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ABSTRACT
We study mechanisms to incentivize demand response in smart

energy systems. We assume agents that can respond (reduce their

demand) with some probability if they prepare prior to the real-

ization of the demand. Both preparation and response incur costs

to agents. Previous work studies truthful mechanisms that select

a minimal set of agents to prepare and respond such that a fixed

demand reduction target is achieved with high probability. In this

work we additionally consider the balancing responsibility of a

retailer under a given demand forecast and imbalance price: the

retailer is responsible to purchase additional reserve capacity at a

high imbalance price to cover any excess in the demand. In this

extended setting we study mechanisms that request only a subset

of prepared agents to respond since the reduction target depends

on the realization of the demand. We propose: (i) a sequential mech-

anism that in each round embeds a second-price auction and is

truthful under some mild assumptions for the setting, and (ii) a

truthful combinatorial mechanism that runs in polynomial time

and uses VCG payments. We show that both mechanisms guarantee

non-negative utility in expectation for both agents and the retailer

(mechanism), and can further be used for simultaneous downward

and upward flexibility. Last, we verify our theoretical findings in an

empirical evaluation over a wide range of mechanism parameters.
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1 INTRODUCTION
There are two important electricity markets that facilitate com-

merce of electricity between energy producers and consumers:

day-ahead and balancing markets [1]. Retailers (aggregators), based

on demand forecasts, procure electricity in day-ahead markets to

satisfy the demand of their consumers. Imbalances between the

procured quantities and the actual (intra-day) demand are moder-

ated in balancing markets, in which the reserve power of high-cost

storage units and conventional fast-ramping generators, e.g., gas-

turbines, is traded. As a result, imbalances result in increasing costs

for retailers and they are further associated with excessive CO2

emissions [5]. Maintaining balance between supply and demand is

therefore one of the main factors that determine the efficiency of

both existing and envisioned smart grid systems [15].

To this end, demand-side management assumes that electricity

users can alter their demand or generation behavior given eco-

nomic incentives (e.g., smart tariffs, dynamic pricing), and there-

fore assist in reducing imbalances between supply and demand [15].

In practice, retailers currently agree upon long-term contracts to

incentivize large-capacity users to reduce their demand if neces-

sary [8]. The introduction of smaller-scale flexible users, such as

intelligent home appliances, electric vehicles (EVs) and home bat-

teries, can further alleviate retailers from costs related to balancing

supply and demand [7]. However, the uncertain availability of such

users requires more flexible contracts, such as short-term bilateral

agreements that can be agreed upon and executed if necessary in a

day-to-day manner.

We consider the following setting: a retailer based on a demand

forecast procures electricity in the day-ahead market to satisfy the

demand of its consumers. Since the demand is not certain, there is

no guarantee that the actual demand (at the delivery time) is equal

to the procured quantity. As a result, any imbalance between the

procured quantity and the demand at the time of delivery should be

adjusted in the balancing market with a much higher price than the

procurement price. We consider agents that can reduce imbalances,

after the realization of the demand (i.e., when demand is known but

not finalized) and before the time of delivery, if requested by the

retailer. Agents decide whether to prepare with some cost before

the realization of the demand; prepared agents are able (with some

probability) to respond if requested after the realization of the

demand. Agents’ responses can be observed and incur extra costs

to agents. The following example illustrates an instantiation of the

model of agents used in our setting:

Example 1.1. Consider a neighborhood with multiple EVs that

are parked and plugged into charging stations. Some of the vehicles

may be fully charged, while others may be charging. In case of

excess demand fully charged vehicles can be utilized to provide

the extra needed electricity out of their battery, while vehicles that

undergo charging can pause their charging. Each vehicle has a

preparation cost, which is the opportunity/planning cost caused by

extending its stay in a charging station. The probability of response

refers to the uncertain availability of a vehicle to reduce its demand

upon request. Last, the response cost is associated to the operating

cost of response, such as the cost of battery degradation.

In this setting we design mechanisms to incentivize uncertain de-

mand response, i.e., agents that their availability to reduce demand

is not certain (see Example 1.1) while additionally considering the

balancing responsibility of a retailer under a given demand forecast

and imbalance price. More specifically, given the demand forecast,

the imbalance price and the characteristics of agents (i.e., prepa-

ration cost, response probability and response cost), we design

mechanisms that: (i) elicit truthful information with regards to the

characteristics of agents, (ii) select a subset of agents to prepare,

(iii) do not require all prepared agents to respond but only upon

request (i.e., until imbalance is resolved), (iv) determine the order

that prepared agents are asked to respond, (v) compute rewards

and penalties for selected agents in order to incentivize them to pre-

pare and respond (if able) if requested, and (vi) reduce the expected

balancing cost of the retailer and overall increase social welfare.



The main contributions of this work can be summarized as fol-

lows:

• We study implications that arise by dependencies between

agents that are requested to respond sequentially.

• We propose a sequential mechanism that in each round em-

beds a second-price auction and is truthful under some as-

sumptions for the setting, and a truthful combinatorial mech-

anism that runs in polynomial time and uses VCG payments.

• We show that both mechanisms guarantee non-negative

utility in expectation for both agents and the mechanism,

and can further be used for simultaneous downward and

upward flexibility.

