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a b s t r a c t 

The boundaries of numerical domains for free-surface wave simulations with marine structures generate 

spurious wave reflection if no special measures are taken to prevent it. The common way to prevent re- 

flection is to use dissipation zones at the cost of increased computational effort. On many occasions, the 

size of the dissipation area is considerably larger than the area of interest where wave interaction with 

the structure takes place. Our objective is to derive a local absorbing boundary condition that has equal 

performance to a dissipation zone with lower computational cost. The boundary condition is designed for 

irregular free-surface wave simulations in numerical methods that resolve the vertical dimension with 

multiple cells. It is for a range of phase velocities, meaning that the reflection coefficient per wave com- 

ponent is lower than a chosen value, say 2%, over a range of values for the dimensionless wave number 

kh . This is accomplished by extending the Sommerfeld boundary condition with an approximation of the 

linear dispersion relation in terms of kh , in combination with vertical derivatives of the solution variables. 

For this article, the boundary condition is extended with a non-zero right-hand side in order to prevent 

wave reflection, while, at the same time, at the same boundary, generating waves that propagate into the 

domain. Results of irregular wave simulations are shown to correspond to the analytical reflection coef- 

ficient for a range of wave numbers, and to have similar performance to a dissipation zone at a lower 

cost. 

© 2019 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

We employ a numerical method for simulations of extreme, ir-

egular free-surface wave interaction with (floating) structures at

ea. A major issue is that waves reflect from computational do-

ain boundaries when no special measures are taken to prevent

eflection. Dissipation zones are often used near domain bound-

ries to resolve the issue. Dissipation zones induce a decrease of

ave energy so that when waves reach the boundary and reflec-

ion occurs, the wave height has reduced to such an extent that

purious reflection does not interfere with the processes near the

tructure of interest. 

Dissipation zones need to be several typical wave lengths L p 
ong to be effective, where L p is the wave length associated with

he peak frequency of the irregular wave spectrum. Consider, for
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nstance, the setup of the domain in Rivera-Arreba et al. [22] : for

his situation with unidirectional incoming waves, the dissipation

one in front of the structure (with respect to the wave direction)

s one L p long and the dissipation zone behind the structure takes

p two L p . With an area of interest that is one L p , the dissipation

ones comprise the larger part of the domain size and, hence, the

omputational effort. In a setting with multidirectional waves, with

issipation zones on all sides of the area of interest, the ratio of

rea of interest to dissipation zone area becomes even worse. Tech-

iques such as stretching the grid with increasing distance from

he area of interest can be employed to mitigate part of the com-

utational effort and memory requirements, but dissipation zones

ake up a considerable amount of the total computational effort

equired for the simulation nonetheless. 

There are two common alternatives for dissipation zones: 1.

erfectly Matched Layers (PMLs) [1] , and 2. local boundary con-

itions. PMLs are improved dissipation zones and require smaller

ones to be added to the computational domain. We will not

onsider PMLs, because we wish to investigate a local absorbing
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Axis system at the boundary. 
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boundary condition that does not require any additional areas at-

tached to the computational domain. Without any additional areas,

local absorbing boundary conditions are the more computationally

efficient alternative to dissipation zones for preventing wave reflec-

tion. Here, a local absorbing boundary condition for long-crested

irregular waves is derived with similar spurious wave reflection as

a two-wave-lengths-long dissipation zone at a reduced computa-

tional effort. 

The absorbing boundary condition is based on a local bound-

ary condition operator in combination with a rational approxima-

tion of the free surface wave dispersion relation and with second

derivates of velocity and pressure in vertical direction, derived in

Wellens [26] . This approach extends the range of wave numbers

over which spurious wave reflection is low compared to the Som-

merfeld boundary condition. The range was further extended in

terms of both dispersion (wave number) and direction of the wave

components in Düz et al. [7] , by multiplying the boundary condi-

tion with an additional boundary condition operator. 

What the current article adds to the earlier work is that the

absorbing boundary condition is extended with a non-zero right-

hand side to generate incoming waves, while outgoing waves are

absorbed at the same time. Some approximations of the disper-

sion relation lead to stability issues. A stability analysis is pre-

sented to prevent instabilities. The absorbing boundary condition

can be combined with any numerical method for free-surface wave

simulations that resolves the vertical dimension with multiple grid

cells. For the purpose of wave impacts on marine structures, the

boundary condition was implemented in ComFLOW [18] , a numer-

ical method for free-surface waves that is based on the Navier-

Stokes equations with a Volume of Fluid approach for the free su-

face. Both the absorbing performance and the combined generating

and absorbing performance are verified by comparing the spuri-

ous reflection coefficients of irregular wave simulations to the the-

oretical reflection coefficients. And finally, it is demonstrated that

the generating absorbing boundary condition (GABC for short) not

only works in theoretical wave propagation simulations, but can be

used as a computationally efficient alternative to dissipation zones

in a simulation of wave interaction with - and wave impact loads

on - a structure in the free surface, which is validated by an exper-

iment. 

2. Governing equations 

The numerical method we employ for wave interaction with

floating structures solves the Navier–Stokes equations for a fluid

in the presence of a free (liquid) surface in a cartesian grid do-

main, where the grid lines are colinear with the components of the

cartesian right-handed axis system with x = (x, y, z) T . The Navier–

Stokes equations impose conservation of mass and conservation of

momentum, respectively: 

∇ · u = 0 (1)

∂ u 

∂t 
+ ( u · ∇ ) u + 

1 

ρ
∇p − ∇ · ( ν∇ u ) − f = 0 , (2)

in which the fluid velocity vector is represented by u = (u, v , w ) T .

Scalar p is the pressure, ρ is the fluid density and ν is the kine-

matic viscosity. f represents gravity (0 , 0 , −g) T acting as an exter-

nal body force. 

The indicator function for free surface, S , is displaced in time

and space by: 

DS 

Dt 
= 

∂S 

∂t 
+ u · ∇S = 0 , (3)

in a manner derived from Hirt and Nichols [16] , in combination

with a local height function in a 3x3x3 block of cells [18] . The free

surface is reconstructed using PLIC [28] . 
The simulations in Sections 7 and 8 are single phase (water and

oid) with a boundary condition for the pressure. The following

oundary condition for the pressure is imposed by means of inter-

olation towards the reconstructed position of the free surface: 

p + 2 μ
∂ u n s 

∂ n s 
= −p 0 + σ κ, (4)

here n s is the direction normal to the free surface and p 0 is the

tmospheric pressure. The surface tension is represented by σ and

he curvature of the free surface by κ , which is computed from the

alues of the local height function. 

Near domain boundaries it is convenient to use an axis sys-

em with a component n normal, and a component τ tangential

o boundary B, see Fig. 1 . The side walls of the domain are vertical

nd z is directed upward with respect to the n − τ -plane. The di-

ection of impinging waves on the boundary will be expressed by

ngle θ with respect the normal direction n to the boundary. 

