
Towards Real-Time Object Removal and Inpainting Through A Diminished
Reality Application For Smartphones

Henry Maximilian Cording
Supervisors: Baran Usta, Dr. Michael Weinmann, Dr. Elmar Eisemann

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Towards Real-Time Object Removal and Inpainting Through A
Diminished Reality Application For Smartphones

Henry Maximilian Cording
Supervisors: Baran Usta, Dr. Michael Weinmann, Dr. Elmar Eisemann

(a) (b) (c) (d) (e)

Figure 1: Demonstration of our inpainting pipeline running on an Android smartphone. (a) The input frame; (b) the user draws a rough selection
around the object to remove; (c) the automatically generated removal mask; (d); the inpainted result; and (e) plane estimation and augmentation of
the inpainted frame with virtual objects using Google’s ARCore framework.

ABSTRACT
Diminished reality (DR) is an extension of augmented reality (AR)
in which real objects are concealed, removed, or replaced. State of
the art DR implementations are written and evaluated on desktop
platforms, and those which are aimed at smartphones use auxiliary
data or hardware for image completion. This paper introduces a DR
app for Android smartphones which can select, track, and remove
objects in an unrestricted environment from live video at interactive
speed. The application relies exclusively on RGB frames from the
phone’s camera as input to the DR pipeline. Multiple algorithms for
object selection and tracking, as well as a patch-based inpainting
approach were adapted. Selection and tracking of objects was very
reliable at interactive speed. Inpainting led to convincing results for
planar surfaces and unstructured textures, often delivering acceptable
results even in more complicated scenes. Future optimizations are
required for real-time performance of DR algorithms even on a
flagship smartphone, as the hardware was a constraining factor. The
performance of inpainting in particular needs to be improved to
achieve acceptable frame rates.

1 INTRODUCTION
The advancements in smartphone technology over the last decade
have brought a tremendous amount of potential for augmented reality
(AR) applications to be used in everyday life [1–3]. Today’s AR
applications are vast, but usually limited to adding virtual objects to
a scene captured by the phone’s camera [4], popularized by games
such as Pokémon GO, or applications for e-commerce, such as
IKEA’s "Place" app.

Classic AR is limited in the sense that any existing objects in
the scene cannot be altered, but instead only augmented by adding
virtual information. Diminished Reality (DR) aims to solve this issue
by removing, concealing, or modifying appearances of real objects
[5] in the scene. To achieve this, an image completion algorithm is
applied, which fills the space previously occluded by the removed
object with background information. DR creates new applications,

such as refurnishing a space (e.g., [6]) or seeing through a vehicle
that is obstructing the driver’s field of view [7].

Despite its potential to extend the feature set of mobile AR, the
majority of DR implementations presented in the literature are writ-
ten and tested on desktop CPUs, and often not real-time capable (i.e.,
frame rates above 30 are not achieved). Moreover, they usually rely
on additional cameras or auxiliary data, such as depth maps and 3D
scene models. As such, they are not suitable for most commodity
smartphones, even though the mobile platform is arguably the most
important for AR and DR, together with wearable devices such as
Microsoft’s HoloLens. To our knowledge, no DR applications for
object removal in live video exist on the Apple and Android app
stores today.

The aim of this research is to address these shortcomings by
integrating DR into a smartphone app while aiming for real-time
performance. Constraints arising from auxiliary data or hardware
are eliminated by using only a single RGB camera of the phone
and no prior scene scans. To achieve this, a key focus of this work
is to find a suitable combination of proposed DR techniques for
object selection, tracking, and inpainting, and optimizing them where
possible. Limitations of these methods and of smartphone technology
in general, and the resulting implications for the feasibility of real-
time DR apps, are an integral part of the analysis.

To summarize, we make the following contributions:

(1) An Android app which supports DR through selecting and
tracking objects, and inpainting the region of interest in live
video at interactive speed, as well as "classic" AR to add
virtual objects;

(2) An open source codebase for mobile DR using Google’s AR-
Core framework [8] and the OpenCV library [9], allowing
future researchers to easily expand and build upon the pre-
sented work. The source code will be made available upon
acceptance of the paper; and



(3) A comprehensive evaluation of how various algorithms for
DR perform on a flagship smartphone, indicating if the mobile
platform is yet suitable for such applications.

The paper is presented with the following structure. In Section 2, the
related work on DR is discussed. Section 3 describes the methodol-
ogy of research, including the DR pipeline and a detailed description
of the algorithms which were studied and implemented. The de-
veloped prototype is evaluated in Section 4, and various results
regarding performance and visual quality are provided. Following
these findings, Section 5 discusses the results in terms of strengths
and limitations, and compares the work to results from the literature.
Section 6 concludes with the findings of this research and suggests
directions for future work in the field of mobile DR. Lastly, section
7 features a discussion on responsible research.

2 RELATED WORK
An early concept of DR was already described in 2002 [10], e.g. by
replacing an advertisement on a billboard. DR in the sense of object
removal and image completion dates back further, e.g., removing
objects from an image by decomposing it into layers [11]. Later it
was shown that using multiple calibrated views of a scene, industrial
pipes could be seamlessly removed from a reference image [12].
This idea was also extended to remove objects from video (cf. [13–
15]). Such approaches cannot be used on smartphones, since only
a single viewpoint is captured. A single-view approach for object
removal in videos was proposed by Wexler et al. [16], but it relied on
manually created removal masks for each frame that are not available
in real-time applications.

More recent approaches to DR often construct a 3D model of
the scene by scanning it with help of a depth sensor, and use this
data to provide a plausible background for removed objects (cf. [6,
17, 18]). Scan-based approaches would be possible to implement
given that some modern smartphones carry LIDAR [19] sensors,
and even depth estimation without auxiliary hardware has improved
significantly. However, a prior scene scan would notably reduce the
usability of the application for frequent interactions, whereas online
depth estimation may reduce the computational headroom needed
for inpainting.

Several other contributions have been made to the area of DR
which focus on improving the accuracy of image completion (e.g,
[20]). Such works have not been the focus for this research because
the accuracy of inpainting is severely constrained by the real-time re-
quirements, and even the simplest inpainting algorithms are difficult
to implement for real-time use with higher resolution video.