• We empirically evaluate the proposed mechanisms over a

wide range of parameters and find that they achieve up to

16% reduction in the balancing cost of the retailer and up to

14% increase in social welfare compared to the case when

no demand response is used. Last, we provide an evaluation

of related work [12] in our extended setting.

To the best of our knowledge, this work is the first to propose

mechanisms that connect incentives for uncertain demand response

with the balancing responsibility of the retailer, given the demand

forecast of the consumers and the imbalance price for the retailer.

2 RELATEDWORK
In the closest state-of-the-art work, Ma et al. [12] propose mecha-

nisms to incentivize reliable demand reduction in electricity grids.

The proposed mechanisms, that are based on greedy allocation and

critical value payments [9], achieve a fixed demand reduction tar-

get with some reliability while minimizing the number of selected

agents (see Sec. 5 for a detailed description). Our work differenti-

ates from the aforementioned work in the following ways: (i) Ma

et al. [12] use a fixed demand reduction target. On the contrary,

we propose mechanisms to allocate demand response when the

demand reduction target is not known and only the demand fore-

cast (distribution) is used to select agents. (ii) Ma et al. [12] propose

a two-stage setting: in the first stage, a set of agents is selected,

and in the second stage, all selected agents are asked to respond.

In contrast, we consider mechanisms that request prepared agents

to respond until an imbalance between supply and demand is re-

solved (or can not be reduced further), and thus the probability of

requesting selected agents to respond is less or equal to one. (iii)

Ma et al. [12] do not consider the actual need for demand response

(fixed demand reduction target). In this paper, however, we consider

that agents are requested to respond based on the realization of the

demand, which can prevent excessive costs for demand response.

Last, (iv) Ma et al. [12] evaluate their proposed mechanisms with

regards to the resulting payments to agents. On the contrary, we

consider both the expected balancing cost for the retailer and the

social cost of demand response, and thus the overall social welfare.

The aforementioned work by Ma et al. [12] considers unit re-

sponses by agents (i.e., each agent can reduce one unit of demand),

while a later extension of this work generalizes to multi-unit re-

sponses, uncertainties in preparation costs of agents, as well as a

multi-effort probability of response [11]. Other related work studies

demand response contracts under uncertainty, where the reserve

cost for the retailer (i.e., cost for not reaching the reduction target) is
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Figure 1: Timeline of the model formulation.

considered [4, 17]. However, no prior work has studied mechanisms

to incentivize uncertain demand response given the additional in-

formation of the demand forecast, as we do in this paper.

Aside from mechanisms that encourage demand reduction in

settings of the smart grid, a related line of research studies the

design of electricity tariffs that incentivize uncertainty reduction in

the demand-side by alleviating the risk of imbalances from the re-

tailers using risk-sharing [13], or prediction-of-use tariffs [20]. The

formation of virtual power plants using scoring rules is yet another

solution concept for matching volatile supply and demand [18].

However, none of these works models demand response consider-

ing its explicit costs and uncertain availability.

3 PROBLEM FORMULATION
In this section we outline our problem setting: Section 3.1 for-

mulates the balancing responsibility of the retailer, Section 3.2

introduces demand response agents and Section 3.3 illustrates how

demand response is used by the retailer.

3.1 Retailer’s Balancing Responsibility
We consider a single retailer of electricity that is the balancing

responsible party. The demand of the retailer’s portfolio of con-

sumers is described by the discrete random variableX . The demand

forecast fX (x) = PX (X = x) is the probability mass function (PMF)

of X . We denote with x ∈ ZD
0
the realization of the demand, where

x ∼ X and D is the upper bound of the support of X .

Consider the timeline in Figure 1. Similarly to previous work [13],

we consider that the retailer procures the quantity b ∈ Z+ at unit
price p ∈ R+ ahead of the realization of the demand, during the

ahead period, in the day-ahead market. When no demand response

is used, the retailer pays any positive imbalance between the de-

mand realization x and the procured quantityb at unit pricep′ ∈ R+

(imbalance price) at the time of delivery in the balancing market.

We assume that p′ > p, and that the prices p and p′ are determined

by an exogenous process and can not be influenced by the retailer

(price-taker). We further assume that the procurement quantity b
is predetermined (see Assumption 1 in Sec. 4) and we focus on the

expected balancing cost of the retailer:

C¬DR = p
′ EX [x − b |x > b], (1)

where only positive imbalance from the procured quantity incurs a

balancing cost to the retailer.

In practice, both demand excess (positive imbalance) and short-

ages (negative imbalance) result in balancing costs for retailers.

However, to align our model with related work [12], we first con-

sider the expected positive imbalance (see Eq. 1). In Section 4.4 we
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Figure 2: Demand response model: bars represent prepared
agents prior to demand realization. For demand realization
x > b, the retailer requests prepared agents to respond se-
quentially (from left to right) until the positive imbalance
(x − b) is resolved. The ordering of the agents is an example
ordering with regards to the response probability.

generalize to the case where both positive and negative imbalances

incur balancing cost to the retailer.

Remark 1. Our choice for a discrete model, where both the de-
mand x and the procurement b are discrete variables, is motivated by
markets that have trading volumes that are multiples of a unit quan-
tity (as it is usual in day-ahead and balancing electricity markets) or
markets with discrete items.

3.2 Demand Response Agents
We consider agents that are flexible and can reduce their demand

and consequently any positive imbalance between the procured

quantity and the realized demand, after demand realization and

before the time of delivery, during the response period (see Fig.1).