Near the boundary, sufficiently far away from a structure in the

ow, we assume that the flow is irrotational. Near the boundary,

e also assume that we can apply a local linearization. This allows

or the introduction of a linear potential function 	, whose spa-

ial derivatives yield the velocity in the direction of the derivative

	 = u . With the potential, the continuity equation and linearized

omentum equation become: 

 

2 	 = 0 (5)

∂	

∂t 
+ 

p 

ρ
− gz = 0 . (6)

he boundary conditions at the free surface simplify to: 

∂ζ

∂t 
− ∂	

∂z 
= 0 (7)

p = gζ . (8)

oth are imposed at the mean free-surface position at z = 0 . ζ is

he free-surface position with respect to z = 0 . 

The propagating periodic solution to the system of equations in

5) to (8) in a finite water depth h , where the bottom is considered

mpermeable, i.e. ∂ 	/∂ z = 0 at z = −h, is given by: 

j = 

ζa, j g 

ω j 

cosh (k j (h + z)) 

cosh (k j h ) 
sin (ω j t − k j n ) . (9)

ere, ζ a,j is the wave amplitude, ω j is the wave frequency, k j is the

ave number and j is an indicator for the wave component under

onsideration. 
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Eqs. (6)–(8) can be combined with solution (9) to obtain the

ispersion relation: 

 

2 
j = k j g tanh (k j h ) , (10) 

hich for our purposes is be rewritten into a formulation for the

hase velocity c j : 

 j = 

ω j 

k j 
= 

√ 

gh 

√ 

tanh (k j h ) 

k j h 

. (11) 

y dispersion we mean that each wave frequency has a differ-

nt phase velocity. This aspect is particularly difficult for bound-

ry conditions for irregular free-surface waves that are considered

o be composed of many wave components with each their own

mplitude, frequency and, hence, phase velocity. 

The system of equations in (5) to (8) can also be recombined

nto a planar wave equation for the potential at the mean free sur-

ace: 

∂ 2 

∂t 2 
− c 2 j ∇ 

2 

)
	 j = 0 at z = 0 . (12) 

ave Eq. (12) is the starting point for the derivation of wave

oundary conditions at domain boundaries. 

. Background 

For a local generating absorbing boundary condition three as-

ects are relevant: (1) wave directionality, (2) wave dispersion and

3) incoming and outgoing waves, or - in other words - generation

nd absorption of waves. Literature predominantly discusses ab-

orbing boundary conditions, which are also called non-reflecting

oundary conditions or radiation conditions, with an emphasis on

ave directionality, see Givoli [9] . It is relevant for the deriva-

ion of our boundary condition to discuss all three aspects, starting

ith wave directionality. 

An example of an absorbing boundary condition for wave

q. (12) is the Sommerfeld equation: 

∂ 

∂t 
+ c 0 

∂ 

∂n 

)
	 = 0 , (13) 

n which c 0 is a typical value that approximates the apparent phase

elocity at the boundary. The apparent phase velocity for waves

ith phase velocity c that approach the boundary under angle

with respect to the boundary’s normal direction is higher and

qual to c /cos ( θ ). If c 0 is the same as the apparent phase velocity,

hen there is no reflection. The more c 0 is different from the appar-

nt phase velocity of a wave component, the more it is reflected.

he amount of reflection is found from the reflection coefficient: 

 = 

c 0 − c/ cos (θ ) 

c 0 + c/ cos (θ ) 
, (14) 

hich is the ratio of amplitudes of the outgoing and the reflected

ave components. One could say that the Sommerfeld boundary

ondition is only accurate, i.e. has low reflection, for a small range

f wave directions where c 0 is close to c /cos ( θ ). The development

f boundary conditions is concerned with extending the range of

irections over which low reflection occurs. 

There are two families of absorbing boundary conditions for

ave directionality. One is the family of boundary conditions

here the c /cos ( θ ) behaviour in the apparent phase velocity is

pproximated with derivatives of the solution variables in tangen-

ial direction τ along the boundary, see Fig. 1 . Engquist and Ma-

da [8] suggested an order expansion of c /cos ( θ ), where including

ore terms in the expansion leads to higher derivatives along the

oundary and a larger range over which the absorbing boundary
ondition is accurate. The expansion to O ( 1 ) leads to the Sommer-

eld equation with c 0 = c. The expansion to O ( 2 ) gives: 

c 
∂ 2 

∂ t∂ n 

− ∂ 2 

∂t 2 
+ 

c 2 

2 

∂ 2 

∂τ 2 

)
	 = 0 . (15) 

From Eq. (15) we find that higher order approximations of the

ispersion relation give higher derivatives along the boundary in

he absorbing boundary condition operator. By means of higher

erivatives in the ABC, waves with larger incoming angles to the

oundary are accurately absorbed. 

The other family of boundary conditions approximates c /cos ( θ )

ith derivatives of the solution variables in normal direction to the

oundary. Introduced by Higdon [15] , it is given by: 

J 
 

j=1 

(
∂ 

∂t 
+ c j 

∂ 

∂x 

)
	 = 0 . (16) 

Wave reflection becomes smaller as the order of the absorbing

oundary condition increases. The order of the boundary condition,

n this sense, reflects the number of products J used to construct

he operator. Higher order absorbing boundary conditions feature

igher derivatives. As the order of the absorbing boundary condi-

ion increases, it becomes increasingly difficult to implement the

umerical equivalent of the higher derivatives at the boundary.

ivoli [10] reports that Higdon operators beyond order three are

arely found in the literature. Collino and Joly [5] introduced auxil-

ary variables to remedy the difficulties with implementing higher

erivatives. Instead of N th derivatives, then a system of N + 1 ad-

itional equations is solved at the boundary. 

Auxiliary variables have been used in N th order absorbing

oundary conditions derived by Grote and Keller [12] , Givoli and

eta [11] and Hagstrom and Warburton [14] , among others. The

agstrom-Warburton formulation of the auxiliary system of recur-

ive equations is: 

a 0 
∂ 

∂t 
+ c 

∂ 

∂n 

)
	 = a 0 

∂ 

∂t 
ξ1 (17) 

a j 
∂ 

∂t 
+ c 

∂ 

∂n 

)
ξ j = 

(
a j 

∂ 

∂t 
+ c 

∂ 

∂n 

)
ξ j+1 for j = 1 , 2 , . . . , N, 

(18) 

N+1 = 0 , (19) 

here a j are coefficients and ξ j are auxiliary variables. The set of

quations features none higher than first derivatives in normal di-

ection to the boundary. The major difficulty of this way of for-

ulating boundary conditions are the corner conditions required

ear the ends of domain boundaries. An overview is provided by

agstrom et al. [13] . We did not choose this approach because it

roved difficult to combine auxiliary variable absorbing boundary

onditions with incoming waves over the same boundary. 

