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Abstract

Global properties of Multi-Degrees-of-Freedom (M-DoF) systems, in particular phase space organization, are
largely unexplored due to the computational challenge requested to build basins of attraction. To overcome
this problem, various techniques have been developed, some trying to improve algorithms and to exploit high
speed computing, others giving up to possibility of having the exact phase space organization and trying
to extract major information on a probability base. Following the last approach, this work exploits the
method of "basin stability" (Menck et al. in Nat Phys 9(2):89-92, 2013) in order to drastically reduce the
numerical e�ort. The probability of reaching the attractors is evaluated using a reasonable number of trials
with random initial conditions. Then we investigate how this probability depends on particular generalized
coordinate or a pair of coordinates. The method allows to obtain information about the basins compactness
and reveals particular features of the phase space topology. We focus the study on a 2-DoF multistable
paradigmatic system represented by a parametric pendulum on a moving support and model of a Church
Bell. The trustworthiness of the proposed approach is enhanced through the comparison with the classical
computation of basins of attraction performed in the full range of initial conditions. The proposed approach
can be e�ectively utilized to investigate the phase space in multidimensional nonlinear dynamical systems
by providing additional insights over traditional methods.

Keywords: Basins of attraction, parametric pendulum, multi-degrees-of-freedom dynamical systems, basin
compactness, probability of attractors

1. Introduction

The perception of how seemingly small causes are able to propagate towards grave e�ects has been noted
by historians and others over several centuries, �for want of a nail ... a kingdom was lost� [1]. Fairly well
understood the possibility of unforeseen consequences, scientists' curiosity turned on investigation of triggers
acts and on their abatement. Back to the 19th century, the study around the sensitive dependence on initial
conditions is anticipated �nding its in�uence in the complexity of trajectories in the three-body problem
[2], but only in mid 1900s, �ourishing studies of di�erential equations were able to make rigorous order in
the apparent unpredictability of dynamical systems [3, 4, 5]. While for a linear �nite-dimensional system a
uniform exponential decay to the sole equilibrium is observed, nonlinear systems may be characterized by a
multistable behaviour [6]. As consequence of possessing a variety of attractors, a nonlinear dynamic system
exhibits complex and interesting scenarios of response [7].

With the aim to properly predict the response behaviour, the identi�cation of both existence and stability
of attractors does not su�ce. This represents an unfortunate condition since numerical tools have turned
their determination into a straightforward operation [8, 9]. Conversely, what is required to identify is the
structure of the phase space. This implies the analysis of the shape, size and boundaries of the basin (or
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domain) of attraction related to each attractor. Basins of attraction are, by de�nition, subsets of the phase
space, i.e. sets of initial conditions, bringing the system to a speci�c attractor. Labelling the phase space is
the key to map all the possible outcomes of a dynamical system. As a matter of fact, the fractality of basins
of attraction is one of the motivations behind the sensitivity to initial conditions, i.e. one of the roots of
unpredictability or catastrophic consequences.

The mere estimation of the stability in the classical, or Lyapunov [10], meaning is not su�cient for the
practical stability in the engineering sense for mulistable systems for mulistable systems. Indeed, from a local
point of view, a stable solution may be not visible in practice. If the basins associated with the attractor is
small and compact enough, the system could not be able to accommodate noise and perturbations becoming
practically unsafe [11].

Whereas in some cases approximating analytical techniques are available to study the local dynamics [12],
the determination of domains of attraction requires signi�cant computational resources [13, 14]. Thus, beside
the recognized usefulness and potentiality, examples of global dynamics approach in high-dimensional sys-
tems are still scarce [15]. The analysis essentially relies on 2-dimensional (2D) sections of the n-dimensional
basins of attraction. Few examples are: i) the projections of a 4D phase space to estimate the dynamic
integrity of a parametrically excited cylindrical shell [16]; ii) instability phenomena under parametric exci-
tation of �exural modes described by use of 2D section in [17], iii) a proper indication of what occurs in
the large dimensional phase space of the three-dimensional model describing the throw of a die obtained by
means of 2D basins of attraction in [18].

