for example
in dimensions of Micro Electro Mechanical Systems (MEMS). Here, by adopting a more expensive
manufacturing process or accepting higher rejection rates, the designer can influence the level of
uncertainty to a certain extent.

The methods to tackle various types of uncertainties can be classified mainly in three differ-
ent ways, namely probabilistic approach, fuzzy-sets-based approach, and the anti-optimization (El-
ishakoff et al. [7]). These approaches differ in the way they deal with uncertainties. Probabilistic
techniques have been developed mainly to deal with random uncertainties described using statistical
distributions, fuzzy-sets-based techniques originated from the vague or qualitative description of un-
certainties, and anti-optimization is developed to tackle bounded uncertainties with no information
on how these uncertainties vary within bounds. Probabilistic techniques typically attempt to ensure
a certain amount of reliability of the structure, i.e. to make sure that the structure’s response will
remain below the limiting values with given probability. Fuzzy-sets-based techniques use member-
ship function to describe uncertain variables resulting in an interval of confidence for the response at
each level of the membership function. Anti-optimization accounts for the worst possible response
of the structure, thus ensuring that the failure due to violation of a limit state will never occur.

Generally, fuzzy-sets-based techniques are used when uncertainties are either vague or can only
be described linguistically. On the otherhand, in case of probabilistic techniques, when sufficient
statistical data is available, the uncertainties can be represented by means of probabilistic distri-
butions, Elishakoff [8]. However, probabilistic techniques require an abundance of experimen-
tal data, Elishakoff [9]. Additionally, probabilistic techniques may suffer from large errors in the
computed probability of failure even with small inaccuracies in the statistical data, Elishakoff {9].
Moreover, the impreciseness of information increases with the increase in complexity of structures,
Bae et al. [10]. In the present thesis, the case of uncertainties with bounds is considered and the
associated anti-optimization technique is studied in detail.

Bounded-But-Unknown Uncertainties

As mentioned in the foregoing, in the present thesis, uncertainties are represented using the Bounded-
But-Unknown (BBU) description. Typically, upper and lower bounds are specified on uncertainties,
whereas the distribution within these bounds is unknown. Thus, uncertainties can be identified as
belonging to some closed sets, i.e. to be of Bounded-But-Unknown (BBU) nature, Ben-Haim and
Elishakoff [11] and Ben-Haim [12]. Many times, for example in preliminary design phases, even
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though some experimental data is available, it is not enough to construct reliable probability dis-
tributions. However, the available data can be used, particularly in combination with engineering
experience, to set tolerances or bounds on uncertainties.

Anti-optimization

To tackle optimization with BBU uncertainties, the so-called anti-optimization technique proposed
by Elishakoff et al. [7]is used in the present thesis. In this technique, uncertainty-based optimization
is basically split in two parts, namely, main- and anti-optimization. The main optimization is a
standard optimization (minimization) problem, which searches for the best design in the design
domain. The design domain is typically specified by upper- and lower limits on design variables.
The anti-optimization consist of performing numerical searches for the combination of uncertainties,
which yields the worst response for a given design and a particular response function. In the worst
case scenario, an anti-optimization for every constraint is required. Within these anti-optimizations,
the uncertainties are set as “design variables”, whereas the “design domain” is specified by the
bounds on the uncertainties. Thus, anti-optimizations are nested within the main optimization.

In the anti-optimization technique discussed in Elishakoff ez al. [7], the anti-optimization con-
sists of a systematic search along the vertices of the uncertainty domain for obtaining the worst
combination of uncertainties. This makes the technique computationally efficient, but limits its
application to convexity in terms of uncertainties. Often when response evaluation involves compli-
cated FEA, for example multiphysics problems or problems involving nonlinearities, the dependency
of responses on uncertainties is highly nonlinear. In such practical cases, the worst set of uncertain-
ties may fluctuate from design to design. Moreover, interior worst cases can be found in such cases,
i.e. the worst setting of uncertainties is not found as one of the vertices. For such problems, vertex
checking would not be enough, rather it is essential to have a more general technique that can handle
such non-convexities.

1.2 Research question

In the present thesis, it is assumed that there is no statistical data available for describing uncertainties
and the uncertainties are of the BBU type. Here, the anti-optimization technique is used to tackle
BBU uncertainties. On this basis, the following research questions are studied

¢ How to generalize the anti-optimization technique such that it can handle convex as well as
non-convex uncertainties?

e How to make the anti-optimization technique computationally efficient and feasible for prac-
tical applications?

The first question deals with the generalization of anti-optimization techniques such that convex-
ity and nonconvexity in the uncertainties can be handled easily. In case of the anti-optimization
technique, the anti-optimization is nested within the main optimization. This makes it a two level
optimization problem. In general, the optimization procedure needs several iterations before conver-
gence. Each iteration involves evaluation of response functions. If these response evaluations require
computationally expensive numerical calculations, then the whole optimization becomes computa-
tionally quite intensive. This problem grows exponentially with the increase in the number of design
variables and uncertainties. Consequently, the anti-optimization technique involving two-level op-
timization can become very computationally intensive with the increase in the number of design
variables as well as uncertainties. Therefore, the second research question mainly deals with the
overall efficiency of the method.
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1.3 Objectives and approach

Based on the research questions, the research objectives are set as follows:

e Develop a general framework that can handle convex as well as non-convex uncertainties,
when there is no statistical data available except bounds on them.

e Reduce the number of computationally expensive response function evaluations required in
the anti-optimization by making use of sensitivities and smart techniques such as using a
database.

o Developer a Paralle] Computing framework, which can be used in combination with the anti-
optimization technique to spread the computational burden involved.

e Study alternative approaches for anti-optimization in order to develop computationally effi-
cient technique.

To meet the first objective, the anti-optimization technique based on vertex checking (Elishakoff et al.
[7]), is extended in the present thesis to a full or rigorous search on the uncertainty domain (Van
Keulen et al. [13]). This requires a two-level optimization approach, where anti-optimization for
each of the constraints is carried out for every design within the main optimization. This gener-
alized or Rigorous anti-optimization technique can deal with large and non-convex uncertainties
safely. However, the required number of computationally expensive function calls may become a
big obstacle. In the present thesis, this Rigorous technique is enhanced to make it computationally
efficient.

The second objective is motivated by the need for a reduction of the number of computationally
expensive response function evaluations used in the Rigorous anti-optimization technique. In the
present thesis, the Rigorous anti-optimization technique is enhanced by incorporating sensitivities
and a database technique. In many cases of computational response analysis, gradient informa-
tion can often be obtained at a fraction of the computing time as compared to the analysis itself,
van Keulen er al. [14] and van Keulen and de Boer [15, 16]. This sensitivity information can be
used in addition to the function values to construct, for example, Gradient Enhanced Response Sur-
faces (GERS), van Keulen and Vervenne [17, 18]. This incorporation of sensitivities can improve
the quality of the response surface approximations thus improving the convergence. Alternatively,
fewer response evaluations may be required to construct the response surface approximations. Con-
sequently, using derivative information may decrease the total number of function evaluations and
hence may speed up the optimization process. In addition, the anti-optimization technique is further
modified to use a database technique. For this purpose, the worst sets of uncertainties obtained by
the anti-optimizations are stored in a database. When there is enough data available in the database,
it is used to create good starting points for the anti-optimizations. Often this can speed up the anti-
optimizations significantly.

The third objective is motivated by the need for parallel evaluation in case of practical applica-
tions involving computationally expensive response evaluations. The total number of response eval-
uations required by the anti-optimization technique can be reduced substantially with the enhanced
(sensitivities + database) anti-optimization, however, only a limited reduction can be obtained. In
case of practical applications, where response evaluation is carried out using, e.g., FEA, even with
these improvements the anti-optimization technique may become impractical. Use of Parallel Com-
puting can be a solution here. Nowadays, the use of a number of powerful computers, forming a
cluster, is quite common. Such computer clusters can be used to evaluate different configurations in
parallel to speed up the optimization. In the present thesis, a framework for using Parallel Computing
in the anti-optimization technique is developed.

The fourth objective looks at alternative formulations of the anti-optimization technique. This
includes an alternating anti-optimization and a combined response surface approach. In a approach
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proposed by Lombardi and Haftka [19], instead of nesting anti-optimization within the main opti-
mization, main and anti-optimization are carried out alternately. Inspired by Lombardi and Haftka
technique, a slightly modified technique, referred to as cycle-based alternating anti-optimization in
Gurav et al. [20], is studied in this thesis. In this technique, anti-optimization is carried out only at
the sub-optimal point, i.e. the point obtained at the end of each cycle of the main optimization. Thus,
it can save a lot of intermediate response evaluations and speeds up the technique significantly. In a
separate approach, a Combined Response Surface (CRS) for design variables as well as uncertain-
ties is used as a basis for the anti-optimization. A similar approach is used by Qu et al. [21] for the
reliability-based optimization of composite laminates with random uncertainties. This CRS-based
anti-optimization technique is studied in the present thesis.

In the present thesis, the algorithms developed to carry out uncertainty-based design optimization
are first studied on the basis of test examples from literature in order to compare them with existing
techniques. Then, these techniques are applied to various practical applications. The latter include
uncertainty-based design optimization of a car deck floor of a ferry, an embedded measurement
MEMS structure, a micro piezoelectric composite energy reclamation device, and a Shape Memory
Alloy (SMA) microgripper. This variety of practical problems demonstrates the applicability of
present techniques to wide range of practical problems.

1.4 Outline of the thesis

The present thesis consists of eight chapters. Chapter 2 gives the detailed preliminaries for the
optimization techniques used in the present research. It will serve as a basis for the remaining chap-
ters. Chapter 3 till Chapter 7 discuss developments in the anti-optimization technique together with
various applications. Chapter 3 discusses the modifications to the anti-optimization technique com-
bining sensitivities and a database technique. The enhanced anti-optimization technique is applied
to the uncertainty-based design optimization of a car deck floor of a ferry. In Chapter 4, enhanced
anti-optimization is combined with parallel computing. In this chapter the technique is applied first
to the test examples from literature. Then uncertainty-based design optimization of an embedded
measurement MEMS structure is carried out. Chapter 5 proposes a different approach in order to
save computational efforts. In this approach, alternating anti-optimization is used instead of nesting
it within the main optimization. Uncertainty-based design optimization of a micro piezoelectric en-
ergy reclamation device using cycle-based alternating anti-optimization is studied in Chapter 5. In
Chapter 6, the cycle-based anti-optimization technique is combined with nested parallel computing
in order to improve the computational efficiency. The technique is studied on the basis of a shape
memory alloy micro gripper problem. The anti-optimization is carried out using a combined re-
sponse surface technique in Chapter 7. Finally, the conclusions of the present research work and
recommendations for future work are presented in Chapter 8.

1.5 Guideline for the reader

The thesis is divided mainly into three parts: Part I consists of Chapter 1 and 2, the development of
the methods is discussed in Part IT (Chapters 3-7). Part III contains conclusion and recommendations
(Chapter 8) and summary (English and Dutch). Part I serves as the basis for remaining chapters. Part
I discusses the development of the method together with some applications. Chapters 3-7 are written
on the basis of journal publications and/or contributions to conference proceedings. These chapters
are self-contained and can be read independently. However, this may cause repetition of some of the
contents. The author apologizes for this inconvenience.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter describes preliminaries, which are prerequisite for subsequent chapters. In this chapter,
the Multipoint Approximation Method (MAM) Section 2.2, Bounded-But-Unknown (BBU) Uncer-
tainties Section 2.3, Anti-optimization technique Section 2.4, and Parallel Computing Section 2.5
are discussed in detail.

2.2 Multipoint Approximation Method

2.2.1 Introduction

In the present paper the Multipoint Approximation Method (MAM) is used as a basis for optimiza-
tion. Many practical applications involve numerical evaluation of response functions. From an
optimization point of view, this type of problem can either suffer from numerical noise or the large
computational time involved. The MAM, which is based on sequential application of Response Sur-
face Methodology, see the textbooks Khuri and Cornell [22] and Myers and Montgomery [23], can
be applied to such problems. The interested reader is referred to the studies by Toropov et al. [1,2]
and Van Keulen and Toropov [3,4]. The MAM uses a sequence of approximations to reduce the num-
ber of expensive numerical response evaluations. However, it should be noted here, that it suffers
from the so-called curse of dimensionality. It becomes inefficient with the increase in dimensions
(number of design variables). A MAM-based framework for the optimization of practical applica-
tions is described in detail in Jacobs ef al. [5]. A detailed description of the MAM is given in the
remainder of this section.

2.2.2 Problem formulation

Designing a structure implies that a design concept has to be selected, which subsequently has to
be optimized. The latter involves the selection of design variables, which determine, among other
features, the dimensions, shapes and materials. This set of n design variables is denoted as x, with

x=(x1...Zn). (2.1)

Throughout the present paper, it is assumed that all design variables are continuous.
The behavior of the structure is described by the response functions, which depend on the design
variables. These response functions are denoted as f, with

f=(f...f)7. 2.2)

The response function may reflect, for example, weight, cost, buckling loads, maximum equivalent
stress, or strain levels.
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Figure 2.1: Optimization using the MAM for a problem of two design variables (z; and ).

The optimization problem can now be formulated mathematically as

m}én fo(x)
st. G(x)<1, i=1,...,m, (2.3)
A;<z;<B;, j=1,...,n

Here, fj is the objective function and f; are constraints, whereas x is a set of design variables. The
design space is defined by A; and B, upper and lower limits on x; respectively, see Fig. 2.1.

2.2.3 Approximate Optimization Problem

The MAM replaces the actual optimization problem, as described by Eq. (2.3), by a sequence of
approximate optimization problems. The approximate optimization problem (AOP) for a cycle p,
can be formulated as ~
min £ (x)
s.t. ng)(x) <1, i=1,...,m, 2.4)
AP <o <BY, =1,...n
A_gp) > Aj, B(P)

(
M
P < B;.

Here, the response functions are replaced by approximate functions over the sub-domain for a cycle.
Hence, ?ﬁ”)(x) are considered as adequate approximations of f;(x) over the sub-domain (p) repre-
sented by the move limits Aj(-p ) and B§-p ), see Fig. 2.1, for the current AOP. It should be noted here

that, the move limits for the initial cycle (Ago) and B§0)), can be chosen either arbitrarily or based on
engineering experience. Many times this can significantly influence the convergence. For example,
if the initial move limits include the optimum, then the optimization may converge quite rapidly.

2.24 Response Surface Approximations

The MAM relies on response surface approximations of the true responses in order to limit the num-
ber of expensive numerical evaluations. Typically, inexpensive-to-evaluate explicit approximations
are used. To construct the approximate response surfaces, first a plan of numerical experiments is
generated in the sub-domain of the current cycle, see Fig. 2.1. In the present study, space filling tech-
nique is used for generating plans of experiments, for details see Toropov et al. [2] and Van Keulen
and Toropov [3,4]. Approximate response surfaces are fitted through the numerical evaluations of
plan points using a weighted least squares (WLS) method, see Toropov ef al. [2] and Van Keulen
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and Toropov [3,4], that is

zw [ f(p)(xs)J ’

2.5
with ﬁ(»p)(xs) = fl-(p)(xs)ﬂi7 1i=0,...,m,

where s represems a plan point and S is the total number of plan points in the current plan of exper-
iments. Here, f (xs represent the response surface approximations for the true functions f;(x;)
over the current sub-domain (p), whereas fi(p ) (xs) contains the approximation functions and §3;
represent corresponding regression coefficients, see Khuri and Cornell [22] and Myers and Mont-
gomery [23]. Moreover, it has been assumed that the approximations are linear in the regression
coefficients. In the minimization problem, 3;, which are unknowns, are used as tuning parameters

in order to get the approximations ﬂ(p)(x), as close as possible to the true functions f;(x). The
weight factors w;, used here to combine the data from different points in the WLS method, reflect
the relative importance of the function values (and their derivatives if available) to the optimization
process. The selection of the weight factors is made based on mainly the objective function value
and the location of a plan point relative to the boundary between feasible and infeasible design space.
This selection of the weight factors, affects significantly the efficiency of the method, see for details
Van Keulen and Toropov [4] and Toropov ez al. [2].

2.2.5 Move Limit Strategy

At the end of every optimization cycle the Move limit strategy checks, if the solution has converged
and if not, it defines the AOP for the next cycle. Here, the approximate optimum (sub-optimum),
obtained by solving the nonlinear minimization programming (NMP) for the current AOP given by
Eq. (2.4), is evaluated for the true response. In order to define the location and size of the sub-domain
for the next cycle, several indicators are computed based on the assessment of the current sub-
optimum, see for details Van Keulen and Toropov [4]. The procedure is summarized here shortly.

The first indicator is based on the largest relative error in the approximations for the sub-
optimum. Depending on this indicator, the approximations are termed as “bad”, “average” or
“good”. The second indicator is based on the location of the sub-optimum in the sub-domain for
the current cycle. When none of the current movelimits is active, the solution is considered “in-
ternal”, or otherwise “external”. The next two indicators are based on the angle between the move
vectors of the last two sub-optimums. Depending on this the movement of the optimum is termed

s “straight”, “curved”, “backward” or “forward”. The fifth indicator denotes the size of the current
sub domain as “small” or “large” and is used in the termination criteria. Depending on the most
active constraint value, the sixth indicator labels the current solution as “close” or “far” from the
boundary of the feasible and infeasible regions of the design space.

A factor to resize the current sub-domain is chosen based on these indicators. For example,
if the quality of the approximations is “bad”, then the size of the sub-domain will be reduced and
vice versa. Furthermore, the reduction factor changes depending on the move direction, such as in
case of the “curved” move, higher reduction is expected. Similarly, if the solution is indicated as
“close”, the sub-domain will be reduced substantially. In case of “internal” solution, if the size of the
sub-domain is “small”, then the optimization is terminated. A detailed description of the move limit
strategy is given in Van Keulen and Toropov [4]. The whole process is repeated until convergence.

2.2.6 Gradient Enhanced Response Surface

In case both function and derivative values are available, then Gradient Enhanced Response Surfaces
(GERS) have been constructed using both data entities as discussed in Van Keulen and Vervenne




10 Chapter 2. Preliminaries

[17]. Derivative information can often be obtained at a fraction of the computing time as compared
to the analysis itself, see van Keulen ef al. [14] and van Keulen and de Boer {15, 16]. Use of
sensitivities can benefit the optimization in two ways. First, it can improve the quality of the response
surfaces affecting the convergence. Second, fewer response evaluations may be required to construct
the approximations resulting in a reduction in the total number of function evaluations. This is
particularly advantageous when higher order approximations are used. Alternatively, it can allow the
inclusion of more design variables in the optimization. The technique used for the construction of
GERS using both the function values and the design sensitivities, is described in detail in Van Keulen
and Vervenne [17]. A short summary is included here for self-containment.

The response function (fp;) and the corresponding derivatives (f;;) associated with the point x;
are given here as

fo; = f(%x]')»
;= a (2.6)
fij = fi(xj),
wherei =1,...,nand j = 1,...,S. These are represented using a compact notation as
yjz[foj...fnj], i=1...,S. 2.7)

The response surfaces for function and derivatives are represented as

o= folx)8,
f= %% = fi(x)B, i=1,...,n,
where f;(x) contains approximation functions and 8 denote corresponding regression coefficients,

which are to be determined, see Khuri and Cornell {22] and Myers and Montgomery {23]. Thus, the
response surface approximations for the response function and derivatives are given as

(2.8)

5’] = [fﬂj%n_]], j=1,...,S
= [folxs) .. fu(x5)]B 29
= F;B.

The error in the actual function value and derivatives (y;) and the corresponding approximations
(¥;) can be given as

rj=37j—yj =Fj,3—yj, j=1,...,5. (2.10)
The norm of the error using WLS method, in order to combine all the errors with different weights
assigned to them, can be given as

e? = <T],T]) = T'}-erjy ] = 1, .. .,S, (211)

where W; is a matrix of weight coefficients, see Van Keulen and Vervenne [17]. The unknown
parameters 3 are determined as the minimizers of the total error as

S
min =Y ¢ (2.12)

2.3 Bounded-But-Unknown Uncertainties

If the problem at hand is non-deterministic, i.e. there are uncertainties that play a non-negligible
role, the response functions also depend on the uncertainties. The set of uncertainty variables will
be denoted a, with

a=(aj...ay). (2.13)
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Consequently, the response functions depend on both design variables and uncertainties, hence
f(x, ).

f N r
)
Nominal
4
€
K_/ % o
! o
(203

(a) Ellipsoidal bound for (b) Simple box bound (c) Simple box bounds on uncer-
all uncertainties together with separate bound for tainties: &; are nominal values of
each uncertainty. uncertainties, with lower (o) and

upper (') bounds on it. Here, €
denote the dimension of the space
of the feasible uncertainty.

Figure 2.2: Bounds on uncertainties.

In the present paper, uncertainties are modeled using BBU approach. In this, several bounds
can be introduced, each providing a bound for a group of uncertainty variables or all uncertainty
variables simultaneously, for example see Fig. 2.2. At the same time we may want to measure the
amount of uncertainty. Thus, measures for the dimensions of the subspace containing all possible
selections of uncertainty variables are desired. This can be cast into a mathematical framework as
follows. Assuming a set with b bounds, then a possible or feasible selection of « satisfies, see Van
Keulen et al. [13];

Bi(a,e) <0, for i=1,...,b (2.14)

Otherwise the selection of the uncertainty variables a is infeasible.
In the present paper, simple box bounds, see Fig. 2.2(b & c), are used to specify uncertainties as

(i — @) — e <o. (2.15)

These type of bounds generally come from a tolerance specified on a nominal value, for example,
due to the manufacturing induced inaccuracies. These bounds can be alternatively represented in
terms of lower (o) and upper bounds (a¥) on uncertainties as

Ozé = — €,
af = & +e. (2.16)
Here, the components of € are used to specify the dimensions of the space of feasible uncertainty
variables. We will therefore refer to these components as the levels of uncertainty. Here, the com-
ponents of £ are used to specify the dimensions of the space of feasible uncertainty variables. We
will therefore refer to these components as the levels of uncertainty. As we use these levels of
uncertainties to describe the dimensions of a space, each of the components will be non-negative,
ie.

g; >0, for j=1,...,7 2.17)

Note that the number of components of &, r, is not necessarily equal to the number of bounds, b,
being introduced.

It seems natural to assume that if the dimensions of the space of uncertainty variables have
become zero, the uncertainty variables become deterministic. In other words, if € = 0 then there is
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only a single solution @ = & such that
B;(@,0) <0, for ¢=1,...,b (2.18)

Moreover, for a = @ the equal sign holds true.

2.4 Anti-optimization

2.4.1 Introduction

In order to anticipate the effect of uncertainties on the response of structure, the anti-optimization
technique determines the worst-case scenario for the response. It basically checks the response of
the structure for the worst possible combination of uncertainties in order to ensure that the structure
will not fail for any combination of uncertainties. In the technique, uncertainty-based optimization is
basically split in two parts, namely, main- and anti-optimization. The main optimization is treated as
a standard minimization problem, which searches for the best design in the design domain, whereas
the anti-optimization consist of performing numerical searches for the combination of uncertainties,
which yields the worst response for a given design and a particular response function. In the worst
case scenario, an anti-optimization for every constraint is required.

2.4.2 Optimization problem formulation using BBU uncertainties

The anti-optimization problem using BBU uncertainties can be formulated mathematically as:

min f,(x)
X . (2.19)
st. fi(xsa) <1, i=1,...,m,
where ¢ is the maximizer of
max f}(x;a;)
@; (2.20)

s.t. Bj(a,‘,&‘) <0, g=1,... . b.

x X;0
Main «.| Anti-
Optim. Afi(X;a )| Optim. ‘fi(x;a)

Simul.

Figure 2.3: Anti-optimization Technique: Anti-optimization is carried out at every design (x) for
each constraint (f;) to obtain corresponding worst set of uncertainties (a*).

Here, fo(x) is the objective function and f;(x, &;) are constraints, whereas B;(c;,€) are bounds
on uncertainties. The minimization as defined in Eq. (2.19) will be referred to as the main op-
timization. Notice that, in general, the evaluation of the constraints involves, for each set of de-
sign variables, anti-optimization of the individual constraints. This anti-optimization is reflected by
Eq. (2.20). The anti-optimization technique as represented by Eq. (2.19) and Eq. (2.20) is depicted
in Fig. 2.3

2.4.3 Asymptotic Method

The anti-optimization (Eq. (2.20)) to find the worst response for a given design is approximated in
this method with the use of Taylor series. This approximation limits the applicability of the technique
to the problems with uncertainties of small magnitude. Nevertheless it provides computationally
efficient way for the worst estimation of uncertainties.
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Approximate bounds

The first approximations that will be introduced are related to the bounds (B). As a basis for these
approximations we develop the bounds around the nominal uncertainties (@ = &@,& = 0), where &
refers to the values of uncertainty variables if the levels of uncertainty have become zero. Introducing
Aa =a — aleads to

B;(a,€) H—EAE + B; Aak+

a—al—AakAaH—

% a1 .21
WE—lAQkAE[“I'
mAEkAEl +.

here the over bar denotes evaluation for « = & and € = 0. Note, that summation convention has
been applied for repeated indices. As for (guca = @,e = 0) the equal sign in Eq. (2.18) holds
true, the first term in the right hand side of Eq. (2.21) is zero. In many cases the bounds B will

25
be constructed in such a way that mixed derivatives, for example Ba—%‘—, become also zero. This
QL O
restriction will also be adopted here, leading to

Bi(a,e) = 8BZA5 + a—j—AEkAft
631 Aa + 3—5?—AakAal R

We shall now introduce another simplification. As we have stated that for € = 0, there is only a sin-

gle solution which satisfies Eq. (2.18), it is for most cases correct to take g& = (. If there is only

a single bound or several bounds that each depend on a different set of uncertain variables, then this
simplification seems justified. If several bounds are functions of (partially) the same uncertain vari-
ables, then this simplification may not be valid. After having adopted the foregoing simplification
and retaining the most important terms in Eq. (2.22), B;(a, €) can be approximated by

2.22)

Bi(a,e) = %AaTJiAa ~gle 2.23)
with - -
9“B; 0“B;
I?al 270&1 Y 3&1 Bau
Ji= : : (2.24)
8 B; 8°B;
Oay 0a; Doy Oay,
and o8 9B
T i i
e . 2.
9 ( Bey 8&) (2.25)

If all bounds are functions of different sets of uncertainties, then, since gvca = @ is a unique
solution of Eq. (2.18) for € = 0, the matrices J; must be positive semi-definite. In the subspace
of uncertainties that affect a single bound, the latter can be interpreted as an ellipsoid with the
coordinates of its center determined by . To stress this type of interpretation we introduce

R? =2gle (2.26)
and the approximate bounds can be written as

Bi(a,e) = - (Aa"N;,Aa — RY). (2.27)

| =
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The representation of the bounds as given by Eq. (2.27) has been constructed on the basis of a
series of assumptions and approximations as outlined above. It may be that a particular problem
does not permit the application of this simplified bounds. However, for many cases the approximate
representation Eq. (2.27) will be adequate and becomes exact for linear dependencies. In the sequel
of this paper we shall restrict ourselves to those cases for which Eq. (2.27) is adequate. Moreover,
we shall, as discussed above, also assume that the matrices J; are all positive semi-definite.

Linearizing of response functions

Approximation for responses is constructed here using Taylor series around gvca = & for a given
design vcx. These Taylor series read

of; 1 8%
Af; = — = et Aok + ..., 2.
8ak Aak + 2 Oak 3011Aak k¥ ' ( 28)
with
Af; = fl-(x,a) - fl = fi(x,a) - fi(X,C_!) (2.29)

It is important to emphasize that it is not always possible to construct the above Taylor series. This
is, for example, the case when a response function is continuous but its derivatives are discontinuous.
If the above Taylor series can be created, then first-order approximations for the response functions
are obtained by dropping all higher-order terms, giving

of;

f; =
a day,

Aag. (2.30)

It is important to realize that the derivatives of the response functions with respect to the uncertain
variables are relatively inexpensive to calculate, provided efficient algorithms for sensitivity analysis
are available.

Approximate maximization problem

Combination of the approximations for the bounds and the response functions, which are given by
Eq. (2.27) and Eq. (2.30), respectively, leads to the maximization problem

n&ax h}Aa
@ @.31)
st.  Ad'J,Aa—-R?2<0, j=1,...,b,

with

hj = (gi 8f3>. (2.32)
(e3] 8au

This approximation is entirely based on Taylor series approximations of the actual optimization
problem and is therefore referred to as an asymptotical formulation. These Taylor series have been
developed around the point &, which is the set of uncertainty variables if the levels of uncertainty
equal zero. Clearly, the approximate optimization problem has been solved by truncation. The
approximate optimization problem can be solved inexpensively and gives an asymptotic estimate of
the uncertainty variables o™

The asymptotic analytical method entirely hinges on the fact that derivatives are available and
that a sufficient approximation can be constructed on the basis of this information. Clearly if the
effect of the uncertainty variables becomes large, then one has to expect that truncation errors may
become too large. Another critical issue is whether the derivatives can be retrieved at all. First, one
may not have the possibility to carry out inexpensive sensitivity analysis at all. Second, derivatives
may exhibit discontinuities and may therefore become inadequate for the present setting.
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2.4.4 Rigorous Anti-optimization

In case of problems involving large uncertainties, the asymptotic method can make large errors
while predicting the worst response. For such problems more general or Rigorous anti-optimization
technique, in which the anti-optimization as given by Eq. (2.20) involves full or exhaustive search
for the worst sets of uncertainties.

Xq
Main Optimization Anti-optimization

Figure 2.4: Anti-optimization technique in the MAM setting for a problem of two design variables
(z1 and x3) and two uncertainties (o and a3). The big boxes indicate the search (su b-) domains.
The small open boxes indicate sets of design variables (left) or uncertainty variables (right) for which
function evaluations are carried out. The small solid boxes indicate solutions of the approximate
optimization problems.