Although all the works discussed so far mark important advance-
ments in DR research, they impose constraints on either the technol-
ogy or data that is required for the implementation. Herling and Broll
[4, 21] recognized these limitations and proposed a real-time DR
application capable of removing objects and inpainting the space,
using only a single RGB camera and information from the previous
and current frame. Their work is the most relevant for this research.

To select and track objects, the authors used the active contour
algorithm [22] in their earlier work (2010). It was later noted that
its range of application is rather limited due to the algorithm’s sim-
plicity [21]. To overcome this, the authors later proposed their own,
much more rigid implementation for object selection, based on the

clustering of characteristic image points (so-called "fingerprints")
located near the object to select [21].

For image completion, they employed an inpainting algorithm
based on the PatchMatch procedure [23, 24]. Applying this method
iteratively using an image pyramid [25] accelerated the convergence
and allowed for real-time performance. Gray scale images were
used for further optimization, and color was recovered in the last
pyramid layer by applying the calculated patch correspondences to
the original video frame.

The work of Herling and Broll is undoubtedly remarkable, but it
has some limitations w.r.t. mobile DR, as development and evalu-
ation were carried out on a desktop operating system, and a much
lower video resolution was used. Also, the application did not sup-
port adding virtual objects. These points are addressed in this re-
search, together with the contributions outlined in Section 1.

3 METHOD
The approach for this research was largely based on the main com-
ponents of DR: object selection, tracking, and inpainting. The DR
pipeline is described in section 3.1. Since the application also had to
support the AR use case of adding virtual objects, a simple AR appli-
cation was developed first, and the DR functionality was then built
on top of it. The implemented algorithms for selection, tracking, and
inpainting are discussed in sections 3.2, 3.3, and 3.4, respectively.

3.1 Overview of the DR pipeline for this research
Any diminished reality application consists of at least three major
components [5, 20, 26]:

(1) Selecting the ROI to modify, and possibly an object within it,
(2) Tracking this selection as the camera is moved, and
(3) Replacing the pixels in the selected region with background

information (this step is also referred to as image completion).

Figure 2 illustrates the DR pipeline, which for this research was
purely image based, as no 3D reconstruction or auxiliary data could
be used.

3.2 Object selection
Research into different approaches to object selection was conducted,
and two techniques were examined further. Extracting contours in
the region of interest (ROI), and using GrabCut [27], an interactive
image segmentation algorithm based on graph cuts that allows the
user to manually adjust the found selection.

Object selection based on contour extraction. A simple and fast
approach to select objects is finding their contours. After an initial
outline is given by the user, the bounding box of the selection is used
as the ROI. This ROI is converted to grayscale and downsampled
for performance. Then, a bilateral filter [28] is applied, which re-
moves noise while preserving edges. The Canny edge detector [29]
then produces a binary image from this input containing the most
prominent edges. Edges are dilated to ensure that small gaps in an
otherwise closed contour are filled, and to cover small shadows cast
by the object.

The result is upscaled back to full resolution. The findContours
function in the OpenCV library [9], which is based on [30], extracts

2



Figure 2: Diminished reality pipeline. After the first frame is inpainted based on the user’s selection, the tracking and inpainting algorithms work
automatically to inpaint subsequent frames.

the image contours. For this first frame, the largest contour is cho-
sen as result. Figure 3 shows the process of selecting an object by
extracting its contours.

(a) (b) (c)

(d) (e) (f)

Figure 3: Selecting an object by extracting contours. (a) The object to se-
lect; (b) user draws a rough selection; (c) conversion to grayscale, blur-
ring, and downsampling; (d) Canny edge detection; (e) dilation; and (f)
contours are detected and the outermost contour is filled.

Object selection based on GrabCut. The interactive GrabCut im-
age segmentation algorithm [27] is based on graph cuts. Pixels are
represented as nodes in a graph. The goal is to find a minimum cut
of the graph, segmenting it into foreground and background pixels.
Anything outside the given ROI is marked as certain background.
Then, the algorithm iteratively finds a suitable graph cut. In this
process, the user can guide the algorithm with hard constraints by
drawing strokes to adjust the representation of foreground and back-
ground. The output of the algorithm is a binary mask that segments
the image.

Challenges arise when implementing GrabCut for video. After
initialization using a bounding rectangle (ROI), the resulting mask
is refined on each iteration. However, this mask will be displaced if
the camera moves. Figure 4 illustrates this issue.

There are two solutions to this problem. The mask could be trans-
lated w.r.t. the displacement of the bounding box that is returned by
the tracking algorithm (discussed in detail in Section 3.3). While this
operation is cheap, it will provide erroneous results for any asym-
metrical object. In such cases, the user needs to manually redraw
the selection after only minor movement. In our implementation, we
instead opted for the following approach:

(1) Receive the new bounding rectangle from the tracker.

(a) (b) (c)

Figure 4: Issue of mask displacement when using GrabCut for video.
Blue represents the (approximate) mask of the previous frame, green
represents the refined output mask. (a) Initial selection; (b) the camera
is moved up, parts of the object are no longer selected even though the
bounding box fully encloses it; and (c) the initial mask hardly covers
the object anymore, GrabCut has difficulty selecting the object.

(2) Translate and scale the user’s adjustment strokes (hard con-
straints) from previous frames based on the displacement of
the bounding rectangle.

(3) Calculate a segmentation mask with GrabCut by using the
received bounding rectangle.

(4) Apply the scaled and rotated adjustment strokes to the result-
ing mask.

(5) Execute the algorithm again, this time using the adjusted
mask.

The complete process of selecting an object with GrabCut is shown
in Figure 5.

3.3 Object tracking
Two approaches were investigated. Firstly, the KCF (kernelized
correlation filter) [31] and CSRDCF (discriminative correlation filter
with channel and spatial reliability) [32] tracker implementations
in OpenCV were examined. CSRDCF is also referred to as CSRT.
Secondly, the observation was made that a contour found in the
previous frame can be recovered in the current frame based on its
size and position, as well as visual appearance. A simple algorithm
was developed from these ideas.

