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Abstract 
 

 

The stability analysis of electromagnetic suspension system applied to Hyperloop in simplified two 

degrees of freedom system has been studied deeply where the track-beam is regarded as a point mass and the 

effects of velocity and beam are neglected. However, there is little reference on the study of the interaction 

between electromagnetic suspension system and wave effects. 

 

The main aim of this thesis is to investigate the dynamic behavior of the EMS vehicle-beam coupled 

system using the one-dimensional model, and illustrate the combined effects of the EMS and guideway on the 

vehicle instability at different horizontal velocity by comparing with the results of EMS system in simplified 

model and mechanical system in one-dimensional model. 

 

Along these lines, the tube is modelled as an infinite long Euler-Bernoulli beam resting on a homogenous 

viscoelastic foundation and the vehicle is modelled as a point mass. The response of the system is obtained both 

numerically and analytically. The values of control gains are determined based on the equivalent simplified two 

degrees of freedom EMS system. A representative mechanical system is designed to show the anomalous 

Doppler waves effects. It is found that for inappropriate values of control gains which will cause instability of 

vehicle at static state, the one-dimensional guideway has positive effects which can stabilize the vehicle at 

certain range of subcritical velocity, whereas for appropriate values of control gains the EMS system can 

counteract the wave-induced instability and keeps the vehicle stable at even supercritical velocity. Finally, a 

method to linearize the system is presented which allows eigenvalue analysis. 
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1. Introduction 
 

1.1. Background 

 

The world enters an era of information globalization, people can learn about the world through a variety of 

media, such as TV, mobile phones, computers and so on. Certainly, people are not satisfied with discovering the 

world through the aforementioned media, they also need to explore this beautiful world themselves. Therefore, 

people's demand for a faster, more efficient, more environmentally friendly and cheaper mode of transportation 

is increasing day by day. Along these lines, the market share for high-speed transportation is increasing rapidly 

and it is predicted that by 2050 that around half of the total traffic in the world will be high-speed transportation 

[1].  

 

Nowadays, people can choose to travel by air or by high-speed rail. In the last decade or so, high-speed rail 

has developed very rapidly and has become popular all over the world, and there are many countries in the 

world that use high-speed railroads in large numbers, such as China, Japan and the whole of Europe. In the short 

and medium distance transportation (200-1000 km), high-speed railroad has many obvious advantages over 

aviation: first, the whole journey time is short (save time to and from the airport, waiting time for plane); second, 

the delivery capacity is large; third, the impact on climate change is small and the on-time rate is high. 

Nevertheless, for journeys of more than 1,000 kilometers, airplanes can show their superiority in speed and 

convenience. In addition, airplanes can leap over almost all kinds of natural obstacles and reach places that are 

difficult to reach by rail or road. At the same time, their shortcomings are also obvious. For high-speed rail, the 

fares are usually expensive and it has great impact on residents along the line, such as noise and vibration 

pollution. For aviation, it has a very high carbon footprint. In 2018, global aviation (i.e., commercial, freight 

and military aviation) represented a 2.5% of the total CO2 emissions worldwide and, with respect to non-CO2 

climate impacts, it accounts for 3.5% of the global warming [2]. Thus, attempts have been made to find an 

alternative of transportation that retains their advantages while avoiding the disadvantages. 
 

Hyperloop is a form of transportation based on the theory of "vacuum tube transport", which is also known 

as vactrain. This concept can be traced back to the 18th century, in 1799, when a man named George Medhurst 

from London conceived of and patented an atmospheric railway that could convey people or cargo through 

pressurized or evacuated tubes. At that time, the design relied on steam power propulsion. Then in 1904, the 

name ‘vactrain’ was firstly invented by Robert H. Goddard and he imagined that in the future people could 

travel in a mag lev train that shot at high speed through an airless tunnel [3]. On the basis of this concept, the 

idea was future improved and developed in 20th century. 

 

Time comes to 2013, a term named by ‘Hyperloop’ is proposed as an open-sourced technological concept 

and any other company or research institutes in the world has been encouraged to take the ideas and further 

develop them [4]. Hyperloop designs employ three essential components: tubes, pods, and terminals. The tube 

is a large sealed, low-pressure system (usually a long tunnel). The pod is a coach pressurized at atmospheric 

pressure that runs substantially free of air resistance or friction inside this tube using aerodynamic or magnetic 

propulsion [5]. The terminal handles pod arrivals and departures. The speed of hyperloop may be even higher 

than 1000km/h [6] which is even faster than airplane but with less emission as electricity is the energy source. It 

is hoped in the future that hyperloop can replace high-speed rail and flights with the advantages of ultra-high 

speed, high safety, low energy consumption, low noise, low pollution, etc. 
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1.2. Problem Statement 

 

With the increase of speed, especially for supercritical velocity (explained in section 2.5.1), the problem of 

wave-induced instability can occur depending on the nature (mass, stiffness, etc.) of the system and increase the 

risk of the transportation significantly. What’s more, the electromagnetic suspension itself is dynamically 

unstable if there is no control [7]. Besides, the model of tube used in this thesis is one-dimensional beam with 

infinite degrees of freedom and the system of equations of motion consists of both non-linear force and partial 

differential equation (beam), it cannot be solved analytically as there is no reference to deal with such system by 

far. Hence, this thesis firstly tries to find a numerical method to solve this set of equations, then it seeks proper 

control to stabilize the system with certain horizontal velocity of vehicle and shows the effects of the 

electromagnetic suspension system on vehicle instability in hyperloop at different velocities. Last but not least, 

to reveal the nature of this kind of system, attempts have been made to linearize this kind of system. 

 

The sketch (Figure 1. 1) below illustrates a longitudinal cut of the vehicle and the track infrastructure of the 

Hardt Hyperloop design. It is helpful for us to better understand the problem addressed. 

 

 
Figure 1. 1 Longitudinal cut of Hyperloop design [8] 

 

It should also be noted that the design and implementation of electromagnetic suspension systems in 

Hyperloop contain transdisciplinary concepts such as electromagnetism, mechanical engineering, structural 

dynamics, etc. Here we only focus on structural dynamic part. 

 

1.3. Research Objectives 

 

Almost all available literatures about the stability of EMS consider only the first-order bending mode of 

beam by which the tube is simplified to a single degree of freedom system, e.g., the study of EMS applied to 

Hyperloop technologies based on “2.5 degrees of freedom” system is elaborated in [8]. Thus, the first objective 

in this thesis is: 

 

1. Find a numerical method to simulate the behavior of EMS in “infinite degrees of freedom” system. 

 

a) Define the set of equation of motion (EOM) in which the tube is regarded as 1-dimensional (1-D) 

system. Here the tube is modeled as an infinitely long Euler-Bernoulli beam resting on a foundation 

with distributed spring and dash-pot.  
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b) Design and validate the numerical methodology to solve the EOM 

 

Once the solution to the non-linear partial differential equation (PDE) system is obtained, one can then 

predict the response of the system under appropriate closed-loop error-based control (proportional-(P), 

derivative-(D), PD) and investigate the effects of EMS on vehicle instability under different horizontal velocity. 

 

2. Perform dynamic analysis and stability study of the system at different horizontal velocities of vehicle. 

 

a) Choose the stiffness of control system to present the representative characteristics of the system in 1-D 

model 

 

b) Design a linear mechanical system for comparison 

 

c) Determine the relationship between velocity and other parameters of interest, i.e., stability, initial 

perturbations, mass, and control gains. 

 

Unfortunately, one still cannot obtain any information about the nature (eigenvalues, etc.) on the stability 

of the system when numerical part is finished. Thus, semi-analytical analysis is required after linearization of 

the system.  

 

3. Linearize the system around the steady-state position and compare the outcome with non-linear system as 

verification 

 

1.4. Report Outline 

 

This report is composed of 4 main parts: a literature review, a chapter introducing the analytical model and 

the derivation of the equation of motions, a chapter presenting how to solve the non-linear PDE system 

numerically and its underlying basic assumptions, a chapter presenting an attempt to solve the non-linear PDE 

system analytically by linearization and the main troubles stuck in the road. The synopsis of each chapter is 

shown below: 

 

Chapter 2 serves to introduce the reader to all the fundamental engineering concepts they will face in the 

following research of this thesis, and present the current state as well as the major achievements on the field of 

electromagnetic suspension technologies. Besides, it also illustrates the control scheme for the stabilization and 

explains the instability phenomenon in the system composed of moving objects and one-dimensional guide. 

 

Chapter 3 presents the analytical model of the problem addressed in this report and all the presumptions of 

modelling used to derive of the equations of motion.  

 

Chapter 4 elaborate the idea of the numerical method and its underlying assumptions, after which the 

dynamic analysis and stability study is performed to illustrate the deficiencies of the simplified model [8] and 

how the representative mechanical/EMS system will affect the vehicle instability in one-dimensional model. 

 

Chapter 5 presents and corroborates the linearization of the EMS system. What’s more, the effects of EMS 

system on the accuracy of the linear approximations are illustrated. 
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Chapter 6 summarizes all the findings obtained from this project and proposes some recommendations for 

future research on this subject.  
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2. Literature Review and Basic Theoretical Foundation 
 

In this chapter, a review of the relevant literature was conducted in order to address the three main issues 

raised in the introduction section. To make it easier for the reader to understand the theoretical knowledge 

framework of the whole thesis, it can be briefly described here in the following 4 areas: 

 

1. The concept of stability and an introduction to the associated conception, such as the flow, fixed 

point, phase portrait, and bifurcation, etc. What’s more, it is also important to note the difference 

between linear and non-linear systems in terms of stability. 

 

2. The development of electromagnetic levitation technology, an introduction to its applications and 

the main achievements in this field. Clear the relevant theoretical background knowledge to be used 

later in this thesis. 

 

3. The basic concepts of the process control. 

 

4. Based on the theoretical model in Chapter 3, this thesis focuses on the system of forces or objects 

moving with uniform velocity along an infinitely long beam, and therefore here presents a review 

of the stability issues of this kind of system. 

 

As the first three points are described in detail in Ref. [8], the author will not repeat them the same way but 

briefly describe them here. 

 

2.1.Stability 

 

To understand stability, one can start from instability. The concept of instability can be seen everywhere in 

life, e.g., buckling of column, a ball on the top of a hill, an inverted pendulum, etc. All the aforementioned 

objects share a characteristic that when they deviate from the equilibrium point by even a small disturbance, the 

whole system collapses.  However, for a stable system, or more precisely, for an attracting equilibrium point [9], 

when you give a small perturbation, this perturbation will decay with time and finally go to zero. This will be 

explained in mathematical language later in this chapter. 

 

There are two main types of dynamical systems: differential equations and iterated maps [9]. Here we only 

focus on differential equations, and the evolution of the system is continuously time-dependent.  

