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Semi-Supervised Integrated Learning of
Mutational Signatures for Predicting DNA Repair

Pathway Deficiencies
Tommaso Tofacchi∗, Sander Goossens∗, and Joana Gonçalves∗

∗ Pattern Recognition and Bioinformatics, EEMCS Faculty, Delft University of Technology, Netherlands

Abstract—Motivation. DNA molecules mutate thousands of times every day. Some mutations are harmful to human cells, and may
lead to the loss of function in important genes involved in DNA damage repair (DDR) mechanisms. Diseases such as tumors can
exploit mutations in important, driver DDR genes to rapidly proliferate. Specific patterns of mutations (or signatures) are insightful
indicators for the presence of DDR malfunctioning, which can be exploited to provide targeted treatment (e.g., by leveraging synthetic
lethalities). Different methods have been developed to successfully extract relevant mutational signatures from the genomes of tumor
patients. Most approaches are unsupervised and thus do not optimize toward distinguishing DDR deficiencies (DDRd). Supervised
approaches achieve this, but rely on labeled in vitro data from tumor cell line genomes during training, due to the lack of DDRd ground
truth for tumor patient genomes. Semi-supervised learning could bridge the gap and jointly exploit labeled cell line and unlabeled
patient mutation profiles to generalize to patient tumors and provide more clinically relevant DDRd mutational signatures.
Results. We propose Pseudo-labeling Semi-Supervised NMF (PSS-NMF), a novel integrated signature extraction and label prediction
method, which extends supervised non-negative matrix factorization (NMF) with the ability to incorporate unlabeled samples into the
training via pseudo-labeling. Models learned using PSS-NMF were benchmarked on two different tasks, cancer type and DDRd
prediction. PSS-NMF consistently improved prediction for patient tumors over the supervised NMF baseline for both tasks, learning
signatures that better transferred to the patient tumor domain: the models achieved Macro F1-scores of 0.3842 and 0.1331 respectively
for cancer type prediction, and 0.4928 vs 0.4704 for DDRd prediction. We further validated that PSS-NMF identified DDRd signatures
were biologically relevant, by comparing them to known DDRd-related mutational signatures curated in COSMIC and investigating their
exposures in patient tumor genomes.

✦

1 INTRODUCTION

DNA is located in the nuclei of cells and is organized
into two connected strands of complementary bases, which
encode the instructions required to correctly synthesize and
regulate proteins. During the life cycle of a cell, DNA can be
subjected to damage caused by exogenous or endogenous
factors at a rate of 1̃0.000 occurrences per day [1]. DNA
base sequences that deviate from their regular structures
are referred to as mutations. Mutations can be either driver
or passenger: the former are non-silent, loss of function, or
deleterious mutations that specifically affect driver genes
for cancers; the latter comprise all mutations that do not
affect driver genes. To detect and correct mutations, cells
employ multiple DNA damage repair (DDR) mechanisms,
each targeting distinct types of mutations [2]. To function,
DDR mechanisms rely on the expression of specific genes. If
genomic mutations happen in regions of the DNA relevant
to the codification of such genes, DDR mechanisms can be
affected and prevented from functioning optimally, leading
to the further spreading of undetected mutations.

Detecting malfunctioning DDR mechanisms is crucial
for limiting damages associated with the proliferation of
genomic instabilities, including those involved in cancer.
The direct correction of such malfunctioning behaviors is
not possible with currently available medical therapies.
However, knowledge of DDRd status in patient tumors
can be used for treatment indication using tailored DDR-

targeting therapies, including those exploiting known syn-
thetic lethalities [3]. A common approach entails identifying
the presence of driver mutations in genes that regulate
DNA repair mechanisms [4]. However, these methods are
limited by the knowledge of the genes involved in the
various DDR pathways, which is incomplete, and gene loss
of function can happen indirectly via other processes that
are more difficult to uncover. DDR deficiencies (DDRd) also
leave specific patterns of passenger mutations in the DNA
according to which repair mechanism is affected. DDRd in
human genomes can thus be predicted by checking for the
presence of such mutation patterns (or mutational signatures),
without the need to know the exact genes involved.

1.1 Mutational signature extraction methods

Multiple methods have been developed to extract muta-
tional signatures from genomes. Such techniques factorize
the mutational profiles (tabular representation of the fre-
quencies of occurrence of different mutation types occurring
in genomes) into two matrices: a signature matrix capturing
a series of mutation patterns (or mutational signatures), and
an exposure matrix weighting the contribution of each sig-
nature towards the profile of each genome (their exposures
to the extracted mutational signatures).

Unsupervised matrix decomposition. The most success-
ful approaches rely on non-negative matrix factorization
(NMF), a matrix decomposition technique that imposes a
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positivity constraint on the entries of the product matrices.
The non-negativity requirement facilitates the biological in-
terpretation of results, since signatures can be interpreted as
linear (additive) combinations of probability of occurrences
of different mutation types, whereas genome mutation pro-
files are the result of a linear (additive) mixture of signatures
weighed by the corresponding exposures.

Unsupervised NMF signature extraction methods have
been effective in finding patterns that can be used to predict
DDR deficiencies in genomes [5], [6]. However, unsuper-
vised signature learning focuses on latent patterns while ig-
noring existing knowledge of the DDRd status of genomes.
As a result, the extracted signatures are not optimized to
specifically discern signals from DDR deficiencies [7].

Supervised matrix decomposition. By treating the exposure
matrix as the input to a prediction model and jointly opti-
mizing mutation profile decomposition and classification, a
label-informed (integrated) supervised version of NMF can
learn mutational signatures that more effectively capture
and discriminate between DDRd patterns. One limitation
of supervised methods is the scarce availability of labeled
genomes with known DDR status. Supervised NMF (S-
NMF) [8] tackles the issue by resorting to in vitro cell lines
with induced gene knockouts. Inhibiting the expression of
genes that relate to specific DDR pathways results in mu-
tation profiles obtained from specific known DDRd, which
can serve as labeled data for the training of S-NMF.

Lab-grown cells can only partially simulate the com-
plexity of human (in vivo) cells, as their DNA was exposed
just to a specific set of alterations. Conversely, human cells
accumulate mutations from endogenous and exogenous
processes over multiple years, resulting in more convoluted
mutational profiles [9]. The mutational signatures solely
learned from in vitro samples may fail to correctly capture
the mutational burden left by DDRd on patient genomes,
limiting their clinical applications.

The main limitations of existing DDRd prediction mod-
els are twofold: non-integrated and unsupervised ap-
proaches lack discrimination for DDRd specific signatures;
integrated supervised approaches suffer from limited gen-
eralizability to tumor patient data due to exclusive training
on in vitro cell line samples. We aim to develop a semi-
supervised model that can learn jointly from labeled cell
line data and unlabeled patients’ genomes, to maximize
the discriminability of the extracted mutational signatures
as well as their generalizability as predictors of DDRd in
patient genomes.

1.2 Pseudo-labeling Semi-Supervised NMF

To address the gap in literature, we first introduce Semi-
Supervised NMF (SS-NMF), a learning procedure where
both labeled and unlabeled samples are used for matrix
decomposition, but only labeled samples contribute to the
classification optimization [10], [11].

To further bridge the generalizability between cell
line and tumor data, we propose Pseudo-labeling Semi-
Supervised NMF (PSS-NMF) as an extension of SS-NMF.
Pseudo-labeling is a semi-supervised learning technique
that aims to exploit the latent information contained in
unlabeled samples to improve the training of a prediction

Fig. 1: PSS-NMF components organized in the matrix factor-
ization and label prediction pipeline. X in red is the input
matrix; E in blue is the exposure matrix; S in orange is the
signature matrix; l in gray is the auxiliary label vector; W
in yellow are the multinomial regressor’s weights; Ŷ and
Y in green are respectively the predicted and ground truth
labels. Darker colors in X , E, l, Ŷ and Y indicate entries
related to labeled samples; diagonal stripes indicate entries
related to pseudo-labeled samples; lighter colors indicate
entries related to unlabeled samples.

model. It achieves so by incorporating tumor samples in
the supervised training procedure using their predicted
labels (or pseudo-labels) [12]. By iteratively applying pseudo-
labeling during training, tumor samples are incrementally
included in the computation of the classification loss while
contributing to the integrated factorization of input muta-
tion profiles into exposures and signatures.

The absence of DDRd ground truth for patient tumors
limits the evaluation of (P)SS-NMF’s generalization perfor-
mance. The models are therefore also benchmarked on a
cancer type prediction problem with a dataset composed of
both cell line and patient tumor samples. Cancer type labels
are known for both cell line and tumor samples, enabling an
informative and reliable assessment of the methods.

2 METHODS

PSS-NMF aims to incorporate (labeled) cell line data with
(unlabeled) patient tumor samples in the supervised learn-
ing phase, to improve the generalization ability of the model
when predicting on patient samples.