LetA = {0, 1, . . . ,n−1} denote the finite set of demand response

agents. Let also di ∈ {−1,+1}, ∀i ∈ A denote the flexibility of agent

i , i.e., for di = −1 agent i can reduce its demand by one unit, while

for di = +1 agent i can increase its demand by one unit. We assume

unit downward flexibility, i.e., di = −1,∀i ∈ A. Later in this paper

(see Section 4.4) we also consider the case of both downward and

upward unit flexibility where di ∈ {−1,+1}.

We follow previous work to define the timing of demand re-

sponse and additional characteristics of agents with regards to

their ability to respond [12]. The type of agent i , θi , is the triplet
(ci ,γi ,vi ). Prior to demand realization and during the preparation
period (see Fig.1), agent i decides whether to prepare with prepara-

tion cost ci ≥ 0. After demand realization and during the response

period, if agent i is prepared, it is able with probability γi ∈ (0, 1] to

respond. If agent i is able to respond, it can decide either to respond

with response cost vi ≥ 0, or not without any cost. The decision of

agent i to prepare and the ability to respond can not be observed,

while the response can be observed.

Our model can be generalized to continuous variables if we neglect the need for

decimal reduction, or if there is a min. price to participate in the balancing market.

Demand response retail market programs take place in short time periods (e.g.,15-min)

and are based on time-ahead “realization” of the demand [22], i.e., when demand is

very close to the real value. Real-time imbalances are not handled by demand response

agents since this requires time (notification and response), but instead by automatic

generation control or spinning reserves.

3.3 Demand Response Model
We proceed to discuss how demand response agents can be used by

the retailer. Consider a set of agents that decide to prepare prior to

demand realization, and demand realization x > b, i.e., positive im-

balance. During the response period (see Fig.1), the retailer requests

prepared agents to respond (reduce their demand) in some order;

each agent that responds reduces the imbalance quantity (x − b)
by one unit. The response of an agent can be observed before the

next agent is asked to respond. If the imbalance is resolved (enough

agents have responded), the retailer stops requesting agents to re-

spond. Otherwise, if imbalance is not resolved (there are no more

prepared agents to respond), the retailer pays the remaining imbal-

ance quantity with price p′ at the time of delivery.

Example 3.1. Figure 2 presents the demand forecast fX (x), the
dashed curve illustrates the survival function SX (x) = PX (X > x).
Bars of different color intensity (darker means higher total cost for

demand response) represent prepared (prior to demand realization)

agents starting from the procured quantity of the retailer b. The
height of the bars show the probability that agent i is able to respond,
γi , and bars’ width show the quantity that each agent can reduce

its demand. For demand realization x > b, the retailer requests

sequentially (from left to right) prepared agents to respond until

imbalance (x − b) is zero or no more agents can be requested.

In contrast to related work that does not consider the realiza-

tion of the demand [11, 12], in the following sections we design

mechanisms that request agents to respond only if there is a posi-

tive imbalance; therefore, the probability that a selected agent is

requested to respond is not equal to one but it is influenced by:

(i) the demand forecast fX (x), (ii) the order in which is asked to

respond, and (iii) the response probabilities of preceding agents.

4 DEMAND RESPONSE MECHANISMM
In this section we first define the general mechanismM in which se-

lected agents are asked to respond sequentially to reduce a positive

imbalance. In Section 4.1 we compute the probability that agents

are requested to respond, the expected utility of both agents and the

retailer (mechanism), and we analyze dependencies between agents

that arise in our setting. Sections 4.2 and 4.3 outline our proposed

mechanisms. Last, Section 4.4 generalizes our proposed mecha-

nisms to the case where both positive and negative imbalances

incur balancing cost to the retailer.

Recall that p′ is the imbalance price, X is the random variable

of the demand, b is the procurement quantity, and θi is the type

of agent i . We define the general mechanism M(X ,b,p′, ˆθ ) →

(si ,oi , ri , ti ), ∀i ∈ A, in which all available agents report their types

ˆθ = { ˆθ0, ˆθ1, . . . , ˆθn−1} ( ˆθi is the reported type of agent i) to the

mechanismM during the preparation period (see Fig.1).

Assumption 1. The retailer does not have access to the available
flexibility (reports ˆθ ) during the ahead period, and thus the procure-
ment quantity b is already determined before the preparation period.

The quadruplet (si ,oi , ri , ti ) is the resulting allocation for agent

i , where si ∈ {0, 1} denotes the selection of agent i , oi ∈ Z
n−1

0
the

order in which agent i may be requested to respond by the mech-

anism, ri ≥ 0 the reward that is transferred from the mechanism
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which is placed midway in arrows), and costs (illustrated on
the right side of end nodes). Reward ri is transferred from
the mechanism to agent i in case of response, penalty ti is
paid to the mechanism otherwise.

to agent i in case agent i responds after is requested by the mecha-

nism, and ti ≥ 0 the penalty that is paid to the mechanism if agent

i does not respond after request. Payments from and towards the

mechanism take place after the realization of the demand and after

observing the response of agents if requested by the mechanism

(contingent payments).
Consider agent i that is selected by the mechanism (si = 1,oi ∈

Zn−1

0
) with reward ri and penalty ti . Figure 3 illustrates the gen-

eral mechanismM , where πi denotes the probability that agent i
is requested to respond by the mechanism (see Sec. 4.1.1). With

knowledge of ri and ti , agent i decides whether to prepare prior

to the realization of the demand (preparation period). During the

response period, the mechanism asks agent i to respond with proba-

bility πi . If agent i is able to respond (with probability γi ), it decides
whether to respond during the response period.