Although new numerical techniques has been recently introduced [13, 19], the computation of basins of
attraction in large-dimensional systems remain computationally expensive. An alternative (approximated)
approach that avoids to scan the complete set of all the initail conditions is represented by the �basin stability�
method [20]. The equations of motion are repeatedly integrated with random initial conditions and for each
trial the �nal attractor is identi�ed. In a multistable scenario, a chosen set of initial conditions generates
the probability of occurrence of di�erent attractors [21, 22]. It has to be stressed that the aforementioned
analysis, when the phase space topology is highly riddled or fractal, i.e. it presents a low compactness,
has to be extended to the full ensemble of initial conditions. This is done by making use of the classical
computation algorithms for basins of attraction, e.g. the integration of a grid of points [23] or cell-mapping
methods [24] and their related evolutions [13, 25]. The accuracy of solutions detection depend on the number
of grid points. If the solution is hidden or rare attractor [26] with really narrow range of stability or it is
Milnor attractor [27] we can miss it in calculation. However, if the grid is dense and we cannot detect the
solution its importance, form practical point of view, is marginal. In [22] double pendulum system has been
analysed. Overall, 172,500 trials (integration of system equations with di�erent, random initial conditions)
were performed. Some solutions were reached only once per 172,500 trials, thus we can classify them as
hidden attractors, but they can be neglect in practical analysis.

This work presents the analysis of a parametric pendulum based on the basin stability method along
with a classical analysis based on basins of attraction. In particular, for an improved reliability, the domains
are not collected in bidimensional sections, but the full 4D phase space is investigated. This is doable only
thanks to the use of parallel computation that permits a reasonable elaboration time and to avoid memory
over�ows [28]. The parametric pendulum results a perfect candidate as a paradigm model to demonstrate the
usefulness of the proposed approach. It shows a rich dynamical behaviour (from simple periodic oscillation
to complex chaos [29, 30]) Remarkable achievements are the recent deploy of parametric pendulum-based
devices toward commercializable wave energy converters [31, 32, 33, 34].

The paper considers the forced oscillations of a damped pendulum coupled with Du�ng oscillator. The
mechanical 2-DoF of the system are the vertical translation of the harmonic oscillator and the rotation of
the suspended pendulum; they correspond to a system with four dimensional phase space. The governing
equations of motion are obtained in Sect. 2 by using a Lagrangian approach. Here we introduce the model
which we use to demonstrate the idea of the work. Section 3 reports numerical results in the case of two
and six coexisting stable solutions, respectively. The possible application of proposed idea is presented in
Section 4 based on model of Church Bell. Finally, Sect. 5 rounds up the paper with our conclusions.
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2. Model of a Du�ng oscillator with a suspended pendulum

The analyzed system is shown in Fig. 1. It consists of a Du�ng oscillator with a suspended pendulum.
The Du�ng system is excited with harmonic force and moves in vertical direction. The position of mass
M is given by coordinate x and the angular displacement of pendulum (position of the mass m) is given by
angle ϕ. The equations of motion can be derived using Lagrange equations of the second type. The kinetic
energy T , potential energy V and Rayleigh dissipation D are given respectively by the following equations:

T =
1

2
(M +m)ẋ2 −mlẋϕ̇ sinϕ+

1

2
ml2ϕ̇2, (1)

V =
1

2
k1x

2 +
1

4
k2x

4 +mgl(1− cosϕ), (2)

D =
1

2
c1ẋ

2, (3)

where M is mass of the Du�ng oscillator, m is mass of the pendulum, l is length of the pendulum, k1 and
k2 are linear and nonlinear parts of spring sti�ness, and c1 is a viscous damping coe�cient of the Du�ng
oscillator. The generalized forces are given by the following formula:

Q = F (t)
∂x

∂x
+ Tq (ϕ̇)

∂ϕ

∂ϕ
, (4)

where F (t) = F0 cos νt is a periodically varying excitation with amplitude F and frequency ν, Tq (ϕ̇) = c2ϕ̇
is a damping torque with damping coe�cient c2. The damper of pendulum is located in a pivot of the
pendulum (not shown in Fig. 1). The damping in the pivot of pendulum is composed of viscous and dry
friction damping [29]. Here, we neglect dry friction component (to have a continuous system).