Object tracking based on KCF and CSRT. The KCF and CSRT
trackers allow for high performance tracking of a rectangular ROI.
For the later inpainting procedure, the entire updated ROI returned by
the tracker can be marked for removal, or a technique from Section
3.2 is applied to find a more accurate mask surrounding the object
of interest inside the ROI.

3



(a) (b)

(c) (d)

Figure 5: Object selection using GrabCut, the mask is no longer dis-
placed. (a) The object to select; (b) the initial mask found by GrabCut
(1 iteration) is not sufficiently accurate; (c) the user expands the mask
manually, some areas are now erroneously included in the mask; and
(d) the user removes undesired parts of the mask.

The tracker is initialized by providing the current frame and a ROI.
On subsequent iterations, only the frame is provided, and the tracker
returns the estimated ROI in the current frame. This is achieved
using online learning in both KCF and CSRT.

Object tracking based on extracting contours. We now describe
the design of a much simpler tracking algorithm with better per-
formance and lower reliability, which is generally acceptable for
real-time use. The goal of this tracker is to identify the contour be-
longing to the object of interest, out of all contours that were found
by the contour extraction routine in the current frame. This algorithm
is based on the assumption that the user’s initial selection will be
approximately centered around the object of interest, and that the
camera movement between frames is not extreme.

In frame 𝑓 the largest contour in the initial ROI is found, denoted
by 𝑐 𝑓 , with centroid 𝑜𝑐 𝑓 . In frame 𝑓 + 1, the position of the contour
may have changed, and new (possibly larger) contours may have
moved into view. An algorithm that always selects the largest contour
would now fail. Instead, one can select the contour 𝑐 𝑓 +1 which
minimizes the sum of centroid distance and visual dissimilarity w.r.t.
𝑐 𝑓 .

An arbitrary distance measure can be used for the visual dissim-
ilarity. In our implementation, we first construct masks for 𝑐 𝑓 and
each contour 𝑐 in 𝑓 + 1 by painting a white polygon with the shape
of the contour onto a black image, giving 𝑀𝑐 and 𝑀𝑐 𝑓 . Then, the bit-
wise XOR of the masks is calculated, so that the penalty is increased
by 1 for each differing pixel. While this distance measure is strict, it
is also very fast to compute and follows the same reasoning that the
desired contour 𝑐 𝑓 +1 should not be significantly different from 𝑐 𝑓 .
In sum, the contour in each frame can be calculated as follows:

𝑐 𝑓 +1 =


max
𝑐∈𝐶

𝐴(𝑐), if 𝑐 𝑓 = null.

min
𝑐∈𝐶

𝑑 (𝑜𝑐 , 𝑜𝑐 𝑓 ) +𝑀𝑐 ⊕ 𝑀𝑐 𝑓 , otherwise.
(1)

Here𝐶 is the set of all detected contours in frame 𝑓 +1 that lie within
the ROI that envelops 𝑐 𝑓 . The function 𝑑 calculates the euclidean dis-
tance. After the update is completed, the ROI is set to the bounding
box of 𝑐 𝑓 +1 and the procedure is repeated. As a final consideration,
our implementation retains the previous contour if no good result
was found in the current frame (e.g., due to motion blur). A new
match is typically found within a few frames.

3.4 Inpainting
Inpainting was chosen amongst the methods for image completion
detailed in Section 2, because it is the only technique that does not
require additional data or hardware to operate. Several papers were
reviewed to derive a suitable implementation. The work of Herling
and Broll [4, 21] was particularly insightful. The PatchMatch (PM)
algorithm [23] provided the foundation for the implementation, as
it appeared to be most prominent in research on real-time DR, and
provided sufficient accuracy given the performance constraints of
this project.

PM enables inpainting by finding so-called "patches" - square
image regions - and copying them into the ROI. The intuition is
that lost information in the ROI can often be reproduced by reusing
information from other parts of the image, assuming that no unique
information lies within. The use of square patches results in sharp
features and a much simpler representation of mappings between
patches. However, it also introduces visible segmentation between
patch groups, and variation is more limited overall.

The input to PM is the current frame 𝑓 and a binary mask 𝑏 which
indicates the area to inpaint (as given by the selection and tracking
algorithm). The output is the inpainted frame. First, 𝑓 is converted to
grayscale, and an image pyramid is constructed for 𝑓 and 𝑏. On the
highest level (the lowest resolution), an initial guess is made using a
fast marching approach to inpainting [33] provided in OpenCV. This
estimate helps PM to converge quicker, and it is cheap to compute at
this resolution.

For each level in the image pyramid, the algorithm proceeds
as follows (we refer to masked pixels as pixels that need to be
inpainted):

(1) Initialization: The nearest neighbor field (NNF) is constructed.
It stores for each masked pixel 𝑝 the position and cost of the
lowest cost patch outside the masked region. This cost is
obtained by applying a distance measure to the target patch
and the equally sized patch which has 𝑝 as its top-left pixel.
At first, mappings are assigned randomly. Unmasked pixels
are mapped to themselves with zero cost, indicating that no
changes should be made to these areas. If an NNF exists from
the previous pyramid level, the initialization is completed
by scaling the previous NNF up by a factor of two, simply
copying the value of each pixel four times.

(2) Propagation: Each masked pixel 𝑝 tries to improve its map-
ping by checking if its immediate neighbors point to cheaper
patches. For example, if the left neighbor 𝑝 ′ of 𝑝 located
at (𝑝.𝑥 − 1, 𝑝.𝑦) maps to pixel 𝑚, then 𝑝 checks the cost of
mapping to pixel𝑚′ at (𝑚.𝑥 + 1,𝑚.𝑦). The propagation step
is performed in scan-line order, forwards on even levels and
backwards on odd levels.

4



(3) Random search: Each masked pixel 𝑝 tries to improve its
mapping by checking for a random unmasked pixel if its
patch would reduce the mapping cost of 𝑝. For each masked
pixel, multiple searches are performed, and the search area is
decreased exponentially.