 

2.1.1. Flow and linearization 

 

The one-dimensional flow can be represented by a dynamic system described as follows 

 

 ( )x f x=  (2.1) 

 

where ( )x t  is a real-valued function of time t and ( )f x  is a smooth real-valued function of x , x  stands 

for the first derivative with respect to time. If f  does not depend explicitly on t , this is called an autonomous 

system. Otherwise f  would depend explicitly on t , the system becomes non-autonomous as the one derived for 

this project (see in chapter 3). 
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Then, one could draw the graph of a random ( )f x  (Figure 2. 1)and use it to sketch the vector field on the 

real line represented by the x-axis. One can imagine there is a fluid flowing along the real line with a local 

velocity ( )f x . This imaginary fluid is called the phase fluid and the real line is the phase space. It can be easily 

told that if ( ) 0f x , x  will grow or in other words, the flow is towards the right and vice versa. Now if an 

imaginary particle called phase point is placed at 0x  and one can then observe how it is carried along by this 

flow. As time goes on, the phase point moves along the x-axis according to some function ( )x t . This function is 

called trajectory and it represents the solution of the differential equation starting from the initial condition 0x . 

The representation of one or more trajectories of the system is called a phase portrait (Figure 2. 1) [9]. 

 

 
Figure 2. 1 Phase portrait of the system [9] 

 

The fixed points *x , defined by *( ) 0f x = , regulate how the phase portrait appears. In the illustration 

shown in Figure 2. 1, the solid black dot is called stable fixed point, since the flow is toward it in both sides, and 

the hollow point is called unstable fixed point, since flow is repelled from it [9]. In fact, fixed points are 

categorized in great depth [9], only these two are presented here as explannations. 

 

Fixed points are equilibrium solutions (also known as steady, constant, or rest solutions) in the context of 

the initial differential equation, since if *x x=  initially, then *( )x t x=  for all time. An equilibrium is defined to 

be stable if all sufficiently small disturbances away from it damp out in time, therefore stable equilibria are 

represented geometrically by stable fixed points. On the other hand, unstable equilibria are those in which 

disturbances increase with time and are represented by unstable fixed points [9].  

 

Keep in mind that the concept of stable equilibrium is built on minor disturbances, and for some huge 

disruptions the system may fail to decay. In such a case, the fixed point in question is defined to be locally 

stable, but not globally stable. If *x  attracts all trajectories in the phase plane, it then could be called globally 

stable [9]. 

 

However, only graphical approaches have been addressed up to this point for figuring out the stability of 

fixed points in a qualitative manner. It is necessary to solve an eigenvalue problem for a quantitative evaluation. 

Unfortunately, non-linear dynamic systems do not have eigenvalues. The system must therefore be linearized 

around the fixed point as a preliminary step. Here, a straightforward example will be used to explain the steps of 

linearization, for more complicated cases such as two-dimensional flow, please refer to the book [9]. 

 

Let *x  be a fixed point and let *( ) ( )t x t x = −  which stands for a small perturbation away from *x . To 

determine if the perturbation grows or decays, a first-order differential equation for   needs to be derived [9]. 

 

 
* *( ) ( ) ( )

d
x x x f x f x

dt
 = − = = = +  (2.2) 
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Afterwards, one could apply Taylor’s expansion to eq. 2.2. 

 

 * * ' * 2( ) ( ) ( ) ( )f x f x f x O  + = + +  (2.3) 

 

Where 2( )O   denotes quadratically small terms in  . Note that *( ) 0f x =  since *x  is a fixed point. Then 

eq. 2.3 could be simplified as 

 

 ' * 2( ) ( )f x O  = +  (2.4) 

 

Now, assume ' *( ) 0f x  , the 2( )O   terms are quite small compared to it as   is a small perturbation that 

can be neglected (note that it is not always safe to neglect the quadratic terms [9], a case-by-case basis is 

needed). Then one could rewrite the linearized approximation about *x  as [9] 

 

 ' *( )f x   (2.5) 

 

This shows that the perturbation   grows exponentially if ' *( ) 0f x  and decays if ' *( ) 0f x . If 
' *( ) 0f x = , the 2( )O   terms are no longer negligible and a non-linear analysis is needed to determine stability 

[9]. Now the new feature is that one finds a way to gauge how stable or unstable a fixed point is. This is 

determined by the magnitude of  ' *( )f x . This magnitude plays an important role of an exponential growth or 

decay rate. Moreover, its reciprocal ' *1/ ( )f x  is a characteristic time scale, it could determine the time required 

for ( )x t  to vary significantly in the neighborhood of *x  [9]. 

 

Besides one need to make sure the initial value problem consisting of eq. 2.1 and initial condition 

0(0)x x=  has only one solution, or the stability will be uncertain. Fortunately, there exist a theorem that proves 

the existence and uniqueness of the solution. This theorem says that if ( )f x  is smooth enough ( ( )f x  and 
' ( )f x  are continuous on an open interval R of the x-axis), the solutions exist and are unique. Even so, there is 

no guarantee that solutions exist forever, due to the existence of blow-up phenomena, etc. [9]. 

 

2.1.2. Limit cycle 

 

A limit cycle is an isolated closed trajectory and exists only in non-linear systems, i.e., the neighboring 

trajectories are not closed, but they spiral either towards or away from the limit cycle (Figure 2. 2). If all 

neighboring trajectories approach the limit cycle, the limit cycle is stable or attracting. Otherwise, the limit 

cycle is unstable, or in some cases, half-stable [9]. 

 

 
Figure 2. 2 Limit cycle classification [9] 
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Stable limit cycles are very important scientifically, since they model systems that exhibit self-sustained 

oscillations. In other words, these systems oscillate even in the absence of external periodic forcing. For this 

kind of system, there is a standard oscillation of some preferred period, waveform, and amplitude. If the system 

is perturbed slightly, it always returns to the standard cycle [9]. 

 

Limit cycles can never occur in linear systems. Of course, a linear system can have closed orbits, but they 

won’t be isolated; if ( )tx  is a periodic solution, then so is ( )c tx  for any constant 0c  . Hence ( )tx  is 

surrounded by a one-parameter family of closed orbits (Figure 2. 3). As a result, the amplitude of a linear 

oscillation is totally determined by its initial conditions; any small perturbation in the amplitude will last forever. 

Limit cycle oscillations, on the other hand, depend on the structure of the system [9]. 

 

 
Figure 2. 3 Parameter family of closed orbits 

 

2.1.3. Bifurcations 

 

An interesting aspect is that the qualitative structure of the flow described in section 2.1.1 can change as 

parameters are varied. In particular, fixed point can be created or destroyed, or their stability can change. These 

qualitative changes in dynamics are called bifurcations and the parameter values at which they occur are called 

bifurcation points. Bifurcations are important scientifically since they provide models of transitions from 

stability to instability and vice versa as some control parameter is varied [9].  

 

The most basic bifurcation type is the saddle-node bifurcation, and the involved basic mechanism is that 

fixed points are created and destroyed. As one parameter is varied, two fixed points move toward each other, 

collide, and mutually annihilate. The prototypical example of a saddle-node bifurcation is given by the 

following first-order system 

 

 2x r x= +  (2.6) 

 

Where r  is a parameter and may be positive, negative or zero. If r  is negative, there are two fixed points, 

one of which is stable and the other one is unstable (Figure 2. 4.a). As r  approaches zero from negative, the 

parabola moves up and the two fixed points move towards each other. When 0r = , a half-stable fixed point 

forms out of the two fixed points at * 0x =  (Figure 2. 4.b). This particular fixed point is extremely fragile, as it 

vanishes once 0r  and afterwards, there are no longer fixed points (Figure 2. 4.c). In this case, bifurcation 

occurs at 0r =  [9]. 
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Figure 2. 4 Saddle-node bifurcation example 

 

This example is the so-called normal form of the saddle-node bifurcation and in fact, there are certain 

many representative one-dimensional flow bifurcations like the transcritical bifurcation and the supercritical 

pitchfork bifurcation [9]. 

 

For one-dimensional cases mentioned above, the bifurcation occurs when one of the eigenvalues is zero, 

such bifurcations are called zero-eigenvalue bifurcations. Here, however, for the two-dimensional flow, a 

fundamentally new kind of bifurcation is introduced which provides a way for a fixed point to lose stability 

without colliding with any other fixed points and it’s named by Hopf bifurcation which is observed in this thesis. 

This happens when two complex conjugate eigenvalues simultaneously cross the imaginary axis into the right 

half-plane. There are two types of Hopf bifurcation: subcritical and supercritical [9]. 

 

Suppose we have a physical system that settles down to equilibrium through exponentially damped 

oscillations (Figure 2. 5.a). Now suppose that the decay rate depends on a control parameter  . If the decay 

becomes slower and slower and finally changes to growth at a critical value c , the equilibrium state will lose 

stability. In many cases the resulting motion is a small-amplitude, sinusoidal, limit cycle oscillation about the 

former steady state (Figure 2. 5.b). Then we say that the system has undergone a supercritical Hopf bifurcation 

[9]. 

 

 
Figure 2. 5 Equilibrium decay and supercritical bifurcation growth depending on the control parameter [9]  

 

The subcritical Hopf bifurcation is always much more dramatic, and potentially dangerous in engineering 

applications. After the bifurcation, the trajectories must jump to a distant attractor, which may be a fixed point, 

another limit cycle, infinity or, in three and higher dimensions, a chaotic attractor (Figure 2. 6) [9]. 
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Figure 2. 6 Phase portraits before and after subcritical Hopf bifurcation happens [9] 

 

2.2.Magnetic levitation techniques 

 

In order to improve the railway's traffic efficiency, the engineers identified the friction at the contact 

interface between the wheels and the rail as a significant source of energy loss. As a result, over the last century, 

several engineers have focused on the research of levitating rail infrastructure design, which eliminates friction 

and allows vehicles to reach higher speeds while also extending the infrastructure's lifetime. In this vein, two 

major levitation technology designs have been developed: electromagnetic suspension (EMS) and 

electrodynamic suspension (EDS). Of both the latter has also been divided into two different concepts, one of 

which uses superconducting electromagnets and the other uses an array of permanent magnets. The last is better 

known as Inductrack. Each of these levitation techniques is schematically represented in the figure (Figure 2. 7) 

below [8]. 

 

 
Figure 2. 7 Representation of the different magnetic levitation systems  [10] 

 

As this project focuses on the application of EMS system on Hyperloop technology, here only describe the 

principles, pros and cons, major achievements of EMS. 

 

2.2.1. Electromagnetic suspension (EMS) 

 

The EMS system employs the enticing magnetic force of electromagnets installed in the vehicle's support 

frame (e.g., boogie) to draw the vehicle to a magnetically conductive track and keep it at a predetermined 

distance from the rails. The electromagnets actively monitor the air gap and keep the train at a constant distance 

from the track using feedback control systems [11]. 

