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Application of the fast Fourier transform, to the inversion of 
Laplace transforms is a recent development in the solution of 
equations describing chemical reactors. Hsu and Dranoff 
(1987) describe in detail how this method can be applied. Chen 
and Hsu (1987) use the fast Fourier transform for the prediction 
of breakthrough curves of an isothermal fixed-bed adsorber. 
The major strength of this approach is its speed of calculation. 
The purpose of the present work is to investigate the limits of the 
method and to show how this method can also be applied for 
nonisothermal adsorbers. 

Description of the Model 
A fixed-bed adsorption column, packed with porous spherical 

particles, is considered. At time zero, a n  adsorbable component 
is introduced in the column inlet flow. This introduces a step 
change in concentration and, possibly, in temperature. The 
transport phenomena in the adsorption column which are taken 
into account are axial dispersion, external film diffusion, pore 
diffusion, axial heat transfer in the solid and fluid phase, exter- 
nal film heat transfer, and heat transfer from fluid and solid 
phase to the wall. Radial gradients, the pressure drop across the 
bed, mass accumulation in the pores, and the heat capacity of 
the fluid in the pores, are neglected. Other assumptions are: con- 
centration and temperature independence of heat capacities, 
densities and adsorption heat, and uniformity of the wall tem- 
perature. At the solid surface, the active component in the fluid 
phase is assumed to be in equilibrium with the adsorbed compo- 
nent in the solid phase; the involved heat effect is taken into 
account. 

After introducing dimensionless numbers, the adsorber can 
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be described by the following set of partial differential equations 
(a detailed derivation is given by Mees, 1988): 

Mass balance in a particle: 

Mass balance of the fluid phase: 

1 

q e a t  balance of the fluid phase: 

2 * 0, ' "V, 

3 * Bi(h)  + - -------../.l*(0,-0,)=0 (3) [TL P e ( h , s )  

Heat balance of the solid phase: 

2 * 0, * w, "Pi P e ( h , s )  ax2 , + P e ( h , s )  X 

P e ( m , s )  . [aus] a7 ,,-I 

3 * Bi(h) 
Pe(h,  s) 

+ ___. (0, - 0,) - ~ - = 0 (4) 

Adsorption equilibrium: 
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Initial and boundary conditions are given by: 

In the limit of the isothermal case, these equations reduce to 
the equations of Chen and Hsu (1987), with the exception of 
boundary condition, Eq. 10. Here a Danckwerts-type boundary 
condition is used, where Chen and Hsu use U(x = 0 , ~ )  = 1. In 
the limit of the axial dispersion coefficient equal to zero, these 
become identical. 

The model equations are solved by Laplace transformation 
with respect to time ( 7 )  and space (x). To successfully apply the 
Laplace transform method, the equations have to be linear func- 
tions of concentrations, temperatures and their derivatives. This 
is valid for the present model equations, Eqs. 1-4, but not for the 
adsorption isotherm, Eq. 5. However, the latter can be approxi- 
mated by a linear function in the pore concentration and the 
temperature of the solid, 

In the case of an isothermal bed, the final stationary state deter- 
mines KU (Figure 1). In the general case, the constants, Ku and 
KO, must be chosen such that Eq. 19 gives an approximation of 
the isotherm for the concentrations and temperatures between 
the initial and final states; and such that it reproduces these 
states correctly. 

Method of Solution 
Laplace transformation with respect to time, results in func- 

tions of s and x .  These functions are marked by a dash (-). 
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Figure 1. Linearized equilibrium curve for an isothermal 
bed. 

Laplace transformation with respect to space, x, results in func- 
tions of s and y, marked by a dash and a circumflex (^). 

Twice Laplace transforming the five partial differentigl _ _  
eguations,Al-4 and 19, results in five linear equations of U ,  Us, a and Gs, three of which can be written as a matrix equation, 
Eq. 20, and the others given by Eqs. 21 and 22: 

with, for the left-hand matrix: 

3 .  Bi(h) 3 KO 
Pe(h,s) Pe(m,s) Ku 

.- +-- 
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And the result on the right-hand side: 

Y * &o + 8,I 
Pe(h, f )  R3 = g/' - 

The constants, b and g, are set by the boundary conditions: 

The function, as, is defined as: 

Ja . coshda - sinhJa 
3, = 

Ja . cosh Ja - sinh \la 
Bi (m) 

+ sinh Ja 

a = K , - s .  Pe(m,s) 

The concentrations in the solid are  directly found: 

u, a - [ u, 4- - 2 ' -]sinh:Ja) 8, 

. [ JU . coshJa - sinhJa - 1  KO I 
Bi(m) 

+ sinhlio] - - @, (21)  

c= K". + & .  0, (22)  

From Eq. 20, I!& G,, and G, can be solved. After that, 
can be solved from Eqs. 21 and 22. 

