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1 Introduction

High-resolution aerial imagery is a cornerstone of geospatial analysis, enabling the cre-
ation of datasets such as digital surface models (DSMs), TrueOrthos, solar irradiation maps,
and point clouds. These products are crucial for applications in urban planning, environ-
mental monitoring, and renewable energy. Factors such as sensor noise, optical distortion,
and environmental interference can degrade the quality of remote sensing images [Wang
et al., 2022a], while the high cost and infrequent capture of high-resolution imagery further
complicate the ability to conduct detailed and continuous analyses. Single-image Super-
Resolution (SR) is the process for obtaining high-resolution (HR) images from a single low
resolution (LR) image. Although super-resolution remains an ill-posed and difficult problem
meaning that for a single degraded image, there are multiple possible upscaled (HR) images.
The challenge lies in predicting the most plausible HR reconstruction from incomplete data.
Recent advances in neural networks and machine learning have enabled more robust SR
algorithms that exhibit effective performance resulting to better reconstructed image. SR
techniques have applications beyond geospatial fields, including medical diagnostics, object
detection, and forensic analysis [Lepcha et al., 2023].

This thesis aligns with the goals of Readar B.V., a company specializing in high-quality
geospatial datasets, by exploring SR methods to improve aerial imagery resolution. The
research aims to support Readar’s mission of delivering accurate, consistent data products
across industries such as government, utilities, and insurance.

1.1 Problem statement

The geospatial industry relies on high-resolution aerial imagery for generating precise datasets
such as DSMs, TrueOrthos, and solar irradiation maps. Despite its importance, acquiring
high-resolution imagery remains challenging due to the high costs, advanced equipment re-
quirements, and limited acquisition frequency—often only two captures per year. This limits
the availability of detailed data for applications requiring seasonal or continuous monitor-
ing.

Low-resolution imagery is easier to access but lacks the detail needed for tasks like object
detection and surface modeling. This issue is worsened by misalignment between low- and
high-resolution images due to seasonal changes, vegetation growth, or moving shadows.

This thesis investigates single-image super-resolution (SISR) to address these challenges
by enhancing low-resolution aerial images (e.g., 25 cm) into high-resolution outputs (e.g.,
8 cm). Domain adaptation techniques will be explored to improve the robustness of SISR
models across synthetic and real-world aerial images, ensuring compatibility with varying
data environments and seasons.

It is important to note that while super-resolution (SR) has shown significant advance-
ments in improving image quality, a research gap exists in addressing challenges specific
to aerial imagery, particularly when datasets include HR and LR images captured during
different periods. Temporal and seasonal variations, such as changes in vegetation, light-
ing conditions, and environmental factors, often result in misalignment and inconsistencies
between images, further complicating the super-resolution process.



This research aims to bridge this gap by exploring methods to leverage both HR and
LR datasets to produce accurate and consistent high-resolution outputs. By investigating
how the weights trained on an SR model using one dataset can be adapted and utilized
to enhance another SR model trained on temporally misaligned data, this study provides
a novel solution to improve super-resolution performance in real-world scenarios. This
approach ensures that even when HR and LR datasets are captured during different periods,
they can still contribute effectively to generating reliable and high-quality results.

By addressing these challenges, this research advances the field of SR for aerial imagery
and contributes to Readar B.V.’s pipeline by offering robust methodologies for integrating
temporally inconsistent data into its geospatial analysis workflows.

1.2 Scientific Relevance

Super-resolution has mainly been explored for tasks involving real-world images, such as
those depicting people or animals. High-resolution images provide more detailed informa-
tion about locations and objects, which is essential for applications like high-definition TVs,
computer screens, and portable devices. Reconstruction techniques for SR are also widely
used in medical imaging, where improving resolution is crucial for accurate disease diag-
nosis and the identification of small anatomical features. Similarly, in the field of satellite
imaging, super-resolution plays a key role in tasks such as image rectification, restoration,
enhancement, and information extraction, improving clarity, reducing distortions, and en-
hancing geographic information [Lepcha et al., 2023].

This research focuses on aerial imagery captured over the Netherlands, examining the
challenges of varying resolutions, distortions, and image characteristics unique to this do-
main. Aerial images are often used for tasks like military observation, environment moni-
toring, and weather forecast. However, aerial images captured by normal imaging devices
usually have limited resolution that often does not satisfy requirements in operational tasks
such as identification of small objects, analyzing texture variation or detect small scale en-
vironmental changes. Aerial images display a strong culture variability such that the im-
age textures represent changes at different directions with various frequency characteristics
[Wang et al., 2018].

Regarding the LR image as the degradation of its HR counterpart, SISR methods aim
to reverse the degradation process that transforms high-resolution (HR) images into low-
resolution (LR) images. Degradation modeling is central to establishing the HR-LR relation-
ship and typically involves a combination of blurring, down-sampling, and noise [Su et al.,
2024]. The degradation process provides the LR images needed to train the algorithm.

Normally, in real-world applications, obtaining HR-LR image pairs is often impractical
or unattainable so solutions with SISR with unpaired images occur [Su et al., 2024]. In our
approach, the HR and LR images cover exactly the same areas but are not captured simul-
taneously, meaning temporal changes (e.g., vegetation growth, shadow shifts, urban devel-
opment) might create inconsistencies between the datasets. This setup allows the model
to learn how to deal with temporal differences by focusing on the features that remain
consistent across time. By incorporating data from different seasons, the robustness of the
super-resolution model can be improved to handle seasonally affected features in the im-
ages. The availability of both low-resolution (LR) and high-resolution (HR) datasets, which
are aligned, share the same reference system, and cover the exact same area, enables the
model to focus entirely on learning the relationship between HR and LR imagery rather
than addressing misalignment issues.



2 Research Framework

This chapter presents the research framework for the study, addressing both the practical
programming tasks required and the theoretical considerations that underpin the methodol-
ogy. By examining the specific types of data employed, it provides a deeper understanding
of their roles within the overall pipeline.

The chapter begins with a discussion on photogrammetry and the advantages of True
Ortho images compared to standard ortho images, offering essential context for the geospa-
tial data utilized in this research. It then introduces the concept of image resolution and
enhancement, highlighting their importance in improving spatial detail and visual quality.
Following this, the chapter delves into super-resolution, covering its general concept, mathe-
matical formulation, and an overview of existing approaches, with a focus on deep learning
techniques. Together, these elements establish a robust foundation for the methodology
outlined in subsequent sections.

2.1 Photogrammetry & True Ortho Images

Photogrammetry is the science and technology of extracting spatial information from im-
ages, with applications in mapping, surveying, and high-precision measurements [Forstner
and Wrobel, 2016]. Aerial photogrammetry, in particular, uses overlapping images captured
from above to ensure accurate alignment and rectification of datasets. These images form
the foundation for generating geospatial products such as digital elevation models (DEMs)
and True Ortho images.