4.1 Request Probability & Interdependencies
In this section we compute the probability πi with which mecha-

nismM requests agent i to respond.We further compute the utilities

of both agents and the retailer (mechanism) under mechanismM .

Last, we study implications that arise by dependencies between

agents that are requested to respond sequentially.

4.1.1 Probability of Response Request. To compute the probabil-

ity πi we consider that agents report their true types θ . Consider
agent i with unit flexibility (recall that di = −1,∀i ∈ A) and type

θi = (ci ,γi ,vi ). We assume w.l.o.g. that si = 1,oi = i, ∀i ∈ A,
i.e., all agents are selected and the order that are requested to re-

spond follows the indexing of agents. We further assume that all

agents prepare and respond if requested (agent i is able to respond

with probability γi ). Let ai ∈ {0, 1} denote the observed action of

agent i after request, it is equal to one in case of response and zero

otherwise.

πi =


SX (b), i = 0

SX (b + i) +
i−1∑
k=0

fX
(
b + k + 1

)
P
( i−1∑
j=0

aj ≤ k
)
, i > 0

(2)

is the probability of response request from the mechanism to agent

i , where P(
∑
j aj ≤ k) is the probability that less than or equal to k

agents respond from the agents preceding i , i.e., ∀j < i . For i = 0, πi
is equal to the probability that demand is larger than b, i.e., the first
agent in the order is always asked to respond if there is positive

imbalance. For i > 0, Eq. (2) further accounts for failures (inability

to respond) of agents preceding i in case x < (b + i + 1).

The quantity

∑
j aj in Eq. (2) is the sum of independent Bernoulli

variables and follows a Poisson binomial distribution [23]. The

probability P(
∑
j aj ≤ k) is the cumulative distribution function of

a Poisson binomial distribution for k successes.

P

(∑
j
aj ≤ k

)
=

k∑
l=0

∑
L∈Fl

∏
q∈L

γq
∏
m∈Lc

(1 − γm ), (3)

where for each number of successes l ∈ [0,k], Fl contains all sets
of size l in the powerset of A and Lc is the complementary set of

L, i.e., L ∪ Lc = A. For experiments presented later in this paper

(see Sec. 5), we compute the probability in Eq. (3) using a closed-

form expression based on the discrete Fourier transform of the

characteristic function of the distribution [6].

4.1.2 Utilities under Mechanism M . Let CDR denote the ex-

pected cost for the mechanismM (expected balancing cost plus the

cost for demand response) under allocation (si ,oi , ri , ti ),∀i ∈ A. To
derive the cost CDR , we assume that agents report their true types

θ and w.l.o.g. that si = 1,oi = i, ∀i ∈ A. We further assume that all

selected agents prepare and respond if requested.

CDR =
∑
i ∈A

πiγiri − πi (1 − γi )ti

+ p′
D∑

x=b+1

fX (x)

min{x−b−1,n }∑
k=0

P
(∑
i ∈A

ai = k
)
(x − b − k), (4)

where the first term is equal to the expected payments towards and

from the agents. The expected payment to agent i is equal to: πiγiri ,
and the expected income from agent i: πi (1−γi )ti . The second term
of Eq. (4) computes the expected balancing cost for x ∈ [b + 1,D]
and k ∈ [0,min{(x − b − 1),n}] (k is the number of responses) and

it considers only the cases in which there is a remaining imbalance

(thus all agents have been requested to respond). Note that, there

is no imbalance for k ≥ (x − b), and k can not be greater than the

number of agents (k ≤ n).
We define the (retailer’s) expected utility of the mechanismUM

as the difference between the expected balancing cost when no

demand response is used (see Eq. 1) and the expected cost for

mechanismM (see Eq. 4).

UM = C¬DR −CDR , (5)

where the utility of the mechanism depends on the cost CDR that

is influenced by the allocation. Note that C¬DR depends only on

the procurement quantity (see Eq. 1 and Assumption 1).

Similarly, given reward ri and penalty ti the expected utility of

agent i is:

ui = πiγi (ri −vi ) − πi (1 − γi )ti − ci , (6)

where πi is the probability of response request in Eq. (2). Agent

i pays ci to prepare. If agent i is asked and able to respond, pays

vi and gets reward ri . Otherwise, if agent i is asked and can not

respond, agent i pays ti to the mechanism.



Definition 4.1. Amechanism is called dominant-strategy incentive
compatible (DSIC), or truthful, if no agent can increase its utility by

misreporting its type to the mechanism, and individually rational
(IR) if agents get non-negative utility in expectation (i.e., agents

are willing to participate). Furthermore, a mechanism is called

individual rational for the center (CR) if the center’s (mechanism)

expected utility is non-negative [16].