(4) Transfer and voting: The mappings found on level 𝑖 need to
be applied to the image on level 𝑖 − 1, which is twice as large.
Transferring the patch of each masked pixel 𝑝 directly gives
a poor result, because it is likely that the patches containing
𝑝 all have slightly different mappings, and thus artifacts are
created. Instead, the patch with the cheapest mapping out
of all patches containing 𝑝 is selected. To avoid overlap of
patches in the image on level 𝑖 − 1, the patch size is set to
2 × 2.

After 5 iterations (1 iteration per pyramid level), the result is returned
as a grayscale image𝑔. To recover the color, the NNF is used together
with 𝑓 to copy all patch correspondences to their correct location
(which works since 𝑓 and 𝑔 have the same dimensions). Figure 1
showcases the process of inpainting.

Distance Measure. The distance measure gives the cost of map-
ping a patch of masked pixels to an equally sized patch of unmasked
pixels. In our implementation, the spatial distance (SD) and visual
similarity (VS) based on the 𝐿2 norm are used. An implementation
using only the SD will see that the pixels at the boundary of masked
and unmasked pixels are simply copied inwards, whereas using only
VS will result in many artifacts, since most pixels will use their
own mapping found through random search instead of accepting a
patch from their neighbors. Equation 2 describes the cost for each
mapping.

d (A, B) =
√
(𝑟𝐴/ℎ − 𝑟𝐵/ℎ)2 + (𝑐𝐴/𝑤 − 𝑐𝐵/𝑤)2

∗ ln(ln(𝐿2 (𝐴, 𝐵) + 1) + 1)
(2)

Here 𝑟𝐴 and 𝑐𝐴 are the row and column of the top left pixel of patch
A, and similarly for B. The image width and height are denoted
by 𝑤 and ℎ, respectively. The row and column values are therefore
normalized w.r.t. the image size, meaning that the SD is independent
of the image resolution, and always between 0 and

√
2.

Intuitively, image data that is closest to the area to inpaint is
very likely to also be contained within it, which is why the VS is
multiplied by the SD. Applying the natural logarithm twice to the
VS is done to emphasize small improvements to a VS that is already
very small, and to limit the visual dissimilarity beyond high orders
of magnitude. This encourages pixels to also select patches that are
visually somewhat different, but over time may yield very good VS
for neighbors of this pixel. Lastly, by adding 1 to the result of each
logarithm, the VS is positive for any output of the 𝐿2 norm (which
is greater or equal to 0).

Coherence and Frame Propagation. Recomputing patch corre-
spondences in each frame is expensive, but also leads to coherence
issues and flickering of the inpainted region. Our implementation
copies the image region inpainted in frame 𝑓 to the masked region
in frame 𝑓 + 1. This ensures that PM starts with a better guess, and
promotes convergence towards a result more similar to the previous
one.

3.5 Implementation details
Setup and Hardware. Development took place in the Android

Studio IDE using Java 11, on a Samsung Galaxy Note20 Ultra (SM-
N986B) with Android API level 31. Only the main camera was used
to receive RGB frames as input to the application. Frames were
processed at a rate of 30 frames per second, with a resolution of
1280x720 pixels (720p). However, algorithms for object selection
and tracking used a down-scaled image of 200x112 pixels, to remove
unnecessary detail and improve performance.

Use of ARCore. Implementing AR functionality was achieved
using Google’s ARCore framework. It provides several relevant
features such as plane detection, scene light estimation, and camera
pose (position and orientation) estimation [34]. Feature points in
the scene are detected using SLAM (simultaneous localization and
mapping) together with the information which is provided through
the phone’s sensors, such as the gyroscope and accelerometer. The
hello_ar sample project provided by Google [8] facilitates these
features, and was used as foundation for the application. Appendix
A showcases this application.

4 EVALUATION
Evaluating image algorithms for video when the camera has six
degrees of freedom (6DoF), meaning no restrictions are placed on
the position and rotation during the interaction, is challenging [5].
Misalignment, shaking of the hands and so on, make it difficult to re-
produce a video sequence and obtain ground truths for each frame. A
qualitative analysis is provided for the reliability of object selection
and tracking, and the quality of inpainting. The performance of all
algorithms is evaluated quantitatively, by considering latency under
various input sizes. Finally, the quality of inpainting is analyzed
over still images using the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [35].

4.1 Qualitative Evaluation
The implementation was applied to scenarios with various lighting
conditions and backgrounds. The objects to select, track, or remove
were not always symmetrical, and of varying texture.

Selection and tracking by extracting contours worked most
reliably in settings without strong incidents of light from nearby
windows or lamps. The object contour repeatedly merged with the
background when illuminated from certain angles. Also, the contrast
between the object and background had to be strong for the selection
to be found in the initial step (such as in Figure 6a), and instances
with partial occlusion by other objects with similar texture were
not solved by the algorithm. The latter is illustrated by Figure 6h,
in which the left object is to be selected, but the right object is
erroneously included as well. Overall, the algorithm was rather
limited in its applicability, and not suitable for cases like those
shown in Appendix B. However, when it did work it selected and
tracked the object very reliably.

Selection with GrabCut performed well in almost all settings.
Inaccuracies due to lighting or asymmetric object shape were easily
addressed by providing a few adjustment strokes. Even challenging
cases as illustrated in Figures 6i and Appendix B were consistently
solved by the algorithm. Occasionally, the adjustment strokes by the

5



user were not correctly incorporated, which may be due to the lower
resolution (200x112) that it operated on. Nevertheless, selection with
GrabCut effectively selected objects in the majority of settings.

Tracking with CSRT was surprisingly accurate in all test sce-
narios, even at very low resolutions. However, the performance was
far from real-time, therefore leaving almost no computational head-
room for inpainting. For this reason, the CSRT tracker was neither
considered further nor evaluated quantitatively.

Tracking with KCF performed notably better than the CSRT
variant, but sometimes lost the ROI when moving the camera ex-
cessively. Asymmetric objects or those with varying textures on
each side were not always properly tracked or lost after a large ro-
tation around the object. As long as the tracking was functional,
the returned bounding box for each frame was sufficiently accurate.
Figures 5 and 12 are examples in which the KCF tracker was used
to provide the bounding box to the GrabCut algorithm.