Ortho images are created through orthorectification, a process that corrects distortions
caused by terrain relief and perspective. While ortho images are geometrically accurate
and can be used like maps, they do not correct distortions in elevated structures, such as
buildings and bridges. True Ortho images address this limitation by incorporating detailed
DEMSs, which provide elevation values for each point above sea level, excluding vegetation
and artificial objects. This results in an accurate 3D representation of the environment, en-
suring that elevated real-world objects are rectified and aligned orthogonally to their bases.

True Ortho images are particularly valuable for tasks such as object detection, urban plan-
ning, and infrastructure analysis. However, their production is more complex than standard
ortho imagery, requiring detailed DEMs and additional computational resources.

For this thesis, True Ortho images will be used as input data. Readar B.V.’s pipeline ex-
tends standard orthorectification by producing True Ortho images through precise correction
of distortions in elevated objects [Kresse and Danko, 2012]. By leveraging DEMs to accu-
rately represent the 3D topology, roofs and other elevated features are correctly positioned.
This level of precision is essential for applications requiring accurate spatial alignment, such
as object detection.



2.2 Image Resolution & Enhancement

Resolution can take on different meanings depending on the imaging application. Spatial
resolution refers to the pixel density within an image and is typically measured as pixels per
unit area. Radiometric resolution corresponds to the bit depth of the image, while temporal
resolution relates to the number of frames captured per second. Spectral resolution, on the
other hand, describes the number of color planes or spectral bands present in the image. In
the context of this research, Super-Resolution (SR) specifically refers to achieving a higher
spatial resolution than that originally captured by the camera sensor.

In imaging systems, image resolution can be improved either by decreasing pixel size
through advancements in sensor manufacturing or by increasing the sensor’s chip size.
However, due to the physical constraints of imaging systems, employing algorithmic tech-
niques offers a more cost-effective solution for enhancing image resolution Vishnukumar
et al. [2014].

The resolution of an image refers to the density of pixels within it, which determines
the amount of visual information the image can convey, often described as pixels per inch
(PPI). In a low-resolution image, the pixels are fewer in number, and if those few pixels
are too large, it can result in a blocky or pixelated appearance. Lower resolution can make
small objects hard to distinguish, as they may overlap, be hidden, or blend together, making
detection and recognition more difficult and less accurate.

High-resolution images, on the other hand, have more pixels per inch (PPI) and consist of
a greater number of smaller pixels, allowing for finer detail and better visual quality. These
images retain clarity even when enlarged or stretched, as the higher pixel density ensures
that visual information is preserved. As a result, objects in high-resolution images are more
visible and easier to recognize, improving their suitability for tasks requiring detailed image
analysis.

The basic principle of image enhancement is to modify the information contribution of an
image so that it is more suitable for a specific application [Singh and Mittal, 2014]. Tradi-
tional image enhancement techniques typically fall into two categories: spatial domain and
frequency domain processing. Spatial domain methods work directly with the pixels of an
image, employing techniques like modified histogram approaches and improved unsharp
masking methods. On the other hand, frequency domain methods transform the image
into the frequency domain using mathematical functions such as Fourier Transform (FT),
Discrete Cosine Transform (DCT), or Discrete Wavelet Transform (DWT). Image processing
is then performed based on the characteristics of the frequency domain before convert-
ing the result back to the original image space [Qi et al., 2022]. In the context of image
super-resolution, these enhancement principles have been extended with advance machine
learning techniques which are mentioned in the next section.

2.3 Super-Resolution in Remote Sensing

Remote sensing images differ significantly from natural images. Captured from high alti-
tudes using aerial photography or satellites, they often depict large-scale scenes like forests,
rivers, industrial zones, and airports, which contain small objects and diverse spatial dis-
tributions. These images are also affected by varying weather conditions, with factors such
as sensor lighting, cloud cover, and fog influencing their clarity. In the context of super-
resolution, reconstructing remote sensing images demands specialized approaches. For ex-
ample, in forest and grassland scenes where object colors are similar, relying solely on color
features can be ineffective. By leveraging texture characteristics, super-resolution methods



can distinguish between “rough” forests and “smooth” grass, improving classification and
reconstruction [Wang et al., 2022a].

2.3.1 Concept

Super-resolution is a process that aims to reconstruct a high-resolution (HR) image from its
low-resolution (LR) counterpart. In theory, any image has a ground truth high-resolution ver-
sion, which may exist physically or be purely theoretical. For an image to be low resolution,
it means that at some point, a degradation function D has acted on the high-resolution image.
This degradation can include processes such as blurring, downsampling, or adding noise,
with a factor y representing the degree of change. This mapping from HR to LR is typically
unknown and challenging to reverse as illustrated in Figure 2.1 (up left).

The reverse process, super-resolution, seeks to estimate the HR image from the LR input
using a model F. The goal of F is to recover the lost information and approximate the ground
truth as closely as possible (Figure 2.1 down left). However, this task is inherently ill-posed:
because information is lost during degradation, there are infinite possible reconstructions of
varying quality (Figure 2.1 down right). The key challenge in super-resolution is to develop a
model capable of producing reconstructions that are both accurate and visually convincing,
based on specific evaluation metrics. An overview of the super-resolution task is illustrated
in Figure 2.2.

Mapping High-Resolution Images to Low-Resolution

° Low Res
Ground
Truth ° X
Super Il posed
Resolution problem .
e High Res
) Low Res
Low Res High Res High Res
Output
High Res

Figure 2.1: Concept of Super resolution
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Figure 2.2: Overview of the super-resolution task: starting with low-resolution images, a
super-resolution network is designed to enhance their quality, producing super-resolved
versions of the input images.

2.3.2 Mathematical Formulation

According to [Kawulok et al., 2024], "SR poses an inherently ill-posed problem, wherein ap-
plying various degradation processes F can yield many different low-resolution (LR) images
I1 g from a single high-resolution (HR) image and vice versa”. To gain a deeper understand-
ing of this challenge, we now delve into the mathematical formulation of the degradation
and reconstruction processes, defining key functions and parameters that underpin super-
resolution techniques. The degradation process and its mathematical modeling, are de-
scribed in detail in [Anwar et al., 2020]. Let us denote a Low -Resolution (LR) image as
y and the corresponding high-resolution (HR) image as x, then the degradation process is

given as:
y=d(x;0y), 2.1)

where @ is the degradation function, and 0, denotes the degradation parameters (such as the
scaling factor, noise, etc.). In a real-world scenario, only y is available while no information
about the degradation process or the degradation parameters 6,. SR aims to reverse this
degradation and approximate the ground-truth image x by estimating image £ as:

= (y,05), (2.2)



where 0 are the parameters for the function ® 1. The degradation process is unknown and
can be quite complex. It can be affected by several factors, such as noise (sensor and speckle),
compression, blur (defocus and motion), and other artifacts. To address this complexity,
many studies adopt a more detailed degradation model instead of relying solely on Equation
(1). This refined model is given as:

y=(x®k) s +n, (2.3)

where k is the blurring kernel and x ® k is the convolution operation between the HR image
and the blur kernel, | is a downsampling operation with a scaling factor s. The variable n
denotes the additive white Gaussian noise (AWGN) with a standard deviation of ¢ (noise
level). In image super-resolution, the aim is to minimize the data fidelity term, which is
its the degree to which data can be trusted to be accurate and reliable, associated with the
model y = x ®k+n, as,

