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Abstract—This paper focuses on optimizing the robustness of
a timetable with multiple train lines of different frequencies,
where overtakings are also taken into account. An optimization
model is considered of a cyclic railway timetable problem where
dwell times and running times are variable and overtaking is
allowed for relevant stations and each line. Based on the Periodic
Event Scheduling Problem, train journey time, robustness and
the number of dwell time stretches (which decides whether a
train can have overtakings) are proposed as objectives, with
corresponding constraints included in the model. This approach
is studied in a small network with six stations and proved to
be efficient. Six model variants from a different combination of
objectives and constraints are compared on robustness, for which
a number of robustness indicators are defined.

I. INTRODUCTION

The railway timetable optimization model aims at finding

the scheduled departure and arrival times at each station within

a given line structure. This paper considers an optimization

model of a cyclic railway timetable problem where dwell

times and running times are variable and overtaking is allowed

for relevant stations and each line. A regular train service

to passengers at each period is the main idea of a cyclic

timetable. Multiple frequencies might also occur within one

period for some train lines. For example, hourly frequen-

cies are one, two, or four in the railway network of the

Netherlands. As passenger demand is various and unbalanced,

different frequencies that are not multiples of each other are

more applicable in some networks, like in China. Regularity

constraints corresponding to flexible frequencies need to be

designed to keep all trains follow the same path. Due to

increasing attention on punctuality and the huge impact of

delay propagation, traditional objectives of passenger travel

time and train journey time (TJT) are not sufficient to optimize

timetables, whereas a robust timetable could have a significant

effect on mitigating secondary delays or knock-on delays.

Meanwhile, overtakings could impact timetable robustness

when train journey times differ on the same corridor. There-

fore, robust timetable optimization at the planning level with

consideration of overtakings are necessary to be studied.

The Periodic Event Scheduling Problem (PESP) [1] has

been successfully applied to solve the macroscopic scheduling

of a cyclic timetable in [2]–[4]. This model is based on a

periodic event-activity network, where each node represents

one event which is an arrival or departure for a train in a

certain station along its path. The original PESP is a feasibility

problem since periodic schedules only need to satisfy the

constraints. Several objectives from passenger and operator

aspects were added in [3], and solved by setting up a Mixed

Integer Linear Programming (MILP). Illegal overtakings when

two trains occupy the same open track section at the same time

may occur when variable trip times (constrained by a lower

and upper bound) are set in the model. To address this issue,

extra dummy nodes are adopted to forbid the conflict in [5]

and [6], while a relation of modulo parameters is presented to

find a conflict-free timetable in [7]. Both methods were tested

in our model, and the latter one is applied whereas it proved

to be more efficient.

A lot of achievements in robust timetable optimization

have been obtained based on PESP model in recent years.

A robustness objective function is proposed in [3] by pulling

apart trains, that is, to push the headway to half the cycle

time. Both [8] and [9] discussed to improve the robustness

by allocating buffer times between two successive trains and

time supplements along one train path. While the former

proposed a stochastic programming approach, the latter com-

bined stochastic programming and robust optimization to deal

with uncertain data, and introduced the concept of recover-
able robustness. The authors of [10] proposed a three level

framework of integrated timetable construction with consider-

ation of feasibility, stability, robustness, efficiency and energy

consumption. They combined microscopic and macroscopic

models of timetable design, as detailed in [11]. An overview

of nominal and robust timetable optimization for both cyclic

and non-cyclic patterns is summarized in [12]. An extended

PESP model in [6] investigated the maximization of network

stability by generating feasible timetables, with optimal train

orders and overtakings.

Most robust optimization models mentioned above need an

initial feasible timetable, where train orders have been already

fixed, which leaves less space for improvements compared

with flexible orders. It is proved that a timetable can achieve

maximum reliability (robustness) from [13] while equalizing

scheduled headways for all trains with the same train type. Our

paper aims at computing a robust timetable while determining

train orders by spreading the headways as equal as possible.