The Rigorous anti-optimization technique is depicted in Fig. 2.4 in the MAM setting. It consists
of an anti-optimization for every design point in the main optimization and for every constraint. The
main optimization, Eq. (2.19), is treated as a standard minimization problem, which searches for the
best design in the design domain. The design domain is specified by upper- and lower bounds on
the design variables. The anti-optimizations, Eq. (2.20), consist of performing numerical searches
for the worst sets of uncertainty variables while keeping all design variables constant. Thus, the
anti-optimizations are maximization problems searching for the worst combinations of uncertainty
variables for a given set of design variables. These searches are restricted by the bounds on the
uncertainty variables.

The anti-optimization technique, as sketched above, can handle large uncertainties safely. More-
over, it can account for discontinuities if any exist. The price paid for this flexibility is the large
amount of computing efforts required for anti-optimization processes. Significant computational
costs can be saved if the anti-optimization problem is convex. In that case, the worst set of uncer-
tainty variables will be located at the bound. Often the anti-optimization can be reduced to a system-
atic search along the vertices of the domain of feasible uncertainty variables, Elishakoff et al. [7]. In
the present thesis this assumption has not been adopted and the intention is to focus on methods that
can be applied to more general problems, i.e. for which maximizers of Eq. (2.20) turn out not to be
the vertices of the uncertainty domain.

2.5 Parallel Computing

2.5.1 Introduction

In general, response evaluations using FEA are computationally expensive. For applications in-
volving such expensive FEAs, even application of an enhanced (sensitivities and database) anti-
optimization technique for uncertainty-based optimization can become impractical. For such prob-
lems, the use of parallel computing is essential to make the anti-optimization technique compu-
tationally feasible. Computer clusters combining several fast computers can be utilized to evaluate
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expensive FEAs in parallel in order to speed up the optimization process. In the present thesis, a Par-
allel Computing Tool (PCT) developed using PYTHON, Lutz [24], is used for response evaluations
involving FEA.

2.5.2 Parallel Computing in the MAM setting

!7 Cycle
. //__/%
£ 2 3 4 5
S
s || | | \ | |
Time g _|ldle
[ ldle § [[] Regular Evaluation
[ Regular Evaluation = [l Sub-optimum
[l Sub-optimum Time
(a) Plan points are evaluated sequentially (b) Plan points are evaluated using parallel computing

Figure 2.5: A cycle in optimization using the MAM: Steps involved are 1: Planning, 2: Evaluation
of plan points, 3: NMP, 4: Evaluation of sub-optimum, 5: Move limit strategy.

Optimization using the MAM, involves various steps such as planning of experiments, response eval-
uation, response surface approximation, nonlinear minimization problem and movelimit strategy, see
Section 2.2. The computing times required for these steps of a typical optimization are represented
approximately in Fig. 2.5 (a). It can be clearly seen here, that evaluation of the plan points is com-
putationally the most expensive phase, whereas the nonlinear minimization programming (NMP)
problem and move limit strategy are relatively computationally very cheap. However, if multiple
processors are available for computation, they can be utilized easily to improve the efficiency of the
method as shown in see Fig. 2.5 (b), see Van Keulen and Toropov [25].

It should be noted here that an additional response evaluation is required at the end of the cycle
to evaluate the sub-optimum of the AOP. In the present setting for response evaluation, splitting of
the individual response evaluation is not possible, therefore every response can only be evaluated by
a single processor. Because of this, during the evaluation of the sub-optimum only a single processor
can be utilized, keeping the other processors idle. This increases the overall idle time significantly.

2.5.3 Parallel Computing Framework

The parallel computing framework used in the present research is developed in PYTHON, see the
textbook Lutz [24]. To start multiple threads in parallel, the Threading module from PYTHON
is used in the current framework. This framework is depicted in Fig. 2.6. Here, each job involves
evaluation of response function using, for example FEA. The number of such jobs that can be started
at a time in parallel, depends on the number of processors available for computation.

During the evaluation of an individual job, first the design parameters are sent to the remote
processor, see Fig. 2.6. Then the actual evaluation of responses, for example by using FEA, is
started on the remote processor by the associated thread. When the evaluations for the job are
finished, corresponding responses are received back and are associated with the job. As soon as the
processor finishes a response evaluation and becomes available for computation, the next job in the
queue is submitted to it. The procedure is repeated until all the jobs are evaluated.
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It should be mentioned here, that the communication between the master and slaves, is through
files containing data, for example, flags indicating whether the submitted job is finished or not.
The communication using files does increase the overhead time, however in practical cases this is
negligible compared to the time required for an individual response evaluation.

Designs Clusters

Check availability

ET . Parallel
ptimizer__, |
- Unit

Spawn threads

kA
Responses

Threads

Figure 2.6: A framework for the parallel computing using the Threading module of PYTHON.
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Chapter 3

Enhanced Anti-optimization

In the present chapter, uncertainties in the design process are dealt with by searching for the combination of
uncertainties which yield the worst response. A description of uncertainties via bounds on the uncertainty
variables is adopted. This work is the evolutionary sequel of [13] in which focus was placed on analytic,
asymptotic first-order approximations, herewith inherently assuming the effect of uncertainties is relatively
small. These approximations are based on first-order derivatives with respect to uncertainty variables. If the
effects of uncertainties are large, a numerical method was proposed using a rigorous anti-optimization pro-
cess. Both methods were embedded in a structural optimization setting using the Multipoint Approximation
Method. Both the asymptotic analytical and the rigorous method were shown to have their drawbacks. The
first method suffered from a lack of consistency when uncertainties have a large impact. The second method
takes a very large number of evaluations, but can deal safely with uncertainties which have large effects. This
chapter will combine the analytical method with the rigorous method by using sensitivity information in both
main and anti-optimization, thereby decreasing the number of evaluations while retaining the desired level of
accuracy.

Key words: Unknown-but-bounded uncertainties, sensitivities, optimization, anti-optimization.

3.1 Introduction

In general design practice, one faces the problem of uncertainties of various kinds. Some uncer-
tainties may have a physical origin. Typical examples are fluctuations in material properties and
uncertainties in loading conditions due to environmental effects. One could visualize that these
uncertainties are inherently connected to the problem at hand, i.e. these uncertainties cannot be
influenced by the designer. Typical examples could be loading conditions and material properties.
Other uncertainties are of different nature and can be influenced by the designer. A typical example
is provided by manufacturing induced inaccuracies. Clearly, by adopting a more expensive manu-
facturing process or accepting higher rejection rates, the designer can influence these uncertainties
at least to a certain extent.

One way to deal with uncertainties, is to use probability density functions for the uncertainty
variables. But in many practical situations the available experimental data is insufficient to war-
rant reliable probabilistic analysis. An alternative way is to identify uncertainties as belonging to
some closed sets, i.e. to be of unknown-but-bounded nature. The optimization is treated here as
an ordinary minimization problem, searching for the best design in the design domain, and will be
referred to as main optimization. On the other hand it includes numerical searches for the worst
set of uncertainty variables keeping all design variables constant. This search will be referred to
as anti-optimization (a term dubbed by [26]). The anti-optimization is treated as a maximization
problem searching for the worst responses for certain combinations of uncertainty variables in the
domain defined by the bounds on uncertainties. Here the anti-optimization is carried out for every
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response evaluation in the main optimization, thus nesting main optimization with anti-optimization.
This approach was adopted by [7]. A similar approach is taken by [19] for the design of laminated
composites under load uncertainties. Except that instead of using nested optimization, which is very
expensive, a techniques used alternating between optimization and anti-optimization.

In the present chapter the uncertainty variables, are treated as unknown-but-bounded. This chap-
ter adopts the Multipoint Approximation Method (MAM) developed by [1], [3] and [2] as the opti-
mization algorithm of choice. The basic idea is to find for each evaluation of every goal function
and every constraint function the corresponding set of uncertainties which yields the worst response,
i.e. in terms of design considerations the most pessimistic set of uncertainty values. This can be
accomplished in multiple ways. In [13] two methods have been proposed, namely:

1. Asymptotic method for uncertainties that have small effects;
2. Rigorous method for uncertainties with large impact.

The asymptotic method uses first-order derivatives of the response functions and first- and
second-order derivatives of the uncertainty bounds to estimate the worst combination of uncertainty
variables and the corresponding values for the response functions. This method has the advantage of
being inexpensive in terms of computational effort, as expensive anti-optimization is avoided. How-
ever, it is not always possible to calculate the first-order derivatives with respect to the uncertainties
for all of the response functions, which restricts its application. Moreover, even if information on
sensitivities with respect to uncertainties can be generated, approximations on this basis may turn
out to be handicapped by too large truncation errors.

In contrast to the asymptotic method, the second method on the other hand can be used virtually
always for both small and large uncertainties. Moreover, depending on the anti-optimization used,
even discontinuities may be accounted for. In this method rigorous anti-optimizations are carried out
for each design to be evaluated within the main optimization. This immediately reveals its severe
drawback, that is the large computational effort.

This chapter intends to relieve the drawbacks of both the asymptotic method regarding the inca-
pability to handle large uncertainties as well as the rigorous method concerning the large number of
evaluations by combining the methods. This is done as follows. In case of numerical analysis gradi-
ent information can be obtained often at a fraction of the computing time as compared to the analysis
itself. The required sensitivities will be calculated using the so-called refined semi-analytical for-
mulation [15, 16]. This sensitivity information can be used in addition to the function values to
construct response surfaces as being used within the MAM. This incorporation of sensitivities can
be used to improve the quality of the response surfaces. Alternatively, less response evaluations may
be required to construct the approximations. Thus, using derivative information may decrease the
total number of function evaluations and hence may speed up the numerical optimization process.
In this way the advantages of the asymptotic and the rigorous method are combined.

In literature several methods to include derivative information in response surface approxima-
tions can be found. In [27] and [28] sensitivities are included in the response surface by an enhanced
weighted least squares formulation. A two step blending approach is described by [18]. In this
approach, gradient information is incorporated using the weighted least squares method but now
formulated in terms of a multi-objective optimization problem. Extending this idea further, a single
step scheme is described by [17]. In the sequel, following [17], we shall refer to response surfaces
based on both function values and derivatives as Gradient Enhanced Response Surfaces (GERS).

The main goal of this chapter is to explain and demonstrate the combined method in a structural
optimization setting. The fitting of response surfaces to both design sensitivities as well as to func-
tion values is one of the aspects exploited here. Further, differences of incorporating uncertainties
as part of the anti-optimization process as opposed to a regular optimization process can be found in
the fact that data from previous anti-optimizations is available. These data have been used to interact
with the function evaluations and sensitivities in order to speed up the anti-optimization process even
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more. The ideas put forward are studied on the basis of a numerical example using a finite element
model of a section of a car-deck floor of a ferry.

3.2 Multipoint Approximation Method

In the present chapter the Multipoint Approximation Method has been used for optimization and
anti-optimization. The interested reader is referred to the studies by Toropov et al. [1,2] and
Van Keulen and Toropov [3,4]. The basic idea is that in a sub-domain of the search domain ap-
proximating response surfaces are constructed as a function of the design variables. For this, within
a sub-domain of the design space a plan of experiments is generated using a space filling technique.
The construction of the response surfaces is carried out using a weighted least-squares fit. The
weights reflect the relative importance of the data to the optimization process. The minimization
problem for the approximated response surface is solved to get a sub-optimal solution in the corre-
sponding sub-domain. Based on the quality of sub-optimal solution of the current sub-domain the
direction and size of a new search sub-domain is defined. This process is repeated until convergence
has occurred.

In case both function values and derivative values are available, then the response surfaces have
been constructed using both data entities. The technique used for this construction is described in
detail in [17]. The basic idea is to use a weighted least square formulation, though this is loaded
upon as a multi-objective optimization problem as first proposed in [18].

3.3 Uncertainty variables

Designing a structure implies that a design concept has to be selected which has to be optimized
subsequently. The latter involves the selection of design variables which determine, among other
features, the dimensions, shapes and materials. In the sequel, this set of n design variables is denoted
X, with

x! = (z1,..., ). 3.1

Throughout the present chapter, it is assumed that all design variables are continuous.
The behavior of the structure is described by the response functions which are functions of the
design variables. These response functions, are denoted as f with

1= (fi,..., fm)s (3.2)

which may reflect, for example, weight, cost, buckling loads, maximum equivalent stress, or strain
levels. If the problem at hand is non-deterministic, i.e. there are uncertainties that play a non-
negligible role, the response functions also depend on the uncertainty variables. The set of uncer-
tainty variables will be denoted o, with

ol = (a,... ). (3.3)

Consequently, the response functions depend on both design variables and uncertainty variables,
hence f = f(x, ).

3.4 Bounded-but-unknown uncertainty variables

Even though insufficient information is available in order to perform a probabilistic analysis, it may
be possible to determine reasonable bounds on the uncertainties. In general, several bounds are in-
troduced, each providing a bound for a group of uncertainty variables or all uncertainty variables
simultaneously. At the same time we may want to measure the amount of uncertainty. Thus, mea-
sures for the dimensions of the subspace containing all possible selections of uncertainty variables
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are desired. This can be cast into a mathematical framework as follows. Assuming a set with b
bounds, then a possible or feasible selection of « satisfies

Bi(a,e) <0, forall i=1...b, (3.4)

otherwise the selection of the uncertainty variables a is infeasible. The components of € are used to
specify the dimensions of the subspace of feasible uncertainty variables. We will therefore refer to
these components as the levels of uncertainty. As we use these levels of uncertainty to describe the
dimensions of a subspace, each of the components will be non-negative, i.e.

€20, for j=1,...,n (3.5)

Note that the number of components of € is not necessarily equal to the number of bounds being
introduced.

It seems natural to assume that if the dimensions of the space of uncertainties have become zero,
the uncertainty variables become deterministic. In other words, if € = 0 then there is only a single
solution & = & such that

B;(&,0) <0, forall i=1...b. (3.6)

Moreover, for o = & the equal sign holds true.

3.5 Clustered Uncertainty Variables

As can be seen from Eq. (3.4) all uncertainty variables are coupled through the bounds B(a,€).
Often this fully coupled description is too general as the uncertainty variables are often clustered.
This implies that we can group the uncertainty variables in such a manner that for each cluster a
corresponding set of bounds can be identified. A cluster of uncertainty variables will be denoted
a® with k = 1,...,d. Here d denotes the number of clusters one may identify. The number of
uncertainty variables belonging to the k-th cluster is denoted . Thus, the entire set of uncertainty
variables is

a" = (@), (@)T). 3.7

As mentioned, we can identify a corresponding set of bounds and uncertainty levels for each cluster,
if the clusters of uncertainty variables are decoupled. Hence, a feasible selection for the k-th cluster
satisfies

B®(a® e®) <0, forall i=1...b, (3.8)

with
el = ((E(l))T, o (e(d))T) . (3.9)

Here the number of bounds introduced for the k-th cluster is denoted by, whereas the number of
uncertainty levels is 7.

3.6 Asymptotic Method

The problem now is to find, for a given design =, the set of uncertainty variables which is feasible
and which leads to the worst possible value of the function f;. Thus we need to find

max fj(z;a)
a
3.1
subjectto:  Bj(a;e) <0,
forall ¢=1...b.
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Clearly this optimization may be costly. Therefore following [13] these maximization problems are
approximated by:
max (h;l))TAa(l) +.ot (hﬁd))TAa(d)

Aa
(3.11)
subject to: (Aa(k))TJl(-k)Aa(k) - (Rz(k))2 <0
with i=1...b;, k=1...4,
with
BQBEH azgik)
z’)agk)aa(lh o 0a§k)8a1<f;2
I® = : : . (3.12)
82 B™. 2Bk
8all) 9ol h 9o 5a k)
Further, Rz(k) is defined by:
(k) (k)
B: B
(B2 =2 <~8 i L2 s ) e®, (3.13)
Dey Oey,
and ~ ~
of; af;
(h{)T = ( J:;) N {i>> . (3.14)
Oay Joy,;
Here the over bar denotes quantities evaluated for @ = &. The solution is written as,
a® =a® + Aa®. (3.15)

This approximation is entirely based on Taylor series approximations of the actual optimization
problem and is therefore referred to as an asymptotical formulation. These Taylor series have been
developed around the point &, which is the set of uncertainty variables if the levels of uncertainty
equal zero. Clearly, the approximate optimization problem has been solved by truncation. The
approximate optimization problem can be solved inexpensively and gives an asymptotic estimate of
the uncertainty variables a®.

The asymptotic analytical method entirely hinges on the fact that derivatives are available and
that a sufficient approximation can be constructed on the basis of this information. Clearly if the
effect of the uncertainty variables becomes large, then one has to expect that truncation errors may
become too large. Another critical issue is whether the derivatives can be retrieved at all. First, one
may not have the possibility to carry out inexpensive sensitivity analysis at all. Second, derivatives
may exhibit discontinuities and may therefore become inadequate for the present setting.

Notice, that in the present approach the formulation of the bounds has to be done carefully in
order to avoid difficulties. That is, the bounds have to be formulated in such a form that the first
order derivatives with respect to the uncertainty variables are zero and that second order derivatives
can be evaluated.

3.7 Rigorous Method

The concept of the rigorous method is similar to the asymptotic method. For every response func-
tion and every set of deterministic design variables to be evaluated, the corresponding set of un-
certainties is to be determined. Contrary to the asymptotic method, which uses approximations
constructed on the basis of gradient information, the rigorous method consists of a straight-forward
anti-optimization of every response function. Each of the response functions in turn will fulfill the
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role of goal function during this anti-optimization, while the boundaries B;(c, €) become the con-
straints. Hence the rigorous method tends to solve Eg. (3.10).

Contrary to the asymptotic method, the worst set of uncertainties can be everywhere on and
within the bounds. Moreover, the anti-optimization can be carried out even when no gradient infor-
mation is available. The price paid for this flexibility is the large amount of computing time required
for anti-optimization processes.

In [13] the rigorous method has also been used. In order to speed up the anti-optimization
processes, estimates of the uncertainty variables have been constructed using response surfaces.
These estimates have been used as starting points, for the anti-optimization. In this way the number
of optimization cycles, required for the anti-optimization, has been reduced.

3.8 Enhanced method

If design sensitivities can be obtained at low computational cost, they can be used in two ways. The
first is to increase the information available to obtain a higher order fit, potentially resulting in higher
accuracy approximations used in the MAM. The second way is to reduce the necessary number of
function evaluations to obtain a function fit of a certain order and accuracy. These strategies can be
used in both the main and the anti-optimization.

3.8.1 Anti-optimization

Anti-optimization is done for every design point in the main optimization. As such, in case of
anti-optimization the main design variables are kept constant. Thus the design variables during the
anti-optimization are the uncertainty variables ¢, whereas one of the response functions becomes the
goal function. The constraint functions are formed by the corresponding boundary function B;(a, €).
The design variables of the main optimization £ become nothing but constants.

Extending this procedure further, sensitivities with respect to uncertainties can be incorporated
while building the GERS for the response functions. This can improve the accuracy of the response
surfaces, affecting the convergence of the anti-optimization process in one way. Alternatively, a
lesser number of function evaluations is required to build the response surfaces with the same com-
plexity. Obtaining sensitivities of response functions with respect to uncertainties is much easier
and straightforward as compared to obtaining sensitivities of responses with respect to main design
variables in case of main-optimization as will be explained later.

The bounds can be included as constraint functions. Often the bounds come as upper and lower
limits on the uncertainty variables. In those cases the anti-optimizations can be formulated as un-
constrained optimization with only the response function as goal function. In the numerical example
presented in the present chapter this has been the case.

3.8.2 Main optimization

The main optimization search for the best design, which minimizes the objective function while
satisfying the constraint functions. First, for every design point X and every response function anti-
optimization is carried out to get the worst set of response functions. Thus, the anti-optimization
processes for a certain design point X hence results in the worst response function values f; and their
corresponding uncertainty variables.

The response functions which have been obtained on the basis of anti-optimization will be used
in the MAM. As described before, the function values form the basis for the construction of response
surfaces. In case information on derivatives is also available, then this information can be used to
build GERS. A problem at the stage of the main optimization is that the uncertainty variables may
be an implicit function of the design variables. This problem will be addressed below.
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The objective function and/or the constraint functions in the main optimization are functions of
the design variables x as well as the uncertainty variables o, i.e.

f=fl=;0). (3.16)

However, the uncertainty variables o™ that maximize a response function are implicit functions of
main design variables, o = aj(z).
Consequently, sensitivities of response functions must be calculated as follows

af;  0f; + af; 9y, (3.17)

dr; ~ Oz daf dz;’

It is clear from the above equation that in addition to the sensitivities of response functions with
respect to the main design variables we need sensitivities of response functions with respect to
the uncertainty variables and sensitivities of uncertainty variables with respect to the main design
variables. Obtaining sensitivities of uncertainty variables with respect to the main design variables
is not straightforward as compared to the other sensitivities in equation Eq. (3.17).

In the present chapter the availability of response surface techniques prompted the idea to ap-
proximate the required derivatives of &} using response surfaces. Thus, after enough data on pre-

vious anti-optimization has been collected, the derivatives %LL" are approximated using response
surfaces, giving approximation to &j(z).

Thus, as soon as sufficient data is available, GERS constructed over the current sub-domain
can be used to obtain the new suboptimal point. The basic idea here is that a lesser number of
experiments is required to construct the response surface at an equal level of accuracy as compared
to the original rigorous method. Notice, that each additional design point means additional anti-
optimizations, as such using a lesser number of design points can save a large number of function
evaluations. Thus, incorporation of sensitivities in the main optimization can reduce the total number
of function evaluations and increase the overall efficiency substantially.

3.8.3 Use of database

As explained previously, the primary purpose of creating a database is to get sensitivities of un-
certainty variables with respect to the design variables. Another potential use of the database is to
speed up the anti-optimization processes. In the beginning of optimization there is not enough data
contributed in the database to fit response surfaces. Here normal anti-optimizations are carried out
which automatically contribute to the database. Once there is enough data available, response sur-
faces can be fitted for uncertainties as a function of the design variables. As mentioned earlier, these
can be used to estimate the required derivatives in the main optimization. Moreover, these can also
be used to provide estimates for good starting points for the anti-optimizations.

3.9 Example: Corrugated Panel

As an example, a realistic optimization problem is stated and studied. The problem consists of the
mass optimization of atypical section of the car deck floo r of a ferry. The floor section is a so-called
corrugated panel consisting of an upper and lower aluminum surface at distance (h) connected by
two webs under a certain angle (0) , see Fig. 3.1. The thickness of the upper and lower plates is
t1, while the webs have thickness ¢5. The dimensions for the panel are listed in Table 3.9 and are
depicted in Fig. 3.1. The whole structure has been made of aluminum (Young’s modulus = 70 G Pa,
Poisson’s ratio = 0.35, density = 2640 kg/m3). The lower plate of the panel has been welded to the
surrounding frames at its front and backside. The floor is loaded by a car wheel the location of which
can be all over the floor panel. The wheel print has a length w; = 160 mm and width w, = 140 mm
and is assumed to produce a uniform pressure of p = 138 kPa.
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Figure 3.1: Corrugated floor panel.

Table 3.1: Dimensions of the corrugated panel.
L =1200 mm

B =800 mm 8 =0.785 rad
wy =140 mm

a =50 mm - 160

h =50 mm W= mm

Figure 3.2: Deformation of the corrugated panel.

The purpose here is to minimize the mass (m) of the panel subject to the constraint that the
deflection & of the panel must be less than 25 mm. The plate thicknesses ¢; and iz are the design
variables, while the a;- and as-coordinates of the center of the wheel print are taken as the uncer-
tainty variables. The goal of the optimization is to find the best design for minimum weight which
exhibits least maximum deflection on the one hand and to find the location of the wheel print that
exhibits the largest deflection for the chosen design on the other hand. As such, the final design
should be corresponding to the best response and for the worst combination of uncertainty variables.

In order to perform the optimization, a finite element model of the floor section has been used,
see Fig. 3.2. The mesh of the model is dependent on the location of the wheel print, hence on the
uncertainty variables. Thin shell elements [29] have been used for both the surfaces and the webs.
The model has been parameterized in order to be able to move the position of the wheel print over the
upper surface. Due to this parameterization a small region is necessary between the wheel print and
the edge of the surface. Consequently, the wheel print can not reach the edges completely. Because
of symmetry the search region of the uncertainty variables has been limited to only one quarter of the
upper surface. This puts an upper bound Bgl) on uncertainty «; and Bg) on ay. The corresponding
lower bounds are zero. The search region is indicated in Fig. 3.1.
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3.9.1 Asymptotic Evaluation of the Corrugated Panel

The asymptotic method requires a linearization of the boundary functions and the response functions.
The uncertainty variables in the corrugated panel optimization can be split into two clusters
(d = 2). To each cluster belongs only a single uncertainty variable (by = b2 = 1). Since the
boundary function for each cluster can be described by a single level of uncertainty (r, = ry = 1),
they have been selected as

Bg)(a,s) = (agl) - 61)2 — 651) <1,
2 (3.18)

B§2)(a,5) = (af) — Ezg) - sgg) <1,

with a; and & equal to half the width and height of the search domain, respectively. Hence &
corresponds to the center of the search domain for the uncertainty variables. Equations Eq. (3.12)
and Eq. (3.13) then reduce to scalars

IW=2 J®_2 (3.19)

and ) . )

2
(RMy2 =20 (RP)?2 =260, (3.20)
The deflection constraint is formulated as
g1 0 <1 (3.21)
6’777,(11‘

with 6,42 = —25 mm. The gradient vectors (hgk))T = (i%) and (hg“)T = (i%) are obtained

from finite element calculations based on the refined semi-analytical formulation [16]. The gradients
have been calculated in the center of the uncertainty search domain.

Table 3.2: Results of the asymptotic analytical optimization of the corrugated panel.

Method Wheel print Aoy | Ao t to f g1 | number of

location mm | mm mm mm kg - | evaluations
Asymptotic | Center -135 | 255 ] 4.652 ) 0.253 | 23.69 | 1.000 172
Verification | Left-top -135 | 255 | 4.652 | 0.253 | 23.69 | 1.379 -
Verification | Right-top 135 | 255 | 4.652 | 0.253 | 23.69 | 0.378 -
Verification | Left-bottom | -135 | -255 | 4.652 | 0.253 | 23.69 | 0.814 -
Verification | Right-bottom | 135 | -255 | 4.652 | 0.253 | 23.69 | 0.344 -
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Figure 3.3: Maximum deflection J as a function of uncertainty o for uncertainty as = &a.
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Figure 3.4: Maximum deflection ¢ as a function of uncertainty «y for uncertainty o; = &;.

The results obtained using the asymptotic method are included in Table 3.2. To verify the results,
the wheel print has been placed manually in the four edges of the uncertainty search region, using
the values for ¢; and ¢ resulting from the optimization. The corresponding constraint values are
also listed in Table 3.2. Tt is seen that if the wheel print is placed in the location corresponding to the
worst case, an error of roughly 40% is made. This constraint violation has been overlooked by the
asymptotic method. Fig. 3.2 depicts the deflection due to this setting.

To investigate this aspect further, the maximum deflection ¢ as a function of o3 and « is plotted
versus the corresponding asymptotic approximations. The results have been depicted in Fig. 3.3 and
Fig. 3.4. It is again demonstrated that huge errors are introduced by the asymptotic method. What is
however well represented is the settings of Aa for which the worst response is obtained.

3.9.2 Evaluation of the Corrugated Panel using the Enhanced Method

The example is studied in steps as follows. First the anti-optimization is studied in detail. Particularly
the use of derivatives to speed up the anti-optimization is one of the main aspects. This study is
carried out for arbitrarily selected settings of the design variables. Second, the effect of the use of
sensitivities in the main optimization is studied, without taking into account the effect of uncertainty
variables. Finally, the complete optimization is carried out with and without the use of a database.

Calculations are carried out including and excluding sensitivity information, both using linear
and quadratic approximations in the MAM. Different settings in the MAM are used depending on the
type of approximations and the use of sensitivity information, such as when using linear approxima-
tions a lesser number of plan points is included in the plan of experiments, whereas a larger number
of plan points is used in case of quadratic approximations. In case of using sensitivity information
even fewer points are used as more data is then available in terms of sensitivities.

Anti-optimization

This example studies the anti-optimization for the design variables t; = 5.0 mm and {3 = 0.5 mm.
This is done in two ways. Results for the anti-optimization using linear approximations are shown in
Fig. 3.5 (a) and the results when using quadratic approximations are shown in Fig. 3.5 (b). Here the
objective function, which is maximum deflection, corresponding to each step in the anti-optimization
is plotted against the number of steps.
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Figure 3.5: Anti-optimization for the panel. Curves with and without sensitivities have been in-
cluded.
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Figure 3.6: The history of anti-optimization for the panel with linear approximations and using
sensitivity. The white rectangles indicate the move limits used, whereas the gray ones are the plan
points.

Table 3.3: Results of the anti-optimization of the corrugated panel.

Approximation | sensitivity | Aa; | Aag t1 to § | number of
used mm mm | mm | mm mm | evaluations

Linear No 0.0 | 510.0 | 5.0} 0.5 | 27.7097 64
Linear Yes 0.0 | 5100 | 50| 0.5 | 27.7097 24
Quadratic No 0.64 | 5100 | 50| 0.5 | 27.7029 67

| Quadratic | Yes 0.0 [ 5100 | 50 ] 0.5 | 27.7097 49

Results obtained using the sensitivity information in the anti-optimization are in accordance with
the results obtained without using the sensitivity information. It is observed that the accuracy of the
approximations is better when sensitivities are used. Table 3.3 shows that fewer function evaluations
(roughly factor 2) are required when sensitivities are included in the anti-optimization, thus making
it more efficient. The history of optimization in terms of move limits is shown in Fig. 3.6. Each of
the boxes represents the search sub-domain as used in an optimization cycle. The location of the
plan points is indicated using small rectangles.