2.1 PSS-NMF model

PSS-NMF is an extension of supervised NMF (S-NMF) that
further includes unlabeled samples during training as in
traditional semi-supervised NMF methods (see Figure 1).
We add an element of self-supervised pseudo-labeling to
iteratively assign unlabeled data to predicted classes and
incorporate them in the labeled dataset during training.
An original regularization technique that accounts for un-
labeled data in the computation of the classification loss is
proposed as an add-on component to the model.
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2.1.1 PSS-NMF model components and optimization
NMF models encode input data as a matrix X ∈ [0, 1]N×M ,
where N is the number of profiled samples and M is the
number of mutation types used as features. In the experi-
ments hereby conducted, 96 single-base-substitution (SBS)
mutations are considered as features, therefore M = 96 [7].
When considering both labeled and unlabeled data, X =[
XL

XU

]
, where XL ∈ [0, 1]NL×M and XU ∈ [0, 1]NU×M

with NL and NU respectively as the number of labeled
and unlabeled samples. Each xn,m entry in X contains the
probability of mutation m in the profile of sample n.

Annotations for labeled data are encoded in one-hot
vectors and concatenated in YL ∈ {0, 1}NL×O, where O
is the number of output classes. As (P)SS-NMF incorporates
unlabeled data in training, YU ∈ {0}NU×O is constructed so

that Y =

[
YL

YU

]
; otherwise, Y = YL.

To ensure that only labeled entries are utilized for
classification optimization, we provide the auxiliary vector
l ∈ {0, 1}N . Entries ln in l take value 1 if the associated
mutation profile xn,∗ ∈ XL, or 0 if xn,∗ ∈ XU , where xn,∗
indicates the mutation profile for a sample n.

Matrix factorization. Mutation profiles in X are approx-
imated by the product of the exposure matrix E ∈ [0, 1]N×K

and the signature matrix S ∈ [0, 1]K×M , where K is the
chosen fixed number of mutational signatures to be found.

X ≈ ES

Non-negative matrix factorization (NMF) [7], [13] is used
to extract E and S. Update rules for the matrices entries
are derived by optimizing the matrix reconstruction error
measured using the Frobenius loss Lr (eq. 1).

Lr = ||X −ES||2F (1)

Label prediction. The prediction of sample classes is
performed with a multinomial regression component. A
function is learned so that the exposure vectors of samples
are mapped to one of the O available output classes. The
multinomial regression is performed as a linear combination
of entries in E with the weight matrix W ∈ RK×O ; a total
of O prediction values are obtained for every sample, and
their softmax is taken to obtain class prediction probabilities
Ŷ ∈ {0, 1}N×O (eq. 2). Finally, samples are classified to the
class predicted with the highest probability.

Ŷ = softmax(EW ) (2)

The class label prediction is optimized via minimization of
the classification loss Lc, a categorical cross-entropy loss that
quantifies the errors in class prediction (eq. 3).

Lc = −
N∑

n=1

O∑
o=1

lnyn,o log ŷn,o + λL2

∑
w∈W

w2 (3)

In the categorical cross-entropy loss, ln denotes entries in the
l auxiliary vector. The indicator l ensures that only labeled
data from XL are considered for classification optimization,
since semi-supervised NMF models also include unlabeled
samples in the input matrix X . An L2 regularization term is
added to mitigate overfitting on training data, with its effect
controlled by hyperparameter λL2 [14].

Model optimization. The total loss for integrated NMF
models is computed as the sum of the reconstruction and
classification losses, as in eq. 4

LTot = Lr + λcLc (4)

Hyperparameter λc (classification strength) controls the
weight of the classification loss in the total loss.

Components of NMF models are optimized using the
following iterative updates to accomplish gradient descent
on LTot (eqs. 5, 6, and 7; derivations of the update formulas
at time t+ 1 in Appendix A):

St+1 = St ⊙
ET

t X

ET
t EtSt

(5)

Et+1 = Et ⊙
XST

t − λc

2 lt(Ŷt − Y )W T
t

EtStST
t

(6)

Wt+1 = Wt − µW [ET
t lt(Ŷt − Y ) + 2λL2Wt] (7)

In the update formula for W (eq. 7), µW is the constant
learning rate for the prediction component. Division and
dot-multiplication in the formulas are applied element-wise.

2.1.2 Procedures
Pseudo-labeling. Pseudo-labeling is a self-learning tech-
nique in which a model iteratively predicts potential labels
(pseudo-labels) for unlabeled samples and incrementally adds
them to the labeled set XL. During training, PSS-NMF
predictions on unlabeled data are analyzed and samples
are assigned to the most probable pseudo-labeled class [15]
according to the two criteria of confidence and balance, follow-
ing the pseudo-labeling procedure outlined in Algorithm 1.

Algorithm 1: Pseudo-labeling procedure

Input: Ŷ , l, O, ct
Output: Y , l

1 Ppool = {ŷn,∗ ∈ Ŷ | ln = 0 ∧ max(ŷn,∗) ≥ ct}
2 if ∃ o ∈ O s.t. |Ppool∗,o | = 0 then
3 return Y , l

4 NPmin = min(|Ppool∗,o | ∀ o ∈ O)

5 NPmin =
NPmin

2
6 for o ∈ O do
7 for ŷs,o ∈ rand sample(Ppool∗,o, NPmin) do
8 Ys,o = 1
9 ls = 1

10 return Y , l

The confidence criterion is applied in line 1 to construct
an initial pool of pseudo-labeling candidate samples Ppool

out of the unlabeled samples that are inferred with a pre-
dicted class probability larger than a given confidence thresh-
old ct [16]. Enforcing a confidence threshold on pseudo-
labeling candidates can mitigate the model’s supervised
learning from being affected by pseudo-labels assigned to
samples predicted with low class probabilities, which are
characterized by greater uncertainty. However, excessively
large ct values restrict the pseudo-labeling pool to a subset
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of few very confidently predicted samples. If incorrectly
predicted samples from Ppool are added to the labeled set,
model component updates will further propagate the erro-
neous behavior to subsequent predictions, resulting in an
even more restricted next pseudo-labeling pool that contains
more incorrectly predicted samples with increasingly high
confidence (confirmation bias) [17]. Conversely, too low (or
permissive) confidence thresholds enable the model with
a large Ppool of samples predicted with poor class prob-
abilities, hence more prone to being incorrectly classified.
Parameter ct therefore acts as a trade-off between the two
extremes.

Alongside confirmation bias, pseudo-labeling techniques
can lead to class imbalance: an over-/under-representation
of classes among pseudo-labeling candidates. If a model
pseudo-labels samples to a single class (e.g., due to confi-
dent predictions happening only with respect to a single
label), the balance between classes in the resulting labeled
set could be altered, steering the classification loss optimiza-
tion towards the most represented class, and resulting in the
latter influencing the component updates more than other
classes. The criterion applied in lines 2 to 5 addresses class
balance, by ensuring that the pseudo-labeling happens only
if the candidate pool contains the same number of samples
> 0 across all classes - namely the minimum amount of all
classes pseudo-labeling candidates NPmin

. The division-by-
2 factor on NPmin

allows pseudo-labeling to gradually be
executed over epochs, providing a logarithmic inclusion of
pseudo-labeled data in the labeled set during training.

According to the confidence and balance criteria, NPmin

candidate samples per class are finally pseudo-labeled. The
process is described in lines 6-9: for every class, NPmin

samples are randomly selected from the class-predicted can-
didates in Ppool and a hard label (i.e., a one-hot vector) for its
predicted class is produced by updating Y accordingly [15].
The corresponding entries in l are set to 1, so that the new
pseudo-labels can be considered for the computation of the
classification loss Lc.

Unlabeled regularization. In the semi-supervised learn-
ing setting, it is important to acknowledge the difference
in sources between labeled cell lines and unlabeled patient
tumor samples, as they may originate from distinct data dis-
tributions - the DDRd prediction generalization problem is
an example of it. Despite mapping to the same target classes,
samples from the labeled and unlabeled set may exhibit
different distributions in the input space that can prevent the
correct domain adaptation when applying pseudo-labeling
after supervised training [18]. To address the issue, many
pseudo-labeling techniques implement open-set approaches
that treat the classes of the unlabeled set separately from the
labeled set [19], [20]. A common methodology among these
considers all the unlabeled data as part of an additional
unlabeled data class ou added to the output set of classes
O [21].

To promote domain translation from labeled to unla-
beled data, a regularization approach is proposed as an
additional component for semi-supervised NMF models,
named unlabeled regularization (U.R.). It is inspired by the
dustbin class approach presented in [22], with a key novel
difference. In the mentioned dustbin class approach, all
unlabeled data is classified as part of an additional class

ou, and their optimization for the classification loss function
is computed towards it. However, this formulation stems
from the assumption that unlabeled data has a negligible
probability of containing supervised samples, which is not
the case when dealing with tumor patients’ genomes and
DDRd. With U.R., unlabeled data that is not yet pseudo-
labeled contributes to the computation of the classification
loss Lc by optimizing towards the 0-labeled class in YU .