Regularity constraints of lines for different frequencies are pro-

posed to provide regular train service for passengers. Without
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loss of generality, the number of overtakings might increase

while enhancing overall robustness of the timetable, especially

in a dense corridor. This trade-off between robustness and

overtakings is also discussed in this paper. Our model is a

modified PESP with objectives of train journey time, robust-

ness, and the number of dwell time stretches. With respect

to verifying the feasibility of our model, we defined several

PESP models with different objectives and constraints to test

and compare. Moreover, a number of statistic indicators are

introduced to assess robustness.

The paper is organized as follows: Section II introduces

the problem formulation and the corresponding cyclic railway

timetable model variants. Section III illustrates the approach

in case studies, and finally Section IV ends the paper with

conclusions.

II. MODEL DESCRIPTION

A. Model Statement

The PESP formulation can be represented by a direct

graph G = (E,A), which represents a periodic event-activity

network. With a given line plan, the model is associated with

a set of train lines L. Each line l ∈ L, defines a stopping

pattern (s1, ..sk.., sN ) and a frequency fl within a given time

period T . The set E contains departure events at s1, arrival

and departure events (for stops) or through events at sk, and

arrival events at sN for all frequencies of all lines. The set of

activities A which link these events, represents the constraints

on process time between a pair of events. For each event i,
we determine the scheduled time πi ∈ [0, T ) in a basic period

while satisfying the set of constraints A. Due to periodicity,

this event would occur at times πi + p · T , where p = 1, 2, ....
Each process time aij corresponds to an activity (i, j) ∈ A,

where i and j are two consecutive events, which can be

distinguished as running time, dwell time, headway time, and

regularity interval, and each of them has a lower lij and upper

bound uij modulo T .

Running activities Arun and dwell activities Adwell are

generated from the consecutive events of the same train. The

lower bound for running time is the minimum running time,

which equals the technical running time plus a proper time

supplement that covers various train behaviors. The upper

bound is the maximum running time that can be accepted

by passengers. The minimum time for boarding and alighting

of passengers, and the maximum time for passengers waiting

at stations represent the lower bound and upper bound of

the dwell process. Headway activities Ainfra are generated

between different train events at the same station. The minimal

safety interval is the lower bound lij for headway time, whilst

T − lji is the upper bound to ensure the safety between trains

in the reverse order. If the frequency fl of line l is greater

than one, regularity activities Areg are needed to ensure a

regular service. Since all trains in a line have the same stop

pattern, we predefine a departure sequence of these trains

which does not influence the results. Al
reg(sk) represents the

regularity activities between trains of line l in station sk. The

lower and upper bounds are set to be T/fl to line l when

strict regularity is needed. This ensures regular scheduling of

line l. Transfer connections and rolling stock connections are

not considered in this paper. All activities are represented by

A = Arun ∪Adwell ∪Ainfra ∪Areg.

PESP aims at finding the event times of all πi, i ∈ E, where

all processes

aij = πj − πi + pij · T (1)

satisfy the lower bound lij and upper bound uij . The modulo

parameter pij determines the order of event i and j within

a defined period T . Here we assume uij − lij ∈ [0, T ] and

lij ∈ [0, T ]. Then pij = 1 if πi > πj , and it is zero otherwise.

B. Model formulation

With the description above, the mathematical timetabling

model is designed as follows. First, we introduce a periodic

timetable optimization model with objective of train journey

time, defined as (PESP-TJT):

Minimize
∑

(i,j)∈Arun∪Adwell

αij · (πj − πi + pij · T ) (2)

Subject to

lij ≤ πj − πi + pij · T ≤ uij ∀(i, j) ∈ A (3)

0 ≤ πi < T ∀i ∈ E (4)

pij ∈ {0, 1} ∀(i, j) ∈ A (5)

pij + pi′j′ + pii′ + pjj′ = 2 ∗ cii′jj′ (6)

0 ≤ cii′jj′ ≤ 2 (7)

cii′jj′ ∈ N (8)

where (6)-(8) hold for all

(i, j), (i′, j′) ∈ Arun, (i, i
′), (j, j′) ∈ Ainfra

Objective function (2) includes train running times and dwell

times, and αij represents the weight of different processes. We

assume it equals one in order to compare travel time, dwell

time and time supplement with different models. Constraint

(3) ensures that all process times are within the given bounds.