Inpainting was evaluated by considering both two-dimensional
settings by applying the algorithm to partially destroyed textures, and
three-dimensional settings in live interactions over various scenes
with differing lighting and background geometry. The coherence
[36], and subsequently the overall similarity of the inpainted and
original background were considered.

Figures 1 and 7 show the inpainting process for various scenes.
The algorithm performed best in scenarios with planar backgrounds
when inpainting unstructured textures. This is partially due to the
lack of composition (blending) between patches, which can leave
visible outlines around larger patch clusters, such as in Figure 1e.
Additionally, the algorithm currently does not reward patches for
reproducing existing patterns in a texture, which, in combination
with a steep viewing angle, leads to a lack of coherence in structured
textures and at plane intersections (such as in Figure 7i). These
artifacts become increasingly visible the larger the area to inpaint;
for smaller problems such as in Figure 7c the inpainted result appears
seamless. In sum, given the hardware and performance constraints
for this research, our algorithm provides reasonable results. However,
the quality of inpainting will vary depending on the use case.

4.2 Quantitative Evaluation
Quantitative evaluation was conducted using still frames, and measur-
ing metrics such as average latency for object selection and tracking,
as well as pixel fill rate and image similarity for inpainting. Figure 8
plots the performance of the various algorithms to execute on ROIs
of different size, averaged over 100 runs.

Selection and tracking by extracting contours turned out to be
extremely efficient. As is also the case with most of the following
algorithms, an exponential relationship between the required compu-
tation time and input size could be observed (cf. Figure 8a). Note
that despite the additional computation required to track a contour
from the previous frame, the latency hardly differed from the initial
step of simply selecting the largest contour.

Selection with GrabCut provided suitable performance only for
very small inputs of up to 160x120 (cf. Figure 8b). At this resolution,
the reliability of GrabCut was notably reduced. While an update
with an existing mask is again exponential w.r.t. the input size, the
initialization step seemed to scale linearly. It was also reassuring
to see that the time for an update was significantly lower than for

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Comparison of object selection algorithms. For each row,
left to right: input, selection by extracting contours, selection through
GrabCut. Increasingly complex objects or scenes where the object con-
tour is not clearly defined are difficult for the contour extraction algo-
rithm. GrabCut yields good results in all cases, but requires increasing
amounts of manual adjustments.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Application of the inpainting algorithm to various scenes.
From left to right: the input image, the removal mask (initially gener-
ated from the user’s selection), the inpainted result. (c) The algorithm
performs best with planar backgrounds and small fill regions; (f) larger
areas are inpainted convincingly over unstructured textures; and (i)
structured textures and plane intersections lead to a loss of coherence
in some regions.

the initialization. In practice, with an input of 200x112 the GrabCut
algorithm allowed for interactive performance.

Tracking with KCF performed well in the initialization step,
which was expected since the first call is used to simply set the target

6



to track, whereas each update call needs to actually localize the new
ROI. Surprisingly, the initialization step started to take significantly
longer for resolutions above 1024x768, and the time required for
initializing at 720p (which is not plotted) exceeded 10 seconds.
Using the input of 200x112, interactive performance was achieved.
However, since KCF was used in combination with GrabCut, the
performance was impaired further.

Inpainting was evaluated by measuring the pixel fill rate using
a 5-level and 2-level image pyramid, as well as the peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM) [35]
when inpainting destroyed regions of textures. The pixel fill rate
initially saw an increase, arguably due to the multi-threading op-
timization which adds a constant overhead and is less performant
over few iterations. For higher resolutions, it converged to ca. 30
pixels/millisecond. It remained unclear why this rate was not more
stable at lower resolutions, given that it should be largely indepen-
dent of the input size, and initialization cost of the image pyramid
with at most 5ms per frame was negligible even at high resolutions.

Surprising was also the only marginal increase when using addi-
tional pyramid levels, which was meant to accelerate convergence
for PM. Both [4] and [16] reported performance gains when using
this technique. Since only 1 PM iteration is performed per level due
to performance constraints, the algorithm in our implementation may
not benefit enough from the faster convergence to make up for the
overhead of constructing and iterating through the pyramid levels.

The PSNR and SSIM were calculated for five examples and
are given in Table 1. A PSNR above 40 is typically considered
acceptable, for the SSIM the score is 1 for identical images, and
reduces gradually to 0 the more dissimilar two images are.

The scores confirmed the findings of the qualitative evaluation,
namely that the visual similarity is notably reduced for inpainting
of structured textures, especially evident in Figure 13e (Example
V). Surprisingly, the scores for the texture in Figure 13b (Example
II) were comparatively low, even though the inpainted result is con-
vincing. This emphasizes that there can be many possible solutions
to inpaint an area, and although they may differ strongly from the
ground truth, the results can still be coherent and convincing.

I II III IV V
PSNR 48.65 36.27 52.59 42.28 34.64
SSIM 0.9887 0.8434 0.9948 0.9492 0.7747

Table 1: Peak signal-to-noise ratio (PSNR) and structural similarity in-
dex (SSIM) for 5 inpainted image regions compared to their ground
truths. Examples I to V are given in Appendix C.

5 DISCUSSION
In this section the implementation is compared to other relevant
works, and limitations are outlined. Note that the proposed DR
pipeline is meant to run in real-time, and on very restricted hardware.
Therefore, it is expected that results are far less accurate.

5.1 Comparison to other works
The inpainting algorithm was based on PatchMatch, but had to be
adapted for efficient use on a smartphone. Although several optimiza-
tions were implemented, the obtained results remained similar to

(a) (b)

(c) (d)

Figure 8: Performance of algorithms for object selection, tracking, and
inpainting in terms of latency and pixel fill rate, averaged over 100 runs.
In the application, the input frame for object selection and tracking is al-
ways downsampled to 200x112, whereas for inpainting the size depends
on the ROI given by the tracking algorithm. Size of ROI: I - 160x120, II
- 320x240, III - 640x480, IV - 800x600, V - 1024x768, VI - 1280x720.

those of the original PatchMatch algorithm [23]. Figure 9 illustrates
this with an example.