Dispersion of free-surface waves, the fact that each wave fre-

uency has a different phase velocity, has not been an explicit sub-

ect in most of the literature regarding absorbing boundary con-

itions. As was discussed for wave directionality, the Sommerfeld

quation is accurate in a limited range around phase velocity c 0 .

he objective of a better absorbing boundary condition is to ex-

end the range of wave frequencies over which the reflection is

ow. We found two ways to account for dispersion at the boundary:

ne is to use a low order boundary condition and combine it with

n estimator for the apparent phase velocity at the boundary, the

econd is to use approximation of a non-local absorbing boundary

ondition with vertical derivatives of the solution variables. As an

xample of the former, we mention Orlanski [20] . He suggests the
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Fig. 2. The resolved phase velocity c as a function of time, when the Orlanski 

boundary condition is used. The discontinuities result from the zero crossings of 

the denominator in the equation for c . The irregular wave signal was generated 

with a JONSWAP spectrum with T p = 15 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

a  

c  

v  

i  

t  

o  

t  

s

 

f  

m(
 

 

b  

o  

r  

t  

v  

l  

l  

t  

w

4

 

w  

l  

p  

s  

h  

o  

s  

s  

o  

t  

n

(
 

 

p  

t  

n  

k  

t

 

r  

r  

p

 

 

e  

W  

t  

b  

F  

i 1 2  
use of the Sommerfeld condition, with a dynamic approximation

of the phase velocity, obtained from the solution itself: 

c 0 = − ∂ 	/∂ t 

∂ 	/∂ n 

. (20)

Fig. 2 shows a representation of the phase velocity, when the

Orlanski boundary condition is applied to an irregular wave signal

conforming to a JONSWAP spectrum with peak period T p = 15 s. It

shows rather large discontinuities in the resolved value for c , co-

inciding with the times where the denominator in (20) becomes

zero, which can and will lead to an unstable simulation. There are

stabilization methods, such as weighted moving average filtering of

c 0 in [3] , but these methods show large reflection for wave com-

ponents with an apparent phase velocity that is different from the

filtered c 0 . 

Dgaygui and Joly [6] discuss absorbing boundary conditions for

the simulation of free-surface waves in the nz -plane. Herein, an

exact, non-local absorbing boundary condition operator is derived.

The exact operator is simplified by means of rational approxima-

tions to yield an absorbing boundary condition that is local in

space and local in time with vertical derivatives of the solution

variables along the boundary. Numerical results are presented for

simulations of long waves with a zeroth order and a first order

boundary condition. With the latter boundary condition, the reflec-

tion was generally small; exact figures were not mentioned. 

In our studies in Wellens [26] , we found that using rational ap-

proximations of the dispersion relation (10) in combination with

vertical derivatives of the solution variables yields a considerable

increase of the range of wave frequencies and phase velocities that

can be absorbed accurately. In Düz et al. [7] , further extension of

the range with low reflection was obtained by combining the ver-

tical derivatives of the solution variables with derivatives in nor-

mal direction to the boundary as in Higdon [15] . It proved difficult

to turn the latter approach into a boundary condition for an open

boundary, where waves from inside the domain are absorbed while

waves from outside the domain enter at the same time. 

Another way to derive boundary conditions is by means of the

method of characteristics discussed by Blayo and Debreu [2] , Ver-

boom and Slob [24] and Van Dongeren and Svendsen [23] . Here,

the method of characteristics is applied to the wave equation. Con-

sider again wave Eq. (12) , but now in one dimension in the direc-

tion normal to the boundary: (
∂ 2 

∂t 2 
− c 2 

∂ 2 

∂n 

2 

)
	 = 0 . (21)

The term on the left-hand side of Eq. (21) can be factorized: (
∂ 

∂t 
− c 

∂ 

∂n 

)(
∂ 

∂t 
+ c 

∂ 

∂n 

)
	. (22)
The term 

(
∂ 
∂t 

+ c ∂ 
∂n 

)
	 in Eq. (22) is constant along lines

 n/d t = −c. We call this term the incoming characteristic. 

A boundary condition for wave Eq. (21) is obtained by assigning

 value to the incoming characteristic. When no waves enter the

omputational domain through the boundary, i.e. by assigning a

alue of 0 to the incoming characteristic, the Sommerfeld equation

s obtained. When the incoming characteristic receives a non-zero

ime-dependent right-hand side value, we are sending in waves

ver the boundary, while outgoing waves may leave the compu-

ational domain unaffected. In this way, an open, or generating ab-

orbing boundary is obtained. 

According to Carpenter [4] and Perkins et al. [21] , the Sommer-

eld equation with non-zero right-hand side value should be for-

ulated as follows: 

∂ 

∂t 
+ c 

∂ 

∂n 

)
	 = 

(
∂ 

∂t 
+ c 

∂ 

∂n 

)
	in . (23)

Below, a generating absorbing boundary condition for open

oundaries is derived and evaluated, which combines the method

f characteristics with a rational approximation of the dispersion

elation and vertical derivatives of the solution variables. The ra-

ional approximation and the vertical derivatives of the solution

ariables give an increased range of wave directions and phase ve-

ocities for which reflection is low. The same operator used on the

eft-hand side of the equation is applied to the right-hand side of

he equation that prescribes the incoming characteristic, allowing

aves to enter the domain while outgoing waves are absorbed. 

. Derivation 

To arrive at an absorbing boundary condition for free-surface

ave simulations, we start from Sommerfeld condition (13) and

ook for ways to include the effect of wave dispersion in the ap-

lied c 0 . As explained in the previous section, application of a

olution-dependent value (20) is not general enough. On the other

and, we want to avoid the use of multiple operators as in (16) in

rder not to complicate the numerical implementation with one-

ided higher derivatives in normal direction to the boundary. In-

pired by Dgaygui and Joly [6] , we consider the Fourier transform

f the Sommerfeld equation and replace c 0 by the expression for

he linear dispersive phase velocity (11) , approximated by a ratio-

al [2,2] Padé approximation. 

We start with the Fourier transform of (13) : 

−ω j + c 0 k j 
)
φ j = 0 for j = 1 , 2 , · · · , N. (24)

In our interpretation f 1 : kh → c 0 is a constant function that ap-

roximates dispersion relation (10) over a range of phase veloci-

ies, or equivalently, a range of values for the dimensionless wave

umber kh. c 0 intersects the dispersion relation at one value for

h . Here, the difference between the functions is zero and, hence,

he reflection coefficient is zero, see Eq. (14) . 