 

Little literature is available on the application of EMS system on Hyperloop. Fortunately, more research 

has been dedicated to the use of EMS in Maglev trains, which can be extrapolated to our design. For Maglev 
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trains applications the EMS system can lift a train using attractive forces by the magnets beneath a guide-rail 

[12]. The electromagnetic field is generated by the onboard suspension electromagnet (or permanent magnet 

plus excitation control coils) and causes the mutual attraction with the track. This is depicted in the figure below 

(Figure 2. 8) where the vehicle is suspended on a rail. The suspension gap between the electromagnet and the 

electromagnetic rail is approximately 8-10 mm [13]. 

 

 
Figure 2. 8 EMS system used in the Transrapid [10] 

 

Only one Hyperloop design project, the Hardt Hyperloop, has used this levitation system. Nonetheless, 

when it comes to Hardt Hyperloop Design, this mechanism's layout changes slightly. In this case, the rail is 

mounted on the hyperloop tube's ceiling and consists of a magnetically conductive track, and the hybrid 

permanent magnets are attached to boogie frames that move beneath the rail, as shown in the figure below 

(Figure 2. 9) [8]. 

 

 
Figure 2. 9 Initial EMS system in Hardt Hyperloop [14] 

 

The main advantage of EMS systems is that they can work at all speeds and avoid the disadvantage of EDS 

that they only work at a minimum speed of about 30 km/h, which can eliminate the requirement for a separate 

low-speed suspension system and can simplify the track layout as a result [13]. Its application in recently 

developed Maglev trains has proven that it is a commercially available technology, which can reach a very high 

speed of up to 500 km/h [11]. 

 

In contrast, the main disadvantage of the EMS technology is the dynamically unstable nature of 

electromagnetic attraction. Samuel Earnshaw showed that it is not possible to place a collection of bodies, 

subject only to electrostatic forces, in such a way that they remain in a stable equilibrium configuration [7]. This 
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theorem applies to magnetic forces as well. In fact, it is true for any force that varies with the inverse square of 

the distance, or any combination of such forces [15]. Thus, a constant monitoring of the levitation air gap is 

required to control and correct the error by computer systems integrated either on the rail or the vehicle [11]. 

 

2.2.2. Major achievements  

 

Numerous studies have been conducted on the stability of EMS Maglev trains traveling through flexible 

guideways [16-22]. While there are minor variations in the magnet form and the vehicle-infrastructure fitting 

and interaction, they all generally provide the same design principles for the EMS levitation system. The most 

variances come from the type of control system used or the guideway modeling. 

 

The most common modelling of the flexible guideway is by simplifying the track beam to a single-span 

simply supported Euler-Bernoulli beam [16-22]. In these cases, a modal analysis is firstly conducted for the 

model of the beam in the system, then it is found that the vibration frequency corresponding to the maximum 

displacement of track beam caused by running of maglev train is distributed within a range, and the first-order 

frequency of the track beam has the greatest impact [21]. Thus, in most of the papers, only the track beam's 

first-order bending mode is considered [16-22]. 

 

Junxiong Hu et al. analyzed the mechanical characteristics of the system composed of a single 

electromagnet and elastic track beam, then established a five-dimensional dynamics model of single 

electromagnet-track beam coupled system under classical PD control strategy. In this paper, based on the 

Hurwitz algebraic criterion and the high-dimensional Hopf bifurcation theory, the stability of the coupled 

system is analyzed, proving the existence of a subcritical Hopf bifurcation which is governed by the value pK  

[19]. 

 

What’s more, J. Mas Soldevilla also confirmed the existence of a subcritical Hopf bifurcation for a critical 

proportional gain parameter pK . It’s also noted the implementation of an on/off switch on the electromagnetic 

force can avoid unrealistic negative electrical current and increase the range of initial conditions under which 

the system can be stabilized [8]. 

 

Nevertheless, the two degrees of freedom system is only a simplification and is not fully correct. 

Considering the actual system is continuous, the track-beam can be modelled in a more accurate way by 

regarding as an infinite continuous beam. This will be explained in detail in Chapter 3. 

 

2.3.Kirchhoff’s law of voltage and current 

 

This thesis presents a model in which the force term is concerned with current, thus it’s important to know 

the basis of electromagnetics especially the relationship between voltage and electric current. 

 

In electromagnetism and electronics, a conductor's inductance is the property by which a change in the 

current that flows through it causes a voltage or electromotive force in both the conductor itself (i.e., self-

inductance) and any nearby conductors (i.e., mutual inductance). A changing electric current through a circuit 

that contains inductance induces a proportional voltage that opposes the change in current. The relationship 

among the parameters for a coil with inductance L  is defined as [23] 

 

 
dI

V IR L
dt

= +  (2.7) 
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Where 
2N A

L
l


= , other parameters will be explained in detail in Chapter 3. 

 

Now it is important to introduce the concept of Kirchhoff’s law of voltage and current which state that “the 

total voltage around a loop is equal to the sum of all the voltage drops within the same loop” and “the total 

current or charge entering a junction or node is equal to the charge leaving the node, cause the charge has no 

other place to go except to leave as no charge is lost within the node”, respectively. This will allow us to relate 

the magnetic and electric variables all in one equation later such that the full behavior of the electromagnet will 

be captured through the expression below [8] 

 

 
dI d

V IR L K
dt dt


= + −  (2.8) 

 

Where   stands for the levitation air gap. Eq. 2.8 establishes the system's total voltage in the way by 

taking the input from the ohmic term and subtracting the losses brought on by the variations in electrical current 

flow and the levitation air gap [8].  

 

2.4.Control strategies 

 

Process controls are necessary for designing safe and productive plants (here means the vehicle-beam EMS 

system). Process controls come in many forms, but the PID controller is the most basic and frequently the most 

efficient. This kind of controller attempts to correct the error between a measured process variable and desired 

setpoint by calculating the difference and then taking remedial measures to modify the process as necessary. A 

PID controller controls a process through three parameters: Proportional (P), Integral (I), and Derivative (D). 

These parameters can be weighted, or tuned, to adjust their effect on the process [24]. 

 

This thesis chooses a fundamental approach to design a controller, shaping it as a closed-loop feedback 

control. The following (Figure 2. 10) is a description of a general closed-loop feedback control's primary 

structure. 

 

 
Figure 2. 10 Closed-loop feedback control [25] 

 

Where one has to define the reference setpoint ( )r t  (here initial air gap 0( )r t = ), the error ( )e t  which 

activates the controller defined as the difference between the measured value (air gap  ) and the reference 

setpoint, the controller transfer function ( )cG t  which depends on the control type and controller coefficients 

( dK , pK ), the controller output which is the input of the system ( )u t  (here the voltage U ), the plant transfer 

function ( )pG t  which depends on the way of modelling (here non-linear PDE system), the plant output ( )y t  
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(here air gap  ), and in some cases, the sensor transfer function ( )h t . Figure 2. 11 below presents the symbolic 

notation for each component outlined in this paragraph. 

 

 
Figure 2. 11 PID controller closed-loop feedback scheme [26] 

 

PID-control correlates the controller’s output to the error, integral of the error, and derivative of the error. 

Hence, the PID control function in time domain is defined as 

 

 
0

( )
( ) ( ) ( )

t

PID p i d

de t
u t K e t K e d K

dt
 = + +  (2.9) 

 

Where pK  is the proportional gain, iK  is the integral gain, dK  is the derivative gain, ( )e t  is the error of 

the system, ( )PIDu t  is the output of controller and t  is time. The stability of the system is directly impacted by 

the controller's coefficients. For certain values of such coefficients un unstable system can be stabilized. 

 

2.5.Moving force / object in one-dimensional systems 

 

As this thesis considers the track-beam as an infinitely long Euler-Bernoulli beam resting on a Winkler 

foundation, it would be good to understand how the associated mechanical systems behave as the main 

difference of this project and others lies in the non-linear electromagnetic force. The resonance of moving force 

or instability phenomenon of moving mass in one-dimensional systems has been extensively studied through 

different models, here briefly elaborate in 2 main directions: 1. Moving force system; 2. Moving mass system.  

 

It can be concluded that for moving force situation, no instability is observed but only the resonance will 

happen at critical velocity critv . While for cases of interaction with moving mass, at velocities smaller than critv

the vibrations are always stable and at velocities larger than critv  they can be unstable or stable depending on the 

elastic-inertia properties (mass of the moving object and contact stiffness between the two) of the system. 

 

2.5.1. Moving force system 

 

A.R.M Wolfert described the wave effects in one-dimensional systems interacting with moving loads in 

great depth [27].  Now imagine a system (Figure 2. 12) composed of a force P  moving with constant velocity v  

along an infinitely long Euler-Bernoulli beam which is rest on Winkler foundation. One can write the governing 

equation of motion (EOM) as follow 

 

 
2 44 4 ( )

P
w'''' w w x vt

EI
  + + = − −  (2.10) 
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Where 
4EI


 =  and 4

4

k

EI
 = .   and EI  are the mass per unit length and the bending stiffness of the 

beam, k  is the stiffness of the foundation per unit length. For conciseness, the time derivative is replaced by an 

over dot and the space derivative by a prime. These notations apply to the rest of this thesis.  In addition, the 

variables of the functions x  and t  are left out from the equations. 

 

 
Figure 2. 12 Moving force system 

 

This system is solved in [27], one can find that  

1. When velocity critv v , in which 
critv




=  stands for critical velocity, the steady-state displacement of 

the beam is depicted as below. The field is called the eigenfield, which moves stationary with the load. 

 

 
Figure 2. 13 Steady-state solution of a constant load moving with critv v  [27] 

 

2. When velocity critv v , the solution is plotted for an arbitrary time moment. The field depicted in 

Figure 2. 14 is called Vavilov-Cherenkov (VC) field. A property of this field is that it is asymmetrical 

with respect to the loading point. 

 

 
Figure 2. 14 Steady-state solution of a constant load moving with critv v  [27] 

 

3. When velocity critv v= , the steady-state solution does not exist and the displacements becomes infinite, 

in other words, resonance happens. 
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2.5.2. Moving Mass System 

 

A.V. Metrikine has investigated the uniform motion of a mass along an axially compressed Euler-Bernoulli 

beam on a viscoelastic foundation [28]. The model is depicted in Figure 2. 15, and it is assumed that the mass 

and the beam are in continuous contact and a vertical constant force acts on the moving mass.  

 

 
Figure 2. 15 The uniform motion of a mass (subjected to a constant vertical force) along a beam [28] 

 

The EOM for the model can be written as 

 

 0( ) ( )U EIU'''' NU'' U U mU P x Vt   + + + + = − + −  (2.11) 

 

Where ( , )U x t  and 0 ( )U t  are the vertical deflections of the beam and the mass, respectively. N  is the 

compressional force,   and   are the viscosity and stiffness of the foundation per unit length, m , V , and P  

are the mass, velocity and vertical force of the body, ( )  is the Dirac delta function.  