4.1.3 Interdependent Tasks with Uncertain Executions. As dis-
cussed earlier in this paper, the allocation is determined by both the

selection of agent i and the order that the mechanism requests agent

i to respond. We showed that the latter influences the probability

of response request to agent i (see Sec. 4.1.1) and therefore tasks

(each order in the allocation) are interdependent. The valuation of

agent i for a given allocation depends on the probabilities that pre-

ceding agents are able to respond. However, there exist no efficient

mechanism (in the class of Groves mechanisms) that satisfies DSIC,

IR and CR when there are interdependencies between tasks with

uncertain executions [2, 16, 24].

Given the above impossibility result, in Sections 4.2 and 4.3 we

design mechanisms that select agents to perform demand response

by removing dependencies between tasks and satisfy all DSIC, IR

and CR properties.

4.2 Sequential-Task Mechanism
In this section we define the sequential mechanism SeqM , which

selects agents for each order in the allocation sequentially.

4.2.1 Minimum Acceptable Reward. Given the expected utility

of agent i in Eq. (6), we define the minimum acceptable reward for

agent i , ϱi : the minimum reward for which it is rational for agent i to
prepare prior to demand realization (during the preparation period)

and respond if it is able with probability γi during the response

period. The minimum acceptable reward ϱ̂i (based on report
ˆθi )

that yields positive expected utility for agent i is:

ri ≥
πi (1 − γ̂i )ti + ĉi

πiγ̂i
+ v̂i ≜ ϱ̂i , (7)

where ϱ̂i is the lower bound of the reward ri . We further set an

upper bound for the reward ri , it should not be larger or equal to

the imbalance price p′ that the retailer pays in case agent i does
not respond (and no other agent responds), ri < p′.

4.2.2 Mechanism SeqM . We define the mechanism SeqM as fol-

lows: SeqM (X ,b,p′, ˆθ ,T ) → (si ,oi , ri , ti = T ), ∀i ∈ A, whereT ≥ 0

is a fixed penalty. Let A′
denote the set of available agents (i.e.,

agents that are not yet selected) and κ the order in which the mech-

anism requests an agent to respond. Initially, A′ = A, κ = 0, and

si = 0, ∀i ∈ A. We detail the steps of SeqM below:

(1) Collect reports from all available agents,
ˆθi , ∀i ∈ A′

.

(2) Compute ϱ̂i , ∀i ∈ A′
for oi = κ as in Eq. (7); πi is computed

with regards to previously selected agents as in Eq. (2).

(3) Consider in order κ agent w = arg mini ∈A′ ϱ̂i (lowest ϱ̂i ),
and reward rw = mini,w ∈A′ ϱ̂i (second lowest ϱ̂i ).

We adopt the notion of center’s rationality (CR) considering the utility of the mecha-

nism for the retailer; equivalently, we can say that mechanism M satisfies CR if it is

IR for the retailer to adopt mechanism M .

(4) For rw < p′, select agent w , i.e., (sw = 1,ow = κ, rw =
mini,w ∈A′ ϱ̂i , tw = T ), remove agentw from the set of avail-

able agents,A′ = A′−w . Then, go to step (1) and increase the

order κ by one, κ = κ + 1. If rw ≥ p′, stop without selecting

agentw (sw = 0).

We consider that SeqM takes place during the preparation pe-

riod (see Fig. 1). At each round, the computed reward and the fixed

penalty is communicated to the selected agent that decides whether

to prepare before the demand realization and respond if it is re-

quested. After demand realization and in case of positive imbalance,

SeqM requests agents to respond sequentially according to the or-

der that they are selected until imbalance is zero, or there are no

more agents to respond. If agent i is asked to respond, SeqM pays ri
to the agent in case of response, and receives penalty ti otherwise.

4.2.3 Incentives and Truthfulness of SeqM . We proceed to dis-

cuss agents’ incentives to report truthfully and participate in SeqM ,

and further show that SeqM can only benefit by selecting agents to

perform demand response.

Assumption 2. Agents do not have access to: (i) the reports of
other agents ˆθ−i , the number of participating agents, and the distri-
bution of agents’ types (no communication), (ii) the reward that is
communicated to the selected agent after each round of the mechanism
(no price discovery), and (iii) the demand forecast of the retailer.

Theorem 4.2. Given Assumption 2, SeqM is DSIC and IR.

Proof. We first show that the mechanism is IR for the agents.

For report
ˆθi , the minimum acceptable reward ϱ̂i as it is computed

in Eq. (7) yields zero expected utility for agent i ,ui = 0. Any reward

ri ≥ ϱ̂i yields positive utility ui ≥ 0. Let ϱ̂j be the second lowest

minimum acceptable reward. It holds by definition that ϱ̂j ≥ ϱ̂i and
consequently ui ≥ 0. Therefore, it is rational for selected agent i to
prepare and respond if requested.

We proceed to show that a selected agent can not improve its

utility by misreporting to the mechanism. Given Assumption 2 and

the definition of SeqM , each round of the mechanism is an isolated

Vickrey (second-price) auction [19], since there is no information

propagating to the next rounds, i.e., no externalities. In each round,

agents deterministically choose to report truthfully to the mech-

anism since any round can be the last round in which they can

obtain positive expected utility with reward lower than p′. □

Note that, given Theorem 4.2, πi is computed in step (2) of SeqM
(see Sec. 4.2.2) based on truthful reports.

Proposition 4.3. For any fixed penalty T ≥ 0, SeqM is CR.