The main thought behind our boundary condition is that c 0 is

eplaced by a better approximation of the dispersion relation. A

ational polynomial in kh that is a better approximation to the dis-

ersion relation than f 1 is given by 

f 2 : kh → 

√ 

gh 

a 0 + a 1 ( kh ) 
2 

1 + b 1 ( kh ) 
2 

. (25)

The coefficients a 0 , a 1 and b 1 can be chosen such that differ-

nt kh -ranges of the dispersion relation are approximated well.

ith a 0 = 1 . 0 0 0 , a 1 = 0 . 150 and b 1 = 0 . 367 , the dispersion rela-

ion is approximated near kh = 0 with sixth-order accuracy, as can

e shown by means of a series expansion. This is illustrated in

ig. 3 . It shows the dispersion relation together with the approx-

mating functions f and f (with the coefficients stated above),
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Fig. 3. Approximation of the dispersion relation in (a). In (b), the reflection coeffi- 

cient associated with these approximations. 
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nd it also shows the reflection coefficient for both approximations

f the dispersion relation. The reflection coefficient for f 2 is lower

han for f 1 over a large kh -range. Using f 2 in a boundary condition,

herefore, makes it a better boundary condition for irregular waves

ith wave components in the kh -range where the approximation

s sufficiently accurate. It is a strength of the approach that one

an choose the range over which the approximation is accurate

epending on what range of wave numbers is simulated. There

s a trade-off between accuracy and range. When the range is in-

reased, also the reflection coefficient increases. Fig. 3 also shows

unction f 2 with the coefficients a 0 = 1 . 040 , a 1 = 0 . 106 and b 1 =
 . 289 . With these coefficients, the reflection coefficient is non-zero

ear kh = 0 , but it is less than 2% in the range between kh = 0 and

h = 6 , which is acceptable in many applications. Finding the co-

fficients for a specific simulation was automated by means of a

rute force algorithm that either gives the lowest reflection coeffi-

ient for a given range, or the lowest possible area of the reflection

pectrum for a given wave spectrum. 

When c 0 = f 2 is substituted into boundary condition (24) , we

btain: 

−
(

1 + b 1 
(
k j h 

)2 
)
ω j + √ 

gh 

(
a 0 + a 1 

(
k j h 

)2 
)

k j 

)
φ j = 0 for j = 1 , 2 , · · · , N. 

(26) 
ote that Eq. (26) is multiplied by 

(
1 + b 1 

(
k j h 

)2 
)

. 

Boundary condition (26) cannot be transformed back to the

ime domain, because it is nonlinear in k j . k 
2 
j 

will need to be elim-

nated from the boundary condition. 

The wave number k j can be found by taking derivatives of the

olution in space. Consider the solution of the linear system at the

oundary in Eq. (9) . We find that second derivative of the solu-

ion in vertical direction is equal to the square of the wave number

imes the solution itself 

∂ 2 φ j 

∂z 2 
= k 2 j φ j . (27) 

Eq. (27) is substituted in boundary condition (26) to yield 

−
(
1 + b 1 h 

2 ∂ 2 

∂z 2 

)
ω j + √ 

gh 

(
a 0 + a 1 h 

2 ∂ 2 

∂z 2 

)
k j 

)
φ j = 0 for j = 1 , 2 , · · · , N, 

(28) 

nd can be transformed back from Fourier space. In the time do-

ain, the absorbing boundary condition becomes (
1 + b 1 h 

2 ∂ 
2 

∂z 2 

)
∂ 

∂t 
+ 

√ 

gh 

(
a 0 + a 1 h 

2 ∂ 
2 

∂z 2 

)
∂ 

∂n 

)
	 = 0 . (29) 

It gives little reflection for wave components in the range of

h -values where rational approximation (25) of the dispersion rela-

ion is accurate. To demonstrate how the range of low reflection of

ur boundary condition has increased, the reflection coefficient is

ompared to the reflection coefficient for the Sommerfeld bound-

ry condition. The coefficients in rational approximation (25) were

iven the values a 0 = 1 . 040 , a 1 = 0 . 106 , b1 = 0 . 289 . For the coeffi-

ient in the Sommerfeld equations a value of c 0 = 0 . 6 
√ 

gh is cho-

en. 

Fig. 4 shows the reflection coefficient for a range of kh -values

nd angles of incidence θ for our boundary condition and the Som-

erfeld condition. The area where the reflection coefficient is be-

ow five percent has been enclosed by a bold line; five percent re-

ection is considered tolerable in practical wave simulations. From

ig. 4 , we find that the area with less than 5% reflection has in-

reased considerably. 

The left-hand side of (29) can be viewed as the incoming char-

cteristic of the wave equation, where the effect of wave dispersion

as been approximated using (25) . Following Carpenter [4] and

erkins et al. [21] , the incoming characteristic is combined with a

on-zero right-hand side consisting of the same operator as on the

eft-hand side applied to a known incoming wave potential. With

 non-zero right-hand side, absorbing boundary condition (29) be-

omes: (
1 + b 1 h 

2 ∂ 
2 

∂z 2 

)
∂ 

∂t 
+ 

√ 

gh 

(
a 0 + a 1 h 

2 ∂ 
2 

∂z 2 

)
∂ 

∂x 

]
	 = R 

in , (30) 

n which: 

 

in = 

[(
1 + b 1 h 

2 ∂ 
2 

∂z 2 

)
∂ 

∂t 
+ 

√ 

gh 

(
a 0 + a 1 h 

2 ∂ 
2 

∂z 2 

)
∂ 

∂x 

]
	in . 

e call this boundary condition a GABC, a Generating Reflecting

oundary Condition. 

. Stability 

The range of kh -values for which boundary condition (30) ab-

orbs outgoing waves with little reflection is the range of kh -values

or which the applied underlying dispersion approximation is ac-

urate. That range can be tuned to a particular application by a

uitable choice of the parameters. We optimized these coefficients

or a reflection of less than 2% from kh = 0 to the largest pos-

ible value for kh . However, we found that this set of parame-

ers ( a = 1 . 050 , a = 0 . 100 , b = 0 . 310 ) cannot be applied because
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Fig. 4. Reflection coefficient in percentages as a function of incidence angle θ

and dimensionless wave number kh . The Sommerfeld condition in (a) is compared 

to the boundary condition with a rational approximation in (b). In the boundary 

conditions, c 0 = 2 / 3 
√ 

gh and a 0 = 1 . 040 , a 1 = 0 . 106 , b1 = 0 . 289 were used, respec- 

tively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Roots of the reflection coefficient’s denominator. 
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simulations became unstable. It appears that a 0 , a 1 , b 1 have to sat-

isfy stability constraints. 

So far, we have only considered propagating wave modes, which

are oscillatory in time, oscillatory in horizontal space, and expo-

nential in the vertical, see (9) . Other wave modes that are os-

cillatory in time are the evanescent waves, which are exponen-

tial in horizontal space and oscillatory in the vertical. It can be

shown that they have no effect on the absorption properties of

(30) , which is why we have not considered them. However, it ap-

pears that Eqs. (5)–(8) support yet another type of solution, which

we refer to as spurious modes. These are modes that, like the

evanescent modes, are exponential in horizontal space and oscilla-

tory in the vertical. But rather than being oscillatory in time, they

are exponential in time: 

	s = 

ζa g 

ω s 

cos (k s (h + z)) 

cos (k s h ) 
exp (ω s t − k s n ) , (31)

Here, subscript s is used to indicate that it concerns a spurious

wave mode that grows exponentially in time. When the exponent
s positive, the mode is unstable. With boundary conditions that

re normally applied, spurious modes cannot exist, i.e. stability is

lways satisfied. With our boundary condition, however, it appears

hat certain combinations of a 0 , a 1 and b 1 leave spurious modes

ndefined, as a result of which a simulation will become unstable.