The 0-labeled class effectively serves as a separate addi-
tional class for unlabeled data, which guides the model to
become less confident in its predictions. When optimizing
towards the 0 class, we are reducing the probability of
prediction for an unlabeled sample towards any of the one-
hot encoded classes. For such and for our initial proposition
of 0 labels for the unlabeled data target vector YU , the
classification loss under U.R. is trivialized to the traditional
cross-entropy loss in eq. 8.

LcU.R.
= −

N∑
n=1

O∑
o=1

yn,o log ŷn,o + λL2

∑
w∈W

w2 (8)

After every training iteration, the unlabeled data’s prob-
ability prediction for any one-hot class is actively encour-
aged to be smaller. At the following iteration of training,
the model can further leverage the knowledge incorporated
with newly pseudo-labeled samples when predicting again
the unlabeled profiles.

2.1.3 Training & testing of integrated NMF models
Training. The training procedure of integrated NMF models
(SNMF, SS-NMF, PSS-NMF) is split into two steps.

In the first step, 10 independent runs are executed in
parallel. For each run, S, E and W are initialized to a dif-
ferent set of random values. The model components are then
iteratively updated according to the corresponding update
rules (eq. 5, 6, 7). When the total loss LTot converges (i.e., for
two consecutive epochs the difference in total loss remains
under a given threshold), PSS-NMF performs the pseudo-
labeling routine at the following training epoch. The model
is then optimized accounting for the new labeled set, and a
new pseudo-labeling procedure is executed at the following
LTot convergence. After ensuring that a minimum amount
of epochs has elapsed for all the runs, reaching a training
stoppage checkpoint epoch, and reporting LTot convergence,
the first training step is concluded.

In the second step of training, the set of 10 S matrices
is collected and processed. Since every independent run
can produce a different S due to random initialization,
clustering techniques are used to ensure that a unique
Sclustered ∈ [0, 1]K×M is computed as a consensus of the
results from all runs. The set of signature matrices of K mu-
tational signatures each are partitioned via a variation of K-
means clustering [7], where each resulting cluster contains
a signature from each of the runs, and the final signatures in
Sclustered are the centroids of the K clusters. Finally, Eclustered

and W clustered are calculated by fixing Sclustered, setting λc = 0
and refitting to the input matrix X .

Testing. Integrated NMF models first compute an ex-
posure matrix ETest for the new test data XTest, then use
it together with the previously found W clustered to predict
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the sample output labels. To obtain ETest, the non-negative
least squares algorithm (NNLS) [23] with fixed Sclustered and
XTest is used. Ŷ Test is computed as in Section 2.1.1: for each
sample the class with the highest probability determines the
final predicted label.

2.2 Evaluation

For DDRd prediction, the aim of using PSS-NMF and SS-
NMF is to improve the generalization of DDRd predictions
for patient tumors by incorporating mutation profiles of
tumor genomes into the training. However, the absence of
ground truth labels for tumors presents as a challenge to
analyze model performance. Alternatively, we first evaluate
the generalizability of the integrated NMF methods on
the prediction of cancer types from mutational profiles. In
contrast to DDRd prediction, the ground truth cancer type
labels are known for both cell lines and patient tumors.
PSS-NMF was benchmarked on the described experiments
against S-NMF and SS-NMF models, according to signature
stability, prediction accuracy and macro F1-score.

2.2.1 Cancer type prediction data

Cell line samples were sourced from the Cancer Cell Line
Encyclopedia (CCLE) database [24], containing 1864 tumor-
derived cell lines spanning 181 cancer types. Unlabeled
patient tumor samples were collected from The Cancer
Genome Atlas (TCGA) [25], containing over 20.000 se-
quenced genomes from oncological patients across 33 dif-
ferent cancer types.

To select the target cancer types, we first kept only those
overlapping between the CCLE and TCGA datasets. We
further refined the list by considering only cancer types
with at least 15 CCLE samples and 400 TCGA samples.
Next, we compared the cosine similarities for each cancer
type average mutational profile across the two datasets. As
4 clusters of cosine similar tumor profiles emerged for both
the CCLE and TCGA datasets, we select a cancer type per
cluster according to the 4-tuple with the highest total cosine
cross-dissimilarity overlapping the two datasets (for all the
data selection plots and cosine similarity comparisons, see
Appendix B.1).

Resultingly, we used 35 tumor cell lines from bladder
(BLCA), 79 lung (LUAD), 16 skin (SKCM), and 24 uterine
(UCEC) as labeled samples in the cancer type prediction
task. As unlabeled samples, we considered a total of 441
BLCA, 513 LUAD, 466 SKCM, and 447 UCEC patient
genomes.

2.2.2 DDRd prediction data

We used cell line data from Zou et. al [26], corresponding to
a total of 173 human-induced pluripotent stem-cell samples,
including replicates. Each sample had one of 42 different
induced gene knockouts (KOs). Of the 42 gene KOs, 9 pro-
vided samples with mutational profiles that could be related
to deficiencies in one of 3 different DDR pathways and
were sufficiently distinct from 8 control cell lines: KOs of
genes MSH6, MSH2, MLH1, PMS2, and PMS1 resulted in 23
samples deficient in mismatch repair (MMR); KOs of UNG
and OGG1 in 8 samples deficient in base excision repair

(BER); KOs of EXO1 and RNF168 resulted in 7 samples
deficient in homologous recombination repair (HR).

Tumor patient samples were collected from the TCGA
database. The labels, derived based on driver mutations in
DNA repair genes, were originally provided by Knijnenburg
et al. [27] and obtained from Volkova et al. [28]. According to
the computed variant allele frequency [29], gene mutations
were classified as heterozygous or homozygous, with the
latter corresponding to a high degree of confidence in the
inhibition of a gene [30]. Based on these labels, unlabeled tu-
mor samples for the DDRd prediction experiment could be
further categorized as homozygous, heterozygous, or wild-
type (or not carrying a mutation in DDR genes) genomes.
Across all cancer types, 105 tumor samples were labeled as
uniquely homozygously mutated for genes involved in the
MMR pathway, 36 in the BER pathway, and 96 samples in
the HR pathway. The breakdown of tumor samples with
gene mutation annotations is available in Appendix B.2.

The correlation between the involvement of a gene in
a DDR pathway and its (non-)inhibition in a sample does
not provide confirmation of the presence (or absence) of
a DDRd. Therefore, Volkova’s labels do not represent a
ground truth for the repair status of tumor samples, but
can be treated as indicative for a quantitative evaluation of
predictive performance.

2.2.3 Train and test sets
In both experiments, cell line and tumor patients’ samples
are concatenated in unified datasets. The resulting datasets
are then split into disjoint validation and test sets. The
validation sets comprise 75% of the respective datasets and
are further divided into 3 folds each, which are used to
perform cross-fold validation on the benchmarked models
for hyperparameter selection. The test sets, composed of
the remaining 25% samples, are used to analyze the per-
formance of the models on unseen data for the optimal
hyperparameter configurations found during validation.

To assess the performance of PSS-NMF in different set-
tings of unlabeled data, both experiments are conducted
with varying amounts of TCGA samples. In one version,
the cell line-to-patient data ratio is 2:1 (66.6% labeled cell
line + 33.3% unlabeled TCGA data); in the other, the ratio is
1:1 (50% labeled cell line + 50% unlabeled TCGA data). For
different ratios, the amount of labeled samples is kept the
same; the amount of unlabeled samples varies according to
the ratios, ensuring the same distribution of data.

Cancer type datasets. Validation folds comprise 400 cell
line samples each, equally distributed across the 4 cancer
type classes. Due to the lack of sufficient CCLE mutational
profiles, bootstrapping as in [8] is used to ensure the same
amount of samples per class. TCGA samples are then
uniformly added according to the desired unlabeled data
percentage, to retain balanced classes.

The test set is similarly constructed, with 400 cell lines
and varying balanced amounts of TCGA profiles.

DDRd datasets. Each validation fold was composed
of 400 cell line samples uniformly picked across the 3
DDRd pathways + control profiles (ensuring class balance),
obtained via bootstrapping due to the limited amount of
available cell line data. TCGA samples with homozygous
driver mutations in DDR genes were distributed across the



TOMMASO TOFACCHI 6

3 validation folds according to their respective DDRd labels,
and the remaining spots were filled with heterozygously
mutated and wild-type samples until the desired labeled-
unlabeled data ratio was reached. Human samples were
distributed in equal proportions across validation folds,
despite homozygous mutations’ labels presenting the class
imbalance noted in Section 2.2.2.

The test set comprised 4000 cell line samples, uniformly
distributed across classes and bootstrapped to necessity. A
higher count of cell lines compared to validation folds was
picked for better resolution and consistency when analyzing
the experimental results. For TCGA data, 57 homozygously
mutated samples were included in the test set (27 MMRd-
related, 21 HRd-related, and 9 BERd-related).