 

The main focus of this paper is on the relationship between the instability phenomenon and compressional 

axial stresses in the beam. Figure 2. 16 shows the dependency of critical mass 
*M  (above which the instability 

happens) versus the velocity.  

 

 
Figure 2. 16 M* versus   for different compressional forces [28] 

 

Where 
crit

v

v
 =  stands for the ratio of velocity and critical velocity. The domain located above a curve is 

associated with unstable vibrations of the beam. One can conclude from the figure (Figure 2. 16) that [28] 
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1. If the beam is not axially compressed, the instability can take place only for 1 . 

 

2. The larger the mass, the smaller the velocity that can cause instability. 

 

3. The instability starts at smaller velocities (for a fixed value of mass) when the compressional force 

increases. 

 

What’s more, the correlation of instability of beam and viscosity of foundation is also investigated here 

(Figure 2. 17). The domain located above a line is the instability domain. 

 

 

 
Figure 2. 17 The dependency M*( ) for different viscosities of the foundation (T=0.7) [28] 

 

It should be noted that the instability still occurs for overcritical viscosities, although the instability starts at 

larger velocities (for a fixed mass) as the viscosity increases. The reason is that the resonance vibration due to 

the moving load can be effectively damped but the instability resulted from interaction of mass and beam is 

caused by anomalous Doppler waves [28]. 
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3. Modelling of The EMS Levitation System 
 

The model of the EMS levitation established in this chapter is used as the foundation for all analytical 

study cases presented in this thesis. To be noted, the main purpose of this thesis is to qualitatively elaborate the 

effects of EMS system in the stability of vehicle-beam coupled system. Hence, the parameters of the model are 

not representative for Hardt Hyperloop, but are chosen from the known model of rail-structure [29].  

 

In this case, the following assumptions have been adopted: 

 

1. Considering the tube’s length is much larger than its diameter and neglecting the shear stiffness of 

itself, the tube is modelled as an Euler-Bernoulli beam. 

 

2. The beam is supported by a uniformly distributed spring-dash-pot foundation. 

 

3. The length of the vehicle is relatively small compared to that of tube. Thus, the vehicle is considered as 

a point mass. 

 

To this end, the overview of the model is illustrated below (Figure 3. 1). 

 

 
Figure 3. 1 Model of EMS levitation system and reference frame definition. The beam and vehicle share the same reference 

point in the vertical direction which is denoted as a red dot. 

 

One can now write the governing system of equations of motion as 

 

 
2 2

0

2

2

( )

sgn( )
4 ( )

[ 2 ( )]
2 ( )

em

em

m
em

u EIu'''' cu u F x vt

mz mg F

N A i
F z u

z u

z u i
i U iR C z u

C z u

  



+ + + = −


= −



= −
−

 −
= − + −

−

 (3.1) 

 

Where ( )z t  and ( , )u x t  are the vertical displacements of the vehicle and the beam respectively, m  is the 

mass of vehicle,   and EI  are the mass per unit length and the bending stiffness of the beam, c  and   are the 

viscosity and stiffness of the foundation per unit length, v  is the velocity of the vehicle, ( )  is the Dirac delta 
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function, emF  is the electromagnetic force, sgn( )z u−  refers to the sign of levitation air gap and ensures the 

electromagnetic force is always in attraction so that in unrealistic case the vehicle could pass through the rail,   

i  is the electric current flowing through the coil, U  is the voltage of control system, R  is the total resistance of 

the coil.  

 

As shown in eq. 3.1, the non-linear dependency of the electromagnetic force on the levitation air gap   

and the electric current i  is taken from available literatures [16-22], where 0  is the permeability in vacuum, 

N  is the number of turns of the coil, mA  is the area of the magnetic pole of the electromagnet. For the sake of 

simplicity all constant parameters are combined in a generic constant 

2

0

4

mN A
C


= . Furthermore, the ordinary 

differential equation of current is derived from eq. 3.2 following the Kirchhoff’s law of total voltage which is 

explained in section 2.3 [16-22].  

 

 
2

2 2
i i

U iR C C 
 

= + −  (3.2) 

 

The levitation air gap   is defined as the difference between the displacement of the vehicle and that of 

beam: 

 

 z u = −  (3.3) 

         

This project is aimed at studying dynamic problems by both non-linear simulations and analytical 

linearized approximations through MATLAB. Numerical values of all the parameters defined above to describe 

the model are collected in the following table (Table 3. 1), where the value of reference mass M  is the 

summation of mass of vehicle (10 meters long) and mass of one magnet [8]. 

 

Parameter Value Unit 

M  10150  kg  

  268.3  kg/m  

EI  
66.42 10  2N m  

c  41.495 10  kg/(m s)  

  78.33 10  
2kg/(m s )  

g  9.81 2m/s  

R  9.71   

0  74 10 −  T m/A  

N  800  −  

mA  0.25  2m  

C  0.0503  3T m /A  

0   (Target air gap) 0.015  m  

v  (When no special statement) 300 m/s  

critv  (Critical velocity) 415.19 m/s  

Table 3. 1 Input numerical values of model parameters 
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4. Numerical Non-Linear Simulations 
 

This chapter focuses on reveling the effects of EMS system on stability of vehicle-beam coupled system by 

numerical simulations. Along this line, here firstly explain why and how to apply the numerical method, 

secondly, validate this method by comparing the outcomes of simple simulations under varying values of mass, 

thirdly, search for appropriate combinations of PD control to stabilize the system with fixed mass and velocity, 

lastly, study the stability of the system to find the stable region of velocity for fixed mass, pK  and dK , draw 

the relationship between different governing parameters, e.g., velocity versus pK ,  which is capable of keeping 

the system stable. 

 

4.1.Idea of numerical method  

 

It’s nearly impossible to find analytical solution of eq. 3.1 due to non-linearity and partial differentiation. 

Thus, the basic idea is to find the numerical solution. To do this, one can first put the original system into 

moving reference frame under the following assumptions 

 

 ,x vt t = − =  (4.1) 

 

Then one can rewrite eq. 3.1 as 

 

 

2

2

2

2

( 2 ) ( ) ( )

sgn( )
( )

[ 2 ( )]
2 ( )

em

em

em

v u'' vu' u EIu'''' c vu' u u F

mz mg F

i
F z u C

z u

z u i
i U iR C z u

C z u

    − + + + − + + =


= −


= −
−

 −
 = − + −

−

 (4.2) 

 

Where u  is now a function of   and  . Afterward, one can rewrite the equation of motion of beam as 

well as that of vehicle in form of convolution integral as 

 

 
0

2

0

( 0, ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

t

EB em f

t

m em f

u t g t F d u t

gt
z t g t F d z t

   

  


= = − +



 = − − +







 (4.3) 

 

Where ( )EBg t  and ( )mg t  are the Green’s functions of beam and vehicle in the moving reference frame 

evaluated at 0 = , respectively. ( )fu t  and ( )fz t  are free-vibration parts of beam and vehicle which stand for 

initial conditions. As the air gap is equal to the difference of displacements of the vehicle and the beam right 

above the vehicle, the deflection of the beam should be taken at 0 = . 

 

The Green’s function of vehicle is easy to derive and here the result is directly given by 
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 ( )m

t
g t

m
=  (4.4) 

 

4.1.1. Green’s function of beam 

 

Now one should determine the Green’s function of beam numerically, and solve for free-vibrations with 

given initial conditions. The equation of motion of beam is taken out from eq. 4.2 separately for ease of citation. 

 

 
2( 2 ) ( ) ( )emv u'' vu' u EIu'''' c vu' u u F   − + + + − + + =  (4.5) 

 

To ensure the outcome is correct., here two different ways are used to obtain the Green’s function of beam. 

 

1. Contour integration from Fourier domain 

 

Firstly, one can solve eq. 4.5 by using the Laplace transform with respect to   and the Fourier transform 

with respect to   . These transforms are 

 

( )

0

( , ) ( , ) sV s u e d   


−=  , 
( )( , ) ( , ) ikW k s V s e d 



−

−

=   

 

And after applying them to eq. 4.5 brings about 

 

 
2 2

4 2 ( )(2 )
( ) ( , ) emF sv i vs icv s cs
k k k W k s

EI EI EI EI

   + + +
− − + =  (4.6) 

 

Where ( )emF s  is the electromagnetic force in the Laplace domain, trivial initial conditions 

( ,0) ( ,0) 0u u = =  are taken. Now applying inverse Fourier transform to obtain the solution in the Laplace 

domain yields 

 

 
( )

( , )
2 ( , )

ik

emF s e
V s dk

EI D k s








−

=   (4.7) 

 

Where 
2 2

4 2 (2 )
( , )

v i vs icv s cs
D k s k k k

EI EI EI

   + + +
= − − + . One could rewrite eq. 4.7 as 

 

 ( , ) ( ) ( , )em EBV s F s g s =  (4.8) 

 

Where 
1

( , )
2 ( , )

ik

EB

e
g s dk

EI D k s








−

=   is the Green’s function of the beam in Laplace domain and the 

integral part can be solved by using contour integration method. This results in the following expression 
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Where 
nk  and 

mk  are the roots of the equation ( , ) 0D k i =  which possess a positive imaginary part and 

negative imaginary part, respectively. This can be done numerically via MATLAB.  

 

The results of the absolute value of Green’s function evaluated at 0 =  in the Laplace domain are shown 

below (Figure 4. 1) 

 

 
Figure 4. 1 Absolute value of Green’s function evaluated at ξ= 0 in the Laplace domain by contour integration 

 

2. Superposition of wave modes in Laplace domain 

 

Secondly, one could solve eq. 4.5 by using only the Laplace transform with respect to  , it yields 

 

 
2 2 ( )

( 2 ) ( ) ( )emF sc c
V'''' v V'' vs v V' s s V

EI EI EI EI EI EI EI

   
 + − + + + + =  (4.10) 

 

It is advantageous to divide the system into two domains: domain 1 represents the system behind the load 

( 0  ) and domain 2 in front of the load ( 0  ). Eq. 4.5 could be rewritten as 

 

 

2 2

1 1 1 1

2 2

2 2 2 2

( 2 ) ( ) 0, 0

( 2 ) ( ) 0, 0

c c
V'''' v V'' vs v V' s s V

EI EI EI EI EI EI

c c
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EI EI EI EI EI EI

   


   



+ − + + + + = 


 + − + + + + = 


 (4.11) 

 

The interface conditions should be imposed which represent the continuity in displacements and slope 

between the two domains as well as the equilibrium of bending moment and shear force, respectively. They 

may be expressed as follows 
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Where ( )emF s  is now regarded as a unit force since the Green’s function is the key point here. 