](Je/eS/k) - ||x®k_]/|| +a IIJ(x,GS), (24)
—_——— ——
data fidelity term regularizer

where « serves as a balancing parameter between the data fidelity term and the image prior

Super-resolution methods can be categorized based on how they utilize the image prior—that
is, the pre-existing knowledge or assumptions about the image’s properties during the re-
construction process. An image prior represents a set of constraints or statistical proper-
ties believed to be true for the images being processed, guiding the super-resolution algo-
rithm. These methods can be divided into categories such as prediction-based methods,
interpolation-based methods, edge-based methods, statistical methods, patch-based meth-
ods, and deep learning methods [Yang et al., 2014]. For example, interpolation-based meth-
ods are non-adaptive and rely on local neighborhood information, making them compu-
tationally efficient but prone to issues such as aliasing and blurring. Statistical methods
address the ill-posed nature of super-resolution by leveraging image priors to capture do-
main knowledge of natural images. These priors include Gaussian priors, Markov random
field (MRF) priors, sparsity priors, and low-rank priors. However, due to the complex struc-
ture of real-world images, many of these priors struggle to accurately model image prop-
erties. Classical methods for single image super-resolution, such as linear interpolation or
reconstruction-based approaches, often produce undesirable artifacts and over-smoothing in
the reconstructed HR image, particularly around edges Vishnukumar et al. [2014].

This research focuses specifically on methods that employ deep neural networks to learn
and apply the image prior. These methods have the ability to automatically learn hierarchi-
cal features directly from data, bypassing the need for manually engineered priors. Deep
learning techniques have demonstrated excellent performance in handling large, complex
datasets like aerial imagery. Their ability to effectively model high-frequency details, sup-
press noise, and preserve edges makes them particularly suitable for reconstructing detailed
and accurate high-resolution representations from low-resolution aerial images. The preser-
vation of edges is beneficial for processes like solar panel detection or green roof detection,
where sharp and distinct boundaries are critical for accurate identification. This suitability,
combined with their scalability and adaptability, underscores their relevance to the goals of
this research.

2.3.3 Approaches

Super Resolution (SR) algorithms are designed to enhance the spatial resolution of digital
images. Early SR approaches relied on techniques such as nonuniform interpolations, fre-



quency domain analysis, deterministic and stochastic regularization, and projection onto
convex sets [Kawulok et al., 2024]. In specific remote sensing tasks such as pansharpening
and hyperspectral/multispectral image fusion, classical methods have included component
substitution (CS), multi-resolution analysis (MRA), variational optimization (VO), spectral
unmixing, and Bayesian models. However, for this research, as a first approach, no addi-
tional spectral bands are used for the reconstruction tasks.

Over the past decade, advancements in computational power have led to the dominance of
deep neural networks in state-of-the-art super-resolution (SR) systems. SR approaches based
on the nature of the input data can be categorized as: single-image super-resolution (SISR),
which enhances the resolution of a single low-resolution (LR) image and multi-image super-
resolution (MISR), which reconstructs a higher-resolution output using multiple LR images.
Our approach is alligned with SISR as we dont have multiple shifted LR observations of the
same scene.

The use of convolutional neural networks (CNNs) for super-resolution (SR) began with
the introduction of SRCNN in 2015 by Dong et al.. This architecture featured three con-
volutional layers designed for feature extraction, nonlinear mapping, and reconstruction.
SRCNN required low-resolution (LR) images to be pre-upsampled to the target resolution
using bicubic interpolation. Building on this, VDSR was introduced by Kim et al. [2016a],
focusing on predicting the residual image. The reconstructed HR image is subsequently
obtained by adding the residual image to the bicubically upsampled LR image.

As deeper neural networks are more challenging to train. Techniques such as ResNet [He
etal., 2016] introduced a residual learning framework to facilitate the training of significantly
deeper networks compared to earlier architectures. In ResNet, the layers are explicitly refor-
mulated to learn residual functions with respect to the layer inputs, rather than attempting
to learn unreferenced functions directly (directly mapping inputs to outputs).

Furthermore, recursive networks are based on the concept of parameter sharing among
convolutional layers. This approach reduces both the number of trainable parameters and
the computational complexity. DRCN, introduced by Kim et al., is a deeply recursive net-
work that applies the same convolutional layer multiple times. The outputs from all interme-
diate shared convolutional blocks, along with the final output, are sent to the reconstruction
layer, which generates the high-resolution image by utilizing all these inputs.

With high computational cost being the common problem for most of the SR techniques,
postupsampling frameworks were suggested in order to replace the traditional upsampling
methods with learnable upsampling layers. These frameworks construct and end-to-end
architecture in which the whole feature extractions are implemented in a low-dimensional
space [Lei et al.,, 2022]. However, a drawback of these techniques is that the HR images
are directly reconstructed at the final stage, without intermediate enhancement of feature
representation. This increases the difficulty of training and limits reconstruction accuracy.

This problem is addressed by transformer-based enhancement network (TransENet) de-
scribed by Lei et al. which after the upsampling layers, both high-dimensional and low-
dimensional features are utilized to improve the network’s ability to represent fine details.
This ensures that the network effectively learns from both detailed (high-dimensional) and
broader (low-dimensional) feature contexts.

Generative adversarial networks (GANSs), like the one described by Ledig et al. [2017]
have delivered impressive results by focusing on perceptual quality, even though they still
face challenges like hallucination artifacts and training instability. Their main goal is to
generate images that are visually pleasing rather than strictly matching reference images
pixel by pixel. GANs work with two components: a generator, which creates synthetic
images, and a discriminator, which evaluates whether the images are real or fake. Since
the generator is designed to “fool” the discriminator, it prioritizes creating plausible-looking



images rather than ensuring they are perfectly aligned with the ground truth. This can
result in hallucination, where parts of the generated images look realistic but deviate from
the actual content. While this can be useful for tasks like artistic rendering, it becomes
problematic for applications that demand precise, ground truth-aligned outputs, such as
medical imaging or geospatial analysis. Table 6.2 in the Appendix summarizes the super
resolution approaches with a small description of how they operate.

In this research, the methodology begins with Single Image Super-Resolution (SISR) in the
first iteration. Here, only high-resolution (HR) images are used to train the model, aiming
to produce super-resolution results that closely approximate the ground truth. To avoid
confusion, this output can be defined as the Generated High-Resolution (GHR) image.

The second iteration shifts towards an image fusion approach, incorporating the weights
learned from the first iteration. This step utilizes both low-resolution (LR) and HR images
to further refine the super-resolution outputs. The key challenge lies in the fact that the HR
and LR datasets were captured during different time periods, potentially reflecting vary-
ing conditions. This aspect tests the adaptability and robustness of the model’s learned
weights. Specifically, it examines how well the weights, trained under different conditions,
can enhance the accuracy of super-resolution outputs for images captured at different times.