Main optimization

The main optimization is first studied separately by keeping the worst set of uncertainties (a; =
0 mm and a2 = 510 mm), constant. Results for the main optimization, using linear approximations
are shown in Fig. 3.7 (a) and Fig. 3.7 (b). Similar results based on quadratic approximations are
shown in Fig. 3.8 (a) and Fig. 3.8 (b). Here the objective function (mass of the structure) and
constraint function (Eq. (3.21)) corresponding to each step in the main-optimization are plotted
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against the number of steps. Notice that by keeping the uncertainty variables as constants, the

corresponding contribution to the sensitivities disappears.
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Figure 3.7: Main optimization for the panel using linear approximation for responses. Curves with
and without sensitivities have been included.
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Figure 3.8: Main optimization for the panel using quadratic approximation for responses. Curves

with and without sensitivities have been included.
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Figure 3.9: The history of main optimization for the panel with linear approximations and using
sensitivity. The white rectangles indicate the move limits used, whereas the gray ones are the plan

points.
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Table 3.4: Results of the main-optimization of the corrugated panel

Approximation | sensitivity | Aag | Aoag t1 ta f g1 | number of

used mm | mm mm mm kg - | evaluations
Linear No 0| 510 | 5.1723 | 0.6354 | 26.5038 | 9.9998-01 64
Linear Yes 0| 510 | 5.1577 | 1.3221 | 26.7388 1.0000 30
Quadratic No 0| 510 | 5.1869 | 0.2837 | 26.4189 1.0000 68
Quadratic Yes 0| 510 5.1962 | 0.1944 | 26.4258 1.0000 41

Results obtained using the sensitivity information in the optimization are in accordance with the
final results obtained without using the sensitivity information. The accuracy of the approximations
is better when using sensitivities. Table 3.4 shows that a lesser number of function evaluations
(roughly factor 2) are required when sensitivities are included, thus making the optimization more
efficient. The optimization history in terms of move limits is depicted in Fig. 3.9.

Complete optimization

In this study, the anti-optimization is done inside the main optimization. That is, for every design
point in the main optimization an anti-optimization is carried out to get the corresponding worst set
of uncertainties. Note, in this example only a single response function has to be maximized. It is
quite clear that this process becomes very expensive in terms of function evaluations necessary to

perform the optimization.
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Figure 3.10: Complete optimization of the panel for Cases 1 and 4 in Table 3.5.
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indicate the move limits used, whereas the gray ones are the plan points.
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Table 3.5: Results of the complete-optimization of the corrugated panel. The number of function

evaluations required for Cases 2 and 3 have been estimated.

Cases | Type of Sensitivity | Database ty to f g1 | Total no of
optimization used used mm mm kg - | evaluations

1 Main Yes Yes | 5.1647 | 1.0019 | 26.6299 | 1.0000 481
Anti Yes Yes

2 Main No No - - - - 1200
Anti Yes Yes

3 Main No No - - - - 1625
Anti Yes No

4 Main No No | 5.1758 | 0.4897 | 26.4557 | 1.0000 5417
Anti No No

The entire optimization strategy has been compared for different settings, i.e with and without
database and/or the use of sensitivities. The history of the corresponding optimization processes
is depicted in Fig. 3.10 (a) and Fig. 3.10 (b). Results for the corresponding design variables and
response functions are provided in Table 3.5. The number of function evaluations required for the
entire optimization are given in Table 3.5. Optimization history in terms of move limits is depicted
in Fig. 3.11. It can be observed from this test example that the use of a database and sensitivities
pays off significantly.

3.10 Discussion and Conclusion

In the present chapter a method is given to deal with uncertainties in structural design. It is based
on bounded-but-unknown uncertainties. For that purpose anti-optimization, which is nothing but
searching for the worst combination of uncertainties, is studied. The main focus is on reducing the
number of function evaluations which is prohibiting the use of the method. The approach is to use
sensitivity information to make the optimization more efficient.

As is the case with anti-optimization, the main optimization itself incorporates sensitivities as
well. This is not so straightforward due to the interdependence between design variables and uncer-
tainty variables. For this purpose, a database is made to store the history of the anti-optimization.
With the use of the database, sensitivities of the uncertainty variables with respect to the design vari-
ables can be calculated, thus making it possible to use sensitivity information in anti- as well as in
main optimization. The use of sensitivity in total seems to be very effective in terms of reduction of
the number of function evaluations.

The database, created as a necessity while using sensitivities in the main optimization, has been
used to reduce the number of function evaluations further. That is, the database is used to make a
rough estimate of the uncertainties, which can be used as a starting point for anti-optimization. This
effectively reduces the number of function evaluations.
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Chapter 4

Enhanced Anti-optimization combined
with Parallel Computing

In the present chapter uncertainty-based design optimization of structures is carried out. A description of un-
certainties via bounds on the uncertainty variables is adopted. An anti-optimization technique, which searches
for the combinations of uncertainties yielding the worst responses, is used to tackle these Bounded-But-
Unknown uncertainties of non convex or discontinuous nature. This anti-optimization technique is computa-
tionally very expensive and can become impractical for real world applications, in particularly when expensive
numerical response evaluations are involved. In order to reduce the number of expensive numerical response
evaluations, a modified anti-optimization technique is proposed in the present chapter. This enhanced anti-
optimization technique incorporates design sensitivities and database technique and is further modified to use
parallel computing in order to increase the computational efficiency. The enhanced anti-optimization tech-
nique is studied on the basis of test examples from literature and a Microelectromechanical Systems (MEMS)
structure. A comparison between results for the examples, clearly shows an improvement in computational
efficiency for the anti-optimization technique, due to the use of sensitivities, database and parallel computing.
The enhanced anti-optimization technique can be applied efficiently to general problems involving uncertain-
ties of non convex or discontinuous nature.

Key words: Optimization, Anti-optimization, Bounded-But-Unknown, Uncertainties, Design Sensitivities,
Parallel Computing, MEMS.

4.1 Introduction

In general design practice, one faces the problem of uncertainties of various kinds. Some uncer-
tainties have a physical origin. Typical examples are loading conditions or variations in material
properties. These uncertainties are inherently connected to the problem at hand, i.e. these uncertain-
ties cannot be influenced by the designer. Other uncertainties are of a different nature and can be
influenced by the designer. A typical example is provided by manufacturing induced inaccuracies,
for example in dimensions of MEMS (Micro Electro Mechanical Systems). Clearly, by adopting
a more expensive manufacturing process or accepting higher rejection rates, the designer can in-
fluence the level of uncertainty at least to a certain extent. Particularly when dealing with MEMS,
because of their small dimensions, tolerances on shapes are relatively high, Clark et al. [30] and Pis-
ter et al. [31]. These variations in dimensions of MEMS structures can have a significant effect on
their mechanical behavior. Therefore, it is quite essential to consider uncertainties while designing
MEMS structures.

One way to deal with uncertainties, is to use probabilistic methods, Elishakoff [8]. However,
probabilistic methods require an abundance of experimental data, Elishakoff [9]. Furthermore, even
small inaccuracies in the statistical data can lead to large errors in the computed probability of
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failure to meet structural requirements, Elishakoff [9]. Many times, for example in preliminary
design phases, even though some experimental data is available, it is not enough to construct reliable
probability distributions. However, the available data can be used, particularly in combination with
engineering experience, to set tolerances or bounds on uncertainties. Consequently, uncertainties
will be identified as belonging to some closed sets, i.e. to be of Bounded-But-Unknown (BBU)
nature, see Ben-Haim and Elishakoff [11] and Ben-Haim [12].

To tackle such BBU uncertainties, a technique based on anti-optimization (a term dubbed by
Elishakoff [26]) is proposed by Elishakoff et al. [7]. In this technique, uncertainty-based optimiza-
tion is basically split in two parts, namely, main- and anti-optimization. The main optimization is
treated as a standard minimization problem, which searches for the best design in the design domain.
The design domain is typically specified by upper- and lower bounds on design variables. The anti-
optimization consist of performing numerical searches for the combination of uncertainties, which
yields the worst response for a given design and a particular response function. In the worst case
scenario, an anti-optimization for every constraint is required. Within these anti-optimizations, the
uncertainties are set as “design variables”, whereas the “design domain” is specified by the bounds
on the uncertainties. Thus, anti-optimizations are nested within the main optimization, making it a
two-level optimization problem, which can be computationally very intensive. In the method dis-
cussed in Elishakoff ez al. [7], the searches for the worst combination of uncertainties, are replaced
with systematic searches along the vertices of the uncertainty domain. This makes it computationally
efficient, but limits its application to convex modelling of uncertainties.

Recent work demonstrates that the anti-optimization technique can be applied to uncertainty-
based design optimization of practical applications. Optimization of composite structures consider-
ing load uncertainties is carried out using the anti-optimization technique by Faria ef al. [32] and
Adali et al. [33]. It is used by Lombardi and Haftka [19] for the design of laminated composites
and Van Keulen er al. [13] and Gurav er al. [34] used it for the design optimization of a car deck
floor of a ferry. Uncertainty-based design optimization of MEMS is carried out by Gurav er al. [20]
using anti-optimization.

In many practical cases, even though the assumption of convex modelling for uncertainties ap-
plies often, it is essential to have a more general technique available that can handle non-convex
uncertainties. Such an approach is adopted in Van Keulen et al. [13] and Gurav et al. [20, 34].
In this approach, anti-optimizations are treated as standard maximizations. This method is versa-
tile in dealing with uncertainties, but it is computationally very intensive and impractical for large
numbers of design variables and uncertainties. In the present chapter, the anti-optimization tech-
nique is modified to make it computationally more efficient. This includes the use of sensitivities, a
database technique and parallel computing. Throughout this chapter, intensive use will be made of
optimization techniques that rely on response surface (RS) approximations.

In many cases of computational response analysis, gradient information can often be obtained at
a fraction of the computing time as compared to the analysis itself, van Keulen and de Boer [15,16].
This sensitivity information can be used in addition to the function values to construct Gradient
Enhanced Response Surfaces (GERS), van Keulen and Vervenne [17,18]. This incorporation of sen-
sitivities can improve the quality of the response surfaces. Alternatively, fewer response evaluations
may be required to construct the approximations. Thus, using derivative information may decrease
the total number of function evaluations and hence may speed up the numerical optimization process.

The anti-optimization technique is further modified to use a database technique. For this purpose,
the worst sets of uncertainties obtained by anti-optimizations are stored in a database. When there is
enough data available in the database, it is used to create starting points for the anti-optimizations.
Often this can speed up the anti-optimizations significantly.

In many practical applications, analytical solutions for response functions are unavailable, and
numerical solutions, such as using Finite Element Method (FEM), are often used to evaluate the
response functions. In general, response evaluations using FEM for practical applications are com-
putationally expensive. For such applications, even application of an enhanced (sensitivities and
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database) anti-optimization technique for uncertainty-based optimization can become impractical.
The use of parallel computing can be a solution here. Nowadays, the use of a number of powerful
computers, forming a cluster, is quite common. Such computer clusters can be used to evaluate
expensive response functions in parallel. This can speed up the optimization process significantly.
In the present chapter, a parallel computing tool developed using PYTHON, Lutz {24}, is used for
response evaluations. It is combined with the anti-optimization technique and applied to a practical
application from MEMS.

In the present chapter, the Ten-Bar-Truss example (Elishakoff et al. [7]) is used to illustrate
the proposed anti-optimization technique. An elastically supported beam example (Lombardi and
Haftka {19]) is used here to test the technique in the presence of nonlinearities. Additionally
it demonstrates that a worst set of uncertainties may not be always found at the vertices of the
uncertainty domain. The anti-optimization technique is applied to the uncertainty-based design
optimization of an embedded measurement MEMS structure (van Drie€nhuizen ef al. [35] and
Goosen et al. [36]). The purpose of this microstructure is to obtain information on the strain state of
certain layers in a MEMS device.

Uncertainty-based design optimization technique using BBU uncertainties is described in Sec-
tion 4.2. In Section 4.3, the anti-optimization technique is studied on the basis of various examples
and the results for the uncertainty-based optimization are compared with those for the deterministic
optimization. Final discussion and conclusion are the subject of Section 4.4.

4.2 Method

4.2.1 Multipoint Approximation Method

In the present chapter the Multipoint Approximation Method (MAM) is used as a basis for optimiza-
tion. Many times practical applications involve numerical evaluation of response functions. From a
optimization point of view, this type of problem can either suffer from numerical noise or the large
computational time involved. The MAM, which is based on Response Surface Methodology, see
Khuri and Cornell [22] and Myers and Montgomery [23], can be applied to such problems. The in-
terested reader is referred to the studies by Toropov et al. [1,2] and Van Keulen and Toropov [3,4].
The MAM uses approximations for the responses in order to reduce the number of expensive nu-
merical response evaluations. However, it should be noted here, that it suffers from the so-called
curse of dimensionality. It becomes inefficient with the increase in dimensions (number of design
variables). A MAM-based framework for the optimization of practical applications is described in
detail in Jacobs ef al. [5]. For self-containment, a short description of the MAM is given in the
remainder of this section.

Optimization problem

Designing a structure implies that a design concept has to be selected, which subsequently has to
be optimized. The latter involves the selection of design variables, which determine, among other
features, the dimensions, shapes and materials. This set of n design variables is denoted as x, with

x=(r1...2,). 4.1

Throughout the present chapter, it is assumed that all design variables are continuous.
The behavior of the structure is described by the response functions, which are functions of the
design variables. These response functions are denoted as f with

f=(f1...fn), (4.2

which may reflect, for example, weight, cost, buckling loads, maximum equivalent stress, or strain
levels.
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Figure 4.1: Optimization using the MAM for a problem of two design variables (x1 and x2).

The optimization problem using the MAM can now be formulated mathematically as

rrgn fo(x)
st. fi(x)<1, i=1,...,m, 4.3)
AjS.’EjSBj, jzl,n

Here, f; is the objective function and f; are constraints, whereas x is a set of design variables. The
design space is represented by A; and B, upper and lower limits on x; respectively, see Fig. 4.1.

Approximate Optimization Problem

The MAM is based on a replacement of the actual optimization problem, as described by Eq. (4.3),
by a series of approximate optimization problems. The approximate optimization problem (AOP)
for a cycle p, can be formulated as

. P
min f, )(x)
A(P) > A B(P} < B

J

Here, the true response functions are replaced with approximate functions over the sub-domain for
a cycle. Here, f(p)(x ) are considered as adequate approximations of f;(x) over the sub-domain (p)
represented by the move limits A; ) and B; () see Fig. 4.1, for the current AOP. It should be noted

here that, the move limits for the initial cycle (A;O) and Bgo)), can be chosen either arbitrarily or
based on engineering experience. Many times this can significantly influence the convergence. For
example, if the initial move limits include the optimum, then the optimization can converge quite
rapidly.

Response Surface Approximations

The MAM relies on response surface approximations of the true responses in order to limit the num-
ber of expensive numerical evaluations. To construct approximate response surfaces for responses,
first a plan of numerical experiments is generated in the sub-domain of the current cycle, see Fig. 4.1.
In the present study, space filling technique is used for generating plan of experiments, for details
see Toropov et al. [2]. Approximate response surfaces for response functions are fitted through the
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numerical evaluations of plan points using weighted least squares (WLS) method, see Van Keulen
and Toropov [3,4], as

S
min Z ’LU;‘s [fi(xs) s ﬁ(p)(xs)] ’ s
s=1 4.5)

with fl(»p)(xs) = fz-(p)(xs)ﬂi, i=0,...,m,
where s represents a plan point and S is the total number of plan points in the current plan of exper-
iments. Here, fﬁp) (xs) represent the response surface approximations for the true functions f;(x;)
over the current sub-domain (p), whereas fi(p ) (xs) contains the approximation functions and 5;

represent corresponding regression coefficients, see Khuri and Cornell [22] and Myers and Mont-
gomery [23]. In the minimization problem, /3;, which are unknowns, are used as tuning parameters

in order to get the approximations ﬂ(p )(x), as close as possible to the true functions f;(x). The
weight factors w;, used here to combine the data from different points in the WLS method, reflect
the relative importance of the function values (and their derivatives if available) to the optimization
process. The selection of the weight factors is made based on mainly the objective function value
and the location of a plan point relative to the boundary between feasible and infeasible design space.
This selection of the weight factors, affect significantly the efficiency of the method, see for details
Van Keulen and Toropov [4] and Toropov et al. [2].

Move Limit Strategy

At the end of every cycle the Move limit strategy checks, if the solution has converged and if not,
it defines the AOP for the next cycle. Here, the approximate optimum (sub-optimum), obtained by
solving the nonlinear minimization programming (NMP) for the current AOP given by Eq. (4.4), is
evaluated for the true response. In order to define the location and size of the sub-domain for the
next cycle, several indicators are computed based on the assessment of the current sub-optimum, see
for details Van Keulen and Toropov [4]. The procedure is summarized here shortly.

The first indicator is based on the largest relative error in the approximations for the sub-
optimum. Depending on this indicator, the approximations are termed as “bad”, “average” or
“good”. The second indicator is based on the location of the sub-optimum in the sub-domain for
the current cycle. When none of the current movelimits is active, the solution is considered “in-
ternal”, or otherwise “external”. The next two indicators are based on the angle between the move
vectors of the last two sub-optimums. Depending on this the movement of the optimum is termed
as “straight”, “curved”, “backward” or “forward”. The fifth indicator denotes the size of the current
sub-domain as “small” or “large” and is used in the termination criteria. Depending on the most
active constraint value, the sixth indicator labels the current solution as “close” or “far” from the
boundary of the feasible and infeasible regions of the design space.

A factor to resize the current sub-domain is chosen based on these indicators. For example,
if the quality of the approximations is “bad”, then the size of the sub-domain will be reduced and
vice versa. Further more, the reduction factor changes depending on the move direction, such as in
case of the “curved” move, higher reduction is expected. Similarly, if the solution is indicated as
“close”, the sub-domain will be reduced substantially. In case of “internal” solution, if the size of
the sub-domain is “small”, then the optimization is terminated. Detailed description of the move
limit strategy is given in Van Keulen and Toropov [4]. The whole process is repeated until the
convergence.

Gradient Enhanced Response Surface

In case both function and derivative values are available, then Gradient Enhanced Response Surfaces
(GERS) have been constructed using both data entities as discussed in Van Keulen and Vervenne



38 Chapter 4. Enhanced Anti-optimization combined with Paralle] Computing

[17]. Derivative information can often be obtained at a fraction of the computing time as compared
to the analysis itself, see van Keulen and de Boer [15, 16]. Use of sensitivities can benefit the
optimization in two ways. First, it can improve the quality of the response surfaces affecting the
convergence. Second, fewer response evaluations may be required to construct the approximations
resulting in a reduction in the total number of function evaluations. This is particularly advantageous
when higher order approximations are used. Alternatively, it can allow the inclusion of more design
variables in the optimization. The technique used for the construction of GERS using both the
function values and the design sensitivities, is described in detail in Van Keulen and Vervenne [17].
A short summary is included here for self-containment.

The response function (fp;) and the corresponding derivatives (f;;) associated with the point x;
are given here as

fo; = f§§xj)‘
fo= 5 (4.6)
fiy = fi(x;),
wherei =1,...,nand 7 = 1,...,S. These are represented using a compact notation as
vi=I[fo;...fa], J=1,...,8. 4.7

The response surfaces for function and derivatives are represented as

4.8)

where f;(x) contains approximation functions and 8 denote corresponding regression coefficients,
which are to be determined, see Khuri and Cornell [22] and Myers and Montgomery [23]. Thus, the
response surface approximations for the response function and derivatives are given as

y; = [foj...%nj}, j=1,...,8
= [fo(x;)..- fa(x;)]B 4.9)
= F,B.

The error in the actual function value and derivatives (y;) and the corresponding approximations
(¥;) can be given as

ri=yi~y;j=FB-y; j=1....S (4.10)
The norm of the error using WLS method, in order to combine all the errors with different weights
assigned to them, can be given as

& = (rjry) =7vjWyry, j=1,...,5, @.11)

where W; is a matrix of weight coefficients, see Van Keulen and Vervenne [17]. The unknown
parameters 3 are determined as the minimizers of the total error as

mﬂin =5 e (4.12)

=1

4.2.2 Bounded-But-Unknown Uncertainty

If the problem at hand is non-deterministic, i.e. there are uncertainties that play a non-negligible role,
the response functions also depend on the uncertainty variables. The set of uncertainty variables will
be denoted a, with

a=(o...ay). (4.13)
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Consequently, the response functions depend on both design variables and uncertainty variables,
hence f(x,a).

Even though insufficient information is available in order to perform a probabilistic analysis, it
may be possible to determine or specify reasonable bounds on the uncertainties. In general, several
bounds can be introduced, each providing a bound for a group of uncertainty variables or all uncer-
tainty variables simultaneously. At the same time we may want to measure the amount of uncertainty.
Thus, measures for the dimensions of the subspace containing all possible selections of uncertainty
variables are desired. This can be cast into a mathematical framework as follows. Assuming a set
with b bounds, then a possible or feasible selection of « satisfies, see Van Keulen ez al. [13];

Bi(a,e) <0, for i1=1,...,b 4.14)
Otherwise the selection of the uncertainty variables a is infeasible.

Nominal
& €

|
I — [
o o; o

Figure 4.2: Simple box bounds on uncertainties: ¢&; are nominal values of uncertainties, whereas aﬁ
and o} denote lower and upper bounds on uncertainties respectively. Here, £ denote the dimension
of the space of the feasible uncertainty.

For example, in case of simple box bounds, see Fig. 4.2, the bounds on uncertainties can be

specified as
(o5 — &;)° — €2 <0. (4.15)

These type of bounds generally come from a tolerance specified on a nominal value, for example, due
to the manufacturing induced inaccuracies. In case of applications, where a very high performance
is required against failure, such sharp bounds become practical. These bounds can be alternatively
represented in terms of lower (aﬁ) and upper bounds (o) on uncertainties as

83
84

= 0;—¢,

= O +E¢. (4.16)

s.ts.N
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Here, the components of £ are used to specify the dimensions of the space of feasible uncertainty
variables. We will therefore refer to these components as the levels of uncertainty. As we use
these levels of uncertainties to describe the dimensions of a space, each of the components will be
non-negative, i.e.

g >0, for j=1,...,7 4.17)

Note that the number of components of &, r, is not necessarily equal to the number of bounds, b,
being introduced.

It seems natural to assume that if the dimensions of the space of uncertainty variables have
become zero, the uncertainty variables become deterministic. In other words, if € = 0 then there is
only a single solution & = & such that

Bi@,0)<0, for i=1,...,b. (4.18)

Moreover, for & = & the equal sign holds true.
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4.2.3 Anti-optimization

The optimization problem using BBU uncertainties can be formulated mathematically as:

min  f,(x)
X . (4.19)
st filx;af) <1, i=1,...,m,
where o is the maximizer of
max f}(x;e;)
a; T (4.20)

S.t. Bj(ai,s) <0, j=1,...,b

Here, fo(x) is the objective function and f;(x, «;) are constraints, whereas B;(a;, ) are bounds on
uncertainties. For the applications studied in the present chapter, uncertainties through simple box
bounds are adopted. Therefore the constrained maximization problem, as defined by Eq. (4.20),
reduces to an unconstrained maximization problem as

max f}(x;a;)
a; (4.21)
st. al <o <al

X X;0
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Figure 4.3: Anti-optimization Technique: Anti-optimization is carried out at every design (x) for
each constraint (f;) to obtain corresponding worst set of uncertainties (a*).

The minimization as defined in Eq. (4.19) will be referred to as the main optimization. Notice
that, in general, the evaluation of the constraints involves, for each set of design variables, anti-
optimization of the individual constraints. This anti-optimization is refiected by Eq. (4.20). The
anti-optimization technique as defined in Eq. (4.19) and Eq. (4.20), is depicted by Fig. 4.3.
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Figure 4.4: Anti-optimization technique in the MAM setting for a problem of two design variables
(z1 and z9) and two uncertainties (¢; and a3). The big boxes indicate the search (sub-) domains.
The small open boxes indicate sets of design variables (left) or uncertainty variables (right) for which
function evaluations are carried out. The small solid boxes indicate solutions of the approximate
optimization problems.

The anti-optimization technique is depicted in Fig. 4.4 in the MAM setting. It consists of an
anti-optimization for every design point in the main optimization and for every constraint. The
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main optimization, Eq. (4.19), is treated as a standard minimization problem, which searches for the
best design in the design domain. The design domain is specified by upper- and lower bounds on
the design variables. The anti-optimizations, Eq. (4.20), consist of performing numerical searches
for the worst sets of uncertainty variables while keeping all design variables constant. Thus, the
anti-optimizations are maximization problems searching for the worst combinations of uncertainty
variables for a given set of design variables. These searches are restricted by the bounds on the
uncertainty variables.

The anti-optimization technique, as sketched above, can handle large uncertainties safely. More-
over, it can account for discontinuities if any exist. The price paid for this flexibility is the large
amount of computing efforts required for anti-optimization processes. Significant computational
costs can be saved if the anti-optimization problem is convex. In that case, the worst set of uncer-
tainty variables will be located at the bound. Often the anti-optimization can be reduced to a system-
atic search along the vertices of the domain of feasible uncertainty variables, Elishakoff et al. [7]. In
the present chapter this assumption has not been adopted and the intention is to focus on methods
that can be applied to more general problems, i.e. for which maximizers of Eq. (4.20) turn out not
to be the vertices of the uncertainty domain.

In case of MEMS, due to their small dimensions, tolerances on shapes are relatively high, see
Clark et al. [30] and Pister et al. [31]. In order to account for such manufacturing induced inaccura-
cies, uncertainties can be introduced as tolerances on design variables. The present anti-optimization
technique can handle these uncertainties equally well. Uncertainty-based optimization of a Piezo-
electric Energy Reclamation Device is carried out in Gurav et al. [37], where uncertainties in design
variables are included. In the present chapter, a MEMS application is studied, where the dimensional
uncertainty influences the design variable.

4.2.4 Enhanced Anti-optimization

The anti-optimization technique as discussed previously, can become inefficient for large number
of design variables and uncertainties in case of practical problems. In order to reduce the total
number of expensive numerical response evaluations, the anti-optimization technique is modified in
the present chapter to exploit database technique and sensitivities.

Af
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Figure 4.5: Enbanced Anti-optimization: worst uncertainties obtained by anti-optimization are
stored in the database and used later to get starting points for anti-optimization. Gradient infor-
mation, if available, can be used in both main- and anti-optimization.

Database Technique

As already discussed, in the anti-optimization technique for every design, worst value of every con-
straint is obtained by a separate anti-optimization. It should be noted here that, in the present setting
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of the method, individual anti-optimization is also carried out using the MAM. Therefore, as men-
tioned earlier, see Section 4.2.1, the selection of proper move limits for the initial cycle can speed
up the anti-optimization significantly. In the present technique, the move limits chosen for the initial
cycle of the anti-optimization are based on a prediction of the corresponding worst uncertainties with
the use of a database. This database stores the worst uncertainties from previous anti-optimizations.

In the database technique, a separate database is constructed for every constraint. In this, corre-
sponding worst sets of uncertainties obtained by the anti-optimizations, &(x) see Fig. 4.5, are stored
as a function of design variables. Notice, that different sets of uncertainties are stored for the indi-
vidual constraints. The database can be used later to predict the worst set of uncertainties for a given
design by fitting a response surface, a(x), see Fig. 4.5.

In the beginning of the optimization there is not enough data in the database to fit sufficiently
accurate response surfaces. Here normal anti-optimizations are carried out, which automatically
contribute to the database. Once there is enough data available, response surfaces for uncertainties
as a function of the design variables, a(x), can be fitted. In turn, these response surfaces can be
exploited to predict the worst uncertainties for the given design. This estimation of uncertainties is
used as a starting point for the anti-optimization, and move limits that surround the predicted worst
uncertainties are used as the starting move limits for the anti-optimization. This speeds up the anti-
optimization, resulting in a significant reduction in the number of response function evaluations, see
Gurav et al. [20,34)].

Sensitivities

If sensitivity information is available, it can also be used to speed up the optimization. In general, if
sensitivity information is available then relatively fewer response function evaluations are required
to fit a GERS, see Van Keulen and Vervenne [17, 18], or the quality of the response surface can be
improved. Thus, use of sensitivities in optimization can result in better convergence and a reduc-
tion in the number of response function evaluations. In the enhanced anti-optimization technique,
sensitivities are used in both main and anti-optimization.

Anti-optimization: In case of anti-optimization, using sensitivities of response functions with re-
spect to uncertainties is quite straightforward. The goal of the anti-optimization, Eq. (4.20), is to
maximize the constraint f;(x, &) with respect to uncertainties () for a given design x. While con-
structing the response surface for the constraint function, both the function value f; and its derivatives
with respect to uncertainties (a), f;;, are used as discussed in Section 4.2.1. Here, f;; = (0f;/0c;)
with j = 1,..., u. Including sensitivities with respect to uncertainties while building the GERS for
the response functions improves the accuracy of the response surfaces, affecting the convergence of
the anti-optimization process. Alternatively, a lower number of function evaluations can be used to
build the response surfaces with the same complexity.