The inverse Laplace transform with respect to x is calculated 
by the method of residues (Churchill, 1958). The inverse 
Laplace transform with respect to T must be calculated numeri- 
cally. Hsu and Dranoff (1987) describe the inverse Laplace 
transformation by applying the fast Fourier transform. The dis- 
crete inverse Laplace transform is given by the following formu- 
la: 

and 

j = O , 1 , 2  ,..., N -  1 (23)  

with 

AT = 2 T / N  

T is half the time period considered and N is the number of 
points. a is the real part of the Laplace s-value and determines 
the place where the line-integral of the inverse Laplace trans- 
form in the complex s-plane is calculated. The value of a must be 

greater than the real parts of the singularities of the Laplace- 
domain function. 

The choice of the constant, a, is crucial. If the value of a is too 
large ( > > l / T )  then the first factor in Eq. 23 will amplify any 
numerical inaccuracies. However, if the value of a is too small 
(<< 1 / T), then F(a + i k r /  7') is near the rightmost singularity a t  
s = 0, and will only vary smoothly at  a high sampling density. 

Chen and Hsu (1987) remove this singularity by multiplying 
F(s) with s, and setting the value of a to zero. This results in the 
derivative of the breakthrough curves, which needs to be inte- 
grated numerically, but was found unsatisfactory for a number 
of problems. The alternative we used is to subtract the station- 
ary value of the time-function, divided by s, from the Laplace 
function. The constant, a, can now be chosen more freely (typi- 
cally on the order of 1 / T ) .  

Equation 23 was calculated by applying the fast Fourier 
transform to F(a + i k r / T )  and multiplying the result by 
exp (a jAT) .  For Eq. 23, the function in the (s, x) domain must 
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Figure 2. Example breakthrough curves. 
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be calculated for a range of s-values, which will take a large pro- 
portion, on the order of 80%, of the calculation time. 

Results and Discussion 
It has been verified that in the limit of the isothermal case 

with zero axial dispersion, the results are identical to those of 
Chen and Hsu (1987). Further, the family of breakthrough 
curves described by Pan and Basmadjian (1970) was simulated. 
Figure 2 shows an illustrative result of one of these; the lower 
fluid concentration in the center of the particles and the temper- 
ature difference between the solid and fluid phase can be seen 
clearly. In Table 1, a comparison of execution time (for an 8 
MHz, IBM compatible XT with mathematical coprocessor) and 
accuracy for the fluid concentration and temperature break- 
through curves of Figure 2 is given. 

Table 1. Accuracy and Execution Time for a Fluid 
Concentration and Temperature Breakthrough Curve 

The speed of this technique could not be compared with other 
methods, because the data was not available. Chen and Hsu 
(1987) however, compared the speed of their calculation for iso- 
thermal adsorption processes with earlier methods, and found 
that their method was faster by more than three orders of mag- 
nitude. The isothermal problem that Chen and Hsu (1987) 
solved in 0.3 s on a CDC Cyber 850, took 20 s on the above 
described PC. A nonisothermal case with an equal number of 
points would take, respectively, 5 s (by estimation) and 500 s 
(Table l ) ,  which is two orders of magnitude faster than earlier 
methods for the isothermal case. Because of this fast calculation, 
the method can be used satisfactorily in parameter estimation 
routines (Mees et al., 1989). 

Chen and Hsu (1 989) have recently considered the linearity 
of the isotherm, Eq. 19, which is the limitation of this method. 
They provide an iterative solution for the special case of a Lang- 
muir kinetics controlled process. It remains to be proven that 
general kinetics combined with heat effects can be solved with- 
out losing the elegance and speed of this method. 