 

Then assume the solutions of eq. 4.11 to be in the form of harmonic waves 
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ik

ik
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
 (4.13) 

 

Where nA  and nB  represent the amplitudes of the harmonic waves and k  represents the wave number of 

the harmonic waves. Substituting this assumed form of solutions into eq. 4.11. one obtains 
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 (4.14) 

 

The exponent cannot be zero for all positions in space and we are not interested in the trivial solution, 

namely 0n nA B= = . Thus, in order to satisfy eq. 4.14, the expression in the parenthesis must be zero and reads 

 

 
2 2

4 2 (2 )
0

v i vs icv s cs
k k k

EI EI EI

   + + +
− + + =  (4.15) 

 

The solutions can be found numerically, namely 1 2 3 4, , ,k k k k , for each value of s . Considering the 

solutions must vanish as  →  , the expressions of displacements of beam in Laplace domain can be written 

as follows 
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 (4.16) 

 

Where 1k  and 2k  have positive imaginary parts while 3k  and 4k  have negative imaginary parts. Now one 

could plot the absolute value of Green’s function in Laplace domain and compare with the one obtained in first 

method, see Figure 4. 2 below. 
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Figure 4. 2 Comparison of absolute value of Green’s function evaluated at ξ= 0 from both methods in the Laplace domain 

 

It can be told that the outcomes of Green’s function obtained from different ways fully overlap each other, 

which could be regard as a signal to say the Green’s function is correct. 

 

In this case, one could further derive the Green’s function in time domain by using trapezoidal function in 

MATLAB. The outcomes are illustrated in Figure 4. 3 

 

  
Figure 4. 3 Green’s function in time domain. It is evaluated at ξ= 0 on the right and at ξ= ±10 on the Left 

 

It can be concluded that the Green’s function of the beam in the moving reference frame is continuous at 

0 =  and asymmetric with respect to 0 = . The latter is reasonable as eq. 4.15 is an odd function so that the 

roots are not symmetric in the complex plane.  

 

To validate the Green’s function, here also plot the displacement of the beam (Figure 4. 4) under a moving 

constant load ( emF mg= ) with trivial initial conditions and compare the steady-state with that obtained 

analytically [27]. 
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Figure 4. 4 Displacement of beam obtained by Green’s function and analytical steady-state response 

 

As can be seen, the two results are different initially since the blue one is the transient response of the 

system while the red one is the steady-state response. With time goes by the system steps into steady-state 

(horizontal part in Figure 4. 4) and the displacements of beam obtained numerically almost overlap with the 

analytical results which means the Green’s function is correct. 

 

4.1.2. Free-vibrations of beam and vehicle 

 

If one uses Green’s function only to determine the response of the system, then no information about initial 

conditions will be included as Green’s function is based on zero initial condition. In the following research, to 

study the behavior of the system around the equilibrium point, initial perturbations of beam and vehicle from 

steady-state position are required to impose which means one should add another part of vibrations to take the 

initial conditions into account, namely free-vibration. 

 

The free-vibration part of vehicle is easy to derive and it reads 

 

 0 0f zz z v t= +  (4.17) 

         

Where 
0z  and 

0zv  are the initial displacement and velocity respectively. 

 

For the solution of free-vibration part of beam, one should first transform eq. 4.5 into Laplace domain with 

zero external force and non-zero initial conditions, it follows 

 

 
2 2

0 0 0 0( 2 ) ( ) ( ) 2u

c c c
V'''' v V'' vs v V' s s V su v u v u '

EI EI EI EI EI EI EI EI EI

     
+ − + + + + = + + −  (4.18) 

 

Where 0 ( )u   and 0 ( )uv   are the initial displacement and velocity of the beam in the moving reference 

frame, 0 ( )u '   stands for the first space derivative of initial displacement. Here the steady-state solution of the 

beam under constant moving load ( emF mg= ) is chosen as the initial conditions, of which the derivation process 

is explained in detail in many available literatures [27]. 
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Then split eq. 4.18 into the superposition of two parts, they read 

 

 

2 2

0 0 0 0

2 2

( 2 ) ( ) ( ) 2

( 2 ) ( ) 0

p p p p u

h h h h

c c c
V '''' v V '' vs v V ' s s V su v u v u '

EI EI EI EI EI EI EI EI EI

c c
V '''' v V '' vs v V ' s s V

EI EI EI EI EI EI

     

   


+ − + + + + = + + −


 + − + + + + =


 (4.19) 

 

Where pV  and hV  stand for particular solution and homogeneous solution of free-vibration part of beam, 

respectively. Now one could solve eq. 4.19 with known initial conditions and interface conditions at the point of 

load, they could be written as following steps 

 

1. Assume the solutions to be in the form of harmonic waves 

 

 

0

0 0

p

h

p

ik

p p

ik

h h

ik

u

V A e

V A e

u Be

v







−

−

−

 =

 =


=


=






 (4.20) 

 

Where 1,2,3,4B  and 1, 2, 3, 4p p p pk  are known constants, pA  and hA  are amplitudes of particular solution and 

homogenous solution respectively, hk  is wavenumber of homogenous solution. 

 

2. Solve for pA  by substituting eq. 4.20 into eq. 4.19 

 

 

2 2

1 1 1 1 01 01 01

2 2

2 2 2 2 02 02 02

( 2 ) ( ) 2 , 0

( 2 ) ( ) 2 , 0

p p p p

p p p p

c c c
V '''' v V '' vs v V ' s s V su u v u '

EI EI EI EI EI EI EI EI EI

c c c
V '''' v V '' vs v V ' s s V su u v u '

EI EI EI EI EI EI EI EI EI

     


     



+ − + + + + = + − 


 + − + + + + = + − 


(4.21) 

 

Where 1 2

1 1 2
p pik ik

p p pV A e A e
 − −

= +  and 1 2

01 1 2
p pik ik

u B e B e
 − −

= + , 3 4

2 3 4
p pik ik

p p pV A e A e
 − −

= +  and 

3 4

02 3 4
p pik ik

u B e B e
 − −

= + , 1pk  and 2pk  are roots with a positive imaginary part, 3pk  and 4pk  are roots with a 

negative imaginary part. 

 

3. Solve for wavenumber hk  

 

 
2 2

4 2 (2 )
0h h h

v i vs icv s cs
k k k

EI EI EI

   + + +
− + + =  (4.22) 

 

Eq. 4.22 has 4 roots, say that 1hk  and 2hk  are roots with a positive imaginary part, 3hk  and 4hk  are roots 

with a negative imaginary part. 

 

4. Solve for hA  by imposing interface conditions 
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1 2

1 2

1 2

2 1

, 0

0

V V

V' V '

V'' V ''

V ''' V'''



=


=
=

=
 − =

 (4.23) 

 

Where 1 1 1p hV V V= +  and 2 2 2p hV V V= + . 

 

Afterwards, the free-vibration part of beam in Laplace domain is obtained and one needs to use trapezoidal 

function to transform the outcome into time domain. The shape of free-vibration of beam under given initial 

conditions at 0t =  is shown below (Figure 4. 5) 

 

 
Figure 4. 5 Shape of free-vibration of beam at t=0 

 

To corroborate fu , here both the numerical outcomes (solid line) and the analytical steady-state solution 

(dash line) are illustrated in Figure 4. 5 for the sake of comparison. It can be observed that small errors exist and 

this is due to the energy cannot be all captured by the frequency range set ( max 2000 Hzf = ), if one increases 

the maximum frequency, the error will decrease. Here the error is about 6% and it’s acceptable, fu  is correct. 

 

4.1.3. Basic assumption of numerical method 

 

As eq. 4.3 shows, the displacement of beam and vehicle are now expressed in the form of convolution 

integral. Now assume the integral can be solved by using trapezoidal rule if the interval is quite small  

 

 
1

( ) ( ) ( ( ) ( ))
2

b

a

f x dx b a f a f b −  +  (4.24) 

 

Then rewrite integral terms of eq. 4.3 to be the summation of infinitely many integrals as 
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 (4.25) 

 

Where 1n nt t t−− =  and t  is small enough. By applying eq. 4.24 to eq. 4.25 results in 

 

 

1 1
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=


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

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




 (4.26) 

 

Where , , ,EB m f fg g u z  are already obtained numerically (section 4.1.1), 0 1 1( ), ( ), , ( )em em em NF t F t F t −  are 

referred as historical terms and are known, ( )em NF t  is called instantaneous term and remain unsolved.  

 

Eq. 4.26 is a system of algebraic equations and solvable when it’s combined with the equation of 

electromagnetic force at each time step ( 1,2,n N= ) as the latter is an explicit function of u  and z . 

 

 
2

2

( )
( ) sgn( ( ))

( ( ) ( ))

N
em N N

N N

i t
F t t C

z t u t
=

−
 (4.27) 

 

The electric current is expressed in an ordinary differential equation as shown in eq. 4.2 and the whole 

system ( ( )Nu t , ( )Nz t , ( )em NF t , ( )Ni t ) could be solved by time-stepping scheme (For loop) in MATLAB with 

finite difference method or ODE45 if initial conditions are given.  

 

4.2.Validation of numerical model 

 

To verify the aforementioned numerical method, here a simple system (Figure 4. 6) is created in which the 

vehicle is moving uniformly on the beam and they are connected by a linear spring. What’s more, a constant 

force is imposed on the vehicle while the gravity is neglected. 

 

 
Figure 4. 6 Simplified linear mechanical system 
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Where 100000000 N/mk =  is the stiffness of the spring, P  is a constant force acting on the vehicle. 

Now one can imagine that if the mass of the vehicle m  is small enough, then the effective force acting on the 

beam is equal to P . It can be easily derived from the equation of motion of vehicle as shown below 

 

 mz P k= −  (4.28) 

 

If 0m = , 0P k− = . We verify that with the decrease of mass, the displacement of beam will converge to 

the one under moving constant load P  (which is already discussed in section 4.1.1). 

 

Then one is supposed to use eq. 4.26 to solve for the response of the system but combined with a different 

linear force equation. The displacements of beam are illustrated in detail in Figure 4. 7 for different value of m . 

 

  

  
Figure 4. 7 Deflections of beam under decreasing value of the vehicle mass. The blue solid line represents the 

displacement in the moving mass system, the red one represents the displacement in the moving force system. 

 

As can be seen from Figure 4. 7, when the mass of vehicle is quite small ( 10 kgm = ), the deflections of 

beam coincide with the one under moving constant force, at each time moment. This limit case verifies the 

numerical model.  

 

4.3.Stability study of EMS vehicle-beam coupled system1 

 

 
1 All results obtained in this section are based on the wrong differential equation of current (eq. 4.31) where the sign of last term is negative. 

However, this will only influence the exact quantities and the quality is not affected. 
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As the numerical tool can only tell the results of simulations, untill now, no information is obtained about 

the nature of stability of this system (eigenvalues, etc.). Thus, this section focuses on imposing different closed-

loop control systems (basically PD) based on available analytical study of simplified 2 degrees of freedom 

system [8] to see how the more realistic and complex model (infinite degrees of freedom) will behave, then 

some sets of control systems are chosen under which the vehicle-beam coupled system would show 

representative characteristics to draw the combined effects of EMS system and one-dimensional guideway. 