2.2.4 Evaluation metrics
As each training of NMF models produces a set of 10
randomly initialized solutions, it is expected that the found
signatures may differ from each other. Nonetheless, a robust
model should be able to consistently identify similar signa-
tures regardless of the pre-train stochasticity. To quantify the
closeness of signatures found across all runs, the metric of
stability is introduced.

Stability =
1

K

K∑
k=1

Silhouette(ClusterK) (9)

Stability is defined as the average silhouette width of
the K clusters of signatures found during training (eq. 9).
Silhouette width (defined as in [31]) ranges from -1 to 1,
with a higher value corresponding to high reproducibility
(i.e., the models’ ability to consistently find a similar set
of signatures in each of the 10 runs). The similarity of two
individual signatures is computed as cosine similarity.

Two different metrics are used to evaluate the methods’
predictive performance. When the evaluation dataset is
balanced (such as with both experiments’ cell line data), the
traditional classification metric of accuracy is considered.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Accuracy directly quantifies the rate of correct class
assignments performed by a model. In eq. 10, TP and TN are
respectively the true positive and true negative counts; FP
and FN are respectively the false positive and false negative
counts.

When dealing with class-imbalanced data (such as with
human samples in DDRd experiments), accuracy is not
suitable. Accuracy assigns equal weight to every prediction,
hence a model could trivially predict all samples to the
single dominant class in a dataset and still achieve a high
score in the metric, due to the severe under-representation of
other classes. To account for class imbalance, Macro-average
(or simply Macro) F1-score is used.

Macro F1-score =
1

O

∑
o∈O

2 · Precisiono · Recallo
Precisiono + Recallo

(11)

Macro F1-score is computed as the per-class arithmetic
mean of the F1-scores achieved by a model, ensuring equal
weight from all classes in the final score regardless of their

differences in size (eq. 11). The F1-score considers both
precision (the ratio of TP over the sum of TP and FP) and
recall (the ratio of TP over the sum of TP and FN) per class,
penalizing models that maximize one at the expense of the
other. A high macro F1-score is therefore indicative of a
model that can provide good predictions across all classes.

2.2.5 Benchmarked models
For the evaluation of PSS-NMF, we benchmarked the model
and its variants against supervised and semi-supervised
NMF for both the cancer type and DDRd prediction tasks.
The following models were used:

• Supervised NMF [8]
• SS-NMF (this paper)
• SS-NMF with U.R. (this paper)
• PSS-NMF (this paper)
• PSS-NMF with U.R. (this paper)

The models were validated by performing cross-
validation on the 3 folds that compose the validation sets.

The best hyperparameter configuration for each model
was chosen as the combination that guaranteed pareto-
optimality [32] for stability and accuracy on cell line data
predictions, enforcing a minimum stability threshold of 0.9.
The stability requirement was imposed to ensure that only
models that could consistently find similar signatures across
multiple runs were selected.

TCGA accuracy, despite being a more apt measure to
quantify model generalizability than cell line accuracy, can-
not be used as a metric for choosing the best-performing hy-
perparameter combination, as labels for unlabeled data are
assumed to be absent. Generally, any metric of prediction
performance on unlabeled data is impossible to determine.

Combinations of K , λc, and λL2 parameters were cross-
validated for S-NMF and SS-NMF in a grid-search manner.
After finding pareto-optimal configurations for the SS-NMF
models, the hyperparameter values were fixed for the re-
spective PSS-NMFs. Multiple confidence thresholds were
then validated on the same prediction and stability metrics
+ pseudo-labeling quality (i.e., number of pseudo-labeled
samples and correctness of the predicted pseudo-labels). All
pareto-optimal plots are available in Appendix C. Finally,
the benchmarked models were trained with their respective
optimal hyperparameter sets on the train sets and evaluated
on the test sets.

3 RESULTS

3.1 Impact of hyperparameters on performance
To perform a quantitative hyperparameter analysis of SS-
NMF and PSS-NMF, we focused on cross-validation per-
formance for the cancer type prediction task with different
proportions of unlabeled samples in the train sets (see
Figure 2).

3.1.1 SS-NMF hyperparameters and performance
We assess median and interquartile range (IQR, 25th to
75th percentile) of performance obtained using each set of
parameters, where a well-performing model should exhibit
high median and low IQRs (variation) for both accuracy and
stability (Figure 2).
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(a) 33% unlabeled data (b) 50% unlabeled data

Fig. 2: Validation results for cancer type prediction. Rows provide aggregation of results for various hyperparameters:
aggregations for K are performed across all runs; aggregations for λc and λL2 are relative to runs with the optimal value
of K ; aggregations for confidence threshold account for optimal hyperparameter configurations of the respective SS-NMF
models and are separated by the others with a dashed line. Columns indicate cell line accuracy, TCGA accuracy, and mean
stability reported across runs.

Unlabeled data proportion affects accuracy and stabil-
ity. A higher proportion of unlabeled samples in the train
set led to an average decrease in IQR for TCGA accuracies
(from 0.117 with 33% unlabeled data to 0.066 with 50%)
and an increase in IQR for stabilities (from 0.089 for 33% to
0.139 for 50%) when considering SS-NMF results with their
optimal number of signatures (see pareto-optimal curves
in Appendix C.1). When training on the dataset with 50%
unlabeled data proportion, TCGA accuracies report a higher
median across validation runs (0.350 for 33% vs 0.399 for
50%), but the median stability decreased (0.914 for 33% vs
0.909 for 50%).

Based on the reported results, more unlabeled samples
lead to higher instability (stability columns 3 and 6 in
Figure 2). It is expected, as higher proportions of unlabeled
data provide a larger pool of samples that can affect the
update of components initially trained only on cell line
profiles, leading to a wider variety of suitable signature
combinations. The TCGA mutation profiles are more con-
voluted than cell lines (as explained in Section 1.1), hence
a larger number of TCGA samples could have a stronger
impact on the decomposition of X into E and S.

The decrease in median stability, however, still retains
acceptable values for the higher unlabeled data proportion
(above the 0.9 stability threshold discussed in Section 2.2.5).
The usage of additional unlabeled data can then be accepted
as it does not lead to excessively unstable models, and it
also brings an increase in generalization ability with higher
median and lower IQR values for TCGA accuracy.

Unlabeled regularization increases variation without
improving median accuracy. The usage of U.R. leads to
higher IQRs in TCGA accuracies (0.158 for U.R. models vs
0.076 for non-U.R.) and stabilities (0.131 vs 0.096 respec-
tively) when considering aggregations of SS-NMF results
for their optimal number of signatures (see pareto-optimal
curves in Appendix C.1). TCGA accuracy reports a higher

median value for non-U.R. models (0.368 for U.R. vs 0.381
for non-U.R.) and the same stability medians at 0.912.

From validation runs, the unlabeled regularization com-
ponent does not contribute to an improvement in model
generalization ability to tumor patient data (TCGA), instead
resulting in a less consistent retrieval of signatures (as
indicated by U.R. models’ higher stability IQRs).

CCLE accuracy is a poor indicator of generalizability.
Semi-supervised models showed minimal variation in terms
of CCLE accuracy. Their performance was stable at around
0.8 CCLE accuracy, with low variability (CCLE accuracy
median = 0.815, IQR = 0.018). Conversely, TCGA accuracy
exhibited more noticeable variation (TCGA accuracy IQR =
0.098), especially when considering the predictions across
the number of signatures (see the top row in Figure 2). It
suggests that CCLE accuracy does not reflect generalization
ability of semi-supervised models to tumor data (TCGA),
nor is indicative of the optimal hyperparameter choice
in this regard. However, resorting to TCGA accuracy for
choosing a model is not applicable, since unlabeled data is
expected to be unannotated in the intended real-world use
cases.

3.1.2 Pseudo-labeling activity analysis
PSS-NMF models were evaluated using multiple confidence
thresholds coupled to the remaining pareto-optimal hyper-
parameter configurations of the baseline SS-NMFs (pareto
plots in Appendix C.1). Pseudo-labeling activity was ana-
lyzed per confidence threshold on the quantity of pseudo-
labeled samples and their pseudo-label correctness. The
hereby analyzed samples account for all pseudo-labeled
tumor mutation profiles (TCGA) over validation folds and
runs (see Figure 3).

