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ABSTRACT

The non-uniform flow field produced, as a result of the interaction of
a plane shock of arbitrary strength with supersonically moving aero-
dynamic obstacles (like two-dimensional thin aerofoils, slender bodies
of revolution and three-dimensional thin wings), behind the shock is
analyzed. The problem is posed generally in terms of initial and
boundary values for the perturbation pressure. The solution is con-
structed by a systematic use of intéegral transforms. The density field
and the shock shape are also deduced. ' ‘

As detailed examples the.results of the theory are applied to the
interaction with a thin wedge, a slender conical projectile, a flat
plate delta wing with supersonic leading edges and a thin yawed wedge.

Various numerical results are presented for the examples considered.
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SAMENVATTING

‘In dit-proefschrift wordt een gelinearizeerde theorie ontwikkeld
die in staat is op uniforme wijze de interactie problemen te behandelen,
die zich voordien indien een vlakke schokgolf van willekeurige sterkte
getroffen wordt door, met supersone snelheid, bewegende lichamen als
twee-dimensionale dunne vleugels, axisymmetrische slanke lichamen en
drie-dimensionale dunne vleugels.

Het probleem wordt geformuleerd in de vorm van een begin- en rand-
waarde-probleem voor de verstoringsdruk van het niet-uniforme stromings-
veld dat zich als resultaat van de interactie achter de schok voordoet.
De analytische uitdrukkingen worden verkregen door de methode van de
integraal-transformaties toe te passen. Tevens worden het dichtheids-
veld en de vorm van de schok afgeleid,

In hoofdstuk I van de dissertatie wordt een overzicht gegeven van
de litteratuur en worden de basis-hypothesen. besproken. '

In hoofdstuk 2 worden ten eerste de.bewegings-vergelijkingen van
de niet-stationnaire stroming gelinearizeerd. Ten tweede worden de .
relaties opgesteld die de onbekende storingen aan de stroomafwaartse
zijde van de schokgolf uitdrukken in de bekende stroomopwaartse ver-
storingen. Tenslotte worden de uitdrukkingen voor het stroomopwaartse
storingsveld gegeven.

In hoofdstukken 3, 4, 5 en 6 wordt de theorie behandeld voor de
schok-schok interactie van dunne twee-dimensionale vleugels, axi-
symmetrische slanke lichamen, drie-dimensionale dunne vleugels, en
scheef aangestroomde twee-dimensionale vleugels. De theorie wordt
toegepast op de interactie met een dunne wig, cen slank conisch projec—
tiel, een symmetrische delta vleugel bij invalshoek nul, een vlakke
delta vleugel met supersone voorranden en een dunne scheef-
aaneengestroomde wig.

In het laatste hoofdstuk 7 worden de verschillende numerieke resul-
taten gegeven, die verkregen werden voor de in de voorafgaande hoofd-

stukken behandelde voorbeelden en een algemene bespreking volgt.,
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NOMENCLATURE+

&, 8 velocity of sound in region (0) and (1).

a defined in (3.3.4); also in (6.2.1k4).

a, b defined in (6.4.7).

A, B,C,D constants defined in (2.3.11).

A : = - mi, in (3.3.4); = - ﬁi, in Chapter 6.

A, constants defined in (3.4.14); also in
(6.4.8).

b = B/a.

- constant defined in (3.3.11); also in
(6.3.5).

Bol’ o constants defined in (5.6.2) & (5.6.L4).

¢ defined in (3.4.21).

cp, c, specific heats of medium at constant pressure
and constant volume.

B, C., D,, E; constants defined in (5.5.11) & (5.6.8).

E, F, G constants defined in (2.3.12).

f(xl) function defining the shape of an aerofoil or a

slender body of revolution.
F(&) function defined in (2.h4.11).
Fl(E, z), FQ(E, r) functions defined in (2.4.15).

F( ), F_l( ) Fourier exponential transform and its inverse.
Fc( Y, F;l( ) Fourier cosine transform and its inverse.

FS( ), F;l( ) Fourier sine transform and its inverse.

H unit step function.

J = cP - cv, specific gas constant,

J° Bessel function of the first kind,

k., k constants defined in (2,4,17),

t The symbols which are used locally are not listed here.
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q, q
Qs 9
r

e
R
R
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constant defined in (3.3.10); also in
(6.4.7). '
modified Bessel functions of the second kind.

unit vectors in the x, y and z directions.

Laplace transform and its inverse.

= (V - U)/a;, (2.3.13).

defined in (6.2.5).

= (W + U)/al, obstacle Mach number behind the
shock, (2.5.1).

=(W+U cosX)/al, (6.3.4).

V/ao, Mach number of the plane shock.

W/ao, Mach number of the obstacle.

U/al, Mach number of the undisturbed main

flow behind the shock.

defined in (6.1.3).

perturbed values of pressure ahead of and behind
the shock.

D= po/yPo, P = pl/YPl, dimensionless values.
pressure of the flow field.

pressure ashead of and behind the undisturbed shock.
perturbed values of radial velocities ahead of

and behind the shock.

q = qo/V, q = qi/al,‘dimensioniess values.
constants defined in (3.4.17).

radial direction,
F-wP-G@-8°-y
)2

2

1
13, (3.4.16).

{(x -8)° + re}%, used in Chapter 4.

{(x - E)2 + (z - ;)2 + yz}% , used in Chapter 5.
density of the flow field,

density shead of and behind the undisturbed shock.

perturbed value of specific entropy behind
the shock.
= sl/cp, dimensionless value; also used as trans-

formed parameter, corresponding to T.
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specific entropy of the flow field.

specific entropy of the fluid in region (1).
time variable.

perturbed values of velocity components in the
X, y and’ z directions, ahead of and behind the
shock.

= XO/V, dimensionless values.

= Xi/al' dimensionless values.

velocity of the undisturbed flow behind the
undisturbed plane shock.

speed of the plane shock in medium at rest.

velocity vector of the flow field.

‘defined in (6.1.1).

defined in (6.1.2).

speed of the obstacle in medium at rest.

" axial, vertical and spanwise directions.

co-ordinates fixed in the obstacle.

co-ordinates fixed in the undisturbed flow
behind the shock. '

Lorentz variasble, (3.3.1).

variable defined by (6.2.3).

transform pafameter corresponding to y (or r).
= w2 -1k,

2 - 1)%,

T = Cp/cv’ the ratio of specific heats, taken as

1.4 for perfect gas.

delta function.

perturbétion parameter; also used as semi-vertex
angle for a wedge, half angle for a cone, angle

of attack for a flat plate wing.

function defining the shape of a wing.

= arctan (1/n), semi-apex angle of a delta wing.

temperature of the flow field.




\
(32 + uz)é, used in Chapters 3 & U4;

A =
= (52 + a2+ vz)%, used in Chapter 5.

A, defined in Eq. (3.3.4); also in §6.bL.

Al = Ao.

Ays A3 ’ roots ?féEi. (3.4.13); also in s6.h.

A, = (1 - b7)%2.

ks = - Ah.

As?, Nis?® constants defined in (2.3.10); also in
(6.2.15).
angle defined by (6.1.2).

v transform parameter, éorresponding to z.

Pos pl‘ dénsity perturbations ahead of and behind the
shock.

Py P o= po/Ro, p = pl/Rl, dimensionless values.
projection of the wing surface on x-z plane.

T = alt,.reduced space variable, corresponding to
time t.

T Lorentz variable, (3.3.1).

¢ perturbation velocity potential.

950 b0 angles defined in (3.5.6).

X angle of yaw of the aerofoil with respect to the
shock plane.

x” angle defined by (6.1.1).
shock displacement.

wt local shock oscillating velocity.

wr, wy, wz local shock deflections.

£, L, U variables of integration.

Subscripts

0,1 conditions shead of and behind the plane shock,
in regions (0) and (1), respeétively.

i ' = 0, 1, «+45, indiées.

ty, Ty ¥, 2 partial differentiation with respect to t, r,

y and z.
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(variable) represents the vector.

SuperéCripts

¥, HH, WEH dencte the trapsformed.function.

(function)” derivatives of a function with respect to its

argument .,
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Chapter 1

INTRODUCTION

1.1, Preliminary remarks

v

In the present work an attempt is made to deduce under certain
conditions a systematic and unified theory for the non-uniform flow
field produced behind a plane shock of arbitrary strength when it
encounters an aerodynamic obstacle moving at supersonic speed. The
supersonic obstacle is supposed to have a weak attached shock and a
collision between the two shocks is involved. This has been termed a

shock-on-shock or simply shock-shock interaction. The aerodynamic

obstacles to be considered are aerofoils, axisymmetric slender bodies
and three-dimensional wings. The problem is of some practical importance
in connection with blast effects on supersonic aircrafts, from the
viewpoint of weapon analysis and the vulnerability of either a missile
or a re-entry vehicle to blast.

A theoretical investigation of the flow field produced by the '
interaction of a plane shock with an obstacle, stationary or moving, is
difficult. This is not only because of the non-linear nature of the
problem, but also because of the occurence “of non-uniform shock waves
which imply variations in the entropy of the fluid and a loss of the
irrotational nature of the motion. To simplify the problem sufficiently
for a theoretical attack to be successful, two poésible courses are open.
The first is to linearize the basic equations of motion on the
assumption that the incident shock is weak. Since the entropy changes
across a weak shock are of the third order in the shock strength
(cf. Liepmann & Roshko 1965), the entropy variationms are also
effectively eliminated and, in fact, the problem belongs to the theory

of acoustics,



The second possibility is to consider an incident plane shock of
arbitrary strength and linearize the basic equations on the assumption
that the obstacle produces only small perturbations in the uniform
flow behind the shock, Although the entropy variations are no longer
negligible, it appears that they can be suppressed from the theoretical
investigation by basing the analysis on the pressure variations in the

fluid. The present investigation Belongs to this category.

1.2. General survey

The earliest work on the diffraction of a plane shock wave was done
by Bargmann (1945)., He used the pseudo-stationary property to develop a
first order solution for a weak shock reflected at a concave corner of
small angle. This work assumed the irrotational flow behind the shock.
It was followed up theoretically by Lighthill (1949a, 1950) who took
into account the vorticity behind the curved shock wave. Lighthill's
derivation, free from the restriction to weak shocks, was nevertheless
restricted to wedges because an essential element of his method is the
cone-field transformation. He reduced the problem to a boundary value
problem of Riemann-Hilbert type and solved it by the method of complex
variables. A more general approach was develdped by Ting & Ludloff
(1952), in which hyperbolic equations are used throughout and an
arbitrary shape of the aerofoil can be assumed. They obtain the pressure
and density field in the entire domain behind the advancing plane shock
in explicit analytic form. Fletcher, Taub & Bleakney (1951) and White
(1951) presented the results of interferometric experiments on shock
wave diffraction and these results compared favourably with the
theories of Lighthill and Ting & Ludloff. The experimental data were
recorded by Bleakney, White & Griffith (1950).

The considerations of Ting & Ludloff (1952) for the diffraction of
a plane shock by a symmetrical aerofoil were later modified by Ludloff
& Friedmann (1952) to be applicable to the diffraction of plane shocks
by axisymmetric bodies of arbitrary profiles. Chester (195L) extended
the problem of Lighthill (1949a) to the case of thin infinite wedges at

yaw with respect to the incident plane shock.




Ehler & Shoemaker (1959) solved the problem of the linearized
interaction between a weak shock wave meeting a half‘plane moving
subscnically or supersonically at any angle of incidence. In contrast
Smyrl (1963) considers the impact of a plane shock of arbitrary
strength which encounters a thin two-dimensional wedge and a wédge
yawed with respect to the shock plane, moving at supersonic speed. The
problem is linearized and the methods of solution are based on those of
Lighthill (1949&) and Chester (195L). Smyrl extended the solution to
include the case of aerofoils of arbitrary shapes by a superposition of
wedges or cone fields. This work was followed up by Blankenship (1965)
for shock-shock interaction on slender supersonic cones. Blankenship
proceeded on the same lines as Smyrl to formulate the linearized problem,
and furnished a numerical solution.

Whitham (1957, 1958, 1959) has developed an approximate theory for
the prediction of shock patterns associated with the interaction between
a blast wave and two- or three-dimensional bodies. The diffraction
péttern predicted by Whitham's theory concerns the shape and the location
of the diffracted shock (or Mach shock) at any time. Bryson & Gross
(1961) experimentally investigated the diffraction of a plane strong
shock by several cones, a cylinder and a sphere. The diffraction
pattern, in particular, the shape of the diffracted shock and the loci
of the Mach triple points, compared favourably with the theoretical
results based on Whitham's theory. Whitham's teéhnique is based on
kinematical considerations and does not analyse the bressure distributien,
However, Miles (1965) has extended Whitham's ideas to predict the pressure
field due to diffraction of a plane shock by & supersonically moving
thin wedge, but his results, when compared with those of Smyrl turned
out to be qualitatively satisfactory. An excellent review of the
related problems of reflection and diffraction of shock wave upto 1963
is contained in a survey article by Pack (1964).

Recently Inger (1966a,b) has studied the blast wave impingement on
a slender wedge at hypersonic speed. The analysis proceeds by taking the
blast shock to be very weak relative to the original wedge shock, ‘

thereby allowing formulation of a small perturbation theory for the




transient disturbance field.,

In the theoretical analyses of Smyrl and Blanksnship concerned
with wedges and cones, advantage is taken of the fact that the flow
configuration behind the disturbed shock grows in size proportional
with respect to time, Hence no fundamental length or time scale exists,
Thus a conical transformetion can be employed thereby suppressihg one
independent variable, Furthermore in both investigations, .as a first
step to proceed with the anaiysis, assumptions are introduced for the
prediction of the basic flow pattern developed behind the shock. The
postulated models, however, are to be substantiated by the visual
observations. For exaﬁple, Smyrl based his prediction of the flow
model for two-dimensional wedges on shallow water experiments by Klein
(1966). For interaction with the slender supersonic cones, Blankenship
adopted the flow model of Smyrl. Later Blankenship & Merrit (1966)
supported the hypothesis, made earlier by Blankenship (i965), based on
the experimental results (shadowgraphs) obtained by Merrit & Aronson
(1966) and Brown & Mullaney (1965). Predicting the flow pattern is thus
the first critical step of their analyses.

Another approach requiring little detailed information concerning
the flow pattern behind the disturbed shock has been proposed by the
author (1968). He obtained a closed form analytic solution for the flow
field produced as a result. of interactioﬁ of a plane shock of arbitrary
strength with a supersonically moving axisymmetric slender body, as
contrasted with the numerical solution of Blankenship (1965) for a
supersonic slender cone, The same considerations were also used to treat the
interaction with two-dimensional aerofoils of arbitrary shapei free from
- the restriction to cone fields. Later the author (1969) extended his
theory to cover the shock-shock interaction with three-dimensional
planar wings, and also'the case of interaction with two-dimensional
aerofoils at yaw with respect to the shock plane. It may be pointed
out that the author was first to report on the three-dimensional
interaction problems. Recently Ting & Gunzburger (1969) also presented
the solution of the diffraction of a shock wave by ﬁovihg thin

symmetric wings, using an extension of the approach of Ting & Ludloff




(1952). Their method turns out to be tedious as compared to the approach
of the present author. It is the purpose of this dissertation to present

the author's investigations in a coherent fashion.

1.3. Statement of the problem and assumptions

We consider a plane shock of arbitrary strength moving freely at
supersonic speed V into a.gas at rest imparting a uniform velocity U
to the fluid behind it, Fig.la. The density, pressure and sonic velocity
ahead of and behind the shock are.denoted by Ro’ Po’ &o’ anq R1, P1, a,.
An aerodynamic obstacle of infinite length, having a pointed nose, is
moving in the gas at rest in the direction opposite to the shock with a
supersonic speed W > &, At the instant t = 0, the shock front is assumed
to coincide with the nose of the body, Fig.lb.

For time t < O, there are three flow regimes (0), (1) and (2), Fig.1.
In region (0) the gas is at rest, region (1) is thet of uniform flow
behind the plane shock and region (2) is in general a spatially
non-uniform region. The regions (0) and (2) are separated by a weak
shock or Mach wave emanating from the nose of the body.

For time t > 0, the body penetrates the plane shock, Fig.2. We
intend to obtain the solution for the non-uniform flow field produced
as a result of the interaction behind the shock. The only physical
parameters which define the problem are V, W, Po’ Ro’ and the function
defining the shape of the body.

We choose a co-ordinate system (x, y, z) with origin O fixed
relative to the undisturbed flow behind the plane shock such that at
t = 0 the shock front just coincides with the nose of the body. The
x-axis is taken along the streamwise direction, the y-axis in the vertical
direction and the z-axis in the spanwise direction. The corresponding
co-ordinates for the axisymmetric flow will be (x, r), where r denotes
the radial direction. '

The incident plane shock may be regarded as a moving surface of zero
thickness, which is then simply a mathemsatical discontinuity (cf. Courant
& Friedrich 19L8)., The gas on either side of the shock, being outside

the shock, can be considered devoid of viscosity and heat conduction.




We also assume the perfect gas 'equation of state' to hoid on either side
of the shock.

The shape of the solid boundaries of the moving obstacle should be
such that the inclination of the surface to the stream direction is
everywhere small, so that the perturbations introduced into an otherwise
uniform flow can be expected to be small.

The plane shock in traversing over the body and its associated
field of region (2) gets diffracted, i.e. a non-uniform shock IBF
(Fig.2) results due to small disturbances in the speed and the shape of
the initially plane shock. The diffracted shock is assumed to meet the
body surface normally to ensure that the flow remains tangentiaf to the
body surface across the shock.

The incident shock does not alter the disturbance field of region
(2) ahead of it, since it is moving supersonically (V > ao). The
disturbances in region (2), assumed weak, are deduced on the assumption
that the changes in the state of the gas are not only adiabatic but
isentropic too. .

The flow in the interaction region behind the non-uniform shock
will be in general non-isentropic and rotational. The diffracted shock
is assumed to be slightly disturbed from the undisturbed location of the
plane shock. Hence the downstream perturbations in the interaction region
will be small compared with the undisturbed flow of region (1). The
linear treatment of the flow field based on region (1) is then permissible.

Consistent with the linearized theory, the conditions at the
disturbed shock can be applied at the location of the undisturbed. plane
shock, For aerofoils and wings the boundary condition on the surface of
the body may be applied at its projection on the x-z plane, i.e. at
y = 0. For axisymmetric slender bodies the body axis lies along the
x-axis and the boundary condition is specified in the vicinity of the

body axis.

Flow picture due to interaction

In the following we shall discuss the salient features of the
diffraction pattern developed behind the shock, say, for interaction

with an axisymmetric slender body of infinite length, Fig.2.




For time t > 0, in the co-ordinate system chosen, the body is
travelling in region (1) with, in general, supersonic speed (W + U)> a
in the-direction of negative x-axis, starting from O at time t = O. The
flow pattern generated by the travelling body is in the present
approximation a succession of spherical acoustic -waves, giving rise to
the.spherical wavelet BCDE and the envelop AC of the spherical wavelets.
Thus AC forms an attached Mach Qave emanating from the nose of the body.

The plane shock travels to the right, with speed (V - U) for the
observer fixed in 0, and enters the region (0) and (2). The gas in
region (0) then has velocity U to the left, while in region (2) this
speed is superimposed upon the perfhrbation field. In.the disturbed
region behind the shock the air enters from the right across the .
diffracted shock IBF.

Due to the disturbances in the shock by the presence of the body,
the flow behind the shock will be non-isentropic, rotational flow giving
rise to‘pressure—density and entropy-density perturbations. In addition
the perturbations in region (2) which are essentially pressure-density
perturbations, on passing through the shock will also give rise to
presshre—density and entropy-density perturbations. The pressure -
perturbations give rise to sound waves while the entropy perturbations
are attached to the fluid elemehts, The entropy perturbations due to the
body effect generated at the shock are to be found roughly in the region
BOF, while the fluid elements of region (2) which have passed through
the shock are found roughly in the region IOF. In the région IOF there
are then entropy-density variations in addition to pressure-density.
variations. The pressure perturbations emerging from the shock IF give
rise to spherical acoustic waves. The envelop of these spherical wavelets
is another Mach wave 'ID from the shock intersection T and tangent to the
wavelet BCDE,

A contact discontinuity appears in the approximate position I0, which
essentially divides the air into two non-mixing regions (3) and (4), thus
separating a flow which comes from region (2) from that which initially
éomes from region (0), The type of three shock intersection that occurs
at B is similar to the well known experimental phenomenon of
Mach-reflection with the presence of three shock configuration

(Mach shock BF, deflected shock BI, and the reflected shock BC)




accompanied by a contact discontinuity surface (also called a slip
stream) along the approximate position BO. Across a contact discontinuity
there is no flow of fluid; the pressure is continuous there, -though the
tengential component of velocity, as well as the density, temperature

and entropy, or their derivatives may in general be discontinuous.

The features of the flow field discussed above remain essentidlly
the same for interaction with two-dimensional aerofoils. For
three-dimensional wings they have to be visualized in three-dimensions.
However, it may be pointed out here that the approach developed in this
work does not depend much on this flow picture. It is far more that
by the method employed the flow pattern can be seen to-emerge from the

solution of the problem.

1.4, Some remarks on formulation and solution

The general shock-shock interaction problem is posed in terms of
initial- and boundary-values for the time-dependent pressure
perturbations. ‘The boundary conditions on the velocity components or
pressure are required at the solid boundaries of the downstream flow
regions., Additional boundary conditions are formulated at the approximate
location of the shock. The formulation is essentially similar to that
of Ting & Ludloff (1952) and Ludloff & Friedmann (1952) for the
diffraction of plane shocks by stationary bodies. The solution is sought
by the application of integral transforms and is shown to lead to the
various field representations valid for the different regions. The
solution is also used to describe the entropy and density field, and
the shape of the shock front.

The same considerations hold for studying the shock-shock
interaction with two~dimensional aerofoils, axisysmetric slender
bodies and three-dimensional planar wings. For the interaction with
thin yaved aerofoils a slightly different point of view is employed,
since in such a case we cannot indicate a moment when the interaction
begins; the incident shock is being disturbed at all times by the
aerofoil and its associated field. By considering the flow in a

suitable reference frame the time may be eliminated entirely from



the problem, while the method of solution is the same as before.

The literature of relevance to the application of integral
transforms to the boundary value problem is rather extensive, and space
will not permit even a short review of it, It might be recorded,
however, that the integral transforms have been used by Gunn (1947) and
Miles (1948) for the solution of steady supersonic flows over planar
wings, and by Stewartson (1950) and Temple (1953) for unsteady supersonic

motion, among others. Werner (1961) has treated the interaction of a

plane shock with a cellular vortex field by the use of Laplace transforms.

1,5, Outline of the thesis

We may close this chapter with some remarks on the order of material
presented in the subsequent chapters.

In Chapter 2, firstly the linearization of the equation of motion
of unsteady non-isentropic flow is carried out. Secondly, the shock
relations are deduced connecting the unknown downstream perturbations
with the known upstream perturbations at the disturbed shock. Finally,
the expressions for the upstream disturbance are presented.

In Chapters 3, 4, 5, and 6 the general theory of shock-shock
interaction is deduced for thin two-dimensional aerofoils, axisymmetric
slender bodies, three-dimensional thin wings, and aerofoils at yaw with
respect to the incident shock. As detailed examples!the results of the
theory are applied to the interaction with a thin wedge, a slender cone,
a flat plate'delta wing with supersonic leading edges, and a thin
wedge at yaw.

In the final Chapter 7 the various numerical results are presented
for the examples considered in the preceding chapters, and a

discussion follows.




Chapter 2

FUNDAMENTAL EQUATIONS AND RELATIONS

2.1. Introductory remarks

In this chapter the fundamental equations and other relations are
presented which form the basis of the analysis to be presented in the

subsequent chapters.

In §2.2 the general equations of unsteady inviscid motion are given,

which hold in the flow field behind the disturbed §hock. They are then
linearized assuming the perturbations to be small compared to the
paremeters which determine the uniform state of flow behind the plane
unperturbed shock. These equations of motion are linear equations in
the perturbation pressure, velocities and density. Elimination of all
variables except pressure results in a wave equation. Physically this
eéuétion implies that all pressure variations propagate with the mean
speed of sound. In addipion they satisfy the conditions at the shock
front and on the body downstream.

In §2.3 the shock relations across a plane shock, propagating
without any disturbances, are given first. Then the Rankine-Hugoniot
equations are considered to derive the conditions on the disturbed
shock front, which relate the unknown downstream perturbations to the
known upstream perturbations and the shock displacement. The procedure
has been carried out by Moore (1953) for two-dimensional interaction
with a plane shock and by Chang (1957) for the case of interaction with
an oblique shock.

In 52.h the results of the usual linearized theory are presented
for the supersonic motion of two-dimensional aerofoils, axisymmetric
slender bodies and three-dimensional planar wings in the gas at rest.

These perturbations are thus considered known and are prescribed ahead

i e e A A B S oS FF e bl
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of the shock front in its motion on the obstacle.
Finally in §2.5 the Mach number of the obstacle behind the shock

is discussed.

2.2. Governing equations

2.2.1. Equations of motion

The unsteady flow of an ideal gas is governed by the equations

Cons. of mass 3R/3t + V.(RV) = 0, (2.2.1)
Cons. of momentum v/t + (V.9)V = - (1/R)vP, (2.2.2)
Cons. 9f energy _cVR{BO/at + (V.v)e} = - P(Vﬂi), (2.2.3)
Eq. of state ~ P = JRo,. (2.2.4)

where R, P, @, V represent the density, pressure, temperature and
the velocity vector of the flow, and J the specific gas constant,
Denoting the ratio of specific heats by y(= ¢ /c )s Egs. (2.2.1),
(2.2.3) and (2.2.4) can be combined to yield the adiabatic relation

(3/3t + V.v)(P/R") = 0. (2.2.5)

This equation states essentially that (P/R") is constant for a fluid

element and can serve to replace Egs. (2.2.3) and (2.2.4) from which it
is derived. For processes.where the entropy is not same throughout, it
is .convenient to relate Eq. (2.2.5) to the entropy of an element by the

second law of thermodynamics, which can be expressed as
(3/3t + v.v)s = 0, ' (2.2.6)

with S denoting the specific entropy. It is then easily found by
integrating (2.2.5) that for a fluid element

P/RY = exp{(s - S1)/cv}, (2.2.7)

where the subscript 1 represents some reference state which can be

chosen later.
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2.2.2. Disturbance field behind the shock

The flow field behind the disturbed shock is non-isentropic in
general. This field may be treated as a time-dependent small disturbance
from the state of relative rest of region (1), Fig. 2. The basic system
is then the pressure field due to the undisturbed plane shock; Upon this
field a perturbation produced by the presence of the obstacle and by
the small changing diffraction is superposed. The equations of motion
of §2,2.1 can be linearized based upon an expansion in terms of a
small parameter e, which can be interpreted as the maximum slope
(small compared with unity) of the wing surface. We assume an expansion

in ¢ for the non-uniform flow region behind the shcock as

R =R, + sp1(x, ¥, 2, t) + 0(52)
- 2
P = P1 + €p1(x, u, 2, t) + 0(e”) + ..., (2.2.8)
§=15, + es1(x, v, z, t) + 0(52) + oiee,
V= ev1(x, ¥, Z, t) + 0(52) + oiey

noting that the velocity of the undisturbed flow in region (1) is zero
for the chosen co-ordinate system., Here S1 is the specific entropy of
the gas in region (1); ¥, = i_u1 + i_v1 + k w,, the vectors i, j, k
are the unit vectors in the x, y and z directions; Pqs Pys Sp»

(u1, Vi w1) are the perturbation values of the density, pressure,
entropy and velocities for the disturbed flow. The expansions (2.2.8)
are inserted in the Egs. (2.2.1), (2.2.2), (2.2.5), (2.2.6) and
(2.2.7). Equating the coefficients of like powers in ¢ we obtain in

first approximation

3p, /3t + R1(Bu1/3x + 8v1/3y + 3w1/3z) - 0, (2.2.9)
du /ot = - (1/R)) dp,/ox, ov,/3t = - (1/R,) 3p,/dy, (.2.10)
ow,/3t = - (1/R,) 3p,/3z, o
3p1/3t = af %p,/0t, (2.2.11)
3s, /3t = oA, (2.2.12)

and s, = cv(p1/P1 - yp1/R1), (2.2.13)
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where a, (yP /R, ) The velocity of sound in region (1). From
Egs. (2.2.10) we can also obtain

dw/3t = 0, (2.2.14)

where w is the perturbed vorticity vector whose components are
(3w1/ay - av1/az), (3u1/az - 3w1/3x) and (8v1/ax - au1/3y).