 

4.3.1. Appropriate closed-loop PD control  

 

As mentioned in section 2.4, for this control the input is the error defined as 
0e z u = − −  and the output 

is the voltage U . Thus, the control loop can be expressed as 

 

 
0 0 0( )p d p dU K e K e U K K U  = + + = − + +  (4.29) 

 

Where 
0U  is the initial voltage and the value can be calculated as follows 

 

 
0

0

2 2

0 0
0 02 2 2

0 0

U
i

R
i U mg

C mg C mg U R
R C


 

=

= ⎯⎯⎯→ = → =  (4.30) 

 

In this case, the expression of electric current becomes 

 

 0 0 2
[ ( ) 2 ]

2
p d

i
i K K U iR C

C


   


= − + + − +  (4.31) 

 

To avoid the unrealistic negative current, the switch on/off control is also added into the system which will 

cut off the power when the output of eq. 4.31 is negative. 

 

As the main purpose of this thesis is to reveal the deficiencies of the simplified two degrees of freedom 

model and show the actual effects of EMS on stability under varying velocity of vehicle, here the values of 

control gains ( pK  and 
dK  ) are chosen on the premise of stabilizing the system in simplified model (Figure 4. 8). 

 

 
Figure 4. 8 Simplified two degrees of freedom model. The beam and vehicle share the same reference point in the vertical 

direction which is denoted as a red dot. 
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The beam is now regarded as a point mass, bm  and K  are dynamic mass and stiffness respectively, they 

can be obtained by solving 
2 1(( ) ) ( ( ))b b EBabs m s C s K abs g s−+ +   where ( )EBg s  is the Green’s function of 

beam in Laplace domain when the horizontal velocity of vehicle is 0, and 0.05 2b bC Km=   .  

 

Three sets of pK  and 
dK  combinations are chosen and they are 1. 16000, 24000p dK K= = ; 2. 

60000, 100000p dK K= = ; 3. 600000, 100000p dK K= = . The first two can stabilize the system in simplified 

model while the third leads to instability. The displacements of the beam and vehicle in simplified two degrees 

of freedom system for these three groups of control gains are illustrated in Figure 4. 9, where the initial 

perturbations are the same as case 1 in the following.  

 

 
Figure 4. 9 The displacements of beam and vehicle in simplified system for three different sets of control gains (left: 

16000, 24000p dK K= = ; middle: 60000, 100000p dK K= = ; right: 600000, 100000p dK K= = ) 

 

Below, the response (the displacements of beam and vehicle, electric current and electromagnetic force) of 

the system  , , , emz u i F  in one-dimensional model is presented in time domain for two sets of control gains (left 

and right of Figure 4. 9) and the phase portrait of the vehicle for different initial conditions is also illustrated. To 

be noted, the displacement of beam u  in all subsequent studies is evaluated at 0 = . 

 

Case 1. 16000, 24000p dK K= = , 300 [ ] m/sv = (Figure 4. 10) 

 

Here the initial perturbation is imposed on the position and velocity of vehicle and they read 
*(0) 0.001z z− =  and 0.01ziniv = , where 

*z  and ziniv  are the steady-state position and initial vertical velocity of 

vehicle respectively, *u  is the steady-state displacement of beam under moving constant load emF mg= , 

* *

0z u = + ; the initial conditions of other parameters are *(0)u u= , (0) 0uv = , and 0(0)
U

i
R

=  (these keep 

unchanged in the following research) 
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Figure 4. 10 Non-linear simulations of the response of the system in time domain for 16000pK =  and 24000dK =  

 

It can be easily observed from Figure 4. 10 that the system is stable around the equilibrium point (steady-

state position) as the force, displacement, and current all converge to steady-state value. The decaying trend of 

electric current is similar to that of vehicle’s displacements. 

 

Moreover, the outcomes are in accordance to the ones of simplified model which means that it might be 

safe to use simplified model to predict the stability of the system at subcritical velocity. 

 

The phase portrait of the vehicle in this case for different initial perturbations is shown in Figure 4. 11, 

where the red dot represents the starting point, 
*(0)iniz z z= − , ziniv  is the initial vertical velocity. One can tell 

that the system becomes unstable when the initial velocity is relatively large or the initial perturbation is 

negative (green line in Figure 4. 11).  

 

 
Figure 4. 11 Phase portrait of the vehicle z z−  for different initial perturbations 
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Case 2. 600000, 100000p dK K= = , 300 [m/s]v =  (Figure 4. 12) & 350 [m/s]v =  (Figure 4. 13) 

 

Here the initial perturbation is the same as that in case 1. The response of different variables of the system 

is shown in Figure 4. 12. 

 

 
Figure 4. 12 Non-linear simulations of the response of the system in time domain for 600000pK =  and 100000dK = , 

300 [m/s]v =  

 

The outcomes are still in accordance to the ones of simplified model as a stable limit cycle appears and the 

equilibrium point is unstable, does this mean that the simplified model is sufficient? The answer is no. As the 

influence of beam on stability are still unknown, one could try another velocity of the vehicle, e.g., 

350 [m/s]v = , to see the how the system will behave (Figure 4. 13). 

 

 
Figure 4. 13 Non-linear simulations of the response of the system in time domain for 600000pK = , 100000dK = ,

350 [m/s]v =  

 

One can see that for a different (larger) velocity the previous unstable system becomes stable, which is 

counter-intuitive. This confirms that the horizontal velocity plays an important role in the stability of EMS 

system and the following sections will try to elaborate the relationship of velocity and other parameters to 

maintain the stability of the system. 



Rui Wang             41 
 

 

 

It would be good to also plot the phase portrait of the vehicle for this case (Figure 4. 14) and compare with 

that of case 1 

 

 
Figure 4. 14 Phase portrait of the vehicle z z−  for different initial perturbations when 352.9 [ ] m/sv =  

 

As can be seen, it shows different trajectory patterns from that of case 1 and the system is stable for all 

examined perturbations. Hence, the horizontal velocity of vehicle may influence the stable region of initial 

conditions and this will be discussed in detail in subsequent sections. 

 

4.3.2. Representative mechanical system 

 

Before studying the effects of EMS system on the instability of vehicle with varying velocity, one can first 

find a representative mechanical system and seek for its behavior under different velocity in order to set a 

reference for the non-linear system. 

 

Now imagine a system in which the vehicle is moving at constant velocity on the beam and they are 

connected by a spring and dash-pot (Figure 4. 15), where the stiffness of the spring is 
0

Mg
k


= , the damping is 

2c kM=  ,   is damping ratio. Then one could find the stable region of velocity for fixed mass and 

damping of this system and the velocity versus mass relationship for different damping. 
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Figure 4. 15 Representative linear mechanical system 

 

1. Stable region of velocity for fixed mass and damping 

 

The stability region of the linear mechanical system for three different damping ratios at the velocity range 

from 0 to 1.5 critv  is shown below (Figure 4. 16) 

 

 

 

 
Figure 4. 16 Stability region of velocity for mechanical system with different damping. The damping ratio is 5%, 0.1%, and 

0 from top to bottom 

 

Where the horizontal axis represents the ratio of actual horizontal velocity and critical velocity, the mass of 

the vehicle is m M= , the initial perturbations are 0.001iniz =  and 0ziniv = . It is found that the larger the 
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damping ratio, the narrower the unstable region after the critical velocity. It might because for larger velocity 

the energy increased by anomalous waves is relatively small and can be damped while for velocity in between 

the increased energy due to anomalous waves is higher. 

 

2. Velocity versus mass for different damping ratios 

 

As shown in section 2.5.2, the dependency of critical mass (above the value of which the system is 

unstable) on velocity is important since it can tell us how to keep the system stable. Here the velocity versus 

mass relationship for this mechanical system is illustrated in Figure 4. 17, where the initial perturbations are 

0.001iniz =  and 0ziniv = . 

 

  
Figure 4. 17 Velocity versus mass for 0 (left) and 0.1% (right) damping ratio 

 

It is found that with the increase of damping ratio, the lower boundary will move to the right and the upper 

boundary will move to the left until they collide with each other and then the whole plane is stable. On the other 

hand, if the damping ratio decreases, the upper boundary will move to the right and the lower boundary will 

move to the left until the whole right plane ( 1.03 critv v ) is unstable.  

 

However, from all above one cannot say for sure the larger the damping ratio, the better to stabilize the 

system. If one increases the damping ratio to 2 (supercritical damping), the displacements of beam and vehicle 

for different values of mass would then be like Figure 4. 18, where the horizontal velocity is 1.35 critv v= , initial 

perturbations are 0.001iniz =  and 0ziniv = . 
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Figure 4. 18 Displacements of beam and vehicle under supercritical damping ( 2 = ) for m = M (left) and m = 2M (right) 

 

It is observed that at supercritical velocity the system loses stability when the mass of vehicle is relatively 

small but returns to stable if the mass increases. This implied that the velocity versus mass relationship would 

inverse if the damping ratio is too large. 

 

4.3.3. Stability versus velocity regions and modes of instability 

 

Before investigating the relationship of velocity to other parameters of interest, it would be good to firstly 

obtain the range of velocity at which the system is stable for fixed value of mass, pK  and dK , and then to 

distinguish the type of instability. This will help us to obtain some useful information to keep on further study. 

Here, the stability region, as well as the modes of instability, for aforementioned (section 4.3.1) three different 

combinations of pK  and dK  is computed and shown in Figure 4. 19 , where the mass of vehicle is m M= , the 

initial perturbations are 0.001iniz =  and 0ziniv = .  

 

It is found that for the first group (top of Figure 4. 19), the system is always stable; for the second group 

(middle of Figure 4. 19), it shows stability when 1.075 critv v , then the system becomes unstable with 

exponentially increase in response from 1.075 critv  to 1.2 critv , after which a stable limit cycle appears; for the 

third group (bottom of Figure 4. 19), the system is unstable at both lower (from 0 to 0.75 critv ) and higher velocity 

(from 1.075 critv  to 1.5 critv ), what’s more, there is only stable limit cycle and no exponential increase in this case.  
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Figure 4. 19 Stability region of velocity for EMS system with different control gains and modes of instability. The value of 

pK  and dK  are {16000,24000}, {60000,100000}, {600000,100000} from top to bottom 

 

From above one can obtain the following information: 1. The EMS system can delay the onset of 

instability at supercritical velocity; 2. The EMS system could be stable even at supercritical velocity if control 

gains are chosen properly; 3. The EMS system can interact with the guideway which makes the system stable 

even with inappropriate values of control gains. Instability which occurs at subcritical velocity is due to the 

unproper set of control gains (here the value of pK  is too large), while the reason for instability at supercritical 

velocity is the combined effects of EMS and anomalous Doppler waves [28]. 