We also compared our work to the real-time inpainting approach
of Herling and Broll [4], since it is the most similar to ours. Figure 10
shows multiple scenarios from their paper which were run with our
inpainting pipeline. The results in the first two examples are similar,
however, it appears that in the work of [4], a type of averaging or
blending was applied between patches to achieve a smoother result,
which was not done in this research. Figures 10b and 10c illustrate
this well, since the patch regions are very similar, but the transitions
between them are far more visible in our implementation.

The third example was taken from [21], in which the same authors
refined their inpainting approach to achieve better coherence. Here
it is clear that our patch based approach is limited by the distance
function which considers only spatial distance and visual similarity,
without regards to continuity of textures.

5.2 Limitations and future work
Performance. The DR techniques implemented in this research

provide adequate results, but most are not real-time capable. The
GrabCut algorithm allows selection of almost any object in diverse
scenery, but it has to be optimized not just to achieve real-time
performance, but to also leave enough headroom for the inpaint-
ing algorithm. The same reasoning applies to the KCF tracker that
GrabCut relies on. Alternative approaches to object selection and
tracking, such as super pixels [37] and CNNs such as [38], could be

7



(a) (b)

(c) (d)

Figure 9: Comparison to an inpainting example in the original paper on
PatchMatch [23]. (a) Input image; (b) removal mask; (c) result of [23];
and (d) our result. All images were enlarged to focus on the region to
inpaint. As expected, the visual quality of inpainting is very similar, but
fewer iterations in our approach lead to some artifacts.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Comparison to examples presented by Herling and Broll [4,
21]. For each row, from left to right: input, their result, result using our
optimized inpainting algorithm on a smartphone.

investigated and may provide better performance. Tracking could
also be achieved by using SLAM, which is already implemented in
ARCore.

Inpainting performance could be improved by reducing the NNF
to store only patch correspondences for masked pixels, since the
mapping of unmasked pixels to themselves is essentially redundant.
A more compact representation could reduce memory usage signif-
icantly, and accelerate iterations. Additionally, transferring image

data from level 𝑖 to 𝑖 − 1 is currently separate from the expansion of
the NNF to twice its size. Combining these operations would reduce
the overall transfer cost notably.

It should also be investigated why the performance was not im-
proved by using additional pyramid levels, as outlined in Section 4.
This is important, since the convergence speed of PM is the domi-
nant factor for latency and visual quality. If more iterations can be
performed in the same or less time, the current visual artifacts may
be eliminated.

The smartphone’s CPU may also be a limiting factor, not to men-
tion several related considerations such as battery life, lack of active
cooling, constrained system memory, and so forth. Performance may
however be aided by implementing the DR pipeline on the phone’s
GPU.

Visual quality of inpainting. The visible division between groups
of patches as addressed in Section 4 can be reduced by either av-
eraging the pixel color during the transfer and voting process, or
implementing composition as fourth step in the DR pipeline [5].
Color correction could be used to make inpainting more convincing
when the scene light or camera exposure changes, which currently
leads to coherence issues during propagation of inpainting results
between frames.

Lastly, the coherence of inpainting over structured textures could
be improved. Generalized patch match [24] considers scaling and
rotation of patches, and image melding [39] expands on this approach
further to achieve highly convincing inpainting results. Although
more computationally expensive, such approaches may be suitable
for mobile DR in the future. Lastly, the use of machine learning for
image completion may provide a compelling alternative to inpainting,
if it can be implemented efficiently.

6 CONCLUSION
In this paper we have presented a diminished reality application for
commodity smartphones that allows removing objects at interactive
speed from live video while using only data from a single RGB
camera. Due to the lack of constraints, the approach is much more
widely applicable compared to many DR solutions presented in the
literature. Two object selection algorithms were investigated, which
present trade-offs between accuracy and performance in different
scenarios: extracting contours, and GrabCut [27]. To track an ob-
ject, the KCF [31] and CSRT [32] trackers were investigated, and
a far simpler algorithm for contour tracking was proposed. Lastly,
the PatchMatch algorithm [23] was adapted to achieve interactive
inpainting with good coherence for planar backgrounds and unstruc-
tured textures. The evaluation showed that both object selection
and tracking, as well as inpainting, need to be optimized further to
achieve real-time DR on a smartphone. The limited hardware of the
mobile platform also presented a limitation. Future work in mobile
DR may look into how the presented algorithms can be optimized,
and which alternative approaches could be feasible to realize a real-
time DR pipeline. It would also be of interest to see whether the
visual quality of inpainting can still be improved, considering the
performance constraints of the mobile platform.

8



7 RESPONSIBLE RESEARCH
Practicing research responsibly is essential as it ensures that the work
upholds scientific integrity, and is free of ethical issues or that the
authors maintain awareness and appropriately address such issues
as best they can. Further, the research should be reproducible, to
verify that results have not been cherry-picked, and that the presented
findings are legitimate overall. It also enables other researchers to
more easily continue and improve on the work of a previous paper.

Scientific integrity. This research is supported by a vast collection
of sources, all of which are appropriately referenced in this paper.
Paraphrased sentences, direct quotes, and information taken from
other works have been clearly marked as such. All other content has
been produced by the author.

Reproducibility. The source code for this research will be made
available upon acceptance of the paper, in accordance with the super-
visors. By publishing the source code, other researchers can recreate
and verify the results presented in section 4. Moreover, the research
is entirely reproducible by simply running the codebase on an An-
droid smartphone, and development can be continued in less than a
day. To this end, the code has been extensively documented.

Ethical considerations. Diminished reality is not free of ethical
issues. In theory, the technology could be used by governments or
corporations to censor or replace pieces of content from live video.
When DR becomes increasingly convincing and real-time capable,
it may be difficult to discern an edited signal from the original.

In this research we have proposed a smartphone prototype to lay
the foundation for mobile DR development. In its current form, it
does not facilitate any of the aforementioned abuse. As this is a
starting point for further work, it will be the responsibility of future
developers to ensure that increasingly sophisticated DR implementa-
tions are not exploited. As with all emerging technologies, a residual
risk will always remain.