From Eqs. (2.2.12) and (2.2.14) it is clear that any variation in
entropy or vorticity at a point will remain constant in time.
The perturbation quantities can be expressed in dimensionless

form as follows

p1/R1 =p, p1/yP1 = p, s1/cp = s, 31/a1 = v, (2.2.15)
where v =i u+ j v+ k w. We can also replace the time variable t
by a reduced space variable 1 = a1t Using the dimensionless parameters,

the Eqs. (2.2.9)-(2.2.11) and (2.2.13) can be written as

3p/3t + Ju/dx + Iv/3y + dw/dz = 0, | (2.2.16)

du/at = - 3p/ox, 8v/at = - 3p/dy, ow/dt = - 3p/sz, (2.2.17)

' ap/at = ap/oT, (2.2,18)

and s =p-op. (2.2.19)

Axisymmetric flow: For interaction with a slender body of
revolution, the disturbed field behind the shock can be regarded
axially symmetric. The flow variables are then functions of (x, r, t),
r being the radial direction. For the disturbed field we can assume
that there is an expansion beginning with a term of order zero
followed by a term proportional to 52, where € can be interpreted
as fineness ratio (small compared with unity) of the body. Thus we
write

P = P, o+ 2 p1(x, ry t) + ...,

R =R, + 52 p1(x, r, t) + ..., (2.2.20)

V=c¢ 31(x, T, t) + ...,

in a co-ordinate system at rest relative to the uniform flow of

region (1). Here g, = 1iu, + j 4> U, and q, being the axial




1k

and radial perturbed velbcities. It is far from obvious which power of
¢ correponds to the next term. References to such terms of higher order
can be found in the literature (cf. e.g. Lighthill 1954), Based on
expansion (2.2,20) we linearize the equations of motion (2.2.1),
(2.2.2) and (2.2,5). Expressing the disturbance parameters in

dimensionless form we obtain

3p/3T + 3u/dx + (3q/dr + q/r) =0, (2.2.21)
du/3t = - 3p/ax, 93q/3t = - op/or, (2.2.22)
together with ap/3t = 3p/aT, (2.2,23)

_where q = q1/a1, u= u1/81, and P, p are defined in (2.2.15).
Tt is noted that the Eqs. (2.2.16) through (2.2.18) can be
combined as to eliminate p, u, v and w, and thus obtain the following

equation for p alone

a_.gﬁ_z,,a_g._é._g:o, (2.2.2h)

a wave equation. Similarly for axisymmetric case, the Eqs. (2.2.21)-

(2.2.23) can be combined to yield the wave equation for P

2 2 1 2

3p,3p,13p_23p_,, (2.2.25)
2 2 r or 2

X ar 9T

The Eq. (2.2.24) or (2,2.25) is not affected by the fact that the
entropy perturbations are present due to the disturbed shock, as
already pointed out in chapter 1.

The Egqs. (2.2.2L4) and (2.2.25) for-the peerturbation pressure p
will be solved for shock-shock interaction with thin aerofoils and
wings, and with slender bodies of revolution, subject to two
initial conditions and the appropriate boundary conditions. The
boundary conditions to be considered are on the body surface and on
the disturbed shock front. In what follows we shall discuss the

conditions on the shock,

T

PR ke
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2.3. Shock relations

2.3.1. Undisturbed shock propagation

First we consider that the plane shock propagates without
encountering any disturbances. The Rankine-Hugoniot shock wave
equations, which are the statement of conservation of mass, momentum
and energy applied across the plane shock together with the equation

of state, give (cf. Fig., 1a)

R1(V -U) = RV, |
P, - P =R VU, - (2.3.1)
2 Y _ 2 Y
3V - U) +—Y—:—1(P1/R1) = v + (P/R),

for an observer fixed in the shock plane. The subscripts 0 and 1

pertain to the flow values in region (0) and region (1). Egqs. (2.3.1)

solved for U, P, and R1 give
U= Y%U - &2/,
P, = Q_ETRO(Ve - 15;—1 ai), (2.3.2)
| R1=¥{—:—1—Ro/(1+Yf1a§/v2),

vhere a = (yPo/Ro)% is the velocity of sound in region (0).
Writing M = V/a.o > 1 for the shock Mach number and M1 = U/a1 for the
Mach number of the uniform flow behind the shock, we can obtain from

(2.3.2)

! P./P_ = {2yM2 -y - DYy + 1), \
R1/RO = (Y + 1)M2/{(Y - 1)M2 + 2}9 ; } (2.3.3)

a/a_ = [f2pf - (v = DH(y = M2 + 23]%/{(y + 13,

My = 2062 - 1)/[(2M - (v - DGy - 0+ 23]2,

2.3.2. Disturbed shock front

The plane shock in traversing over the obstacle and its associated

disturbance field :(due to the obstacle velocity W > ao) denoted by
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the perturbation parameters po, po, (uo, vo, wo), undergoes a small
unsteady displacement. Let this displacement in x-direction be denoted

by y(y, 2z, t), and is assumed.having the same order of magnitude as the
displacement of the obstacle from the mean plane and also the disturbances
ahead of the shock, i.e. of 0(e) for thin wings. Hence the poéition of

the disturbed shock at any instant may be expressed as
5 .
x=(V-U}t+ vy, z, t) + 0(e7) + ..., (2.3.4)

in the co-ordinate system chosen behind the shock. Due to the

unsteady displacement the incident shock moves no longer in a uniform
fashion. It is well known that the Rankine-Hugoniot conditions,
nevertheless, apply provided the velocity components are taken relative
to the unsteady shock. A second point to notice is that the dependence
of y on y and z causes the shock to deviate from its position in a
plane perpendicular to the x-axis. The shock in fact becomes locally
oblique shock, and in addition to the relations for the normal shock
the continuity of the velocity components tangential to the shock has
tobe invoked. Since the deviations from the normal shock are only small

we can write for the shock relations of the perturbed shock (cf. Fig. 3)

3\

Ry + o )(V+Y -U-u) = (R, + o )V + ¥y - u),
(P1 + p1) - (Po + po) = (Ro + po)(V + lpt - go)(U +u, - uo),

(2.3.5)
2
1

2 2 Y
MOV 4y, - U-u)®+ v+ vid + —— (P + py)/(R + p,y)
Y

Yy -1

= (Vv + v, - uo)2 + vi +’w§} + (Po + po)/(Ro + po)”
The normal to the shock wave is no longer the x-axis, but is determined
by its direction cosines which are ﬁroportional to (-1, wy’ wz).

If n is 2 unit vector normal to the shock and Yy and vp denote the
_velocity vectors on the left and right side of the shock, the continuity
of the tangential components of velocity across the shock can be

expressed as
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This leads to

i1 (V4 -U= ) io-1 =V -u)
-i wy V1 = "l wy Vo
L ' Y4 kv, Yo i

which on expansion gives the relations

¢

w1wy -V, = wowy - vowz’ 0(52)

v, = (V+ by - U - u1)wy =v, - (v + v, - uo)wy, . (2.3.6)

vy - (Vg -U- uly, = w, - (v +'¢t -udy, .

In the Egs. (2.3.5) and (2.3.6), the terms of order e¢° are the
customary Rankine-Hugoniot relations given by (2.3.1). Retaining
quantities of first order, we obtain the conditions which the

disturbance field must satisfy at the disturbed shock.

P (V-U)+R (b -u)=pV+ Ry = u ),

1 o}

P, =Py =0 VU+R (4 - uO)U +R V(u, - Po)’

(V- U)Xy, -u,)+ - L 5 (P,/R)(1 +p /P -0 /R), r (2.3.7)
= Vb - u) + = (P /R (1 + p /P - o /R),
Vim Vo = - Ub,
vy - Uy

Here we may note that to the first approxiﬁation the shock displacement
derivatives wy andwz remain uncoupled and so -also the vélocities

v, and Wae Simpl;fying the set (2.3.7) on the assumptionAphat,the flow
ahead of the shock in region (2) is isentropic, i.e. po/PO = Ypo/Ro,

one obtains for the disturbed shock relations
(by - w)/V=3B(b -u)/V+B,p/P,
p4/R, =,C1(wt - uo)/V +C, pO/PO,

p1/P1 = D1(¢t - uo)/V +D, pO/pO, L (2.3.8)

MTAREE R NA (VA oI

W= V- (U,




18

where the coefficients are constants depending upon the Mach number of

the undisturbed shock, M:

(v = 1) - 2/,

By = G+ 1)
C1=—_—————h2 £
(y - 1)M + 2
2
D = hyM

2 2
oYM~ - (y - 1)

The perturbation parameters

Do

2y -1)

Y(y + 1)M2

1 2(y - 1)

Ay 2ly-1 ),
Y( (Y-1)M2+2)

auf - (y - 1),
2yM2 - (y - 1)

behind the shock may be made

dimenionless as in (2.2.15). For the parameters ahead of the shock

e

we write .
pd/YPo =D, uo/V =, vo/V =¥, wo/V =W, (2.3.9)
The shock relations (2.3.8) may then be put in the form -
p = A11 u + A12 D+ H11 wT, (2.3.10a)
P=Ay WAy, BT, Y, (2.3.10b)
u = A31 u + A32 p + H31 wT, (2.3.10¢)
vEh VT, wy, (2.3.104)
wo= AW T, (2.3.10e)
where
An:—'_-i_’_i’ hp=1- 2(-1)2’
2+ (y - 1M 2+ (y-1M
A = i , A _2M2—(y-1)
= - L]
21 2yM2- (y - 1) 22 2yM2-(Y- 1)
2
y - 1M -2 o_=ely = 1)
A31 = T TN (ao/a1)’ A32 —'(?f:-rﬁi-—(ao/a1),
AhT =M ao/a1’
I ot ’ o201
= i cemrars e
11 M{2 + (y - 1)M2} 31 y + 1
UM ao/aq
H21 = - M.

i =
1
o2~ (y - 1) 41‘ !
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For interaction with slender bodies of revolution, we denote the:
unsteady displacement in the incident shock by W(r, t). It will be
assumed of the same order of magnltude as the ax1symmetrlc perturbatlons
which are now functions of (x, ry t). By follow1ng the 51mllar
procedure as in the above dlscu551on, we arrive at the same relatiqns
as obtained in (2.3.10) except that the last two of relations (2.3.10)

are replaced by a single relation.
My @+ Ty v (2.3.101)

where q = q1/a1, q= qO/V, q, end q, being the radial components 6f the
disturbance velocities ahead of and behind the shock.

Along with the upstream perturbations (to be specified), the shock
relations (2.3.10) also include the derivatives of the shock displacement.
The displacement is determined only after the solution of the flow
problem. However we may notice that w can be ellmlnated from (2.3.10b)
and (2.3.10¢), while w ,w and w can be-ellmlnated from (2.3.10b),
(2.3.10d) and (2.3. 10e) alternatlvely by cross-differentiation., Thus at

the disturbed shock we obtaln

u = K-(p -Bu-Cp), _ - (2.3.11a)

%% = %'(35 - Ay %% - Ao %g) * My %g’ (2.3.110)

%¥'= %'(%E = Ay %% = Ay %g) * Ry, %g’ (2.3.11¢)
where A = n21/n31, B = A21;- Ahgys C=hyy -2 Ayps D= ”21/“h1

For interaction with the axisymmetric slender bodies, by virtue.of
relations (2.3.10b) and (2.3.10f), we obtain “

3 _ 1 (3p _ 2 _ ) 3q
5t =5 G ~ Mo a7~ Moo 3o) * My 3o

which will replace the conditions (2.3,11b) and (2.3.11c). It must be
noted that in Egs. (2.3.11) the derivatives with t are taken while

.(2.3,11d)

travelling with the shock.
Also from the shock relations (2.3.10a) and (2.3.10b), we can
eliminate wTand thus obtain at the disturbed shock

p=Ep+Fu+0Cp, (2.3.12)
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vhere E = H11/H F=A_-EA and G = A12 -EA

21 11 21 22°
It may be emphasised here that consistent with the linearization
the conditions at the shock will be applied at its undisturbed

location, i.e. at x = mT , where

m= (V- U)/a1 = M(ao/a1) - M1.

Making use of the plane shock relations (2.3.4) we obtain
m= ((y - 02 + 23020 = (v - 1, (2.3.13)

a function of M,

The conditions (2.3.11) will be used later in conjunction with the
equations of motion to obtain a single boundary condition at the shock
(x = mr), for p. The condition (2.3.12) will be used for determining
the density field, after the solution of the pressure field is completed.

~
2.4, Specification of upstream disturbance

The perturbations in region (2) are due to the obstacle moving
with constant supersonic speed W in the medium at rest, i.e. region (0)
denoted by the state Ro’ P and a_ (cf. Fig. 1). Hence the time-
independent solution can be obtained for region (2) by the usual
linearized potential theory. Since the incident shock does not
affect the flow ahead of it, the region (2) can be considered merely
truncated (cf. Fig. 2).
The disturbance field ahead of the shock is, in fact, governed
by the Egs. (2.2.9)-(2.2.13), except that now the state of region (1)
is replaced by the state of region (0) and the perturbation quantities
are designated by the subscript 0. On the assumption that this flow is
isentropic, the Eqs. (2.2.9)-(2.2.13) could be expressed as
. _
23_!0/31: ’ v(p /R_), (b 1)
(1/a]) dp /at” + R V.v_ =0,
in a co-ordinate system (x”, y, 2z, t°) at rest relative to the fluid
in region (0); v, = i_uo + Q_vo tkv is the perturbation velocity in
region (2). In view of the initial condition of uniform rest, the first

of Egs. (2.4.1) implies that Yo is the gradient of a scalar function,
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i.e. a potential ¢ exists. The Egs. (2.4.1) can then be expressed as

R_ap/ot" =-p ,
° ° (2.4.2)

2 2 :

ao V.

32¢/at‘2

Now if is convenient to use a system of axes fixed in the body.
The fluid of region (0) then approaches the body from the left with a
uniform speed W, The transformation to this system of axes, assuming
that the origins coincide at time t°= 0, is formally achieved by

ertlng x’ = x1 - Wt’,

if the new co-ordinates fixed in the body are (x1, ¥, z). Thus the
Egs. (2.4.2) vecome

R0(3¢/at + W ae/ox,) = - s
(2.4,3)
2 2 2
M+2Wﬂ;,+waﬂ=a2v2¢
.2 9x, ot .2 o 1
ot 1 D

1
where V? involves derivatives with respect to X1s ¥ 2. In this system

the flow pattern in region (2) is steady and the equations (2.4.3) reduce
to

p,=-R W 8¢/8x1, (2.4.1h)
2 2 2

O D R ] (2.4.5)
ax1 oy 9z

the well-known Prandtl-Glauert equations of linearized theory.
For axisymmetric flow around slender bodies of revolution, the
perturbation velocity potential ¢(xi, r) in region (2) will be of 0(52).

The linearized equation which governs the flow is now

2 .
(P2 L1y 28, 2212, (2.4.6)
o 2 r ar

9x 1 ay

The solution of the Eqs. (2.4.5) and (2.4.6) together with the
appropriate boundary conditions at the surface of the obstacle forms
the subject of the usual linearized theory. In the sequel we shall
present the results of the linearized theory for the disturbances in

region (2). for thin two-dimensional aerofoils, axisymmetric slender
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bodies and three=dimensional thin wings. These will be used for the known
perturbations ahead of the shock, in the shock relations deduced in
§ 2.3.2,

Two-dimensional aerofoils

Let the upper surface of an aerofoil be

y = f(x1),_ for x, > 0; - with f(x1) =0, forzx <0,

1 1
in a co-ordinate system fixed at its leading edge. If the aerofoil is
moving with supersonic speed W > & s the disturbances are described by

two-dimensional potential in the upper half plane (y > 0)

- (w/B) f(x1 - By), x, - B8y >0
o(x 15 ¥) = : (2.4.7)
o, X, - BY € .

where g = (M’2 - 1)%

, and M* = W/ao the Mach number of the aerofoil.
The potential in the lower half plane (y < 0) can also be determined
for the given lower surface of the aerofoil, since the flow on the two
sides of the aerofoil is independent of each other. In the above we
mey also assume that 8f(x1)/8x1 is continuous and has continuous
derivatives.,

From (2.4.7) the perturbation velocity components: can be written as

u
(o]

3¢/ox, = - (W/B) f'(x1 - By),
(2.4.8)

v
(o]

3¢/3y = W f’(x1 - By),
vhere the prime on the function represents differentiation with
respect to the argument, For the perturbation pressure we use the

approximation p =-R Wu.
(o} o o

Axisymmetric slender bodies

We restrict the analysis to smooth slender bodies. Let the body
of revolution be defined by

r = f(x1), for x, > 0,

vwhose pointed nose is at x., = O, We assume that f’(x1) is continuous and

1
has continuous derivatives, Thus not only must the slope of the
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surface to the incident stream be small, but changes in it ﬁust be
spread evenly over the length of the body, so that the curvature too

is consistently small., Similarly the curvature must vary only
graduﬁlly. These conditions ensure that the velocity due to disturbance
caused in the uniform stream by the presence of the body is everywhere
small compared with the velocity of the main stream. Under these

rather stringent conditions of smoothness the.boundary condition on

the surface . e
qo/(w + uo) =f (x1),

which may be approximated as a9, =W f'(x1) gives by a further
approximation in the limit
asr >0, rq *W f(x1) f'(x1). : (2.4.9)

The disturbance poténtial ¢(x1, r) for the supersonic flow over an

axisymmetric slender body is then given by

' x1—8r
bl r) = ow | —HELELO) C (20)
o Uxy-£)7 - 8752
The perturbation velocities are determined from
x1—8r
F(£)
u = 3¢/3x =-wJ ' e,
© ! A(x, - 5)2 - Bere}%
0 1
x ~8r | (2.4%.11)
e ¥ J (x, = €) F(¢)
q, = 3¢/er = = 1 dg,
o r {(x. - 5)2 _ B2r2}§
0 1
vhere : F(g) = £72(¢) + £(g) £77(k).

For the perturbation pressure we must use the quadratic
approximation to Bernoulli's equation (cf. e.g. Lighthill 1954)

. 2
= - - 3
P/R Wau 2Q

The second term is negligible except in the vicinity of the body
2 . . . .
surface where qo 1s comparable with uo in magnitude. We shall, however,

neglect the contribution of qi to P, in the entire field, and consider
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the approximation

p < - RO W u .

o
This simplification will limit the analysis to very slender configurations,

or infinitely weak conical shock waves.,

Three-dimensional wings

We consider nearly plane wings which are pointed and whose
leading edges are smooth functions of X , The mean surface of the wing
lies in the plane y = 0, where the boundary condition on the wing
surface can be applied. Following Ward (1955), the perturbation
velocitybpoténtial for the supersonic flow (W > ao) past a wing

symmetrical about its chord plane y = O may be given by

o(x., ¥, 2) = -~ (3¢(E,y,t)) dE d
1 n JJ{ dy )y=0 (x, - 02 - 6%z - ¢

)2 - BgyZJ%’
o ,

(2.4.12)

for y'> 0, with respect to the co-ordinates fixed at the wing apex, X,

being in the flow direction. Here I” is that pért of the mean wing

surface for which
1
£<x, - 8{(z - )2 + 22,

The potential in half space y < O is also determined, since ¢ is an
even function of y.
Ify = n(x1, z) represents the upper surface of a symmetric
wing, we can have on the wing surface, at y = 0
W Bn(x1, z)/ax1, on the wing projection I

3 (x,, ¥, 2)/32 = (2.4,13)
0, elsewhere,

We also assume that n(x1, z) =0 for x, < 0, and an/ax1 is continuous

1
and has continuous derivatives.

For antisymmetrical wings, i.e. wings with zero thickness but at
an incidence to the oncoming flow, the perturbation velocity potential

can be expressed as
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dt dz
{(x1 - £)2 - B2(z - §)2 - 82y

o(x,5 ¥, 2) ="--11;% ” #{€,+0,2)

-

2.}3’
(2.4.14)

for y > 0. Since ¢ in this case is an odd function of y, the potential
can also be obtained in region y < O,

The perturbation velocities and pressure can now be determined as

u, = 8¢/8x1, v, = 3¢/ 3y, v, = 3¢/ 3z and P, = - Ro W u .
_Thus using (2.4.12) together with (2.4.13), we are led to
W ” F.(g, 2) dg az (2.1, 158)
u = -+~ - 1 2.4.15a
° " {(x, - £)2 - 8%z - )% - Bzya}§
5-
for symmetrical wings, where at y = 0
' a®n(e, ©)/oe%, on I
F1(E’E ) = 0, elsewhere.
From (2.4.14) we obtain
F (g, ) dg ag
W3 ” 2'6s .
u = == 1y (20’4.151))
o T U e 202 2z - )2 - R

- !

for the antisymmetrical wings, where at y =0
(1/w) 2¢(g, ¢)/38, on:
F(g,2 ) =
0, elsevhere.

In the above we have given expressions for perturbation velocities
and pressure in region (2), which are to be prescribed ahead of the
shock in its passage on the obstacle, These perturbations are,
however, with respecf to the co-ordinates (x1, ¥, z) fixed in the body.
To relate these perturbations in the co-ordinate system (x, y, z, t)
chosen behind the shock, we assume that the two co-ordinate systems
coincide at time t = 0. At a later instant the two systems no longer
coincide and we have

X) = x4 (W+ Ut =x+ m,T, (2.4.16)

where m, = (W + U)/a1 = M'(ao/a1) + M

1 1°
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Also at the undisturbed location of the shock, x = mt. Hence to
obtain the perturbations in region (2) at the shock, in the co-ordinate

system (x, y, 2z, 7) we shall replace x, by (m + m1)r in the expressions

1
(2.4.,8), (2.4.11) and (2.4.15). The resulting expressions can further
be expressed in dimensionless form by using (2.3.9). Thus we shall obtain

for the upstream perturbation parameters at the shock x = mt:

For two-dimensional aerofoils,

ﬁ = - (k1/8)f’{(m + m1)T - By},} (2.)4.17)
\-I=—Bl_1, 5=-(k2/k1)1-1:
. — - i - 2_ ;2
vhere k, = W/V=M/M and k, = (RolyPo) Wo o= M"°,

For axisymmetric slender bodies,

13

1
u= -k J Te) 7523 3

o [{(m+m1)T-€} - gr°]?

kK, 31 Um + m )t - E)F(E) \
q=— J 55 46, (2.4.18)
¥ o [{(m+m1)r-€} fBr]§
B = - (k) 4, ,
where £, = (m + m1)T - Br.
For three-dimensional wings,
_ k, JJ F(E, ¢) ag ac (2.1 )
A= - — s 2.4.19a
T [tm e m)r - 0% - 821 - 0f - yA)
5 ,
(for symmetrical wings)
k File, ¢) ag at

U= _.;l.i_ J . 2 2 7o} > (2.h.19D)

y [{(m + m1)r - £} - 8 {(z - T)° - y}]°?

z’
(for antisymmetrical wings)

P = - (k,/k,) u.

The upstream perturbations defined by (2.4.17), (2.4.18) and
(2.4.19) can now be used in the conditions at the disturbed shock,
(2.3.10), or (2,3.11) and (2.3.12).
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2.5, Obstacle Mach number behind the shock

For the obstacle moving in region (0), we have defined its Mach
number as M” = W/ao. When the obstacle penetrates the incident shock

and is moving in region (1), its Mach number can be defined as

m1 = (W + U)/a.1 = M'(ao/a1) + M1,

for an observer fixed in the obstacle. Making use of the plane shock
relations (2.3.4), we can write

(y + 1)M M” + 2(M2 - 1) (2.5.1)

[teyM® = (y = 1)}(y = 1)M° + 2}]%’

m1-

a function of M and M”, Figure U4 shows the variation of m, with M*
and M as a parameter, taking y = 1.,4. We notice that for real
incident shocks (M > 1) and initially supersonic obstacles (M” > 1),
the uniform flow over the obstacle behind the shock will always be

supersonie.




Chapter 3

TWO-DIMENSIONAL AEROFOILS

3.1. Introductory remarks

This chapter is concerned with the study of shock-on-shock

interaction with two-dimensional aerofoils of arbitrary shape. The flow
pattern produced after the aerofoil has penetrated the shock is

essentially the same as has been discussed in §1.3, except that now.

it has to be visualized in two dimensions. Thus in the interaction
7region we shall have Mach waves AC and AC® (cf. Fig. 5) emanating from

the leading edges of the aerofoil, the Mach waves ID and I“D” from the

shock intersections I and I”, together with the reflected waves BCDE and
B“C“D“E” propagating with sonic velocity a, from the center at 0. The
diffracted shock IF and I“F” on the two sides of the aerofoil can have
similar or opposite curvatures, depending upon the attitude of the .
aerofoil (cf. Fig. 5), though the conditions at the disturbed shock
will be applied at its undisturbed location which lie in the same plane
for y = O. Since the uniform flow over the aerofoil behind the shock is
supersonic, (W + U):>a1, the flow pattern on the two sides will be
independent of each other. Hence it is sufficient to consider the flow,
say, in the upper half plane (y > 0). ]

The flow parameters for the two-dimensional problem are functions

ofA(x, vy, 1) only, since such a -flow can be considered to be independent
of spanwise gradients. The interaction flow field behind the shock can
then be described by the linearized equations of motion (2.2.16)

through (2.2.18), or by the wave Eq. (2.2,2h4), with the z-derivatives
omitted. Also the shock relations (2.3.11a) and (2.3.11b), while
(2.3.11¢) omitted, will be used together with the two-dimensional

perturbation parameters (2.4.17). In the sequel we shall complete the
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formulation of the flow problem and present the solution.

In §3.2 the initial and boundary conditions are considered.
In §3.3 the Lorentz transformation for x and t is introduced and the
complete formulation is written down in terms of new variables.
In §3.4 the solution is sought by a systematic applicationvof the
integral transforms. The solution is used to describe the entropy and
density field, and the shape of the shock front. In §3.5 the
properties of the solution are discussed. Finally in §3.6 the results
of §3.4 are applied to calculate the intéraction field for a

two-dimensional wedge.

3.2, Initial and boundary conditions

For the disturbed region behind the shock (x € mt), we can

prescribe two initial conditions as follows

1]

for t < O, plx, y, 1) 0:} (3.2.1)

ap(x, y, t)/3t = 0.

On the aerofoil

In the region behind the shock (x < mt) the tangency condition
stating that the normal component of velocity on the surface of the
aerofoil must vanish, can be expressed in the first approximation,

at y =0
v, = (Ww+U) £7{x + (W + U)t}, (3.2.2)
where the function f describes the surface of the aerofoil and has

been defined in §2.k4,
|

f{x + (W+U)t} =0, for {x + (W + U)t} < 0.