M

k x +k x c x

F(t)

x

l

m o

Tq( )φ

φ

1             2

3

1

Figure 1: Model of the system.

The two coupled second order di�erential equations are:

(M +m)ẍ−mlϕ̈ sinϕ−mlϕ̇2 cosϕ+ k1x+ k2x
3 + c1ẋ = F0 cos νt, (5)

ml2ϕ̈−mlẍ sinϕ+mlg sinϕ+ c2ϕ̇ = 0. (6)

In the numerical calculations we use the following values of Du�ng oscillator's parameters: M = 2.0 [kg],
k1 = 80.0 [N/m], k2 = 80 000

[
N/m3

]
, c1 = 4.0 [Ns/m] and the for pendulum's parameters values we take:

m = 0.2 [kg], l = 0.08 [m], c2 = 1× 10−4 [Nms].
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Introducing dimensionless time τ = tω0, where ω
2
0 = k1

M+m is the natural linear frequency of Du�ng
oscillator, we obtain the dimensionless equations of motion:

ẍ′ − aϕ̈′ sinϕ′ − aϕ̇′2 cosϕ′ + x′ + bx′3 + cẋ′ = f cosωτ,

ϕ̈′ − ẍ′ sinϕ′ + d sinϕ′ + hϕ̇′ = 0,
(7)

where a = m
M+m , b = k2l

2

k1
, c = c1

(M+m)ω0
, f = F0

k1l
, ω = ν

ω0
, d = g

ω2
0l
, h = c2

ml2ω0
, x′ = x

l , ẋ
′ = ẋ

ω0l
, ẍ′ = ẍ

ω2
0l
,

ϕ′ = ϕ, ϕ̇′ = ϕ̇
ω0
, ϕ̈′ = ϕ̈

ω2
0
.

The dimensionless parameters of the system have the following values: a = 0.0909091, b = 6.4, c =
0.301511, d = 3.37219 and h = 0.0129556. The amplitude f and the frequency µ of the excitation are taken
as control parameters. For simplicity primes in dimensionless equations will henceforth be neglected.

3. Results for Du�ng oscillator with suspended pendulum

In our study, we consider two sets of system parameter values for which we observe multistability with
di�erent number of attractors. In Case 1 we �xed the exaction parameters to f = 0.5 and ω = 1.1, and
we observe two stable solutions. We use this simple case to present the methodology and to visualize the
results. Then, we investigate the more complex Case 2, with f = 1.0 and ω = 3.0, where six stable solutions
are present. Here, we focus on the advantages of the sample based approach. We indicate how it can be
combined with classical basins of attraction to improve the knowledge of the systems dynamics. We also
provide informative presentation scheme of the phase space structure.

3.1. Case 1 - two coexisting stable solutions

For f = 0.5 and ω = 1.1 we observe two stable solutions in the system. The solution I is period-1
oscillation (it has the same period of the excitation) of mass M with pendulum remaining in the hanging
down position. The second possible orbit (solution II) is period-2 solution (its period is double than that
of the excitation) in which both mass M and pendulum perform oscillatory motion. At �rst, we consider
the probability of reaching solution I from random initial conditions. We perform 2.5× 106 trials of direct
numerical integration each time drawing the initial conditions from the following ranges x ∈ 〈−2, 2〉, ϕ ∈
〈−π, π〉, ẋ ∈ 〈−2, 2〉, ϕ̇ ∈ 〈−4, 4〉. These ranges ensure that all stable solutions can be reached and refer
to the practically accessible initial conditions that could be implied in the real world realization of the
investigated system. The overall probability of reaching solution I is 54.3% which corresponds to basin
stability measure of this attractor. Hence, the second solution has probability of reaching equal to 45.7%.
Now, we want to investigate how this value change for di�erent regions of the phase space.