Main-optimization: In case of the main optimization, each additional design point implies ad-
ditional anti-optimizations. Consequently, using fewer design points can save a large number of
function evaluations. Thus, incorporation of sensitivities in the main optimization can reduce the
total number of function evaluations and increase the overall efficiency substantially. Here, while
constructing the GERS, function value, f;, and its derivatives, f;;, where f;; = (0f;/0x;) with
j =1,...,n, are used as discussed in Section 4.2.1. Notice here, that the response functions are
functions of the design variables x as well as the uncertainties a, i.e. f; = f;(x; ). However, the un-
certainties a* that maximize a response function, see Eq. (4.20), are implicit functions of the design
variables, a* = a(x). Consequently, sensitivities of response functions must be calculated as:

dfi _ f?i af,‘ aa;‘k
dil‘j - al‘j Bak 63:‘]‘ ’

(4.22)
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Herei=1,...,m; j=1,...,n; k=1,...,u, and we have introduced (d- - -/dz;) to denote
total derivatives with respect to the independent design variable x;. It is clear from Eq. (4.22), that
in addition to the sensitivities of response functions with respect to the design variables, we need
sensitivities of response functions with respect to the uncertainties and sensitivities of uncertainties
with respect to the design variables. The derivatives (Of;/0z;) and (9f;/Oay) can be obtained
from an arbitrary sensitivity analysis. Evaluation of (daj;/0x;) is troublesome. One option is to
construct an approximation using response surfaces that are constructed using the data contained in
the database. This requires sufficient data available in the database. In many situations, when the
uncertainties o remain approximately constant in subsets of the design space, the second term in
Eq. (4.22),1.e. (0f;/0a})- (8}, /dx;), can be ignored. When this is not the case, exclusion of these
terms can influence the quality of response surfaces resulting in slower convergence. In the present
chapter the second term in Eq. (4.22), i.e. (0f;/00a}) - (0o}, /Ox;), is ignored, however it can be
exploited in the future research work.

4.2.5 Parallel Computing

Optimization using Parallel Computing
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Figure 4.6: A cycle in optimization using the MAM: Steps involved are 1: Planning, 2: Evaluation
of plan points, 3: NMP, 4: Evaluation of sub-optimum, 5: Move limit strategy.

Optimization using the MAM involves the planning of experiments, leading to response evaluations
for given sets of designs. If these function evaluations involve expensive finite element calcula-
tions, then the method can become computationally very intensive. However, if multiple processors
are available for computation, they can be utilized easily to improve the efficiency of the method
Van Keulen and Toropov [25].

The computing times required for various steps of a typical optimization using the MAM is
represented approximately in Fig. 4.6 (a). It can be clearly seen here that, evaluation of plan points
is the computationally most expensive phase, whereas the nonlinear minimization programming
(NMP) problem and move limit strategy are relatively very cheap. When several processors are
available for computation, they can be used in parallel to evaluate the expensive response evaluations
in the planning phase, see Fig. 4.6 (b). It should be noted here that, an additional response evaluation
is required at the end of the cycle to evaluate the sub-optimum of the AOP, see Section 4.2.1. In the
present setting for response evaluation, splitting of the individual response evaluation is not possible,
therefore every response can only be evaluated by a single processor. Because of this, during the
evaluation of the sub-optimum only a single processor can be utilized keeping the other processors
idle. This can increase the overall idle time significantly.
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Figure 4.7: A framework for the parallel computing using the Threading module of PYTHON.

The parallel computing tool used for the present work is developed in PYTHON, see the textbook
Lutz [24]. The framework for the tool is depicted in Fig. 4.7. Here, set of designs to be evaluated for
responses, is given as an input to the Parallel Unit. This Parallel Unit uses the Threading module in
PYTHON to start multiple threads in parallel. The number of threads, that can be started at a time
in parallel, depends on the number of processors available for computation. Here, the main process
first checks for the availability of the processors for computation. For example, every processor can
be checked for its load average over some specified time. Then, jobs equal to the number of available
processors are started in parallel with the Threading module from PYTHON. Remaining jobs are put
in the queue. If any of the processors finishes a job started on it, it gets the next job in the que.

In the present setting, the programs and all the necessary data, other than the design parameters
needed by the individual response evaluation, are ported to every processor before starting the jobs
in parallel. Once the initialization is done, all the jobs to be evaluated are put in the que. Then the
threads are spawned corresponding to the number of processors available for computation. Individ-
ual threads communicate with the remote processors associated to them through the files containing
necessary data, for example, flags indicating whether the submitted job is finished or not. The com-
munication using files does increase the overhead time, however, it is negligible as compared to the
time required for an individual response evaluation. During the evaluation of an individual job, first
the design parameters are send to the remote processor, see Fig. 4.7. Then the actual evaluation of
responses, for example by using FEA, is started on the remote processor by the associated thread.
When the evaluations for the job are finished, corresponding responses are received back and are
associated with the job. Once a processor becomes available, the next job in the que is submitted to
it. The procedure is repeated until all the jobs are evaluated.

Uncertainty-based Optimization using Parallel Computing

/{ Anti-opt a

Main | X - Anti-opt X
opt. Eval. —— P Anti-opt FEA
f 4 f*i
Anti-opt
fz'
(a) Anti-optimizations are started in parallel (b) Anti-optimization involves sequential

evaluation of responses using FEA.

Figure 4.8: Parallel computing in the uncertainty-based design optimization
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Uncertainty-based optimization involves anti-optimization nested within the main optimization. That
is, for every design (x) in the main optimization an anti-optimization is carried out for every con-
straint (f;). This situation implies that there are many different options for parallel computing. As
a compromise between computational efficiency and ease of implementation, each function evalua-
tion started in parallel, actually carries out anti-optimizations for every constraint sequentially, see
Fig. 4.8 (a) and Fig. 4.8 (b). It should be noted here that for the present approach, evaluation of
sub-optimum points can increase the overall idle time substantially.

4.3 Examples
4.3.1 Ten-Bar-Truss

X] X2
X7 9
X5 X6
8 10
X3 X4
Py P,

Figure 4.9: Optimization problem formulation for Ten-Bar-Truss example:Here, design variables,
x;, are cross sectional areas of bars, whereas P; are uncertain loads.

The Ten-Bar-Truss example was used by Elishakoff er al. [7] to illustrate uncertainty-based opti-
mization using BBU. However, expensive anti-optimizations are replaced by a systematic search
along the vertices of the domain of feasible uncertainty variables. Here we shall use the example to
test the proposed more general algorithms.

In the Ten-Bar-Truss problem, see Fig. 4.9, the goal is to minimize the weight of the structure,
whereas constraints are imposed on the stresses in the bars. Here, the cross sectional areas of the
bars (x) are the design variables. Additionally, 10% uncertainty is introduced in the applied loads
P; and Ps, such that the bounds on uncertainties can be given as

e = 0.1p;,
I _ 5 —~
Pl = Pi—e = 0.9, (4.23)
o 5 _
PY = Pi+e = LIP,.
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Figure 4.10: Optimization history for Ten-Bar-Truss example
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Table 4.1: Comparison of deterministic and uncertainty-based optimization results for Ten-Bar-Truss
problem: Here, g, represents the value for the maximum constraint violation.

Type of fo Zmax | Num. of Rel. Num. of
optimization Ibs function evals | function evals
Deterministic 1600 | 1.00 | 137 1

Anti-opt 1782 | 1.00 | 51195 373
Enhanced Anti-opt | 1784 | 1.00 | 10415 76

Results for the deterministic optimization, i.e. when the loads are at nominal values, match
with those in Haftka et al. [38]. It is seen from the results obtained, that there is an increase in
the objective function in case of uncertainty-based optimization as compared to the deterministic
case, see Fig. 4.10 (a). Whereas convergence obtained for the constraints is very close as shown in
Fig. 4.10 (b). In case of uncertainty-based optimization, results obtained using anti-optimization and
enhanced anti-optimization are very close in terms of objective function and constraints. The number
of steps required to obtain the convergence is comparable as well. However, there is a significant
difference in the total number of response function evaluations required, see Table 4.1. Use of
sensitivities in both the main- as well as anti-optimization together with the use of the database
technique has reduced the total number of function evaluations by a factor of five.

4.3.2 Elastically supported beam

8 | e S SRS
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| 0% 02 S
(a) Optimization problem formulation: Here (b) Plot for the integrated displacement as a function of
L =1m,P=1000N, k = 500000 N/m, EI = g and s

1000 N.m®.
Figure 4.11: Elastically Supported Beam example

An elastically supported beam, see Fig. 4.11, is used by Lombardi and Haftka [19] to test the anti-
optimization technique in the presence of nonlinearities. One of the features of this problem is the
strong dependence of the worst uncertainty on the design variable. As a consequence the present
problem calls for the approach as studied here.

The problem consists of a beam loaded by a concentrated force and supported elastically to limit
its vertical displacements, see Fig. 4.11 (a). The goal of the optimization here is to optimally place
the elastic support so that the integral of the displacement function over the length of the beam is
minimum. The location of the concentrated load represents the uncertainty variable. Assuming the
nominal location of the concentrated load at the center of the beam (Zy = 0.5L), with ¢ = 0.5, the
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lower and upper bounds on uncertainty (zg) can be given as

1 =
g = Tp—€ = 0,

4.24
z§ = Tote L. ( )

Here, the objective of the anti-optimization is nonlinear. The displacement function w(z, s, xo) is
analytically determined by integration of the fourth-order differential beam equation.
d*w
EIF = P§(z — xg) — kw(z)d(z — ). 4.25)
z
The main and anti-optimization problems are formulated as follows:
main optimization

L
mé@n f w(z,s,z0)dr st. 0<s<L, (4.26)
0
anti-optimization
L
max / w(z,s,z9) dr st 0<zg< L. “4.27N
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Figure 4.12: Optimization history for the elastically supported beam example

The actual integrated displacement is plotted in Fig. 4.11 (b). The result for the uncertainty-
based optimization using anti-optimization technique is shown in Fig. 4.12 (a). As a result, the
optimum location of the support is at 0.5 m, whereas the worst location of the concentrated load is
at 0.35 m, which can be clearly seen from the actual plot of integrated displacement Fig. 4.11 (b).
It can be seen from Fig. 4.12 (b), that the worst uncertainties obtained corresponding to the designs
during anti-optimization, fluctuate significantly. They even show discontinuity depending upon the
location of the load () with respect to the support (s). The present technique can handle such large
fluctuating uncertainties and even discontinuities.
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4.3.3 Embedded measurement MEMS structure

Ls
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(a) Optimization problem formulation: Here, (b) The actual tip deflection of the embedded measure-
r1 and z2 are design variables, whereas ment structure example computed for various combina-
a1 is an uncertainty. L; = 20um;L; = tions of the design variables ; and z5 is plotted here.

450pm; L3 = 20pum.
Figure 4.13: Embedded Measurement Structure example

The anti-optimization technique is applied to an embedded measurement MEMS structure, see
Fig. 4.13 (a), as discussed in van Drieénhuizen et al. [35] and Goosen ez al. [36]. The purpose
of this microstructure is to obtain information on the strain state of certain layers in a MEMS de-
vice. This information is used to obtain an estimate for the internal stresses. In the development of
MEMS, information on the internal stresses that arise due to processing steps is often crucial to the
designer. The embedded measurement structure converts a contraction or expansion due to internal
stresses into a rotation and displacement 4, see Fig. 4.13 (a), which can be determined by inspection
using an optical microscope.

Here, the deterministic optimization consist of a maximization problem, in which the tip dis-
placement (§) is maximized without considering the variation in it as an effect of uncertainties. In
case of uncertainty-based optimization the effect of uncertainties on the variation of tip deflection
is considered. Actually this variation in the tip displacement is restricted by means of a constraint
(3% variation is allowed). Uncertainties here, are mainly due to variation in the etching times and
results in either contraction or expansion of the structure changing its dimensions. In the present
problem uncertainty in only one direction, a1, is considered. The uncertainty a, is specified here as
a tolerance on the dimensions, see Fig. 4.13 (a). Notice, that the uncertainty o actually influences
the design variable x;.

The maximum displacement at the tip (6) is the objective fy(x) of the main optimization as given
by Eq. (4.19). In the present problem, constraint f1(x, «1) used in the main-optimization limits the
relative change in the tip deflection, due to the uncertainty («;), to a specified value (3%) as

fo(x) — folx, 1)

’ fo(x)

Objective of the anti-optimization is to maximize the constraint f; (x, c; ) with respect to uncertainty
o subjected to bound Bj(«;). Here, the bound B is specified in the form of upper and lower
bounds on the uncertainty o as [—0.2, 0.2] um, with the dimension of uncertainty ¢ = 0.2 um. A
parameterized FEM model of the MEMS structure is used as a simulation model in the optimization.
Two-dimensional triangular plane-stress elements are used for modelling.

< 3%. (4.28)
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The actual tip deflection computed for various combinations of the design variables is plotted in
Fig. 4.13 (b). It can be seen that there exists multiple local optima. Therefor the problem domain is
split in two separate design problems, denoted Design-1 and Design-2. These two subproblems are
studied separately and the results for them are compared.

Design-1

Z2

p— e
.

1 x1
(a) Deterministic optimization (b) Uncertainty-based optimization

Figure 4.14: Optimization history in terms of move limits for embedded measurement structure
example for Design-1. The design domain for this subproblem is z; € [1.0; 5.0] um and 3 € [1.0;
10.0] pm.

The design domain for this part is given as x1 € [1.0; 5.0] pm and z3 € [1.0; 10.0] gm. Whereas,
the uncertainty domain is taken as [—0.2; 0.2] um. The optimization history in terms of move limits
is plotted in Fig. 4.14 (a) and Fig. 4.14 (b) for deterministic and uncertainty-based optimization
respectively. In case of deterministic optimization, the tip deflection is maximized however it results
in a variation of about 21%. Whereas, uncertainty-based optimization finds an optimum, which
resulted in reduction of tip deflection but restricting the variation to 3%.
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Figure 4.15: Optimization history for embedded measurement structure example for Design-1: The
design domain for this subproblem is % € [1.0; 5.0] gm and 2 € [1.0; 10.0] pm.
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Table 4.2: Comparison of results for various optimization techniques applied to embedded measure-
ment structure problem: Design-1

Type of X1 X2 fo fy Num. of | Rel. Num. of
optimization pm | pm pm function evals | function evals
Deterministic 1.00 | 1.37 | 32.84 - 42 1
Anti-opt 1.00 | 7.08 | 11.80 | 0.99 1479 35
Enhanced Anti-opt | 1.00 | 7.18 | 11.66 | 0.97 766 18

The results for the deterministic optimization and the uncertainty-based optimization using anti-
optimization and enhanced anti-optimization are compared, for objective (8) in Fig. 4.15 (a) and
for the constraint (f;) in Fig. 4.15 (b). It can be seen from Fig. 4.15 (a), that there is a signifi-
cant reduction in the objective function in case of uncertainty-based optimization, in order to meet
the requirement (3% variation). Comparison between results for anti-optimization and enhanced
anti-optimization show similarity in terms of convergence and number of steps. Whereas number
of response evaluations required differ significantly, see Table 4.2. The use of sensitivities and
database technique has reduced substantially the total number of function evaluations required for
anti-optimization, here the total function evaluations are halved.

Design-2

k

T2
X2

:

1 T
(a) Deterministic optimization (b) Uncertainty-based optimization

Figure 4.16: Optimization history in terms of move limits for embedded measurement structure
example for Design-2. The design domain for this subproblem is as z; € [5.0; 20.0] um and 23 ¢
[1.0; 10.0] pem.

The design domain for this second subproblem is given as z1 ¢ [5.0; 20.0] pm and z5 € [1.0 10.0] m.
Whereas, the uncertainty domain is taken as [—0.2; 0.2] um. The optimization history in terms
of move limits is plotted in Fig. 4.16 (a) and Fig. 4.16 (b) for deterministic and uncertainty-based
optimization, respectively. A trend similar to Design-1 is seen, where uncertainty-based optimization
finds an optimum with a reduced tip deflection as compared to the uncertainty-based optimization.
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Figure 4.17: History of optimization for embedded measurement structure example for the constraint
for Design-2. The design domain for this subproblem is as z1 € [5.0; 20.0] zm and z3 € [1.0;
10.0] pm.

The results for the deterministic and uncertainty-based optimization are compared in Fig. 4.17
(a) and Fig. 4.17 (b). It can be seen that there is a significant reduction in the objective function in
order to meet the requirement (3% variation).

Table 4.3: Comparison of results for the embedded measurement structure problem for sub-problem
Design-1 and Design-2

Type of X1 X2 fo f1 Num. of
optimization pm | um pm function evals
Design 1 | Deterministic 1.00 | 1.37 | 32.84 - 42
Anti-opt 1.00 | 7.08 | 11.80 | 0.99 1479
Design 2 | Deterministic | 10.30 | 2.08 | 20.76 - 70
Anti-opt 19.81 | 9.55 | 855|099 5094

The results obtained for the two subproblems, are compared in Table 4.3. The design for
subproblem Design-2 is quite similar to the baseline design in van Drieénhuizen et al. [35] and
Goosen et al. [36]. The design for sub-problem Design-1 exhibits a larger tip deflection. It can be
seen from the plot for the actual tip displacement, see Fig. 4.13 (b), that the local optima are quite
close to those obtained by the optimization.

Table 4.4: Comparison of results for the embedded measurement structure problem for sub-problem
Design-1: Comparison between parallel and sequential evaluation.

Type of Computing | Wall-clock time
Optimization | Scheme Hour:Min:Sec
Deterministic | Sequential 1:01:00
Parallel 0:13:6
Anti-opt Sequential 41:32:50
Parallel 5:56:55
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Finally, wall-clock time required for the deterministic as well as uncertainty-based optimization
using sequential and parallel computing is compared, see Table 4.4. Here, 10 processors are utilized
for parallel computing. A substantial reduction in computing time is achieved. In case of deter-
ministic optimization nearly 78 %, whereas in case of uncertainty-based optimization nearly 85 %
reduction in the corresponding required wall clock time is achieved. It should be noted, that the
evaluation of the sub-optimum at the end of every cycle increases the overall idle time. In case of
anti-optimization, evaluation of sub-optimum involves an optimization. This can increase the overall
idle time significantly. This idle time increases substantially with the increase in number of uncer-
tainties. However, for the present problem, due to the small number of uncertainties, the efficiency
achieved is higher as compared to that of deterministic optimization.

4.4 Discussion/Conclusion

The anti-optimization technique is modified here to make use of the design sensitivities, database
technique, and parallel computing. This enhanced anti-optimization technique has increased the
computational efficiency of the basic technique significantly, making its use practical for large scale
applications.

It is seen from the numerical results obtained for the examples studied here, that there is a sig-
nificant change in objective function in case of uncertainty-based optimization as compared to that
of deterministic optimization. In case of uncertainty-based optimization, results obtained using dif-
ferent methods are quite close in terms of objective function value and number of steps required
to converge. However, there is a significant difference in the total number of response function
evaluations required. Use of sensitivities and database technique in the enhanced anti-optimization
technique has shown significant reduction in the number of function evaluations as compared to that
of anti-optimization. Use of parallel computing reduces the total time required for optimization sub-
stantially. Consequently, the anti-optimization technique developed here, can be applied efficiently
to general problems for which uncertainties can be non convex or even discontinuous.

To summarize, uncertainties in design problems described by bounds can be handled safely and
efficiently using the enhanced anti-optimization technique.
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Chapter 5

Cycle-based Alternating
Anti-optimization

In this chapter uncertainty-based design optimization of a micro energy reclamation device is presented. The
goal is to optimally design a Microelectromechanical Systems based device to extract maximum power from
externally introduced vibrations. This microstructure consists of an array of piezoelectric composite cantilever
beams connected to a free standing mass. Each cantilever beam undergoes deformation when subjected to
external base vibrations. This deformation induces a mechanical strain in the beam resulting in the conversion
to electric voltage due to the piezoelectric effect. In case of microstructures, uncertainties in geometry as
well as material properties are large and therefore may have significant effects on the mechanical behavior.
In the present chapter uncertainties in geometry and material properties are considered. A description of
uncertainties via bounds on the uncertainty variables is adopted. Uncertainty-based design optimization is
carried out using the anti-optimization technique.

5.1 Introduction

Energy Reclamation
Circuit Shim
¢ Proof Mass
P s :
; PZ‘T tpzt i
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(a) An array of Piezoelectric (PZT) composite (b) Piezoelectric (PZT) composite cantilever
cantilever beams. beam.

Figure 5.1: An energy reclamation device.
In the present study, design optimization of an energy reclamation device is considered. The detailed
description of the electro-mechanical model is given in [39,40). The overall purpose of the device is

to extract maximum power from external base vibrations. An energy reclamation device consists of
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an array of piezoelectric (PZT) composite cantilever beams arranged as shown in Fig. 5.1(a). Each
cantilever beam consists of a perfectly bonded PZT patch [41] and a proof mass attached at the
end, see Fig. 5.1(b). In a real application, the device is attached at the support to a vibrating surface,
which implies that the whole structure is in an accelerating frame of reference. The proof mass at the
tip translates the input acceleration into an effective force that deflects the beam. This effective force
induces mechanical strain in the beam, which is converted into voltage (V) using the piezoelectric
effect [41,42]. The output voltage of the PZT can be reclaimed into usable power with the help of
an energy reclamation circuit.

When dealing with Microelectromechanical Systems (MEMS), because of their small dimen-
sions, tolerances on shapes are relatively high (1%-10%) [30,31)]. These variations in dimensions of
MEMS structures can have a significant effect on their mechanical behavior. Furthermore, MEMS
exhibit a large variation in their material properties (1%-15%) [43—46]. As a result, while designing
MEMS, various types of uncertainties should be considered.

One way to deal with uncertainties, is to use probabilistic methods {8]. However, probabilistic
methods require an abundance of experimental data [9]. Furthermore, even small inaccuracies in
the statistical data can lead to large errors in the computed probability of failure to meet structural
requirements [9]. Many times, for example in preliminary design phases, some experimental data
is available but, it is not enough to construct reliable probability distributions. However, the avail-
able data can be used, particularly in combination with engineering experience, to set tolerances or
bounds on uncertainties. Consequently, uncertainties will be identified as belonging to some closed
sets, i.e. to be of Bounded-But-Unknown (BBU) nature [11,12].

To tackle such BBU uncertainties, a technique based on anti-optimization (a term dubbed by
Elishakoft [26]) is proposed in [7]. In this technique, uncertainty-based optimization is basically split
in two parts, namely, main- and anti-optimization. The main optimization is treated as a standard
minimization problem which searches for the best design in the design domain. The design domain is
typically specified by upper- and lower bounds on design variables. The anti-optimization consist of
performing numerical searches for the combination of uncertainties which yields the worst response
for a given design and a particular response function. In the worst case scenario, an anti-optimization
for every constraint is required. Within these anti-optimizations, the uncertainties are set as “design
variables”, whereas the “design domain” is specified by the bounds on the uncertainties. Thus, anti-
optimizations are nested within the main optimization, making it a two-level optimization problem,
which can be very computationally intensive.

The anti-optimization technique is further developed and applied in [13,34]. The technique is
modified in [47] for using design sensitivity information, database technique and parallel comput-
ing in order to make the technique computationally efficient. In order to reduce the computational
efforts, a different approach based on BBU uncertainties is proposed by Lombardi and Haftka [19].
Here, instead of nesting anti-optimization within the main optimization, anti- and main optimization
are carried out alternately. Inspired by Lombardi and Haftka technique, a slightly modified tech-
- nique, referred subsequently as cycle-based alternating anti-optimization, was studied in {20]. In
this technique, anti-optimization is nested within the main optimization but carried out only at the
sub-optimal point, i.e. the point obtained at the end of each optimization cycle. Because of its com-
putational efficiency, this technique will be applied to the present problem of PZT composite beam
optimization.

In case of the present problem, uncertainties involved in geometry as well as material prop-
erties are identified as belonging to some closed sets, i.e. to be of BBU nature. As mentioned, the
uncertainty-based design optimization is carried out using the cycle-based alternating anti-optimization
technique. The anti-optimization technique is embedded in a structural optimization setting using
the Multipoint Approximation Method (MAM) [1-5].

Uncertainty-based design optimization technique using BBU uncertainties and the problem for-
mulation for the optimization of a PZT composite beam are given in Section 5.2. In Section 5.4,
results for the uncertainty-based optimization including uncertainties are compared with those for
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the deterministic optimization. Moreover, optimal designs obtained are compared with the baseline
design. Final discussion and conclusion are the subject of Section 5.5.

5.2 Design Optimization

5.2.1 Deterministic optimization

In the present chapter the Multipoint Approximation Method (MAM) is used for optimization. The
interested reader is referred to the studies in {1-4]. The MAM is described in detail in [5]. The
optimization problem using MAM can be formulated mathematically as follows:

mxin f,(x)

. 3.1
st fi(x)<1, i=1,...,n

Here, fg is the objective function and f; are constraints, whereas x is a set of design variables.

The basic idea is, that in a sub-domain of the search domain approximate response surfaces are
constructed as functions of the design variables. The response surfaces are used as approximations
of the actual, expensive-to-evaluate, response functions. For this, within a sub-domain of the design
space a plan of experiments is generated using a space filling technique. The construction of the
response surfaces is carried out using a weighted least-squares fit. The weights reflect the relative
importance of the data to the optimization process. The minimization problem for the approximated
response functions is solved to get a sub-optimal solution in the corresponding sub-domain. Based
on the quality of sub-optimal solution of the current sub-domain the location and size of a new search
sub-domain is defined. This process is repeated until convergence has occurred.

5.2.2 Uncertainty-based optimization
Bounded-But-Unknown Uncertainty

If the problem at hand is non-deterministic, i.e. there are uncertainties that play a non-negligible role,
the response functions also depend on the uncertainty variables. The set of uncertainty variables will

be denoted «, with
a=(a1,...,0). (5.2)

Consequently, the response functions depend on both design variables and uncertainty variables,
hence f(x, a).

Even though insufficient information is available in order to perform a probabilistic analysis, it
may be possible to determine or specify reasonable bounds on the uncertainties. In general, several
bounds are introduced, each providing a bound for a group of uncertainty variables or all uncertainty
variables simultaneously. At the same time we may want to measure the amount of uncertainty.
Thus, measures for the dimensions of the subspace containing all possible selections of uncertainty
variables are desired. For the application studied in the present chapter, uncertainties through simple
box bounds are adopted. In general, the problem with uncertainties can be cast into a mathematical
framework as follows. Assuming a set with b bounds, then a possible or feasible selection of a
satisfies [13],

Bi(a,e) <0, for i=1,....,b, (5.3)

otherwise the selection of the uncertainty variables e is infeasible. The components of € are used to
specify the dimensions of the subspace of feasible uncertainty variables. We will therefore refer to
these components as the levels of uncertainty. As we use these levels of uncertainty to describe the
dimensions of a subspace, each of the components will be non-negative, i.e.

g;>0, for j=1,...,n (5.4)
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Note that the number of components of € is not necessarily equal to the number of bounds being
introduced.

It seems natural to assume that if the dimensions of the space of uncertainties have become zero,
the uncertainty variables become deterministic. In other words, if € = O then there is only a single
solution & = & such that

Bij(@,0) <0, for i=1,...,b. (5.5)

Moreover, for & = @ the equal sign holds true.

Anti-optimization

X X0
Main Anti-
Optim. Lfi(";“*) optim. | fi(x;a)

Simul.

Figure 5.2: Antj-optimization Technique: Anti-optimization is carried out at every design (x) for
each constraint (f;) to obtain corresponding worst set of uncertainties (a*).

The optimization problem using BBU uncertainties can be formulated mathematically as:

min fy(x)
X . (5.6)
st. fi(xja]) <1, i=1,...,n,
where @] is the maximizer of
max f}(x;a;
e R e) 5.7)

s.t. Bj(ai,e) <0, j=1,...,b

The minimization as defined in Eq. (5.6) will from here on be referred to as the main optimization.
Notice that, in general, the evaluation of the constraints involves, for each set of design variables,
anti-optimization of the individual constraints. This anti-optimization is reflected by Eq. (5.7). The
anti-optimization technique as defined in Eq. (5.6) and Eq. (5.7), is depicted by Fig. 5.2.

1
] o
]
X3

[m} n

=]
X1 o 1
Main Optimization Anti-optimization

Figure 5.3: Anti-optimization technique in the MAM setting for a problem of two design variables
(z1 and z2) and two uncertainties (o and «3). The big boxes indicate the search (sub-) domains.
The small open boxes indicate sets of design variables (left) or uncertainty variables (right) for which
function evaluations are carried out. The small solid boxes indicate solutions of the approximate
optimization problems.
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The anti-optimization technique is depicted in Fig. 5.3 in the MAM setting. It consists of an
anti-optimization for every design point in the main optimization and for every constraint. The
main optimization, Eq. (5.6), is treated as a standard minimization problem, which searches for the
best design in the design domain. The design domain is specified by upper- and lower bounds on
the design variables. The anti-optimizations, Eq. (5.7), consist of performing numerical searches
for the worst sets of uncertainty variables while keeping all design variables constant. Thus, the
anti-optimizations are maximization problems searching for the worst combinations of uncertainty
variables for a giveri set of design variables. These searches are restricted by the bounds on the
uncertainty variables.

The anti-optimization technique, as sketched above, can handle large uncertainties safely. More-
over, it can account for discontinuities if any exist. The price paid for this flexibility is the large
amount of computing efforts required for anti-optimization processes. Significant computational
costs can be saved if the anti-optimization problem is convex. In that case, the worst set of un-
certainty variables will be located at the bound. Often the anti-optimization can be reduced to a
systematic search along the vertices of the domain of feasible uncertainty variables [7].

Cycle-based alternating anti-optimization

h[? a] ‘—Cyc

a
X2 \ ul = a ‘
[}
Nl
O ————| I —
X1 (xl
Main Optimization Anti-optimization

Figure 5.4: Cycle-based alternating anti-optimization technique: Anti-optimization is carried out at
the end of every cycle of main optimization for every constraint.