Hence (3.2.2) gives in dimensionless form, for -m.T € x < m1, ¥y = O

1

v = v1/a1 =m, £ (x + m1r). ' (3.2.3)

Further for values x < -m,T, ¥y = 0 we have v =0, since the air is

1

undisturbed to the left of the aerofoil. The conditon (3.2.3) can then

be used all along the axis -» < x < mt, since f = 0 for x < -m, 7.
Using the second momentum Eq. (2.2.17) and the tangency condition

(3.2.3), we can derive a boundary condition for the y-derivative of
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paty=0, Thus at y = O
3p/dy = -mf 77 (x + m1T), (3.2.4)

valid for -~ <-x < m . It may be noticed that the application of the
second momentum Eq. {2.2,17) requires the calculation of 3v/3t at

y = 0. At the shock location (x = mt), however, this calculation fails,
since 3v/31 leads to infinite values there. Hence the condition

(3.2,4) is applicable only for x < mt. At x = m7, y = 0, a different

condition will be used to be deduced from the shock relations.

On the shock front

The boundary condition on the disturbed shock front can be
furnished by the shock relations (2.3.11a) and (2.3.11b) which must
be satisfied at x = mt, all along the half plane, 0 < y < ©, These

relations are u = %-(p _BI-cC 5)’ (3.2.5a)
v_1@p_, du_, v :
and 70 Gy ~ Moy Mo sy t M T (3.2.50)

It is to be remembered here that in (3.2.5b) the derivatives to T are
taken while travelling with the shock. Hence when expressed in the
co-ordinate system chosen behind the shock the derivatives to 1 are
to be replaced by

3/371 + m 3/3x.

The relations (3.2.5) in their present form are, however, not
suitable to describe the boundary condition at the shock. In §3.3 we
shall use these relations together with the linearized equations of
motion (2.2.16)-(2.2.18) to derive a single condition in p to be

applied at the shock plane.

Shock-aerofoil intersection

For the region behind the shock, on the aerofoil (y = 0) at the

shock location (x = mt), the tangency condition (3.2.3) gives

v=m £ {(m+ m1)r}, - (3.2.6)

;
(Ww+U) £{(m + m1)'r}.

or v
1
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Again, for the region ahead of the shock, we can write for the normal

component of velocity at y = 0, x = mt

v W {{m + m, )1},

0 1

Using these values of v, and vy in the shock relation (cf. Egs. 2.3.7)

v1 =,vo = - Uwy,

we obtain at y = 0, x = mt 7= - wy.

Thus we see that the tangency condition in front of and behind the
shock is satisfied together with the requirement that the shock is
perpendicular to the surface of the aserofoil.

Now we can use the shock condition (3.2.5b) together with the

relation (3.2.6),and obtain a condition on 3p/dy at x = mt, y = 0
2._p m1(m + m1) £ {(m + m1)r}

3y
du P v
* {A21 5y T Moo 3y ~ D Ay, BT}at vy = 0.

N

(3.2.7)

From Egqs. (3.2.4) and (3.2.7) we may notice that when on the
aerofoil surface the shock is approached and when along the shock the
aerofoil is approached, the two limits of 3p/3y are different in
general. This non-uniformity has probably no physical significance,
but is a reflection of the simplifications in the assumed model, viz.
the shock has zero thickness, the boundary layer is omitted, the
conditions on the aerofoil are satisfied at y = 0 while those at the

disturbed shock are applied at its undisturbed locatiomn.

At infinity
For the disturbance field behind the shock we can prescribe that
all the perturbations vanish at infinity, i.e. for x s m;, y > O

as X > =, ¥ > o p(x, y, T) and its derivatives + 0, (3.2.8)

With the initial and boundary conditions discussed above and the
governing Egs. (2.1.16)-(2.1.18) and (2.1.2L4) (with z-derivatives
omitted)}, the formulation of the problem is complete.



32

3.3. The Lorentz transformation

The boundary conditions may be clearly visualized if the problem
is presented in the xyt-space. As shown in Fig., 6, the boundary
condition on the wing is prescribed in the plane y = O and those at the
shock are stipulated on the plane x = mt which is perpendicular to the
first plane. It will be convenient if the shock boundary conditions to
be satisfied at x = mt are transferred to a co-ordinate plane, say
X = 0. This together with the fact that the equation to be solved is a
wave equation suggests the application of a Lorentz transformation of

the type
F=lx-m0/(1 =02, = (r-m)/( - D)l (3.3.1)

This transformation leaves the wave equation invariant.
The plane X = 0 now corresponds to the shock plane x = mt, and

the wave Eq. (2.1.24) gives
82 32 32 '
2R, R_2°P._op, (3.3.2)
-2 2 =2
0xX y 9T

The initial conditions (3.2.1) can be expressed as

p(x, ¥, 7) = 3p(x, y, T)/3T = 0, for T < O. (3.3.3)

For the boundary condition (3.2.4) on the wing, we can write for

T>0,y=0, «»<X<0

sp/ay = A £7%{a(7 + 2 ¥)}, (3.3.4)
with f{a(T + on)} =0, for (T + xo:'c) < 0,
1 .
A, = -mf, a=(m+ m1)/(1 - m2)2 and A = (1 + mm1)/(m + m1).

Condition at the shock: Using the Lorentz transformation (3.3.1),

we can write
m2 :

3/3t+ m 3/3x = (1 - 3/97.

Hence the shock relation (3.1.5b) gives, at X = 0

v _ 1 d 3u . 3p v
— e (R _ g R p o SRy 4oy 2V (3.3.5)
3T D(1 - m2)z oy 21 3y 22 3y h1 2T

The equations of motion, (2.1.16) together with (2.1.18) and the first



33

of Egs. (2.1.17), yield upon transformation

1
EE_mER+E_m§E+(1_m2)5.S_V=O,

3T 3% % 3T 3y
and ﬂ_mﬂ=_(§§._m2{l),
aT 3x X oT

We first eliminate 3u/dx from these two equations, then differentiating
the resulting equation with respect to T we are led to

32 82u m 82v
- = 0. (3.3.6)

n T
9% 9T T (1 - m2)2 dy ot .

Making use of the shock relations (3.2.5a) and (3.3.5), we can
substitute for u and 3v/37 in (3.3.6). Thus we obtain a single
condition in terms of p at the shock X = 0, 0 < y <=

2 2 2
2p ,13p, m 13%
- - A =2 . 2D 2
9x 3T 9T 1 -m oy

1 32 m 1 32 -
=% oz (Bu+0p)+ 55 3 (o + ApoP)
9T 1 -m 3y
m a2v :
- 5T My, — . (3.3.7)
(1 Ve 3y AT
2 2 ,
Noting that l-m D=- 2m, 1';’“ %—-(1+1/M2),

the condition (3.3.7) can be simplified to'yield, at X = 0,0<y<w

32 32 2, 22
-2 eom SRy (14 F) 22 v

3y 3% 3T 572
2y 3% - .. 32 - _
= (1 + 1/M%) — (Bu + Cp) -5 (Aju+ A,,p)
aT oy
2 2-
2m 3 Vv
- T . (3.3.8)
(1 = m°) ol 3y AT

The upstream perturbation parameters u, v, p at the shock
location x = mt are given by the expressions (2.4,17). In terms of

new variables they can be expressed as follows, at x = 0
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u

(k1/e) r“{a(T - by)},
(3.3.9)

1]

V-8, B=- (kyk)d,

vhere b = B/a, and a is defined in (3.3.4). Substituting these

expressions in (3.3.8) we obtain for the shock condition, at x = 0,

0 < y < @
2 K 3 R ‘
—-R+ 2m—-—P-+ (1 + I8 y 3R K3 gz by)l, (3.3.10)
) - -

3y ax 9T 81 b 9T

where K is a constant given by
2

- ' 2 2m --2

K=-(1+1/M )(Bk1 - Ck2) + (/\211{1 - Ak, )b + 2 5 A ,k,8b

Here we may notice that the right hand side of (3.3.10) is due to
the disturbances ahead of the shock, and by definition of f it
vanishes for

(T -by) <0, or y32 (m+ m1)1/8.

The upstream disturbances along the shock are thus over a finite
section IF (Fig. 5b), as should be expected.

Equation (3.3.10) is a second-order differential condition in p
to be specified at the shock plane. This is to be supplemented by
the condition at the shock-aerofoil intersection given by (3.2.7): The

condition (3.2.7) in the new variables together with (3.3.9) leads to
at X =0,y =0 3p/3y = B_£°*(a7) 4 (3.3.11)
where Bo is another constant given by

BO = - {2m /(1 = m ) }(m - AMk Ja + (A21k1 - A22k2).

Finally the condition at infinity (3.2.8) can be expressed,
for x <0,y >0

as X +> -w, y > ® p and its derivatives - O. (3.3.12)

Summarizing, the wave Eq. (3.3.2) with the initial conditions
-(3.3.3) and the boundary conditions (3.3.%), (3.3.10), (3.3.11) and

(3.3.12) represent the complete formulation in terms of Lorentz
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variables., In the sequel we seek the solution to this formulation by

using integral transforms,

3.4, Analytic solution

In view of the time dependence of the pressure p, we first
introduce a Laplace transform with respect to T defined by (cf.
Sneddon 1951)

. % _
Px(i, ¥, 8) = L{p(x, y, T)} = } p(x, y, T) exp{~-sT}dT. . (3.4.1)
0

Applying this transform to the wave Eq. (3.3.2) and using the initial

conditions (3.3.3) we are led to

32p%  9%p% o

2 + 22 ¥ =0, (3.4.2)
) 2 P :
ax oy

0, > <Xx<0

The boundary condition (3.3.4) gives, for y
3p"/3y = A_ exp{sr X} G(s), (3.4.3)
where Ga(s) = L{r**(87)}.

The condition at the shock (3.3.10) together with the initial conditions
(3.3.3) will give at X =0, 0 <y < =

2 % *
- §_§,+ oms 2B 4 (1 + 1/M2)sep;'E <K s exp{-bsyl. (3.4,1)
3y ox b

The supplementary condition (3.3.11) yields

at X =0,y =0 ap’ /3y = B, G(s) (3.4.5)
The condition (3.3.12) now becomes

a; X —w, y>o p* and its derivatives - O. (3.4.6)

Next, since the boundary conditions at y = 0 are given for
ap*/ay, we can introduce a Fourier cosine transform with respect to
y defined by (cf. Sneddon 1951)

P (X, a, s) = Fc{px(i, Ys-s)} = J (X, v, s) coé(ay) dy. (3.4.7)
5 ,
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Applying Fourier cosine transform to the Eq. (3.4.2), and employing the
conditions (3.4.3) and (3.4.6), we obtain

32 e 2_%% -
'—...% - A5pT = Al exp{s}\ox} G(s), (3.4.8)
9x

valid for -® < X < 0, where 22 = o 4 2, .
Further applying the transform (3.4.7) to the condition (3.4.4), and

using the conditions (3.4.5) and (3.4.6), we deduce, at x = 0

2 2,92 xx apiH g2
(A + s“/M)p" " + 2ms =2 = - B_ G(s) + K ——= G(s). (3.4.9)
- o 2 22
3x a” + b s
Finally the condition (3.k4.6) gives
as X * - p 0, (3.4.10)

Thus we have reduced the complicated problem to an ordinary
non-homogeneous differential equation (3.4.8), to be solved éubject to
the conditions (3.4.9) and (3.4.10). The complete solution of (3.4.8)

can be written as

pxx= E1 exp{Ax} + E2 exp{-2x} - —E—EL—E—E-exp{sAoi} G(s). (3.4.11)

In view of the condition (3.4.10), the co-efficient of exp{-AX} must
vanish. The co~-efficient E. is then determined by using the condition

1
(3.4..9) at x = 0. Hence we obtain

XA A A ] A
ps (A _—— _oma -B
o A2 _ kgsz o H(A) A + Aos o H())
A s ) exp{x}
+ K G(s)
H(A) W2+ l-)252 A
Ao _
-5 33 exp{son} G(s), (3.4.12)
A - Aos

2

where H(A) = A° + 2ms) + 92/M2, which can be represented as

2
Azland A3 being the roots (real, distinct and positive) of the quadratic

H(A) = (3 + A 8)(x + A3S),
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equation
A? - 2mi. + 1/M2 =
i i

Then (3.4.12) can be simplified and expressed in the form

pxx = %A ()\ _1k - expi)\x} - 5 2 575 exp{s)\OJ-c}) G(S)
o A - ATs
[o]
L1 g exp0E) ()
Yzl AT x s A 82
- _ 42 2
vhere A, = AOH(AO)/H(-AO), H(Ao) =2, +tam 4+ 1/M°,
Ay = A-exzx (B * AgonA - == 2)’
27739 AT el A,
A3 =3 2A3x (B * Azonx -3 - 2)’
R I P 5
Ay = K/{(Az - Ah)(k3 - Ah)}, Ag = K/{(Ag + Ah)(k3 + Ah)},
- - 2 _ =2
Ay = Ags AS = -}, and A = (1 - B%)> o.

The constant ) has been defined under Eq. (3.3.4),

Ay = Ay = (1 + mm1)/(m + m1)

(3.4,13)

(3.4.14)

Making use of (2.3.13) and (2.5.1), Ao(or A1) may be determined for

given M and M”. It may be noticed that for real shock (M > 1) and

initially supersonic obstacles (M”> 1), Ay is always less than unity.

Further A, and A3 are determined by Eq. (3.4.13). They are given by

,
* Ags Ay =m + (n® - 1/M2)%,

2* 73

Using (2.3.13) we see that A. and A3 are functions of M alone, and they

2

are always less than unity for real shock (M > 1). Finally for b > 1, %,

is always real and less than unity. It is given by

= {1 - 82(1 - m2)/(m + m1)2}%
a function of M and M”, The variations of Ao = A1, Az, A3 and Ah
with M and M” are illustrated in Fig. T.

'
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The real kh, however, implies that

1
(m+m,)/8 > (1-0°)%, or IF > BF,

the intersection of the plane shock with the original Mach wave of the
body lies outside the sonic circle {cf. Fig. 5).

Now, to obtain the pressure p we seek the inversion of (3.4.1h)
- . = =lpr=1, %%, =
p(xg Y T) =1L [FC {p (X, o, S)}].
The inversion of (3.4.14) is considered in Appendix (1.1). Thus we

obtain for the pressure field

77 {alu + XOE)}

T
plx, y, T) = 1 (a fdu[- at .
T ( °0 R W2 - (z-6)2- yz}%

zi ?f O e+ A

+ A. duJ dg

I N e =k

I 2 27 {alu + A 8)} )

- A_(du 1 dg
NG N ¢ S L
A » .

+ 2 £7(E(T + X - By, (3.4.15)
35 '

The integrals for i = 1,2, 3 & 4 can also be written as

A S IR )
z A'Jduj 1 dgo
=1 Ty ol

0

i (T-w2- (F-0)2-y8

Also the last two terms in (3.4.15) can be combined (cf. Appendix 1.2)
to yield

} T {aly + th)}
A duJ - — at.
5E - WP - G- 07 -y

Thus we can express the result (3.4.15) in a more compact form as

follows
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T 0
plx, y, T) =% (-Aofduf ;— 7 {aly + Aog)} at
0 &, ¢
s T4 L
Z Afau[ %- £7(@l - A.8))) ae | (3.5.16)
- 00 a .
1 . 1
where 51 =X+ {(7 - u)2 - y2}5’ 52 =X - {(? - U)2 - y2}2’

' 1
r, = {7 - w2 - (x - €)% - y2}2. and Ag = =Xy

Shock intersection-inside sonic cirecle

To arrive at the above results from (3.4.14) we assumed Ay, to
be real, i.e. b < 1, When b = 1, we noticg that IF = BF, the shock
intersection I coincides with thé poinf B of the sonic circle. The region
IBDI of Fig. 5 now disappears,-and the curved portion of the incident
shock is confined to BF, In thisicase tﬁen Xh = 0, and the results for
the interaction field are still given by (3.4.15) or (3.k.16)

In case b > 1, IF < BF, the ‘shock intersection T then lies below
point B of tﬁe sonic circle, Fig. 8. The shock is curved below B and
there are contact discontinuities along approx1mate pos1t10ns BO and IO.
However, analytically this situation does not pose a different problem,
since we formulate the condition at the undisturbed ‘shock plane for
0'<y <= (cf. Eq. 3.3.10), and the fact that the perturbations of
region (2) are confined from I to F (now less than BF) along the shock
is automatically taken care of by the right hand side of the condition
(3.3.10). The above analysis is then valid as such except that now

h and 15 become imaginary. Under these conditions we consider the last
two terms (for i = 4 & 5) in (3.4.14) as follows

: A A -
#% - _ | L 5 exp{ix}
4,5 =7 G o) T 6(s)
4 L
=@+ Q) 5 B oy (3 4

a +bs
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: 2 . 2
) K(x2x3 + xh) - K(A2 + A3)Ah

were 8, (28,3’ % (222202 -3
2 - V3 T ) 2T i3 T

both are real. The inversion of (3.4.17) is achieved in Appendix.(1.3).

Thus we obtain

I,,5(% v, T) = L-1[F;1{I§f’:5(§, a, s)}]

]
l-—l

T e
= [anere @ - 5e) (0,000, ©) + 0G0, o)
b 0 0

+ QN (n, 7) + Nylu, -c)}) az, (3.4.18)

where the funtions N1 and N2 are given by

X VT—LI
ey -0 {F-wP-%-(y-03?

Mytu, ©) = ((F - w2 - %2 - (y - 0B

N1(u, t) =

Hence in case b > 1, to obtain the pressure field the last two
terms (for i = b & 5) in (3.4.16) should be replaced by Ih,S (Eq. 3.4.18).

It may be remarked here that for the case b > 1, we can also
evaluate the interaction pressure field behind the shock from (3.4.16)
provi@ed we consider the real parts of the expressions involving )
and AS. To write the real parts of these expressions, in their present
form, does not seem feasable. We can, however, do so after the integrals
in (3.4,16) have been evaluated for a specific example. This is done
in §3.6 and the results checked with those evaluated by the direct
integration of (3.4.18),

The solution of the flow problem discussed above, (3.4.16) and
(3.4.18), satisfies the governing equation and the prescribed initial
and boundary conditions. By using the transformation (3.3.1) p(x, y, T)
can be expressed in terms of original variasbles (x, y, t). It is,
however, easier to carry out the integrations in (3.4.16) and (3.4.18)
for a given f (the profile of an aerofoil) first and then express the
results in original variables.

Once the pressure p is known, all the other flow variables, viz.
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velocity components, entropy, density, can be determined in the
non-uniform flow region behind the shock, including the shoék shape.
This can be accomplished by using the linearized equations of motion
(2.2.17)-(2.2.19), and the shock relations (2.3.10) together with the
upstream parameters given ?y (2.4.17). In the following we shall

deduce the entropy and density field, and the form of the shock front.

Entropy and density field

From 52,2 it is known that the entropy of the fluid flow remains
fixed with the fluid particles on crossing the shock., Hence to obtain

the entropy we can use the basic relation (2.1.9)
s(x, y) = p(x, y, 1) = o(x, y, 1) (3.4.19)

at the instant the shock passes (1 = x/m). The shock condition

(2.3.12) gives, at t = x/m
p=Ep+Fu+Gop (3.4.20)
Then from (3.4.19) and (3.4.20), we obtain for the entropy

(1 -E) plx, y, =x/m) - (FT + G P).

s(x, y)
Substituting for u and p from (2.4.17) we are led to

s(x, y) = (1 - E) p(x, ¥, T=x/m)

+ %(1;11?’- k,0) £7{(x = Ey)(m + m)/m}, (3.4.21)

where ¢ = Bm/(m + m1)-

With the entropy determined, the density field is immediately
given by (3.4.19). Thus

o(x, ¥, 1) = p(x, y, 1) + (E - 1) plx, y, t=x/m)
- 3K = k,0) £ (x - &)(n + m,)/m). (3.4.22)
Shock front |
The form of the incident .shock on diffraction is given by
x = mt + Y(y, 1) + 0(52), (3.4.23)

in the co-ordinate system chosen behind the shock. The shock displacement

¥ can be determined by integrating the shock relation (2.3.10b),



k2

The shock relation (2.3.10b) together with (2.4.17) gives

1 : 1 ‘ . ‘
Y= —21- [p(xm'r, ¥, T) =~ 3 (}~;1A21 - k2A22) £7{(m + m1)r -._By}] .
On integration and taking the initial condition ¥ = 0 for T = 0
T
k_A - k. A
22
vy, T) =‘#( plx=my, y, u)du - 121 2 f{{m + m )t -,By}).
H21 B{m + m, 1
0 : S (3.L4.2h)

This completes the solution for the non-uniform flow field under

consideration.

3.5. Properties of the solution and discussion

The pressure integrals (3.4.16) can be interpreted as Possio type
integrals (cf. Possio 1937). The numerator of the integrand represents
the 'source strength' and the denominator represents the 'pseudo
distance' between the source point (£, O, u) and the field point
(X, y, T). The domain of integration is that region of the &£-u plane in
which thé dencminator is real. This is the hyperbolic area

.
2}2

Y- - 2
(T = n) 2 {(x-¢8)" +y7}5,
obtained by intersecting the forecone whose vertex is at (x, y, T)
with the £-y plane (cf. Fig. 9). It is readily seen that only points
inside the so defined £-p domain may contribute to a disturbance at
the point (X, y, T). On the other hand the contributing points are
limited to the area in which f*“{a(u * Aii)} is different from zero.
Thus a sector of the hyperbolic area is cut off.
We notice from (3.4.16) that the sources
5
= —, = - L -

g, = Af {alu + AOE)} . &, 121 At {a(n Aii)},
are spread in the plane of the aerofoil, y = 0. The source strength
g, is in fact given by the boundary condition orn the wing (cf. Eq. 3.3.4)
with X replaced by £ and T by p. We can think of the conditions at
‘the shock being replaced by an equivalent condtion on the aerofoil,

at y =0
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3p/3y = - 'f A, £77(E(T - AR (3.5.1)
1=1
Then the source strength g, can be given by this condition with X replaced
by £ and T by W,
It is wothwhile to point out here that Ting & Ludloff (1952) have
assumed the solution for the problem of diffraction of plane shock by

stationary aerofoils in the form of Possio integral, viz.

1 P, (g, 0, n)
P(x9 Vs T) = - J:[{(T ) u) ( ~ 5)2 }%dg du.,

They argue that such a solution will be applicable provided 3p/dy is
prescribed all along the entire plane Yy = 0. However 3p/dy (at y = 0)
is known only for the half plane x < 0. Hence they proceed to

formulate a reflection principle, using a tedious procedure, by which
they replace the conditions at the shock by a condition on the extended
_Plane of the aerofoil beyond the shock plane, i.e. 3p/dy at y = 0,

for x > 0. Such a reflection principle on the other hand is implicit

in our solution and can be obtained as a corollary (cf. Eq. 3.5.1).

Pressure field

We shall consider the pressure field given by (3 4.15) or
(3.4.16) in the form

£°{a(y + AOE)} dg
C

. Hla

T
1
P(x’y:T =; A[dj
0

+
IIMJ:‘

; £
A. I f %- £ (n = 2,80} as
oo ¢
T
ASJduJ % £ (E(u + 2,6)} ag)
0

+ A5(1/B) £(&(T + 3% - By)) (3.5.2)
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with £, £, and r_ defined in (3.4.16). From the first six terms it
is seen that six domains exist in which f is different from zero.

Note that since f(x1), with f(x1) = 0 for x, < 0, describes the

1

aerofoil surface, x, = 0 fixes the leading edge of the aerofoil.

While £ = - u/Ao de;cribes the motion of the real leading edgé,

£ = u/Ai (for i =1,2, 3&4) and £ = u/x5 = - u/xh indicate the

motion of five "fictitious leading edges". These lines in the £-u plane
separate six domains in which the sources Aif"(g, u) assume the following

values
-u/A <E <0, A &l + 2 g,
0<¢g < u/xi, A, £ {aly - AiE)}, fori=1,2, 3%k,

- u/}‘h < g <0, A5 7 {aly + Ahg)}'

The conical surface x2 + y2 = 12, X & mt, remains a conical surface
in the Lorentz variables, namely % 4 y2 = ?2, X g 0, Fig. 10. Any
point (X, y, T) lying on this conical surface is influenced by the
sources in the £-p plane which lie inside the sector bounded by the
straight lines £ = # u/Ai and by the hyperbola

W o2 27p + 2x£ = 0, (3.5.3)

vhich passes through the.origin, Fig. 11. We can see that the
integration area does not include the sources A, *“{alp - Aii)},
for 1 =1, 2, 3 & U4, since for u > O the hyperbola lies in the
second quadrant, while the straight lines £ = u/Ai (i =1, 2, 3¢&L)1ie
in the first quadrant (cf. Fig. 11b); hence no sector is cut off by
these bounding lines with the hyperbola. Thus for the points on the
conical surface, the integrals for i = 1, 2, 3 & 4 in (3.5.2) do not
contribute. Also for the points outside the Mach cone for which
22+ y2 > ?2, the corresponding hyperbola is shifted to the left and
the integrals for i =1, 2, 3 & 4 in (3.5.2) do not contribute.
Again for the points on the conical surface, the hyperbola
(3.5.3) will or will not intersect the bounding lines £ = - u/Ao and
£ = - u/kh, depending on the location of the point (X, ¥y, T). The

intersection of the hyperbola with the line £ = - u/Ao will occur if
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|)_c/(>_c2 + y2)%|>‘k . Thus the line y/x = - (1 - AL ) /A separates the
points (X, y, T) on the conical surface which furnlsh the intersection
from those that do not, and it hits the Mach circle st the point of
contact of Mach line AC, as indicated in Fig. 10. For any point lying
between B and C on the conical surface (Fig. 10) the hyperbola will be
located as shown in Fig, 11b,-i.e. the first integral in (3.5.2) will
be zero here. However for points lying between E and C the hyperbola
will be located as shown in Fig. Tle, i.e. the source intensity is
different from zero in parts of the integration area. For points. on or
outside the conical surface to the left of line FC (Fig. 10), the first
integral in (3.5.2) then integrates to give

A

Id = - ° . £° [a{r + A x - (1 - A y}] (3.5.4)

al 1122

which vanlshes for T + A x - (1 -2 )§ € 0, i,e. for the points on or
to the left of AC, whlch is a Mach wave from the leading edge of the
aerofoil and tangent to the Mach circle. The expression (3.5.4) thus
represents the solution in the region ACE due to the supersonic flow,
(Ww+u) > &,, over the aerofoil and is the same as obtained by the
usual linearized theory of steady supersonic flow.

Similarly for the sixth integral in (3.5.2) we may conclude that
for the‘points on or outside the conical surface, the integral vanishes

everywhere except in the region DGE where it gives

Ig, = - Ag (1/8) £7{a(7 + Ahi - by)}. (3.5.5)

It vanishes for T + Ahi - by < 0, i.e. for the points on or to the

left of GD which is tangent to the conical surface at D. However the
last term in (3.5.2), I Iso» is finite in the region IFG (Fig. 10), and
vanishes for the points on or to the left of IG which is tangent to the
conical surface at D. Thus we see that the last two terms in (3.5.2)
while taken together will vanish for the points lying between E and D

on the conical surface, while in the region IDB they yield

15 = AS (1/B) £7{a(T + Ahi - by)}

which vanishes on or to the left of ID, another Mach wave.
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From the above discussion it will be clear that the hyperbola
corresponding to any point in domain I (Fig. 10) with large co-ordinates
X or y will be shifted considerably in the direction of negative ¢
or negative y. In other words, p(«w) = 0, as stipulated in §3.2. Further
it can be seen that if the point under consideration moves continuously
from outside to inside across the sonic circle, the reépective hyperbola
moves continuously into the direction of positive £, the domain which is
covered by the sources A 7 {aly - Aii)}, for i = 1, 2, 3 & 4, Since
the source intensity is finite, it follows that p will vary continuously

across the Mach circle.