2.3.4 Deep-Learning-Based Approach

Unlike traditional super-resolution approaches, deep learning relies on neural networks to
automatically learn features, complex patterns and representations from the data, making
the process more efficient and accurate. The goal of deep learning in super-resolution is
to uncover the feature distribution within data by learning a hierarchical representation
of its underlying characteristics [Wang et al., 2022a]. This is achieved through advanced
network architectures, optimization techniques, and loss function designs, while addressing
the challenges posed by the ill-posed nature of super-resolution.

Deep learning methods rely on learning mappings directly from paired low-resolution
(LR) and high-resolution (HR) image datasets. The relationship between an LR input im-
age Irr and its corresponding HR output image Iyr is modeled by a neural network fy,
parameterized by weights 6, as:

Inr = fo(ILr), (2.5)

where fy learns to map I g to Igr by minimizing a loss function £. This loss function
quantifies the difference between the predicted HR image [gr and the ground truth HR
image Iyg:

L = |[Iur — gl (2.6)
where || - ||? represents the mean squared error (MSE) loss, commonly used in deep
learning-based SR models. The optimization process adjusts 6 to minimize £, improving
the quality of the predicted HR image.

Deep learning methods excel in handling the ill-posed nature of super-resolution by lever-
aging data-driven learning to infer missing high-frequency details. This approach allows for
a more effective and robust solution compared to traditional techniques, as it directly learns
the complex mappings between LR and HR images.

An essential aspect of deep learning for super-resolution is the choice of appropriate loss
functions. These functions guide the training process by evaluating and minimizing the
errors between the reconstructed and ground truth images.



Convolutional Neural Networks (CNNs)

Deep learning methods suchs as Convolutional Neural Networks (CNNs) are widely used
for super-resolution tasks, leveraging convolutional layers to extract hierarchical features
from low-resolution (LR) images and reconstruct high-resolution (HR) outputs. In CNN
architectures lower layers capture low-level features and higher layers capture more complex
and abstract information Kawulok et al. [2024]. The fact that they can capture multi-level
features makes them produce high-quality HR outputs. An outline of a the process of CNN
based methods for Super Resolution is illustrated in Figure 2.3.

Convolutional layers to
capture multi-level features

‘ Reconstruction - ¢

Figure 2.3: Process of CNN based methods for Super Resolution

Feature
extraction
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Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANSs) introduce an adversarial framework for super-
resolution, consisting of a generator that creates high-resolution images and a discriminator
that evaluates their quality. This approach excels at producing perceptually realistic and
visually pleasing results, addressing the over-smoothing issues often seen in CNN-based
methods. GANSs are particularly effective in scenarios requiring high perceptual quality,
such as aerial and satellite imagery analysis. GANs also incorporating adversarial training
to enhance the visual realism of the generated HR Ledig et al. [2017] which may not be
suitable for certain use cases. An illustration of the process is shown in Figure 2.4
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Figure 2.4: Process of GAN based methods for Super Resolution

Transformer Based

Transformer-based super-resolution methods build upon the core principles of transformers,
which were originally developed for natural language processing (NLP) tasks. The key ad-
vantage of transformers lies in their self-attention mechanism, which can model long-range
dependencies in images and recover high-frequency information. This ability is critical for
reconstructing texture details and improving image quality. While transformers were ini-
tially designed to model dependencies in sequential text, recent advancements have demon-
strated their capacity to address limitations of convolutional neural networks (CNNs) by
overcoming inductive bias through self-attention Wang et al. [2022b].

In recent years, a hybridization of deep learning and transformer models has emerged
as a successful strategy for image super-resolution tasks. For example, Lei et al. [2022]
introduced a transformer-based multi-stage enhancement structure, known as TransENet,
which fuses multi-scale high- and low-dimensional features. In this architecture, encoders
embed multi-level features during feature extraction, while decoders fuse these embeddings
to reconstruct enhanced high-resolution images.

This hybrid approach combines the global context modeling capabilities of transformers
with the local feature extraction strengths of CNNs. By leveraging these complementary
methods, TransENet effectively captures long-range dependencies and detailed textures,
making it particularly well-suited for the complex and diverse structures found in remote
sensing images. Experimental results demonstrate that TransENet outperforms several state-
of-the-art methods, achieving superior super-resolution results and improving overall image
quality. Figure 2.5 illustrates the workflow of a transformer-based super-resolution method
that also uses CNN. The low-resolution (LR) image is first processed through a CNN block
to extract local features. These features are then passed through transformer blocks, where
the self-attention mechanism models long-range dependencies and refines the features glob-
ally. The encoder is responsible for extracting features from the input data and gradually
reducing its spatial dimensions while increasing its feature representation. The decoder
fuses these multi-scale features and reconstructs the high-resolution (HR) image. This hy-
brid approach leverages the strengths of both CNNs and transformers to achieve superior
super-resolution results.
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Figure 2.5: Hybrid Transformer Workflow

2.3.5 Loss Functions

Once the SR model generates the reconstructed images, various loss functions are used
to calculate the error between them and the ground truth. A smaller loss function value
indicates a more robust model. Changes in the loss function reflect the gap between the
model’s current training state and the expected outcome. These metrics evaluate the model’s
performance and simultaneously guide it during the training process. This section presents
the commonly used loss functions.

Pixel Loss calculates the difference between reconstructed images and ground truth im-
ages using pixel values. Common loss functions for this purpose include Mean Squared
Error (MSE), Mean Absolute Error (MAE), and Charbonnier Error. MSE is also known as L2
loss, while MAE and Charbonnier Error are referred to as L1 and improved L1, respectively.
The mathematical expressions for these losses are as follows:

1& /4 i \2
L, = o Y. (IéR - IlHR) , (2.7)
i=1

where 7 represents the number of training samples, I5, denotes the reconstructed image,
and It corresponds to the ground truth high-resolution image.

The MSE loss function is characterized by its smoothness, continuity, and differentiability,
which make it well-suited for gradient descent optimization. As the error decreases, the
gradient magnitude reduces, enabling the algorithm to converge quickly. However, due to its
squaring operation, MSE assigns higher weights to large errors, making it highly sensitive to
outliers. This sensitivity can result in overly smoothed and blurred reconstruction outputs,
particularly in regions with high-frequency details. To address this limitation, the L1 loss
(MAE) is used, which less sensitive to outliers and maintains a stable gradient for a wider
range of input values and expressed as:

1 n
L=, L

i=1

I — e, (2.8)

However, L1 loss has non-differentiable points, which can hinder convergence during
training. To deal with this limitation the Charbonnier Loss was introduced by [Lai et al.,
2017] , which is a smooth approximation of L1 loss and is defined as:

1o , .
Lehar = n ZP (IISR - I;iR) ., where p(x) = Vx2 + €2, (2.9)
i=1

1=
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Here, € is a small constant (typically 1073) added to improve numerical stability and
ensure smoothness at zero gradients. However, pixel-based loss functions overlook the per-
ceptual quality and texture of the reconstructed image, often resulting in the loss of high-
frequency details. As a result, it becomes challenging to achieve high-quality reconstructed
images.