REFERENCES
[1] T. Olsson and M. Salo, “Online user survey on current mobile

augmented reality applications,” Nov. 2011, pp. 75–84. DOI:
10.1109/ISMAR.2011.6092372.

[2] M. Mekni and A. Lemieux, “Augmented reality: Applications,
challenges and future trends,” 2014.

[3] H. Chen, Y. Dai, H. Meng, Y. Chen, and T. Li, “Understanding
the characteristics of mobile augmented reality applications,”
in 2018 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), 2018, pp. 128–138.
DOI: 10.1109/ISPASS.2018.00026.

[4] J. Herling and W. Broll, “Advanced self-contained object
removal for realizing real-time diminished reality in uncon-
strained environments,” in 2010 IEEE International Sympo-
sium on Mixed and Augmented Reality, 2010, pp. 207–212.
DOI: 10.1109/ISMAR.2010.5643572.

[5] S. Mori, S. Ikeda, and H. Saito, “A survey of diminished
reality: Techniques for visually concealing, eliminating, and
seeing through real objects,” IPSJ Transactions on Computer
Vision and Applications, vol. 9, no. 1, p. 17, 2017. DOI: 10.
1186/s41074-017-0028-1.

[6] E. Zhang, M. F. Cohen, and B. Curless, “Emptying, refur-
nishing, and relighting indoor spaces,” ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia 2016), vol. 35,
no. 6, 2016.

[7] F. Rameau, H. Ha, K. Joo, J. Choi, K. Park, and I. S. Kweon,
“A real-time augmented reality system to see-through cars,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 22, no. 11, pp. 2395–2404, 2016. DOI: 10.1109/TVCG.
2016.2593768.

[8] Google, Arcore sdk for android studio, 2022. [Online]. Avail-
able: https://github.com/google-ar/arcore-android-sdk.

[9] OpenCV, Open source computer vision library, 2015. [On-
line]. Available: https://opencv.org/ (visited on 06/19/2022).

[10] S. Mann and J. Fung, “Eyetap devices for augmented, delib-
erately diminished, or otherwise altered visual perception of
rigid planar patches of real-world scenes,” Presence: Teleop-
erators & Virtual Environments, vol. 11, pp. 158–175, 2002.

[11] J. Wang and E. Adelson, “Representing moving images with
layers,” IEEE Transactions on Image Processing, vol. 3, no. 5,
pp. 625–638, 1994. DOI: 10.1109/83.334981.

[12] S. Zokai, J. Esteve, Y. Genc, and N. Navab, “Multiview para-
perspective projection model for diminished reality,” in The
Second IEEE and ACM International Symposium on Mixed
and Augmented Reality, 2003. Proceedings., 2003, pp. 217–
226. DOI: 10.1109/ISMAR.2003.1240705.

[13] S. Jarusirisawad and H. Saito, “Diminished reality via mul-
tiple hand-held cameras,” in 2007 First ACM/IEEE Inter-
national Conference on Distributed Smart Cameras, 2007,
pp. 251–258. DOI: 10.1109/ICDSC.2007.4357531.

[14] T. Hosokawa, S. Jarusirisawad, and H. Saito, “Online video
synthesis for removing occluding objects using multiple un-
calibrated cameras via plane sweep algorithm,” in 2009 Third
ACM/IEEE International Conference on Distributed Smart
Cameras (ICDSC), 2009, pp. 1–8. DOI: 10.1109/ICDSC.
2009.5289380.

[15] D. Lindlbauer and A. D. Wilson, “Remixed reality: Manipu-
lating space and time in augmented reality,” in Proceedings
of the 2018 CHI Conference on Human Factors in Computing
Systems, 2018, pp. 1–13.

[16] Y. Wexler, E. Shechtman, and M. Irani, “Space-time video
completion,” in Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recogni-
tion, 2004. CVPR 2004., vol. 1, 2004, pp. I–I. DOI: 10.1109/
CVPR.2004.1315022.

[17] S. Meerits and H. Saito, “Real-time diminished reality for
dynamic scenes,” in 2015 IEEE International Symposium on
Mixed and Augmented Reality Workshops, 2015, pp. 53–59.
DOI: 10.1109/ISMARW.2015.19.

[18] G. Queguiner, M. Fradet, and M. Rouhani, “Towards mo-
bile diminished reality,” Oct. 2018. DOI: 10.1109/ISMAR-
Adjunct.2018.00073.

[19] J. Carter, K. Schmid, K. Waters, L. Betzhold, B. Hadley, R.
Mataosky, and J. Halleran, Lidar 101: An introduction to lidar
technology, data, and applications, 2012. [Online]. Available:
https://coast.noaa.gov/data/digitalcoast/pdf/lidar-101.pdf
(visited on 06/19/2022).

9

https://doi.org/10.1109/ISMAR.2011.6092372
https://doi.org/10.1109/ISPASS.2018.00026
https://doi.org/10.1109/ISMAR.2010.5643572
https://doi.org/10.1186/s41074-017-0028-1
https://doi.org/10.1186/s41074-017-0028-1
https://doi.org/10.1109/TVCG.2016.2593768
https://doi.org/10.1109/TVCG.2016.2593768
https://github.com/google-ar/arcore-android-sdk
https://opencv.org/
https://doi.org/10.1109/83.334981
https://doi.org/10.1109/ISMAR.2003.1240705
https://doi.org/10.1109/ICDSC.2007.4357531
https://doi.org/10.1109/ICDSC.2009.5289380
https://doi.org/10.1109/ICDSC.2009.5289380
https://doi.org/10.1109/CVPR.2004.1315022
https://doi.org/10.1109/CVPR.2004.1315022
https://doi.org/10.1109/ISMARW.2015.19
https://doi.org/10.1109/ISMAR-Adjunct.2018.00073
https://doi.org/10.1109/ISMAR-Adjunct.2018.00073
https://coast.noaa.gov/data/digitalcoast/pdf/lidar-101.pdf


[20] N. Kawai, T. Sato, and N. Yokoya, “Diminished reality based
on image inpainting considering background geometry,” IEEE
Transactions on Visualization and Computer Graphics, vol. 22,
no. 3, pp. 1236–1247, 2016. DOI: 10 .1109/TVCG.2015 .
2462368.