Density field

We consider the expression (3.4.22) for the density variation,
vhere p(x, y, T=x/m) can be obtained form p(x, y, t); Eq. (3.5.2), by
setting T = x/m. Thus from the previous discussion we may notice that

the first six terms in p(x, y, t=x/m) will vanish for

2 2 2 ' 2,3
(x“+y 21 }at c=x/m® ©F x(1 - m7)° < my,
i.e. for the points on or to the left of line BO (Fig. 5b), while the

last term in p(x, y, t=x/m) yields

Ag (1/8) £7{(x = cy)(m + m1)/m} , withc = 8 m/(m + m1),

which vanishes for x < cy, i.e. for the points on or to the left of
line I0. Also we may notice that the last term in (3.4.22) vanishes
for x g cy.

Taking these into account it follows from-{3.4.22) that the lines
of constant density (isopycnics) will coincide with those of constant
pressure (isobars) for x s ¢y, but will deviate from the latter for
X > ¢y, i.e. inside the area IOF, Fig. 5b. In other words the flow
inside IOF is non-isentropic and rotational, while outside it is
isentropic; irrotational. Since across the reflected shock BCDE the
pressure varies continuously, as noted above, the particles do not
acquire the vorticity on crossing the reflected shock, but only by
crossing the curved portion of the incident shock IF. These particles

stay inside the area swept over by IF, i.e. inside IOF,
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The lines IO and BO are thus the lines of contact discontinuity
across which the density or its derivatives, depending on the form of
f, are discontinuous though the pressure remains continuous.

It is clear from the preceding discussion of the pressure and
density fields that the flow pattern for the non-uniform region behind
the shock, which was discussed in §1,3, essentially emerges from the
solution,

Flow pattern classification

For the sake of completeness we may classify the_interacfion flow
picture at an instant t > 0, on the geametrical consideration according
to whether (cf. Fig. 12)

| 01 < b 0> 8 >¢,, or ¢y < 9os - (3.5.6)
where ¢, = arctan {1/M'2 - 1);} » ¢, = arcten {1/(m? - 1);},
h |
and ¢, = arctan {(1 - m2)§/(m + m1)}.

Wﬂen ¢1 < ¢o’ the Mach waves AC and ID intersect each other,
Pig. 12a; when ¢1 > ¢o > ¢2, the Mach waves AC and ID do not intersect,
Fig. 12b; when ¢° < ¢2, the shock-shock intersection lies inside the
sonic circle and there is Mach wave AC only, Fig. 12c. These have been
termed in the literature as intersecting tangents, non-intersecting
tangents; and single tangent cases. From (3.5.6) we may deduce that

these three cases will occur according to whether

MT <F (M), F,(M)>M > F,(M), ér M” < F (M), (3.5.7)
where
P00 = 20 - 0)/[ten - (v - Gy - P e 22} - (y - 1],
1 2 2
Fo(M) = [M + (22 + Q(M? - ¥/ (2 - 1), with g = X Mg 1 Gy 'Y13M1 +.2'

Figure 13 illustrates the range of M” (the obstacle Mach number )
and M (the shock Mach number) for which the three different cases arise.
From this figure we may infer that ¢o_>'¢2 (for points M, M” to the
left of curve II) for all M and values of M” for which the usual
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linearized theory yields satisfactory results. It is only for higher
values of M’ that o, < ¢ (for points M, M to the right of curve II).
Since the linearized theory only provides for infinitely weak shocks,
i.e. small M“(> 1), for all practical calculations we may consider that
¢ > ¢2, i.e. the shock intersection lies outside the sonic circle

o
(Figs. 12a & b).

3.6. Application
As an example of the theory we shall apply the results of §3.4 to

a thin wedge of semi-vertex angle e. The surface of such a wedge can
be expressed as
f(x1) = ex,.
Then f’(x1) = eH(x1), and f”(x1) = 66(x1), (3.6.1)
where H and § represent the unit step and delta functions respectively.
Using (3.6.1) in the expression (3.4.16), we obtain for the pressure
field 0
- - € - 2 - 2 _2,-3

b, v, B = S fiE e 0o G- 02 - e

-\ "o o

Ta

o

+

1

1 1
AiJ {“7 - xig)2 - (x - 5)2 - ye}’2 d&), (3.6.2)
L

Il ~nn

= - = =2 2,3
vhere o [x + AT - {(r+a2 0" - (1 - Ai)y 3]/ - Ai)

o = [% - 0T+ ((F -2 - (-850 -2,

Now (3.6.2) can be easily evaluated and it yields

ma

p(E, v, T) = e—{ o srocod —0 >—1)
al (1 - xo) (7 + xoi) - {1 - xo)y }2

p] Ai kir -x

+ ) ———=— arcco 3
i=1 (1 - Ai)% s({G -3 0% - (1 - Ag)yz}e)}(3.6.3)

for Ai§ less than unity. Expressing (3.6.3) in the original variables

by using the transformation (3,3.1) and simplifying we obtain

SENT TR IR TR TN



( ) e {_ ( YOT + x )
P\X, ¥, 1) = =— (A arccos

ma Lo (U +yg0)® - (1= 220

5 YT = X
+ ] K. arccos = ' }, (3.6.4h)

i=1 ({(r - Yix)g - (1« Yf)y2;g> '
where Ko = - Ao/(1 - Ai)%, Y, = (Ao -m)/{(1 - Aom), ‘
and Ki = Ai/(1 - A?)%, Y; < (Ai +m)/(1 + Aimz, for i = 1, 2,...5.

The above result (3.6.4) can also be expressed in terms of conical

(physical) variables defined by X = x/1, Y = y/t. Thus we obtain

p(X, Y) = = {K arccos( o * T )
’ "a T +y 22 (1=
. A o )
S5 Y. = X
+ ) &, arccos( 21 5% 7)}- (3.6.5)
i=1 1 (0= 0% - (1 - yDY)?

This easily yields the results for the pressure on the wedge face
(Y = 0) and along the shock (X = m), which can be shown by laborious
calculations (cf. Appendix 2) to be the same as the expressions
obtained by Smyrl (1963).

For the above calculdtions we considered § < 1. In case b > 1, the

last two terms in (3.6.2) must be replaced by the expression {using

(3.6.1) in (3.4.18))

IU,S(;{’ Y, ?) = ;—J(Q]{n1(y, ) + n1(;y, g)}
0
*+ Q(ny(y, ) + n,(-y, c)ﬂ dc, (3.6.6)
x T -

ey -0 {(F-5)2- %

l\)g‘l

where n_(y, z) = -
1 - (y - 0)3?

:
and  ny(y, €)= ((F - 50)% - 2 - (y - )72,

On integrating (3.6.6) and by further simplification we are led to
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I, (%, ¥y, T) = —-—-{ Q, arct 2xN V
4,5 =T an(-z ,2- N ﬁz)
-2 2. :
Q X+ (N + x’r)
g (5 ) (3.6.1)
' L + (N - Ahr)
1
with  F=8(R-x2-y2F  aa  ap = (B2- 0

We may notice that the first term in (3.6.7) vanishes for § = 0, while
the second term vanishes either for T = 0 (cf. the first initial
condition 3.3.3) or for ¥ = 0. Thus the expression (3.6.7) vanishes
for (T° - X2 - y )3 < 0, i.e. for points on or outside the sonic
wavelet BCE, Fig. 8, It may further be pointed out that the expressioﬂ
(3.6.7) is also the real part of the last two terms in (3.6.3), as was
noted in §3.4. On expressing (3.6.7) in the original variables

(x, y, T) we obtain

2(x - mr)tN 2)

(x, y, T) = ——~{ Q1 arctan(
(x - mr) + Ah (T - mx) - N

mab

-, 1n

Q2 ((x -mt)? o+ N+ Au(r - mx)}2 }
2Ah

(x - mr) + {N - Ah(r - mx)}

. (3.6.8)

with N =5(1 - n)3(? - x° - yz)%-
Density field

Using (3.6.1) in (3.4.22), we can write for the density variation

for the wedge _
p(x, y, 1) = p(x, y, 1) + (E- 1) plx, y, t=x/m)

- (e/B)(k1F - keG) H(x - cy), (3.6.9)

where p(x, y, 1) is given by (3.6.4), together with (3.6.8), and
p(x, y, 1=x/m) is obtained from p(x, y, 1) by substituting 1= x/m.
Thus
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2,3
Ai(1 - m7)%x

Ki arccos(

Il 10

€
p(x, y, t=x/m) = &
a

i=0 {1 - 22)x° - n2(1 - A'f)y?g)
. 2,3
M (1 - m%)ex
+ = (A, - A ) arccos 4 -
"B Tk > ' ({(1 - m2)x2 - m252y2}2)
+ % Ag H(x - Ty), ' (3.6.10)

for b < 1. When © > 1, the last two terms in (3.6.10) must be replaced
by I 5(x, ¥, T=x/m) to be obtained from (3.8.6)

Q [b{x -ym/(1—m)}§+)\h]2
(x, y, T=x/m) = = 2, 14 - . (3.6.11)
hsx y n Bexh ([E{x -ym/(1-—m)§-)\£x]2)

We may notice that the first five terms in p(x, ¥, T-x/m)
(3.6.10), vanish for x < ym/(1 - m )2, i.e. to the left of BO,
Fig. 5b, and are continuous there. The last term in (3.6.10) vanishes for

x € ¢y, i.e. to the left of I0 and is discontinuous there.

2. y2 < 0, I, 5(x, ¥y, 1=x/m),

(3.6.11), must vanish for x < ym/(1 - m )é, i.e. to the left of BO,

Since Ih 5(x, ¥, 1) vanishes for 12 - x

Fig. 8, and is continuous there.
. Finally the last term in (3.6.9) vanishes for x ¢ cy, i.e. to
the left of I0 and is discontinuous there.

The lines IO and BO are thus the contact discontinuities obtained
in the flow field. The nature of these lines is further discussed in
§T.1.

' Shock displacement

Making use of (3.6.4) in (3.4.24), we obtain for the shock

displacement

Wy, ) = ¢ H—1- [p(x =mt, y, 1)

+—-——-—-r{A y arctan = =

qa(1 -m2)2 L° Yo ¥ y
g A,y arctan(1 - Yim - me)TQ — yg}%)}
i= iom y

€ l .
+3 (k1A21 - ‘szze)J‘ : (3.6.12)



Chapter U

- AXISYMMETRIC SLENDER BODIES

L4.1. Introductory remarks

In the preceding development of shock-on-shock interaction theory
we have dealt with two-dimensional planar obstacles, i.e. the problems
in which the boundary conditions on the obstacle have been expressible
to the required degree of accuracy, in an x-z plane. For sufficiently
slender bodies of revolﬁtion it .is possible to derive an analogous
method by specifying the boundary conditions in the viecinity of the
body exis. The present chapter is confined to the development of this
phase of axial syﬁmetry.

The flow pattern due to the interaction of a plane shock with
supersonically moving slender pointed bodies of revolution has been
discussed in Chapter 1 (§1.3). In Chapter 2 we have discussed the
governing equations of motion (Egs. 2.2.21-2.2.23, and 2.2.25), the
conditions at the disturbed shock (Egs. 2.3.lla & 2.3,11d) together
with the upstream perturbation parameters (Eqs. 2.4.18), which will be
used to describe the non-uniform flow field under consideration. In

-what‘follows the formulation of the problem will be completed (s5k.2 &
4.3), and the solution will be sought (§h.k4) by similar techniques as

- employed in the previous chapter. The results of the theory will be

finally applied (54.5) to calculate the interaction field for a slender

conical projectile.

4.2, Initial and boundary conditions

The initial conditions to be assigned for the disturbed region
behind the shock are

p(x, r, ) = 3p(x, r, 1)/31 =0, for 1t £ O. (4.2.1)
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On the disturbed shock front

All along‘the shock plane x =vmr, 0 <r < =, we can use the
conditions (2.3.11a) and (2.3.11d) which are

v =% (p - Bu - cp), . - (4.2.28)
g _1p_, 2 33
3T ( r A21 ar A22 ar) + Ay1 3t ° (k.2.2b)

where the derivatives to t are taken while travelling with the shock.

On the body surface

Oving to the singularities on the body axis (r = 0), it is necessary
to formulate the linearized boundary condition at the body surface
carefully. Following §2.4.3, for the flow over smooth slender bodies
of revolution we can write for the region behind the shock near the

body surface, as r » 0

rq, > (W + U) fix + (W + Ut} £ {x + (W + U)t},
in the co-ordinate system (x, r, t) assumed. In dimensionless form it

gives for x <mt and r > 0

rq > m, f(x + m, 1) £7(x + miT). (4.2.3)

Since the flow is undisturbed to the left of the body nose, we can have
for x < -m, T and r > O
rq > O,
Further since f(x + m1T) = 0, for x'<"—m1r, for pointed bodies
(cf. §2.4), we can use the condition (4.2,3) all along - < x < mr.

Using the second momentum Eq. (2.2.22) it follows that, as r > 0

r 3p/dr -+ - m?

F(x + m1r), (4,2.4)°
for - = < x < mt, Here the funtion F is the same as defined in (2.U4.11)
and is given by
0, €< O
F(g) = o
°°(g) + £(g) £77(g), &> o.
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We may note that the condition (4.2.4) is not valid at x = mt, since it
is deduced by using the momentum equation which leads to infinite values
at the shock, To obtain the condition at the shock-body intersection we
must invoke the shock relations. '

Ahead of and behind the shock, the normal component of velocities

on the body surface at the shock location (x = mt) are given by

g, =W £ {(m + m1)r},

(W+U) £7{(m + m1)r}.

N

and q1
Using these in the shock relation (2.3.10f) which states

q =9, = - Uwr,

we are led to wr = - £,

at the shock-body intersection. Hence the shock intersects the body
surface orthogonally.
From (4.2.3) we can obtain, on the body surface (r + 0) along the

shock (x = mt)

rq + m, £{(m + m1)T} £°{(m + m1)T}. . (4.2,5)

1
Using this relation in the shock condition (4.2.2b) it follows that,

at x =m1, as r > 0

r op/3r + D m_(m + m1) F{(m + m1)r}

1

+ lim (A21 r 3u/ar + A

r 3p/3r - D Ay T 3a/91). (4.2.6)
0

22

We may note that at the intersection of the shock and the body
surface there is a discontinuity in the derivatives of p characterized
by Eqs. (4.2.4) and (4.2.6). The reasons for this non-uniformity are

similar to the one's discussed in §3.2 for the two-dimensional case,

At infinity
For the region behind the shock (x < mr) we can prescribe that all

the perturbations vanish at infinity, hence
p{x, r, 1) = 0, for x > —o, r > «, (L.2.7)

together with its derivatives.
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4,3, Formulation in Lorentz variables

We introduce new independent variables (x, r, T) related to the
variables (x, r, 1) by the Lorentz transformation defined by (3.3.1).
The shock plane x = mr now becomes the plane'E = 0. The governing

wave Eq. (2.2.25) remains invariant, viz.

2 2 2 -
3p,3p, .13 _3dp_4 - (4.3.1)
-2 2 r ar -2
9x or 91

The initial conditions (4.2.1), and the boundary condtions (4.2.7)

and (4.2.4) can be written in new variables as

for T é 0, x<0, plx,r,T)=o0px, r, 1)/37T =0, (k.3.2)
?‘> 0, x < 0, as X > —», r >
p(x, r, T) and its derivatives - 0, (4.3.3)
T>0, =-o<Xxc< d, as r >0 »
r 3p/3r » A Fla(T + Aoi)}, (4.3.4)

vhere A , a and A, are the same constants as defined under (3.3.4).

Using the Lorentz transformation (3.3.1), we obtain from the
basic Eqs. (2.2.21) together with (2.2.23), and the first of Egs.
(2.2,22)

2)%(3

A en i+ oyt (1-m 2+ q=o,
oT ax 9x 3T
and m E% = E% + (é:-; m’a—)p.
3x 3T 3x 3T

Eliminating 3u/dx and differentiating with respect to T it follows that
. 1

32 32 3 1, 3 :

-2_ + _; . HLer'(E? + ;Q _% = 0. (k.3.5)
3x3dT 9T (1 - m®)° aT '
Using the shock conditions (4.2.2) we can substitute for u and 3q/3T
and thus obtain a differential expression for p which must be

‘satisfied at x = 0, 0 < r < o
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2 2 2
.a_.L+.la_2+ m l(?_.E...léB)
- A =2 2D 2 r ar
9x9T 3T 1-m ar
2 2
_ 123 = - m 13
=% % (Bu + cp) + 5D (——§-+
9T 1-mn or
m 3 1, 3q
- A (_+_)Jo
(1 - m2)§ k1 *3r r 87

|tv

)(Agyu + Ayp)

Nl
@

r

(4.3.6)

The upstream perturbation parameters u, q, p at the shock are

given by (2.4.18), which in terms of Lorentz variables may be expressed

as follows

T-br

- F(ap)

u=-k J du,

Pl - wP o E? W

T-br

- a (T = u) Flau)

qQ =k, — J du,}

1r 0 {(; - u)2 - .-621.2}%
P = k(- u/k,), )
where k, = M°/M, k_ = M’z, and b= B/a.

1 2

(4.3.7)

Substituting for u, q, p from (4.3.7) in (4.3.6).and simplifying,

we are led to, at X =0, 0 < r < =

2 2 2
3B+l iRy (1) 2B
ar 9XaT 3T
- T-br _
= ki f —Fen) a, (4.3.8)
3T {((r = u)° =%}

0

where K is as defined under (3.3.10). The condition (4.3.8) must be

supplemented by (4.2.6), which together with {L4.3.7) yields at

Xx=0,asr >0

r ap/ar » B, F(aT),

vwhere Bo is as defined under (3.3.11).

(4.3.9)

With the wave Eq. (4.3.1) and the initial- and boundary-conditions
(4.3.2)-(4,.3.4), (4.3.8) and (4.3.9), the formulation of the problem
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is complete in the (x, r, T) variables.

4.4, Solution

To obtain the solution to the above formulation we first introduce
the Laplace transfrom with respect to T as.in §3.3. Next in view of
the axial symmetry of the problem we_shéll aﬁply the Hankel transform
with respect to r. These transforms are defined as follows (cf.

Sneddon 1951)

X, r, s) = L{p(x, r, )} = [ p(x, r, T) exp{-sT} dT, (4.4.1)
. o

P

(%, a, s) = Hp (X, r, s)} é rpx, r, s) Jo(ar) ar, (4.,4,2)
where Jo is.a Bessel function of the first kind of order zero.
Application of the Laplace transform to the wave Eq. (4.3.1)
together with the initial condtions (4.3.2) gives
A% A%t 1 2k (4.4.3)

3§2 3r2 r dr

The boundary condtions (4.3.3), (4.3.4), (4.3.8) together with the
initial conditions (4.3.2), and (4.3.9) reduce to

as X > -, r > ® p° and its derivatives - 0, (b.b.h)
for —=» < X <0, as r + 0 r Bpx/ar > Ao exp{sxoi} G(s), (k.k4.5)

at x = 0, 0 <r <o

3°p* 1 pp% - 2, 2%
- (o) +oms SBov (14 1/M°) 5%
or 39X

. = K 5% 6(s) K (Brs), (4.1.6)
X=0,asr~>0 r 9p /ar + BOG(s), (b, bh.7)

where G(s) = L{F(a7)} and K, is the modified Bessel function of the
second kind of order zero.

Now we apply the Hankel transform (%.l.2) to the Eq. (k.4,3), which
together with the conditions (L.4.4) and (L.k4.5), yields

a2 ¥ 5 x
—:é}—-- AP = Ao{exp sxoi} G(s), (4,4.8)

9x
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where A2 = a2 + s2. Also the condition (L.4.6), together with the
conditions (L4.4.4) and (k.4.7), gives at X = 0

2. 2,2 xx 2 '
(A% + s“/M)p " + 2ms apt (K—-———-————B ) G(s). (4.4.9)
2 =2 2 o’
: ax a +bs
Finally the condition (4.L4.4) at infinity gives
as x> =  po > 0. (k.%,10)

We note here that the formulation (4.4.8)-(4.,4,10) is the same
as obtained in §3.4, Eqs. (3.4.8)-(3.4.10). The complete solution of

the present formulation is then given by {3.4k.1k), viz.

PN, o, s) = 3A (A —1A . exp{;x} - 2 55 exp{skoi}) G(s)
o AT - Aos
5 =
1 1 exp{ix}
t 3 _Z Y 3 G(s), (h.b.11)

1

where A;s’ and A;s’ are the same as defined under (3.4.14). The above
expression when expressed in integral form (cf. Appendix 1.1) can be

written as

0
mﬁ()-c, o, s) = %(—AOJ exp{skoé;} G(s) -;T exp{-A(|x - €])} ac

-0

)4 0
) A.J exp{sir.£} G(s) l-exp{x(i +¢£)} ag
j21 1 1 A
0
- ASJ exp{s) £} G(s) %-exp{-k(li - &)} dE)
+ A5{1/(a2 + 5252)}exp{skhi} G(s). (b.4.12)

The inversion of (4.4.12) in this case (cf. Appendix 3.1) leads us to

L—1[H-1{px*(§, o, s)}]
0

p(i, Ty T)

1 1 == =
E(—AOJ g Fla(t - R + AOE)} ag

-0

Fla(t - §1 + xis)} dg -
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0
1 fmy= =
- ASJ §-F{a(T - R+ 80 dE)
T+, x-br
A F(Eu)
5 T dy, (L.4.13)
0 {(7 + Ahx - u) 2 24{

2,3

1
where R = {(X - 5)2 + r°}°, and §1 = {(x + g)z + re}ﬁ.

Alternatively, we can express (4,4.13) as follows

0
mar,a=%@AJéraG-ﬁ+a&nag
5 T
+ Alj LraE - - a0 a), (h.k.14)
i=1 R
0
with Ag = = Ay. Using the definition of F (cf. Eq. L.2, h) the last

expression can also be written as

0
o r, D =g A TREG - Feagna
mO
5 _ - :
+ Z AIJ = {a(.r - R = Aig)} dE), (h.h.15)
it YR
where uy = % + 07 - (7 42 0% - (1= D3h0 20D,
. . v 1
and oy =X - T+ (7 - 0% -0 -BR -8,

‘Finally by means of the transformation (3.3.1), p(X, r, 7) can be
expressed in terms of original variables (x, r, ).

In deducing the above results we assumed b < 1. As discussed in
§3.4, this implies that the shock intersection I lies outside the
sonic circle (cf. Fig, 2). In case the shock intersection lies inside
the sonic circle, b > 1; Ah and AS in the above analysis then become
imaginary. Under these conditions we can consider the last two terms
in (4.4.11) as follows (cf. Eq. 3.4.17)
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0l + 5252 A

I = (@ + 6p8) gy SR (), (4.4.16)

where Q1 and Q2 are the same as defined in (3.4.17). The inversion of

(b.4.16) can be expressed in the form (cf. Appendix 3.2)

(Q —+Q, --) Fla(t - u)} E(u) an (. 4.17)

1
I -_—
4,5 b 9X

O‘—~.—|

U ® 2
with E(y) = [du, [sin(an/B) J [a{(u -u )2 - x2}§] J (ar) da.
0 10 o 1 o
To evaluate (4.4,17) one must in general resort to numerical methods
which will not be pursued here further in view of the remarks made at
the end of §3.5.

Density and shock displacement

Integrating (2.2.23) and using the shock condition (2.3.12) we
can obtain the density variation in the disturbance field behind the

shock, This is given by

p(xy, r, 1) =plx, r, ) + (E - 1) p{x, r, 1=x/m)
X-cr (60/3) :
- (Fk, - Ck,.) F(Bu/c r du, (4.4,18)
T2 i x - w2 - 5t

with ¢ = Bn/(m + m1).
The shock displacement y(r, 1) can be obtained by integrating
the shock relation (2.3.10b). Thus we have

T
¥(r, 1) = ﬁ;- fp(x—mu, r, p) du + (A k- A22k2)
0
T (m+m1)u—8r 0
X Jdu J Fe r dE). (4.%,19)
0 o [tm+mnu- £)° 2]2 )

Properties of the solution

The pressure integrals (4.4.13) or (4.4.14) can be interpreted

as 'retarded potentisl' integrals. The numerator of the integrands
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represent the 'temporary sources' distributed along the‘E—axis, and R
is the real distance between the source point (£, 0) and the field
point (X, r) at a time T caused by the value of the source function

at £ at a time 7 - (R + Aig). That is, a spherical wdve moves outwards
from its origin at a unit velocity inducing disturbances in the flow
field only at those points that are momentarily on the spherical
surface itself,

In a similar way as for the two—dimensional case (§3.5), it may
be concluded that for the points on or outside the spherical wavelet
%% + r% 5 T°, (BCDE, Fig. 2), the first integral in (4.k.13) is |
finite in the region ACE, while it vanishes elsewhere, and is given by

‘ ?+Ao§_(1-xi) r _
I =-A Fap) (4.4.20)

du.
° ° 5 (v + Aoi -w2o (- Ai)rZIE

This vanishes for T + Aoi - (1 - Ai)%r € 0, i.e. for the points on or
to the left of AC, the Mach conoid with vertex at A (the nose of the
axisymmetric body) and tangent to the wavelet BCDE at C, Fig. 2.
Again the fifth integral in (4.4.13) behaves exactly as the first
integral with A, replaced by A . Further the last term in (L4.L.13)
vanishes for 1 + AX - br < 0, i.e. for the points on or to the left
of a surface of revolution with I (the shock intersection) as the
vertex and tangent to the spherical wavelet BCDE (Fig. 2) at D and
extending to the body surface. Then the last two terms in (4.4.13)
when taken together will vanish outside the spherical wavelet
everywpere except in the region IDB, where they reduce to yield

T+, X-br

F(ay)
55T du. (h.4.21)

>0 (T + % - P - 5572
Thus ID is another Mach conoid from the shock intersection I, Fig. 2.
The remaining four integrals (for i = 1, 2, 3 & 4) in (4.4.13) vanish
for the points on or outside the sonic wavelet BCDE.

Now we consider the expression (4.4.18) for the density variation,

where p(x, r, t=x/m) is given by (4.4.13) at the instant the fluid
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particles cross the shock (i.e. T=x/m). Hence it follows from the
above discussion that the first five terms in p(x, r, t=x/m) will vanish

\
or F+:r25719 s or x(1-a) <,
z at T = x/m

i.e. to the left of the surface BO, Fig. 2. The last term in p(x, y, v=x/m)
yields ) X-cr _
F(Bu/c)"

s | ‘
> Ux - 0)f 23R

which vanishes for x ¢ cr, i.e. for the points on or to the left of
the surface IO, Fig. 2. Also the last expression in (4.4,18) vanishes
for x ¢ ¢r. Considering these it follows from (4.4.18) that the lines
of constant density coincide with the lines of constant pressure for
X & or but deviate from the latter for x > ¢cr, i.e. the flow inside
the region IOF (Fig. 2) will be rotational while outside irrotational.
It follows again that the flow pattern, which was discussed in

§1.3, can be seen to emerge from the solution of the problem.