3.1.1. One-coordinate histograms

Firstly, we consider how each particular coordinate in�uences the probability of reaching solution I.
For this purpose we calculate histograms for each generalized coordinate separately. Each time we use 42
equal steps receiving on average 60 000 trials for each subset. In Fig. 2(a-d) we show how the probability of
reaching solution I evolves with respect to coordinates x, ẋ, ϕ and ϕ̇ respectively. Each dot on the histograms
corresponds to the series of trials in which all initial conditions are random but for one initial condition given
on vertical axis we narrow down the range of drawing its value to 1

42 of the whole accessible range. Hence, we
see 42 discrete ranges which show the changes of probability as a function of one selected initial condition.
Panel (a) shows how the probability of reaching solution I depends on the initial value of x. We see that
there is no dominant trend and the value is scattered around the overall average probability. Hence, we
expect the initial value of x can a�ect the structure of basins of attraction, but not its overall volume. This
is con�rmed by the sample 3D projections of the full basins of attraction, obtained for x0 = −2.0, x0 = 0.0
and x0 = 1.0 presented in panels (a.1, a.2, a.3) respectively. Moreover, it is visible in the supplementary
material video1 which revels the evolution of 3D projection of the phase space for x ∈ 〈−2, 2〉.
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Figure 2: Histograms showing how the probability of reaching solution I changes with respect to four generalized coordinates
(a,b,c,d) supplemented by examples of 3D plots of basins of attraction.

Panel (b) refers to the in�uence of initial condition ẋ which is much less scattered. The analysis of basins
structure evolution (supplementary video2) con�rms that changes in initial value of ẋ have minor in�uence
on the basins structure and compactness. It is also visible in the sample 3D plots (panels (b.1, b.2, b.3))
calculated for ẋ0 = −2.0, ẋ0 = 0.0 and ẋ0 = 1.0 respectively.

Panels (c) and (d) correspond to histograms calculated for ϕ and ϕ̇ respectively. In both plots we see
similar shape of histograms. The probability is scattered on both ends of the considered ranges of initial
conditions while in the middle there is clearly visible trend with the maximum around zero. Hence, we
expect that around zero value the basins have large volume (maximum along the histogram) and more
compact structure (clearly visible trend). Contrary, on both ends of the considered range we expect basins
with smaller volume and more complex structure (lower probability and large dispersion in the histogram).
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These predictions are con�rmed both on the sample 3D projections - panels (c.1, c.2, c.3, d.1, d.2, d.3), and
supplementary animations video3 and video4.

The presented results show that one coordinate histograms may indicate the changes in the structure
and the volume of basins of attraction. We see that large dispersion along the histograms indicate fractal
structure of basins while clearly visible trends refer to more compact shapes of basins. Apart from that,
the proposed histogram plots can be used to detect the ranges of initial conditions for which we observe
minimum or maximum volume of the basin of attraction.

3.1.2. Two-coordinate density plots

In this section we consider 2D density plots showing how the probability of reaching solution I changes
with respect to two particular coordinates. To obtain the density plot we perform large number of trials with
random initial conditions. Then, we clusterize trials with respect to two initial conditions and for each group
we calculate the probability of reaching solution I. By that, we obtain drawings that are somehow squeezed
re�ections of phase space that can be interpreted similarly as 1D histograms but brings more information.
They are especially meaningful for mechanical systems because they are able to re�ect the in�uence of the
initial conditions of single degree of freedom (position and velocity). If we want to have the information how
other pairs of initial conditions in�uence the density we can easily plot such diagrams. Moreover 2D plot is
the limit of clear visualization method that enables convenient interpretation. The above reasons make the
proposed density plots an e�cient tool for the analysis of phase space structure.