Higher unlabeled data proportion correlates to higher
pseudo-labeling activity. When PSS-NMF is trained on the
50% unlabeled data setting, the number of pseudo-labeled
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(a) 33% unlabeled data (b) 50% unlabeled data

Fig. 3: Pseudo-labeling true and false positive counts for
cancer type prediction validation folds with different un-
labeled data proportions, at varying confidence thresholds.
Darker bars correspond to PSS-NMF activity, while lighter
bars to PSS-NMF + U.R. activity. Colors indicate the pseudo-
labeled classes.

samples increases for every confidence threshold compared
to the 33% unlabeled data setting. Specifically, the ratio of
pseudo-labeled samples at 33% unlabeled data over pseudo-
labeled samples at 50% unlabeled data grows according to
a sigmoid curve starting at 5.9 for ct = 0.3 and plateauing
at 251 for ct = 0.5 (for the complete data reporting, see
Table 3 in Appendix C.3). More unlabeled profiles provided
PSS-NMF with a larger pool of potential pseudo-labeling
candidates, increasing the probability of predicting at least
one candidate per class (crucial to satisfy the balance cri-
terion, see Section 2.1.2). Increased pseudo-labeling could
guide the model to be more confident in the predictions on
other unlabeled samples, favoring additional pseudo-label
candidates in the following training epochs. Supporting the
claim, the average PSS-NMF (non-U.R. and U.R. results
combined) prediction probability on TCGA samples for 33%
unlabeled data validation runs was 0.417 (0.399 for SS-
NMFs), whilst for 50% runs it was 0.475 (0.49 for SS-NMFs).
Full prediction probability data is available in Table 4 in
Appendix C.3.

Higher confidence thresholds decrease pseudo-
labeling activity. Larger values of the confidence threshold
parameter result in fewer samples being pseudo-labeled
(see Table 3 in Appendix C.3). Qualitatively, higher con-
fidence thresholds correlate with more accurate pseudo-
labels; however, excessively high ct values lead to a decrease
in pseudo-labeling correctness, following the expectation
presented in Section 2.1.2. ct = 0.4 achieves 0.442 pseudo-
labeling accuracy on average, with decreasing accuracy for
both smaller and larger ct values: the lowest ct = 0.3
and the highest ct = 0.6 respectively achieve 0.357 and
0.379 pseudo-labeling accuracy. For the complete results, see
Table 4 in Appendix C.3.

Unlabeled regularization decreases pseudo-labeling
activity. Unlabeled regularization had a strong negative
impact on the pseudo-labeling process according to the
validation runs, resulting in the pseudo-labeling of fewer
samples. This is apparent in Figure 3 when comparing the

lighter bars of U.R. models (49516 pseudo-labeled sam-
ples in total) to darker bars of non-U.R. models (31648
pseudo-labeled samples), coupled with a decrease in av-
erage pseudo-labeling precision (0.329 for U.R. models vs
0.447 for non-U.R. models).

Non-U.R. models exhibited higher pseudo-labeling ac-
tivity for higher unlabeled data percentages compared to
U.R. models. Moreover, a larger unlabeled data proportion
in the train set enabled PSS-NMF to focus more on optimiz-
ing the loss toward tumor patient samples, instead of cell
line profiles (as analyzed in Section 3.1.1).

3.2 Final (P)SS-NMF test set performance

3.2.1 (P)SS-NMF improve cell line, patient tumor prediction

We finally assessed test set performance of PSS-NMF on
the cancer type and DDRd prediction tasks using only non-
U.R. models with 50% unlabeled data in the corresponding
train set, given that these showed superior validation per-
formance.

Cancer type prediction. SS-NMF and PSS-NMF per-
formed better than S-NMF on TCGA data, respectively with
0.3635, 0.3842, and 0.1331 macro F1-scores (Table 1, left).

Supervised NMF (S-NMF) demonstrated a prediction
bias for patient data towards the LUAD class, which SS-
NMF and PSS-NMF mitigated by including unlabeled sam-
ples during training (Figure 4(a), right column). Cell line
LUAD samples exhibited the total highest cosine similarity
between their average mutational profile and the average
per-class mutational profiles from TCGA samples, which
could help explain the behavior of S-NMF (Figure 9 in
Appendix D.1). Both the pseudo-labeling and non-pseudo-
labeling models found optimal hyperparameter configura-
tions for a higher number of signatures than S-NMF (K = 5
for S-NMF, K = 6 for SS-NMF, K = 7 for PSS-NMF). This
resulted in the (P)SS-NMF models disposing of additional
degrees of freedom, which could help accommodate the
more diverse mutation profiles of human samples.

On cell line data, SS-NMF achieved a better macro F1-
score (0.7309) than S-NMF (0.6713), whilst PSS-NMF led
to worse performance (0.6218). By jointly considering the
TCGA and cell line prediction results, we can notice how
PSS-NMF is able to discover signatures that were more
discriminative for the cancer type prediction of patient
genomes, despite not retaining the entirety of patterns opti-
mized toward CCLE data compared to SS-NMF.

Stability-wise, the semi-supervised models did not pro-
vide the same robustness in retrieving similar sets of sig-
natures over multiple runs than S-NMF (stability of 1 for S-
NMF, 0.892 for SS-NMF, and 0.947 for PSS-NMF). This could
be related to the increased complexity of tumor patients’
genomes compared to cell line data, which semi-supervised
models incorporate in the training set for learning. A further
interpretation of tumor patient and cell line data distribu-
tions is provided in Section 3.2.3 by exploring PCA decom-
position plots. Nonetheless, SS-NMF and PSS-NMF resulted
in sufficiently reliable models with high stability, that could
produce more accurate cancer type predictions on both cell
line and TCGA profiles.
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(a) Cancer type predictions (b) DDRd predictions.

Fig. 4: Confusion matrices for the test set performances of S-NMF, SS-NMF, and PSS-NMF in their optimal hyperparameter
configurations across the two experiments at 50% unlabeled data. For each square in the matrices, the bottom value
indicates the amount of samples belonging to the respective row’s class which are predicted with the label indicated by the
column; the top values indicate the percentages relative to the row totals (i.e., relative to all samples belonging to the row’s
class). The color gradients for each cell reflect such percentages and are interpreted with the color bars on the right.

Cancer type prediction (50% unlabeled data) DDRd prediction (50% unlabeled data)

Hyperparameters Results Hyperparameters Results

Model K λc λ2 ct Added Samples Stability F1-score CCLE F1-score TCGA K λc λ2 ct Added Samples Stability F1-score cell line F1-score TCGA

Supervised NMF 5 0,001 0,001 - - 1 0,6713 0,1331 5 0,1 0,0001 - - 1 0,9714 0,4704
Semi-Supervised NMF 6 0,5 0,01 - - 0,892 0,7309 0,3635 6 0,1 0,0001 - - 0,871 0,9779 0,4928
Pseudo-Labeling NMF 7 0,5 0,001 0,6 84 0,947 0,6218 0,3842 6 0,1 0,0001 0,9 12 0,871 0,9776 0,4928

TABLE 1: Test set results for benchmarked models on the two experiments at 50% unlabeled data.

DDRd predictions. Similar trends were also observed
in the DDRd prediction, where the semi-supervised models
outperformed S-NMF in both cell line and patient tumor
prediction. However, the difference in classification perfor-
mance was less prominent than what was observed for
cancer type prediction: in the cancer type prediction experi-
ment, the differences in macro F1-score between the best and
worst performing models were 0.1091 for CCLE samples
and 0.2511 for TCGA samples; in the DDRd prediction
experiment, the reported macro F1-score differences were
0.0065 for cell line samples and 0.0224 for TCGA samples
(Table 1, right).

For cell line DDRd prediction, S-NMF already achieved
a high macro F1-score (0.9714), thus allowing only for
marginal improvements. Nonetheless, SS-NMF and PSS-
NMF were able to improve over S-NMF (macro F1-scores of
0.9779 and 0.9776 respectively), principally due to a better
classification of cell line MMRd samples that compensated
for the decrease in classification accuracy of control samples

(Figure 4(b), left column).
For patient tumor DDRd prediction, performances were

close across all models. Supervised NMF assigned most
TCGA samples to the MMRd class. This behavior was
somewhat mitigated by both SS-NMF and PSS-NMF, which
leveraged the finding of an additional signature to improve
HRd predictions despite a smaller drop in MMRd class
accuracy (Figure 4(b), right column).

Semi-supervised models were less stable than S-NMF
(stability of 0.871 for (P)SS-NMF, 1 for S-NMF), as seen
previously for cancer type prediction.

3.2.2 Pseudo-labeling enforces balance in predictions
The DDRd prediction experiment did not show any dif-
ferences in predictive capabilities on patient tumor data
between the two semi-supervised methods. In fact, they
predicted the same deficiency labels for all TCGA samples.

When evaluated on the cancer type prediction task, SS-
NMF and PSS-NMF exhibited different behaviors. Both SS-
NMF and S-NMF showed a tendency to assign most patient
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(a) Cancer type. (b) DDRd.

Fig. 5: Plots of the first two principal components (PC1, PC2)
for PCA decomposition of the train sets with 50% unlabeled
data proportions used in (a) cancer type prediction, and (b)
DDRd prediction.

tumor samples to the LUAD class, which was most promi-
nent for S-NMF. PSS-NMF improved the predictive accuracy
for the BLCA class, incurring a smaller performance drop
for the classification of LUAD tumor patients’ profiles.

PSS-NMF was also able to perform marginally better
on UCEC recognition (the worst-predicted class), correctly
classifying 5 samples compared to the 0 of SS-NMF.