4.5. Application

We specialize the results of §4.4 for interaction with a slender
conical projectile of nose angle 2e. From (L4.4.15) we then obtain for

the pressure

plx, r, T) = 3 82(— A

0 5 ws

& . ) A.J dt -
i (G-8)Pf+2 i ok - £)2+r2}§)
o .

o

5
=3 e (Q arcsinh{x/r} - ) A. arcsinh{(X - w.)/r}), (4.5.1)
i=o * *

Il 1

where Q = A. =2(A - B ), and w.s® are defined in (L.L4.15).
2o 1T e 7% i
Transforming to the original variables (x, r, T)
2 X - mT 2 X -t -8y
plx, r, 1) = 3 ¢ {Q arcsinhc——————E—T—) - A arcsinh(——————zrﬁ——)},
(1 = m)%r i=0 (1 - n)%r

(4.5.2)
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. . ]
where Qo {1+ Yom)/(T —'Yi)}[('x + Yo‘r) - {‘(VT'.+ -Yox)2 - (1 - Yi)rz}é]’

Q.
1..

(= ym/0 = 2N = yy1) + (1 = 4002 = (1= 2B
Yitd Yi - TYte Yi ' Yi ’

with Yo = (Ao -m)/(1 - Aom),.yi = jxi +m)/(1 + Aim), for i =1, 2...5.
When expressed in terms of conical variables defined by

o =x/1, n=r/t,

the result (4.5.2) becomes

(o, n) = 3 2 [a 'nh-—Jg—:JE—g— ; A i h(o - m =il ’“))}
O, = arcsi - . arcsin Y .
p n 2 € { ((1 _ m2) n) i=0 1 1 . (1 _ m2)§n

(4.5.3)
where Qi(o ,n) = (1/1) Qi(x, r, 1).

At the! surface of the conical projectile, where n = E(-m1 + 0),
Qi(d ,N) approximates to
I
€ - (1-0 + +
o (1 )1+ v m)/(1 v,)s
and Qi (1 +0)(1 - Yim)/(1 + Yi), for i = 1, 2...5.

The expression (4.5.3) then simplifies and yields at the cone surface

L2 . 1 m-oy . 1 1-m 1
p=3c¢ {-Q arcsinh v - A arcs;nh( - —-)
(6(1 _ m2)2 !Il1 + 0') o] 5(1 _ m2)§ 1+ YO m1
1 -Y.0
. 1 1 +m 1
+ g A. arcsinh — }. (k.5.4)
i=1 1 (8(1 S L P )
Now for the density variation, we obtain from (4.4.18) for the
cone under consideration
p=plx, r, 1) + (E-1) plx, r, t=x/m) - (Fk1 - er)sz arccosh{x/cr}.
(4.5.5)
Here using (4.5.1) we can obtain for
5 3
p(x, r, t=x/m) = } e“{A aresinh v - } A, arcsinh v,
o o .o, i i
- (Ah - AS) arcsinh vu} + 62 A5 arccosh{x/(cr)},
1
A (1 - me)%x - {(1 - m2)x2 - m2(1 - A?)rz}2
with v = = 2 , fori=0,1,...h,

2, 2
m(1 - Ai)r
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.

Now we may notice that the first five terms in p(x, y, t=x/m) vanish
for x ¢« o/(1 - m ), i.e. to the left of surface BO (Fig. 2), and are
continuous there., Further the last term in p(x, y, t=x/m) and the last
expression in (4.5.5) vanish for x < cr, i.e. to the left of IO and are
continuous there. The nature of these surfaces is discussed in
Chapter T.

Using (4.5.2) in (4.4.19), we cen cbtain the shock displacement
v(r, 1) for interaction with the cone. Noting that y(r, T) should
remain continuous at B (the intersection of the reflected shock with

the main shock, Fig. 2), on integrating (4.4.15) we are led to

p(r, 1) = ﬁl—{r p{x=mt, r, 1)

21
+3c¢ (1 vy, —[(m + Y, Jr - (0 + my 22 - (1 - Y, %y }%]
5 A
- Z —1—°—m—[(m - Yi)'r + {(1 - m‘yi)212 - (1 - y?)rz}g])
i=1 7™
+ € (k1A21 k2A22 [x arccosh{(m + m1)r/Br}

- % &%/(m + m,) }3]} (4.5.6)



Chapter 5

' THREE-DIMENSIONAL PLANAR WINGS

5.1. Introductory remarks

This chapter deals with the diffraction of a shock by supersonically
moving three-dimensional thin wings. The general three-dimensional
problem can be divided into two parts, the symmetrical and anti-
symmetrical problems. The problem is regarded symmetrical if the
wing under consideration is a symmetrical wing at zero incidence, and
antisymmetrical if the wing is antisymmetrical, i.e. a winé with zero
thickness but at an incidence to the oncoming flow. The different
physical cases present analytical problems of varying degrees of
difficulty. The simplest case is that of the interacticn of a plane
shock with a symmetrical wing, or an antisymmetrical wing with
supersonic leading edges for which the principle of independence is
valid.

-The main features of the flow pattern developed behind the shock
as a result of the interaction are essentially the same as discussed
in Chapter 1 for an axisymmetric body, except that now a three-
dimensional flow picture is to be visualized. Figures 1% and 15 show
" the flow configurations for time t € 0 and t > 0 respectiQely. The
cartesian co-~ordinates (x, y, z) are fixed in the undisturbed flow
behind the shbck, Fig. 15.' The assumptions to be made have been
discussed in §1.3.

The solution to the three-dimensional problem is a generalization
of that already achieved for two-dimensional and axisymmetric cases.,
The governing equations of motion to be considered now are Eqgs.
(2.2.16)-(2.2.19), and (2.2.24), while the conditions at the
disturbed shock are now (2.3.11a)-(2.3.11c) together with the upstream
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perturbations at the shock given by (2.4.19). The additional
conditions will be formulated to complete the solution of the problem.

It is shown that the solution to the three-dimensional wave Eq.
(2.2.24) subject to the appropriate boundary conditions leads us to
the formulas, which may be regarded as requiring either the evaluation
of integrals, or the solution of an integral equation, depending upon
whether the boundary value problem is symmetrical or antisymmetrical.
In general the integral equation cobtained for the antisymmetrical
problem is very complicated (cf. §5.5), the solution of which will not
be pursued here. However, it is indicated that & certain class of
antisymmetrical problems can be handled without recourse to the
solution of the integral equation (cf. §5.6).

The material presented in the sequel is divided into two parts.
In the first part (§§5.2-5.4) the symmetrical problem is treated,
while the second part (555.585.6) is concerned with the antisymmetrical
problem, In the last section (5§5.7), some applications of the theory

are illustrated.

Part I Symmetrical problem

5.2. Initial and boundary conditions

At the instant the shock just coincides with the wing vertex, we
can write the initial conditions for the disturbed region behind the

shock, x < mt
p(x, y3 z, 1) = ap/at = 0, for t < O. (5.2.1)
At _infinity
Since all the perturbations must vanish at infinity, we can write

for x < mt
as X » o, ¥y +» tw, 7 > to p and its derivatives - 0. (5.2.2)

On the wing

For the symmetrical problem the flow pattern on the two sides of
the wing will be symmetrical, and it is sufficient to consider the flow

problem, say, for y > 0. The vertical component of the perturbation
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velocity is then odd in the y co-ordinate. Hence for the region behind
the shock we can prescribe on the wing, y = 0

(W +U) n"{x + (W + U)t, 2z}, on the wing projection I

v, =
0, elsevwhere

where the prime denotes the differentiation with respect to the first

argument. This becomes in dimensionless form

m, n“{{x + m1T), z 1}, ontk
v = _ (5.2.3)

0, elsevhere,
Using the second momentum Eq. (2.2.17) it follows that, at y=0

ap/dy = - no

1 F1{(x + m1T), z}, . (5.2.4)

where F, is the same as defined under (2.4.15a)

n"“(x,, z), ont
1
F1(x1, z) =
0, elsewvhere.
The condition (5.2.l) again fails at the shock location, as pointed out
earlier for the two-dimensional case (cf. §3.2). Hence the shock
relations must be invoked to obtain 3p/dy at the shock-wing intersection.,
On the wing at the shock location (y = 0, x = mt), Eq. (5.2.3)
gives us -
m, n“{(m + m1)r , z}, on &%
v =
0, elsewhere.
This relation can be used in the shock condition (2.3.11b). Thus we

obtain, at x = mt, y = 0
3p/dy = D m1(m + m1) F1{(m + m1)r, z}

+ {A21 ou/ay + Ay 3p/3y - D Ay, av/ar}at y=0' - (5.2.5)
The Egs. (5.2.4) and (5.2.5) lead to a discontinuity in 3p/dy at the.

shock-wing intersection behind the shock. The nature of such a

i
non-uniformity is the same as discussed for the two-dimensional case.
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On the shock

The shock conditions (2.3.11a)-(2.3.11c) shall be used in conjunction
with the equations of motion (2.2.16)-(2.2.18) to derive a single

differential condition to be prescribed at the shock front.

5.3. Formulation in Lorentz variables

As in §3,3, we introduce new variables (x, y, z, T) related to
the variables (x, y, 2z, T) by the Lorentz transformation defined by
(3.3.1). The shock plane x = mT will then correspond to the plane
X = 0, and the wave Eq. (2.2.24) remains unchanged, viz.
e T T
SRR LER_LR =, (5.3.1)
-2 2 2 -2 :
9x dy 9z ot
The initial conditions (5.2.1) and the conditions (5.2.2) at
infinity can now be expressed as

for T€0,X<0,y>0, =< z<o

p(x, ¥y, 2z, T) = 3p/3T = 0, (5.3.2)
T>0,X<0,y>0 asx+ =, y+o, 2+t
p(x, ¥, z, T) and its derivatives + O, (5.3.3)

At the shock front

Using the Lorentz transformation (3.3.1), the basic Eqs. (2.2.16)
and (2.2.18), and the first of Eqs. (2.2.17) can be combined to yield
the relation

2 2 2 2 ’
85p ,3u,_ _m (v ,3¥,._, (5.3.4)

3% 9T 372 (1 - n2)? ay o7 3z oF

Employing the shock relations (2.3.11a)-(2.3.11c) we can substitute
for u, 3v/9T and 3w/3T in (5.3.%4). Thus we are led to a differential

condition in p, at X = 0, 0 < y < ®», = < z <




2 1 2 1 2 2
__B_L+K.a._.§+ m 25(.3_.84.3_12).)
3x 3T T 1 -m 3y 3z _
2 2 2
1 ~ - 1 - - -
= 1'2:5 (Bu + Cp) + o - E-(é—g + 2—5)(A21 u + A22 D)
3T 1-m 3y oz
m av v
-7 ( . (5.3.5)
h1 3T y 2z
(1 m) T

Note that for the upstream perturbations ahead of the shock (cf.§2.4)

p=- (k/k ) u,
and 3v/dy + osw/dz = 62 aﬁ/ax1
= 3 5° 35/67 (at the shock X = 0)
vhere k1 = M°/M, k2' M’2 and x, refers to the streamwise co-ordinate
attached to the wing vertex. Then (5.3. 5) can be 31mp11f1ed and we
obtain
2 1 3%
Dip] = (1 + 1/M)(B k, - ¢C k2) ¥ %
1 9T
2 2
1 9 3
- gy kg - hyp k) § v S5) a
1 9y 3z
oo
+ (1 -ndp o 562 28 (5.3.6)
L1 =2
. T
32 32
where D[p]E-(—§+——E)+2m——£—-+(1+1/M)
2
3y 9z 9X 90T BT

The upstream parameter u at the shock is given by the relation

(2.4.19a) for the symmetrical wings. Thus in the new variables

where u1 =T -5b{(z - ¢

Substituting for u from (5.3.7) in (5.3.6), wé obtain for the

.z|
::L‘w

(7 - w2 - 5%z - )% + y21)2

oo

21 F,(au, t)
dcf — du, (5.3.7)
o L

1
)2 + y%)* ana F, is defined under (2.k.15a).
condition at the shock X = 0, 0 < y < ®, == < z < =
F (ap, t)

1
dg T
£ [(T - u) - 52{(2 - C)e + y2}]2

du, (5.3.8)
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vhere the constant K is the same as defined in (3.3.10).

On the wing

The condition (5.2.4) on the wing gives in the transformed variables,

for T>0, =<2z <o, x>0, y=0
ap/oy = A0F1{§(¥ + Aoi), z}, : (5.3.9)
where Ao and A, are the constants defined under (3.3.L4), Also the

condition (5.2.5) at the shock-wing intersection, together with

(5.3.7), yields at x = 0, y = 0, =» < 2 < =
3p/dy = B_F, (a1, 2), (5.3.10)

where the constant Bo is the same as defingd in (3.3.11). The condition
(5.3.10) is used to supplement the condition (5.3.8) at the shock.

The wave Eq. (5.3.1), the initial conditions (5.3.2), the boundary
condition (5.3.9) on the wing surface, the boundary condition (5.3.8)
at the shock together with (5.3.10), and the conditions (5.3.3) at
infinity complétes the formulation of the symmetrical problem. In the
following the solution is sought once again by the application of the

integral transforms.

S5.4. Solution

We introduce the following transforms (cf. Sneddon 1951)
px(}—ca Yy 2, s) = L{P(i’ Y, 2, ?)} = ,f P(;{a Yy Z, ;) exp{-s?} d;a (5.4.1)
0
p (%, a, z, s8) = Fc{px(i, ¥, 2, 8)} = f pHX, ¥, 2, s) coslay)dy,(5.4.2)
0 .

PME, a, v, 8) = F{p (X, a, z, s)} = / p (%X, a, z, s) exp{-ivz} dz,

(5.4.3)

the Laplace transform, the Fourier cosine transform and the exponential
Fourier transform with respect to T, y and z respectively.

Application of the Laplace transform to the wave Eq. (5.3.1),
together with the initial conditions (5.3.2), yields



T

a2 x 82 # 82 * 2 x .
-_§§ + -_RE +-—vE§ -sp =0. (5.h.%)
- 9X Yy 9z

The cénditions (5.3.9), (5.3.8) together with (5.3.2), (5.3.10) and

(5.3.3) reduce to, for -» < z < »

X<0,y=0 ap/ay = A exp{skoi} G1(s, z), (5.4,5)
_ ' 52 ¥ a2 % ap* N
X=0,y>0 - (=F5+=B5) +oms v (14 1/M°) s

Ay 3z ax

- £ szj G,(s, ¢) K [Bsl(z - 2)° + V1], (5.4.6)

-0

X=0,y=0 3p/3y = B_ G,(s, z), (5.4.7)
X<0,y>0 as X > -», y - ©y, 2 >t
p" and its derivatives - 0, (5.4.8)

where G1(s, z) = L{F1(§?, z)}, and K, is the modified Bessel function
of the second kind.

Next using the Fourier cosine transform (5.4.2) for y, the
Eq. (5.4.14) together with the conditions (5.4.5) and (5.4.8) yields,

for X < 0, —» < z < »

s NS 2 2
_BE +_—12.. - (a + s )P;"’E = A exp{sk )—{} G (S, Z). (5-"‘-9)
ax 3z ° ° 1

The conditions (5.4.6), (5.4.7) and (5.4.8) will lead to, at X = 0,

L =® <z < ®

2 wx  2p¥ apr 2, 2 xx
ap - =B+ ops —g— + (1 + 1/M%) s
9z 9x
e 2, =223
- - +
= } Ks® IG1(5, g) el (= > C)(g 3 LSt g B G,(s, ©),(5.4.10)
. (a® + B5°)°
and as X > -®, z + ® P and its derivatives - O. (5.4.11)

Finally we apply the exponential Fourier transform (5.4.3) for z.
The Eqs. (5.4.9)-(5.4.11) become

82 HHX 2 ®¥#K
for x < 0 ~% - 2°p = A, exp{s)\o)-(} H,(s, v), (5.4.12)
3x
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with the conditions, at x=0

2 2,2, XK¥k IpE 52
(3¢ + s°/M)p + oms 2B = (X 575" B ) H (s, v), (5.4.13)
- (¢} 1
3x AT - th
and as X > -» P + 0, (5.4.1k)

vhere 1° = aZ 2+ 32, H1(s, v) = F{G1(s, v}} and Ai = (1 - 52)> 0.

The complete solution of such a formulation (5.4.12)-(5.4.14)
has already been achieved in §3.4, and can be given by (3.4.14) with
G(s) replaced by H1(s, v), viz.

ERHK = _ 1 1 exp{rx} 2 -
p (X, ay, v, 5) = 3 AO(A — 3 - =3 55 exp{sxox})H1(s, v)
o AT - Xs
o
‘s § a, —t—&xp0X y (o ) (5.4.15)
2aq BAFgs A T o

where the constants Ais’ and Ais’ are functions of M and M”, and are
the same as deduced in §3.4. The above expression can be further

written as (cf. Eq. 4.4.12)
0
(X, a, v, 8) = %(— A J exp{sAOE} H1(s, v) % exp{-A(|x - £])} at

-0

0
L )
+ 7 A, [ exp{sxig}H1(s, v) %-exp{k(i +£)} a

-0

- ASJ exp{sAhE} H1(s, v) %-exp{—k(li - £ N dE)

-—C0

2

+ A5{1/(a2 + v+ 5252)} exp{sxhi} H1(s, v) (5.4,16)

This is a suitable form for seeking the inversions. The inversions are
obtained in Appendix (L4.1) with the aid of standard tables (cf.
Erdelyi et al. 1954). Thus we are led to
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p(%, y, 2, T) = L' Fc-1[F-1{pxxx(§, a, v, s)}]
0 o
1 1 - =
> (- AonEJ g-F1{a(r -R + Aos), r} ag

-0 0o

+ Z A, Jd&f 1y Fla(t - R, +2.£), ¢} az
ﬁ 1
o
0 o«
1 -y om
- ASIdEJ g-F1{a(r - R - g, o d;)
1T Ry F (an, t)

+ A ?d4 - au,

> 0 L(T + 2 x - u) - 52{(z - C)2 + yafa

(5.5.17)

where B = (% - £)%+ (z - 02+ 3%}, &, = R(-e)
and w, =T AR - Bz - )2+ g,

Alternatively, (5.4.17) can also be expressed as
[ O =
- - _1 ¢/ 1 _—— =
P(xs Ys 2, 1) = 7n (- AOI dEJ % F.I{a('l' - R + )‘OE)’ t} ag

-00 -C0

®
+ i Aijdej %F#EG -R- ), g &), (5.4.18)
0 -o
with As = <Ay Finally the pressure p can be obtaired in»original
veriables (x, y, 2z, 1) by using the transformation (3.3.1).

The integrals occuring in (5.4.17) or (5.4.18) can be reorganized
once again as 'retarded potential' integrals. The numerastor of the
integrands represent the 'temporary sources' spread in the plane of
the wing y = 0, and R is the real distance between the source point
(£, 0, ) and the field point (X%, y, z).

‘ Similar to the case of axisymmetric bodies, it can be once again

concluded that for the points on or outside the spherical wavelet
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2+ y2 + 22 > ?2, the first integral in (5.4.17) is finite in the region

ACE (Fig. 15), while it vanishes everywhere else, and is given by

AT Y F1(Eu, z)

2
B

o]
az du,
wL[(?oni-u)e-U—)\i){(z- +y}];

where u_ = T+ koi - (1 - Ai)%{(z - §)2 + ye}%. This represents the
solution in the field outside the spherical wavelet due to the
supersonic flow, (W + U)> a,, over the wing and is the same as

obtained by the usual linearized theory. The surface of the Mach conoid

emanatlng from the vertex of the wing is

Teax- (- A2 %(y +2%9)% =0,

which is tangent to the wavelet x2 + y2 + 22 = fz. Again the last two

terms in (5.4.17), while taken together, vanish for the points on or

outside the spherical wavelet except in the region IDB (Fig. 15) where

they yield
5” Tl F,(au, o) :
— ch du, .
LU E e gE - w2 - 5 - 07+ A

where ) = T+ Ahi - b{(z - 552 + yz}%.
The remaining integrals (for i = 1, 2, 3 & 4) in (5.4.17) vanish for
the points on or outside the spherical wavelet. Thus we see that the
solution (5.4.17) leads to the various fields representation.

To arrive at the above results (5.4.17), we assumed A), to be real,
i.e. b < 1, This again implies that the intersection of the plane shock
with the Mach conoid of the wing lies outside the spherical wavelet
(cf. Fig. 15). In case b > 1, this intersection will lie inside the

sonic circle, Xh and A_. in the above will then become imaginary.

5

In that case we can consider the last two terms in (5.4.15) as
follows (cf. 3.b17) .
1 exp{ X}

(Q A+ Q, s) - H, (s, v), ' (5.4%.19)
h 5~ o2 + V2 + £252 X 1 )

where A = (a2 + v2 + 32)5, and Q1 and Q2 are the same as defined-
under (3.4.17). The inversion of (5.4.19) is considered in Appendix

(4.2). Thus we obtain
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1 3 9
I, s = —5 (@ ==+ q, &
4,5 2 27

T 7 7 7 Fla(u - r,)}
)J dcj dc1fdy1f —r dy,
27 . 0

r (T - 0)? - B0y
(5.4,20)
X = 2 3 ' !
with r o= {(x - €)° + (¢ - ;1)2 + yf}é and r, = {(y - y1)2 + (2 - c1)2}?
Once the pressure p is known, all the other flow variasbles and
the shock shape can be determined by using the basic Eq. (2.2.17)-
(2.2.19) and the shock relations (2.3.10). In particular for the density

variation behind the shock, we can obtain

plx, y, 2, ) =plx, y, 2, 1) + (E- 1) p(x, y, z, 1=x/m)
1m 12

- (Fk, - Gk,) ;f dg{

- 0

F (Bu/c, )

[(x - w2 - 3z - 0)° + y21]?
(5.4.21)

aw,
. _ = 2, 2.1 =
with u, = x - e{(z' - 2)° +y°}* and ¢ = Bm/(m + m1).

Part 11 Antisymmetrical problem

5.5. General case

For the general antisymmetrical problem, we must obtain the
solution of the wave Eq. (5.3.1) subject to the appropriate conditions.
The initial conditions and the*conditions at infinity can be prescribed
by (5.3.2) and (5.3.3). The condition at the shock can also be given
by (5.3.6). The upstream parameter u in (5.3.6), should now be given
by (2.4.19b), which in Lorentz variables give

=]

- 19 J 1 Fy(au, ©)
T dCJ T d]J,
" 0 [(7 - w2 - 52{(2 - c)g + y2}]§ _ (5.5.1?

—00

e

.
vhere u, = T-oBl(z-2)% 4 y2}§, and F, is defined under (2.4.15p).
Using (5.5.1) in (5.3.6), we obtain at the shock x = 0, 0 < y < o,
- & 7 < © .
| u -
2 1 F_(ap, z)
K 3 2 >
- - 2 - 9
T a52 [(F - )2 - 82((z - )2 + y2]°

o
g

- (O

where D [p] is defined in (5.3.6). This differential condition will be
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prescribed at the shock front. _

For the antisymmetrical case the flow on the two sides of the
wing is no longer symmetrical. Then for a given antisymmetrical wing
with subsonic leading edges in the region behind the shock, the
vertical component of perturbation velocity v (and hence 3p/dy) in
the plane of the wing (y = 0) will no longer be zero outside the wing
projection (in the area between the wing and the Mach cone). However
the perturbation pressure p, at y = 0, will be zero everywhere outside
the wing projection. The. pressure p can then be regarded odd in the
y co-ordinate, and again it-is sufficient to consider for y > 0. Hence
for the region behind the shock we can specify a condition on the

wing in p itself, say, at y =0, -» < X< 0, -®» <z < @
p = f,l(}—C, Z, :E) (5-503)

p(x, 0, z, T), on the wing projection I
where £, =
|0, elsewhere.
This function is however unknown and can be determined only after the

solution of the problem is completed. We verify that f, has to be

determined from a complicated integral equation. 1
Summarizing, the wave Eq. (5.3.1), the initial conditions (5.3.2),
the conditions (5.3.3) at infinity, the boundary condition (5.5.2) at
the shock front, and the boundary condftion (5.5.3) on the wing surface
completes the formulation. The solution of this formulation will be
again obtained by means of the integral transforms.
We introduce the integral transforms as in §5.4, except that now

we.replace the Fourier cosine transform by the Fourier sine transform

for y as defined below

Px(;{, Y, 2, S) = L{p(}-(, Ts Z, ?)},

p (%, o, z, 8) = Fs{px(i, v, z, s)} = fpx(i, v, 2, s) sin(ay) dy,(5.5.4)
0

(%, o, v, s) = Flp™ (X, @, z, s)l.

Application of these transforms reduce the above formulation to

obtaining the solution of the ordinary differential equation
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22 B - an(E, v, s), (5.5.5)
ax

subject to the conditions, at X = 0

2, 2,2 ap X . g2
(A€ + s°/M°)p™** &+ 2ms-{g =a h(v , s) - K-—§~—§—§-§ a H2(v , 8),

| ox N (5.5.6)
and as x > -» Pxxx + 0, ‘ (5.5.7)

where A2 = a2 + v2 + 52, h(x, v, s) = F[L{f1(§, T, 2)}],

nv , s) = {h(i, v, 9}

and xﬁ = (1 - 52)>o.

at =00 H(v,8) =FLiF,(x, T, 2)}]

The complete solution of Eq. (5.5.5) can be written as

x
P A, exp(AX} + A, exp(-)%} - %E‘P{l’-‘ljh(g, v, s) exp{-A£} ag
- i e
+ % & i‘“‘}J n(g, v, s) exp{Ag} at. (5.5.8)

-0

Here A, vanishes in view of the condition (5.5.7), while A, is

determined by using the condition (5.5.6)

*® 0
A= -%Jh(z, v, s) SRAED 4 %%—;—?l ﬁ[ h(g, v, s) SROAEL 4

1 2
0 -
+ =~ o h(v, s) - =& s H (v, s)y (5.5.9)
') "’s'ﬂ'ﬂ'xz 22 % Tt 80 3¢3:3).
- A
2

where H(A) = A + 2ms + 52/M2. Substituting for A, and A2 in (5.5.8)

1
we are led to

0
p =%j B(E, v, 8) 3 exp{-A(|% - £])} a¢
- %%i%l'glh(-ﬁ, v, 8) %-exp{-l(i - %)} ae
0

2
1 - K s =
+ exp{ix} a h(v, s) - exp{ix} a H_(v, s).
H(X’ H(A) AZ _ AQSZ 2
4 (5.5.10)
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This can further expressed as
0
1 1 -
pot o E(a[ h(g, v, s) i—exp{-k(lx - £])} at

00

- aJh(;E, v, 8) % exp{-A (£ - Xx)} dg
0

o

3
-2ms ) B; i_:li—g aJh(-E, v, s) %:exp{-k(i - x)} d
1=2 i .
0
- i A+ A.s A @ Vs 8
=2 1
- i=2 i P )\is 3 [0 ] D \Y) s S ), oo
where
5 - -2A2 c - —2>\2 K - c - K
s - * - - *
2 A2 - A3 2 Ag - A3 *3 _ Xi S (Az - Ah)(k3 Au)
B. = ﬁé——, C. = 2 K . C = - K .-
3%, - )\3 3%, - A3 )\g _ Xﬁ 6 (x2 ""‘u)("3 + Ah)

A2 and A3 are the roots (real, distinct and positive) of .the quadratic
equation X? - 2m, + 52/M2 = 0, and AS = -h)
The inversion of (5.5.11) is obtained in Appendix (4.3), which gives
L-1(Fs-1[F-1{pxxx(§, o, v, s)}])
0 o
9 1 - -
{'T[ dgf — £ lg,g, (T -R)} &
& 4

- -—00

b

©

+ %;Jdﬁj £f{-¢£, ¢z, (¥ - R)} az
Q0 -

1

ol |

©

3 ' _
__[ngaEJ (ize 2mB, f1{~£, g, (7 - R, - Aii)}) dc +
0 0 -2

ol | -
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3 .
Z B, f.{z, (T -R - Aia)}) ag

-00 2
+3wa:l§cp{ a(f -F-2ren)a (5.5.12)
o ey (Lo Foles B - R - age)) axy, -5
0 _wR 1=2
\
where R={(x - 5)2 + (z - C)2 + Yg}é
\
and ﬁz ={(x - & -,61)2 + (z - C)2 + y2}2.