In order to avoid nested anti-optimization, an alternative approach is described in [19]. In this
approach, instead of using nested anti-optimization, which is very expensive, a technique is used
alternating between main optimization and anti-optimization. A variation of such alternating anti-
optimization technique, referred to as Cycle-based alternating anti-optimization technique, is pro-
posed in [20]. In this method, anti-optimization is carried out not for every design but only for the
sub-optimal design obtained at every cycle of the main optimization, see Fig. 5.4. The idea is to

solve
n}én £ (x)

(5.8)
st. fPxaP)y <1, i=1,...,m,
for given aEp ) This set of uncertainties are the maximizers of
max 7 (x(P); a
@ ( i) (5.9)

st. Bj(a;,e) <0, j=1,...,b

Here, anti-optimization Eq. (5.9) is nested within main optimization Eq. (5.8). However, anti-
optimization is carried out only at the sub-optimum z®) obtained at the end of each cycle (p) of
the main optimization. The sets of uncertainties (al(p ) ) obtained by anti-optimization are used for the
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next cycle of the main optimization. For the initial step, anti-optimization can be carried out for the
initial design in order to get the worst set of uncertainties. Another choice would be to choose un-
certainties arbitrarily or as a?) = &, see Eq. (5.5). The latter choice is more suitable for the present
optimization setting. In the present chapter, the cycle-based alternating anti-optimization technique
is applied to the uncertainty-based optimization of the PZT composite cantilever beam.

5.3 PZT Energy Reclamation Device Optimization Problem Formula-
tion

5.3.1 Objective function

The objective function for the current optimization problem is expressed as follows:
fo(x) = Pour (5.10)

where Py is the electrical output power extracted from the device. The composite cantilever beam is
subjected to external acceleration (ap) as shown in Fig. 5.1(b). This external acceleration is specified
in terms of external excitation frequency fexi. Whereas f, is the fundamental natural frequency of the
cantilever beam. For the present problem support acceleration and excitation frequency is assumed
as ag = lg, where g = 9.8 m/s? and f.;; = 125 Hz.

When the fundamental natural frequency of the cantilever beam (f,,} matches the external excita-
tion frequency (fext), i.e. at the resonance, the beam undergoes maximum deflection and therefore a
maximum power is obtained. However, the objective function or power has an exponential increase
near the resonance. Here, use of very high order polynomials (typically 7th order) is essential to
get a good approximation for the power function. This can be computationally intensive and can
become impractical when the number of design variables increases. To overcome this problem, log
of the power function, which flattens it significantly, is used as the objective function. This allows
the use of lower order polynomial (3rd order) to get an adequate approximation for the log of power
function. Notice, since the problem needs to be formulated as a minimization problem, —log(Ppy;)
will be minimized.

5.3.2 Mechanical Constraints

Small deflection constraint: The Euler-beam theory for small deflections [48] is used to predict
the deformations. Therefore, the tip deflection of the cantilever beam is restricted by

2.5 Ytip
— < 1
12 <1, (5.11)

where yyp is the tip deflection and L is the overall length of the cantilever beam.

Stress constraint: At the resonance condition the cantilever beam may undergo large deflections
and may crack. In order to avoid the damage due to fatigue and to stay within the linear elastic limit,
the allowable bending stress is taken as 10 % of the maximum allowable bending stress (o). The
constraint on bending stress in the cantilever beam is expressed as

Ty

1, 5.12
0.10bm ( )

where oy, is the bending stress in the cantilever beam. Here, opr, is taken as 7 GPa [49].
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Constraint on L/b ratio: It was found from preliminary results that the optimal design tends to
move toward a design for which the length-to-width ratio for shim or PZT becomes very small. This
can violate the Euler-beam theory assumption used in the electro-mechanical analysis. Therefore,
the L /b ratio for shim and PZT is restricted by

3bs

s 1. 5.13

L. S (5.13)
In the present chapter, effects of including this constraint on the optimization will be compared with
those of excluding it.

5.3.3 Electrical Constraints

An electrical constraint is imposed on the minimum output voltage required to trigger the energy
reclamation circuit as

V .
(L> < 1; Vigin = 2 Volts, (5.14)
VIn

where Vry, is the Thevenin voltage and Vj;, is the minimum required output voltage for the device.

5.3.4 Design Variables

Based on a preliminary study, move limits on design variables x are chosen to avoid practically
impossible designs. The move limits on design variables used in the present optimization problem
are

100 < ;3 < 2000 (um),

005 < z < 095

50 < z3 < 800 (um),
01 < z4 < 08,

10 < o5 < 500 (um),
3 < 26 < 100 (um),

where x) is the overall length of cantilever beam (L), z3 is the width of proof mass (b,,), 5 is the
thickness of proof mass (f,m), and x¢ is the thickness of shim (Z,), see Fig. 5.1. Other geometric
parameters such as length of shim and PZT are taken as a fraction of total length (i.e. L) and the
width of shim and PZT are taken as a fraction of width of proof mass (i.e. bym). These fractions
are represented by the design variables x3 and z4. Here, due to the fabrication limitations, #,.; is
kept fixed at the upper bound and an additional constraint (b,,; = b,) is imposed on the width of
shim and PZT. Preliminary results have shown that the length of PZT remains almost equal to that of
shim. This equality (L, = L) is used here in order to reduce the total number of design variables.
Remaining geometric parameters are obtained using

Ls = x1-z9,
Lpzt = L,
Lpm = 1 — Ly,
bs = 1x3° T4,
bpzt = bs,
tpe = 0.5 (um),

tpm = 500 (pm),




60 Chapter 5. Cycle-based Alternating Anti-optimization

5.3.5 Uncertainties

For the present problem, the objective (Fpy¢) is a function of design variables as well as uncertain-
ties. Here, the effect of uncertainties on objective function can also be taken into account. One
way to deal with this problem is, to carry out anti-optimization for the objective function together
with constraints in order to get the worst cases. Secondly, at the end of the optimization, an anti-
optimization and an optimization for fixed design variables can be carried out to set a bound on the
objective function. In the present setting of uncertainty-based optimization, dependency of objective
on the uncertainties is not considered. For the present problem, 5% uncertainty will be assumed in
the design variables x such that the bounds on uncertainties can be given as [0.95z;; 1.05z;]. [43,44].
Whereas, higher variation can be expected in material properties of PZT [46, 50,51]. Here, uncer-
tainty in material properties of PZT such as, Young’s Modulus (Ej.;), Density (pp.:) and Piezoelec-
tric Coefficient (ds;), will be taken as 15 %. It should be noted here, that because of the coupling
between the material properties of PZT mentioned above, same uncertainty is used for these material
properties of PZT. Uncertainties used in the present optimization are listed in Table 5.1.

Table 5.1: Uncertainties considered for the PZT composite cantilever beam

Thickness of shim (t,) +5%
Thickness of proof mass (¢,,,) +5%
Material properties of PZT (Ep.¢, ppzt,ds1) | £15 %

5.3.6 Material properties

Material properties used in the current electro-mechanical model for the calculation of the power are
listed in Table 5.2.

Table 5.2: Material properties properties used in the electro-mechanical analysis of the PZT com-
posite cantilever beam

Young’s Modulus of Silicon (E;) | 169 GPa

Density of Silicon (p,) 2330 kg/m?
Young’s Modulus of PZT (£,.;) | 60 GPa

Density of PZT (pp.t) 7500 kg/m>
Piezoelectric Coefficient (d31) —100-10~2 mVv
Relative permittivity (e,) 1000

Damping ratio (¢) 0.01

tan 0.02

5.4 Optimization Results

Results for the design optimization of the PZT composite cantilever beam using the Multipoint
Approximation Method are presented here. This includes results from deterministic as well as
uncertainty-based optimization. Optimization is carried out in two different ways, first including
the constraint on the L/b ratio of shim and PZT and secondly excluding this constraint. Results
for deterministic and uncertainty-based optimization are compared with the baseline design. The
baseline design was the first design proposed in [39,40]. Details of the baseline design are included
in Table 5.4.
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5.4.1 Optimization including L/b constraint

In the present subsection the case with the constraint on the L/b ratio is studied. Optimization his-
tory against number of steps (cycles), see Fig. 5.5 and Fig. 5.6, is shown here in order to compare
the convergence and number of steps for the deterministic and uncertainty-based optimization. The
convergence and number of steps for deterministic and uncertainty-based optimization are compa-
rable. In case of small deflection and stress constraint, worst sets of uncertainties obtained at the
end of every cycle remain the same. Moreover, for these constraints worst set of uncertainties are
found to be at the vertices of the uncertainty domain. Typical values of worst uncertainties for these
constraints are given in Table 5.3. Due to this, the convergence for the small deflection constraint
(Fig. 5.5(b)) and stress constraint (Fig. 5.6(a)) after few steps is smoothened. The constraint on L /b
ratio of shim and PZT is independent of uncertainties that are considered presently. However, if
uncertainties in width and length of shim and PZT are considered, it may influence this constraint.
For the voltage constraint, worst set of uncertainties fluctuates, however this constraint is not vio-
lated throughout the optimization. In the early phase of the optimization small deflection constraint
and stress constraint remain active. Whereas, the constraint on (L/b) ratio for shim (Fig. 5.6(b)) and
small deflection constraint become active in the later stage. A comparison between results for deter-
ministic and uncertainty-based optimization shows that there is a significant reduction (19 %) in the
objective function value in order to account for uncertainties, see Table 5.4. Actual dimensions and
the output power for the PZT composite beam corresponding to the optimal design are compared
with those for the baseline design in Table 5.4.
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(a) Objective function. (b) Small deflection constraint.

Figure 5.5: Optimization history with constraint on L/B ratio of Shim and PZT included in the
optimization.
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Figure 5.6: Optimization history with constraint on L/B ratio of Shim and PZT included in the
optimization.
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Table 5.3: Worst uncertainties obtained by anti-optimization for the small deflection and stress con-
straint

Thickness of shim (t,) 5%
Thickness of proof mass (¢,,) +5%
Material properties of PZT (Ep.+, ppot, ds1) | —15 %

5.4.2 Optimization excluding /b constraint

The optimization here is exactly the same as the previous but the constraint on L/b ratio for shim

and PZT is not included.
—— Deterministic
24 —— Uncertainty
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Figure 5.7: Optimization history for objective: Constraint on L/B ratio of Shim and PZT is not
included in the optimization.
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Figure 5.8: Optimization history for constraints: Constraint on L/B ratio of Shim and PZT is not
included in the optimization.

Optimization history for the objective function and constraints shows similar trends, see Fig. 5.7
and Fig. 5.8, except that the constraint on (L/b) ratio for shim is not included. There is a significant
increase (57 %) in the output power as compared to the previous optimization. Whereas the output
power is almost doubled as compared to that for the baseline design, see Table 5.4. However, the
design corresponding to this case resembles a plate like structure. Therefore this optimal design
should be validated with the help of Finite Element Analysis. Moreover, it gives a direction in order
to further improve the output power.
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Table 5.4: Actual dimensions and the output power of the PZT composite cantilever beam for the
optimal design is compared with those for baseline design: Case-I is including constraint on (L/b)
ratio of shim and PZT whereas Case-II is without including this constraint. ag = 1¢, fezt = 125Hz.

Design Ly = Lpzt me bs = byzt bpm ts tpzt tpm Pout
pm pm | pm pm | gm | pm | pm | gW

Baseline 1000 1000 | 200 800 [ 6 0.5 | 500 | 0.16
Optimal | Case-1 | Deter. | 705 1295 | 235 800 [ 52 |05 | 500|021
Uncert. | 439 1561 | 146 800 | 6.25 | 0.5 | 500 | 0.17

Case-II | Deter. | 217 1780 | 411 800 { 3.12 | 0.5 | 500 | 0.33

Uncert. | 242 1758 | 413 800 | 3.6 | 0.5 | 500 | 0.26

5.5 Discussion and Conclusions

Results for optimization show a good convergence. Use of the log of the power function as a ob-
jective function in the optimization has made it possible to use relatively lower order polynomial
for adequate approximation of the objective function. This has substantially reduced the number of
function evaluations required for the optimization.

In case of deterministic optimization a significant improvement is achieved in the output power
as compared to that of the baseline design by nearly 30 % when the constraint on the length-to-width
ratio (L /b) for shim and PZT is included. The power is almost doubled when the constraint on the
L/b ratio is not included. The design corresponding to this case resembles a plate like structure.
Therefore this optimal design should be validated with the help of Finite Element Analysis. It is
further advantageous to use a plate model for optimization in order to remove the restriction on
optimization due to the constraint on the L /b ratio.

In case of uncertainty-based optimization there is a significant reduction (nearly 20 %) in the
output power as compared to that of deterministic optimization, in order to account for uncertainties.
Uncertainties in MEMS structures can be accounted for quite efficiently with the help of the cycle-
based alternating anti-optimization technique. In future research work, the effect of uncertainties
on the objective function will also be studied in detail. Other uncertainties, such as uncertainties in
width and length of shim and PZT will also be considered in future study.

5.6 Acknowledgment

This research is supported by the University of Florida, USA, and Delft University of Technology,
Technology Foundation STW, applied science division of NWO and the technology program of the
Ministry of Economic Affairs, The Netherlands. The research work in this chapter is carried out in
collaboration with the Interdisciplinary Microsystems Group of the University of Florida.







Reproduced from: S. P. Gurav, M. Langelaar, and F. van Keulen, Cycle-based Alternating Anti-optimization
combined with Nested Parallel Computing: Application to Shape Memory Alloy Microgripper, Computers
and Structures, submitted.

Chapter 6

Cycle-based Alternating
Anti-optimization combined with Nested
Parallel Computing

In this chapter a new method for uncertainty-based design optimization based on an anti-optimization ap-
proach using Bounded-But-Unknown uncertainties is studied on the basis of a practical application. The basic
anti-optimization technique looks at the worst case scenario by finding the worst settings of the uncertain-
ties for each constraint evaluation separately. This Rigorous anti-optimization technique involves two-level
optimization in which anti-optimization is nested within the main optimization, making it computationally ex-
haustive. In the alternative Lombardi-Haftka approach, anti- and main optimization are carried out alternately
avoiding the nested approach, which is quite efficient. A new cycle-based alternating technique based on a
similar idea is studied in this chapter. In this technique, anti-optimization is carried out at the end of every
cycle of the main optimization. The above anti-optimization techniques are studied and compared on the basis
of an illustrative Elastically Supported Beam example. Additionally, in the present chapter, 2 nested parallel
computing strategy is developed in order to make the cycle-based alternating technique computationally effi-
cient when a cluster of computers is available for function evaluation. This is particularly essential in case of
practical problems involving expensive function evaluations, e.g., using Finite Element Analysis. The effec-
tiveness of the cycle-based alternating technique combined with nested parallel computing is demonstrated by
application to the uncertainty-based shape optimization of a Shape Memory Alloy Microgripper.

Key words: Bounded-But-Unknown Uncertainties, Optimization, Anti-optimization, Parallel Computing,
Shape Memory Alloy, Microgripper

6.1 Introduction

Many practical design optimization tasks involve uncertainties. In case statistical data on uncer-
tainties is available, it can be used to construct statistical distributions for uncertainties. If such
distributions are sufficiently reliable, a reliability-based design can be obtained by using probabilis-
tic methods, see textbook Elishakoff [8]. In general, probabilistic methods require an abundance of
experimental data and even small inaccuracies in the statistical data can lead to large errors in the
computed probability of failure, Elishakoff [9]. However, in case of practical applications, it often
happens that there is not enough data available to construct reliable distributions. This can be par-
ticularly the case in early stages of a design process. In such situations, the computed reliability of a
structure can exhibit large errors. This can be crucial in applications which are required to perform
without failure or with very small probability of failure for the entire life span, for example, in case of
space applications. On the other hand, the available data in combination with engineering experience
can be used to set tolerances or bounds on uncertainties, within which the distribution is unknown,
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thus identifying uncertainties as Bounded-But-Unknown (BBU) (Ben-Haim and Elishakoff [11] and
Ben-Haim [12]).

The anti-optimization technique described in Elishakoff e al. [7] tackles the BBU uncertainties
using the worst case approach. This technique involves vertex checking of the uncertainty domain in
order to obtain the worst response of the structure. This technique is computationally very efficient
for convex problems, however its application is limited to such problems. A more generalized ap-
proach, which can handle non-convexities, is adopted in Van Keulen et al. [13] and Gurav ez al. [34].
Here this generalized or Rigorous anti-optimization is applied to the uncertainty-based design op-
timization of a car deck floor of a ferry. However, this technique suffers from the required large
number of expensive function evaluations due to the underlying two-level nested optimization. The
Enhanced anti-optimization technique that uses sensitivities, a database and parallel computing to
make it computationally efficient is studied in Gurav er al. [47] on the basis of a practical application
related to Microelectromechanical Systems. The technique still becomes computationally expensive
for an increasing number of design variables and uncertainties.

This has motivated the search for alternative approaches, which avoid such two-level nested opti-
mization. In one such approach, proposed by Lombardi and Haftka [19], anti- and main optimization
are carried out alternately, thereby avoiding the nested approach. This approach can converge very
fast in case of problems involving convexities and is quite efficient in terms of the number of re-
quired function evaluations. However, in case of non-convex problems, for which the worst case
can fluctuate from design to design, it may require large number of optimization cycles to converge.
Inspired by the Lombardi-Haftka technique, a slightly modified approach is adopted in the present
chapter. Here, in the proposed cycle-based alternating technique, anti-optimization is carried out
at the end of each cycle of the main optimization to obtain the worst sets of uncertainties. These
obtained worst sets of uncertainties are used during the next cycle of the main optimization. For
the initial cycle of the main optimization, nominal values of uncertainties are used. This technique
also suffers from slow convergence in case of uncertainties fluctuating with respect to changes in the
design. Nevertheless it is quite efficient in terms of the number of function evaluations as compared
to the Enhanced anti-optimization technique. In case of fluctuating uncertainties, the cycle-based
alternating technique is efficient as compared to the Lombardi-Haftka technique due to the increase
in number of iterations for such problems. Additionally, use of derivatives of responses with repect
to uncertainties for estimation of worst uncertainties during the cycle, can improve the convergence
of the cycle-based technique.

Many times the function evaluations involve computationally expensive finite element analysis
(FEA). The number of such FEAs required in the uncertainty-based design optimization can be
quite high depending on the problem at hand. For such problems, it is necessary to perform function
evaluations in parallel using a cluster of fast computers. In the present chapter, a nested parallel
computing approach is used in combination with the cycle-based technique, in order to optimize a
Shape Memory Alloy (SMA) Microgripper involving computationally expensive FEA. The parallel
computing framework used here is developed in PYTHON, Lutz [24].

The techniques for uncertainty-based optimization discussed above are embedded in a struc-
tural optimization setting using the Multipoint Approximation Method (MAM) [1-3]. The different
techniques will be studied and compared on the basis of an Elastically Supported Beam problem,
see Lombardi and Haftka [19]. To demonstrate the ability of the proposed cycle-based alternating
technique to solve practical problems involving expensive FEA, the uncertainty-based shape opti-
mization of an SMA Microgripper is considered in the current chapter. In this study, uncertainties
affect relevant environmental operating conditions as well as parameters in the SMA material model.

The basic optimization problem formulation together with a short description on the MAM is
given in Section 6.2. The BBU description of uncertainties is the subject of Section 6.3. Various
uncertainty-based design optimization techniques using BBU uncertainties are described in Sec-
tion 6.4. In Section 6.5, the anti-optimization techniques are studied on the basis of various exam-
ples. The results for the uncertainty-based optimization are compared for the Elastically Supported
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Beam problem in Section 6.5.1. The uncertainty-based design optimization of the SMA Microgrip-
per is studied in Section 6.6. Final discussion and conclusion are the subject of Section 6.7. The
information on SMA material model is given in Appendix, Section 6.8.1.

6.2 Multipoint Approximation Method

6.2.1 Introduction

In the present chapter the MAM is used as a basis for optimization. Often practical applications
involve numerical evaluation of response functions. From an optimization point of view, these types
of problems can either suffer from numerical noise or the large computational time involved. The
MAM, which is based on the sequential application of Response Surface Methodology, see Khuri
and Cornell [22] and Myers and Montgomery [23], can be applied to such problems. The interested
reader is referred to the studies by Toropov et al. {1,2] and Van Keulen and Toropov [3,4]. The
MAM uses sequential approximations to the responses in order to reduce the number of expensive
numerical response evaluations. However, it should be noted here, that it suffers from the so-called
curse of dimensionality, i.e. it becomes inefficient with the increase in dimensions (number of de-
sign variables). A MAM-based framework for the optimization of structures is fully described in
Jacobs et al. [5].

6.2.2 Optimization problem formulation

Designing a structure implies that a design concept has to be selected, which subsequently has to
be optimized. The latter involves the selection of design variables, which determine, among other
features, the dimensions, shapes and materials to be used. This set of n design variables is denoted
as x, with

x = (x1...Zn). 6.1)

Throughout the present chapter, it is assumed that all design variables are continuous.
The behavior of the structure is described by the response functions, which are functions of the
design variables. These response functions are denoted as f with

f=(fo.. . fn), (6.2)

which may reflect, for example, weight, cost, buckling loads, maximum equivalent stress, or strain
levels.
The optimization problem can be formulated mathematically as

n%n fo(x)
st f(x)<1, i=1,...,m, (6.3)
A]'SIJ'SB]', j=1,...,n.

Here, fq is the objective function and f; are constraints. The design space is represented by the upper
and lower limits on z;, A; and By, respectively.

The MAM is based on a sequential replacement of the actual optimization problem, as described
by Eq. (6.3), by a series of approximate optimization problems as depicted in Fig. 6.1. The approxi-
mate optimization problem (AOP) for a cycle p, can be formulated as

min £ (x)

st. P <1, i=1,...,m, ©64)
AS_P) < T < B;_P)’ ji= 1 , 1,
AP > A, BY <B




68 Chapter 6. Cycle-based Alternating Anti-optimization combined with Nested Parallel Computing

Sub-domain

B,

for a cycle (p) Desiign space

® =
A {

Sub-optimum

Optimum
|

A, Plan points Y

Ay x|

B,

Figure 6.1: Optimization using the MAM for a problem of two design variables (z; and z2).

Here, the response functions are replaced with approximate functions over the sub-domain for

a cycle. For the current AOP,

fgp)

(x) are considered as adequate approximations of f;(x) over the

sub-domain (p) represented by the move limits Agp) and B§p ), see Fig. 6.1. It should be noted here

that the move limits for the initial cycle (Ago) and B;O) ), can be chosen either arbitrarily or based on
engineering experience. Many times this can significantly influence the convergence. For example,
if the initial move limits include the optimum, then the optimization can converge quite rapidly.

6.3 Bounded-But-Unknown Uncertainty

If the problem at hand is non-deterministic, i.e. there are uncertainties that play a non-negligible
role, the response functions also depend on the uncertainties. The set of uncertainty variables will

be denoted ¢, with

o = (al...au)

6.5)

Consequently, the response functions depend on both design variables and uncertainties, hence

f(x,a).

O.

(a) Ellipsoidal bound for
all uncertainties together

0.2i

(b) Simple box bound
with separate bound for
each uncertainty.

Nominal

(c) Simple box bounds on uncer-
tainties: @, are nominal values of
uncertainties with lower (ai) and
upper (o) bounds and ¢ as the di-
mension of the space of the feasi-
ble uncertainty.

Figure 6.2: Bounds on uncertainties.
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In the present chapter, uncertainties are modelled using the BBU approach. In this, several
bounds can be introduced, each providing a bound for a group of uncertainty variables or all uncer-
tainty variables simultaneously, for example see Fig. 6.2. At the same time, we may want to measure
the amount of uncertainty. Thus, measures for the dimensions of the subspace containing all possible
selections of uncertainty variables are desired. This can be cast into a mathematical framework as
follows. Assuming a set with b bounds, then a possible or feasible selection of « satisfies, see Van
Keulen et al. [13];

Bi(a,e) <0, for i=1,...,b (6.6)

Otherwise the selection of the uncertainty variables e is infeasible. Here, the components of € are
used to specify the dimensions of the space of feasible uncertainty variables. We will therefore refer
to these components as the levels of uncertainty.

In the present chapter, simple box bounds, see Fig. 6.2(b & c), are used to specify uncertainties

as
(i —@)* -2 <0. 6.7)

This type of bounds generally come from a tolerance specified on a nominal value, for example, due
to the manufacturing induced inaccuracies. These bounds can be alternatively represented in terms
of lower (aﬁ) and upper bounds (c}') on uncertainties as

! —
o = &; —&,
_ 6.8
af = o;+e. 6.8)
Note that the bounds used in this study were chosen based on engineering intuition rather than a
detailed analysis, since the purpose of the present examples is mainly to illustrate the proposed opti-
mization technique. However, the same procedure can be applied with different bounds in practical
situations where more detailed data is available.

6.4 Uncertainty-based optimization using Anti-optimization

6.4.1 Anti-optimization

The anti-optimization technique to tackle BBU uncertainties consists of two levels of optimization,
the outer level consists of the main optimization and anti-optimization is nested within it at the inner
level. The main optimization here is a standard minimization problem that searches for the best
design in the design domain. Anti-optimization is performed for every constraint in order to obtain
the worst values of constraints for each design within the main optimization. The anti-optimization
problem using BBU uncertainties can be formulated mathematically as:

min  f,(x)
X . 6.9
st. filxsaf) <1, i=1,...,m,
where @] is the maximizer of
max ff(x;a;)
p e (6.10)

s.t. Bj(ai,e) <0, j=1,...,b
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X2

Main Optimization Anti-optimization

Figure 6.3: Anti-optimization technique in the MAM setting for a problem of two design variables
(z1 and z7) and two uncertainties (1 and «z). The big boxes indicate the search (sub-) domains.
The small open boxes indicate sets of design variables (left) or uncertainty variables (right) for which
function evaluations are carried out. The small solid boxes indicate solutions of the approximate
optimization problems.

Here, fp(x) is the objective function and f;(x, a;) are constraints, whereas B(c;, &) are bounds
on uncertainties. The minimization as defined in Eq. (6.9) will be referred to as the main opti-
mization. Notice that, in general, the evaluation of the constraints involves, for each set of de-
sign variables, anti-optimization of the individual constraints. This anti-optimization is reflected by
Eq. (6.10). The anti-optimization technique in the setting of the MAM is depicted in Fig. 6.3. For the
applications studied in the present chapter, uncertainties through simple box bounds see Fig. 6.2(b
& c) and Eq. (6.8) are adopted. Therefore, the constrained maximization problem, as defined by
Eq. (6.10), reduces to an unconstrained maximization problem as

7 f:l(x’a’) (6.11)
st. a; <a; <aj.

The above Rigorous anti-optimization technique can handle large uncertainties safely. Moreover,
it can account for discontinuities, if any. The price paid for this flexibility is the large computing
effort required for the anti-optimization processes. In case of practical problems involving large
numbers of design variables and uncertainties, anti-optimization can become very computationally
expensive. In order to reduce the total number of expensive numerical response evaluations, the
anti-optimization technique is modified in Gurav ez al. [47] by making use of a database techniques
and sensitivities.

In this Enhanced anti-optimization, derivative information, if available, is utilized to decrease
the required total number of expensive function evaluations. In many cases of computational re-
sponse analysis, gradient information can often be obtained at a fraction of the computing time as
compared to the analysis itself, van Keulen ez al. [14] and van Keulen and de Boer [15, 16]. This
sensitivity information can be used in addition to the function values to construct Gradient Enhanced
Response Surfaces (GERS), van Keulen and Vervenne [17, 18]. This incorporation of sensitivities
can improve the quality of the response surfaces. Alternatively, fewer response evaluations may
be required to construct the approximations. Thus, using derivative information may decrease the
total number of expensive function evaluations and hence may speed up the numerical optimization
process. Similarly, a database technique is used to modify the anti-optimization technique in order
to reduce the number of expensive function evaluations required within each anti-optimization. For
this purpose, the worst sets of uncertainties obtained by anti-optimizations are stored in a database.
When there is enough data available in the database, it is used to create starting points for the anti-
optimizations. Often this can speed up the anti-optimization processes significantly. Addionally, a
parallel computing strategy is combined with anti-optimization in Gurav ez al. [47] in order to speed
up the whole procedure.
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6.4.2 Lombardi-Haftka alternating anti-optimization

Although the Enhanced anti-optimization provides a quite efficient way of handling uncertainties, it
becomes increasingly impractical with an increasing number of design variables and uncertainties.
Therefore it is necessary to think of alternative approaches. In Lombardi-Haftka [19], nesting of anti-
optimization within the main optimization is avoided. In this method, the main and anti-optimization
is carried out alternately as follows:
Solve

m}én fo(x)

6.12
st. fi(x;af) <1, i=1,...,n ©.12)

for given worst set of uncertainties a}. These uncertainties are kept constant for each of the con-
straints until convergence of the main optimization, Eq. (6.12), has been obtained. Thereafter, new
settings of the uncertainties o} are determined through anti-optimizations for the optimum x* ob-
tained by Eq. (6.12) as
max f;(x*;a;)
@ ’ (6.13)
st. al<a; <ol
These cycles are repeated until convergence. For the initial iteration uncertainties are chosen arbi-
trarily or as a* = @, see Fig. 6.2(c). This process is converged if

fg — fi
’ o_fm < tolerance, and (6.14)
0
ot —aX
w < tolerance i=1,....m; k=1,...,u (6.15)
ik

Thus, convergence is defined based on relative change in the objective function, Eq. (6.14), and the
worst set of uncertainties corresponding to each constraint, Eq. (6.15).

6.4.3 Cycle-based alternating Anti-optimization

The Lombardi-Haftka technique can be quite efficient in terms of number of expensive function
evaluations in case of problems involving convexities. However, it can suffer from a bad conver-
gence in cases for which worst uncertainties fluctuate from design to design. Inspired by Lom-
bardi and Haftka [19], in the present chapter a slightly modified approach is presented. The idea is
to solve

min £ (x)

(6.16)
st. fPaf) <1, i=1,....n,

for given af . This set of uncertainties consists of the maximizers of

o (6.17)
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Figure 6.4: Cycle-based Alternating Anti-optimization technique in the MAM setting for a problem
of two design variables (z; and z2) and two uncertainties («; and «:2). Here the anti-optimization is
carried out only at the end of every cycle that is for the sub-optimal designs indicated by the solid
boxes.