Constraint (4) requires periodicity of events by bounding to

[0, T ). Constraints (6) -(8) guarantee that no illegal overtaking

can arise, when the sum of four modulo parameters of related

running and infra processes equals zero, two or four, see for

details [7].

A strict cyclic pattern means that trains from the same line

have the same scheduled event time modulo its own cycle

time, described by

aij = T/fl ∀(i, j) ∈ Al
reg (9)

Flexible frequencies are proposed in this paper, so fl could be

any number given from line plan. A parameter θ is introduced

to provide a certain deviation in case T/fl is not integer or to

express the tolerance from strict regularity. We assume that all

trains from the same line have the same trajectory (train path),

which means the same running time between two successive

stations and dwell time at each station. So we reformulated the
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regularity constraints above, with aij short for πj−πi+pij ·T
from (1). PESP-Reg is used to represent the new regularity

constraints:

T/fl − θ ≤ aij ≤ T/fl + θ, ∀(i, j) ∈ Al
reg(s1), l ∈ L (10)

amn = aij ,

∀(m,n) ∈ Al
reg(sk), (i, j) ∈ Al

reg(s1), k ∈ [2, N ], l ∈ L (11)

In order to improve robustness, a new variable δij and

parameter φij are introduced, defined as

φij = (uij + lij)/2 (12)

δij = |aij − φij | (13)

Parameter φij is the middle of [lij , uij ]. For a certain process

(i, j) ∈ Ainfra, if aij = φij , it could provide the best

robust solution for event i and j since the two events are

distributed as far as possible. We define the sum of δij as the

headway deviation from half the cycle time (HDHC). Hence,

minimization of HDHC to spread train events is proposed:

Minimize
∑

(i,j)∈Ainfra

δij (14)

− δij ≤ aij − φij ≤ δij ∀(i, j) ∈ Ainfra (15)

This constraint is the linearized version of (13) since aij−φij

can be positive or negative. The robust PESP model (PESP-
Rob) is composed of the foregoing objective function and

constraint, and all constraints elaborated in PESP-TJT.

The number of overtakings might increase when robustness

is appealing to. In order to analyze the trade-off between

robustness and overtakings, the number of overtakings are

considered to be optimized. We assume the minimal dwell

times of all stations are smaller than twice the minimal

headway. An extra binary variable yij is proposed to the dwell

time supplement dij . The upper bound of the dwell activity

then becomes

uij = lij + dij · yij
Here, dij is predefined by a maximum passenger waiting time

at stations. When yij equals one, it can be interpreted as a

stretch of dwell time, and overtakings could occur at this stop.

Otherwise, the dwell time equals the minimal dwell time, and

overtaking can not happen as the time is not enough due to

infrastructure constraints. Therefore, the minimization of the

number of dwell time stretches aslo reduces overtakings. The

model can be expressed as:

Minimize
∑

(i,j)∈Adwell

yij (16)

lij ≤ aij ≤ lij + dij · yij ∀(i, j) ∈ Adwell (17)

We define PESP-Ovt with these objective and constraints, and

the constraints in PESP-Reg and PESP-TT with (3) for A \
Adwell.