 

The limit cycle mostly results from the on/off switch control of electric current. For instance, take one 

point from case 3 of Figure 4. 19 ( 600000pK =  and 100000dK = ) which is located at 0.5 critv v= . The 

displacements of beam and vehicle with and without on/off control are illustrated in Figure 4. 20, where m M= ,  

0.001iniz = , and 0ziniv = . It is found that once the on/off switch of current is disabled, the response of the 

system will increase to infinity. This is reasonable as if the value of current is negative, the control system is 

trying to repel the vehicle rather than attract. Nevertheless, the force is concerned with the square of current (see 

eq. 4.2), which means the attraction force is increased instead, and this might lead to the instability as the force 

behaves opposite to what the control system wants it to. 
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Figure 4. 20 Displacements of beam and vehicle with (right) and without (left) switch on/off control of current 

 

However, even there is no on/off control, the system could also step into limit cycle and one example is 

case 3 of Figure 4. 19 at 0.75 critv v= . The response with and without on/off control is shown in Figure 4. 21, 

where m M= ,  0.01iniz = , and 0.05ziniv =  (a bit larger initial perturbations are used to decrease the simulation 

time before the limit cycle is reached). 

 

 

 
Figure 4. 21 Response of system with (top) and without (bottom) on/off control 
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As can be seen, the limit cycle doesn’t vanish but is transformed from standard one to irregular. The reason 

is that even if the electric current is becoming negative, and subsequently the electromagnetic force becomes 

larger than 0 and remain attractive. However, the force is still smaller than gravity of vehicle, which means no 

sudden downward acceleration will happen but only the upward acceleration will decrease, and if this deviation 

to the original purpose of the control system is acceptable, then the system will keep running like a cycle, but 

with different amplitudes. 

 

4.3.4. Stability-instability perturbation boundary for different load velocities 

 

For the linear mechanical system, there is only stable or unstable fixed point. If it’s attracting, then the 

system will be stable for the whole phase plane of initial perturbations and no boundary would exist. However, 

in the non-linear system, there is a region of initial conditions that leads the system settles to the equilibrium 

point, while outside of this region, the response of the system increases exponentially. 

 

As elaborated in section 4.3.1, the horizontal velocity of vehicle might influence the stability region of 

initial conditions (it should be noted that the value of control gains also shows great impact [8], which is already 

investigated and not of interest here). Hence, the stable boundary of initial perturbation versus velocity is 

illustrated for fixed value of mass, pK  and dK .  

 

The results are shown in Figure 4. 22, where 16000pK = , 24000dK =  and m M= . It can be told that the 

stability region grows when the velocity increases from below critv , then reaches maximum when critv v= , after 

which the stability region decreases to the initial state. What’s more, the lower boundary is nearly unchanged 

when the velocity is varying.  

 

One can conclude that the larger the initial perturbation of displacements, the wider the stability region of 

initial velocity, and there is no obvious effect of velocity on stability boundary of initial conditions. In addition, 

the instability phenomenon shown in Figure 4. 11 is due to the negative initial perturbation on position of vehicle. 

 

 
Figure 4. 22 Stability boundary of initial perturbations for different horizontal vehicle velocity 
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4.3.5. System stability versus velocity and control gains 

 

The control gain is important in EMS system and it affects the behavior of the whole system by even a tiny 

variation. Thus, to better understand the effects of EMS on instability of vehicle-beam coupled system, it’s 

necessary to figure out the dependency of pK  and dK  on velocity. This section focuses on illustrating velocity 

versus control gains relationship by defining boundary between stability and instability. 

 

To be noted, one should pay attention to the setting of unstable conditions for numerical simulations as 

there are two modes of instability (exponentially increase and limit cycle). In small time scope (save time 

running simulations), if the condition is only based on the occurrence of an exponentially increasing instability 

as “Once the displacement of vehicle is ten times larger than the initial perturbation, the system is unstable”, 

one would miss many other unstable cases and the computed relationship is inaccurate. Here, the author used 

empirical conditions of instability obtained from large number of simulations and two representative cases are 

shown below (Figure 4. 23) 

 

 
Figure 4. 23 Representative instability modes except exponentially increase, where 0.65 critv v= , m M= , 

24000dK = , 13000pK =  (left) or 22000pK =  (right) 

 

On the left of Figure 4. 23 the displacement of vehicle is increasing at very small rate and even after 8 

seconds, the difference from initial perturbation is not dramatic while on the right, stable limit cycle appears. 

Both instability patterns cannot be distinguished by the “large displacement” criterion, hence one should 

conclude at least 3 conditions of instability corresponding to instability with small increasing rate, large 

increasing rate, and limit cycle. 

 

1. Velocity versus pK  

 

The left of Figure 4. 24 shows the outcomes for 24000dK = , where m M= , 0.001iniz = , 0ziniv = . One can 

observe that there are two boundary lines, inside of those the system is stable and vice versa. On the one hand, 

the system can be always stable at the tested velocity range if pK  is located at appropriate range 

( 13700 ~ 16500 ). On the other hand, it’s unstable for all velocity if pK  is too large or small 

({ 29500} { 13600}   ). Furthermore, two special cases indicated by black dotted line in the left Figure 4. 24 

are found. In case 1, the system is unstable for small velocity, then becomes stable around critical velocity, and 
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returns to unstable after passing critical velocity. This is in accordance to bottom case of Figure 4. 19 where pK  

is relatively large compared with dK  and the results are confirmed. It’s reasonable that the system loses 

stability at small velocity, even in the non-moving case, as the value of pK   is unproper. As for supercritical 

velocity, the wave effects would cause instability. The interesting phenomenon happens when it’s located at 

certain range near the critical velocity, where the system will maintain stable. It might because the damping 

effects of the foundation is increasing with velocity and to some extent, the extra energy of vehicle resulted 

from large value of pK  is transferred to the foundation. Whereas for case 2, it shows opposite characteristics 

with case 1 in which the system is stable for most of the velocity range but unstable when it’s near but larger 

than the critical velocity. The stability results from the proper choice of pK  and once after critical velocity, the 

anomalous wave effects may present greater impact and cause instability. However, what’s strange is that the 

stability happens again at even larger velocity region and it’s because of the combined effects of wave and EMS 

system.  

 

 
Figure 4. 24 Velocity versus pK  with 24000dK =  (left) and 100000dK =  (right) 

 

The right of Figure 4. 24 shows the results for 100000dK = , where m M= , 0.001iniz = , 0ziniv = . It can be 

told that with the increase of dK  the stable region of pK  before critical velocity will get wider (from 14000 to 

150000 in this case) and the maximum permissible value will significantly increase when near the critical 

velocity (highest at 0.975 critv v= ). However, once after the critical velocity, the upper boundary will drop 

dramatically and hit the lower boundary which leads to the instability of the whole right plane ( 1.075 critv v ). 

The special case 3 indicated by black dotted line is in accordance to middle of Figure 4. 19, and this confirms 

that at the supercritical velocity region, the stability of the system is dependent on the interaction of the wave 

effects and EMS control gains. 

 

Examples of the response of system for above mentioned 3 special cases are illustrated in Figure 4. 25. 
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Figure 4. 25 Representative examples of special case 1 (top), case 2 (middle), case 3 (bottom) 

 

One can tell that for case 1 and case 2, the unstable mode only consists of limit cycle (if one increases the 

time scale, it will be clearer), while for case 3 exponential increasement is found. What’s more, the existence of 

Hopf bifurcation in EMS system is also confirmed as for fixed value of velocity and dK  (left of case 1 and 2 in 

Figure 4. 25), the system will be transformed from stable state to limit cycle when pK  increases.  
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2. Velocity versus dK  

 

The relationship between velocity and dK  with a fixed value of pK  (16000) is illustrated in Figure 4. 26, 

where m M= , 0.001iniz = , 0ziniv = . 

 

 
Figure 4. 26 Velocity versus dK  with 16000pK =  

 

It is found that the system is stable at subcritical velocity for proper range of dK  ( 20900 ~ 36000 ), once 

passing the critical velocity, the upper stable boundary (red line of Figure 4. 26) of dK  will suddenly drop and 

gradually rise up with the increase of velocity. The characteristics of the case 4 indicated by black dotted line is 

somewhat like those of mechanical system (Figure 4. 16) as it has three stages: 1. Stability at subcritical velocity; 

2. Instability at around critical velocity; 3. Stability at even larger velocity. The difference is that in mechanical 

system, the instability region of velocity becomes narrower with the increase of damping ratio, here however, it 

will get wider with the increase of dK . The second stage is caused by wave effects and the third stage is might 

due to the energy introduced by anomalous waves gets smaller with the increase of velocity and then can be 

consumed by EMS system. The larger the dK , the smaller the energy can be absorbed by EMS (not sure), the 

higher the horizontal velocity to stabilize the system. 

 

4.3.6. Velocity versus mass of vehicle 

 

As elaborated in section 2.5.2 and 4.3.2, the mass of vehicle also shows essential effects on the stability 

and there is an unstable region of mass after critical velocity for the linear mechanical system. Along this line, 

the relationship between velocity and mass in EMS system is worth to study and it would reveal some nature of 

this kind of system. 

 

Three different instability conditions are set in the numerical simulations, which are corresponding to 

stable limit cycle, small increasing rate, and large increasing rate accordingly. The results are shown in Figure 4. 

27, where 0.001iniz = , 0ziniv = , 16000pK = , 24000dK = . 
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Figure 4. 27 Velocity versus mass of EMS for 16000pK =  and 24000dK =  

 

         

It’s not hard to tell that at subcritical velocity, the EMS system can lose stability for both small and large 

mass of vehicle which is quite different from that of mechanical system as latter is stable for any mass at 

subcritical velocity. This phenomenon also happens at supercritical velocity, and the unstable region of mass 

(inside of red line in Figure 4. 27) is maximum near the critical velocity and decreases as speed goes up. What’s 

more, for supercritical velocity the system will experience instability-stability-instability when the mass is 

increasing gradually and this is opposite to that of mechanical system where the trend is stability-instability-

stability.  

 

Two special cases are found and indicated by black dotted line in Figure 4. 27. For case 1, the mass of 

vehicle is relatively small, and the system is unstable at small velocity, then it becomes stable when speed goes 

up (still smaller than critical velocity), once after critical velocity, it returns unstable again. This is resulted from 

the effects of EMS in which the stability range of mass is also dependent on control gains, which means small 

mass can also cause instability. However, when it’s around critical velocity, the damping effects of the 

foundation will increase through which the energy introduced by EMS can be absorbed and consumed. Once 

passing critical velocity, the wave effects will interact with EMS and cause instability. Nevertheless, the system 

can return to stable at even larger velocity as shown by case 2. 