When an incoming and outgoing solution mode are substituted

nto boundary condition (29) , it is possible to formulate a reflection

oefficient as the ratio of their amplitudes. For stable solutions, the

eflection coefficient necessarily has to be smaller or equal than 1:

 sp = 

a 0 −a 1 ( kh ) 
2 

1 −b 1 ( kh ) 
2 −

√ 

tan ( k s h ) 
k s h 

a 0 −a 1 ( kh ) 
2 

1 −b 1 ( kh ) 
2 + 

√ 

tan ( k s h ) 
k s h 

≤ 1 (32)

In (32) , a mechanism is recognized by which the reflection co-

fficient can become larger than 1. Eq. (32) has singularities where

he denominator has roots. The following functions are the expres-

ions from the denominator in (32) . 

f 1 : k s h → 

√ 

tan ( k s h ) 
k s h 

f 2 : k s h → a 0 − a 1 ( k s h ) 
2 

f 3 : k s h → 1 − b 1 ( k s h ) 
2 

(33)

Functions f 1 and f 2 in (33) are plotted in Fig. 5 . The figure shows

nly the real values of f 1 . It has imaginary values in the range

h ∈ [ π /2, π ]. The range of imaginary values gives us the oppor-

unity to ensure stability. If the roots of the functions f 2 and f 3 in

q. (33) are chosen in the range where f 1 has imaginary values,

hen instability cannot occur. This puts restrictions on the values

or the coefficients a 1 and b 1 . In Fig. 5 , the function f 2 is plot-

ed with a 0 = 1 and two different values for a 1 , a 1 = a 0 /π
2 and

 1 = a 0 / 4 π
2 . With these values for a 1 , the roots of f 2 are precisely

n the outer limits of the range kh ∈ [ π /2, π ]. Therefore, the first

equirement for stability is that a 1 has a value between a 0 / π
2 and

 a 0 / π
2 . 

The same line of reasoning applies to the function f 3 in

q. (33) and the value for b 1 . The second requirement for stability,

hen, is that the value for b 1 is chosen between 1/ π2 and 4/ π2 . 

The third and final requirement for stability comes from the

imit behaviour of the reflection coefficient in Eq. (32) . If we con-

ider the limit kh → ∞ of the reflection coefficient, it is found that

 1 should be larger than a 1 to ensure that R ≤ 1 and, hence, to en-

ure stability. This is a stronger requirement for stability than that

 1 should be larger than 1/ π2 : the value for b 1 should in fact be

etween a and 4/ π2 . 
1 
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Fig. 6. Reflection coefficient of a spurious wave mode for a stable set and for an 

unstable set of coefficients. 
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Fig. 7. Definition of the solution variables at the boundary. The boundary condition 

is applied to solve for p i . It is positioned in the center of the mirror cell outside the 

domain. 
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Summarizing the inequalities for the coefficients 

a 0 
π2 < a 1 < 

4 a 0 
π2 and 

 1 < b 1 < 

4 
π2 . 

(34) 

The behaviour of Eq. (32) is the same for every interval

h ∈ < n π /2, n π ] for n = 1 , 3 , 5 , · · · . If the coefficients a 1 and

 1 are chosen in such a way that the roots of the functions f 2 
nd f 3 are in these intervals, stability is ensured. Within these

onstraints, one is free to approximate the dispersion relation for

ropagating wave modes in any interval. Fig. 6 gives an example of

hat the reflection coefficient for a spurious wave mode looks like

hen either a stable set of coefficients – a 0 = 1 . 040 , a 1 = 0 . 106

nd b 1 = 0 . 289 – or an unstable set of coefficients – a 0 = 1 . 050 ,

 1 = 0 . 100 and b 1 = 0 . 310 – is chosen. Here, the stability criterion

hat a 1 has to be larger than a 0 / π
2 is violated. 

. Numerical implementation 

The absorbing open boundary condition developed in the pre-

ious sections is suitable for use in any general-purpose phase-

esolving free-surface wave model. Here, we have implemented

he boundary condition in ComFLOW . ComFLOW was developed

or offshore applications with extreme waves interacting with

tructures. The numerical method in ComFLOW approximates the

avier-Stokes equation on a fixed 3D cartesian grid. The free

urface is advected by means of an improved Volume-of-Fluid

ethod. The velocity is solved explicitly, whereas the pressure is

olved implicitly from a Poisson equation. 
When the superscripts n that indicate the time level are added

o the solution variables, the discrete system of equations be-

omes: 

 u 

n +1 
d 

= 0 , (35) 

 

u 

n +1 
d 

− u 

n 
d 

�t 
= −C 

(
u 

n 
d 

)
u 

n 
d −

1 

ρ
G p 

n +1 
d 

+ νD u 

n 
d + F n d . (36)

Here, M is a divergence matrix for the discrete continuity equa-

ion, C 
(
u 

n 
d 

)
the convective matrix, D a diffusive matrix and G a

radient matrix. V is a diagonal matrix that contains the control

olume size, p d is a vector containing the discrete pressures and

 d is a vector that accounts for the discrete external force. For the

onvective term this notation has been chosen to show that it is a

onlinear term and that elements of the vector with the discrete

elocities u d have been used to construct the matrix. 

Now, the predictor velocity ˜ u d is introduced. This auxiliary vec-

or will contain the contributions of convection, diffusion and ex-

ernal forcing at the old time level: 

˜ 
 

n 
d = u 

n 
d − �tV −1 

(
C 
(
u 

n 
d 

)
u 

n 
d − νD u 

n 
d − F n d 

)
. (37) 

With the predictor velocity, the discrete momentum equation

ecomes: 

 

n +1 
d 

= 

˜ u 

n 
d − �tV −1 1 

ρ
G p 

n +1 
d 

. (38) 

The momentum equation is substituted into continuity Eq. (35) .

he pressure vector on the new time level t n +1 remains on the

eft-hand side of the equation. The predictor velocity is shifted to

he right-hand side of the equation. With the property that G =
M 

T we observe that a discrete Poisson equation for the pressure

s obtained: 

V −1 M 

T p 

n +1 
d 

= 

ρ

�t 
M ̃

 u 

n 
d . (39) 

When the pressure vector at the new time level has been re-

olved, the velocity vector at the new time level u 

n +1 
d 

can be found

rom Eq. (38) . 