In Fig. 3 we show 2D density plots obtained for the investigated system. In panels (a,b) we consider
initial conditions that refer to separated single degree of freedom. In panel (a) we show how the probability
is changing with varying x and ẋ. We see that for ẋ ∈ (−1.6, 1.4) the probability of reaching assumed
solution is much larger than outside this range. The same conclusion can be drawn based on 1D diagram.
The advantage of 2D plot is visible in the middle of the plot, where we clearly see that there is a narrow
area of small probability (blue color) in the high probability range. The second considered degree of freedom
(ϕ, ϕ̇) is shown in panel (b) of Fig. 3. The plot is signi�cantly di�erent from the �rst one. We observe
a high probability in the center of plot and rapid decrease of probability outside this range. The highest
probability is marked with dashed line ellipse.
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Figure 3: 2D density plots presenting dependence of the overall probability of reaching solution I with respect to the initial
state of Du�ng oscillator (a) and pendulum (b). Panels (c, d) show basins of attraction calculated for points with minimum
(c) and maximum (d) probability marked in panel (a). The green and yellow color refer to basins of attraction of solutions I
and II respectively. Dashed ellipse refers to the region in ϕ and ϕ̇ plane with high probability of reaching solution I.

To present the advantage of 2D plots in panels (c) and (d) we show basins of attraction calculated for
�xes initial conditions of the Du�ng oscillator. The green and yellow colors refer to basins of attraction of
solutions I and II respectively. Panel (c) corresponds to the point from panel (a) with minimum probability
(x = −0.24, ẋ = 0.74) and panel (d) refers to the point with maximum probability (x = −0.18, ẋ = 1.70).
Comparing panels (c) and (d) we see that indeed the amount of yellow color that refers to solution II basins
di�ers strongly. Moreover, on both plots we see unchanged range of high probability of reaching solution I
marked with the dashed line ellipse (the same area as in panel (b)). The above consideration shows that 2D
density plots can be e�ectively utilized to investigate the structure of the phase space in multidimensional
systems and provides additional knowledge over traditional presentation methods.
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Table 1: Explanation of six stable solutions that exist for Case 2 (f = 1.0 and ω = 3.0). Du�ng oscillator always oscillates
with 1:1 ratio to excation.

Solution Period Pendulum

I 1 No motion
II 2 Oscillations
III 4 Oscillations
IV 4 Oscillations
V 1 Rotations
VI 1 Rotations

3.2. Case 2 - six coexisting stable solutions

After presenting the proposed approach basing on the bi-stable example, now we show its advantages on
a more complex case. This time, instead of showing all the results we will present how the method can be
utilized to analyze the structure of the basin of a given solution. We consider f = 1.0 and ω = 3.0 (Case 2)
for which six di�erent stable solutions coexist in the phase space: they are summarized in Table 1. Solution
III and IV are a pair of non-symmetric solutions that are born via pitchfork symmetry breaking bifurcation
and refer to the same type of behaviour. Similarly, solutions V and VI refer to rotations in clockwise and
counter-clockwise direction respectively.

In Fig. 4 we present one-coordinate histograms for all stable solutions. The �rst noticeable property is
that solution II has dominant volume of basin of attraction. Probability of reaching solution II is negatively
correlated with the probability of reaching solution I which has the second largest volume of the basin. The
initial state of the pendulum in�uences the probability much stronger than the initial conditions of Du�ng
oscillator. Histograms for solutions III and IV look almost exactly the same because those solutions are
non-symmetric orbits born in pitchfork bifurcation. The same property is observed for solutions V and
VI. It is important to notice that the above conclusions are general and reveal interesting features of the
investigated system.

8



x

P
ro

b
a
b
il

it
y

x

φφ

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4

-2 -1 0 1 2

-3 -2 -1 0 1 2 3 -4 -2 0 2 4

P
ro

b
a
b
il

it
y

P
ro

b
a
b
il

it
y

P
ro

b
a
b
il

it
y

(a) (b)

(d)

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

- solution I

- solution II

- solution III

- solution IV

- solution V

- solution VI

(c)

Figure 4: Histograms showing how the probability of reaching each of six stable solutions with respect to four generalized
coordinates (a, b, c, d).