 

To show the trend of variation, response of the system for case 1 are illustrated in Figure 4. 28 at three 

different velocities. 
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Figure 4. 28 Representative examples of case 1 

 

It can be observed that at both instability regions, a stable limit cycle appears (which is not fully shown 

here) and it’s not around the equilibrium point (steady-state position), which is hard to explain as it’s caused by 

the on/off switch control (non-smooth dynamics). In addition, the system will step into stable state from limit 

cycle when the mass increases and it’s like an inverse Hopf bifurcation. 
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5. Analytical Linear Approximations 
 

In the last chapter, the stability of the EMS vehicle-beam coupled system has been studied through time-

stepping numerical simulations. To reveal the nature, the non-linear system (eq. 3.1) is linearized here around 

the steady-state response. The linearized system can allow for eigenvalues analysis such that the onset of 

instability becomes clearer. 

 

5.1.Derivation process of linearization 

 

Firstly, the system of equations of motion is presented again below 
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Now one can assume the parameters are composed of two parts which read 
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Where ssu , ssz , emssF ,and ssi  stand for the steady-state response of the system and are known constants (eq. 

5.4); tru , trz , emtrF ,and tri  are the disturbance applied to the equilibrium point (here steady-state). Substituting eq. 

5.2 into eq. 5.1, one obtains 

 

 

0 0

2

2

0

0

( ) ( ) ( )

( )

( )

[ ( ) ( )
2

     ( ) 2

t t

ss tr EB emss f EB emtr

emss emtr
tr

ss tr
emss emtr

ss tr ss tr

ss tr ss tr
tr ss tr ss tr tr tr

ss tr
ss tr

u u g t F d u t g t F d

F F
z g

m

i i
F F C

z z u u

z z u u
i Kp z z u u Kd z u

C

i i
U i i R C

   



+ = − + + −

+
= −

+
+ =

+ − −

+ − −
= + − − − + −

+
+ − + +

 

2
( )]

( )
tr tr

ss tr ss tr

z u
z z u u















−
+ − −

 (5.3) 
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Eq. 5.3 can be further simplified as the correlation between different steady-state parameters are known 

and they read 

 

 

0

0

2

0

0

( ) ( )

t

ss EB emss f

ss ss

emss

emss
ss

ss

u g t F d u t

z u

F mg

F
i

C

U i R

 





= − +

− =

=

=

=



 (5.4) 

 

Where the steady-state vibration of beam ssu  is equal to the superposition of force-vibration under constant 

force emssF  and free-vibration fu  with steady-state as initial conditions. Then one can rewrite eq. 5.3 as follows 
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Where 1f , 2f , 3f , and 4f  are used to denote the right-hand side of equations in eq. 5.5, trz  is written in 

form of convolution integral and (0)ftr tr ziniz z v t= +  represents the free-vibration part of perturbation of vehicle 

from the equilibrium point, EBg  is already computed by numerical simulations (section 4.1.1), ( )mtr

t
g t

m
= − . 

Since the velocity of beam and vehicle ( tru  and trz ) appear in eq. 5.5, it’s necessary to derive both by using 

Leibniz integral rule ( ( )
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Where (0)EBg  is Green’s function of beam evaluated at 0t = , which is supposed to be 0 analytically, and 

yet a tiny non-zero value obtain from numerical computation is taking into account. Then one can apply Taylor 

expansion to 3f  and 4f  around the following points 
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By which 3f  and 4f  are linearized and the results are shown below 
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After substituting eq. 5.8 into eq. 5.5, one can solve the linearized system by applying Laplace transform to 

eq. 5.5 and the system in Laplace domain are presented as following  
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Where the initial perturbations are all zero except the displacement of vehicle (0)trz . Eq. 5.9 is linear 

algebraic and can be solved analytically, they read 
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One can tell from eq. 5.10 that the stability of the system (real part of roots of denominator) is indeed 

concerned with the four parameters discussed in the last chapter, which are velocity ( EBg  and mg ), control 

gains ( pK  and dK ), and mass of vehicle respectively. 

 

5.2.Validation of linearized system 

 

To verify the linearized system, one can generate the response of this system by the same numerical 

method (ODE45) and compare the outcomes with that of non-linear system. The comparison is illustrated in 

Figure 5. 1 under different velocity. 

 

 

 
Figure 5. 1 The comparison of displacement of beam and vehicle between linear and non-linear system at different 

horizontal velocity. Black and rea solid line represent the displacement of beam in non-linear and linear system, yellow and 

purple dash line represent the displacement of vehicle in non-linear and linear system. Where 60000pK = , 100000dK = , 

m M= , 0.001ini triniz z= = , and 0ziniv = . 

 

 It is found that the behavior of the linearized system is nearly the same as the one of non-linear system 

when the velocity is located at stable region. While the velocity goes up, as shown in bottom right of Figure 5. 1, 

the non-linear system is unstable and reaches limit cycle, the linearized system, on the other hand, shows 

exponentially increase which is to be expected since the limit cycle is a characteristic of non-linear systems. 

One can conclude that the linearization of the system is successful and correct. 

 

As explained before (section 2.1.1), the prerequisite of the linearization and is that the perturbation around 

the fix point must be small enough (to guarantee of accuracy of the results). Thus, examples are illustrated in fig. 

to show the effects of large initial perturbations. 
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Figure 5. 2 Effects of relatviely large initial perturbation on accuracy of linearization for 2 groups of control gains. Top:

16000pK = , 24000dK = ; Bottom: 60000pK = , 100000dK =  

 

It is observed that for group 1 (top of Figure 5. 2) of control gains, the error of linearization is around 35% 

and 180% (calculated through displacement of vehicle) with 0.001iniz =  and 0.01iniz =  respectively. While for 

group 2 (bottom of Figure 5. 2), the error of linearization is around 1% and 10% with 0.001iniz =  and 0.01iniz =

respectively. One can conclude that the safe region of initial perturbation in which the linearized system has 

high accuracy of prediction is dependent on the value of 
pK  and dK . The larger the 

pK  and dK , the more 

accurate under large disturbance. This is reasonable as the neglected quadratic terms in the process of Taylor 

expansion is a function of 
pK  and dK . 
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6. Conclusion and Recommendations 
 

This chapter summarizes all the results of this thesis and relates them to the original problem statement and 

research objectives. In the last, some recommendations for future study on this topic is proposed. 

 

6.1.Conclusions 

 

There are three main goals in this thesis: 1. Find a numerical method to solve the non-linear one-

dimensional system; 2. Investigate the dynamic behavior of the EMS vehicle-beam coupled system using the 

improved model, and illustrate the effects of the EMS system on vehicle instability at different horizontal 

velocity by comparing with EMS system in simplified model. 3. Linearize the system around the steady-state 

position. 

 

The Green’s function of beam in the moving reference frame at different velocity is determined 

numerically using two methods (convolution integral from Fourier domain or superposition of wave modes in 

Laplace domain), and it is validated by comparing the steady-state solution under moving constant force with 

that obtained analytically. To take the initial conditions into account, free-vibration part of beam is also 

determined numerically and it is corroborated by comparing the initial shape of beam with the analytical one 

where the error is around 6%. By linear assumptions of convolution integral in tiny time interval, a time-

stepping scheme in MATLAB using function of ODE45 is designed and it is validated by a limit case study 

where the mass of vehicle is quite small. 

 

A representative linear mechanical system in which the beam and vehicle are connected by spring and 

dash-pot is designed. For fixed value of mass, it is found that the system is always stable at subcritical velocity 

with all tested damping values, while at supercritical velocity, the larger the damping ratio, the narrower the 

unstable region after the critical velocity, and the system can be always stable at tested range of velocity 

( 0 ~ 1.5 critv ) for a relatively large damping. For different damping ratios, the stable domain of mass at different 

velocities is illustrated and it is found that at subcritical velocity, the system is always stable while at 

supercritical velocity, there exists an instability region of mass and the system can only be stable for small value 

of mass. The larger the damping ratio, the narrower of this instability region and if the damping is zero, then the 

whole right mass-velocity plane ( 1.03 critv v ) is unstable. However, for overcritical damping (e.g., damping 

ratio is 2), it is observed that at supercritical velocity the system loses stability when the mass of vehicle is 

relatively small but returns to stable if the mass increases.  

 

The value of control gains in EMS system is determined based on the simplified two degrees of freedom 

system, where the effects of velocity are neglected. The stable range of velocity with fixed value of mass in 

one-dimensional EMS vehicle-beam coupled system is investigated for three different groups of control gains 

(two stable and one unstable in simplified system) and it is found that 

 

1. For the cases of control gains which can stabilize the simplified system, the one-dimensional guideway 

has no negative effect on the stability of the vehicle at subcritical velocity. Whereas at supercritical 

velocity, the EMS system can counteract the wave-induced instability and stabilize the vehicle if the 

control gains are chosen properly. 

 

2. For the case of control gains which are chosen incorrectly such that the simplified system is unstable, 

the one-dimensional guideway has positive effects which can stabilize the vehicle at certain range 
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around critical velocity and this is counter-intuitive as the system is transformed from unstable to stable 

with the increase of speed. 

 

Besides, the system stability versus velocity and proportional control gains for fixed value of dK  and mass 

is determined to explain such a stability transition at both subcritical and supercritical velocity. It is found that 

the stable domain of pK  will become wider with the increase of velocity and reaches maximum when it’s near 

the critical velocity, and once after the critical velocity the upper stability boundary will suddenly drop and 

decreases the stable domain of pK  dramatically. This situation is more significant with large value of dK  in 

which the upper boundary will collide with the lower boundary and leads to the instability for all values of pK  

at supercritical velocity. Here, three special cases are found and case 1 is in accordance to the aforementioned 

stability transition phenomenon. The second special case confirms that the EMS system can counteract the 

wave-induced instability and transform the system from unstable to stable at supercritical velocity. 

 

Moreover, the stable domain of mass at different velocities in EMS system for fixed value of control gains 

has been analyzed. It is found that for the appropriate value of control gains determined from simplified two 

degrees of freedom EMS system, there exists a range of mass under which the system is always stable. Two 

special cases are observed and they confirm the positive effects of one-dimensional beam and the counteractive 

effects of EMS system on anomalous Doppler waves at supercritical velocity. 

 

6.2.Recommendations 

 

Two special phenomena are observed in this thesis: 

 

1. The positive effects of one-dimensional guideway at subcritical velocity which can stabilize the system 

with unproper value of control gains. 

 

2. The counteractive effects of EMS system on wave-induced instability at supercritical velocity which 

can stabilize the system with proper choice of control gains. 

 

The mechanisms for the two observations have not been thoroughly investigated in this thesis. Thus, it 

would be highly recommended to investigate the physical nature of these two cases for future studies.  

 

As the system is linearized successfully in this thesis, it would be instructive to analyze the eigenvalues of 

the linearized system to offer a more complete picture of the system’s instability 

 

For quantitative improvement, one can also consider the shear effects of the beam by introducing 

Timoshenko beam theory and take the periodicity of the supports into account. 
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