Number of Sample Points 

T N = 32 N = 64 N = 256 N = 1,024 

Nuid Concentration 
3,750 0.516176 
7,500 0.652442 

1 1,250 0.771038 
15,000 0.858078 
18,750 0.915872 

22,500 0.951 814 
26,250 0.973 163 
30,000 0.985435 
33,750 0.992341 
37,500 0.996203 

41,250 0.998402 
45,000 0.999732 
48,750 1.000658 
52,500 1.001688 
56,250 1.008600 

Fluid Temperature 
3,750 1.589755 
7,500 1.298788 

1 1,250 1.030666 
1 5,000 0.8 30449 
18,750 0.694835 

22,500 0.608779 
26,250 0.556651 
30,000 0.526133 
33,750 0.508704 
37,500 0.498923 

41,250 0.493515 
45,000 0.490677 
48,750 0.489693 
52,500 0.49 1204 
56,250 0.508621 

Execution Time 18.90 s 

0.514857 
0.651881 
0.77 1002 
0.858144 
0.915909 

0.951789 
0.973072 
0.985276 
0.992101 
0.995853 

0.997899 
0.999018 
0.999642 
1.000036 
1 .OO 1227 

0.5 15050 
0.651882 
0.771072 
0.858214 
0.915956 

0.951810 
0.973069 
0.985251 
0.992051 
0.995772 

0.997777 
0.998844 
0.999405 
0.999695 
0.999853 

1.581132 1.580621 
1.294765 1.293977 
1.0282 1 1 1.027626 
0.82871 1 0.828266 
0.693583 0.693256 

0.607879 0.607645 
0.556003 0.555840 
0.525673 0.525564 
0.508397 0.508335 
0.498751 0.498732 

0.493450 0.493467 
0.490600 0.490617 
0.489200 0.489094 
0.488964 0.488297 
0.492849 0.487989 

34.30 s 128.60 s 

0.51 5060 
0.651887 
0.771080 
0.858221 
0.915961 

0.951813 
0.973070 
0.985250 
0.992050 
0.995769 

0.997772 
0.998836 
0.999397 
0.999689 
0.999840 

1.580710 
1.293968 
1.027610 
0.828251 
0.693245 

0.607638 
0.555837 
0.525564 
0.508338 
0.498739 

0.493478 
0.490632 
0.4891 11 
0.488304 
0.487887 

~~ 

506.70 s 

Process Parameters 
Pe(m, s )  = 5.0 
Pe(m, a )  = 500.0 

Bi(m) = 10,000.0 

P e ( h , f )  = 20,000.0 
Pe(h, s) = 60,000.0 

p 1.5 

Q = 1.000.0 

Bi(h) = 50.0 
r = 0.002 

W, = 0.5 
W, = 0.5 
KU = 5,000.0 
KO = - 1.000.0 
0;. = 0.5 
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Notation 
cf, c, = compound concentration in fluid and pores/m3 fluid, re- 

spectively, mo1/m3 
co = incoming fluid concentration, mol/m3 

0, = axial mass dispersion coefficient of fluid, m’/s 
Dp = diffusion coefficient in pores, m’/s 

Cp,, Cp, = heat capacity of fluid and solid, respectively, J/kg . K 

~ 

h, h ,  h ,  = heat transfer coefficient, film, fluid to wall, and solid to 
wall, respectively, J/(m’ . s . K) 

-AH = adsorption heat, J/mol 
kf = film mass transfer coefficient, m/s 
L = reactor length, m 
q = adsorbed concentration per m3 solid, mol/m3 

rp = radial place in particle, m 

Tf = fluid temperature, K 

R, Rp = reactor and particle radius, respectively, m 

f = time, s 

Tin, Ts, T ,  = temperature of incoming fluid, solid, and wall, respec- 
tively, K 

v = intrinsic fluid velocity, m/s 
z = axial place in reactor, m 

Greek letters 
t = bed porosity, - 

A,, = axial heat dispersion coefficient of fluid, J/(m . s . K) 
A,, = axial heat conduction coefficient of solid, J/(m . s . K) 
pf = fluid density, kg/m3 
p, = solid density per m3 particles, kg/m3 
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W, - hws * L 2 / ( L  
r - - A H .  c , / (p , .  c p ,  . T ~ )  - pS * CP./(P/ * 
P - (1  - z)/c 
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