By virtue of Eg., (5.5.3) valid at y = 0, we may notice that
(5.5.12) is an integral equation, which must be solved to determine f1.
We must remark that the pressure in the region ACE (Fig. 15) can be given
by the usual linearized potential theory. The integral Eq. (5.5.12) is,

however, very complicated, and it will not be pursued further,

5.6. Speciél case

In the above presentation we have seen that the solution of the
general antisymmetrical problem leads us to the solution of a complicated
integral equation. The matter, however; can be simplified for the anti-
symmetrical wing with definitely supersonic leading edges with respect
to the flow, (W + U)> a,s behind the shock. In that case, in the
non-uniform region behind the shock, the flow pattern on the two sides
of the wing will be independent of each other. One can then treat such
a problem as effectively symmetrical.

In particular, if the lifting wing under consideration has
supersonic leading edges with respect to thé flow behind as well ‘as
ahead of the shock (for time t > 0), the problem is éffectively the
same as has been treated in part I.

Suppose now that one or both the leading edges of an antisymmetrical
wing are subsonic before it meets the shock. After the wing has
penetrated the shock, both the leading edges become supersonic in the
region behind the shock. Then once again for the region behind the ‘
shock we can prescribe the conditions (5.2.4) and (5.2.5) on the wing
surface, which give in the transformed variables, for T > O,

—» < z <o y =0
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X>0 aplay = A F1{£(? + xoi), z}, (5.6.1)
x=0 ap/dy B, F1(ar, z)
au 3D 2,3 a\—r}
A, 24 p fRypyp,, (1-m)2 < , (5.6.2)
{ 21 3y 22 3y 41 237)at y=0

where A and )  are the same as defined under (3.3.1), and

= + .
B,=D m1(m m1)

We shall assume that the perturbations ahead of the shock will be
governed by the velocity potential for antisymmetrical wing, and u is
given by (2.4.19b) or (5.5.1). The boundary condition at the shock

front will then be given by (5.5.2), at X =0, 0 < y < @, 0 < 7 < ®

32 T oM F_(au, t)

K3~ 3 2 * :

pfp] = K3 _2| 4 T dy. (5.6.3)
[P] ks 3 3 [w Jc; [(T - u) _ 52{(2 _ c)2 + ye}?] H

This condition will be supplemented by the condition (5.6.2), which
together with (5.5.1) yields, at x =0, y = 0, —~» < z < =

ap/ay = B, F (EE, z) + B, F3(§¥, z), (5.6.4)
- 3 =
where 1302 = (A21 k, - Ao k2) - {1 -m ) D Ay, k8,
B R0, o)
and F_(at, z) = ~— |dC — — du.
3 I T

Now for this case we consider the wave Eq. (5.3.1), to be solved
subject to the initial conditions (5.3.2), the conditions (5.3.3) at
infinity, the boundary condition (5.6.1) on the wing, and the boundary
condition (5.6.3) on the shock together with the condition (5.6.h4).

To 6btain the solution we proceed exactly as in §5.4. Application of
integral transforms (5.4.1)-(5.4.3) reduce the problem to finding
the solution of the Eq. (5.4.12), viz. for x < 0

32 e 2 H®HH : -
——g- -2 p = Ao exp{sxox} H1(s, v), (5.6.5)

ax

with the conditions, at x = 0
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5 . KEX
(A + 52/M2)px5:x + 2ms _8%
. 9x

= =B, H,(s, v) - B_, Hy(s, v) + k{s2/ (A2 _ xﬁsz)} Hy(s, v),
(5.6.6)
and as x > - P o0, (5.6.7)
vhere _ H3(s, v) = F[L{F3(E?, z)}].

The complete solution of the Egs. (5.6.5)-(5.6.7) can once again

be written as

- 1 1 {1x} 2 -
PNE, o, v, §) = E{Ao(k s expx SR 5 55 exp{skox}) H1(s, v)
) AT - ATs
o
3 . -
1 exp{x}
+ .Z D vaas o Hylss v)
1=1 1
' 2 1 exp{ix} ' |
+ ) E 75 ;) H3(S, v) P, (5.6.8)
i=2 1

21, 2mA ~2), K

D, = (B, + )s E, = (B , - )
2 7%, -y 1A=, 2%, -y 2”2 _,2"

2 h

2 omA o)
3 o) 3 K

D= (B . + Y, E, = — (B _ - )
379,23 ol T X - A3 373, -X; o272 T2

3 b

E) = K/{(Az - xh)(x3 - Ah)}, ES = K/{(Ae +,xh)(x3 + A“)}f

Upon inversion, (5.6.8) leads us to

p(X, ¥, 2, ) = U F T F (R, a, v, 8))]

F1{E(? -R+ AOE), r} dg

It
] —
=

>
T
o

—_—
[oT}
yn
————
|-

D, F1{E(¥ -R - Aii), ;}

+ -f E; F{a(T - B - a;0), c})dg}. (5.6.9)

' . i=2



82

where R=1{(x- 5)2 + {(z - )2 + ye}%.

5.7. Applications

5.7.1. As an example of §5.4 we consider the interaction with a
symmetrical pointed delta wing at zero incidence. Let the wing has the
semi-apex angle 6 = arctan(1/n) and both the upper and lower surfaces
have a constant slope ¢, say, along the streamwise direction, so that

they may be represented by the planes ’

+

y = (x1 - nz)e, for z >0

I+

(x, + nz)e, for z < O,
1 ’

with respect to the co-ordinates fixed at the apex of the wing. Hence
in the assumed co-ordinates behind the shock, we can write for the
upper surface of the wing

y = (x + m,T * nz)e. (5.7.1)

This in transformed variables becomes
y = {a{7 + Ao:'c ¥ nz)}, (5.7.2)

where n = n/a.
Specializing the results (5.4.18) for the symmetrical delta wing,

we obtain after simplification

0
p=iﬁ4JﬁGfxg-am2-u-ﬁ%ui-m2+fﬂ”
()
(o]

P [E e+ 52)? - (1 - BUE - 02+ y2])as

5 ©5 1
4+ 3 %[ﬂﬁ-xg-aﬂQ-u-a%ui-mz+ﬁﬂﬂ
B 0

P [G - gt #5002 - (1= PG - 0+ yA]ac ),
. ; (5.7.3)
vhere u_ = [+ A7 - (T + D% - (1 - 227+ 22/0 - A2,
end w, = [F- 2T (T -7 - 01 - W27+ A= D),
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Let us consider the integral
m..
i - \2 =2y, /= 2, _2,9-3
I [z - A€ - nz)” - (1 - 2%){(x - €)° + y°}] " %ag,
0

which integrates to yield
[(1 = 89)% - A (T - 52)]

(1- 82T - 5z - A, %)% + (2 (1 - 22

)

_ .
for (1 - Ai) < n,

(5.7.4)

! arccosh(
-
-1 - %2

: |1 - 8% - A, (7 - 7))

ccos —r),
u1_€paﬁ?u °(u-a%ﬁﬁ_az-hmz-uw-ﬁ)-ﬁuﬁJ

for (1 -‘kf)% > n.

Here we may note that

for i = 0 or 1 (1 -

32 - w2 - D,

B/a.

1]

)
and for i =4 or 5 (1 - )\i2)E

Then the following cases of physical interest may arise depending upon

: p
vhether (1 - Ai)é and (1 - Ai)% are greater or less than n.
3 1
(a) When both (1 - Ai)é and (1 - Ai)z are greater than n -

)
(1 - Af)é >n implies B8 >n, or: 9 > 9o

and (1 >

2)%

c .2 3
° implies (m1 - 1) >n, or 8 > ¢,,

=3}

A

t

with ¢, = arctan(1/8) and ¢,

\
arctan{1/(mf - 1)%3,

In other words for given M, M” and 8 the wing has supersonic leading

edges ahead of as well as behind the shock for time t > 0, Fig. 16a.
hl 1 -
(b) when both (1 - Af)z and (1 - Ag)z are less than n -
8 < ¢o and 6 < ¢1,

i.e. the wing has subsonic leading edges ahead of as well as behind the
shock, Fig. 16b.,

bbb e d Btk
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(c¢) When (1 - Aﬁ)% <n, and (1 - Ai)g > n - The wing has subsonic
leading edges ahead of the shock, and supersonic leading edges behind
the shock, Fig. 16c. )

(d) When (1 - Aﬁ)% > n, and (1 - Ai)% < n - The wing has supersonic
leading edges ahead of the shock, and subsonic leading edges behind

the shock, Fig. 16d.

Now by using (5.7.4), the pressure integral (5.7.3) can be evaluated

- for the various physical cases described above.

5.7.2. We consider now a flat plate delta wing at an incidence e to
the oncoming flow. Let it has semi-apex angle & and has supersonic

leading edges before as well as after penetrating the shock, i.e,
' 1
8 > arctan(1/8) and 8 > arctan{1/(m? - 1%},

The slope of the upper surface of the delta wing can be expressed as

n” = e H{x + m,T ¥ nz) (5.7.5)

where H is & unit step function. The results of §5.4 can once again be
used for this case. The pressure integral (5.4.18) then leads us to
(5.7.3) for the flat delta wing. Thus on integrating (5.7.3), changing
to the original variables (x, y, z, t) and expressing the results in

terms of physical conical variables defined by

X=x/t, Y=y/t and 2 = z/t

we obtain 5
__E = (¢ .
p(X, Y, 2) = — .2 Ai({N,Ii(X, Y, Z) + N1i(X, Y, -Z)}
27a 1=0
-, (x, f z) + N, (X, ¥, -2)}), (5.7.6)
whereK=-A/r,r=(1-A2-ﬁe)’,
o] [ o] o] o]

N,o(X, ¥, 2) arccos[{xoao + ri(x - m)}/no] ,

-2 2, - 2,3 2 2
NZO(X’ Y, Z) = arccos[{n A S8, - Fokon(1 -m“)° 2 + Foﬂo}/{(1 - Xo)ﬂ;],

fl

. _ - 2.3
with Qo = (1 - on) - {m - AO)X - n(1 -n)° 2,

- -222 2 2y 2.3
n, = (0 =109 a] - r (1 - mO)Y7)E,
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=[G -m) - @m-a )02 - (-2 - n) (P s 72)] %,

for i = 1

N . (X, Y,

11

flat

with
Here

m, Y

with

(1 -

i - E
2...5, A = Ai/Fi, ry = (1 - x )

z) arccosﬂkiﬂi - F?(X - m)}/n.],

2) n2)?

arccos[{ﬁzxiﬂi - r?xiﬁh - 7+ 12 385 }/{(1 - A?)ni}] s
(1 + mAi) - (m + xi)x - n(1 - mz)%-Z

) 1
89)%as - 1201 - 2P)vP)3,

[0+ my) - (02 - (0 -ad0 - )+ 22

1
a(1 - )\i)2 >n, fori=0, 1...5.

The expression (5.4.21) for the density variation gives for the

delta wing

o}

v =

p(m,

=P

arccos[(nX - 282)/{(BX - &nz)° -

(X, ¥, 2) + (E - 1) plm, Y, 27)

+ (Fk1 - sz) ;?;Erf—ZEF; (v + v) (5.7.7)

c2(g® - n2)Y2}%Jand v = u(-2).

rd

Y*, 2°) is obtained from p{X, Y, 2) (5.7.6) bylreplacing X by

by Y° and Z by 2°; Y” and Z° are now given by Y’= mY/X and

p(m,

1i

2i

= mZ/X. Then we can obtain for

3
v, 27) = (] K lln,; +5,,) - (0, +0,))

2na i=0 21

+ (K, - Ks){(n1h +n,,) - (n,), + Eeh)})

;?;———-‘——-; (U + U)

arccos(k.ﬂf/nf),

arccos[n A;07 - Fek n(1 -m )2 Z + T, C'}/{(1 - A )n,2}]




86

.
ol = (1 - n2) - 2(1 - m)? 7%,
ns = (1 - 52)%{9’2 - r2(1 - me)Y'e}%
i i i >
\
and ¢ = (1 - D0 - wd) - (oD e fori=o, 1.,
n = n1i(-Z ) and n,, = n2i(-Z ).

We can show that the first five terms (for i = 0, 1,...4) in p(m, Y*, 27)

will vanish for
1 1
X< (Y2 + 22)% n/(1 - n°)?

on or to the left of the conical surface with centre at 0 and its

generators passing through B, and 32 (also B, B?), Fig. 15. Again the

1
last term in p(m, Y*, Z”) and the last expression in (5.7.7) vanish for
; .

X < E(Y2 + Ze)é,
on or to the left of another conical surface with centre at 0 and its
generators passing through I1 and 12 (also I, I”), Fig. 15. These
conical surfaces are the contact surfaces to be obtained in the non-
uniform flow field behind the shock. It may be noted that the similar

features were also observed for the interaction with a conical projectile

{cf. 5Lk.5).



Chapter 6

THIN YAWED AEROFOILS

|
6.1. Introduction

We consider the interaction of a plane shock of arbitrary strength
which encounters a yawéd (with respect to the shock plane), thin
two-dimensional aerofoil moving with supersonic speed. This case
differs from those of head-on interaction of a plane shock with
supersonically moving pointed bodies (Chapters 3, 4 & 5), since in
the present case we cannot indicate a moment when the interaction
begins. The incident shock is being disturbed at all times by the
aerofoil and its associated field, However by consideriﬁg the flow in
a suitable reference frame the time may entirely be eliminated. The
problem is then posed in such a way that the method of solution
developed in Chapter 3 still applies. It is the intention to develop

this chapter somewhat independently to start with.

Reference frame and assumptions

Let the plane shock be moving with a velocity V into a medium
at rest imparting a velocity U to the fluid behind it; the density,
pressure and the sonic velocity ahead of and behind the shock are
Ro’ Po, éo and R1, P1, a,. The aerofoil is moving in a direction
opposite to the shock with a supersonic velocity normal to the leading
edge, W » a_ The.leading edge makes an angle x with the shock front,
Fig. 17. The point 0, the intersection of the shock front with the
leading edge of the aerofoil, travels with a velocity VO whose direction

mekes an angle x~ with the shock front (cf. Fig. 17), where



)
0 = (V2 + W+ 2 VW cosx)2cosecy,
(6.1.1)

and siny” = V/Vo.

Assume an equal and opposite velocity !o be superimposed on the entire
flow field. The point 0 is then brought to rest and the flow is
reduced to a steady state. The undisturbed rgion ahead of the shock,
at rest before, has now acquired the velocity V » Also the uniform
flow behind the shock has now'velocity 11 = V + U, whose magnitude

is V1 and makes and angle u with the shock front (cf. Fig. 18a), where

= [(v - U)2 + {(W + V cosy)/sinx} ]§

(6.1.2)
and - tany = (V - U) sing/(W + V cosy).
‘Expressed in dimensionless form, (6.1.2) and (6.1.1) give after
simplification _
M= V1/a.1 = m/sinu,
tany = m sinx/{(ao/a1)M’ + M cosy}l, (6.1.3)

and tany” = M siny/(M” + M cosx),

where M = V/a.o the shock Mach number, M* = W/a.o the Mach number of the
serofoil, m = (V - U)/a1 defined in (2.3.13), and ao/a1 given by
(2.3.3).

We fix the cartesian co-ordinates (x, y, z) with origin at 0 such
that the z-axis is in the direction of V1, Fig. 18a. The aerofoil is
assumed to lie in the x-z plane. The subsequent treatment relies on

the fact that the flow is supersonic behind the shock, i.e.

V.| > a,1, » (6.1.4)

This condition is fulfilled provided Xy > X > (w "Xz)’ where

.

M (1 - no)? + M‘(ao/a1){Mf + (1 -1) - (M’ao/a1)2}%

Xqs Xo = arctan( 5 \2 );
: - (1 -m%) - (Ma_/a,)

with M U/a1, - /a and m being functlons of M (cf. Chapter 2).
FUrthermore X should always be less than n/2. In Fig. 19, X against

‘M is plotted with M” as a parameter. This means that for any fixed
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aerofoil speed M”, the point (M, x) must lie to the left of the
appropriate curve for the condition (6.1.4) to be fulfilled.
Behind the plane shock if the fluid velocity normal to the

leading edge of the aerofoil is supersonic, i.e.

(W+ U cosy) >a (6.1.5)

1
the flow pattern above and below the aerofoil will be independent of
!

each other, This condition is met if
x < arccos{(1 - M'ao/a1)/M1} .

Figure 20 illustrates the range of x with M and M” as a parameter,

One may note that while the condition (6.1.4) is sufficient, the
‘condition (6.1.5) is necessary at least when the lifting yawed
aerofoils are under consideration. However Figs. 19 and 20 show that
for a wide range of x, M and M” both the conditions are fulfilled.
Under these conditions then it is sufficient to consider the solution,
say, for y > 0.

The region of non-uniform flow behind the advancing shock is
bounded below by the aerofoil and shead by the shock. A Mach conoid
emanates with the vertex at 0, its axis along the z-axis, and makes
a semi-vertex angle a = arcsin(1/M), Fig., 18. Due to the supersonic
velocity normal to the leading edge, (W + U cosy) > a,, & Mach plane
is attached to the leading edge of the aerofoil, which is tangent to
the Mach conoid. A similar weak shock is attached to the portion of
the leading edge which lies ahead of the advancing shock, due to the
velocity W > a_; this separates the perturbed region (2) from region (0),
which is at rest ahead of the plane shock. The weak shock between regions |
(0) and (2) meets the main shock along a line 1 through the origin 0
(Fig. 18). The tangent plane from 1 to the Mach conoid is another weak
shock front. The'plane containing 1 and the z-axis is the approximate
positioh of a contact discontinuity. Another contact discontinuity lies
approximately along the plane passing through the intersection of the
Mach conocid and the main shock, and the z-axis., The portion of the
incident shock between the line 1 and the surface of the aerofoil

is disturbed.
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If we consider a section parallel to the x-y plane on the z-axis,
the flow picture obtained is the same as for the case of unyawed
aerofoils, (cf. Chapter 3). For the two-dimensional unyawed aerofoils
the flow picture was seen to be growing with respect to time t, while
in the present case it can be regarded as growing with the spéce
.variable z. The assumptions introduced in §1.3 hold for this case too,
except that now we shall use the equations of motion of steady
rotational flow behind the shock. The physical parameters which
define the problem are once again V, W, Po’ Ro (or M and M”), the
shape of the aerofoil, and the angle of yaw X.

In the following we shall present the equations of motion (§6.2.1)
and deduce the relations at the disturbed shock (§6.2.2). In deducing
the shock relations we shall follow the procedure of Chester (1954)
who considers the diffraction of a plane shock by a‘stationary yawed
aerofoil. The additional boundary conditions are discussed in §6.3.

In §6.4 the complete formulation is given in Lorentz variables followed
by its solution. In §6.5 the results are applied to calculate the

interaction field with a yawed symmetric wedge.

6.2. FPundamental relations

6.2.1 Equations of motion

In the region of non-uniform flow we use the equations of adiabatic
steady, three-dimensional flow, i.e. Egs. (2.2.1), (2.2.2), (2.2.5)
and (2.2,7) omitting the time derivatives. This field can be linearized
on the assumption that the flow variables differ by small quantities
from their values in region (1), Fig. 18, of uniform flow. We assume

the following expansions
R=R, +¢eop(x, 5, 2)+0(e),
2
P="P, +eplx,y, 2)+o0(), ¥ (6.2.1)

s=8,+es(x, 5,2+ 0(62),

V=V, +ev(x,y,z)+ O(ee),J

with v, = i u, + J v, +k Ve The parameter ¢ may be interpreted as the




91,

deviation of the aerofoil surface from its mean plane. The perturbation

parameters can be expressed in dimensionleéss form as

D,=O1/R1s P=P1/YP19 l=z1/&1, S=Ys1/cv'

The linearized equations of motion for the disturbed field in frame

of reference (x, y, 2) can then be written as

continuity, M 90/5z = - (du/ox + av/oy + aw/dz), . (6.2.2a)
) - -
momentum, M.3u/3z = - 9p/ox, M 3v/3z = - 3p/dy, (6.2.2b)
\ M aw/3z = - ap/oz,
| .
together with 3p/9z = 3p/az, (6.2.2¢)
and | s=1(p-0p), (6.2.23)

where M = V1/a1.

From the last two of Egs. (6.2.2) it is easily seen that 3s/dz = 0,
i.e. the entropy remains attached to the fluid particles.

.It is convenient to introduce a scale transformation defined by
z =8 z%. . (6.2.3)

where B = (M2 - 1)} > 0, The Bas. (6.2.2a)-(6.2.2¢) together with (6.2.3)

can be combined to yield a wave equation in p
32p/8x2 + 32p/3y2 - azp/az’? =0 (6.2.4)

This equation will be solved subject to a suitable set of boundary

conditions, which will be formulated in the sequel,

* 6.2.2 Conditions at the disturbed shock

The undisturbed part of the shock front lies in the plane
} .
x.= tany z = mz” - (6.2.5)

where m = B tanp. Let the displacement of the shock from its undisturbed
location be denoted by Y(y, z); it is assumed to be uniformly small,
Consequently we take the equation of the disturbed shock to be

x = tanp z + ¥(x, y) + 0(52),

or x - tanp z - ¢(x, y) = 0, (6.2.6)
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to the first order. The direction cosines of the normal to the shock

front are then proportienal to
1, -wy, - tany - wz'

Ifnisa unit vector normal to the shock we have

n = {cosu(1 - sinp cosu wz), -cosy wy’ -sinp cos3

vl (6.2.7)

to the first order. .
Now, the shock transition relations will depend on the normal
component of the velocity in front of the shock. In fact the relations

for the gtationary shock may be written as

_ 2 2,2
A A a A E
_ 2 2 -1 2
P T R2(Vn -y az), (6.2.8)

_y 1 2 2,2
R Y_1R2/(1+—-—-—-Y_ e,

where R, P, 11 being the density, the pressure and the fluid velocity

behind the shock, R2, a ﬁhe density, the sonic velocity and the

os Yo
fluid velocity ahead of the shock, Xn the component of XQ normal to the

shock, and y the adiabatic index of the medium.
Since the advancing shock does not disturb the flow ahead of it,

we  can assume that the flow in region (2), Fig. 18, is isentropic.

Let the density and pressure in this region be expressed as

_ 2
R, = Ro *o t o(e"),

P,

(6.2.9)

. 2
+ +
P+ P, 0(e”),
where Ro and P° being the density and pressure in the still region (0),

and Py and P, the perturbation values of density and pressure in

region (2). Then
ag = YP,/R, = ao[1 + {{y - 1)/2Y}Po/Po]

If (uo, Vs wo) be the velocity perturbations in region (2) in
the assumed co-ordinate system, the velocity ahead of the shock XQ

is then




93

= - 3 ’_ ‘-
v, =1 |Vo|51n(x p) + u, V., |V0|co$(x u) + v} (6.2.10)

Since V= (V,.n)n, it follows with the help of (6.2.7) that

- 2 .
= - + - eCae
v {-v(1 + coty“cos u wz) uocosu w051nu}n (6.2.11)

Making use of (6.2.9), (6.2,10) and (6.2.11) togehter with
(6.2.7) in (6.2.8), we can deduce the following relations which apply

at the disturbed shock front, viz.

2
p = =L 5 [(T cosu - ¥ sinu) + %{(y -1) = Ll—JL%lM——i4g}§
(yi - 1)M° + 2
|
- coty”cosy wz],
_ L 2.2 - - . 2 Y - 14—
P =T (RO/R1)(ao/a1) M7{-(u cosy - w sinu) + (1/2M )(M2 - )p
- 2
+ coty“cos wz},
_ + M - - Yy + 1 -
u = ?_I—T (a /a ) cosu[—-—iz——- (u cosy - w sinp) + 5— M secu 1
Sy D+ {l-cos(x'— u) + M cos(x“+ u)l}cosecy”cosu ¥ ]
M M z4?
= 2 1 - M2
v = (ao/a1)M Vot (ao/a1)-—1q——— cosp wy’
_ 1+M- - . + 1 - Yy -1 . -
W (a /a )[ (W cosy - w sinu) + I—§—~ MW+ 1= siny p

B Y + Y+
+{% sin(x”- u) - M sin(x”+ u)} cosecx’coszu wz], (6.2,12)

where 'p = po/Ro, p= po/yPo, u=uw/vV, v=v/V and w = w/V.

Thus the expressions (6.2.12) relate the upstream perturbation parameters
p» P, (u, v, w) with the downstream parameters p, (u, v, w) at the

shock via the derivatives of the shock displacement w and ¢ The

shock relations (6.2.12) will be used at the undlsturbed locatlon of

the shock (x = tany z = m z°) in consistence with the linearization.

Let the upper surface of the aerofoil be given by

= f(x1), with f(x1) =0, forx, <0,

where x, being perpendicular to the leading edge of the aerofoil.
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Then for the supersonic flow, W * a,s past the aerofoil, the perturbations

in velocity and pressure can be expressed as

- (W/B) cos(x

u

o u) f'(x1 - By),

- (W/8) sinlx - w) £(x, - 8¥),

R (W/8) £ (x, - 8y),

w
(o]

v, =W £ (x, - By), P

22 _

o]
where B = (M
with respect to the argument.

, and the prime represents the differentiation

In the co-ordinate system (x, y, z) assumed, x, then becomes
x cos{x - u) + z sin(x - w),
which at the shock location x = m z” gives
8 z” siny secu.

Then the perturbations given by (6.2,13) can be prescribed as the

(6.2.13)

known upstream parameters in region (2). When expressed in dimensionless

form, (6.2.13) gives at the shock x = m z”

»

- M (T - * (T
i= g eos - u) £7(E), =g (@),
- .2
- 1M. v - M (T
W= - E-ﬁ-31n(x - u) £7(E), P == £7(€),
= 2.3 . =
where E=al(l -m°)° z°- 0 yl},
with 2 = B siny secu/(1 - 52)£ and b = B/a.

Msking use of (6.2.14) and (6.2.3), we obtain from the shock

-

relations (6.2,12), at x =m 2

. p = A1 £7(E) + H1 wza

1

P A2 £7(E) + H2 ¢z‘
u=A f'(g) + n3 ‘sz
v = Ah £7(E) + m, Wy

w= A £7(E) + H5 -

(6.2.14)

(6.2,15a
(6.2.15b
(6.2.15¢
(6.2,154
(6.2.15e
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where
A = h _%_[_l&cosx+{\’;1_(¥-11)‘M2+2JM,]’
(y - 1M+ 2
A, = 5 2 %(QMM'COSX Y Y l—%—l M’e),
yM” - (y - 1)
A, = =2 (a /a, ) S25H((1 4+ 1/M2)M'cosx B 1.M'secu cos(x - p)
3 vy +1 o 1 B 2
»2
- ('Y - 1M /M},
Ay =M ao/a1,
A = =2 (a /a.) EiEE{(1 + 1/M2)M'cosx Y x M”cosecu sin(yx - u)
5 v+ 1 '™ 8 i 2
LD
4 ] 3 - ('Y - 1)M /M}s
N, = ————— (a _/a,) ncosw
! (y - 1)M2 +2 ©1 M(m2 - sineu)§
1. = N mecos3u
= —
2 Yy + 1 (m2 _ sinzu)z
My =2 L eos(x™ u) + (1/M2) cos(x'e u)) —RoO8 M
3 Y+ 1cos ¥ X+ cosix - u/} . 2 (3
(m® - sin®p)
TIh = - M1cosu,

n

' 3
-2 1 . - 2 . » m cos™u
s 771 Tyt ) - () siald W) =,

and ao/a1 and M, are given in (2.3.3).