ComFLOW solves for velocities and pressures and, therefore, the

ABC also needs to be expressed in terms of the same variables.

he velocity at the boundary u b is the derivative of the poten-

ial in the direction normal to the boundary. The pressure at the

oundary p b follows from the linear momentum equation in (6) .

or notation purposes, p b is defined as p / ρ . The GABC in terms of

ressure and velocity at the domain boundary then becomes: 

√ 

gh 

(
a 0 + a 1 h 

2 ∂ 
2 

∂z 2 

)
u b + 

(
1 + b 1 h 

2 ∂ 
2 

∂z 2 

)
p b = gz c + R 

in , (40) 

here z c is the vertical position of the center of the cell. 

In ComFLOW , the solution variables are staggered within a cell,

ee Fig. 7 for the definition of the variables at the boundary. Cell
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Fig. 8. At the free surface near the boundary no second derivative is calculated. 

Instead, a Sommerfeld equation is solved at the SO-cell boundary. 
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G  
labeling is used to indicate completely filled cells inside the do-

main (F) and mirror cells beyond the boundary (O). The index i is

used to refer to cells in horizontal n -direction. The domain bound-

ary is chosen such that it coincides with the position of the hori-

zontal velocity u b . 

It is essential that the velocity and pressure in the GABC are de-

fined at the same position to prevent phase differences that induce

reflection. The pressure at the boundary p b is obtained from linear

interpolation between the pressures on either side of the bound-

ary: 

p b = 

1 

2 

( p i −1 + p i ) . (41)

It is equally essential that the pressure and the velocity at the

boundary are defined at the same point in time to prevent reflec-

tion. For a boundary condition in terms of pressures, the pressure

at the boundary is determined at time t n +1 . The horizontal veloc-

ity at the new time level u n +1 
b 

can be eliminated by means of the

momentum equation at the boundary (38) . 

The second derivatives in vertical direction in the GABC are

approximated by the operator Z . The operator has been derived

for a stretched grid in the vertical direction and is second order

accurate. The boundary condition with the approximated vertical

derivates is set up an equation for p i,k in a mirror cell outside

the domain. It relates three velocities with two times three pres-

sures on either side of the domain boundary. In this way, a discrete

equation for the absorbing boundary condition is obtained: (
L i −1 ,k −1 L i −1 ,k L i −1 ,k +1 

)
p i −1 + 

(
L i,k −1 L i,k L i,k +1 

)
p i 

= gz c + 

(
N i −1 ,k −1 N i −1 ,k N i −1 ,k +1 

)
˜ u i −1 + R 

in , (42)

in which the matrix coefficients for the pressure are equal to: 

L i −1 ,k −1 = 

(
−χτ + 

1 

2 

ψ 

)
Z k −1 

L i −1 ,k = −ϕτ + 

1 

2 

−
(
χτ − 1 

2 

ψ 

)
Z k 

L i −1 ,k +1 = 

(
−χτ + 

1 

2 

ψ 

)
Z k +1 

L i,k −1 = 

(
χτ + 

1 

2 

ψ 

)
Z k −1 

L i,k = ϕτ + 

1 

2 

+ 

(
χτ + 

1 

2 

ψ 

)
Z k 

L i,k +1 = 

(
χτ + 

1 

2 

ψ 

)
Z k +1 , 

and the coefficients for the velocities are equal to: 

N i −1 ,k −1 = χZ 1 

N i −1 ,k = ϕ − χZ 2 

N i −1 ,k +1 = χZ 3 . 

In the relations above, these coefficients were used: 

ϕ = 

√ 

gh a 0 , χ = 

√ 

gh a 1 h 

2 , ψ = b 1 h 

2 and τ = 

�t 

�x 
. 

The boundary condition features only pressures at the new time

level t n +1 on the left hand side, and horizontal velocities that in-

clude convective and diffusive terms on the old time level t n on

the right hand side. The structure of the discrete GABC is similar

to that of Poisson Eq. (39) . 

Near the bottom and near the free surface, the vertical second

derivatives cannot be continued because the required information

is not available. Near the bottom, we can use (9) to see that the

vertical derivative of velocity and pressure are zero near the bot-

tom at z = −h . Near the free surface such information is not avail-

able, see Fig. 8 . In this figure, cell labeling has been used to in-

dicate the cell type. In empty cells (E) no equations are solved, in
uid cells (F) both governing equations are solved and surface cells

S) are partially filled cells in between E-cells and F-cells in which

oundary conditions are solved. Hence, no pressures and veloci-

ies are determined above the free surface. And a mirror condition,

uch as that near the bottom is not available. Since the largest ve-

ocity variation occurs near the free surface, it seems important for

 properly functioning GABC to accurately approximate the second

erivative there. 

The most obvious solution is to derive an operator for a one-

ided second derivative. The operator only uses solution variables

rom below the free surface. Unfortunately, applying a one-sided

perator for the second derivative near the free surface resulted

n unstable simulations. Instead, a compromise was implemented.

n the cell containing the free surface, no second derivative is cal-

ulated. In the O-cell nearest to the S-cell inside the domain, an

rdinary Sommerfeld equation, such as (13) , is solved with a well

hosen value for c 0 , typically the phase velocity that is associated

ith the peak frequency of the spectrum. This equation is imple-

ented at the cost of accuracy, but at the moment an alternative

s not available. 

. Reflection in irregular wave simulations 

The performance of the absorbing boundary condition is tested

y means of simulations. The performance is better when there is

ess reflection. The reflection coefficient is obtained from irregular

ave simulations; firstly, with the GABC at the downstream end

f the domain for the situation without incoming waves at that

nd; and secondly, with the GABC at the upstream end of the do-

ain (left in Fig. 9 c) for the situation that incoming waves enter

he domain while outgoing waves are absorbed. Reflection coeffi-

ients from the simulations are compared to the theoretical reflec-

ion coefficient. 

There are ways to determine the propagation direction and the

requency content from a set of wave signals, measured at multiple

ocations [25] . These methods, however, are based on linear theory

nd perform worse as waves become steeper. Furthermore, they

ill wrongly attribute numerical effects, such as phase lagging or

ave energy dissipation to propagating waves. 

Therefore, another method to assess the performance of the

ABC in practical circumstances is proposed. First a wave simu-



P. Wellens and M. Borsboom / Computers and Fluids 200 (2020) 104387 9 

Fig. 9. Simulation in a long domain, simulation in a short domain with a GABC 

on the right where only wave absorption takes place, and simulation in a short 

domain with a GABC on the side where generation and absorption take place and 

full reflection on the other side. 
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Table 1 

Domain and grid. 

Parameter Symbol Value 

Water depth h 100 m 

Domain length � ∞ 10000 m 

Domain length � 400 m 

Measurement position x m 200 m 

Horizontal grid distance �x 1 m 

Vertical grid distance �z min 0.2 m 

Vertical grid distance �z max 4.95 m 

Vertical stretch factor ξ 1.05 [-] 

Time step �t 0.01 s 

Simulated time T 600 s 

Table 2 

Coefficients of the boundary procedures. 