3.2.3 Feature space of mutation profiles
By investigating PCA decompositions for both cancer type
and DDRd data, we aimed to identify patterns that could
set the two prediction tasks apart from each other in terms
of model predictive performances on both TCGA and cell
line samples (Figure 5).

In the cancer type prediction dataset, CCLE samples
clustered completely separately from the TCGA profiles
(Figure 5a); in the DDRd case, the distinction between cell
line and tumor profiles presents some overlap (Figure 5b).
In fact, the leftmost cluster of MMRd cell lines in Figure 5b
(which involves all gene KOs other than PMS1) exhibits
mutation profiles that are close to patient tumor samples
along the PC1 axis. This correlates with S-NMF higher
MMRd prediction rate for TCGA samples compared to the
semi-supervised approaches.

DDRd cell line samples tended to form isolated clusters
according to their label. Conversely, for the cancer type
dataset a large amount of CCLE samples overlaid in a
common area of BLCA, LUAD, and UCEC samples. This
suggests that cell line mutation profiles might not be as eas-
ily classifiable with respect to their cancer type labels as they
are in the DDRd prediction task. In fact, NMF approaches
achieved lower classification scores on cell line data in the
cancer type prediction than in the DDRd prediction.

Similarly, patient tumor TCGA samples in the cancer
type dataset tended to cluster in areas with high overlap
(albeit mirroring the CCLE data distribution), as a large
number of TCGA samples from all cancer types were lo-
cated at the center of the plot. Coupled with the lower
prediction accuracy achieved on cell line data if compared
to the DDRd task, it could indicate that signature decom-
position approaches may not be the most informative for
this type of task: other matrix factorization approaches in

Fig. 6: Cosine similarities for the matched signatures ex-
tracted by S-NMF and PSS-NMF.

literature report similar performance for the cancer type
prediction problem [33], [34]. Nonetheless, the DDRd tumor
patient samples also exhibited such behavior, as no clear
grouping emerged for any of the homozygously mutated
DDRd labels. Additionally, according to the first 2 PCs,
heterozygously mutated samples covered the same area
spanned by homozygously mutated samples (leftmost clus-
ter in Figure 5b). This increases the complexity of learning
patterns from confidently-predicted DDRd human profiles
for the semi-supervised approaches.

3.3 Signature analysis for DDRd

To provide a biological interpretation of the DDRd predic-
tion results, PSS-NMF and S-NMF signatures were com-
pared based on cosine similarity to the single-base sub-
stitution (SBS) tumor mutational signatures curated in
the Catalogue Of Somatic Mutations In Cancer (COSMIC)
database [35]. COSMIC SBS signatures were extracted using
SigProfiler [7] from 2780 whole-genomes produced by the
Pan-Cancer Analysis of Whole Genomes (PCAWG) Net-
work [36]. The signatures were further validated with in-
dependent studies, to uncover their potential etiologies (or
causes of emergence of such mutation patterns).

3.3.1 PSS-NMF extracts extra MMRd-related signature
Supervised NMF extracted 5 signatures from the DDRd
train set profiles, while PSS-NMF identified 6 signatures.
Five of the 6 PSS-NMF signatures showed high cosine
similarity with one matching signature of S-NMF (from 0.64
to 1, see Figure 6). The sixth signature, labeled SPseudo

MMR−2,
was dissimilar to all other S-NMF signatures (just 0.36 cosine
similarity with the highest matching supervised signature)
and represents a new mutation pattern discovered by PSS-
NMF. Signature SPseudo

MMR−2 was similar to two MMRd-related
signatures in COSMIC, SBS6 and SBS15 (0.84 and 0.71
respective cosine similarities, see Figure 7). The other MMR
signatures found by both models, SSup

MMR and SPseudo
MMR−1,

were highly similar (0.97 cosine similarity) and principally
related to a different set of MMRd signatures in COSMIC,
namely SBS44 (0.93 and 0.94 cosine similarities respectively)
and SBS20 (0.77 and 0.74).

As displayed in Figure 8, MMRd cell line and tumor
samples exhibited the largest exposure to MMRd-related
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Fig. 7: Comparison of S-NMF and PSS-NMF signatures (x-axis) to mutation signatures available in COSMIC (y-axis).
Signatures are grouped per DDRd: for each group, in bold are reported the COSMIC signatures known to have the
corresponding DDRd etiology. Numbers represent the cosine similarities across COSMIC, S-NMF (indicated with Sup), and
PSS-NMF (indicated with Pseudo) signatures. Darker colors indicate higher similarities (see the color bar on the right).
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Fig. 8: Exposures for S-NMF and PSS-NMF color-matched signatures on a selection of DDRd + control samples. Profiles
are grouped per DDR label, with dashed lines separating cell line from TCGA samples.

signatures for both models. On the labeled cell line set, S-
NMF struggled to assign high SSup

MMR exposure to the PMS1-
KO mutation profile, resulting in the misclassification of its
bootstrapped samples. It seemed that PSS-NMF corrected
its predictions by decomposing PMS1-KO profiles with
SPseudo
MMR−2, as these samples showed the highest exposure

to the newly found signature (colored red in the exposure
plot) among all cell line samples.

3.3.2 Extra PSS-NMF signature present in patient tumors

The additional signature SPseudo
MMR−2 was also highly similar

(0.96 cosine similarity) to SBS1 in COSMIC, a known clock-
like signature caused by spontaneous deamination of aging
cells, and also related to unrepaired C > T mismatches. It
could hint at a double etiology associated with SPseudo

MMR−2

and its emergence in the semi-supervised context for the
DDRd task: on one side, it can be related to the semi-
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supervised training on tumor patient mutation profiles; on
the other, the similar SBS1 signature is often co-occurrent in
tumors exhibiting microsatellite instabilities associated with
MMRd [37]. As evidence of the somewhat tumor-specific
nature exhibited by the signature newly found by PSS-NMF,
we investigated the TCGA profile decomposition plots in
Figure 8: PSS-NMF assigned SPseudo

MMR−2 exposure to all TCGA
samples, and no other DDR-deficient cell line profile (apart
from the MMRd ones) exhibited any exposure to SPseudo

MMR−2.

3.3.3 SPseudo
BER−UNG more COSMIC-unique vs. SSup

BER−UNG

Both S-NMF and PSS-NMF found two signatures that could
be associated with BERd, bearing different etiologies.

The first pair of signatures, SSup
BER−UNG and

SPseudo
BER−UNG, exhibited larger exposures in cell line samples

with UNG knockouts (Figure 8), hence their nomenclatures.
They showed the lowest similarity across the matched pairs
of supervised and pseudo-labeling signatures, with a cosine
similarity of 0.64 (Figure 6). In Figure 7, we can see how the
signature SSup

BER−UNG achieves 0.71 cosine similarity with
SBS30 (related to mutations that lead to inactivation of the
NTHL1 gene), 0.7 with SBS18 and 0.63 with SBS36 (both
related to MUTYH mutations). Both NTHL1 and MUTYH
genes are linked to the BER pathway [38].

SPseudo
BER−UNG was even more similar to SBS30 (0.86 cosine

similarity), but less so to SBS18 (0.21) and SBS36 (0.16).

3.3.4 PSS-NMF signatures generalize marginally better
than S-NMF on tumor samples for MMRd and BERd
When inspecting the sample decomposition plots in Figure 8
for patient tumor mutation profiles, PSS-NMF exposures
to related DDRd signatures were overall higher than those
of S-NMF: for TCGA samples homozygously mutated in
MMRd-driver genes, the PSS-NMF MMRd signatures had
an average exposure of 0.545 vs 0.514 with S-NMF; for the
BERd signatures, PSS-NMF BERd signatures had an aver-
age exposure of 0.414 vs 0.365 with S-NMF. HRd samples
showed the opposite trend, as PSS-NMF related signatures
exposures were lower on average than those of S-NMF
(0.398 vs 0.498 respectively). Both models struggled to ex-
tract a representative signature for control samples, with
an PSS-NMF average control signature exposure in related
samples of 0.037 vs 0.001 with S-NMF.

4 CONCLUSION

Pseudo-labeling Semi-Supervised NMF was implemented
as an extension of Supervised NMF, integrating unla-
beled samples in the factorization optimization as Semi-
Supervised NMF and in the classification optimization as
pseudo-labeling self-learning training regimes. The model
aims to improve predictive capabilities when applied to a
dataset of samples originating from a different data source
than the inputs to traditional supervised learning.

Cell line accuracy proved to be a poor indicator for
the models’ predictions on patients’ data, resulting in a
suboptimal criterion of choice for the best hyperparame-
ter combinations when optimizing toward generalizability
performance. A point of improvement for semi-supervised
model selection would be finding more apt criteria, for

instance by investigating metrics that consider unlabeled
data clustering after predictions.