Perceptual Loss adresses these limitations by averaging and often produce images with
smoother textures that lack visual appeal. These loss functions became popular when GAN
methods were introduced. Perceptual loss is optimized by minimizing the distance between
extracted features, thereby enhancing the perceptual quality of the image. In SRGAN [Ledig
et al., 2017], perceptual loss is represented as the weighted sum of content loss and adver-
sarial loss, expressed in Equation 2.10.

LSR = Lcontent + 1073LGen(ISR) (2-10)

where L3R is the perceptual 10ss, Leontent represents the content loss, and Lgen(Isg) de-

notes the adversarial loss.

Content Loss focuses on evaluating the similarity between the reconstructed image and
the reference image at a perceptual level, aligning with how the human eye perceives visual
details. It is defined as:

_ 1 Oy — B ()
Lcontent - n ;(CDU (I) q)l-]- (I)) (2.11)

Here, n; denotes the number of pixels in the feature map of the I-th layer, and @g)(l )

and CDZ(;)(IA ) represent the feature maps extracted from the j-th convolution before the i-th
pooling layer in the /-th layer for the ground truth and reconstructed images, respectively.

Other loss functions, such as texture loss and adversarial loss, are also commonly used to
enhance the quality of reconstructed images. However, these will not be described in detail
here, as the final choice of loss functions will depend on the specific requirements of our
methodology, which is still in the early stages of development.

2.3.6 Training and Test Datasets

The success of deep-learning-based SR methods relies heavily on high-quality training and
testing datasets. Diverse datasets have been developed to address various SR tasks, ranging
from natural to remote sensing images. Representative training datasets mostly including
images from people, animal, scenery, decoration, plant, etc.include:

¢ DIV2K: Comprising 800 training images, 100 validation images, and 100 test images,
this dataset is a standard for SR tasks.

* BSDS300, BSDS500: Widely used for benchmarking SR models.

* Set5, Set14, Urban100: Classic test datasets for evaluating SR performance.

Remote sensing datasets, tailored to specific geospatial tasks, often differ from natural
image datasets. Some notable examples include:

¢ AID: Contains 10,000 images (600 x 600 pixels) featuring airports, beaches, deserts,
etc.
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* RSSCNT7: Includes 2800 images categorized by season and scale, depicting farmland,
residential areas, and industrial zones.

* WHU-RS19: Comprises 950 images representing 19 scene categories, such as ports and
parking lots.

¢ UC Merced: Features 2100 images (256 x 256 pixels) across 21 categories, including
forests, rivers, and agricultural land.

Our dataset consists of aerial images of the Netherlands captured at two different times
and will be described in detail in Chapter 4. These are aerial images include multiple
elements, similar to the datasets briefly described earlier. However, the final categories will
need to be determined and refined based on our use case.

Table 6.1 provides an overview of commonly used SR datasets, including their size, reso-
lution, and content description and can be found in Chapter 6.

2.3.7 Quality evaluation of image super-resolution

The evaluation index of image reconstruction quality can reflect the reconstruction accuracy
of an SR model and in this section, the evaluation methods of image reconstruction qual-
ity and reconstruction efficiency will be discussed. Evaluating the quality of reconstructed
images is crucial due to the widespread use of super-resolution (SR) techniques. Image
quality refers to the visual attributes of an image, and evaluation methods can be broadly
categorized into subjective and objective assessments. Subjective evaluation assesses image
quality based on human perception, focusing on how natural or realistic the image looks.
While it reflects human judgment, it is inefficient and challenging to scale. In contrast, objec-
tive evaluation relies on numerical algorithms to measure quality, making it more practical.
Full-reference objective methods are commonly used for image quality assessment.

Peak Signal-to-Noise Ratio (PSNR) is one of the most commonly used objective metrics
in SR [Wang et al., 2004]. For a ground truth image I, with N pixels and a reconstructed
image Isg, PSNR is defined as:

2
PSNR = 10 - log,, (I\/IESE) ,

where L = 255 for an 8-bit grayscale image and the Mean Squared Error (MSE) is:

1 N
MSE = — Y (I, — Isr)*.
N i=1

PSNR is computationally simple and has a clear physical meaning, but it focuses purely on
pixel-level differences and does not account for human visual perception.

Structural Similarity Index (SSIM) is designed to measure the perceptual similarity be-
tween two images in terms of brightness and contrast. SSIM is defined as:

SSIM = [Z(ISR/ I,)" - c(Isg, Iy)P 'S(ISRIIy)W} ,
where:

2prepr, +Cr

WIsp, Iy) = ———5——
’ V%SR+y%y+Cl
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Here, u represents the mean, ¢ the variance, and o7, I, the covariance of the images. Con-
stants Cq, Cz, and C3 prevent division by zero. SSIM values range from 0 to 1, with higher
values indicating greater similarity.

Subjective evaluation metrics, like the Mean Opinion Score (MOS), rely on human ob-
servers to rate image quality. While reflective of human perception, MOS is time-intensive,
costly, and prone to biases, making it impractical for large-scale evaluations.

To overcome limitations of traditional metrics like PSNR and SSIM, alternative objective
metrics have been introduced:

* Natural Image Quality Evaluator (NIQE): A blind metric that predicts image quality
using statistical features, independent of reference images or human input.

* Learned Perceptual Image Patch Similarity (LPIPS): Focuses on comparing deep fea-
tures between reconstructed and HR images, calculating L2 distances in feature space
to better align with human perception.

The focus of this research is not solely on generating visually appealing images but also
on producing images that are functional and suitable for downstream tasks, such as object
detection. Metrics like PSNR and SSIM, while effective at evaluating perceptual quality,
may not reflect the utility of images in object detection pipelines. To address this limitation,
Shermeyer and Van Etten proposed the use of object detection metrics to evaluate the appli-
cability of reconstructed images. Specifically, ground truth bounding boxes were compared
to predicted bounding boxes for each test image. A true positive is defined as a prediction
with an Intersection over Union (IoU) exceeding a predefined threshold. This threshold can
be adjusted based on the size of the target objects, with lower thresholds applied for smaller
objects to improve detection accuracy.

While significant advancements have been made in super-resolution techniques, key gaps
remain, particularly in their application to aerial imagery. Most methods focus on natural or
satellite images, with limited exploration of their effectiveness on aerial datasets containing
diverse features such as urban environments and buildings. Additionally, there is a lack of
research on how models trained on data captured during one time period perform when
applied to data captured under different temporal or seasonal conditions, where envi-
ronmental changes may impact performance. Evaluating how approaches handle critical
details like building edges or high-frequency textures is essential, as these features are often
crucial for downstream tasks like object detection. Furthermore, there is limited research
on the influence of artifacts introduced by generative methods, particularly GANs, on the
performance of object detection pipelines. This study seeks to bridge these gaps by inves-
tigating metrics that effectively evaluate super-resolution performance in aerial imagery
and examining the applicability of generative methods to this domain while considering
their potential impact on subsequent object detection tasks.
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2.4 Research Questions

The primary aim of this research is to identify the most effective super-resolution techniques
for enhancing 25 cm aerial images to 8 cm resolution, ensuring their applicability for object
detection tasks in deep learning pipelines. To achieve this, the study is guided by the fol-
lowing main research question and sub-questions:

Main Question

Which super-resolution techniques are most effective in enhancing 25 cm aerial images
to 8 cm resolution, ensuring their applicability for object detection tasks in deep learning
pipelines?