Parameter Symbol Value 

GABC coefficient a 0 1.040 [-] 

GABC coefficient a 1 0.106 [-] 

GABC coefficient b 1 0.289 [-] 

Outgoing phase velocity c/ 
√ 

gh 0.58 [-] 

Dissipation zone length � zone 600 m 

Slope damping function β 0.05 [-] 
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ation with waves propagating in positive x -direction is performed

n an infinitely long domain. ’Infinite’, in this sense, means that

he domain length is chosen such, that during the entire measure-

ent time, reflected waves cannot reach the measurement loca-

ion. Then another simulation is performed. This simulation is the

ame as the previous simulation in every respect, except the do-

ain length. The domain is short with a GABC at the outflow end.

egistrations of the surface elevation, taken at the same positions,

re compared to measurements on the infinite domain. Everything

eing the same, the difference can only be attributed to the bound-

ry procedure. The infinite domain and the shorter domain with

he GABC are shown in Fig. 9 ; the figure also indicates the mea-

urement positions in the middle of the short domain. 

One simulation in a short domain is performed with the GABC

n the side where only wave absorption takes place (see Fig. 9 b).

nother simulation is performed with the GABC on the side where

eneration and absorption take place (see Fig. 9 c). In the lat-

er simulation, the opposing boundary is fully reflecting to make

aves go in two directions. Velocities, pressures and the surface

levation from a column in the infinite domain are used as undis-

urbed incoming characteristic for use in the boundary condition. 

The simulation with the GABC on the side where only absorp-

ion takes place is also compared to a simulation with a dissipation

one. A dissipation zone was implemented as in Westhuis [27] ,

hich was further studied in ComFLOW by Meskers [19] . It works

y adding a term, a momentum damping function, to the pressure

oundary condition at the free surface that counteracts the vertical

elocity: 

p = min ( 0 , β(x − x start ) ) w. (43) 

ere, p is the pressure at the free surface, β is a coefficient that

etermines the linear increase of the damping function from a po-

ition x where the start of the dissipation zone has been defined

nd w is the vertical velocity at the free surface. The slope β of
he damping function is typically low as to reduce reflection by

he damping function itself as much as possible. A mass damping

unction was not applied. 

The setup of the simulations is outlined in Tables 1 and 2 .

he domain is 2D, which means that only long-crested waves are

onsidered. The domain sizes and the grid distances are stated in

able 1 . The cells have a uniform size in the horizontal direction

nd are stretched in the vertical direction. In order to be sure that

ot only the measurement position in space, but also the measure-

ent positions in time are the same throughout all simulations,

he time increment �t is kept fixed and small. 

The simulations are started from rest: at t 0 there are no waves

n the domain and the velocities � u are zero. Waves are imposed on

he left of the domain by means of linear potential theory. With

 linear ramp function the signals of surface elevation and veloc-

ties at the inflow boundary are gradually built up over a period

f 20 s. The irregular wave signal consists of a superposition of

egular wave components that accord with a realistic JONSWAP

pectrum with significant wave height H m 0 = 4 m and peak period

 p = 15 s, see Holthuijsen [17] . 

The coefficients of the outflow boundary conditions are in

able 2 . The coefficients for the GABC are tuned in such a way that

he reflection coefficient over the range kh ∈ < 0, 6] is never larger

han 2%. The Sommerfeld boundary condition at the free surface

as only coefficient η to tune. The best choice for η is the value

f the phase velocity associated with the peak period of the spec-

rum. 

Meskers [19] gives the optimal configuration of a dissipation

one when linear theory is assumed. The length of the dissipa-

ion zone, expressed in number of wave lengths, will be deter-

ined based on the wave length associated with the peak period

f the spectrum. The optimal number of wave lengths for this sim-

lation, when a theoretical reflection coefficient of 2% is desired, is

wo. The slope of the damping function β is based on the peak

requency. 

The wave signal at the measurement location in the infinite do-

ain is subtracted from the wave signals in the domains where

oundary procedures were applied, so that a reflection signal is

btained. The wave and reflection signals are decomposed into

heir Fourier components. The Fourier components are then con-

erted to both spectra and reflection coefficients. This is shown in
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Fig. 10. Reflection for the dissipation zone. In (a) the reflection coefficient and in 

(b) the reflection spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Reflection for the GABC. In (a) the reflection coefficient of the irregular 

wave simulation. The inset magnifies the range between kh = 0 and 5 and also com- 

pares to two sets of reflection coefficients from regular wave simulations, one with 

a maximum steepness of 1 · 10 −2 , the other with a maximum steepness of 5 · 10 −2 . 

In (b) the reflection spectrum. 
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Figs. 10–12 . Note that the vertical axes of these figures are differ-

ent. 

The results with the dissipation zone in Fig. 10 were unex-

pected and larger than the theoretical value. This is due to non-

linear effects in the dissipation zone that have transferred energy

from higher to lower wave frequencies. Dissipation zones tend not

to work well for longer waves with lower frequencies because the

vertical velocities are small, which explains the large reflection co-

efficient at lower frequencies. The dissipation zone does perform

well for the short waves with kh -values larger than 3. 

The reflection coefficient and the reflection spectrum for the

GABC are shown in Fig. 11 . In the range from kh = 0 to kh = 5 ,

the reflection coefficient of around 5% is higher than the 2% it was

designed for. Investigation of the reflection coefficients by means

of two sets of regular wave simulations (shown in the inset of

Fig. 11 a), one with a maximum steepness H / L of 1 · 10 −2 , the other

with a maximum steepness of 5 · 10 −2 , leads to the conclusion that

the higher reflection coefficient is mostly due to the Sommerfeld

boundary condition imposed in the S-cell at the free surface near

the boundary and not due to inaccuracies in the Fourier trans-

form, nor due to nonlinear effects. The Sommerfeld boundary con-

dition affects the shortest components of the irregular wave train,

above kh = 5 , most. Another reason why the GABC does not match
he theoretical reflection coefficient for the larger kh -values is be-

ause the shorter components in the irregular waves are resolved

y fewer cells per wave length. 

There is a difference between the GABC in Fig. 11 and the dis-

ipation zone in Fig. 10 in the value of the reflection coefficient

t kh = 0 . Imposing waves by means of Dirichlet velocity boundary

onditions is known to add water to the domain. This is apparent

rom the non-zero value of the reflection spectrum of the dissipa-

ion zone at kh = 0 . The GABC makes the additional water flow out

f the domain because it is formulated in a way that, on average,

akes the free surface tend to the mean free surface. For that rea-

on, a systematic increase of the water level is not observed with

he GABC. 