Proof. Note that, rewards are lower than p′ and response is

requested only if there is an imbalance that otherwise has to be

paid with price p′. It follows that the utility of SeqM (see Sec. 4.1.2)

is always non-negative. □

4.3 Independent-Task Mechanism
Recall that the probability of response request to agent i , πi , depends
on the response probabilities of preceding agents in the allocation.

In this section we design a truthful combinatorial mechanism by

removing dependencies between selected agents.

See [10] for sequential mechanisms with externalities.



4.3.1 Mechanism IndM . We define the mechanism IndM , which

requests agents to respond as follows:

Definition 4.4. For demand realization x > b, IndM requests all

agents up to order λ = x − b − 1 to respond.

Intuitively, the mechanism IndM asks agents up to a specific

order, that corresponds to the imbalance quantity, to respond. It

follows that, the probability that agent i is asked to respond in Eq. (2)
is independent of preceding agents (oj < oi ) and πi = SX (b + oi ).

Similarly to SeqM (see Sec. 4.2.2), IndM fixes a penalty, ti =
T ,∀i ∈ A. In addition, IndM fixes a reward R, ri = R,∀i ∈ A, which
is the reward that the mechanism pays agent i after response. Mech-

anism IndM can be written as: IndM (X ,b,p′, ˆθ ,R,T ) → (si ,oi , ri =
R, ti = T , zi ), ∀i ∈ A, where zi is a payment from agent i to the

mechanism upon allocation. Each selected agent i gets reward

ri = R if it is requested and responds, and pays penalty ti = T in

case of no response.

Unlike SeqM that may request all selected agents to respond to

resolve some imbalance quantity, failing to respond under IndM
yields balancing cost p′ to the mechanism, since all selected agents

have to respond to resolve any positive imbalance. This means that

under IndM , fixing T = p′ “transfers” the balancing responsibility
to selected agents.

4.3.2 Optimal Allocation & VCG Payments. Given reward R,
penalty T , and considering zi = 0, the expected utility of agent i

for order oi and based on the report
ˆθi is:

ûi (oi ) = πiγ̂i (R − v̂i ) − πi (1 − γ̂i )T − ĉi , (8)

where πi = SX (b+oi ) (see Def. 4.4).We define the optimal allocation

oopt (assignment of each agent to an order) such that:

oopt = arg max

o∈O

∑
i ∈A

max

(
0, ûi (o

opt
i )

)
, (9)

where O is the set of all permutations. The term max(0, ûi (o
opt
i ))

ensures that no agent is selected with negative expected utility,

therefore si = 0, if ûi (o
opt
i ) ≤ 0.

Lemma 4.5. The problem of finding the optimal allocation oopt in
Eq. (9) can be solved in polynomial time O(n3).

Proof. When the probability of response request πi is indepen-
dent of previously allocated agents, the optimal allocation problem

can be formulated as the linear assignment problem (LAP), where

n agents are assigned n tasks. In our setting, each task stands for

an order oi ∈ Z
n−1

0
. It can be solved optimally in polynomial time,

O(n3), by the Hungarian method [21], while there exist implemen-

tations that can speed up further the computation of the optimal

assignment in LAPs [3]. □

To simplify notation in the remainder of this section, we define

u ′i (o
opt
i ) ≜ max

(
0, ûi (o

opt
i )

)
. We use the VCG payment rule to

compute the payment of agent i to the mechanism upon allocation:

zi =

( ∑
j ∈A\i

u ′j
(
o
opt−i
j

)
−

∑
j ∈A\i

u ′j
(
o
opt
j

))
, (10)

where oopt−i is the optimal allocation without agent i present [14].
Intuitively, zi is equal to the difference between the sum of utilities

that agents other than i get without agent i present, and the sum

of utilities they get under its presence (marginal loss). Note that,

agents that are not selected cause zero marginal loss to other agents.

We consider that IndM takes place during the preparation period

(see Fig. 1), where each selected agent i pays zi upon allocation.

After demand realization, IndM requests selected agents up to the

order λ. Selected agents in the set {j : oj ≤ λ} are asked to re-

spond, SeqM pays R to agents that respond, and receives penalty T
otherwise.

Theorem 4.6. The mechanism IndM is DSIC and IR.

Proof. First, it follows from Lemma 4.5 that oopt maximizes the

sum of agents’ utilities. By definition of the VCG mechanism [14],

IndM is DSIC and IR. Agent i maximizes its utility by reporting

truthfully,
ˆθi = θi , and it is rational for agent i to prepare and

respond if requested under reward R and penalty T . □

Proposition 4.7. For any R ≤ p′ and T ≥ 0, IndM is CR.

Proof. For any R ≤ p′ and T ≥ 0, no allocation can yield losses

for the mechanism (see proof of Proposition 4.3). □

4.4 General Flexibility Mechanisms
In previous sections we have considered a setting where only posi-

tive imbalance from the procured quantity b results in balancing

cost for the retailer (see Sec. 3.1). In this section we show that

mechanisms SeqM and IndM can generalize in settings where both

positive and negative imbalances result in balancing costs.