Sub - Questions

e How accurately can super-resolution techniques improve spatial resolution from 25 cm
to 8 cm for aerial images?

What are the implications of domain adaptation on super-resolution performance
when comparing synthetic and real aerial images under varying seasonal conditions?

Which deep learning architectures and methods yield the best results for enhancing
aerial images in terms of both perceptual quality and functional utility for object de-
tection tasks?

* What metrics should be used to evaluate the suitability of super-resolved images for
object detection in geospatial applications?

2.5 Scope

The focus of this research will be to evaluate the effectiveness of super-resolution tech-
niques in enhancing aerial images from 25 cm to 8 cm resolution for object detection tasks.
The study will concentrate on the applicability of super-resolution for geospatial analysis,
with an emphasis on improving the functional utility of reconstructed images rather than
purely enhancing perceptual quality. The research will primarily explore deep learning-
based super-resolution methods and their integration with object detection pipelines. While
both perceptual and functional metrics will be analyzed, the primary objective is to assess
how well super-resolved images support object detection tasks, such as identifying specific
features in aerial imagery such as solar panels in buildings roofs. Emphasis will be placed
on methods that have been applied to remote sensing imagery, ensuring relevance to the
domain of aerial data analysis.

The study will not delve deeply into advanced domain adaptation techniques or alter-
native super-resolution frameworks outside the scope of deep learning. Similarly, seasonal
variations will be considered only to the extent they impact model performance for specific
use cases. Finally, while multiple loss functions will be evaluated, only those relevant to the
chosen methodology will be analyzed in detail.

This research takes advantage of the availability of both LR and HR datasets to evaluate
super-resolution techniques. The methodology involves a two-step iterative process: first,
downscaling HR images to create synthetic LR datasets for model training and initial super-
resolution outputs, and second, applying the saved model weights to real-world LR datasets
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to assess their performance. This approach allows for a comprehensive evaluation of super-
resolution techniques, focusing on both synthetic and real-world data and will be described
more in depth in the following chapter.
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3 Methodology

The general methodology adopted for this research is presented in Figure 3.1. The workflow
begins with preliminary research to explore and evaluate various algorithms suited for the
specific use case. Then the data will be collected and pre-processed. The data will be drawn
from different categories of urban settings. Following this, the most effective deep learning
model will be selected based on initial experiments conducted on a subset of the data to
ensure computational efficiency.

Once the optimal model is identified, it will be fully implemented and trained using the
entire dataset to achieve comprehensive results. The next phase is about the optimization
of the model and will focus on the validation and evaluation of the model’s performance
as well as fine tuning the parameters. Finally, the results will be obtained and if time is
not limited, the super-resolution model will be integrated with the object detection pipeline
provided by the company to assess its applicability in real-world tasks.

Research

A

Data collection

A

Model Development

A

Model Optimization

A

Results

v

Integration in Object
Detection Pipeline

Figure 3.1: Methodology Flow Chart
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3.1 Experimental Design

Initially, aerial images of the study will be selected from specific regions of the Netherlands.
A grid will be applied to the selected areas, and tiles will be generated to create HR-LR
pairs for analysis. Optionally, a script will be implemented to ensure consistent tile selec-
tion based on unique tile IDs. The tile size will be determined based on the requirements
of the approach being followed, and adjustments, such as overlaps between tiles, may be
considered if necessary. Additionally, there is a possibility of adopting different approaches
tailored to regions with distinct characteristics, ensuring the methodology accommodates
the diverse attributes of the study area. Once tiling is complete, files containing both HR
and LR data will be generated, completing the pre-processing step for the data. Figure 3.2
illustrates an example of these steps for the Delft region.

Netherlands

Delft Delft Grid Create tiles of specific size HR - LR pairs

1 2A3 |4..)

HR

o B o \:‘
LR

Figure 3.2: Pre-processing steps for Delft (example)

Next, the strategy, also shown in Figure 3.3, involves two iterations:

1. In the first iteration, HR images will be downscaled to create synthetic LR images. The
model will then be trained on these pairs to generate super-resolution (SR) outputs.

2. In the second iteration, ground truth LR images will be used alongside the saved model
weights from the first iteration to produce new SR images.
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Figure 3.3: Strategy illustration

3.2 General Hypotheses

The hypotheses are as follows:

For Iteration 1:

1. The SR model trained on synthetic LR-HR pairs will achieve high reconstruction qual-
ity on synthetic LR validation images due to consistent domain characteristics.

Testing: Evaluate model performance on synthetic LR-HR validation pairs. Compare the
Generated HR with the Ground Truth HR and with the use of the metrics try to get as close
to this.

For Iteration 2:

1. The SR model trained on synthetic LR-HR pairs will show reduced performance on
real LR images due to the domain gap between synthetic and real LR data.

Testing: Compare metrics for real LR-HR pairs with synthetic LR-HR pairs.

Mutual Hypothesis:

¢ Fine-tuning the model trained on synthetic LR-HR pairs with a small subset of real
LR-HR pairs will significantly improve SR performance on real LR images.

Testing:

¢ Compare performance on real LR-HR pairs before and after fine-tuning with real LR-
HR data.

¢ See the impact of having LR-HR pairs of different time periods.

* Focus more on the buildings and not vegetation, forests, fields etc.
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3.3 SR Model Hypotheses

Here’s a refined and more polished version of your paragraph:

As reviewed previously, there are numerous deep learning approaches for super-resolution,
each utilizing distinct methodologies and learning techniques. For this research, three spe-
cific approaches were selected for implementation: transformer-based methods, CNN-based
methods, and generative methods. The hypotheses for these methods are as follows:

1. Transformer-Based Methods: Transformer-based models are expected to perform par-
ticularly well in scenes with rich edges and complex contours, such as urban environ-
ments with high-rise buildings or intricate structures. Their ability to model long-
range dependencies and recover high-frequency details enables them to effectively
reconstruct fine textures and delineate edges, even in challenging settings with high
variability.

2. CNN-Based Methods: Leveraging their hierarchical feature extraction capabilities,
CNNs are hypothesized to produce robust results by capturing both low-level and
high-level image features. Additionally, their ability to incorporate multiscale wavelet
analysis allows them to extract multiple orientations and frequency representations,
making edges scalable across various urban settings. This means that CNNs can adapt
to features of small buildings as well as larger structures like skyscrapers, ensuring
consistent edge preservation and detail reconstruction across diverse urban environ-
ments.

3. Generative Methods: With their emphasis on perceptual quality, generative approaches
are hypothesized to excel in delivering visually realistic outputs. While these meth-
ods may occasionally introduce artifacts, the use of carefully designed loss functions
can mitigate this risk, making them potentially suitable for tasks like building edge
reconstruction and texture enhancement. Generative methods, when optimized, may
be particularly effective for cases like this study, where both structural and perceptual
qualities are critical.