Here, Eq. (6.16) represents the main optimization for the p cycle which is solved first to obtain
corresponding sub-optimum x?. For the initial cycle, the worst set of uncertainties o needed in
Eq. (6.16) are chosen arbitrarily or as a® = &, see Fig. 6.2(c). Then, anti-optimization represented
by Eq. (6.17) is carried out at the sub-optimum (x”) to obtain the worst set of uncertainties (af),
which will be used in the next cycle of the main optimization. During every cycle of the main
optimization depending on the optimization history, the size and direction of the subdomain keeps
changing until the convergence as depicted in Fig. 6.4.

In the cycle-based alternating technique, during every cycle of main optimization, evaluation
of constraints does not involve expensive anti-optimization, which makes it computationally less
expensive. Eventhough in the technique suffers from slower convergence in case of fluctuating un-
certainties, it shows better convergence as compared to the Lombardi-Haftka technique. Moreover,
with the increase in number of iterations, Lombardi-Haftka technique becomes computationally very
expensive in terms of total function evaluations as compared to the cycle-based alternating tech-
nique. Additionally, in some situations if additional information is available, such as approximate
estimation of worst uncertainties through derivatives, it can be utilized during the cycle. This can
significantly improve the convergence of the technique.

6.44 Combined Cycle-based alternating and Asymptotic method

The Asymptotic method uses derivatives of the response functions with respect to uncertainties to
estimate worst set of uncertainties. In case of fluctuating uncertainties, when the Asymptotic method
is combined with the cycle-based alternating technique, it tremendously improves the convergence of
the cycle-based alternating technique. The Asymtotic method is fully described in Van Keulen ez al.
[13] and discussed here for the type of problems dealt within the present chapter.

Here, approximations for responses are constructed using Taylor series around a@ = & for a given
design x. These Taylor series read

Of; 1 %
;= e . 1
Af; Bk g + 3 B oy AapAag + , (6.18)
with
Afz = fi(x,a) — ﬁ = fi(x,a) - fi(x,o_z). (619)

It is important to emphasize that it is not always possible to construct the above Taylor series. This
is, for example, the case when a response function is continuous but its derivatives are discontinuous.
If the above Taylor series can be created, then first-order approximations for the response functions
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are obtained by dropping all higher-order terms, giving

_

fi
A Ba k

Aoy (6.20)

It is important to realize that the derivatives of the response functions with respect to the uncertain
variables are relatively inexpensive to calculate, provided efficient algorithms for sensitivity anal-
ysis are available, van Keulen [14]. Using the approximations for the response functions given by
Eg. (6.20), the maximization problem given by Eq. (6.17) in order to find the worst set of uncertain-
ties for a given design x is replaced by

max hlAa
Aai

6.21)
s.t. ai <oy <af,
with o o
hl = A 6.22
¢ (6&1 ’ ' 3au) ( )

As discussed before, in case of the cycle-based alternating technique, during the cycle worst sets
of uncertainties are kept constant while computing responses. These worst sets of uncertainties are
updated at the end of the optimization cycle by anti-optimization carried out for the sub-optimum.
In the present combined technique, during each cycle estimation of worst uncertainties by means
of Asysmptotic method Eq. (6.21) is used. However, the rigorous check by means of full anti-
optimization Eq. (6.17) at the end of cycle to update the worst set of uncertainties is still kept. Addi-
tionally, this worst set of uncertainties obtained at the end of a cycle is used as a basis for the Taylor
series approximation for the next cycle instead of nominal values of uncertainties, i.e. h]|a=a-. The
Asymptotic evaluation of worst uncertainties during the cycle can be solved computationally inex-
pensively whereas it can improve the convergence significantly in case of fluctuating uncertainties.
In the present chapter the cycle-based alternating technique combined together with the asymptotic
method is studied using an Elastically Supported Beam example, Section 6.5.1.

6.4.5 Parallel Computing
Optimization using Parallel Computing

In many practical problems, evaluation of response functions involves computationally expensive
FEA. For such problems, design optimization requiring a large number of such expensive FEAs
will easily become impractical. This number of FEAs can increase exponentially with the increase
in the number of design variables and/or uncertainties. Here, to evaluate response using FEAs in
parallel, clusters of multiple processors can be utilized to improve the efficiency of the method, see
Van Keulen and Toropov [25].

Optimization using the MAM, involves various steps such planning of experiments, response
evaluation, response surface approaximation, nonlinear minimization problem and movelimit strat-
egy. see Section 6.2. The computing times required for these steps of a typical optimization are
represented approximately in Fig. 6.5 (a). It can be clearly seen here, that evaluation of the plan
points is computationally the most expensive phase, whereas the nonlinear minimization program-
ming (NMP) problem and move limit strategy are relatively computationally very cheap. When a
cluster of several processors is available for computation, it can be used toevaluate the expensive
response evaluations in parallel, see Fig. 6.5 (b).
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Figure 6.5: A cycle in optimization using the MAM: Steps involved are 1. Planning, 2. Evaluation
of plan points, 3. NMP, 4. Evaluation of sub-optimum, 5. Move limit strategy.

It should be noted here that an additional response evaluation is required at the end of the cycle
to evaluate the sub-optimum of the AOP. In the present setting for response evaluation, splitting of
the individual responseevaluation is not possible, therefore every response can only be evaluated by
a single processor. Because of this, during the evaluation of the sub-optimum only a single processor
can be utilized, keeping the other processors idle. This increases the overall idle time significantly.
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Figure 6.6: A framework for parallel computing using the Threading module of PYTHON.

The paraliel computing framework used in the present research is developed in PYTHON, see
the textbook Lutz [24]. To start multiple threads in parallel, the Threading module from PYTHON
is used in the current framework. This framework is depicted in Fig. 6.6. Here, each job involves
evaluation of response function using, for example FEA. The number of such jobs that can be started
at a time in parallel, depends on the number of processors available for computation.

During the evaluation of an individual job, first the design parameters are sent to the remote pro-
cessor, see Fig. 6.6. Then the actual evaluation of responses, for example by using FEA, is started
on theremote processor by the associated thread. When the evaluations for the job are finished,
corresponding responses are received back and are associated with the job. As soon as the proces-
sor finishes response evaluation and becomes available for computation, next job in the queue is
submitted to it. The procedure is repeated until all the jobs are evaluated.

It should be mentioned here, that the communication between the master and slaves, is through
files contained data, for example, flags indicating whether the submitted job is finished or not. The
communication using files does increase the overhead time, however in practical cases this is negli-
gible compared to the time required for an individual response evaluation.
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Uncertainty-based Optimization using Nested Parallel Computing

In case of uncertainty-based design optimization using anti-optimization, the overall number of re-
quired FEAs is quite high compared to the deterministic optimization. Therefore, to have a practical
technique that can tackle uncertainties in practical design optimization problems, it is necessary
to use parallel computing. In Gurav er al. [47], parallel computing is combined with Enhanced
anti-optimization to carry out uncertainty-based design optimization of a practical MEMS structure
involving expensive FEA. However, the strategy used there for the parallel computing is rather sim-
ple, and does not lead to the best utilization of the available computing power. In the present chapter,
an improved strategy for parallel computing is combined with the cycle-based alternating technique
to carry out uncertainty-based design optimization efficiently.

Evaluation in Parallel
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(a) Response evaluation during the cycle of the (b) Response evaluation at end of the cycle of the
main optimization. main optimization for the suboptimum.

Figure 6.7: Response evaluation for the main optimization for the Cycle-based technique. Here
worst uncertainties obtained from the previous cycle are used for the evaluation. Response evaluation
involves FEA in parallel.

While combining the Parallel Computing together with the cycle-based alternating technique,
various strategies were considered. The effectiveness of these strategies for Parallel Computing is
discussed by means of a virtual problem involving four constraints, whereas the number of nodes
available for carrying out computation are assumed to be three. It should be noted here, that these
strategies differ only in the evaluation of the suboptimum at the end of the cycle of the main op-
timization, see Fig. 6.7(b). The evaluation of responses during the cycle of the main optimization
involving expensive FEAs are carried out in parallel using available nodes as shown in Fig. 6.7(a) in
the same way for all strategies.

In case of Strategy I, see Fig. 6.8(a), all anti-optimizations can be started in parallel, running
one anti-optimization on one node. Each anti-optimization requires several cycles for convergence
and each iteration involves evaluation of constraints by means of FEAs in series on the correspond-
ing node. It can be easily seen here that for the current fictitious problem, the number of anti-
optimizations mismatch the number of available nodes. For this problem three anti-optimizations
corresponding to three constraints can be started in parallel on three nodes. However, during the
evaluation of the fourth anti-optimization, only one node is utilized whereas all other nodes remain
idle. The overall idle time can significantly increase with the increase in the difference between
number of constraints and number of nodes. Furthermore, increase in the computational time for
a single FEA can add up to this idle time for such problems. However this strategy can give good
efficiency when the number of constraints matches the number of nodes.
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Figure 6.8: Parallel computing combined with the cycle-based alternating technique

For Strategy II, see Fig. 6.8(b), anti-optimizations are carried out in series. However, the FEAs
involved in each of these anti-optimizations are carried out in parallel utilizing all available nodes.
At the end of every cycle of the anti-optimization a single FEA is needed to be carried out. This
additional FEA at the end of every cycle for each anti-optimization can increase the overall idle time
substantially. Additionally, during the cycle of each anti-optimization, if the number of FEAs are
equal to the number of available nodes, then these nodes can be utilized efficiently. However, if they
mismatch, then it can further increase the overall idle time. Moreover, the increase in computational
time for individual FEA adds up to the overall idle time making the strategy computationally less
efficient for such problems.
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Figure 6.9: Evaluation of responses at the end of the cycle of the main optimization, i.e. at the
suboptimum; here anti-optimization for each constraint is carried out in order to obtain the worst
values. Corresponding worst uncertainties are used for the next cycle. Here anti-optimizations are
carried out in parallel using Nested Parallel Computing.

In the present chapter, Strategy III, referred here as nested parallel computing due to involved
two levels in parallel computing, is combined with the cycle-based alternating technique, and applied
in the Shape Memory Alloy Microgripper optimization. This strategy overcomes the disadvantages
of the first two strategies. In the nested parallel computing as studied here, at the end of each cycle
of the main optimization, the anti-optimizations are firstly started in parallel, see Fig. 6.9. Secondly,
a program called “Scheduler” is started in the background. This Scheduler collects all the designs to
be evaluated within each cycle of every anti-optimization thus synchronizing all anti-optimizations.
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These designs actually involve expensive FEAs. All designs collected by the Scheduler are then
evaluated in parallel, as shown in Fig. 6.9. It can be clearly seen that this nested Parallel Comput-
ing involves two levels. In the outer level, anti-optimizations are started in parallel, whereas in the
inner level, the actual evaluation of designs within anti-optimizations is carried out in parallel. Here
efficiency does not get affected even if the number of anti-optimizations and nodes does not match.
Moreover, making a common list of all FEAs and then evaluating them in parallel utilizes the avail-
able nodes more efficiently. The complexity involved in the implementation is quite clear. On the
other hand, the computational power is utilized quite efficiently with this strategy.

6.5 Applications

6.5.1 Elastically supported beam
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Figure 6.10: Elastically Supported Beam example

An elastically supported beam, see Fig. 6.10, is used by Lombardi and Haftka [19] to test the anti-
optimization technique in the presence of nonlinearities. One of the features of this problem is the
strong dependence of the worst uncertainty on the design variable. In the present chapter, differ-
ent anti-optimization techniques as discussed before are studied on the basis of this example. For
comparative study, for this test example similar notation as in Lombardi and Haftka [19] is used.

In this problem, a beam loaded by a concentrated force is supported elastically to limit its vertical
displacements, see Fig. 6.10 (a). The goal of the optimization here is to optimally place the elastic
support, in order to minimize the integral of the displacement over the length of the beam. The
location of the concentrated force P is uncertain. Assuming the nominal location of the concentrated
force at the center of the beam (Zo = 0.5L), with ¢ = 0.5L, the lower and upper bounds on
uncertainty (xg) can be given as

IIO = Xg—¢ =0,

z¢ = Zg+e = L. 6.23)

Here, the nonlinear displacement function w(zx, s, zo) is the objective of the anti-optimization and is
analytically determined by integration of the fourth-order differential equation of the beam,

4
EI%—TZ— = Pé(z — z0) — kw(z)d(z — 5). (6.24)
z

The main and anti-optimization problems are formulated as follows:
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Solve the main optimization to obtain minimizers s for given xq

L
msin / w(z,s,z9)dr st. 0<s<L, (6.25)
0
and solve the anti-optimization to obtain maximizers g for given s as
L
max / w(z, s,x9) dzr st 0<zp<L. (6.26)
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(a) Plot for the worst response (f w) ob-
tained by anti-optimization corresponding
to each design variable (s) value.

(b) Plot for the worst uncertainty (zo) ob-
tained by anti-optimization corresponding
to each design variable (s) value.

Figure 6.11: Anti-optimization results for fixed set of designs for the elastically supported beam
example

The actual integrated displacement is plotted in Fig. 6.10 (b). It can be clearly seen here, that
the displacement function is highly nonlinear, and displays a saddle-shape response formed due to
the discontinuity depending upon the location of the load () with respect to the location of the
support (s). As a result, the worst location of the load (xp) strongly depends on the location of the
elastic support (s) and can fluctuate from point to point. In the first study, for selected designs (s)
at regular intervals, anti-optimization is carried out to find the worst location of uncertainty (z¢) and
the corresponding worst response ( f w), see Fig. 6.11. It can be clearly seen here, that the worst
uncertainty (z) varies with respect to the design (s) and additionally it shows a discontinuity at
s = 0.5L. Here, the optimum location of the support is at 0.5m, whereas the worst location of the
load is either at 0.35m or at 0.65m depending on the location of the load with respect to the support.
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Figure 6.12: Optimization history for the elastically supported beam problem: comparison of
uncertainty-based optimization using different techniques.
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(a) Plot of the integrated displacement func- (b) Contour plot for the integrated displace-
tion together with the optimization history ment function together with the optimization
for the Lombardi-Haftka Method. history for the Lombardi-Haftka Method.

Figure 6.13: Optimization history using Lombardi-Haftka method for the elastically supported beam
example

Table 6.1: Comparison between uncertainty-based optimization results using different methods for
ESB problem

s Jw Number of

function evaluations

Rigorous 0.4987 | 1.1993e-03 720
Cyclebased 0.4985 | 1.2048e-03 676
Cyclebased+Asysmptotic | 0.4997 | 1.1997e-03 100

The uncertainty-based optimization problem as described by Eq. (6.25) and Eq. (6.26) is car-
ried out here using different techniques. The results are compared here for the efficiency in terms
of convergence and total number of function evaluations. The optimization history of the different
techniques is compared for convergence in Fig. 6.12, whereas the total number of function evalua-
tions are compared in Table 6.1. It can be clearly seen here, that in case of alternating techniques
the convergence, in terms of number of steps, deteriorates as compared to the Rigorous technique,
see Fig. 6.12 and Fig. 6.13. As mentioned before, in case of the Lombardi-Haftka technique due
to the fluctuating uncertainties, the process did not converge, see Fig. 6.13. In case of Rigorous
technique the convergence is very good, i.e. very few steps required for the convergence, however
the number of total function evaluations is relatively quite high, see Table 6.1. The total number
of function evaluations here can increase rapidly with the increase in design variables, uncertainties
and number of optimization cycles. It can be clearly seen here that inspite of having a large number
of steps required in case of the cycle-based technique, the total function evaluations required are
significantly less. Moreover, if the number of steps required for the convergence can be reduced, the
gain in function evaluations can be substantial. In case of the combined cycle-based and asymptotic
technique, convergence improves significantly due to the incorporation of derivative information for
predicting the worst uncertainties during each cycle, see Fig. 6.12. It should be noticed here that the
derivative are obtained analytically for this problem. The number of total function evaluations re-
quired for combined cycle-based technique, are substantially smaller than that for other techniques,
see Table 6.1.
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6.6 Shape Memory Alloy Microgripper Optimization Under Uncer-
tainty

6.6.1 Introduction

The problem considered in this section is the shape optimization of a shape memory alloy micro-
gripper. Shape memory alloys (SMA’s) are materials in which a solid-state phase transformation
can occur under the influence of a change in temperature or stress state. Internally, the lattice struc-
ture of the alloy changes from one configuration to another. The transformation is accompanied
by a transformation strain, that can be used for actuation. Compared to other actuator materials,
SMA’s are capable of generating relatively large strains and stresses. This makes these materials
very interesting for many applications. For further information about SMA’s, see e.g. Otsuka and
Wayman [52] or Duerig et al. [S3]. The focus of the present study is on the so-called R-phase
transformation in nickel-rich NiTi alloys. The thermomechanical behavior of this material has been
studied experimentally by Tobushi et al. [54], and stress-strain curves at various temperatures are
shown in Fig. 6.14. Unlike most SMA's, this R-phase transformation is characterized by a small
hysteresis and a relatively narrow thermal operating range. These properties are attractive for actua-
tor applications Kohl et al. [55]. The fact that in this case relatively small temperature changes can
still induce significant SMA effects, makes that also in vivo medical applications might be possible
using this alloy. The present microgripper design study is situated in that context.
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Figure 6.14: Experimental stress-strain data at different temperatures for a NiTi alloy, Tobushi et al.
[54]. Thick and thin lines represent loading and unloading curves, respectively (left). The right
diagram shows a schematic stress-strain diagram illustrating the piecewise linear approximation
used in the SMA model.

The constitutive model used to describe this SMA behavior focuses on the temperature range
of 328-343 K, where the hysteresis is sufficiently small to be neglected. A piecewise linear ap-
proximation is fitted to the stress-strain curves, as schematically illustrated in Fig. 6.14, Langelaar
and Van Keulen [56]. The associated expressions and parameter values are given in the Appendix,
Section 6.8.1, as well as the generalization of the model to a three-dimensional setting. A detailed
treatment of this model is outside the scope of the present chapter, and can be found in other pub-
lications, Langelaar ef al. [57,58]. Note that the selected temperature range is not directly suited
for in vivo applications, but because the transformation temperatures can be influenced by heat treat-
ments and alloy composition, Sawada et al. [59], lowering this range to acceptable temperatures is
possible.
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6.6.2 Microgripper model

Before discussing the formulation of the optimization problem, the microgripper design concept
is presented here. The conceptual design of this gripper is shown in Fig. 6.15. It consists of an
identical top and bottom arm made of folded Ni-Ti plates. An initial deformation is applied in order
to generate internal stresses in the material, which are required to make use of the shape memory
effect. Starting from the undeformed configuration in Fig. 6.15, the ends of the outer plates are
pinched toward the inner plates. In this situation, the equilibrium configuration of each arm can be
changed by changing the temperature of either the inner or outer plates. Resistive heating is used
for this purpose, and to guide the electrical current through individual plates a slit is present along
the length of each plate. Heating the inner plates will cause the tip ends to move apart, opening
the gripper. Similarly, beating the outer plates will make them move toward each other, closing the
gripper. In the closing configuration, clamping forces of 100 mN are applied in z-direction at the
tips of the gripper, acting against the closing forces. A related microgripper design problem has
been studied before by Langelaar and Van Keulen [60]. However, in that case, uncertainties were
not considered in the shape optimization. In the present problem, uncertainties in both the operating
conditions and the SMA material properties are taken into account.

Pinched
end
Top arm
Clamped
ends

Pinched
Z end
\<y
X

Figure 6.15: Conceptual gripper geometry in the undeformed configuration.

~_ Tip

Bottom arm

Because of symmetry, only a quarter of the gripper needs to be modeled: in this case half the
top arm is used. This part together with the parameterization of the geometry is shown in Fig. 6.16.
The design variables chosen for this design problem are the plate thickness 7', the undeformed arm
height H, the actuation plate end width Wi, and the shape of the actuation plate. This shape is
described by a quadratic B-spline, Farin [61], and the y-coordinates of the two middle control points
are used as design variables: Y; and Y2. Previous design studies have shown that the plate end width
W, always remains at its upper bound, therefore it is excluded from the present design problem and
set to 15 mm, based on previous studies. Further geometrical details of the miniature gripper are
listed in Table 6.7 in the Appendix, Section 6.8.2.

The gripper is simulated by finite element analysis of the parameterized design shown in Fig. 6.16.
For both the opened and closed case, a quasi-static electrical, thermal and mechanical analysis is per-
formed, to simulate the SMA behavior under the influence of Joule heating. Dissipated heat from
the electrical analysis is used as a heat source in the thermal analysis, and the resulting tempera-
ture distribution is used in the mechanical analysis, Physical constants used in the simulations are
collected in Table 6.8 in the Appendix. Particularly the mechanical analysis is computationally in-
tensive, because of the nonlinear SMA material model as well as the consideration of geometrical
nonlinearities. An adaptive incremental-iterative scheme is used to ensure robust convergence. A
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Figure 6.16: Design parameterization of the gripper. Because of symmetry, only a quarter is consid-
ered.

triangular shell element is used for the mechanical analysis, Van Keulen and Booij [62].

6.6.3 Optimization problem formulation

The objective chosen for this design study is to maximize the range of motion of the gripper tips,
i.e. the stroke of the gripper. Therefore, the difference between the z-coordinates of the gripper tip
displacement w2 in open and closed configurations is taken as the objective function:

max utzip’ P (x) — u'zi"’ closed () 6.27)
x

Here (x) represents the vector of design variables. The design variables for the current problem, see
Fig. 6.16, are represented in Table 6.2.

Table 6.2: Design variables (x) for the design optimization of the SMA gripper.

Design variable Symbol Lower bound Upper bound Unit
Plate thickness T 0.05 0.3 mm
Gripper arm height H 0.3 2 mm
Plate shape control point 1 Y 0.01 1.5 mm
Plate shape control point2  Ya 0.01 1.5 mm
Plate front width Wi 0.1 1.5 mm
Applied voltage \4 0.001 0.5 \%

The considered gripper optimization problem also involves a number of constraints. The validity
of the material model is limited to a certain strain range, therefore a constraint on the effective strain
€e is added in both the open and closed configuration. In addition, motivated by the possibility to
use this SMA material for in vivo active devices, the thermal operating range is limited to 10 K.
This means that per element in the finite element mesh, the following constraints are added to the
optimization problem:

; £
9 =5 <1 (6.28)
Ee
) & _T
o_ T min < 6.29
A 29




6.6. Shape Memory Alloy Microgripper Optimization Under Uncertainty 83

The maximum effective strain """ %) is set to 1%, and the minimum and maximum temperature

values used are 328 and 338 K, respectively. A minimum value is included in the formulation in
order to scale the temperature constraint properly.

To reduce the number of individual constraints and to make the anti-optimization approach fea-
sible, a Kreisselmeier-Steinhauser [63] constraint aggregation function is used. This aggregation
function in its standard form is given by:

N
KS(g) = %m (Z e%> (6.30)

=1

where NN is the number of individual constraints g; (e.g. the number of elements) and p is a parame-
ter that determines the bias of the aggregation. A higher value of p puts larger weightage on higher
constraint values more, tending toward a maximum-operator, whereas a lower weight on lower con-
straint values, tending towards average. In this study, in order to reduce the contribution of local
violations, a modified Kreisselmeier-Steinhauser function is used. Here, in order to reduce the con-
tribution of local violations, the individual element constraint values are weighted by the associated
element area A; as

1
KS4(g) = ;ln (ZN y ZA e/’g1) (6.31)

=1

Note that the use of this Kreisselmeier-Steinhauser function can not prevent a small number of
isolated individual violations of the aggregated constraints. However, for a suitable choice of the
parameter p the violations remain very small and limited in number. p = 40 has been used here, as
this turned out to give a satisfactory behavior.

The resulting optimization problem is now given by:

maxy utzip, open (X) _ utzip, closed (x)> ()
Subject to:
KSEf’(ggpe"(x;aﬁ”))) <1
Ks(P)(gclosed(x a }) <1 (6.32)
RSP (g o) < 1
S(p)(gclosed(x o P))) <1
xl<x < xt

The lower and upper bounds of the design variables are represented by x; and x,, respectively,
and agp ) denotes the worst settings for the uncertainties corresponding to each of the constraints in
optimization cycle p, obtained as the maximizers of the following anti-optimization problems:

MaXe, KS(")( P (xP):qy)) st o <ap <ot
maxy, KS(p)( closed (x(P): qrp)) st o <ay <a*
maxg (P)( OPED( (p). l < < ot

s g x\P:a3)) st o <o Lo
MaXa, K (P)(gclosed(x(p) 04 ) st 0([ <a; <at

(6.33)

Here z®) represents the suboptimal design obtained in the main optimization problem Eqg. (6.32) and
anti-optimizations are carried out for this design for each constraint, as specified in Eq. (6.33). For
evaluation of the objective, a complete electro-thermo-mechanical analysis is required for both the
opened and closed configuration. However, for the constraint values, which are the objectives in the
anti-optimization problems, no full gripper simulation is required. For instance, for K.S4(ge""", only

an electro-thermo-mechanical analysis is required for the opened configuration. And for KSa(g7"
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an electro-thermal analysis for the opened configuration is sufficient. In relation to the computational
effort required for the nonlinear mechanical analysis involving an incremental-iterative solution pro-
cess, the computational effort required for this electro-thermal analysis is virtually zero. Therefore,
significant computational savings were possible by exploiting these observations in the practical
implementation, leading in this case to a reduction of the computational effort by approximately a
factor 4.

Table 6.3: Uncertainty variables ¢ for the gripper problem, their deterministic or nominal values to-
gether with their upper and lower bounds.

Uncertainty variable Symbol Nominal value Lower bound Upper bound Unit
Face convection h 2.0 1.8 22 kWm KT
coefficient

Ambient temperature Ta 328 327.6 328.4 K
Austenite Young's FEy 68.939 63.0 75.0 GPa
modulus

R-phase apparent Er 45.612 43 48 GPa
Young’s modulus

Initial apparent transition  Fy 20.006 19.5 20.5 GPa
Young’s modulus

Poisson ratio v 0.3333 0.3 0.36 -

The uncertainty variables contained in the set «x that are selected for the present design problem
are listed in Table 6.3, together with their nominal values and their bounds. The ambient tempera-
ture is considered uncertain because it is hard to control. The convection coefficient is difficult to
determine unless the environmental conditions are well known and stable, which is not likely to be
the case. The other uncertainty variables are parameters of the SMA constitutive model, and these
account for any inaccuracy that might be present in the measurements, as well as unknown aspects
of the SMA behavior that have not been included in the modeling. One could think of, for instance,
the minor hysteresis that has been neglected in the formulation of the SMA model. The range for
these parameters has been chosen such, that it covers a substantial deviation of the modeled mate-
rial behavior. This is illustrated by the stress-strain diagram shown in Fig. 6.17, which visualizes
the effect of the uncertainties in £ 4, Fg and Eq and 7, on the one-dimensional material model.
The variation of the ambient temperature is assumed to directly affect the temperature of the SMA
material, which is the worst case situation.

In order to visualize the effect of the uncertainties on the material model in the plane stress setting
used in the gripper model itself, and to include the effect of the uncertainty in the Poisson ratio »,
two new quantities are defined. A first measure to illustrate the effect is the difference between the
largest and smallest Von Mises stress value Aoy s at a certain strain state, for any combination of
uncertainty values in the defined ranges:

Acoya(er, 2) = max ovu(er, ea; ) — min ovu(er, g2 ) (6.34)

where €1 and &9 are the principal strains, and oy s is the Von Mises stress. In order to be able
to judge the relative magnitude of this difference, also a quantity ¥ is introduced where Aoy is
normalized by the nominal value of the Von Mises stress at the considered strain state:

Aovyar(er, e2)

U(ey,e2) =
(1, 22) ayvar(e1, €2)

(6.35)

These two quantities are visualized in Fig. 6.18 and Fig. 6.19, respectively, for various values of
the nominal temperature. Again the variation of the ambient temperature is assumed to directly
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Figure 6.17: One-dimensional stress-strain curves according to the deterministic model (thick lines)
and the range covered by the uncertain material parameters (gray), at different temperatures.

affect the temperature of the material. Note that the relative effect of the uncertainties is quite
large, roughly 20-25% on average, and that the uncertainties affect different strain states differently.
Because of this, the equilibrium configuration of the gripper will therefore most likely be affected
by the uncertainties. Hence it is hard to make a statement about which combination of uncertainty
variables will result in the worst value for strain constraints.
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Figure 6.18: Maximum difference in Von Mises stress at different strain states due to the effect of
the uncertainties, at different nominal temperatures.

In contrast to the strain constraint, the temperature constraint is affected only by the uncertainties
in the ambient temperature and the convection coefficient. In fact, on physical grounds it is clear that
the largest value for the temperature constraint is obtained when the ambient temperature uncertainty
is at its upper bound and the convection coefficient is at its lower bound. But in this study, no use is
made of this knowledge, and the temperature constraints are treated in the most general way.

6.6.4 Results

Using the cycle-based alternating anti-optimization technique proposed in this chapter, design opti-
mization of the SMA microgripper has been performed. The even more efficient combined cycle-
based alternating and asymptotic method could not be employed because sensitivity information was
not available. Linear approximations have been used for response surfaces, both in main and anti-
optimization. The PYTHON-based nested parallel computing framework reduced the total time of
the optimization process, and a cluster of 14 CPUs (1 GHz Pentium) was used. Both the determin-
istic and uncertainty-based optimization converged after ca. 20 iterations, and the evolution of the
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Figure 6.19: Maximum difference in Von Mises stress relative to the nominal value at different strain
states due to the effect of the uncertainties, at different nominal temperatures.

objective and constraint values are depicted in Fig. 6.20 and Fig. 6.21, respectively.

The objective history of the deterministic case shows a sharp spike at the fourth step, where the
stroke of the gripper even becomes negative. This is clearly undesirable, and possibly is caused by
the inability of that design to generate the required clamping force. However, the optimizer recovers
in the subsequent step. The activity of the constraints shown in Fig. 6.21 shows that all constraints
are relevant to the design problem. This is confirmed by the fact that the final constraint values
shown in Table 6.4 are all very close to 1.