The semi-supervised models benefit from training on
real patients’ unlabeled data, boosting the generalization
of predictions on human samples in all experimental set-
tings. Improvements on the cancer type classification task
are especially evident, whilst performance gains are more
limited for DDRd predictions. In the latter experiment,
Pseudo-labeling NMF shows a tendency to extract muta-
tional signatures that are more representative of cancer pa-
tients’ deficiencies, at the expense of cell line decomposition
correctness.

On the DDRd prediction problem, PSS-NMF performs
generally on par with traditional SS-NMF approaches, due
to a low pseudo-labeling activity that prevents major modi-
fications to the extracted signatures. Nonetheless, PSS-NMF
never incurs extensive performance degradations in any of
the experiments, often improving the baselines by allowing
for more balanced prediction accuracy across the available
classes. By pseudo-labeling samples and including them in
the classification loss computation, PSS-NMF occasionally
worsens its inference on cell line profiles.

Alongside pseudo-labeling, an original unlabeled regu-
larization component was validated. Validation runs were
complex to interpret, as U.R. contributes to increased en-
tropy in the collected results when compared to the non-
U.R. models. However, the performances obtained by mod-
els augmented with unlabeled regularization can often be
better than non-U.R. models (see Appendix D), hence fur-
ther investigation could lead to promising insights. An
additional regularization coefficient can be explored to limit
the influence of U.R. and allow for more consistent results,
dictating the extent of its influence on E values. A coeffi-
cient value ∈ [0, 1] could be assigned to unlabeled entries
during LTot computation and effectively weight their regu-
larization impact on E.

Pseudo-labeling itself could be improved in terms of
classification correctness for pseudo-labeled samples. Pos-
sible solutions to avoid the confirmation bias emerging
from supervised training could follow the ideas developed
in [39], by learning an ensemble of integrated NMF mod-
els and pseudo-labeling profiles according to the majority
voting obtained from each of the learned models. Another
topic worth investigating would be the usage of soft pseudo-
labels instead of assigning hard pseudo-labels to samples,
therefore scaling the classification error produced by each
pseudo-labeled profile according to their prediction proba-
bilities. Pseudo-labels could also be iteratively updated dur-
ing training as the model refines its predictions, contrary to
the current immutable approach upon their first assignment.

SS-NMF and PSS-NMF constitute a step forward toward
interpretable DDRd prediction and problem-specific signa-
ture extraction. The findings in this research could hope-
fully contribute to advancements in clinical applications for
DDRd detection, in combination with other DDRd-specific
biomarkers (microsatellite instability for MMRd; quantifi-
cation of large-scale structural variants for HRd, such as
telomeric allelic imbalance, large-scale transition, or loss of
heterozygosity) [40].
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APPENDIX A
DERIVATIONS

Components of NMF models are optimized by deriving their respective update rules via gradient descent application on
LTot. After an iteration step t during training, the models’ components at t+ 1 are computed as follows:

St+1 = St − ηS · ∇t
SLt

Tot (12)

Et+1 = Et − ηE · ∇t
ELt

Tot (13)

W t+1 = W t − ηW · ∇t
WLt

Tot (14)

In the update equations, η∗ indicate the respective learning rates per component, and ∇t
∗ their partial derivatives of the

total loss computed at iteration t. The learning rates are the same adaptive ones used in [7] and adapted in S-NMF [8] to
accommodate for the presence of W :

ηS =
S

2ETES
(15)

ηE =
E

2ESST
(16)

ηW =
µW

λc
(17)

In the formula for ηW , µW is the constant learning rate for the predictor component. Gradients with respect to LTot are
then derived. For readability purposes, we remove the superscripts to indicate the iteration of the gradient’s computation.

The derivatives for ∇SLTot and ∇ELTot with respect to the reconstruction loss Lr are widely used in literature [13],
hence we report the final computations as:

∇SLr = −2ETX + 2ETES (18)

∇t
ELr = −2XST + 2ESST (19)

Next, we derive ∇ELTot and ∇WLTot with respect to the classification loss Lc:

∇WLc =
∂Lc

∂W
(20)

∇ELc =
∂Lc

∂E
(21)

To complete the derivations, we first need to compute:

dLc =
∂Lc

∂EW
: dEW (22)

where : indicates the Frobenius inner product. We thus compute:

∂Lc

∂EW
=

∂Lc

∂L

∂L

∂EW
+

∂Lc

∂Y log Ŷ

∂Y log Ŷ

∂EW
= (Y log Ŷ ) ∗ 0 +L(Ŷ − Y ) = L(Ŷ − Y ) (23)

and:

dEW = dEW +EdW (24)

Substituting in the computation of dLc:

dLc = L(Ŷ − Y ) : (dEW +EdW ) (25)

= L(Ŷ − Y ) : dEW +L(Ŷ − Y ) : EdW (26)

= L(Ŷ − Y )W T : dE +ETL(Ŷ − Y ) : dW (27)
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By combining all parts of the equation and recalling that W is constant for the gradient with respect to E (i.e., dW = 0)
and vice versa, we obtain:

∇WLc =
∂Lc

∂W
= ETL(Ŷ − Y ) (28)

∇ELc =
∂Lc

∂E
= L(Ŷ − Y )W T (29)

Finally, the derivative of the L2 regularization term for W is standard:

∂(λL2

∑
w∈W w2)

∂W
= 2λL2W (30)

To conclude, we can combine all the partial derivatives for the individual terms of the total loss function LTot. We
obtain the final gradients:

∇SLTot = −2ETX + 2ETES (31)

∇ELTot = −2XST + 2ESST + λcL(Ŷ − Y + 2λL2) (32)

∇WLTot = λc[E
TL(Ŷ − Y ) + 2λL2W ] (33)
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APPENDIX B
DATASET COMPOSITION

B.1 Cancer-type experiment datasets

(a) CCLE data (cancer-type overlap) (b) TCGA data (cancer-type overlap)

(c) CCLE filtered avg. profiles similarities (d) TCGA filtered avg. profiles similarities

(e) CCLE vs TCGA avg. profile similarities

Fig. 9: Data exploration for the CCLE and TCGA datasets. Figures (a) and (b) present scatterplots for the two datasets, with
dotted red lines traced at the relative number of samples filtering values (15 for CCLE, 400 for TCGA). Figures (c) and (d)
show clustermaps for the cosine similarities of the average mutational profiles for the filtered tumors in the two datasets.
Figure (e) displays the cosine similarities for the chosen cancer-types’ CCLE and TCGA avg. profiles.
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B.2 DDRd experiment datasets

Cancer HR het MMR het BER het HR & MMR het HR & BER het BER & MMR het HR & MMR & BER het HR hom MMR hom BER hom TOT het TOT hom TOT control TOT samples

ACC 12 5 2 1 2 1 9 0 12 2 32 14 46 92
BLCA 47 7 60 8 34 5 54 12 5 0 215 17 179 411
BRCA 89 14 34 25 35 6 83 11 4 0 286 15 490 791
CESC 48 10 7 50 12 0 24 6 2 0 151 8 130 289
COAD 37 17 26 14 20 15 32 3 3 2 161 8 121 290
DLBC 0 0 0 0 0 0 0 0 0 0 0 0 37 37
ESCA 15 6 32 4 12 2 38 1 2 1 109 4 71 184
GBM 17 3 57 2 50 24 38 3 1 2 191 6 117 314
HNSC 22 8 95 15 23 20 135 5 1 5 318 11 178 507
KICH 0 0 5 1 1 3 29 1 1 0 39 2 25 66
KIRC 2 39 14 11 6 126 60 2 3 4 258 9 101 368
KIRP 14 1 134 2 28 20 20 2 0 1 219 3 59 281
LGG 20 74 77 13 30 93 49 1 8 3 356 12 143 511
LIHC 23 2 86 3 62 11 46 0 1 4 233 5 125 363
LUAD 25 3 54 9 32 5 65 8 2 1 193 11 309 513
LUSC 21 8 40 11 15 5 137 7 2 2 237 11 232 480
MESO 3 2 14 0 7 9 28 1 1 0 63 2 16 81
OV 4 4 6 6 3 1 12 4 1 0 36 5 24 65
PAAD 8 0 29 5 29 7 33 1 3 1 111 5 61 177
PCPG 18 7 22 12 24 8 32 0 0 0 123 0 56 179
PRAD 6 2 198 1 104 29 49 6 3 2 389 11 95 495
READ 8 0 3 2 12 0 15 2 0 0 40 2 48 90
SARC 28 11 25 7 11 4 36 4 0 1 122 5 109 236
SKCM 33 19 55 18 54 18 91 5 13 2 288 20 158 466
STAD 23 40 74 19 27 36 63 3 8 0 282 11 146 439
TGCT 4 0 13 0 2 0 3 2 0 2 22 4 119 145
THCA 14 5 120 1 8 0 0 1 1 1 148 3 341 492
THYM 8 0 51 2 2 2 3 0 0 0 68 0 54 122
UCEC 41 69 6 40 4 3 46 4 26 0 209 30 208 447
UCS 3 2 4 3 3 1 6 1 2 0 22 3 32 57

TABLE 2: TCGA sample counts on different driver mutations (homozygous, heterozygous, or control/wild-type) for the
genes involved in the DDR status considered in our experiments.
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APPENDIX C
HYPERPARAMETER OPTIMIZATION

C.1 Pareto-optimal graphs for cancer-type prediction
C.1.1 Supervised NMF optimization

Fig. 10: S-NMF pareto-optimal hyperparameter configurations. Different lines indicate different numbers of signatures. For
every point annotation, the top value indicates λc and the bottom value λL2.
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C.1.2 33% unlabeled data proportion

(a) SS-NMF (b) SS-NMF U.R.