3.4 Experimental Setup Decisions

3.4.1 Basic Model to be Adapted

An important decision in this research involves selecting the appropriate model architecture
for the super-resolution task. The choice of model will depend on the requirements and
characteristics of the two iterations in the experimental setup. One possibility is to use a
single model for both iterations, leveraging a shared architecture to handle both synthetic
and real-world low-resolution data. Alternatively, different models may be employed for
each iteration, with the first iteration focusing on synthetic LR-HR data and the second
iteration addressing real-world LR-HR pairs.

This decision will be guided by the performance of candidate models during preliminary
testing, with factors such as reconstruction accuracy, computational efficiency, and the ability
to generalize to different environmental and temporal conditions being taken into account.

3.4.2 Data Selection

To speed up preliminary testing and optimize code, the experiments will initially be con-
ducted on a limited number of tiles rather than the entire NL dataset. If the approach and
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results from the preliminary tests are satisfactory, the experiment will be scaled up to in-
clude more tiles covering the complete NL region. These tiles will be split appropriately
from the entire dataset.

3.4.3 Tile Size & Overlap

Commonly used tile dimensions in similar projects are 256 x 256 pixels or 400 x 400 pix-
els. The final tile size will be determined based on the requirements of the selected super-
resolution approach, balancing computational efficiency and output quality. Additionally, a
decision will be made on whether the tiling process should include overlapping tiles. Incor-
porating overlap may help preserve contextual information at the edges of tiles, which can be
critical for achieving better super-resolution results, but it may also increase computational
overhead. For the context, the entire area of the Netherlands contains:

* Approximately 11,316 tiles of 256x256 pixels at a resolution of 25 cm.

* Approximately 110,080 tiles of 256x256 pixels at a resolution of 8 cm.

3.4.4 Categorization of Urban Settings

To enhance model generalization and ensure robust performance across various regions, the
dataset will be categorized based on distinct urban settings. These categories are designed
to capture diverse environmental characteristics and will serve as the classes for the model.
Potential categories include areas with high-rise buildings, open fields or agricultural land,
lakes and water bodies, low-density suburban regions, and industrial areas or ports. The
final selection of categories will depend on the approach adopted and the relevance of these
settings to the super-resolution problem. This categorization will guide the model in learn-
ing features specific to each type of urban environment, ultimately improving its adaptabil-
ity and accuracy in diverse scenarios. Ideally we wamt the model to include samples of
different regions of the Netherlands so it can learn from different set ups such as high raise
buildings in the area of Rotterdam to houses near farmlands in areas like Limburg.

3.5 Preliminary Results

For this stage of the research, in order to provide preliminary results, the three methods
described below were applied to evaluate their performance. The results align with the
workflow of iteration 1, where the input consisted of HR (8 cm) photos that were down-
scaled to create synthetic LR (25cm) photos. These synthetic LR photos were then processed
through the models to generate HR (8cm) images.

3.5.1 SRGAN

SRGAN was introduced by Ledig et al. [2017] and involved applying GANSs to address the
super-resolution problem. This framework was the first model capable of generating realistic
natural images at a 4x scale. It uses GANs for super-resolution reconstruction, introduces
a perceptual loss function to replace the traditional MSE-based content loss, and proposes
a novel image quality evaluation metric. The SRGAN architecture consists of a generative
network trained using perceptual loss and a discriminative network. While SRGAN achieves
effective reconstruction, it falls short in refining image texture details, leaving some artifacts
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in the output. The results of this method across various categories are illustrated in Table
3.1.

3.5.2 TransENet

As described in Section 2.3.4, TransENet is a hybrid model combining transformers and
CNN s to enhance remote sensing images. Introduced by Lei et al. [2022], this approach cap-
tures long-distance dependencies and effectively mines correlations between high- and low-
dimensional features. It incorporates a transformer-based multistage enhancement structure
composed of multiple encoders and decoders that leverage multilevel information. The re-
sults achieved by this method across various categories are shown in Table 3.2.

3.5.3 WMCNN

The framework adopted by Wang et al. [2018] involves an image super-resolution method de-
signed specifically for aerial imagery, utilizing wavelet analysis. Multiple CNNs are trained
to approximate multiscale representations, which enable efficient image restoration. This
framework combines the representational power of CNNs for learning specific features with
the multiscale capability of wavelet analysis to capture multiple orientations and frequency
representations. The results of this method across various categories are illustrated in Table
3.3.
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Image 1

Image 2

Image 3

LR Input (100x100)

LR Input (100x100)

LR Input (100x100)

Real World (400x400)

Generated Output (400x400)

Table 3.1: Comparison of SRGAN Input, Real World, and Generated Output Images with

Horizontally Aligned Labels
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Image 1

Image 2

Image 3

LR Input (64x64)

LR Input (64x64)

LR Input (64x64)

Real World (256x256)

8L

Generated Output (256x256)

Generated Output (256x256)

)

Table 3.2: Comparison of TransENet Inputs, Real World, and Generated Outputs
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Image 1 Image 2 Image 3

LR Input (100x100) LR Input (100x100) LR Input (100x100)

Real World (400x400) Re World (400x400)

Real World (400x400)
s .r‘;” ; NS

-

“*

Generated Output (400x400)

Table 3.3: Comparison of WMCNN Inputs, Real World, and Generated Outputs

3.5.4 Running Time

The running time for the tiling and saving process as well as for the Super Resolution models
are given below. These would play an important role to decide later the extend of the data
that we will be using for the experiments.

Resolution Speed (Tiles/s) | Speed (Tiles/s)
Low Resolution 25 cm (LR) 2.5 35
High Resolution 8 cm (HR) 1.5 2.5

Table 3.4: Tiling and Saving Process Speeds for LR and HR
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Method | Train | Test | Validation | Epochs | Scale | Running Time
TransENet | 400 | 100 60 500 x4 40 minutes
WMCNN | 400 | 100 60 500 x4 1 hour

SRGAN 400 40 40 4000 x4 7 hours

Table 3.5: Super-Resolution Process Details

3.5.5 Observations

Even though it is not yet possible to determine which model performed the best without
fine-tuning specific parameters and loss functions, it can be seen that all models successfully
produced satisfactory results. They managed to preserve the edges and avoided introducing
artifacts into the generated images. While the results might appear slightly blurry, consider-
ing the limited amount of training data and the constraints on the number of epochs—since
these were preliminary results—they are efficient. In the next stage, a deeper understanding
of each method will be incorporated, alongside parameter optimization and process modifi-
cations, to achieve improved outcomes. Additionally, due to time constraints, metrics could
not be gathered at this point but will be included and discussed during the P2 presentation.
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4 Dataset & Tools

4.1 Aerial Imagery

The aerial imagery provided to Readar B.V. by Beeldmateriaal is captured using airplane-
mounted cameras to accurately map the Netherlands. These flights produce a variety of
products, with this research focusing on high-resolution (HR) and low-resolution (LR) aerial
photographs. Both types of imagery are captured annually, ensuring up-to-date geospatial
data.