Now, instead of presenting detailed analysis of all six solutions we will focus on solutions I and V and
investigate them using the proposed 2D density plots. The results are shown in Fig. 5. First two panels (a,
b) refer to solution I and are similar to plots obtained for this solution but for di�erent excitation parameters
(Fig. 3 panels (a) and (b)). Still, one can see that the ellipse of high probability in

Case 2 (Fig. 5(b)) is signi�cantly smaller than in Case 1 (Fig. 3(b)). Such comparison of 2D histograms
calculated for given solution but with di�erent parameter values may be useful during parameter tuning or
optimization. Analyzing 2D density plots obtained for solution V (see Fig. 5(c, d)) we can easily detect
ranges of initial conditions that ensures highest possible probability of reaching clockwise rotations; this
is not possible using 1D histograms. In the Appendix we present 2D density plots for the remaining four
solutions, namely II, III, IV and VI. The presented investigation of multistable Case 2 proves the advantages
and potential of the proposed method of analysis and visualisation of the phase space structure.
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Figure 5: 2D density plots showing the changes in the probability of reaching solutions I (a, b) and V (c, d) with respect to
four generalized coordinates. Panels (a, c) refer to the in�uence of the initial state of the Du�ng oscillator while panels (b, d)
refer to the in�uence of the initial angular position and velocity of the pendulum.

4. Possible application - analysis of a Church Bell dynamics

4.1. Model of a Church Bell

The investigated model is based on the existing bell �The Heart of Lodz� of the Cathedral Basilica of St
Stanislaus Kostka, Lodz, Poland and all parameter values were obtained in a series of dedicated experiments
[35, 36]. The derivation of the model is described in detail in [35] and now we just brie�y recall it. The
developed mathematical model is based on the analogy between freely swinging bell and the motion of the
equivalent double physical pendulum. The �rst pendulum has �xed axis of rotation and models the yoke
together with the bell that is mounted on it. The second pendulum is attached to the �rst one and imitates
the clapper. Figs 6(a,b) show schematics indicating the position of the rotation axes of the bell o1, the

10



L

lc0 o1

o2

(b)

φ2

φ1

2α
M,Bb0

m,Bc

l

o2

o1

Cb

(a)

Cc

l <0r

(c)

l <0

rl =0

rl >0

0

lcr

Lr

rl >0

o2

o1

(d)

l <0rl <0

o1

o2

lcr

Lr

Figure 6: Schematics of the physical model of the yoke-bell-clapper system in di�erent planes to show its geometry, kinematics
and physical parameters.

clapper o2 and presenting parameters involved in the model. For the sake of simplicity, henceforth, the term
�bell� is used for the bell and its yoke, which is treated as one solid element.

The model has eight physical parameters: L0 describes the distance between the rotation axis of the
bell and its centre of gravity (point Cb), l is the distance between the rotation axis of the clapper and its
centre of gravity (point Cc). The distance between the bell's and the clapper's axes of rotation is given by
lc0. The mass of the bell is described by M , while Bb0 characterizes the bell's moment of inertia referred to
its axis of rotation. Similarly, m describes the mass of the clapper and Bc stands for the clapper's moment
of inertia referred to its axis of rotation.

We have to remember that we consider a musical instrument, hence we cannot change most of its
parameters as it could a�ect the sound it generates. In real applications we can easily modify the driving
motor and the mounting of the bell (by changing the design of the yoke). Therefore, in our investigation
we will consider alterations of these two features taking as a reference parameter values that refer to �The
Heart of Lodz�.

Parameter lr is used to describe the modi�cations of the yoke, as it is presented in Fig. 6(b,c). The
lr de�nition is explained in detail in our previous paper [36], where lr = 0 refers to the shape of original
yoke used in the Cathedral's Basilica bell. If the centre bell's of gravity is lowered with respect to its axis
of rotation, lr < 0, otherwise lr > 0. The change of the yoke design given by the value of lr a�ects other
parameters. Therefore, in the mathematical model, the following parameters that describes the system with
the modi�ed yoke are used:

L = L0 − lr, lc = lc0 − lr, Bb =
(
Bb0 −ML2

0

)
+ML2. (8)

The bell is excited with a linear motor. When the de�ection of the yoke is smaller than π/15 [rad] (12o)
the motor is active and generates the torque. The torque generated by the motor T (ϕ1) is given by the
piecewise formula:

T (ϕ1) =


Tmax sgn(ϕ̇1) cos (7.5ϕ1) , if |ϕ1| ≤ π

15

0, if |ϕ1| > π
15

(9)

where Tmax is the maximum torque. Although, the above expression is not fully accurate re�ection of the
e�ects generated by the linear motor it is able to reproduce the characteristics of the modern bells' driving
mechanisms [35]. We can easily modify the e�ects generated by the motor by changing the range of bell's
de�ection in which the motor is active (in our case 〈−π/15, π/15〉) or by altering the maximum generated
torque Tmax which is much easier to realize in practice [36]. Therefore, we take Tmax as the second control
parameter.