Fig. 12 shows the reflection coefficient and the reflection spec-

rum when the GABC on the upstream side of a short domain is

oth generating and absorbing. The opposing boundary was fully

eflective so that the wave signal at the measurement location

n the middle of the domain contains wave components going in

ownstream and in upstream direction by design. The wave signal

rom a simulation in a long domain with the incoming boundary

infinitely’ far away from the fully reflective boundary is subtracted

rom the wave signal in the short domain. Because of this setup

he wave signal contains mainly the longer wave components up

o kh = 1 . 2 , because they propagate faster and arrive earlier at the
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Fig. 12. Reflection for the GABC in the presence of incoming wave. In (a) the re- 

flection coefficient and in (b) the reflection spectrum. 
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Fig. 13. Photo of the experiment and snapshot of the simulation. 
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eflective boundary. The difference in wave signal from the long

omain and the short domain is attributed to spurious reflection.

rom Fig. 12 we find that the reflection spectrum and the associ-

ted reflection coefficient of the implemented GABC are somewhat

igher than the theoretical reflection. 

The GABC, both on the right when only absorbing and on the

eft when generating and absorbing, behaves as expected, but with

ore reflection. The amount of wave energy that is reflected is

mall compared to the input spectrum and at a comparable level as

pilling beaches in wave tanks used for experiments. There are two

ain reasons for the difference between theory and implementa-

ion. The first reason is the Sommerfeld condition in the SO-cell at

he boundary, see Fig. 8 . This relation was tuned to the peak fre-

uency of the spectrum and will especially cause reflection of the

onger and shorter components away from the tuning frequency.

he second reason is that nonlinear effects near the boundary are

ot accounted for in the design of the GABC. 

. Practical example of a validated simulation 

We mean to show a real application of the GABC for a situation

ith unidirectional incoming waves where a simulation with dis-

ipation zones on the upstream and the downstream side that are
wo typical wave lengths long, would be prohibitively expensive.

he simulation is validated by means of an experiment. 

During the development of ComFLOW a specifically designed

xperiment was performed at the Maritime Research Institute

etherlands (MARIN) to validate the simulations. It was for a

chematized model of a restrained semi-submersible with two

olumns and a pontoon under water, see Fig. 13 a. The experiments

ere performed at scale 1:50. 

The experiment, with identification number 202006, was per-

ormed in a long wave tank. Waves were generated with a pivoting

ave board at one end of the tank. At the opposing end a spilling

each was present to induce wave breaking and reduce reflection.

he model was placed a large distance away from the wave board.

A simulation was performed to compare to the experiment. A

etter comparison with the experiment is obtained when nonlin-

ar wave kinematics are used for input at the boundary instead

f linearized wave kinematics from something like a wave gauge.

o obtain the nonlinear kinematics, measurements of the rotation

f the wave board were taken and fed into a nonlinear potential

ow model [27] with a domain that was so long that wave reflec-

ion from the downstream end did not occur. The nonlinear po-

ential flow model propagates waves at a much reduced computa-

ional cost compared to ComFLOW . Kinematics at the position of

he inflow boundary of ComFLOW were taken from the nonlinear

otential flow model. 

The inflow boundary in ComFLOW is located at x = 5156 m

ith respect to the wave board. This is where the GABC is used

ogether with the kinematics from the nonlinear potential flow

odel as the incoming wave characteristic. The outflow boundary

ith a GABC is positioned at x = 5456 m. 300 cells were used in x -

irection without stretching. In the vertical direction 75 cells were

pplied with cell size stretching in such a way that every n -th cell
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Fig. 14. Numerical results compared with the experimental results of test 202006. 
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away from the cell with the minimum cell size is bigger according

to: 

h n = (1 + γ ) n h min (44)

with γ a stretching coefficient and n a counter of how many cells

are between it and the cell with grid size h min at the focus point.

In z -direction, γ = 5% and the focus point of the stretching is po-

sitioned at the mean free surface level z = 0 . Near the free surface

�z min is 0.5 m, near the bottom �z is nearly 14 m. In y -direction

the boundaries of the domain were chosen to coincide with the

tank walls, each positioned 100 m away from the center of the

structure at y = 0 ; 75 cells are used with a stretching coefficient of

2%, �y min being 1.5 m and the largest cells near the y -boundary

slightly over 2 m. The simulation time is 120 s 

The center position of the structure was at x = 5306 m. The

GABC was used at the upstream boundary and at the downstream

boundary without incoming waves. Fig. 13 b shows a snapshot of

the 3D simulation. 

Wave probe 2 was positioned at x = 5238 m on the upstream

side of the structure in the middle of the tank. Fig. 14 a shows

the surface elevation as a function of time for wave probe 2 and

compares it to ComFLOW simulations with the GABC, a dissipation

zone and the Sommerfeld boundary condition with c 0 = 0 . 56 
√ 

gh .

There is good agreement between the GABC simulation, the simu-

lation with a dissipation zone and the experiment with the surface
levation in the GABC simulation marginally higher than in the ex-

eriment for the highest waves. The simulation with the Sommer-

eld boundary condition gives different results from t = 650 s on-

ards as a result of spurious reflection. 

A similar result is found for the impacts in the registration of

ressure sensor P12 on the front column of the structure (posi-

ioned at x = 5266 m and at z = −10 m with respect to the mean

ater surface), which is shown in Fig. 14 b. There is overall good

greement between the pressure in ComFLOW and in the exper-

ment for the simulation with the GABC and with the dissipa-

ion zone. The simulation with the Sommerfeld boundary condi-

ion demonstrates that spurious reflection can influence the impact

ressures. 

. Conclusion 

This article discusses the background, derivation, implementa-

ion and results of an open boundary condition for dispersive free-

urface waves. We call it a Generating Absorbing Boundary Con-

ition or GABC. The starting point for the derivation of the GABC

s the Sommerfeld condition, which is perfectly absorbing for one

ave component with one propagation velocity. This velocity is

pecified in the Sommerfeld condition by means of a tuning pa-

ameter. It was found that the range of absorbed wave components

an be extended by replacing the tuning parameter with an ap-

roximation of the linear dispersion relation in terms of the wave

umber. When second derivatives of the solution variables in the

ertical direction are substituted for the wave number, it yields a

ABC with a low 2% reflection for a range of components instead

f a single component. Stability issues loom when the GABC is im-

lemented, but the mechanism, by which instabilities occur, is well

nderstood and stability criteria have been formulated. The stabil-

ty criteria hardly restrain the absorbing performance of the GABC.

In irregular wave simulations, the GABC has similar perfor-

ance to a dissipation zone that was two typical wave lengths

ong in the range of wave numbers of interest. It was found in nu-

erical simulations with the GABC that the reflection coefficient

an be as low as 5% for mildly steep waves. This is somewhat

igher than the 2% that was derived from theory, but compara-

le to the amount of reflection that is said to be obtained in ex-

erimental basins and flumes. The difference between theory and

ractice here is mainly due to the implementation near the free

urface. 

It was demonstrated that the GABC can be used in an actual 3D

imulation of steep wave interaction with floating structures. The

imulation was validated with experimental results. The simulation

ith the GABC has similar performance to the simulation with the

issipation zone, at a much reduced computational effort. 
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