4.1.1 High-Resolution Imagery

High-resolution photographs (HR photos) are captured during the winter, also referred to
as the leafless season, before April 23. These images are taken with a 60% longitudinal
overlap and a 30% lateral overlap to enable stereoscopic viewing. The resulting images have
a resolution of 7.5 cm. After processing, they are stitched together to form a nationwide
ortho-photo mosaic with a ground pixel resolution of 8 cm.

4.1.2 Low-Resolution Imagery

Low-resolution aerial photographs (LR photos) are taken during the summer, when trees
are in full leaf. These images provide a nationwide color aerial photograph with a ground
pixel resolution of 25 cm. The photographs are captured with an 80% longitudinal overlap
and a 20% lateral overlap.

4.1.3 Image Specifications

Both HR and LR photographs are stored in TIFF format and feature a 32-bit RGBI color
palette, with 8 bits per color channel. Each individual aerial photograph is accompanied
by an XML file containing metadata information. This metadata complies with the current
Dutch metadata profile based on ISO 19115. For this research, the images will primarily be
utilized in either RD (Rijksdriehoek): EPSG: 28992 or WGS-84 (World Geodetic System
1984): EPSG: 4326 projections.

For the initial phase of this research, a sample of the data is presented using images cap-
tured in the Delft region as an example. Figure 4.1 illustrates high-resolution (HR) and
low-resolution (LR) aerial images of Delft at different zoom levels, highlighting the differ-
ences in detail and resolution.
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Table 4.1: Aerial Imagery of Delft in High-Resolution (HR) and Low-Resolution (LR) at
Different Zoom Levels

High-Resolution (HR) Low-Resolution (LR)
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4.1.4 Software Tools

The implementation of this thesis will involve several software tools. QGIS will be used for
visualizing the data and analyzing the results. For programming, Python and MATLAB will
be utilized to develop, edit, and run code, either through the Windows Command Prompt
or the Windows Subsystem for Linux (WSL). For accessing the database, DBeaver will be
used alongside SQL queries to retrieve data as needed. The thesis document will be written
in Overleaf, a LaTeX editor and all figures will be created using Miro.com and drawi.io.
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5 Planning

The planning and phasing aligned with the academic calendar are illustrated in Table 5.1
and Figure 5.1. Key dates and events are outlined below, based on the academic calendar.

The exact dates will be finalized during the year after agreeing with the supervisors.

Gantt Chart

a

Stage Timeline

Kick-Off Week 5: 27 Jan - 02 Feb
Midterm Week 16: 14 Apr - 20 Apr
Green Light | Week 21: 19 May - 25 May
Finalisation | Week 26: 23 Jun - 29 Jun

Table 5.1: Thesis Timeline
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Figure 5.1: Gantt chart of activities
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6 Meetings-Supervisors-Contact

Meetings with TU Delft supervisors will occur approximately every two weeks to provide
academic guidance. Meetings with company supervisors at Readar will be held every 5-6
weeks, focusing on aligning research outcomes with practical objectives. Additionally, fre-
quent updates on thesis progress will be shared to maintain communication.
The supervisors for this thesis project are as follows:
Delft University of Technology
¢ Main mentor: Dr.ir. B.M. Meijers
e Second mentor: Dr. A. (Azarakhsh) Rafiee
Readar

¢ External supervisor: Sven Briels

This thesis project is conducted in collaboration with Readar, with the work primarily tak-
ing place at their offices located at Utrecht University. The external supervisor from Readar
will provide support for use cases and technical matters. At TU Delft, research-related guid-
ance will be provided by both university supervisors. Feedback from both Readar and TU
Delft will be received throughout the thesis to ensure steady progression and quality im-
provement.

Contact details:

Michalis Michalas
Student number: 6047378
M.MICHALAS@student.tudelft.nl
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Appendix

Table 6.1: Common datasets for image super-resolution (SR) and remote sensing image tasks.

Dataset Resolution Description
BSDS300/500 435%367 Animal, scenery, decoration, plant, etc.
432x370
DIV2K 1972x1437 People, scenery, animal, decoration, etc.
Set5/Set14/Urban100  256x256 Includes categories such as baby, butterfly, bird,
512x512 head, woman, baboon, bridge, coastguard, fore-
man, etc.
Urban100 984x797 Construction, architecture, scenery, etc.
AID 600x600 Airports, deserts, bare land, beach
RSSCN7 400x400 Farmlands, parking lots, residential areas, lakes,
etc.
WHU-RS19 600x600 Bridge, forest, pond, port, etc.
UC Merced 256x256 21 categories: rivers, forests, and agricultural zones,
etc.
NWHU-RESISC45 256x256 45 categories: airports, basketball courts, residen-

tial areas, ports, etc.
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Table 6.2: Summary of Super-Resolution (SR) Approaches

Approach Description

Early Methods Techniques such as nonuniform interpolation, frequency
domain analysis, deterministic and stochastic regulariza-
tion, and projection onto convex sets. Commonly used in
the early stages of SR development.

Pansharpening and Mul- | Classical methods for remote sensing tasks, using tech-

tispectral Fusion

niques like component substitution (CS), multi-resolution
analysis (MRA), variational optimization (VO), spectral
unmixing, and Bayesian models. These methods require
multi-band data.

Single-Image SR (SISR)

Enhances the resolution of a single low-resolution (LR)
image. Simple to implement and widely applicable.

Multi-Image SR (MISR)

Uses multiple LR images of the same scene to reconstruct
a higher-resolution (HR) output by aligning and fusing
the images.

LR-HR Image Fusion

Combines low-resolution and high-resolution images to
produce enhanced outputs by leveraging HR details.

SRCNN (2015)

A CNN-based SR method with three layers designed for
feature extraction, nonlinear mapping, and reconstruc-
tion. Requires pre-upsampling using bicubic interpola-
tion.

VDSR (2016)

Introduced residual learning to predict the residuals be-
tween the bicubically upsampled LR image and the HR
output, improving accuracy and training efficiency.

ResNet (2016)

Uses a residual learning framework to simplify the train-
ing of very deep networks by focusing on residuals rela-
tive to layer inputs.

Recursive Networks

(e.g., DRCN)

Based on parameter sharing, these networks repeatedly
use the same convolutional layer, reducing the number of
trainable parameters and computational complexity.

Post-Upsampling Frame-
works

Replaces traditional upsampling methods with learnable
upsampling layers, working entirely in low-dimensional
space until the final reconstruction stage. Efficient but
struggles with intermediate feature enhancement.

TransENet (Transformer-
Based Enhancement
Network)

Utilizes both high-dimensional and low-dimensional fea-
tures after upsampling layers to enhance representation.
Incorporates transformers to capture long-range depen-
dencies and correlate features from different stages.

GANs (Generative Ad-
versarial Networks)

Generates visually realistic HR images by using a
generator-discriminator framework. Focuses on percep-
tual quality but faces challenges like hallucination arti-
facts and training instability.
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