1
From the above relations we notice that wz’ can be eliminated
from (6.2.5b) and (6.2.5c), while § can be eliminated from (6.2.5b)

and (6.2.5d) by cross-differentiation. Thus we.deduce at x = mz”

u={p- B (E)}/aA, (6.2.16a)
v _ 1,.3p 37 (E) af”(E) _ .
and | "B-Z;— B’(ay - A2 T }+ Ah —37—, (6.2.16b)
where A= ne/n3, B = A2 - Al\3 and D = nglnh.
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These conditions will be used later to describe a single condition at

the shock x = mz”.

6.3. Boundary conditions

Tor the disturbed region behind the shock, x < mz”, we can

prescribe two starting conditions as
plx, y, z7) = ap/3z” = 0, for z° < O. (6.3.1)

At infinity, since all the perturbations must vanish, we can

have for x < mz”, z° > 0
as X > -®, y > @ p and its derivatives -+ 0. (6.3.2)

For the region x < mz”, z° > O, the tangency condition gives on
the aerofoil (y = 0)

vy = (W + U cosy) £7{x cos(x - u) + z sin(x - u)} (6.3.3)

Here we may notice that by the definition of f, v, vanishes to the left
of the leading edge of the aerofoil. Expressing (6.3.3) in dimensionless

form, using the second momentum Eq. (6.2.2b) and noticing that
V1 sin{x - u) = (W + U cosx),

it follows that at y = 0
ap/dy = = ﬁ? £7{x cos{x - u) + 2B sin(x - w)}, (6.3.4)
where 51 = (W+U cosx)/a1 = M'ao/a1 + M, cosy.

The condition (6.3.4), however, fails at the shock location,
since it has been obtained by using the second momentum equation.
Hence to obtain a condition on 3p/dy at the aerofoil-shock intersection,
we invoke the shock condition (6.2.6b) which gives at x = mz”, y = 0

§£=Dav

- - 2.3, = -2.3 .
5y az,-{Agab+DAha(1-m)}f {a(1 - m™)® z7}.

|
o

Here v can be obtained from (6.3.3) which gives at x = mz”, y =
1
v=8 &0 -5 20

Thus we obtain at the shock-serofoil intersection, x = mz”, y = 0

;
ap/oy = B_ £°*(a(1 - 72)% 27}, (6.3.5)
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- -2,3 = - -
where B = D(1 - m°) (m1 - Ah)a - Azab,

6.4. Tormulation in Lorentz variables and solution

We introduce Lorentz transformation defined by (cf. §3.3)

(x - 52)/(1 - 523, 3 = (2= @)/(1 - 52,

CooX
The pléne X = 0 then corresponds to the shock plane, and the wave
|
Eq. (6.2.4) remains invariant, viz.
| azp/ai2 + sz/ayz - agp/az2 = 0.

The boundary conditions (6.3.1), (6.3.2), (6.3.4) and (6.3.5) now

become, for x < 0, y > 0

p(X, y, z) = 3p/dz = 0,  for Z £ 0,

for 2 > 0, a8 X > —», y > = p and its derivatives -+ 0,
X<0,y=0 3p/oy = Aof”{a(z + Aoi)},
;( = 0’ y = 0 ap/ay = Bof”(ai),

1
Using the transformations (6.2.3) and (6.4.1), the basic Egs.
(6.2.2a)-(6.2.2c) can be combined to yield

where Ao = - 2% and xo = (cosy + m 51)/(5 sin x).

42 .2 = o 2
(B/M) —2-+ =7+ T ———=0
9x 9z 9z° (1 -m")® 3y oz

(6.4.1)

(6;h.2)

(6.4.3)
(6.4,4)
(6.4,5)
(6.4.6)

We can substitute for u and 3v/3z from the shock conditions (6.2.6),

and thus obtain at, x =0, y > 0, z > 0

»
-2 R 2a 2Ry (14p) 2R K2 gl By,
dy X 92 3z b sz
2 _2
1 -m - = 1-m D
where a=-—-5-n—(B/M)D, 1+b=-—2 2,
m
_ =2 2.3 P
and K= {(1 +1)B - AD" - (1 - m7) DAhb}ab.

(6.4.7)

The condition (6.4.8) is a differential condition in p, which will be

used at 'the shock front.
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The governing Eq. (6.4.2), together.with the boundary conditions
(6.4.3)-(6.4.7) completes the formulation of the problem. This can be
compared with the formualation of the unyawed case (§3.3, Egs. 3.3.2-
3.3.4k, 3.3.10-3.3,12). It is obvious that the two formulations are
exactly the same except that T (in §3.3) now reads z, and the different
constants here are functions of M, M” and x instead of M and M” alone.
However all_the qonstants involved in the present case are- expressed
in a form which clearly indicate the limit as x » 0. Hence following
§3.4, we can write thé solution of the above formulation (Eqs. 6.h.2-
6.4.,7) immediately as follows (cf. 3.4.16)

T £ a0 + 2 £))
p(x, vy, 2) = ?( -A [duj

dg
o) (@ - m-0% -yt
0 E1
5 % & £ {a(n - 1,8}
+ 7 A [duj 53 %) (6.1.8)
i=1 oo{(z-u)-(x-i)-y} _

1 1
with £ =% - ((F-202-5%° ena g, =%+ ((Z-0)%- Nat
Here A, =X _, A, and X3 are the roots (real, distinct and positive)
of the quadratic equation

A2~ 2ar, + b.= 0.
’ i, 1
Ay, = (1 - 52)5 > 0, and Ag = -1),. The coefficients Ais’ are now given by
- : -
A, = AOH(AO)/H(—AO), H(Ao)b— Aj + 28+ D,
=2X 2aA :
2 o K
A = (B + - )
2 A, = A [} A - A 2 2
2 3 o] 2 12 - Ah
g 2eh K
A3_)\->\(Bo+>\—>\_2 5)s
2 3 o 3 A3 - Ah
A, = K/, - 205 - WY Ay = KA, + 205+ A

‘In deducing the above result (6.4.8), once again we assumed b < 1.
This condition is satisfied provided

M+ £2(M2 - 1)

W< 7 < 1

cosx, with 2 = (1 -n°)(a/a,)%, (6.4.9)
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a function of M and X. Figure 20 illustrates the variation of M” with M
for various x i.e. for any fixed angle of yaw X, the point (M, M)
must lie to the left of the appropriate curve for the condition

(6.4.9) to be fulfilled. This condition, however, implies that the

shock intersection lies outside the Mach conoid emanating from O,
Fig. 18b.

In case b > 1, the shock intersection will be located -inside
the Mach conoid; X and‘)\5 in (6.4.8) then become imaginary. The last
two terms in (6.4.8) should then be replaced by (cf. 3.4.18)

zZ o :
I, 5 = | @[t GE0 ~ BE)(Q (N, (u, ) + N (u, —0)} +
4,5 = 11 1
b
00 _
QN (u, 2) + Ny(u, ~2)}) 4z, (6.4.10)
where Q1 and,Q2 are constants given by

- 2 _ 2 . _ .2 2y,.2 2
Q, = K(A2A3 + xh)/g, Q, = K(AQ + AS)Ah/q, with q = (Ag - Ah)(A3 -2y,

and the functions N1 and N2 are
N (u, g) = X z - : .
1 -0 1G-w2 Py -0
My(u, ©) = (7 - w2 - 2 - (y - 027,

6.5.. Application
We apply the result (6.4.8) to a symmetric wedge of semi-vertex
angle e, which is yawed by an angle x with respect to the shock plane.

Then on integration (6.4.8) yields

AZ+ X
)

2, 2.3
o)y }

)

p(x, v, 2) = E:{Ko arccos( — —
Ta {(z + Xox) - {1 -1

\1

X.2 - X
i

s L] (60501)
2-0% - (1 - xf)yg}Z)}

‘ + ) R arccos(
i=1 !
= 2v3 = _ 2,3 R
where A = -A /(1 - 29)%, A, = A./(1 - AT)", and A.s®> < 1 for
o o o i i i i
i=0,1, 2...5. In case X2 or A3 > 1, a minor modification in (6.5.1)

is necessary, since in that case the corresponding integrals in (6.4.8)
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will integrate to yield

A, ( AiE - X
—~———=— arccosh s A. > 1. (6.5.2)
Rk (@ -2 0%+ 05 -1 2}3)

Using the transformations (6.4.1) and (6.2.3), p can also be
expressed in terms of original variables (x, y, z). Then (6.5.1)

yields on simplification

vy (2/B) + x
p(x, vy, z) = E—{K arccos( Q 5 5 éAT)
nat © {((z/B - Yox) - (1 - Yo)y }2
5 Yi(Z/B) - X

+ ) A& arccos(
. i
i=1 {

) (6.5.3)
(z/B - Yix)2 - (1 - v?)ye}z)}

where Y, = (Ao -m)/(1 - ﬁko) and ;= (Ai + ﬁki)/(1 + ﬁli).

Expressing the above result (6.5.3) in terms of conical variables

now defined by X = 8x/z, Y = By/z, we obtain

p(X, Y) = E_{K arccos( Yo * ¥ )
mas © {{(1 + YOX)2 - (1 - yg)Yz}é
5 Y. - X
+ ) K. arccos & — }. (6.5.4)
i=1 * ({(1 - yix)2 - (1 - yi)Ye}’)

In case b > 1, the last two terms in (6.5.l4) must be replaced

by (integrating Eq. 6.4.10)

2(m - X)N 2)

nab m - x)2 + A£2(1 - ax)2 -N

= &
Ih,5 = {Q1 arctan((

(6.5.5)

+ ==, 1n

Q, ((a - 0%+ A0 - wX)P
2x, ) ’

(@ - %)% + (N - a7 (1 - @X))°

1
with N = b(1 - 512)2 (1 - x° - Ye)% and Aﬁ = (52 - 1)%.

It is in order to point out that (6.5.5) is also the real part of the
last two terms in (6.5.4).

(1 s et i i |
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The expressions for the density variation p(x, y, z) and the
shock displacement ¥(y, z) could easily be written by analogy with the

case of unyawed wedge (§3.6).




Chapter T

NUMERICAL RESULTS AND DISCUSSION

In the first section of this chapter we shall present the numerical
results for the examples considered in Chapters 3-6. The results for the
case of yawed wedge are compared with those obtained by Smyrl (1963).
For the case of slender conical projectile a comparison is drawn with
the results of Blankenship (1965), which were obtained by numerical
methods.

In 8§T.2 we shall concludé the work by pointing out where further
detailed exploration is necessary for which the theory is either
inadequate or does not give any information. The treatment of the non-
linearities of the problem for which our theory gives erroneous

information are, however, outside the scope of the present work.

T+.l. Numerical results

Two-dimensional wedge

Pressure distributions on the wedge face (Y = 0) have been calculated
for a number of casés using the results of §§3.6 and 6.5. They are
illustrated to demonstrate the effect of the wedge speed M*, Fig. 22, the
shock speed M, Fig., 23, and the yaw X, Fig. 24, The results are only
computed for the non-uniform Mach-reflection region EF (Fig. 5b) along
the wedge face. The value of the pressure along AE (Fig. 5b) is constant
given by the value at E. We adjust the scale so as to make the distance
EF the same in all cases. The numerical results illustrated above were
first given by Smyrl (1963).

In Fig. 25 we have presented the complete pressure and density
field using the results of §3.6, in the form of isobars and isopycnics

in the Mach-reflection region BCDEF (Fig. 5b) for M = 2,0 and M* = 2.0;
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we have also plotted the shape of the shock front for semi-vertex angle
€ = 0.05. The pressure in regions ACE and IDB (Fig. 5) is constant.
There are discontinuities along the Mach lines AC and ID. The several
isobars end at the location of the discontinuitiés C and D on the sonic
circle. Due to the constant pressure in the region IDB the.shock is also
displacéd by a éonstant displacement from I to B accompanied by é
discontinuity at I. Again there is a discoﬁtinuity in density along IO
which separates the region of rotational flow IOF from that of
irrotational flow (to the left of line I0O). It is interesting to note
that on traversing the line BO each isopycnic suddenly splits off and
there is a steep density gradient adjoining BO, while there is no
appreciable pressure gradient there.

In Fig. 26 we compare the results with those of Smyrl (1963) for
the pressure distribution on the wedge face for M* = 2,0, M = 2.0 and
X= 0,.0.5, 1.25 and 1.5 radians. Obviously, our results do not agree
with those obtained by Smyrl except when y = O, for which the two
analyses yield the identical results as was noted in §3.6. The
discrépancy in the results when x > O, may be attributed to the fact
that Smyrl calculated wrongly the direction of the unit vector k
(Smyrl 1963, p. 235, bottom line), which should be in our notations,

{tancpo cos(x - u), -1, tan¢ sin(x ~ u)}, with tang = 1/8,

and this affects his subsequent results for the case of yaw.

Slender cone

Pressure distributions on the surface of the cone have been
calculated for the Mach refleétion region EF for the various conditions
by using the results of §4.S5. We consider‘a cone of semi-nose angle
€ = 0:025 with M = 2.0 and 4.0 for various values of M” and with
M” = 1.5 and 2.5 for various values of M, thus demonstrating the effect
of the cone speed and shock étrength réspectively. The results are
shown in Fiés. 27 & 28. The scale is again adjusted to make the

distance EF the same in all cases.
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In Fig. 29 we have presented the isobars and isopycnics in the
entire Mach-reflection region BCDEF (Fig. 2) and also the shock shape
for ¢ = 0.05, M = 2,0, M = 2,0, This figure has to be rotated 360o
about the axis of symmetry for the physical picture. It may be noted
that the isobars in the regions ACE and IDB (Fig. 2) are conical
surfaces in this case. There are no longer discontinuities along AC and
ID and thereby at C and D, as compared with the case of wedge. There is
only adverse density gradient along BO and IO.

In Fig. 30 a comparison is drawn with the resiilts of Blankenship
(1965) for ¢ = 0,025, M* = 2.5 and M = 11.25 & 6.25. Two distinct
features emerge .from it. First, the starting values of the pressure at
E are not the same in the two cases, Blankenship's values being higher.
This may be due to a computational mistake in the latter's results. Since
Blankenship starts from the well-known conical solution in the region
AEC Fig. 2, while the author obtains the same conical solution from his
analysis, the values of the pressure at E should have been the same in
the two cases. Secondly the behaviour of the curves given by the two
procedures is different. The discrepancy in the behaviour can be
attributed to the fact that Blankenship considers the value of r(3p/3r)
on the cone surface to be constant from E to F (Fig. 2), which in fact
is the case but he does not.consider any jump in r(dp/3r) at F. While
-in our formulation when the shock is approached along the body and when
the body is approached along the shock, the two limits of r(3p/dr) are
different at F, thereby providing a jump in r 3p/3r, though the
éssumption that the flow is tangential to the body even at the foot of
the shock still holds. Incidentally, if we consider the value of r(3p/3r)
conétant along the cone surface from E to F without any jump (which
amounts to considering Bolas Ao in our analysis), the behaviour of the
results thus obtained is closer to that given by Blankenship. These
results are also plotted alongside the other results in Fig. 30.

The complete pressure field in the Mach-reflection region is plotted
in Fié. 31 for € = 0,025, M* = 2,5 and M = 11,25, which allows fuller
éomparison with Blankenship (1965, Fig. 6). The isobars in the two

cases agree fairly well except in the vicinity of the cone surface as one

 —UL i e
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would expect in the light of the preceding discussion.

Flat delta wing

As a numerical example of @5.7,\we consider a flat delta wing
having semi-apex angle 8 = 45° (n = 1). The pressure distributions
are calculéted for the distqrbed region inside the spherical wavelet
behind the shock for M* = 2,0 and M = 10.0. The results are plotted
in the form of isobars on the plane of the ﬁing Y = 0, on the root

m, Fig, 32; thus

chord plane Z = O and on the plane of the shock X .
a three-dimensional physical picture can be easily visualized. We have
also calculated the pressure variation on the wing along the root chord
(Y = 0, Z = 0) for various cases to demonstrate the effeét of the wing
speed, the shock speed and the apex angle. The results are shown in
Figs. 33, 34 & 35. ' '
Figures 22-35 are characteristics of all the results obtained and

demonstrate the application of the theory.

7.2. Conclusion and discussion

In conclusion it may be observed that we have sﬁcceeded in treating
the problem of interaction of a plane shock of arbitrary strength with
supersonically moving aerodynamic'obstacles, based on the theory
presented in this work. There is a definite unifying feature throughout
the treatment. The disturbance pressure is used as a primary variable
to formulate the problem in terms of initial and boundary. values., A
Lorentz transformation is employed to rotate the shoék plane in the
plane of the axes. The problem is amenable to the method of integral
transforms, which is the important characteristic of our treatment.

For every case considered, the application of the appropgiate integral
transforms reduce the mathematical problem to a fairly simple
formulation (cf. Egqs. 3.4.8-3.4.10), i.e. a second order non-homogenous
ordinary differential equation subject to two boundary conditions, which
permits a simple solution. Finally one is left with obtaining the
appropriate inversions. The inversions, it is shéwn, exist for the cases

considéred. The solution presented leads to the various field
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representations behind the shock.

The theory presented can be easily generalized for the diabatic
flows, i.e. the inviscid non-heat‘conducting fluids with heat addition
by means of sources (heat injection). It can also be modified to treat the
diffraction of a shock by subsonically moving obsfacles. It is to be
hoped that the method ‘of golution to the boundary value problem applied
here makes possible solutions for more general physical conditions. For
instance the solution of-the gas motion could be found when the oncoming
shock interagts with the unsteady disturbances generated by the vibration
of the body caused by the shock impact, or the shock encounters an
accelerating obstacle moving towards it, or the shock is accompanied by
a non-uniform flow region behind it.

The solution presented can also be used to study the other
interesting shock diffraction problems, viz. the diffraétion of a shock
by an interface of two medias, due to atmospheric turbulence, due to
non-smooth walls in shock tube, etc.

In vhat follows we shall note some precarious items in the analysis,
which each in themselves require further attention. The solution of the
general antisymmetrical problem (cf. §6.5) is not complete, since we
have not been able to solve the integral equation obtained. This
requires further study.

Further we consider those aspects of the flow for which the
linearized theory gives erroneous information. The construction of the
flow field outlined in the introduction points out the fact that the
interaction was the result of the two fields - the attached shock
generated by the body in region (0) and diffracted by the plane shock,
and the shock generated by the body moving in region (1). It is clear
that these two fields (ACE and IDB, Fig. 2) overlap depending upon the
speed of the body and the strength of the shock. In the region of over-
lap, the two fields interact in a non-linear fashion. The construction
based on the linearized theory (in which the pressure is given by the
linear superposition of the two fields) does not take into account this
interaction,and thus does not correctly represent the flow in the

interacting region.
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Again, the shape of the obstacle is assumed such as to produce
small disturbances everywhere, It is well known that for the super--
sonic flow past the three-dimensional wings with subsonic leading edges,
there are singularities along the leading edges; é.g. a symmetric wing at
zZero incidence has logrithmic singularities while flat delta wing at
incidence has square root singularities. On interaction with a plane
shock, these singularities, in general, will reappear behind the shock
(ef, §55,7.1), Thus the pressure tends to become infinitely large in
the neighbourhood of the subsonic leading edges and so also the shock
displacement there. In real media this divergence-.is eliminated by the
non-linear effects, and by the effects of viscosity and thermal
conductivity. Consequently the linearized theory becomes inadequate
near such regions.

In our discussion of interaction problems, we have assumed the
obstacles to be semi-infinite in length in the flow direction. In case
the obstacle is a finite one a rear shoék or shocks may appear. It
cannot be assumed that the flow is uniform behind the rear shock, even
on ligear theory. Thus the flow field ahead of the ‘incident shock is
affected by what is happening in the wake of the body; this in turn will
influence the interaction flow field behind the shock thus altering the
shock pattern.

No attempt is made to get the reflected shock (BCDE, Fig. 2)
correct; it has been assumed to be a Mach wave. .However, Tan (1951),
Ting (1952) and Chester (1954) have extracted the strength of the
reflected shock from the linearized solution for the problem of
diffrdcﬁion of plane shock by stationary two-dimensional aerofoils by
applying the technique of Lighthill (1949b) for rendering the approximate
solutions uniformly valid. The similar procedure could be carried out
for determining the strength of the reflected shock from the linearized
solution for shock-on-shock interaction problems.

Our theory does not give any information regarding the precise
nature of the flow field at the triple point shock wave intersection
(point B, Fig. 2), which seems another non-linear feature of our

problem. One may refer to the work of Sternberg (1959) for some

T T
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details of the flow structure in an analogous situation, where the
incident shock is considered to be a weak shock and the Mach shock has
two-dimensional structure (cf. also Sichel 1962, 1963).

The condition at the base of the shock on the body surface is
complicated by the presence of the boundary layer and its changing
behaviour due to change in the Reynolds number on penetrating the shock
and due to interaction with the moving shock. The change in the
boundary layer flow has been experimentally observed as a side effect
of the shock interaction by Merrit & Aronson (1966). They have observed
that the model boundary layer appears laminar as it approaches the shock
but that a turbulent boundary layer is clearly visible on the portion of
the model that has penetrated the shock. The presence of the boundary
layer on the wall results in an altered boundary condition for the shock
wave, and on the other hand the large pressure gradients associated with
the incident shock strongly alter the boundary layer flow. In general
the problem is a non-linear one, in which -neither the simplification
of boundary layer nor that of simple shock wave theory apply.

The construction of the flow field based on the present work is
only valid for the idealized aerodynamic obstacles which present small
disturbances to the main flow field. For real bodies with strong bow
shocks that cannot be put into the small disturbance category, very
little information is available. The computer experimentation offers
the best possibility of solving the real body problem. In this connection
the vork of Ludloff & Friedmann (1955) may be mentioned who did two
computations for the diffraction of a shock by a stationary wedge. This
work may serve as the first step for solving the non-linear problem of

shock-shock interaction.
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APPENDIX 1

1.1. Inversion of expression (3.4.1h)

(a) We consider the first expression in (3.h4.1k)

e _ 1 1 exp{Ax} 2 -
o =3 (A - s X~ 2 .22 exP{SAOX}) c(s)
o AT - Aos
wx _ 1 1 exp{ix} 1 exp{ix} Az
or, I, = 2(A =xs A Tx-Xs A exp{-(} - A s)x}

1 exp{-Ax}

- expl(h + A _9)%)) G(s).

A+ As A
o

This can now be expressed in integral form as

I - L (m_i_kzs}_ expl-(A - A 8)E} at

O—-KI
‘—w%'

A+)\S)E}di>()

1
Here A = (a2 + 52)2, and Ao is always less than unity, so that
{

Re(X £ X s) is always positive. Iix can be rewritten in the form

MIH

J explsh_t} % exp{-ME - %)} Q&
X

exp(s) £} %~exp{-k(§ - &)} dE)G(S)-

1
PN

o

These integrals can be taken together in the form

exp{skoi} G(s) %-exp{-k(|§ - £])} ac.

OPE

1t

1
=
—.0

Now we seek inversion of I (x, a, s) first by applying the

(A 1.1)

(A 1.2)

I 1110 A P o A A o R s




114

inverse cosine transform for o and then the inverse Laplace trans-
form for s. The inversion.can be achieved by using the standard tables
of integral transforms (cf, Erdelyi et al. 1954).

0

Io(i, ¥y, 1) = L-l{ F;l( —'%-J exp{s) £} G(s) %-exp{-x(li - £l dE) }
.. © - (o}
= - %-L-l{g J cos(ay) (I exp{si £} G(s) %
0 —-00

xexp{ -A(]x - g[)}dg)da }.

2

Noting that k2 =a + 32, and granting the possibility of change of

order of integration, we can write

0 o ,
2 23, = )
o o (" +s7)
Q 1
= - %-L_l{ I exp{sxog} G(s) Ko(s{(i - 5)2 + yz}z)dg}. (A 1.3)

Here L_l{Ko(s{(i - 5)2 + yg}%)}

0, O0<7T<{(x-~- £)2 + yz}%

oG- -2 13- 02+ A,
and since skoa is-.always negativé} we obtain from (A.1.3)
7 £ (a(u + 2 8)}
J 4 | =7 .21
(7 - W) - (x-£)" -y"}

au. (A 1.4)

O A

- (b) Next we consider the terms for i =1, 2, 3 & 4 in (3.L4.1k)

1 exp{ix}
A+ Ais A

1 =% a(s). (A 1.5)

%
i
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- This can be expressed in integral form as

0 .
J exp{ (X + A;s)g} E’-‘Piﬂ}- G(s) dt,

-

.2

—
]
=

where Re()\ + Ais) is always positive. I?* can be rewritten as

0 .
-1 explsi.£} G(s) & exp{A(x + £)} ag. (A 1.6)
1 2 1 SA
I -0 ’
Here sAig and (X + £) are always negative. Hence to obtain the
‘inversion of (A 1.6) we can proceed exactly as for (A 1.2). Then we

obtain, for i =1, 2, 3 & &

ap (A 1.7)

@ £7%{a(u + 1.£)}
jdg | > 17
le 1T =) - (x4 E)T -y

(¢) Finally we consider the last term in (3.4.14)
W _ 1 1 exp{AXx}
IS s ASS ) G(s). (A 1.8)

Since A5(= - Ah) is always negative, we can not achieve the inversion

of ng in the same fashion as for (A 1.5). Hence we proceed as follows.

We write
% _ 1 1 expixrx} 2 -
Ig = 2( X = %8 X ~ 2 22 exP{SAhX}) G(s)
\ A - Ahs
+ 2 explsh, X} G(s)
: 2 2.2 SXPisAy :
A - Ahs

Following the same procedure as in (a) above we can express the first

two terms in integral form. Then
0

= --% J exp{s) £} G(s) %-exp{-k(|§ - £])ag + :Fr:%%§;§ eXP{SAhi} G(s)

Iiﬁi

5

-0
¥ .t

= I51 + 152

(A 1.9)

VL oL LA IS LA e AL
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Since here sAE is always negative, the inversion ova;:_can be written
exactly as for (A 1.2). For the inversion of I ve write

52

=1]_~1 1 -
I, =1 {F —————— exp{si, x} G(s) }.
52 [od ( 0.2 + 6232 i )

Since F l( > 1_2 2) = %-J —Er—}:§-§-cos(ay) da = 952%:2511.,
o +bs o ¢ +b's bs
I, = L—l( L exp{-(by - Ahi)s} G(s)) .
>2 Bs

Here (by - Ahi) is always positive, then

%:'f'{a(? - by + Ahi)} , for T >(by - xhi) (A 1.10)

ab

I52

Thus the inversion of (A 1.9) gives

@ 1 £27{a(u + 2,6)}
IS='%J“J gy A
o ot -w) - (x-8) -y ¥
I rE(T R - B (A. 1.11)
ab

1.2. Simplificati f1I
imp. ion of I

The last two terms in (3.4.15) (or I

55 Eg. A 1.11) can be
expressed as

I = _l.f a T £22{a(n + 3,8)) .
> 7 0{(?-;1)2_(;(_5)2_),2}%
_1 ?d“ T £ aln + 2 E) o
" b Lel(T - 12 - (% - )2 - y°)F
e W - B (A 1.12)

ab
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We consider the_second integral in (A 1.12)
T L f"{a(ﬂ + )\hg)}
J o] LG nen
SR (CIEN LS C IS

= d&. ' (A 1.13)
L :

Here a new variable may be introduced to replace u, say u + khﬁ = q. Then

g
1 1 \
_o1 (... dg
Iop = -7 T (aq) dq J

! [((F - 0% -3 - 5%+ 2+ (7T - ) - 56°)°
2

. i
where'gl [i + Ah(¥ -q) + {(7 -q+ Ahi)z - 52y2}%]/b2,

1

- - - - 11 -
£, = [%+ 0 (T - 0 = 1T - g+ 07 - 357 /52

and q, = T+ Ahi - by. The above expression now integrates to yield

el 5T+ rE-F |
Iy = - - £ {a(T + X - by)}. (A 1.1%)

Hence from (A 1.12) we obtain

£7%{an + A,E)D
du J o ey dE (A 1.15)
{(

©

T
i DT -wP - (k- 0)f -y

1.3. Inversion of IT*S , Eq. (3.4.17)

I, 5(%, ¥y, ) = 17 { (ql N 2 = exp{AX} G(s)

+Q, 5 = eXP§AX} G(s))}, (A 1.16)

a” + b7s
Since ‘F;l{l/(az + 5252)} = (1/bs) exp{-bsy}

1
2

l_ - - bed -
F;l(exp{(a2 + 52)2x}) = %-s x(x2 + y2) Kl{s(x2 + yz);},

by convolution (cf. Sneddon 1951), we obtain

.
F;l({l/(a2 + 526%)} expl(a® + se)éi})
= %: J exp{- bsz} {fl(c) + fl(-c)} ar, (A 1.17)
b
0
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1 1
where  £(2) = RE + (v - BT k(s + (v - 7).