(c) PSS-NMF (d) PSS-NMF U.R.

Fig. 11: (P)SS-NMF (U.R.) pareto-optimal hyperparameter configurations. Different lines indicate different numbers of
signatures. For every point annotation: in Figures (a) and (b) the top value indicates λc and the bottom value λL2; in
Figures (c) and (d) the top value indicates ct and the bottom value λc for the respective SS-NMF (U.R.) hyperparameter
configuration.
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C.1.3 50% unlabeled data proportion

(a) SS-NMF (b) SS-NMF U.R.

(c) PSS-NMF (d) PSS-NMF U.R.

Fig. 12: (P)SS-NMF (U.R.) pareto-optimal hyperparameter configurations. Different lines indicate different numbers of
signatures. For every point annotation: in Figures (a) and (b) the top value indicates λc and the bottom value λL2; in Figure
(c) the top value indicates ct and the bottom value λL2 for the respective SS-NMF hyperparameter configuration; in Figure
(d) the top value indicates ct and the bottom value λc for the respective SS-NMF U.R. hyperparameter configuration.
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C.2 Pareto-optimal graphs for DDRd prediction
C.2.1 Supervised NMF optimization
S-NMF optimization parameters are reported directly from the original research [8].

C.2.2 33% unlabeled data proportion

(a) SS-NMF (b) SS-NMF U.R.

(c) PSS-NMF (d) PSS-NMF U.R.

Fig. 13: (P)SS-NMF (U.R.) pareto-optimal hyperparameter configurations. Different lines indicate different numbers of
signatures. For every point annotation: in Figures (a) and (b) the top value indicates λc and the bottom value λL2; in
Figures (c) and (d) the top value indicates ct and the bottom value λL2 for the respective SS-NMF (U.R.) hyperparameter
configuration.



TOMMASO TOFACCHI 22

C.2.3 50% unlabeled data proportion

(a) SS-NMF (b) SS-NMF U.R.

(c) PSS-NMF (d) PSS-NMF U.R.

Fig. 14: (P)SS-NMF (U.R.) pareto-optimal hyperparameter configurations. Different lines indicate different numbers of
signatures. For every point annotation: in Figures (a) and (b) the top value indicates λc and the bottom value λL2; in
Figures (c) and (d) the top value indicates ct and the bottom value λL2 for the respective SS-NMF (U.R.) hyperparameter
configuration.
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C.3 Pseudo-labeling activity

ct
Pseduo-labeled samples
at 33% unlabeled data

Pseduo-labeled samples
at 50% unlabeled data

Ratio PL activity 50% unlabeled data
over 33% unlabeled data

0.3 5408 32104 5.94
0.35 716 20884 29.17
0.4 104 12484 120.04
0.45 28 6164 220.14
0.5 12 3012 251
0.6 0 248 N.A.

TABLE 3: Number of pseudo-labeled samples when training PSS-NMF and PSS-NMF U.R. with different confidence
threshold (ct) values at different unlabeled data proportions. For completeness, the ratio of pseudo-labeled samples for the
different unlabeled data proportions is also reported in the table.

Model Unlabeled data proportion K λc λL2 ct Average TCGA prediction probability Pseudo-labeled samples Pseudo-labeling precision

SS-NMF 33% 6 0.5 0.01 - 0.434 N.A. N.A.
SS-NMF 50% 6 0.5 0.01 - 0.618 N.A. N.A.
SS-NMF U.R. 33% 6 0.25 0.01 - 0.365 N.A. N.A.
SS-NMF U.R. 50% 7 0.25 0.01 - 0.362 N.A. N.A.
PSS-NMF 33% 6 0.5 0.01 0.3 0.564 3160 0.522
PSS-NMF 33% 6 0.5 0.01 0.35 0.459 668 0.591
PSS-NMF 33% 6 0.5 0.01 0.4 0.442 104 0.548
PSS-NMF 33% 6 0.5 0.01 0.45 0.436 28 0.500
PSS-NMF 33% 6 0.5 0.01 0.5 0.435 12 0.250
PSS-NMF 33% 6 0.5 0.01 0.6 0.434 0 N.A.
PSS-NMF 50% 7 0.5 0.001 0.3 0.595 15268 0.313
PSS-NMF 50% 7 0.5 0.001 0.35 0.611 13544 0.344
PSS-NMF 50% 7 0.5 0.001 0.4 0.573 9060 0.366
PSS-NMF 50% 7 0.5 0.001 0.45 0.523 4456 0.443
PSS-NMF 50% 7 0.5 0.001 0.5 0.507 2972 0.537
PSS-NMF 50% 7 0.5 0.001 0.6 0.485 244 0.508
PSS-NMF U.R. 33% 6 0.25 0.01 0.3 0.406 2248 0.288
PSS-NMF U.R. 33% 6 0.25 0.01 0.35 0.366 48 0.458
PSS-NMF U.R. 33% 6 0.25 0.01 0.4 0.365 0 N.A.
PSS-NMF U.R. 33% 6 0.25 0.01 0.45 0.365 0 N.A.
PSS-NMF U.R. 33% 6 0.25 0.01 0.5 0.365 0 N.A.
PSS-NMF U.R. 33% 6 0.25 0.01 0.6 0.365 0 N.A.
PSS-NMF U.R. 50% 7 0.1 0.01 0.3 0.496 16836 0.303
PSS-NMF U.R. 50% 7 0.1 0.01 0.35 0.413 7340 0.369
PSS-NMF U.R. 50% 7 0.1 0.01 0.4 0.388 3424 0.412
PSS-NMF U.R. 50% 7 0.1 0.01 0.45 0.376 1708 0.306
PSS-NMF U.R. 50% 7 0.1 0.01 0.5 0.366 40 0.250
PSS-NMF U.R. 50% 7 0.1 0.01 0.6 0.366 4 0.250

TABLE 4: Average prediction probabilities on TCGA data for SS-NMF (U.R.) and PSS-NMF (U.R.) models in the optimal
hyperparameter combinations of K , λc, λL2. We also report the number of pseudo-labeled samples per every model.
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APPENDIX D
EXTENDED RESULTS

D.1 Cancer-type prediction experiment

Fig. 15: Results for the cancer-type prediction experiment with 33% unlabeled data proportion, including U.R. models.
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Fig. 16: Results for the cancer-type prediction experiment with 50% unlabeled data proportion, including U.R. models.
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D.2 DDRd prediction experiment

Fig. 17: Results for the DDRd prediction experiment with 33% unlabeled data proportion, including U.R. models.
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Fig. 18: Results for the DDRd prediction experiment with 50% unlabeled data proportion, including U.R. models.


	Preface
	Introduction
	Mutational signature extraction methods
	Pseudo-labeling Semi-Supervised NMF

	Methods
	PSS-NMF model
	PSS-NMF model components and optimization
	Procedures
	Training & testing of integrated NMF models

	Evaluation
	Cancer type prediction data
	DDRd prediction data
	Train and test sets
	Evaluation metrics
	Benchmarked models


	Results
	Impact of hyperparameters on performance
	SS-NMF hyperparameters and performance
	Pseudo-labeling activity analysis

	Final (P)SS-NMF test set performance
	(P)SS-NMF improve cell line, patient tumor prediction
	Pseudo-labeling enforces balance in predictions
	Feature space of mutation profiles

	Signature analysis for DDRd
	PSS-NMF extracts extra MMRd-related signature
	Extra PSS-NMF signature present in patient tumors
	SBER-UNGPseudo more COSMIC-unique vs. SBER-UNGSup
	PSS-NMF signatures generalize marginally better than S-NMF on tumor samples for MMRd and BERd


	Conclusion
	References
	Appendix A: Derivations
	Appendix B: Dataset composition
	Cancer-type experiment datasets
	DDRd experiment datasets

	Appendix C: Hyperparameter optimization
	Pareto-optimal graphs for cancer-type prediction
	Supervised NMF optimization
	33% unlabeled data proportion
	50% unlabeled data proportion

	Pareto-optimal graphs for DDRd prediction
	Supervised NMF optimization
	33% unlabeled data proportion
	50% unlabeled data proportion

	Pseudo-labeling activity

	Appendix D: Extended results
	Cancer-type prediction experiment
	DDRd prediction experiment