[21] J. Herling and W. Broll, “Pixmix: A real-time approach to
high-quality diminished reality,” 2012 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 141–
150, 2012.

[22] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active
contour models,” International Journal of Computer Vision,
vol. 1, no. 4, pp. 321–331, 1988. DOI: 10.1007/BF00133570.

[23] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,
“Patchmatch: A randomized correspondence algorithm for
structural image editing,” ACM Trans. Graph., vol. 28, no. 3,
p. 11, 2009. DOI: 10.1145/1531326.1531330.

[24] C. Barnes, E. Shechtman, D. Goldman, and A. Finkelstein,
“The generalized patchmatch correspondence algorithm,” Sep.
2010, pp. 29–43, ISBN: 978-3-642-15557-4. DOI: 10.1007/
978-3-642-15558-1_3.

[25] E. Adelson, C. Anderson, J. Bergen, P. Burt, and J. Ogden,
“Pyramid methods in image processing,” RCA Eng., vol. 29,
Nov. 1983.

[26] J. Herling and W. Broll, “High-quality real-time video in-
painting with pixmix,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 6, pp. 866–879, 2014.
DOI: 10.1109/TVCG.2014.2298016.

[27] C. Rother, V. Kolmogorov, and A. Blake, “"grabcut": Inter-
active foreground extraction using iterated graph cuts,” in
ACM SIGGRAPH 2004 Papers, Association for Computing
Machinery, 2004, pp. 309–314, ISBN: 9781450378239. DOI:
10.1145/1186562.1015720.

[28] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand. 2009.
[29] J. Canny, “A computational approach to edge detection,”

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. PAMI-8, no. 6, pp. 679–698, 1986. DOI: 10.1109/
TPAMI.1986.4767851.

[30] S. Suzuki and K. Abe, “Topological structural analysis of dig-
itized binary images by border following,” Computer Vision,
Graphics, and Image Processing, vol. 30, no. 1, pp. 32–46,
1985. DOI: https://doi.org/10.1016/0734-189X(85)90016-7.

[31] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-
speed tracking with kernelized correlation filters,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 37,
no. 3, pp. 583–596, 2015. DOI: 10.1109/tpami.2014.2345390.

[32] A. LukeźIăź, T. Vojıřř, L. Čehovin Zajc, J. Matas, and M.
Kristan, “Discriminative correlation filter tracker with chan-
nel and spatial reliability,” Int. J. Comput. Vision, vol. 126,
no. 7, pp. 671–688, 2018. DOI: 10.1007/s11263-017-1061-3.

[33] A. Telea, “An image inpainting technique based on the fast
marching method,” Journal of Graphics Tools, vol. 9, no. 1,
pp. 23–34, 2004. DOI: 10.1080/10867651.2004.10487596.

[34] Google, Fundamental concepts of arcore, Feb. 2022. [On-
line]. Available: https://developers.google.com/ar/develop/
fundamentals.

[35] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image
quality assessment: From error visibility to structural similar-
ity,” IEEE Transactions on Image Processing, vol. 13, no. 4,
pp. 600–612, 2004. DOI: 10.1109/TIP.2003.819861.

[36] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani, “Summa-
rizing visual data using bidirectional similarity,” CVPR, Jan.
2008.

[37] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S.
Süsstrunk, “Slic superpixels compared to state-of-the-art su-
perpixel methods,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 11, pp. 2274–2282,
2012. DOI: 10.1109/TPAMI.2012.120.

[38] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detection,”
CoRR, vol. abs/1506.02640, 2015. DOI: https://doi.org/10.
48550/arXiv.1506.02640.

[39] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and
P. Sen, “Image Melding: Combining inconsistent images us-
ing patch-based synthesis,” ACM Transactions on Graphics
(TOG) (Proceedings of SIGGRAPH 2012), vol. 31, no. 4,
82:1–82:10, 2012.

10

https://doi.org/10.1109/TVCG.2015.2462368
https://doi.org/10.1109/TVCG.2015.2462368
https://doi.org/10.1007/BF00133570
https://doi.org/10.1145/1531326.1531330
https://doi.org/10.1007/978-3-642-15558-1_3
https://doi.org/10.1007/978-3-642-15558-1_3
https://doi.org/10.1109/TVCG.2014.2298016
https://doi.org/10.1145/1186562.1015720
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1109/tpami.2014.2345390
https://doi.org/10.1007/s11263-017-1061-3
https://doi.org/10.1080/10867651.2004.10487596
https://developers.google.com/ar/develop/fundamentals
https://developers.google.com/ar/develop/fundamentals
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/https://doi.org/10.48550/arXiv.1506.02640


A ADDING VIRTUAL OBJECTS WITH ARCORE

Figure 11: Adding virtual objects with ARCore. The estimated floor plane is visualized, together with feature points (small blue dots) that are used
for SLAM. Based on scene light estimation, the specular highlights slightly differ on each object.

B CHALLENGING APPLICATIONS OF GRABCUT

(a) (b)

(c) (d)

Figure 12: Challenging cases of object selection solved by GrabCut: (a) The algorithm can select an object amidst a diverse collection; and (b) large,
heterogeneous objects can be selected, enabling many practical applications in combination with inpainting.

C INPAINTING OF DESTROYED TEXTURES

I II III

IV V

Figure 13: Closeups of inpainting a rectangular subregion of various textures. The shown region has been destroyed in the input to the inpainting
algorithm. For each pair, the left image is the ground truth (before destruction), and the right image is the result of inpainting.

11


	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview of the DR pipeline for this research
	3.2 Object selection
	3.3 Object tracking
	3.4 Inpainting
	3.5 Implementation details

	4 Evaluation
	4.1 Qualitative Evaluation
	4.2 Quantitative Evaluation

	5 Discussion
	5.1 Comparison to other works
	5.2 Limitations and future work

	6 Conclusion
	7 Responsible Research
	A Adding virtual objects with ARCore
	B Challenging applications of GrabCut
	C Inpainting of destroyed textures