Similarly we can obtain
=1

( <]
¢ u2 + 5252 (a2 + s

2)%

exL{(ot2 + s
2)%

F

- = J (£,(z) + £,(-2)} expl-bst} ag, (A 1.18)
el 0

.
where £,(zc) = Ko(s{i2 + (y - 5)2}5).

Substituting (A 1.17) and (A 1.18) in (A 1.16) and further using the

tables of inverse Laplace transforms we obtain

o

Ql T
s == @ | o 0 e m G, - o) £ Ee - B a
™y oo
ot 2 ,
e 2 [aw | oy o) e - ) UGG - B ar, (8239)
b
0 0
where N (u, ¢) = x — o -,
1 Py -0 ((T-w-% o (y-02°
1
and N, (u, z) = {(T - u)2 - % - (y - C)Z}-z

2
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APPENDIX 2

The results of Smyrl (1963, pp. 232 & 233) for the pressure on the

wedge face and on the shock plane are respectively

4 v, - 723 Y, + V2 }
P = P‘5 -[igl ci arctan(m) t + C5 arcta.n(w) t
Yh + /2 %
+ C6 arctan(-Y—h—:-7§) t}, ‘(A 2.1)
a?d . T 1 Yi -23 Y2 -2 %
p° = p5 - :,2-(05 + C6) - E[Cl arctan( Er l) + 02 arctan(—g—-:—l—)
‘ ' Yg -23 72 - 2.3
(0= cg) arctan(~F5) + (0, - ¢g) arcten(—— )|,

(A 2.2)
where 1;2 = (1 + x)(1 = x )/{(1 - x){1 +x)}, £ = (_y2 + y2)/(y2 _ yz),
_ o o o o

K K
- Y 1 2
Cl_( (2 - 2 2_2*2_2+K3)=
(IS TS WY1 ¥Y3™ M
K K
- L 1 2
IR RIS B A Y- 2_‘2*K2)=
VYq Yp Yg Yh Yy Y3 Y,
. - (Yl + Y3)(Y2 + Y3) . o - (v, + yh)(y2 + Yh) .
. - . ,
3 (Yl - Y3)(Y2 - 'Y37 5 . Y4 (Yl - YhT(YZ - Yh) 6
- 2 I - 2 -
C5 =7 P Cg=-7 P35
I 2 3
Ky = =703 (g + )y + )y, - 2)%y,

N 2
Ky =3 o5 (v, + Y3)(Y2 + Y3)(Y3 - 2) Y3

K= (v oM e Jo 1 vy, + By ey v )2 - 2
37y T 1" Me Je mg v T g Yy vy -
o 1
2
-“—5(Y1+Y2+Y3)(Y3-?)§,
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p3 = (3w, - x Vi) (3%, - XYo)s

(We fo + M2/ L00e fo) +M)P - 1),

o)
(N
n

in terms of the notations used by Smyrl.

Translating the above in terms of the constants of our ahalysis,

we obtain
X, = m, /2/Yl = Ay /2/72 = A5 /2/Y3 = A, = A /2/yh = Ay == Ags
, - - —— . s = - 2 %
p3 = EK/{ab(Ae + A3)(A3 + xh)}, pg = -er/{a(l - xo) },
“and (vi -M - M’co/cl)yo/B = bpg + Bo/a.
Hence
c. = e Lo, Bl (1 - 232 P3la’ E)
1° 2.3\ - T A = A ~ % T A = A
(>\2 - A3)(l - )‘2) na 2 L 2 A
= - 2¢A /{nma(l - xe)%}
= 2 2
. = 2,3 . - 2,3
C, = - 2€A3/{na(l - x3) }, €y = - 2€A1/{na(l - xl) 1,
o= - 2o J(ma(1 - 2D, oL = - 2ea /ima(1 - 2Dh
b= L Lo 5 ° o o’ ?
C, = - 2eA_/{wa(l - AE)%}.
6 5 5

Thus the expressions (A 2.1) and (A 2.2), when expressed in our

notations yield

y, +X 5 v. = X
_E |z o - i
p= = [Ao a.rccos(—-——l ” YOX) +i£l A arccos(——:L - Yix)] (A 2.3)
and
. y +m
€ |+ o
p=— A arccos )
"a[ ° ({(l + y m)2 - (1 - YZ)Y2}2)
o o
5 y; - m ]
+ ) A arccos - ). (A 2.4%)
i=y ({(1 - ym® - (- ;%)

The expressions (A 2.3) and (A 2.4) are obviously the same as obtained

from (3.6.5) by substituting Y = O and X = m respectively.
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APPENDIX 3

3.1. Inversion of expression (4.4.12)

The inversion of (L.4.12) is obtained first by applying the inverse

Hankel transform for o and then the inverse Laplace transform for s.

(a) We consider the first integral in (4.4.12)
0

£t = J exp{s) £} G(s) -i— exp{- A(|x - £])}ag, (A 3.1)

-0

1 )
with X = (a2 + sz)g. For its inversion we can then write

1 7, D) = UHELNINE, o )]

, 5 o1
aJO(ar) g}p{—(a' + 5 ) (Ix - £])) da} dél

exp{skoi} G(s){ (az - 32)%

|
[ (=)
t 4
[ [
(o] 8|‘——\C)
O+——38

1
|
[]
)
——
i —O IV———
o |-

exp{skoi} G(s) SEEé:EEl dé}
R

8

exp{-s(R - A 6N} G(s) dE}, (A 3.2)

8

1
with R = {(x - E)2 + )2, Here since A, >0, £ <O, (R - AOE) is always

positive. Thus we obtain
o]
1 i .- - . .
I = J = Fla(t - R+ a1 &)} at. (A 3.3)
(o] ﬁ [e]

-0

(b) Next we consider the integrals for i = 1, 2, 3& k4 in (4.4,12)

0
o =J exp{sh;€) G(s) + exp( A% + €)} ag. (A 3.)

Since in (A 3.4), (x + ) is always negative, we. can proceed for its

inversion as for (A 3.1) and obtain
0]

o]

- 1

(=

exp{-s(l-il - xig)} G(s) dE}, (A 3.5)

j=e] }
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,
with ﬁl = {(x + 5)2 + r2}§. Again since A; >0 (for i =1, 2, 3 & 4),
and £ < O, (ﬁl - AiE) is always positive here, then we obtain from

(A 3.5)

+ 28} aE . o (A 3.6)

I. = J L Fa(T - ﬁl

(¢) Now we consider the sixth integral in (L.4.12)
0

I = J exp{si£} G(s) %-exp{-k(|§ - £|)} ae. : (4 3.7)

-
This behaves exactly as (A 3.1), since Ay 2 O and £ < 0. Hence its

inversion is given by (A 3.3) with Ao replaced by Ah. Thius
o - .
= P e S
I, = j LR - R0 s (A 3.8)

00

Finally we consider the last term in (L4.4.12)

iy =-4—¥£;————exp{sx x} G(s), (A 3.9)
52° 2, 22 4

For its inversion we can write

o

-1 1
I52 =L { J a Jo(ar) %3
0 a bs

exp{skhi} G(s) da} (A 3.10)
+ .

L-l( exp{skhi} G(s) Ko(ﬁsr))

F(ay)
22

Uh )
= — ,  with y, =T+ A\ X - br. (A 3.11)
i (T + A% - 1)2 - 5orye 4 b

3.2. Inversion of 13*5 , BEg. (4.4.,16)
9 - v

The expression (L4.4.16) can also be written as

K¥_ 3 1 exp{AE}
Ty5 = Qg * ?25)(a2 22 A G(s)) . (A 3.12)
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We consider

-1f -1 1 AX
I=1 {H (== exPi x) G(S))} ,
o +bs
-1 T 1 exp{(ct2 + 52)%§}
=L a Jo(ar) 55 > S G(s) dat.
5 a“+ b (a” + %)%
Since L-l( 5 a_e 5 ) = % sin(% ?) ,
a +bs b b

L—l(exp{(a + s ;% ) -

1
(a® + %) RTINS N R 3
by convolution
L—1( 1 expl(o® + 9% G<s))
o2 + 5% (o° + 52)5 A
T
1 - = . - : 2 =23
:-J du J Fla(t - u)} sin(au,/b) J_[al(n - u)%= x7}]au
b o]
0 o]
Then, I-= -i— Fla(T - p)} E(n) day,
b

51n(aul/1-)) JO[a{(u - ul)2_)-(2}§:' Jo(ar) da.

(I)

4,5

AR

F{a(T - )} E(u) dy.

3 3
(, — +q, =)
153 Q23¥

O Al

1

(A 3.13)

(A 3.14)

(A 3.15)

LTt ki o ]
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APPENDIX 4

4.1, Inversion of expression (5.4.16)

The inversion is obtained first by applying the inverse exponential
transform for Vv, then the inverse Fourier cosine transform for a, and

finally the inverse Laplace transform for s.

(a) We consider the first integral in (5.4.16)

0
T - J expls) £} H, (s,v) —i—exp{—}\(l)_( - €]} ag, (A L.1)

1
24 v2)2.

’ 2 . . . .
where A = (a” + s For its inversion we can then write

Io(i, Y, X, T) = L-l(F;l[F_l{izxﬁ(i, a, v, s)}])
Since F_l{Hl(s,V)} = Gl(s,z),

and F-l(% exp{-x(|x - EI)}>

1
expl=(a® + V¥ + s%)(|% - €])) 4,

= %— J exp{ivz} 5 s 51
m : (e + V7 + s%)2

1 2 . 2.3,,- 2. 2.3
==k [(«°+s)¥(x-¢) +25¥]
by convolution

F‘l(nl(s',v) —i— expl-A(|% - sl)})

L [o(s,0 1,[a° + PPz - 0%+ (2 - .

-0

0 ® :
1 = L"l[p—l{% J exp{sxog}(J Gl(s,c) Ko[(a2 + 52)%{(;'( -£)° + (z - C)Q}?]dc)

«© -0

(A L.2)
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Further F;l(Ko[(az s HE- 02 (o - c)g}%])

1 1
= %-J cos(ay) Ko[(u2 + 82 (x-0)% + (2 - c)2}§3 da
0 . ‘
: 1
= %- exp{-sR}, with R = {(k - 5)2 + (z - ;)2 + y2}2.
R
. o =
Hence, I =2 L-l{JdEJ exp{sx £} G (s,Z) i exp{-sﬁ} d;}
? o b1 o) 1'7° &
0
-2 L-J'UdEJ L expl-s(E - 1 £)} 6, (s,2) d;}. (A 1.3)
-R- [

Since L_l{Gl(s,z)} = F (a1, z), and (R - £) is always positive, by

1
shift rule we can obtain

0 o0
I, = -111- JdEJ é F{a(tr - R+ £),8) ag, ‘ (A b.b)
where B=((x-82%+ (z-202+y.

(b) Next we consider the integrals for i =1, 2, 3 & 4 in (5.4.16)

0
I = J exp{s); £} H (s, v) % exp{A(X + £)} az. : (A4.5)

1

-

-0

Since here (X + £) is always negative and xi > 0, we can proéeed for the

_inversion of (A 4.5) as for (A 4.1) and thus obtain

0 = _ ~
_1 1 - =
I, =7 Jdg[ = Fla(r - R +2.8),2) ag, (A 4.6)
R
= a0 ] ;
vith R o= (X + 0%+ (2 - 0% + y%)? = R(-p).

(¢) Again, we consider the sixth integral in (5.4.16)
) 0

piese _ J exp{skgi} H

= (s,9) 3 expl-a(|% - £])} ae. (& 4.7)

1

-0

AT

1
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Since 1) > 0, this behaves exactly like the first term (A L.1). Hence its
inversion can be given by (A 4.4) with A, replaced by Ay

Finally we consider the last term in (5.4.16)

HHH

2 2 w22 -
152 = (a° + VvV + B%5°) exp{skhx} Hl(s,v) (A 4.8)
- i vz
since (53— 5) = = J SRS
o+ V +Dbs L+ V4 b’s

1 _ 1
-—é— (a© + Ds°)7¢ exp{—(on2 + bzse)ﬁz},

by convolution

o

1
ae + v2 + 5252 2 . 1 (a2 + ‘5252,)5
eness : (2 + %) h(1s - o))
_ -1fo-1f1 - exp{-(a~ + bs z - %)} }]
152 L [Fc {2 J exp{sxhx} Gl(s,;) (a2 N ‘5252)% dg
= % L-l{J exp(si,x} G, (s,z) Ko[ss{(z - 0%+ yz}]}
T F.(ay,z)
=%Jdcj —— et (A 4.9)
i [(T+ 3% = w)® = 3%((z - )% +y7}]°
with wy = T4 X = Bl(z - 0)? + ye}%.

4.2. Inversion of Iﬁ, Eq. (5.4.19)

The expression (5.4.19) can also be expressed as

HIHH

a 3 1 exp{ix}
Ty,s =@

1% T %) T T

a
1
with A= (a2 + \)2 + 52)2

Hl(s.V), (A %.10)

- - -1/, =1pr =1 -
Ij_‘_,5(xs ¥s 2, 1) =L (’FC I:F {I;):;,G; (x, a, v, 5)}])
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c 2, =22 A

We consider I= L‘l[F'l{F'l( 5 L exp{ix} Hl(s,v))}]
a +v +bs

Since F-l{ Hl(s,v)} = Gl(s,z),

2 (2 =2 2,-3 2

F'l{l/(a2+v +5252)}'=% a” + 5%%)7% expl{ -(a + 5% )éz},

F-l( exp{(az + \)2 + 52)%§l) -
(a2 + v\,’2 + 52)2

2

Ko[(a2 + "52); {(x - £)2+ 22}%],

by convolution we obtain

o o

I= L-l[F_‘;l{é—" Jch G, (s,z) Ko[(02 + 8 {(z-6)2% (¢, - ¢) }3]

-0 00

’

exp{-(m2 + 5252)§(|z -cl|)} (A b11)

X dazg }] A 4,11
2 5282)5 1

(a” +

Further, since 5 2.1
ex'p{-s(a.l - ¥9)%)

-l(K ((a® + 5% }) N (a2 1 428 » 820
8l +y
1
=2 2 z
exp{- (a + %5)%.}
L L)=2 x Ba(® + 0D, b >0
¢ (u + 5% )E To
by convolution
“l o2, 2\ expi-(a” + i’.‘25"2)%"1}
F, (Ko{~(u + s9) al} 5 =57 )
' (o + B%°)2

® 2 2,3
exp{-s(a. + ¥y 1
=% I )Tl (Ko[Bs{(y - yl)2 + bz)}’]

(a +y -
° 1 + g, [Bsi(y + v)) +b}3]) &y

3!

1 T exp{-S(a +y; 2)
" (ai v2)?

= 2 2.3
K [Bs{ly - y)7 + v]}?]ay, .

Thus we obtain from c(oA 4,11)

| I= —13 Lt {Jdgjdglj Gl(s,c) %I exp{-sr, } Ko(isrz) 'dyl} s

-0 00 -l

[ T e R TSl @ ey
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1 1
with r = {(X - £)° + (¢ - cl)2 * y°)? ‘

s o Ty = {(y—yl)2+ (z—cl)z} .

Then

[« ] [+~ o« ? -
F {a(p - r))}
I= ._1_2 Jdgjdf, jdy J L I au. (A 4.12)
1771 - 2 =223
ent e T le rl{(r -w) -0 r2}

Hence.we obtain the inversion of (A 4.10) as

. o o oo T F {E(u - )}
1 9 3 1 1
I =—=(Q, —+Q — JdCJdC Jd}'J - —r du .
4,5 21 ( 1% 2 B?) : 1 lO r {(T - u)2 - 521‘2}2
POT, . ] --00 l 2
(A 4.13)
4.3. Inversion of expression (5.5,11)
(a) Consider the first integral
0
o -if-1f -1 1 NI .

I, =1L [Fs {F (J o h{g, v, s) : exp{-A(|x - £|)}d£)}], (A L.1k4)

-00

2, 52)%. Then
0 o
;=1 L'l[p-l{ jagj o g (e, v, s)K [P+ -0+ (z- c)z}%]dr,}]
T s 172 72 o

-0 w00

with A = (a2 + v
(A 4.15)
where gl(i, v, s8) = F—l{h(E, v, s)}.

1 1
Since, F;l(a Ko[(a2 + 52)2{(;( - 5)2 + (z - C)Z}é])

21 2
-i— a sinoy Ko[(a2 + s%)2((x - )2+ (z - ;)2}5_]

O—-28

2|

1 ‘51
%—;J cosay Ko[(a2 + 32).5{(;( - 5)2 + (z - C)e}z:]
o}

2 1
)2,

= - -—%&—(-;; exp{-sl’-{}), with R = {(x - 6)2 + (z - 'C)g ty
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we obtain from (A h;lS)
0 ©
L1y ]2 L
I,==37L (ay JdEJ = gl(E, t, s) expl-sR} dc) ,
0 = .
- _ 13 1 = _ 5
=Ty Jd&J §fl{a, z, (t-R)}ac. (A 4.16)

Similarly we can obtain the transform for the second. integral in
|
(5.5.11).

(b) Consider the integral

oo

1 - .
I;f? = X—Ii%;; J h(—&, v, s) ;-exp{—k(i - x)} ag, (A 4.17)
' 0
for 1 = 2 & 3.: This can be further expressed as
] .
I;f? = sao (J exp{-(A + Ais)gl} dgl) J h(-&, v, s) %-exp{—k(g - X)} dg
\ 0 . 0
= sa Jdilj exp{—sAiE} h(-&, v, s) %-exp{-k(é - X)}ag. (A 4.18)
0 0

t
Proceeding in the similar manner as in (a) above we can obtain for the

inversion of (A 4.18)

I = L EE (13 5)]
--: % :_ Jdaljde:[ ; £0-¢, ¢, (T - Ry - 28} az, (A 4.19)
| 0 == 2
where, K, = {(X-t-¢e)%+ (z-0°+ ML
(c) Now consider
e 1 explak) ), (A 4.20)

3,1 A+ A.s A
i

for i'= 2 & 3. This can be expressed in integral form as

Igf? £ q Jexp{—xiis} h{v, s) %—exp{-k(g - x)} at. (A L.21)
0]
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The inversion of (A L4.21) yields

@ ®

=_La i T_o® - :
I,i=" 73 Jd&J = £z, (T - R - AE)) ae. (A 4.22)
: R
Q0 =
Similarly we can obtain the inversion of the expressions

3K 1 exp{ix}

Ih,i T+ A;s A

a HE(S’ v),

for i =2,3 & L.

(d) Finally we consider the last term in (5.5.11) as

W 1 exp{Ax} ,
I =5 R a Hy(s, v), (A b4.23)
Since As = -Au. This can be expressed as follows (cf. Appendix 1.1 (e¢)
0
I;x* = - J exp{slhg}aﬂe(s, v) %-exp{-l(|§ - £} ae
+ 11/(a® + V7 + 5%5%)} explsn 3} o Hy(s, V). (A 4.24)
The inversion of (A 4.24) now yields
0 ©
I 1 3T - &
Ig =5 5y Jd&:J . F{z, a(t - R + xhs)} ac
-0 _mm u _
13 J'ch'h Fz(au, z)
R S (N I e e (CRR A Ik
- - = 2 2.1 (A L.25).
with W, =T+ AX = B{(z - 2)° + y°)°.

On further simplification (A 4.25) can also be written as

o ™

Jng L Fole, a(t - R+ 2 8)) e (A 4.26)
R

-

3

= .2
15 =~ T 3y

5
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- wy('wz)

V|(W|)f4\ (¥, » ¥4 -uo)

(V+y,-U-uy) ; Vo(Wo)

shock

Fig.3. Local conditions at the perturbed shock.

M’

Fig.4. Obstacle Mach number change across the shock.
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(0)

(2)

(b)

(0)

Fig. 5. Flow pattern for two - dimensional gerofoils ; (a) for time t< 0, for time t>0.

y
! Y //
+, /
P
/
2B AF(xT) “
T

Fig.6. Boundary conditions; (a) x yt -space, (b) XyT - space,

Y

g..g=A,,F(i,t)

x|
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1.0

0.8 |

0.6 |

’.<—l

0.4 L

02 [

0 | 1 T T — .
0 2 4 "6 8 1 '

M 0 12

Fig.7. Variations of Ajs’' with M and M'; —=—.Ag= Ay, — — A2, —- —,

A3 and A

Fig.8.Flow pattern for time t >0, when the shock intersection
ties ingide the sonic circle.
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y'n
hyperbola ~ ]‘/z

hyperbalo
(E-p={(R-EPey? T-p=[(i-Ery2] 2

cone
T-u=[(7-E )zo(y-'n)z]‘h

PIX 3T

Fig.9. Cone of influence and domain of integration (shaded area),

£

H=A; E=0

(i=1,2,384)
by U+AE =0
{i=084)

{a)

x|

Fig. 10. Properties of the solution. : B

5
' ‘f/ (c)
"

N T

Fig.11. Properties of the solution.
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mz) T
1E(mm,)r
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)
m
-
n
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T

mT i mTt

(a)

Fig.12.Flow pattern classification (two-dimensional gerofoils);
(a) intersecting tangents.(b) non-intersecting tangents

and (c) single tangent.
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single tangent

I

non-intersecting tangents

intersecting tangents

1 { 1 { 1

2 : 4 6 8 10 ) 12

Mach conoid

(0)
_U> y (2)
(1 o T
——— R
(2)
(0)

plane shock

Fig.14. Flow pattern for time t £0.
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(a) B \

A - . - .
(W+U)t J\—:x: \(V-U)t
\
W\
. \\’ , (2)
) B
\
(b) ! \
(0)

Fig.15. Interaction flow configuration for time t>0.(a) on the
wing plane y=0.,(b) on the root chord plone z = 0.
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_

: {a)

I%\

O~

Fig.16. Flow configuration classification (three-dimensional wings)

(a) P, <8 >‘«P1 , supersonic L.Es. ahead of as well as behind the shock,
(b) ¢,>B8<y,, subsonic » » W ow w mom N w o
{(c)¥,>8 >y, , subsonic L.Es. aheod of and supersonic L.Es. behind the shock,

{d)y,<8 <9, , supersonic L.Es. w s = Subsonic . " . a



shock

Fig.17. Intersection of plane shock with yawed aerofoil.

(0)

(2)

shock

(a)

Fig.18. Flow configuration behind the shock , {a) in the x -z plane
(b) in the x-y plane.
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850}
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§5° ) L .' ) L
. 1 2 [ 6 : 8 10 M 12

|l-'lg.19. The range of X for.which the flow behind the shock is supersonic.

sm A i i . 1 1
1 2 4 6 8 10 M 12

Fig.20. The range of X for which the velocity component normal to the aerofoil L.E.
' behind the shock is supersonic.

4 F
|
X
2 F
l
0 I 1 1 1 1
1 2 & 6 8 10 M 12

Fig.21. Range of M and M for the condition Bs 1.
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E F

Fig.22. Pressure distribution on the wedge for various
values of M. — , M=2.0; —-—, M=4.0.
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] ) i 1 1
0 02 0.4 0.6 08 1.0
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Fig.23. Pressure distribution on the wedge for
X=0,M=25 and for various values of M.

E F

hg.ZL.Pressure distribution on the wedge for M‘=20,
M=14.0 for various values of X.
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Fig. 25. Pressure and density variations in the Mach-reflexion region
and the shock front for the wedge for € =0.05, M’z 2.0 .
M=20, X=0, —,isobars (p/E€);---=, isopycnics(p/E).

1

L
] 0.2 0.4 0.6 0.8 10

E F

Fig.26. Comparison of results —pressure distribution on the
wedge for M= 2.0, M=20, X= 0, 05, .25, 1.5 radions;
——, present theory; --- , smyrl (1963),
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Fig.27. Pressure distribution on the cone

surface for € =0.025 for various
values of M’ ——, M=20; —— —,
M=140.
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32

12 1 i 1 1

Fig.28.Pressure distribution on the cone
surface for £ =0.025 for various
values of M, —, M=2§;---,
M =1S8.
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disturbed
[ shock
:cone surface
E a
-10 -06 -06 04 -02 0 0.2 0.4 057735
Fig.29. Pressure and density variation in the Mach-reflexion region and the shock front
for the cone for €2005, M'=20, M=20.—,isobars (p/e2); - —— isopycnics (P/E’).
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24F Ma§.25 ~

J
./
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2t T—

Fig.30. Comparison of results — pressure distribution on the cone surface for €:0.025,

M= 2.5, MeN.25 and 625;—, present theory; —-—, present theory with By
taken as Ag; ---- Blankenship{1965).
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-1.0 -08 ~-06 -04 -2 0 02

Fig.31. Isobars{p/ £?) for the cone for € =0.025, M’= 2.5, M=11.25.
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(a)

(b)

1 1 L A
-0 -08 -06 -04 -02 0 02 m

{c)

Fig.32. Pressure varigtions in the Mach -reflexion region for the delta wing
for 8- 45° M. 2.0, Mo100 — isobars (p/£),(a) on the wing plane,
Y-0, (b} on the root chord plane, Z=0, (c)on the shock plane, X . m.
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p/€
/

2.4 | e e = -]

1 1 1 1

] 02 0.4 0.6 08 1.0
E F

Fig.33. Pressure distribution on the wing root chord
(Y=0, Z=0) for 8=45° for various values of M’
it M=2.0; -——-,M=40.



151

‘g j0 mw:._m» SNOLIDA 10} O'7=IW '0'Z=,IW 10

pJoys 3004 Buim 3y} uo uOIINqUISIP dunssald “GE'Bly

u_ m
ot 80 90 70 ° 20 0

T T T T

gl

114

3

7e

-
' §Z3W '— W 30 SINDA SNONDA JOj 5578
103 PJoyd j00J Guim 3Yjuo uOIINQUISIP Bunssald %€ 6id

E| 3
ol 80 90 70 Z0 0
T T T T FA R
o
el
S~
L 0= o~
S~ -~
~ ~o
a5~ >~
~ ~Na
S~ S~o S o
-~ . .
Vh//l -ll“/..'ﬂl - /I/ —491
-~ Sel TN §l=
\\ /// ~a /.“IIII:Z A
L mm——== —_ ~ ——
b- 7" CW VI// S IN
/ . N ~ o
/ >~ ~ ~
-~ -~ ~ m




[

N\

i