The design variable values and the responses of the final designs are also listed in Table 6.4,
The stroke in case of the uncertainty-based design is ca. 15% less than that of the deterministic
design. Accounting for uncertainties essentially requires the design to move further away from the
deterministic constraints, resulting in a reduction of the objective. Note that in the present study,
effect of uncertainties only on constraint functions is considered due to the present setting of the
optimizer. However, effect of uncertainties on objective function is considered separately at the end
of both optimizations. In this, a separate anti-optimization for the optimal design is carried out in
order to anticipate influence of uncertainties on objective function. This anti-optimization is carried
out for the optimal design corresponding to both deterministic as well as uncertainty-based design
optimization separately. In case of deterministic optimization the stroke reduces from 0.4341 mm
(Table 6.4) to 0.3259 mm, whereas in case of uncertainty-based optimization it reduces from 0.3684
mm (Table 6.4) to 0.2728 mm. However, present technique can be extended to include influence of
uncertainties on objective in a similar way as that for constraints.

The total number of FEAs and wall clock time required for both deterministic and uncertainty-
based optimization are compared in Table 6.4. In case of uncertainty-based optimization the re-
quired FEAs are 30 times that of deterministic optimization, which clearly shows the need of smart
techniques such as Nested Parallel Computing in order to make the uncertainty-based optimization
practical. The efficient use of available computational power by means of Nested Parallel Comput-
ing has brought down the relative wall clock time for uncertainty-based optimization to 7.5 times
that of deterministic optimization.
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Figure 6.20: Optimization history: objective function
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Figure 6.21: Optimization history: constraints.
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Table 6.4: Comparison between deterministic and uncertainty-based optimization results using
cycle-based alternating anti-optimization for the SMA microgripper problem.

Deterministic | Uncertainty-based
Optimal Response
f [mm] 0.4341 0.3684
KSa(g™") 0.9992 0.9776
K Sa(gdlosed) 0.9999 0.9983
KSalg?™) 0.9999 0.9998
K S 5(ggosedy 0.9979 0.9982
Optimal Design _
T [mm] 0.0974 0.1022
H [mm] 1.1703 1.0463
Y: [mm] 1.2485 1.3047
Y [mm] 1.1125 1.0208
W1 [mm)] 1.4001 1.2703
V[Vl 0.0603 0.0553
Total No. of FEA 221 6645
Relative No. of FEA 1 30
Wall clock time [hours:min] 8:17 62:12
Relative Wall clock time 1 7.5

The geometries of the SMA gripper corresponding to the optimal designs obtained in the deter-
ministic and uncertainty-based optimization are depicted in Fig. 6.22. From the top and side views,
it can clearly be seen that the deterministic design is wider at the front and also higher. A geometrical
difference that cannot be seen in Fig. 6.22 is that the plates are 5% thicker in the uncertainty-based
design. The operation of the gripper is demonstrated in Fig. 6.23, which shows a side view of the
optimal uncertainty-based gripper in the open and closed configuration.

Table 6.5: Worst set of uncertainties obtained for the uncertainty-based optimum for each constraint
for the SMA microgripper problem.

KSa(gf™") [ KSa(gd™=9) | KSa(g7) | KSa(gd™)
Worst Uncertainties
h/h 1.08485 0.9 0.9 0.9
Ty /Ty 1.00122 1.00122 1.00122 1.00122
Ea/E4 1.08792 1.08792 - -
Er/FR 0.94273 0.94273 - -
Eo/Eq 0.97470 0.97470 - -
v/ 1.08 1.08 - -

In the case of uncertainty-based optimization, the values of the uncertainty variables that yield
the worst (i.e. largest) constraint values for the final design are listed in Table 6.5 for all four con-
straints. For the temperature constraints, only the uncertainties in the thermal quantities are mean-
ingful, and it turns out that indeed their worst case values are as predicted earlier. Inspection shows
that all of the uncertainty variables are at either their lower or upper bound for the final design, except
the face convection coefficient  at the strain constraint for the opened case K S(ge™"). Evalua-
tion of this constraint with A at its lower and upper bound confirmed that indeed the worst value is
obtained for h at an interior value. When considering the evolution of this uncertainty variable h
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Figure 6.22: Undeformed geometries of the optimal designs obtained by deterministic optimization
(left) and optimization considering bounded-but-unknown uncertainties (right).

Figure 6.23: Side view of the optimized gripper in opened (light gray) and closed (dark gray) con-
figuration.
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during the optimization process, as depicted in Fig. 6.24, it turns out that in many other steps also
interior worst-case values are found, in both strain constraints. Also, for the strain constraint in the
opened case K S4(ge""), the uncertainty variable £ initially stays at the lower bound, but changes to
values equal or close to the upper bound. From this observation, it can be concluded that the present
uncertainty-based SMA gripper optimization problem also exhibits fluctuating uncertainties. The
worst case for uncertainty variable h clearly is design-dependent, and also takes interior values. The
complexity and nonlinearity of the model results leads to non-convexity in the uncertainty-based
design optimization. In general, for complex models, it is hard to predict which combination of
uncertainties will result in the worst constraint values, and whether even interior worst cases are
possible. Therefore the proposed anti-optimization technique is the best choice for such problems,

even though it is computationally more involved than approaches that rely on, e.g., vertex checking
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Figure 6.24: Anti-optimization results in terms of worst set of uncertainties and constraint corre-
sponding to suboptimal design at each step for the Shape Memory Alloy Microgripper problem

6.7 Discussion/Conclusion

The cycle-based alternating anti-optimization technique combined with Nested Parallel Computing
is successfully applied to the design optimization of an SMA Microgripper involving bounded-but-
unknown uncertainties. This allows for practical optimization-based design of SMA devices in
situations where e.g. the material properties and operating conditions are not exactly known, but
where bounds on their values can be specified. The worst set of uncertainties turned out be design-
dependent, and the cycle-based alternating technique proved to be able to handle this situation ef-
fectively.

The optimization problem involving bounded-but-unknown uncertainties is solved using an anti-
optimization technique. To demonstrate and compare various anti-optimization approaches, the elas-
tically supported beam problem from literature is used here. For this test problem, the worst set of
uncertainties is also strongly dependent on the design, and fluctuates considerably from design to
design. This situation is the most challenging case for efficient anti-optimization, however many
problems of realistic complexity, such as the SMA Microgripper problem, share this characteristic.
For such problems exhibiting fluctuating worst uncertainties, it is shown that the Cycle-based alter-
nating technique is more efficient than the existing Lombardi-Haftka alternating technique in terms
of convergence. Rigorous anti-optimization proves to be better than the Cycle-based technique in
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terms of good convergence. However, since the number of function evaluations required for the
rigorous approach can quickly become prohibitive as the problem size increases, in terms of the
number of design variables, uncertainties and constraints, the rigorous approach quickly becomes
impractical for problems involving computationally expensive function evaluations.

Further improvement of the effectiveness of the Cycle-based technique is possible with the use of
derivative information. It is demonstrated by means of the elastically supported beam problem that
combining the Cycle-based technique with the Asymptotic method, which uses derivative informa-
tion for prediction of worst cases, is significantly more efficient than all other examined techniques,
in terms of both the convergence and number of function evaluations. In the present study how-
ever, this combined Cycle-based and Asymptotic method is not applied in the SMA Microgripper
optimization, because of the lack of the required derivative information.

For the problems involving computationally expensive response evaluations, use of Parallel
Computing is essential to make the above optimization techniques computationally feasible. For the
SMA Microgripper problem, which involves computationally expensive finite element simulations,
the Cycle-based technique combined with Nested Parallel Computing enabled the practical applica-
tion of anti-optimization. For this problem, the total number of FEAs required for uncertainty-based
optimization is 30 times that of the deterministic optimization. In case of sequential evaluation
for this problem, total wall clock time required for uncertainty-based optimization would also be
30 times that of deterministic optimization. However, the use of Nested Parallel Computing has
brought down this overall duration of uncertainty-based optimization to merely 7.5 times that of
deterministic optimization, which illustrates the effectiveness of the parallel computing strategy.

To summarize, uncertainties in design problems described by bounds can be handled safely
and efficiently using the cycle-based alternating anti-optimization technique. In case of practical
optimization problems involving computationally expensive function evaluations, the Cycle-based
technique combined with the Nested Paralle] computing provides a general and efficient approach to
tackle uncertainties.

6.8 Appendix
6.8.1 Material Model for Shape Memory Alloy

This appendix summarizes the SMA constitutive model for the R-phase transformation. The one-
dimensional stress-strain curves at a certain temperature 7', shown in Fig. 6.14, are approximated by
a piecewise linear function consisting of three parts:

Ozx =
Ezz < €1 L 0= EAEz:c
€1 < €zp &9 ¢ 01 = Er(ezz —€1) + 00(e1) (6.36)
Exz > €2 . 09 = Ep(ezs —€2) + 01(c2)

where ¢, g2 and E7 are linear functions of temperature:

El(T) = KE(T - To) + £o0
eo(T) =e1(T)+ A (6.37)
Ep(T) = Kp(T —To) + Eo

and E4 and Eg are constant parameters. €1 and £3 are the transition strains at which the R-phase
transformation starts and finishes. E7 is the apparent Young’s modulus do; /de s, during the phase
transition. By curve fitting, the parameters defining the material behavior can be determined. Values
for the parameters can be found in Table 6.6.

The three-dimensional stress-strain relation is given by:

o = (KK + 2GG)e (6.38)
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Here o is the second Piola-Kirchhoff stress in vector notation, K 1is the bulk ratio and G is the
effective shear ratio. The matrices G and K in the preceding equations are constant and given by:

2 -1 -1 0 0 O 11100 0
1—12—1000 111000
_ -1 -1 2 000 _ |11 1000
G—§0003001K'—000000 (6~39)
¢ ¢ 0 030 000000
¢ 0 0 0 0 3 00000 O

For a given value of the shear ratio G, this stress-strain relation corresponds to the well-known
Hooke’s Law for linear elasticity. To account for the isochoric R-phase transformation strain, the
value of GG becomes dependent on the effective strain &., which is defined by:

2

e = 3eTGe (6.40)

At a given temperature 7', the one-dimensional model gives a linear relationship between the uniaxial
stress and strain component: its general form is o, = Ae,, + B, for each segment of the piecewise
linear model given in Eq. (6.36). From this, the relation between G and ¢, can be obtained:

3K B
= e [ A+ — 6.41
9K — A ( * se) ©4D)
The tangent operator of this material model in the three-dimensional setting is obtained by dif-
ferentiation of the stress-strain relation in Eq. (6.38), which yields:
do 4 dG

— =KK+2GG + — —Gee™ G 42
7z + + 3. de. Gee 6.42)

Table 6.6: Parameter values for the SMA model.

K. 255x107%K '] Kr 619MPaK T
g0 5.71x1074 A 542x1071
Ey 20.0GPa To 328K

E4 689GPa Er 45.6GPa

6.8.2 Additional tables

Table 6.7: Significant coordinates of B-spline control points and other points
defining the geometry of the miniature gripper.

Point x [mm] y[mm] | Point X [mm] y [mm]
Control point 1 0 15 Control point 2 0.5 15
Control point 3 1 Y Control point 4 3 Ys
Control point 5 3.5 Wi Control point 6 4 %%
Tip 5.377 0 Slit end 3.8 0

Table 6.8: Physical constants used in the finite element modeling.

Quantity Value Quantity Value
Electrical conductivity 1.25 - 10% Sm™T Thermal conductivity 21 Wm' KT
Thermal convection co- | 2.0 - 103 Wm2K"! | Ambient temperature 328K
efficient
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Chapter 7

Anti-optimization using Combined
Response Surface

In this chapter a new approach for uncertainty-based design optimization using anti-optimization is proposed,
which uses a combined response for design variables and uncertainties. The anti-optimization technique used
here involves a two-level nested optimization. In the outer level, the main optimization is carried out, which
searches for the best design. In the inner level, anti-optimization is carried out to find the worst sets of uncer-
tainties, which provide the worst possible values for the constraints. The basic optimization technique used
for both the main and anti optimization relies on sequential response surface approximations. The proposed
approach is based on a combined response surface (CRS). Thus, a common design of experiment is carried
out for the combined space of design variables and uncertainties. The response evaluations for this combined
design of experiment are then used to construct a CRS, which is a function of both the design variables and
the uncertainties. The present technique involves an iterative process, in which two separate optimization
problems, namely the main and anti-optimization, are solved alternately. In the main optimization, the objec-
tive function is minimized subjected to a set of constraints for a given or fixed sets of uncertainties. For the
optimal design resulted from the main optimization, anti-optimization is carried out for each of the constraints
in order to obtain worst vatues for these constraints. The worst sets of uncertainties corresponding to each of
the constraints are used in the main optimization during the next iteration. This iterative procedure contin-
ues until convergence is obtained. This technique is very flexible in terms of dealing with different types of
problems. The method is applicable to both convex as well as non-convex problems. In the latter situation,
nonlinear approximations are more advantageous. Like most other response surface based techniques, the
method suffers from the ‘curse of dimensionality’. The CRS technique is applied in the present chapter to a
practical application from MEMS, which is a Piezoelectric energy reclamation device. This MEMS device
has uncertainties in its dimensions and material properties.

Key words: Anti-optimization, Bounded-But-Unknown Uncertainties, Combined Response Surface, MEMS

7.1 Introduction

Many practical design optimization tasks involve uncertainties. When enough data on uncertain-
ties is available, it can be used to construct statistical distributions for uncertainties. However, it
often happens that there is not enough data available to construct reliable distributions. This can be
particularly the case in early stages of a design process. In such situations, the available data in com-
bination with engineering experience can be used to set tolerances or bounds on uncertainties, within
which the exact distribution is unknown, thus identifying uncertainties as Bounded-But-Unknown
(BBU) as in Ben-Haim and Elishakoff [11] and Ben-Haim [12]. The anti-optimization technique
described in Elishakoff er al. [7] checks the vertices of the uncertainty domain in order to obtain the
worst response of the structure. This technique is computationally very efficient for problems with
convexities, however its application is limited to convex problems.
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A more generalized or Rigorous anti-optimization, which can handle non-convexities, is adopted
in Van Keulen et al. [13] and Gurav et al. [34]. However, this technique suffers from the required
large number of expensive function evaluations due to the underlying two-level nested optimization.
In order to make it computationally efficient, the Enhanced anti-optimization technique that uses
sensitivities, a database technique and parallel computing to make it computationally efficient is
studied in Gurav et al. [47]. The technique still becomes computationally expensive for an increas-
ing number of design variables and uncertainties, which stimulates search for alternative approaches.
In an alternative approach, proposed by Lombardi and Haftka [19], anti- and main optimization are
carried out alternately, thereby avoiding the nested approach. This approach can converge very fast
in case of problems involving convexities and is quite efficient in terms of the number of required
function evaluations. However, it may expose bad convergence if the worst case fluctuates from
design to design. Based on a similar principle, a Cycle-based alternating anti-optimization approach
is studied in Gurav et al. [64]. This approach partially overcomes the convergence problems in case
of non-convexities and is computationally quite efficient.

In this chapter, an alternative approach based on combined response surfaces (CRS) for design
variables and uncertainties is studied. In this technique, both the main and the anti optimization
operate on the same response surface. These CRSs are generated using a design of experiments
including both design variables and uncertainties. The main optimization here finds the best design
for fixed sets of uncertainties. For the sub-optimal design obtained by the main optimization, an anti-
optimization is carried out for every constraint to determine the associated worst set of uncertainties.
The worst set of uncertainties corresponding to each of the constraints is kept fixed during next
iteration of the main optimization. This iterative process continues until the convergence has been
obtained.

Energy Reclamation Circuit

Vibrating
Support . Proof Mass

(a) An array of Piezoelectric (PZT) composite (b) Piezoelectric (PZT) composite cantilever
cantilever beams. beam,

Figure 7.1: An energy reclamation device.

The proposed CRS technique is used to optimally design a Piezoelectric energy reclamation de-
vice. The detailed description of the electro-mechanical model for this problem is given in [39,40].
The overall purpose of the device is to extract maximum power from external base vibrations. The
energy reclamation device at hand consists of an array of piezoelectric (PZT) composite cantilever
beams arranged as shown in Fig. 7.1(a). Each cantilever beam consists of a perfectly bonded PZT
patch [41] and a proof mass attached at the end, see Fig. 7.1(b). In a real application, the device
is attached at the support to a vibrating surface. The proof mass at the tip translates the input ac-
celeration into an effective force that deflects the beam. This effective force induces mechanical
strain in the beam, which is converted into a voltage (V) using the piezoelectric effect [41,42]. The
output voltage of the PZT can be reclaimed into usable power with the help of an energy reclama-
tion circuit. When dealing with Microelectromechanical Systems (MEMS), because of their small
dimensions, tolerances on shapes are relatively high (1%-10%) [30,31]. These variations in dimen-
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sions of MEMS structures can have a significant effect on their mechanical behavior. Furthermore,
MEMS exhibit a large variation in their material properties (1%-15%) [43-46]). As a result, while
designing MEMS, various types of uncertainties should be considered.

7.2 Multipoint Approximation Method

In the present chapter the MAM, see Toropov et al. [1,2] and Van Keulen and Toropov [3,4], is used
as a basis for optimization. Many times practical applications involve numerical evaluation of re-
sponse functions. From an optimization point of view, these types of problems can either suffer from
numerical noise or the large computational time involved. The MAM, which is based on sequential
use of Response Surface Methodology can be applied to such problems. The MAM uses approxima-
tions for the responses in order to reduce the number of expensive numerical response evaluations.
However, it should be noted here, that it suffers from the so-called curse of dimensionality, i.e. it
becomes inefficient with the increase in dimensions (number of design variables).

The optimization problem can now be formulated math-
ematically as

Sub-domain .
B, for a cycle (p) Desﬁ space n%én f,(x)
Egp)?*—” st. f(x)<1, i=1,...,m, (7.1
% ; Sub-optimum Aj<z;<B;, j=1...n
. al Here, fy is the objective function and f; are constraints,
4B‘(jp)_ 'Opti"‘um whereas x is a set of design variables. The design space
. 5_1@ is represented by the upper and lower limits on z;, A; and
A,| Plan point = Bj, respectively.
A B,

The MAM is based on a replacement of the actual opti-
mization problem, as described by Eq. (7.1), by a series of
Figure 7.2: Optimization using the approximate optimization problems as depicted in Fig. 7.2.
MAM for a problem of two design vari- The approximate optimization problem (AOP) for a cycle
ables (1 and z3). p, can be formulated as

X]

)

min £, (x)

s.t. ﬂ(-m(x)gl, i=1,...,m, a2
AP <, <BP, j=1,...n,
® (»)
Al >A;, B <B;

Here, the response functions are replaced with approximate functions over the subdomain for a cycle.
For the current AOP, 'fﬁ”’ (x) are considered as adequate approximations of f;(x) over the subdomain
(p) represented by the move limits A§-p ) and Bg-p ), see Fig. 7.2. It should be noted here that the move

limits for the initial cycle (A§_0) and B;O)), can be chosen either arbitrarily or based on engineering
experience. Many times this can significantly influence the convergence.

7.3 Bounded-But-Unknown Uncertainty

If the problem at hand is non-deterministic, i.. there are uncertainties that play a non-negligible
role, the response functions also depend on the uncertainties. The set of uncertainty variables will
be denoted e, with

a=(ar...oy). (7.3
Consequently, the response functions depend on both design variables and uncertainties, hence
f(x,a).
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denotes the dimension of the space
of the feasible uncertainty.

Figure 7.3: Bounds on uncertainties.

In the present chapter, uncertainties are modelled using the BBU approach. In this, several
bounds can be introduced, each providing a bound for a group of uncertainty variables or all uncer-
tainty variables simultaneously, for example see Fig. 7.3. At the same time, we may want to measure
the amount of uncertainty. Thus, measures for the dimensions of the subspace containing all possible
selections of uncertainty variables are desired. This can be cast into a mathematical framework as
follows. Assuming a set with b bounds, then a possible or feasible selection of « satisfies, see Van
Keulen et al. [13];

Bi(a,e) <0, for i=1,...,b (7.4)

Otherwise the selection of the uncertainty variables « is infeasible. Here, the components of £ are
used to specify the dimensions of the space of feasible uncertainty variables. We will therefore refer
to these components as the levels of uncertainty.
In the present chapter, simple box bounds, see Fig. 7.3(b & c), are used to specify uncertainties
as
(o — &) — 2 <0. (7.5)

These type of bounds generally come from a tolerance specified on a nominal value, for example, due
to the manufacturing induced inaccuracies. In case of applications, where a very high performance
is required against failure, such sharp bounds become practical. These bounds can be alternatively
represented in terms of lower (al) and upper bounds (o) on uncertainties as

«
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= ; —¢,

= &+e. (7.6)

TR mie

7.4 Uncertainty-based optimization using Anti-optimization

7.4.1 Anti-optimization using Combined Response Surface

The basic technique used here is anti-optimization that actually tries to incorporate worst possible
responses, as a function of uncertainties, in the optimization procedure. Here, the optimization prob-
lem involves several cycles before convergence. Each cycle of this optimization process, involves
an iterative process which iterates between two separate optimization problems before converging
to a suboptimal solution. In the present technique, CRS is used as a basis for both the main as well
as with anti-optimization. In order to construct a CRS, a design of experiment is planned for the
combined design space of design variables and uncertainties at the beginning of each cycle. Based
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on the FEAs obtained for this combined design of experiment, CRSs are fitted for all responses as a

function of design variables as well as uncertainties. These CRSs are used in the iterative process of
every cycle as follows: :
in T,

min fo (x, )

st filxjal) <1, i=1,...,m,

(1.7)

where a7 is the maximizer of
max £ (x"; i)

i (7.8)
st. Bj(ay,e) <0, j=1,...,b

Evals based on CRS

E o’ : \J'

Main Optimization Anti-optimization

Optimization Cycle

Figure 7.4: Anti-optimization technique in the MAM setting for a problem of two design variables
(z; and z3) and two uncertainties (c; and o). The big boxes indicate the search (sub-) domains.
The small open boxes indicate sets of design variables (left) or uncertainty variables (right) for
which function evaluations are carried out using CRSs. The small solid boxes indicate solutions of
the sub-problems.

Here, fo(x) is the CRS for the objective function and f;(x, a;) are CRSs for constraints, whereas
B (e, &) are bounds on uncertainties. The main optimization as defined in Eq. (7.7) is a standard
minimization, where objective function is minimized subjected to a set of constraints. For the eval-
uation of constraint values in Eq. (7.7), the worst set of uncertainties (o)) are kept fixed during a
cycle of the main optimization. It is assumed, that the objective is not affected by the uncertainties.
However, in practice when such effect is significant it can be tackled in the same way as that for the
constraints where it is considered in all situations. The anti-optimization as reflected by Eq. (7.8)
solves a maximization problem in order to obtain the worst possible values for the constraints with
respect to uncertainties. It should be noticed here that such anti-optimizations are carried out for the
optimal design (x*) obtained from the main optimization and for every constraint. The worst sets of
uncertainties (¢:}) obtained by anti-optimizations Eq. (7.8) are kept fixed during the main optimiza-
tion Eq. (7.7) of next iteration. For the initial iteration uncertainties are chosen arbitrarily or as a* =
&, see Fig. 7.3(c). These main and anti-optimizations are carried out alternately until convergence is
obtained. This iterative process is converged if

fo —
0:—0pm < tolerance, and (7.9)
fo
aj, — aj),
i - ikprev < tolerance i=1,...,n; k=1 ....,u (7.10)
ik
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Thus, convergence is defined based on relative change in the objective function, Eq. (7.9), and the
worst set of uncertainties corresponding to each constraint, Eq. (7.10).

The anti-optimization technique based on CRS in the setting of the MAM is depicted in Fig. 7.4.
For the applications studied in the present chapter, uncertainties through simple box bounds, see
Fig. 7.3(b & ¢), and Eq. (7.6) are adopted. Therefore, the constrained maximization problem, as
defined by Eq. (7.8), reduces to an unconstrained maximization problem as

n}xaix i (x*; ;) (7.1DH
st. al <a; <o

7.5 Micro Piezoelectric Composite Energy Reclamation Device Prob-
lem Formulation

7.5.1 Introduction

i ) Energy Reclamation
1 Circuit Shim
End — Proof Mass
Support PZT t-pzt Sl
7 |
]
3 mm a y I
! tpm
; Lpzt
Singl End ¥ 1| Ly ‘\ Lom }
ingle A _ ‘ i S 0
Cantilever | Zmm ‘ upport | -
(a) Design parameters for an array of Piezoelectric (b) Design parameters for a Piezoelectric (PZT)
(PZT) composite cantilever beams. composite cantilever beam.

Figure 7.5: Optimization problem formulation of energy reclamation device.

In the present study, design optimization of an energy reclamation device is considered. The detailed
description of the electro-mechanical model is given in [39,40]. The overall purpose of the device is
to extract maximum power from external base vibrations. An energy reclamation device consists of
an array of piezoelectric (PZT) composite cantilever beams arranged as shown in Fig. 7.5(a). Each
cantilever beam consists of a perfectly bonded PZT patch [41] and a proof mass attached at the
end, see Fig. 7.5(b). In a real application, the device is attached at the support to a vibrating surface,
which implies that the whole structure is in an accelerating frame of reference. The proof mass at the
tip translates the input acceleration into an effective force that deflects the beam. This effective force
induces mechanical strain in the beam, which is converted into voltage (V) using the piezoelectric
effect [41,42]. The output voltage of the PZT can be reclaimed into usable power with the help of
an energy reclamation circuit.

7.5.2 Objective function

The objective function for the current optimization problem is expressed as follows:

fo(x) = Py (7.12)
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where Py, is the electrical output power extracted from the device. The composite cantilever beam is
subjected to external acceleration (ao) as shown in Fig. 7.5(b). This external acceleration is specified
in terms of external excitation frequency fex.. Whereas f;, is the fundamental natural frequency of the
cantilever beam. For the present problem support acceleration and excitation frequency is assumed
as agp = 1g, where g = 9.8 m/s? and feyr = 125 Hz.

When the fundamental natural frequency of the cantilever beam ( f,,) matches the external excita-
tion frequency (fexo), i-€. at the resonance, the beam undergoes maximum deflection and therefore a
maximum power is obtained. However, the objective function or power has an exponential increase
near the resonance. Here, use of very high order polynomials (typically 7th order) is essential to
get a good approximation for the power function. This can be computationally intensive and can
become impractical when the number of design variables increases. To overcome this problem, log
of the power function, which flattens it significantly, is used as the objective function. This allows
the use of lower order polynomial (3rd order) to get an adequate approximation for the log of power
function. Notice, since the problem needs to be formulated as a minimization problem, —log(Pout)
will be minimized.

7.5.3 Mechanical Constraints

Small deflection constraint: The Euler-beam theory for small deflections [48] is used to predict
the deformations. Therefore, the tip deflection of the cantilever beam is restricted by

2.5 Yiip
Lo 7.13
7 = (7.13)

where yip is the tip deflection and L is the overall length of the cantilever beam.

Stress constraint: At the resonance condition the cantilever beam may undergo large deflections
and may crack. In order to avoid the damage due to fatigue and to stay within the linear elastic limit,
the allowable bending stress is taken as 10 % of the maximum allowable bending stress (Obm). The
constraint on bending stress in the cantilever beam is expressed as

Jb
< 1, 7.14
0.1obm — ’ ( )

where oy, is the bending stress in the cantilever beam. Here, o is taken as 7 GPa [49].

7.5.4 Electrical Constraints

An electrical constraint is imposed on the minimum output voltage required to trigger the energy
reclamation circuit as

V .
( “““) < 1; Vin = 2 Volts, (7.15)
VI

where Vi, is the Thevenin voltage and Vi is the minimum required output voltage for the device.

7.5.5 Design Variables

Based on a preliminary study, move limits on design variables x are chosen to avoid practically
impossible designs. The move limits on design variables used in the present optimization problem
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are
100 < z; < 2000 (um),
005 < z2 < 095
50 < =23 < 800 (um),
0.1 < 24 < 038,
10 < z5 < 500 (um),
3 < zz < 100 (pm),

where 1 is the overall length of cantilever beam (L), 3 is the width of proof mass (bpm), x5 is the
thickness of proof mass (¢,,), and z¢ is the thickness of shim (¢5), see Fig. 7.5. Other geometric
parameters such as length of shim and PZT are taken as a fraction of total length (i.e. L) and the
width of shim and PZT are taken as a fraction of width of proof mass (i.e. bpm). These fractions
are represented by the design variables x5 and z4. Here, due to the fabrication limitations, tpzt 18
kept fixed at the upper bound and an additional constraint (b,,; = bs) is imposed on the width of
shim and PZT. Preliminary results have shown that the length of PZT remains almost equal to that of
shim. This equality (L,.; = L,) is used here in order to reduce the total number of design variables.
Remaining geometric parameters are obtained using

Ly = z1- 22,
Lpst = L,
Ly = 1 —Ls,
bs = w314,
bpzt = bsa
tpzt = 0.5 (um),

tom = 500 (um),

7.5.6 Uncertainties

For the present problem, the objective (Py,:) is a function of design variables as well as uncertain-
ties. Here, the effect of uncertainties on objective function can also be taken into account. One
way to deal with this problem is, to carry out anti-optimization for the objective function together
with constraints in order to get the worst cases. Secondly, at the end of the optimization, an anti-
optimization and an optimization for fixed design variables can be carried out to set a bound on the
objective function. In the present setting of uncertainty-based optimization, dependency of objective
on the uncertainties is not considered. For the present problem, 5% uncertainty will be assumed in
the design variables x such that the bounds on uncertainties can be given as [0.952;; 1.05x;]. [43,44].
Whereas, higher variation can be expected in material properties of PZT [46, 50, 51]. Here, uncer-
tainty in material properties of PZT such as, Young’s Modulus (£} ), Density (pp.;) and Piezoelec-
tric Coefficient (d31), will be taken as 15 %. It should be noted here, that because of the coupling
between the material properties of PZT mentioned above, same uncertainty is used for these material
properties of PZT. Uncertainties used in the present optimization are listed in Table 7.1.