A planar co-ordinate system is used as shown in Fig. 6(a), where the angle between the bell's axis and
the downward vertical is given by ϕ1 and the angle between the clapper's axis and downward vertical by
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ϕ2. Angular parameter α describes the impact condition as follow:

|ϕ1 − ϕ2| = α. (10)

Synonymously, contact between the bell and the clapper occurs when a relative angular displacement between
the bell and the clapper is equal to α.

The Lagrange equations of the second type are employed to derive two coupled second order ODEs that
describe the motion of the system:

(
Bb +ml2c

)
ϕ̈1+mlclϕ̈2 cos (ϕ2 − ϕ1)−mlclϕ̇2

2 sin (ϕ2 − ϕ1)+(ML+mlc) g sinϕ1+Dbϕ̇1−Dc (ϕ̇2 − ϕ̇1) = T (ϕ1),
(11)

Bcϕ̈2 +mlclϕ̈1 cos (ϕ2 − ϕ1) +mlclϕ̇
2
1 sin (ϕ2 − ϕ1) +mgl sinϕ2 +Dc (ϕ̇2 − ϕ̇1) = 0, (12)

where g stands for gravity.
We use a discreet impact model. If Eq. 10 is ful�lled, the numerical integration process is paused. Then,

simulation is restarted with updated initial conditions. The bell's and the clapper's angular velocities are
swapped from the values before the impact to the ones after the impact. The angular velocities after the
impact are obtained by taking into account the energy dissipation and the conservation of the system's
angular momentum that are expressed by the following formulas:

1

2
Bc (ϕ̇2,AI − ϕ̇1,AI)

2
= k

1

2
Bc (ϕ̇2,BI − ϕ̇1,BI)

2
, (13)

[
Bb +ml2c +mlcl cos (ϕ2 − ϕ1)

]
ϕ̇1,BI + [Bc +mlcl cos (ϕ2 − ϕ1)] ϕ̇2,BI =[

Bb +ml2c +mlcl cos (ϕ2 − ϕ1)
]
ϕ̇1,AI + [Bc +mlcl cos (ϕ2 − ϕ1)] ϕ̇2,AI

(14)

where index AI stands for �after impact�, index BI for �before impact� and parameter k is the coe�cient
of energy restitution and in our simulations we assume k = 0.05 [−] [35]. Eqs 11 and 12 together with the
impact model create a hybrid dynamical system.

The mathematical model contains eleven physical parameters which values were derived experimentally
in a series of dedicated experiments. Their values are the following: M = 2633 [kg], m = 57.4 [kg], Bb0 =
1375 [kgm2], Bc = 45.15 [kgm2], L0 = 0.236 [m], l = 0.739 [m], lc0 = −0.1 [m] and α = 30.65o = 0.5349 [rad],
Dc = 4.539 [Nms], Db = 26.68 [Nms] and we consider the control parameters from the following ranges:
Tmax ∈ [100, 650] [Nm] and lr ∈ [−1.3, 0.25] [m].