In addition to the set of downward flexibility agents A (also

denoted by A−
in the remainder of this paper), we consider the

set of upward flexibility agents A+, with reports
ˆθ+ = {(ĉi , γ̂i , v̂i ) :

∀i ∈ A+} and di = +1,∀i ∈ A+. Both SeqM and IndM can be

applied on the set A+, independently from the set A−
, under the

same imbalance price p′ or a different price for negative imbalances,

with only a small adjustment of the request probability πi . For SeqM ,

the probability that agent i is asked to respond πi for i > 0 in Eq. (2)

becomes:

πi = FX (b − i − 1) +

i−1∑
k=0

fX
(
b − k − 1

)
P
( i−1∑
j=0

aj ≤ k
)
, (11)

where FX (x) = 1 − SX (x) = PX (X ≤ x). For i = 0, Eq. (2) becomes

πi = FX (b − 1). Similarly, for IndM , πi = FX (b − oi − 1).

Both SeqM and IndM hold their properties (DSIC, IR, and CR)

since they are applied independently on different sets of agents.

5 EXPERIMENTAL EVALUATION
In this section we empirically evaluate the performance of the pro-

posed mechanisms SeqM and IndM . We also provide an evaluation

of the mechanisms proposed by Ma et al. [12] (in our extended

setting), which we detail below:

Fixed-Reward/Penalty Ma et al. Mechanisms. Fixed-reward Ma

et al. mechanism fixes a reward R, a reduction target Z and a re-

liability target τ . For agent reports ˆθ (reports are the same as in

Sec. 4), it computes the maximum penalty that each agent is willing

to pay such that the agent retains non-negative utility (similarly to

Eq. (7) that computes the minimum acceptable reward). Then, the
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Figure 4: Mean and standard deviation of the number and
the average reliability of selected agents. Continuous lines
correspond to values on left vertical axes and dotted lines to
right vertical axes. SeqM mechanism (top left), IndM mecha-
nism (bottom row), and Ma et al.mechanisms (top right).

mechanism sorts agents in a decreasing order with regards to their

maximum willingness to pay, and selects the minimum number of

agents such that: P(
∑
a ≥ Z ) ≥ τ , i.e., the probability of reaching

the reduction target Z is higher than the reliability target τ . The
mechanism sets penalty (in case of unsuccessful response) for each

selected agent i that is equal to the smallest willingness to pay from

the set of agents that would have been selected without agent i
present. Intuitively, that is the lowest willingness to pay for agent i
to get selected. After allocation, the mechanism asks all selected

agents to respond. Similarly, fixed-penalty Ma et al. mechanism

fixes penalty T and computes the minimum acceptable reward (as

in Eq. (7) for πi = 1) [11]. Both fixed-reward and fixed-penalty

mechanisms make a deep market assumption, i.e., there are enough

agents in the market (economy) to fulfill the requirements with

regards to the reduction target and the reliability.

Fixed-reward and fixed-penalty Ma et al. mechanisms do not

consider the balancing responsibility of the retailer after the real-

ization of the demand. Hence, the following sections do not serve

as a direct comparison of the mechanisms proposed in this paper

and the mechanisms proposed by Ma et al. [12]; instead, they focus

on the added value of information considered by our mechanisms

(i.e., demand forecast, imbalance price), and the advantage of only

requesting agents to respond after the realization of the demand.

Experimental Setup. We consider a market with n = 200 agents.

Each agent has preparation cost ci ∼ U[0,p′], response probability
γi ∼ U[0.5, 1], and response costvi ∼ U[0,p′−ci ], whereU[α , β]
denotes a uniform distribution from α to β . Note that ci +vi ≤ p′,
i.e., the sum of the costs for preparation and response is lower or

equal to the imbalance price p′, which is a relevant assumption

for the setting. For the demand distribution we use a discretized

skew normal distribution N(µX ,σX ,αX ), where µX = 500,σX =
100,αX = 10 (e.g., see Fig. 2). The procurement quantity is set
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Figure 5: Expected utilities of the mechanism UM and the
agentsUA under all mechanisms for a wide range of param-
eters. For Ma et al. mechanisms, the reduction target Z is
shown with regards to the expected imbalances EX [x −b |x >
b], and for all mechanisms reward R and penalty T with re-
gards to the imbalance price p′.

to b = EX [x], and p′ = 0.6. Our results are averaged over 200

independent runs where the demand distribution is fixed.

Mechanism Parameters. For SeqM , we use fixed penalty T ∈

{0.1, 0.2, . . . , 1.0}×p′. For IndM , we use R ∈ {0.1, 0.2, . . . , 0.9}×p′

and T ∈ {0, 0.5, 1} × p′. Furthermore, for fixed-reward Ma et al.

mechanism,we useR ∈ {0.4, 0.5, . . . , 2.0}×p′ (forR < 0.4×p′, nega-
tive penalties are induced to selected agents by the mechanism). For

fixed-penalty Ma et al. mechanism, we useT ∈ {0.0, 0.1, . . . , 2.0} ×

p′. Last, for both fixed-reward and fixed-penalty Ma et al. mecha-

nisms, we use reduction targetZ ∈ {0.1, 0.2, . . . , 1.0}×EX [x−b |x >
b] and reliability τ = 0.95.