Table 7.1: Uncertainties considered for the PZT composite cantilever beam

Thickness of shim (¢,) +5%
Thickness of proof mass (¢m) +5%
Material properties of PZT (Ep.t, ppat, ds1) | £ 15 %
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7.5.7 Material properties

Material properties used in the current electro-mechanical model for the calculation of the power are

listed in Table 7.2.

Table 7.2: Material properties properties used in the electro-mechanical analysis of the PZT com-

posite cantilever beam

Young’s Modulus of Silicon (£5)

169 GPa

Density of Silicon (ps)

2330 kg/m?

Young’s Modulus of PZT (E,.¢)

60 GPa

Density of PZT (pp.t)

7500 kg/m?3

Piezoelectric Coefficient (ds;)

—100-1072 mv

Relative permittivity (e,)

1000

Damping ratio (¢)

0.01

tan &

0.02

7.6 Optimization Results

Results for the design optimization of the PZT composite cantilever beam using the anti-optimization
based on CRS are presented here. This includes results from deterministic as well as uncertainty-
based optimization. Results for deterministic and uncertainty-based optimization are compared with
the baseline design. The baseline design was the first design proposed in [39,40]. Details of the

baseline design are included in Table 7.3.

Objective
]

%~ Daterministic
70 Uncedainty-based

Steps

Figure 7.6: Optimization history for objective.
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Figure 7.7: Optimization history for constraints.

Table 7.3: Actual dimensions and the output power of the PZT composite cantilever beam for the
optimal design is compared with those for baseline design: Case-I is including constraint on (L /b)
ratio of shim and PZT whereas Case-II is without including this constraint. ag = 19, fert = 125Hz.

DeSigﬂ Ly = Lpzt me bs = bpzt bpm ts tpzt tpm Pout
pm pm pm pm | pm | pm | pm | gW

Baseline 1000 1000 | 200 800 | 6 0.5 | 500 | 0.16
Optimal | Deter. | 208 1792 | 447 800 | 3 0.5 | 500 | 0.34
Uncert. | 237 1727 | 569 750 | 3 0.5 | 476 | 0.25

Table 7.4: Worst uncertainties obtained by anti-optimization for the small deflection and stress con-
straint

Thickness of shim (¢,) -5%
Thickness of proof mass (¢,,,) +5%
Material properties of PZT (Ep.+, ppst, d31) | —15 %

The optimization results for deterministic and uncertainty-based optimization using CRS are
compared for convergence and number of steps in Fig. 7.6 and Fig. 7.7. Actual dimensions and the
output power for the PZT composite beam corresponding to the optimal design are compared with
those for the baseline design in Table 7.3. There is a substantial increase in the output power as a
result of design optimization as compared to that of the baseline design. The increase in output power
is 56 % for the uncertainty-based optimization, whereas it is almost doubled in case of deterministic
optimization.

The optimization history as a function of the number of steps (cycles), for the objective function
is provided in Fig. 7.6. A comparison between results for deterministic and uncertainty-based opti-
mization shows that there is a significant reduction (26 %) in the objective function value in order
to account for uncertainties, see Table 7.3. The optimization history for active constraints is com-
pared for the deterministic and uncertainty-based optimization in Fig. 7.7. In the early phase of the
optimization both small deflection constraint (Fig. 7.7(a)) and stress constraint (Fig. 7.7(b)) remain
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active, whereas at later stage only small deflection constraint remains active. The convergence and
number of steps are quite comparable for both constraints.

In case of small deflection and stress constraint, worst sets of uncertainties obtained at the end
of every cycle remain the same. Moreover, for these constraints worst set of uncertainties are found
to be at the vertices of the uncertainty domain. Typical values of worst uncertainties for these con-
straints are given in Table 7.4. For the voltage constraint, worst set of uncertainties fluctuates,
however this constraint is not violated throughout the optimization.

7.7 Discussion and Conclusions

In the present thesis, uncertainties of BBU nature are successfully incorporated in the design op-
timization process by using CRS for design variables and uncertainties. Use of CRS makes the
anti-optimization technique quite flexible in terms of tackling various type of problems. In case of
convex uncertainties with limited influence, use of linear approximations for CRS brings the tech-
nique close to the asymptotic estimation of uncertainties, which is computationally quite efficient
and accurate enough for these problems. In case of non-convexities or largely fluctuating uncer-
tainties, the problem can be solved using higher order approximations. It should be noticed here
however, that using higher order CRS can become disadvantageous for problems with many design
variables and uncertainties. Finally, its easy implementation makes it a very attractive technique to
deal with BBU uncertainties.

In the present thesis, uncertainty-based design optimization of a Piezoelectric Energy reclama-
tion device is carried out using CRS technique. In case of uncertainty-based optimization there
is a significant reduction (nearly 20 %) in the output power as compared to that of deterministic
optimization, in order to account for uncertainties.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

In the present thesis, optimization techniques to tackle optimization tasks with Bounded-But-Unknown
(BBU) uncertainties are studied. BBU uncertainties are described in terms of bounds or tolerances
without having any statistical data. In this thesis, the anti-optimization technique to tackle BBU
uncertainties is modified to make it more efficient. As mentioned in the Introduction, first the basic
or Rigorous anti-optimization technique is modified in order to reduce the number of computation-
ally expensive FEAs. In addition, various alternative approaches are studied in the present thesis.
This includes a Cycle-based alternating anti-optimization and a Combined Response Surface (CRS)
technique.

8.1.1 Enhanced Anti-optimization

The Rigorous anti-optimization technique offers a method to deal with BBU uncertainties, without
information on statistical distributions. Moreover, it can be applied to both convex as well as non-
convex uncertainties. The price paid for this flexibility is a reduction in computational efficiency due
to the required large number of expensive function evaluations. The Enhanced anti-optimization
uses derivative information and a database technique to reduce the number of expensive function
evaluations, resulting in substantial improvement in computational efficiency. This technique is first
studied on the basis of test examples and applied to practical problems, such as a car deck floor
of a ferry (Chapter 3) and an embedded measurement structure (Chapter 4) for MEMS. For the
deck optimization problem, the total number of response evaluations (FEAs) has come down from
5417 to 481 (almost 11 times less) by the use of derivatives and the database technique. For the
embedded measurement structure, the total number of response evaluations are halved by the use of
derivatives and the database technique. It should be made clear that for this problem the number of
design variables and uncertainties involved are relatively small as compared to the deck problem and
therefore the reduction that can be achieved is less. Additionally, for the embedded measurement
structure, Parallel Computing is used to carry out function evaluations in parallel, in order to reduce
computing time. For this problem, Parallel Computing has reduced the wall clock time by nearly
85 %.

Use of sensitivities

Use of derivative information to construct Gradient Enhanced Response Surface (GERS) is advan-
tageous in two ways. First, it improves the quality of the response surface, resulting in better con-
vergence. Second, it requires fewer FEAs to construct the response surfaces, thus reducing the
overall number of FEAs. In the present Enhanced anti-optimization, derivatives are used in both the
main and anti-optimization. This has reduced substantially the overall number of FEAs, making the
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technique computationally more efficient. It is concluded here, that the Enhanced method can deal
with BBU uncertainties quite efficiently, provided gradient information is available at relatively low
computational costs.

Use of database technique

Use of the database technique is successful to speed up the anti-optimizations. Here, the history
of anti-optimizations for each design is stored in a database. When there is enough data available
in the database, it is used to generate good starting points for the anti-optimizations. Use of the
database technique has significantly improved the overall computational efficiency of the technique
by reducing the number of iterations necessary for convergence.

Parallel Computing

Use of Paralle] Computing to carry out expensive function evaluations has significantly improved
the computational efficiency of the technique. Here, a cluster of many computers is utilized for eval-
uating expensive FEAs in parallel. The Parallel Computing framework embedded within the anti-
optimization technique is applied successfully to the embedded measurement structure for MEMS.
For the embedded measurement structure, use of the Parallel Computing has reduced the wall clock
time required for the anti-optimization by nearly 85 % and for the deterministic optimization by
78 %. Finally, it is concluded that if sufficient computing power is available together with deriva-
tive information, the Enhanced anti-optimization technique can deal with uncertainties robustly and
efficiently.

8.1.2 Alternating Anti-optimization
Cycle-based alternating technique

Often, the available computing power is quite limited. This is particularly relevant when many
design and/or uncertainty variables are available. Moreover, due to the complexities involved in
the simulation model, obtaining derivatives can either be difficult or computationally expensive.
For such problems, the Enhanced anti-optimization technique can still become impractical. In the
present thesis, alternative approaches that avoid two-level optimization, as in case of Rigorous and
Enhanced anti-optimization, have been studied. The Cycle-based alternating anti-optimization tech-
nique studied in the present thesis is very efficient as compared to the Enhanced anti-optimization.
Additionally, it overcomes the slow convergence as observed in the Lombardi-Haftka approach when
the worst uncertainties fluctuate w.r.t. change in design. The Cycle-based technique is studied on
the basis of a test problem having nonlinear and largely fluctuating uncertainties and is applied to
practical applications such as a piezoelectric energy reclamation device (Chapter 5). In case of the
piezoelectric energy reclamation device, optimizations are carried out first, by including a constraint
on length to width ratio of the shim (Design-I) and second, by excluding this constraint (Design-II).
For Design-I, the output power obtained by the uncertainty-based optimization is slightly higher as
compared to that of the baseline design. For Design-II, there is almost 60 % increase in the output
power obtained by the uncertainty-based optimization as compared to that of the baseline design.

Nested Parallel Computing

While using Parallel Computing in optimization, the additional function evaluation required at the
end of an optimization cycle keeps one processor busy and all others idle. With the increase in
number of cycles in optimization the overall idle time increases, and, consequently, reduces the
overall efficiency of the Parallel Computing scheme. For the Enhanced anti-optimization technique
every individual function evaluation involves anti-optimization for every constraint. Moreover, each
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individual anti-optimization involves several cycles. Thus, the overall idle time associated to the ad-
ditional response evaluations can grow exponentially. In case of the Cycle-based anti-optimization
technique, anti-optimization is carried out only at the suboptimal design for every constraint. Use of
the simple Parallel Computing scheme (as discussed in Chapter 4) here, could become quite ineffi-
cient. The Nested Parallel Computing Scheme (as discussed in Chapter 6), overcomes this problem.
In this scheme, all the anti-optimizations for the suboptimal design are evaluated in parallel. More-
over, for each anti-optimization the actual response evaluations are also carried out in parallel. This
scheme is quite efficient in keeping all the processors busy during the optimization, thus, reducing
the overall idle time significantly.

The proposed scheme is applied successfully to a SMA microgripper problem, see Chapter 6. For
this microgripper problem, the total number of FEAs required for the uncertainty-based optimization
is nearly 30 times that of a deterministic optimization. Consequently, in case of sequential evaluation
of responses, the total wall clock time required for the uncertainty-based optimization should also be
30 times that of the deterministic optimization. Use of the Nested Parallel Computing scheme, with
a cluster of 14 CPUs, has brought down this wall clock time for the uncertainty-based optimization
to merely 7.5 times that of the deterministic optimization.

It is concluded here that the Cycle-based technique provides a very efficient way to tackle uncer-
tainties while designing. Particularly for the problems involving computationally expensive FEAs,
the Cycle-based technique combined with the Nested Parallel Computing is quite efficient and pro-
vides a very practical approach.

8.1.3 Combined Response Surface-based anti-optimization

In an alternative approach considered in this thesis, use of a Combined Response Surface (CRS) for
design variables as well as uncertainties is exploited. The ease of implementation and flexibility in
tackling problems with different types of uncertainties are attractive features of this technique. The
method is applicable to both convex as well as non-convex problems. In the latter situation, nonlin-
ear approximations are more advantageous. Like most other response surface based techniques, the
method suffers from the ‘curse of dimensionality’. In the present thesis, this technique is applied
successfully to a piezoelectric energy reclamation MEMS device. For the piezoelectric energy recla-
mation device, optimization is carried out without including the constraint on length to width ratio
of the shim. Here, the deterministically optimized output power is almost double as compared to
that of the baseline design. A significant reduction (nearly 20 %) is seen in the output power for the
uncertainty-based optimization as compared to that of deterministic optimization. Still, the output
power obtained by the uncertainty-based optimization is nearly 60 % higher than that of the baseline
design. Although, the present approach is quite elegant from an implementation point of view, it
is concluded here that this approach is only suited for small scale problems, i.e. involving a small
number of design variables and/or uncertainties.

8.2 Recommendations

For practical problems, for which information on uncertainties is available only in the form of bounds
without any knowledge on statistical distributions, the anti-optimization techniques studied in the
present thesis are recommended here. It should be noted however, that the present methodology
relies heavily on response surface approximations that are constructed using a limited number of
FEAs. Quite often such response surface-based models suffer from high numerical noise. Moreover,
the required number of response evaluations can grow exponentially with the increase in design
variables and/or uncertainties, thus limiting its applicability. Nevertheless, it provides a very general
way to tackle convex as well as non-convex uncertainties.

For applications with a very small probability of failure, for example, in aerospace applications,
the methods in the present thesis are very suited. However, these methods are not limited to such
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cases only, but are quite general and can be applied to a variety of practical problems. They are
particularly useful when the information on uncertainties is available in the form of tolerances or
bounds. For practical applications involving FEAs, a combination of the efficient Parallel Comput-
ing scheme and the uncertainty-based techniques developed in the present thesis is strongly recom-
mended.

8.2.1 Enhanced Anti-optimization

In case of problems with highly nonlinear and largely fluctuating uncertainties, most other tech-
niques suffer from slow convergence. For such problems, if sensitivities are available inexpensively,
use of the Enhanced anti-optimization is recommended here. For the problems involving computa-
tionally expensive FEAs, this technique is not recommended unless enough computational power is
available. This depends, among others, on the number of design variables and/or uncertainties.

8.2.2 Cycle-based Alternating Anti-optimization

This technique is more efficient in terms of overall number of response evaluations as compared
to other techniques studied in the present thesis and is therefore recommended in general. In case
of non-convexities, however, it may suffer from slower convergence. Combining the asymptotic
method, which uses derivatives, with the Cycle-based technique can partially overcome this problem.
This technique is particularly recommended when very limited computing power is available with
respect to the problem size and if the response evaluation involves expensive FEA.

8.2.3 Combined Response Surface-based anti-optimization

Use of CRS for design variables and uncertainties makes implementation very easy and flexible.
However, a higher order response surface may be required if the response as a function of the design
variables and/or the uncertainties is highly nonlinear. This may limit its use to small scale problems.
Alternatively, it may become inefficient for problems with a large number of design variables and/or
uncertainties, due to the so called ‘dimensionality curse’. For most problems with a small number
of design variables and/or uncertainties, this technique is highly recommended.

8.3 Future work

Further study will be carried out with the Cycle-based and the CRS-based anti-optimization tech-
nique. The Cycle-based technique combined with the asymptotic method can be studied further
on the basis of a practical problem involving FEA, for which sensitivities are easily and cheaply
available. The CRS technique can be exploited further to include sensitivities, a database technique
and Parallel Computing. It could be studied further on the basis of practical applications. The ap-
plications studied in the present thesis, such as piezoelectric device, microgripper and embedded
measurement structure, can be further investigated by adding more design variables, uncertainties
and constraints, which were otherwise excluded based on preliminary studies and owing to the prac-
tical limitations, such as, limited computing power and unavailability of derivatives.

Additionally, some practical tools such as, a mechanism to check convexity or nonconvexity
w.r.t. uncertainties, could be implemented in the current framework. This early stage information
could help to choose the best optimization technique. For example, for convex uncertainties vertex
checking would be sufficient. Techniques studied in the present thesis can be extended further to
include additional information such as distributions based on limited data or data at intermediate
intervals within the bounds.
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Summary

These days most of the design problems for practical applications involve uncertainties. Some of
these uncertainties are of reducible nature and can be influenced by the designer to some extent.
Other types of uncertainties are inherent or irreducible. The methods to tackle various types of
uncertainties can be classified mainly in three different ways, namely probabilistic approach, fuzzy-
sets-based approach, and the anti-optimization. Probabilistic techniques have been developed mainly
to deal with random uncertainties described using statistical distributions, fuzzy-sets-based tech-
niques originated from the vague or qualitative description of uncertainties, and anti-optimization
is developed to tackle bounded uncertainties. In the present thesis, uncertainties considered are of
Bounded-But-Unknwon (BBU) type, i.e., uncertainties are specified with tolerances or bounds on
them and exact distribution within the bounds is unknown. The anti-optimization technique looks at
the worst case scenario for the responses. It consist of performing numerical searches for the combi-
nation of uncertainties, which yields the worst response for a given design and a particular response
function. The anti-optimization technique from literature assumes that uncertainties are of convex
nature. The anti-optimization technique using vertex checking is computationaily efficient, but lim-
its its application to convexity in terms of uncertainties. In the present thesis, the anti-optimization
technique is generalized such that convexity and nonconvexity in the uncertainties can be handled
easily.

The methods developed in the present thesis rely on use of response surface approximations. The
Multipoint Approximation Method (MAM), which is based on response surface approximations,
is used as a basis here. The MAM is based on solving a sequence of approximate optimization
problems. Each individual approximate optimization problem involves a mathematical programming
problem using computationally inexpensive explicit functions for responses. This may result in a
substantial reduction of overall computational costs in case of problems involving computationally
expensive Finite Element Analysis (FEA).

The generalized anti-optimization technique developed in the present thesis, consists of a two-
level optimization approach, where anti-optimization for each of the constraints is carried out for
every design within the main optimization. This generalized or Rigorous anti-optimization technique
can deal with large and non-convex uncertainties safely. However, it requires a large number of
computationally expensive function evaluations. In the present thesis, the Rigorous anti-optimization
technique is enhanced to improve the computational efficiency by using sensitivities, a database
technique and Parallel Computing. Additionally, alternative approaches, which can avoid two level
optimizations but can tackle non-convex uncertainties as well, are studied in the present thesis. This
includes Cycle-based alternating anti-optimization and Combined Response Surface (CRS) based
anti-optimization technique. The methods are studied on the basis of test examples and applied
to practical applications. The practical applications studied in the present thesis, include a car deck
floor of a ferry, an embedded measurement structure from MEMS, a piezoelectric energy reclamation
MEMS device, and a Shape Memory Alloy (SMA) microgripper.

The Enhanced anti-optimization technique developed in the present thesis uses, sensitivity in-
formation to construct Gradient Enhanced Response Surfaces. This has resulted in substantially
reduction of the overall number of function evaluations making the technique computationally very
efficient. Alternately, this incorporation of sensitivities improves the quality of the response sur-
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face approximations thus improving the convergence. Secondly, a database technique is developed,
which is used here to predict good starting points for anti-optimizations. In this, the worst sets of
uncertainties obtained by the anti-optimizations from previous cycles are stored in a database. When
there is enough data available in the database, it is used for estimating good starting points for the
anti-optimizations. Use of the database technique has improved significantly the overall compu-
tational efficiency of the technique. In case of practical applications, where response evaluation is
carried out using, .g., FEA, even with these improvements the anti-optimization technique becomes
impractical. Here, a cluster of fast computers is utilized for evaluating expensive FEAs in parallel.
A Parallel Computing framework based on PYTHON programming language is used here. Use of
Parallel Computing to evaluate expensive function evaluations has significantly improved the overall
computational efficiency of the technique. The technique is applied to practical applications such as,
a car deck floor of ferry and an embedded measurement structure from MEMS.

In the Cycle-based alternating anti-optimization technique developed in the present thesis, in-
stead of nesting anti-optimization within the main optimization, main and anti-optimization are car-
ried out alternately. This technique is inspired from the Lombardi-Haftka approach. In this tech-
nique, anti-optimization is carried out only at the sub-optimal point, i.e. the point obtained at the
end of each cycle of the main optimization. This Cycle-based technique is very computationally
efficient as compared to the Enhanced anti-optimization. The uncertainty-based design optimization
of a piezoelectric energy reclamation device is carried out successfully using the Cycle-based tech-
nique. In the present thesis, a Nested Parallel Computing scheme is developed to exploit efficient
use of available computing power. The Nested Parallel Computing combined with the Cycle-based
alternating anti-optimization technique provides a very computationally efficient technique. The
combined technique is successfully applied to a SMA microgripper problem.

Finally, a CRS-based anti-optimization technique is developed in the present thesis and studied
on the basis of a piezoelectric energy reclamation MEMS device. In this, a CRS for design variables
as well as uncertainties is used as a basis for the anti-optimization. This technique is quite flexible in
dealing with both convex as well as non-convex uncertainties due to the underlying simplicity and
ease in implementation of the technique. Like most other response surface based techniques, the
method suffers from the ‘curse of dimensionality’ with the increase in design variables and uncer-
tainties.
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Samenvatting

De meeste ontwerpproblemen in de hedendaagse praktijk gaan gepaard met onzekerheden. Som-
mige van deze onzekerheden kunnen tot op zekere hoogte door de ontwerper verminderd of verme-
den worden. Andere onzekerheden zijn inherent aan het beschouwde probleem en laten zich niet
inperken. De methoden om te gaan niet de verscheidene onzekerheden kunnen ingedeeld worden in
drie categorign, te weten de kansrekening-gebaseerde methoden, de zogenaamde ‘fuzzy sets’ tech-
nieken en anti-optimalisatie. Kansrekening - gebaseerde methoden zijn in hoofdzaak ontwikkeld
voor toepassingen waar onzekerheden beschreven kunnen worden in termen van kansverdelingen
afgeleid van statistieken. Fuzzy sets technieken hebben hun oorsprong in een vage of kwalitatieve
beschrijving van onzekerheden. Anti-optimalisatie, is ontwikkeld voor het omgaan met begrensde
onzekerheden waarover verder niet veel bekend is. In dit proefschrift worden onzekerheden beschouwd
als behorend tot deze laatste categorie, de zogenaamde “"Bounded-But-Unknown” (BBU) onzeker-
heden. Dit wil zeggen dat de onzekere grootheden slechts gekarakteriseerd worden door toleranties
of grenzen, en hun statistische verdeling binnen die grenzen is onbekend. De anti-optimalisatie tech-
niek richt zich op het slechtste geval (worst case) voor het beschouwde probleem. Het uitgangspunt
is om numeriek te zoeken naar die combinatie van onzekerheden, die resulteert in de slechtste sit-
uatie voor een gegeven ontwerp en een gegeven resultaatwaarde. De anti-optimalisatie methode uit
de literatuur gaat ervan uit dat de onzekerheden zich convex gedragen. Anti-optimalisatie via de
zogenaamde "vertex checking” methode is numeriek efficiént, maar de toepassing van deze meth-
ode beperkt zich tot problemen waar de onzekerheden inderdaad convex zijn. In dit proefschrift
wordt de gangbare anti-optimalisatie methode gegeneraliseerd, zodat zowel met convexiteit als niet-
convexiteit in de onzekerheden eenvoudig omgegaan kan worden.

De methoden die in dit proefschrift beschreven worden zijn gebaseerd op het gebruik van be-
naderingen van de resultaatwaarden, de zogenaamde response surface benaderingen. De zoge-
naamde Multipoint Approximation Method (MAM), tevens gebaseerd op response surface benaderin-
gen, wordt gebruikt voor het uitvoeren van de optimalisatie. De MAM is gebaseerd op het oplossen
van een opeenvolgende serie van benaderende optimalisatieproblemen. Elk afzonderlijk benaderend
optimalisatieprobleem maakt gebruik van resultaatfuncties beschreven met eenvoudige expliciete
wiskundige formules. Deze aanpak leidt tot een aanzienlijke reductie van de totale benodigde reken-
tijd in het geval van problemen met rekenintensieve modellen, zoals eindige elementen analyses
(EEA).

De gegeneraliseerde anti-optimalisatic methode omschreven in dit proefschrift bestaat uit een
optimalisatie op twee niveau’s, waarbij anti-optimalisatic wordt toegepast voor elke beperkende
voorwaarde voor ieder ontwerp binnen het hoofd-optimalisatie probleem. Deze gegeneraliseerde
of Rigoreuze anti-optimalisatie techniek kan veilig omgaan met grote en niet-convexe onzekerhe-
den. Echter, het benodigde aantal rekenintensieve functie-evaluaties is groot. In dit proefschrift
wordt de Rigoreuze anti-optimalisatie methode uitgebreid met het gebruik van ontwerpafgeleiden,
een database en parallelle rekenmethode, om zodoende de rekenkundige efficiéntie te vergroten.
Daarnaast worden in dit proefschrift ook alternatieve benaderingen bestudeerd, waarbij de opti-
malisatie op twee niveau’s vermeden kan worden, maar welke toch in staat zijn om te gaan met
niet-convexe onzekerheden. Deze technieken omvatten de Cyclus-gebaseerde alternerende anti-
optimalisatie en de anti-optimalisatie op basis van een Gecombineerd Response Surface (GRS).
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Deze methoden worden bestudeerd op basis van testvoorbeelden, en toegepast op praktische prob-
lemen. De praktijktoepassingen die in dit proefschrift gebruikt worden omvatten onder meer een
vloerconstructie voor het parkeerdek van een veerboot, een geintegreerde rekmeetstructuur voor ge-
bruik in microsystemen, een micro-elektro-mechanisch piézo-elektrisch energie-winnings systeem,
en een microgripper gemaakt van geheugenmetaal.

De in dit proefschrift ontwikkelde Verrijkre anti-optimalisatie techniek maakt in de eerste plaats
gebruik van ontwerpafgeleiden voor het construeren van zogenaamde Gradient Enhanced Response
Surfaces. Dit heeft geresulteerd in een aanzienlijke reductie van het totaal aantal functie-evaluaties,
en dit maakt deze methode zeer efficiént. Anderszijds verbetert het gebruik van ontwerpafgelei-
den de kwaliteit van de response surface benaderingen, wat resulteert in verbeterd convergentiege-
drag. Ten tweede wordt ook een database-techniek toegepast voor het voorspellen van geschikte
startpunten voor de anti-optimalisatie. Hierbij worden de slechtste combinaties van onzekerheden
uit voorgaande stappen opgeslagen in een database. Wanneer voldoende informatie is verzameld,
kan deze gebruikt worden voor het genereren van goede startpunten voor de anti-optimalisatie. De
rekenkundige efficiéntie van de totale methode is significant verbeterd dankzij het gebruik van deze
database-techniek. Echter, in het geval van praktische toepassingen waarbij de functie-evaluaties
gedaan worden via rekenintensieve modellen, zoals bijvoorbeeld EEA, blijkt dat zelfs met deze ver-
beteringen de anti-optimalisatie methode niet direct bruikbaar is. In deze situatic worden daarom
tevens parallele rekentechnieken toegepast op een cluster van krachtige computers, om de reken-
intensieve EEA modellen parallel te kunnen evalueren. Hierbij wordt gebruik gemaakt van een
besturingsprogramma voor parallel rekenen geschreven in de PYTHON programmeertaal. Met be-
hulp van deze parallele rekenmethoden is de totale benodigde rekentijd voor anti-optimalisatie van
problemen met rekenintensieve modellen significant verminderd. De effectiviteit van deze methode
wordt in dit proefschrift geillustreerd aan de hand van een aantal praktische voorbeelden, onder meer
de genoemde vloerconstructie voor het parkeerdek van een veerboot en de geintegreerde rekmeet-
structuur voor gebruik in microsystemen.

Bij de in dit proefschrift beschreven Cyclus-gebaseerde alternerende anti-optimalisatie methode
worden de hoofd- en anti-optimalisatie om en om uitgevoerd, in plaats van de anti-optimalisatie te
nesten in de hoofd-optimalisatic. Deze techniek is geinspireerd op de Lombardi-Haftka methode.
In deze Cyclus-gebaseerde methode wordt de anti-optimalisatie slechts uitgevoerd voor ieder sub-
optimaal ontwerp, dat wil zeggen het ontwerp dat gevonden wordt aan het eind van elke cyclus van
de hoofd-optimalisatie. Deze techniek biedt in verhouding tot de Verrijkte anti-optimalisatie een
nog verdere verbetering van de rekenkundige efficiéntie. De optimalisatie van het micro-elektro-
mechanisch pi€zo-elektrisch energie-winnings systeem onder onzekerheden is met succes uitgevo-
erd volgens deze methode. In dit proefschrift wordt tevens een geneste parallelle rekenmethode on-
twikkeld om, in combinatie met de genoemde Cyclus-gebaseerde alternerende anti-optimalisatie, de
beschikbare rekenkracht zo goed mogelijk te benutten. Hierdoor ontstaat een zeer efficiénte gecom-
bineerde methode, die met succes is toegepast voor het ontwerpen van een microgripper gemaakt
van geheugenmetaal.

Tenslotte wordt in dit proefschrift ook een anti-optimalisatie methode op basis van een Gecombi-
neerd Response Surface (GRS) uitgewerkt, en deze wordt ge&valueerd via toepassing op het ontwerp
van een micro-elektro-mechanisch piézo-elektrisch energie-winnings systeem. Hierbij wordt een
GRS opgesteld voor zowel ontwerpvariabelen als onzekerheden en gebruikt in de anti-optimalisatie.
Deze methode kan omgaan met zowel convexe als niet-convexe onzekerheden, en blijkt relatief een-
voudig te implementeren. Echter, zoals de meeste andere response surface methoden is ook deze
techniek niet immuun voor de zogenaamde ‘curse of dimensionality’ - de vloek der dimensies. Dit
houdt in dat met het toenemen van het aantal ontwerpvariabelen en onzekerheden de benodigde
rekeninspanning tevens zeer sterk toeneemt,
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