4.2. Results

We analyse the structure of the phase space for the following set of parameter values: Tmax = 230 [Nm],
lr = −0.075 [m]. As desciebed in Fig. 3.1 in [37] we see that two types of working regimes coexist for that
case. The �rst stable attractor corresponds to asymmetric falling clapper working regime with one impact
per period of motion (there are two re�ected solutions, but we treat them as one type of behavior) and
the second one to symmetric falling clapper with two impacts per period - one on each side of the bell. To
hold consistence with [37], we name asymmetric solutions as 6 and 7 and symmetric solution as 8. Initial
conditions are drawn from practically accessible ranges which are as follows:

ϕ10 ∈ [−π, π] [rad],
ϕ20 ∈ [−π, π] [rad],

ϕ̇10 ∈ [−π/2, π/2] [rad/s],
ϕ̇20 ∈ [−π, π] [rad/s],

(15)

additionally condition that ensures that clapper is inside the bell |ϕ10 − ϕ20 | < α must be ful�lled.
We analyse the structure of the phase space using the proposed sample based algorithm. Results are

presented in Fig. 7 where the �rst three panels (a,b,c) refer to the relative probability of reaching solution
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6 or 7 and panels (d,e,f) placed in the lower row re�ect the results for solution 8. In the �rst column we
present the in�uence of initial angular position and velocity of the bell while in the second column of the
clapper. We see that to obtain the symmetric solution with two impacts per period (solution 8) we have to
imply some initial de�ection of the bell and the clapper.

Figure 7: 2D density plots presenting dependence of the overall probability of reaching coexisting stable solutions with respect
to the initial state of the bell (a,d), the clapper (b,e) and initial de�ections of the bell and the clapper (c,f). The color scale is
presented at the bottom of the �gure.

It is also much easier to obtain precise initial de�ection than angular velocity. Hence, in the last column
we plot how the relative probability depends on the initial de�ections of the bell and clapper. The white
triangles re�ect the geometrical boundaries of accessible initial states of the system (as aforementioned the
initial angular potions of bell and clapper must ful�l relation |ϕ10 − ϕ20 | < α, see Eq. 15). Panels (c,f) are
of practical importance as they indicate that it is impossible to reach symmetric solution without implying
some speci�c initial state of the system of sophisticated starting procedure.

5. Conclusions

In the paper we propose a new way to analyze the phase space structure of M-DoF dynamical systems.
It is a sample based algorithm that enables to investigate the in�uence of particular initial condition or pair
of conditions. The method is introduced basing on a 2-DoF multistable system. The presented results show
that the method enables to obtain additional knowledge on the basin compactness and reveals regions in the
phase space that have some speci�c features. It is proven by the comparison with the animations showing
the evolution of basins of attraction with respect to each initial condition.

Crucial part of the approach is proposed presentation scheme that enables to overcome some limitations
of the currently know methods. Probability histograms are useful to analyze single initial condition and
detect ranges with maximum or minimum probability of reaching the solution of interest. 2D density plots
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are squeezed re�ections of phase space and reveals the in�uence of given degree-of-freedom or a pair of initial
conditions. These plots are obtained assuming random initial conditions. Hence, they uncover the overall
in�uence of the considered initial condition(s).

In the last part we show possible practical utilization of the proposed method using the experimentally
validated model of a Church Bell. It is a two degree of freedom hybrid system with complex dynamics and
wide ranges of multistability. Using the proposed method we are able to analyse the structure of the phase
space and formulate practical advices on how to achieve given working regime.

The above advantages prove that the proposed sample based method is an e�cient tool that can be
e�ectively utilized to investigate the structure of the phase space in multidimensional systems and provides
additional knowledge over traditional methods.
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Appendix

In Fig. 8 we present the 2D density plots for the remaining four stable solutions that coexist in the phase
space for Case 2. We see that plots obtained for solutions II (a, b), solution III (c, d) and IV (e, f) have
similar structure. These three solutions are all oscillatory motion of the pendulum (see Table 1), so they
are qualitatively similar. This similarity may also be uncovered from the analysis of panels (a, b, c, d, e, f).
The last two panels (g, h) refer to the rotational solution VI. These plots are similar to the ones obtained
for solution V which is its equivalent. Especially, panel (h) has similar structure to Fig. 5 (d).
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Figure 8: 2D density plots showing the changes in the probability of reaching solution II (a, b), III (c, d), IV (e, f) and VI
(g, h) with respect to four generalized coordinates. Panels (a, c, e, g) refer to the in�uence of the initial state of the Du�ng
oscillator while panels (b, d, f, h) refer to the in�uence of the initial angular position and velocity of the pendulum.
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