Number of Selected Agents & Average Reliability. Figure 4 shows
the number and the average reliability γ̄ of selected agents under

SeqM , IndM , and Ma et al. mechanisms. The number of selected

agents in both Ma et al. mechanisms is influenced by the reduction

target Z and the reliability target τ , and not by the fixed-reward

R and fixed-penalty T . For SeqM and IndM , reward R and penalty

T affect the number of selected agents. For T = 0, SeqM selects

approximately 25 agents, this corresponds to a reduction target

Z = 0.6 × EX [x − b |x > b] for Ma et al. mechanisms. For T = p′,
SeqM selects on average 15 agents. The number of selected agents

for IndM is lower than for SeqM since IndM asks agents up to the

quantity of the imbalance to respond (see Definition 4.4); IndM
does not count for possible failures of agents that otherwise would

increase the probabilities of response requests and consequently

select more agents. As anticipated, the average reliability γ̄ is in-

fluenced by the reward R and penalty T parameters. For higher

penalty T , fewer agents with higher reliability are selected by our

proposed mechanisms.

Social Welfare & Balancing Cost. Figure 5 illustrates the utility
space of the mechanism (retailer) UM and the agents UA =

∑
i ui ,

on the horizontal and the vertical axis respectively. The star marker

shows the case when no demand response is used, and thus the
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Figure 6: Ratio of expected balancing cost (absolute imbal-
ances case) for the mechanism with and without the use of
demand response (lower is better).

mechanism pays positive imbalances with pricep′. For every drawn
set of agents out of 200 independent runs, we compute the analytical

expected utility under each mechanism based on Eq. (4). For all

mechanisms, the solid color marker shows the point where the

utility of agents (UA) is maximum, and the solid marker with black

colored borders shows the point where social welfare (UM +UA) is
maximum. The parameters used for the mechanisms are shown in

parentheses, where targetZ is multiplied with the expected positive

imbalance EX [x − b |x > b] and R,T with the imbalance price p′.
Transparent markers show points in the utility space for parameters

that are not shown in the figure.

The shaded area illustrates the utility space where either the

mechanism, the agents, or both have negative utility in expectation

(when compared to the case of no demand response). In compari-

son to Ma et al. mechanisms that only consider incentives for the

agents (satisfy IR for participating agents), both SeqM and IndM
guarantee non-negative expected utility for both agents and the

mechanism (both satisfy IR and CR) since they consider both the

demand forecast and the balancing cost of the mechanism.

Next, we evaluate all mechanisms with regards to the utility

of the mechanism UM and the social welfare (UM +UA). Parallel
lines in Figure 5 illustrate points of equal social welfare, the dashed

line for the case of no demand respond, and the dotted line for

the maximum social welfare under both our proposed mechanisms

(almost equal): SeqM (T = 0.2) and IndM (T = 0, R = 0.9p′). When

compared to the case of no demand response, the expected social

welfare increases by 14% for SeqM (T = 0.2p′), 13% for IndM (T = 0,

R = 0.9p′), 11% for fixed-reward Ma et al. (Z = 0.6 × EX [x − b |x >
b],R = 0.4p′), and last, 6% for Ma et al. with fixed penalty (Z =
0.3 × EX [x − b |x > b],T = 0.1p′). The utility of the mechanism

increases (i.e., expected balancing cost decreases) by: 13% for SeqM
(T = 0), 7% for IndM (T = 0,R = 0.7p′) and 2 ∼ 3% for both

fixed-reward and fixed-penalty Ma et al. mechanisms. Compared

to Ma et al. mechanisms in this extended setting, SeqM and IndM
improve both social welfare and the utility of the mechanism since

they request agents to respond only if there is positive imbalance.

Simultaneous Upward & Downward Flexibility. Last, we show

that both SeqM and IndM reduce balancing costs substantially for

the retailer in the case where both positive and negative imbalances

from the procured quantity incur balancing cost to the retailer.

We consider that any absolute deviation from the procurement

quantity (b = EX [x]) is balanced with price p′. As described in

Sec. 4.4, SeqM and IndM can be used to allocate both upward and

downward flexibility agents. We draw equal number of both types

of agents, |A− | = |A+ | = 200. For SeqM , we use T = 0. For IndM ,

R = 0.6p′ and T = 0. We keep the distribution of agent types

and the demand distribution same as those of earlier experiments.

Figure 6 presents the ratio of the expected balancing cost for SeqM
and IndM with and without demand response (CDR/C¬DR ). On

average, SeqM (T = 0) mechanism achieves a 16% reduction in the

balancing cost of the mechanism, while IndM (R = 0.6p′,T = 0)

yields 9% reduction.

6 CONCLUSIONS
In this paper we studied a highly relevant problem in energy sys-

tems: how to incentivize uncertain demand response under a given

demand forecast and imbalance price. We proposed two mecha-

nisms: a sequential mechanism (SeqM ) that is truthful under some

mild assumptions (see Th. 4.2), and a truthful combinatorial mecha-

nism (IndM ) that runs in polynomial time and uses VCG payments

(see Th. 4.6). Both mechanisms require only a subset of selected

agents to respond, while they guarantee non-negative utility in

expectation for both agents and the retailer (mechanism). The pro-

posed mechanisms can further be used in settings where both posi-

tive and negative imbalances result in balancing cost for the retailer.

Last, we verified the theoretical properties of both mechanisms in

an empirical evaluation over different parameters. Our proposed

mechanisms achieved up to 16% reduction in the balancing cost of

the retailer and 14% increase in social welfare compared to when

no demand response is used.

With regards to future extensions of this work, it is of interest

to study how reports for demand response can influence the pro-

curement decision of the retailer (e.g., by relaxing Assumption 1).

Last, future work may further consider agents with continuous

responses as a challenging generalization of our proposed setting.
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