When all three objectives (2), (14) and (16) need to be

satisfied, traditionally appropriate weights are assigned to deal

with the multi-objective problem. Our multi-objective model

is formulated as

Minimize

3∑
i=1

ωi · Zi (18)

With the aim of testing the validity of this model, comparisons

between some sub-models are needed. Each weight could also

stand for whether the objective is considered or not. Zero

means it is not considered, and otherwise it is selected. In

addition, partitioning the activities of objective TJT and HDHC

leads to the same order of magnitude, which makes it easier

to assign weights. Each objective is defined as:

Z1 =
∑

(i,j)∈Arun∪Adwell

aij/(Nrun +Ndwell) (19)

Z2 =
∑

(i,j)∈Ainfra

δij/Ninfra (20)

Z3 =
∑

(i,j)∈Adwell

yij (21)

Subject to the corresponding constraints with respect to the

selected objective(s). Nrun, Ndwell and Ninfra stand for the

number of run activities, dwell activities, and infra activities

respectively.

III. EXPERIMENTS

A. Instances and results

The optimization models are tested using Matlab R2016b,

Gurobi version 7.0.2, and the Yalmip toolbox [14]. This

section shows case studies of six different optimization models

based on the objectives and constraints in Section II.

A small network with five stations is considered. Fig. 1

displays the given line plan, with seven trains in total and the

same speed limit. And certain amount of time supplement is

allowed in optimization process. Table I depicts the values of

the parameters applied in our model. We assume all stations

are allowed to have overtakings, and the maximal dwell time

is set to be 2h (6 min) for all stations which allows only one

overtaking, in order to have less dwell time loss. Weight ωi

is set as binary, as objective value of PESP-Ovt is also in

the same order of magnitude as the other two objectives in

our case. The components of each sub-model are depicted in

Table II.

Fig. 2 illustrates the computed timetables in time-distance

diagrams, and Table III shows the obtained values of objective

A C EB D
 
 
 
 

Fig. 1. Line plan
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TABLE I
INPUT PARAMETERS OF TIMETABLING MODEL

Parameters Values

Period cycle time T 60 min

Minimal dwell time 1 or 2 min

Minimal headway time h 3 min

Dwell time supplement d 4 or 5 min

Parameter in regularity constraint θ 1 min

TABLE II
OBJECTIVE AND CORRESPONDING CONSTRAINTS FOR EACH MODEL

Models PESP-TJT PESP-Reg PESP-Rob PESP-Ovt
(A)Min TT �
(B)Min TT+Reg �
(C)Min Rob �
(D)Min TT+Rob † �
(E)Min TT+Reg+Rob † * �
(F)Min TT+Reg+Rob+Ovt † * � �

Note: �represents both objective and constraints are considered. † represents
only objective is considered, and * only constraints are considered.

function (Obj val), TJT, average TJT (Z1), HDHC, average

HDHC (Z2), total dwell time (TD), mean dwell time (MD),

the number of dwell time stretches (Z3), the number of over-

takings (NO), total time supplement (SupT), and optimization

time (Opt time) for the different models. It can be straightly

observed that PESP-Rob and PESP-Reg could help to improve

robustness by comparing figures (a) and (b), and (a) and (d)

in Fig. 2, and regularity constraints also spread trains even

though for the same line.
Both model (C) and (D) achieved the minimum HDHC, but

the latter also obtained the minimum TJT of 159 as in model

(A). Only minimizing HDHC might gain more robustness but

could result in a big increase of TJT, with a maximal running

time supplement of 27.3%. Meanwhile, dwell time stretch also

occurs even without an overtaking in Model (C) which leads

to longer dwell time, see the third departing train in station

D with dwell time larger than the minimal dwell time in (c)

of Fig. 2. This is because the dwell time stretch could help to

spread the headway more equal. When it comes to robustness

optimization, the computation time raised, especially for mod-

el (C) and (D) with consideration of PESP-Rob, see opt time

in Table III. Adding regularity constraints reduces computation

time comparing model (D) and (E), with only a slight growth

of HDHC from 2160 to 2162. Furthermore, PESP-Ovt could

contribute to cut down overtakings and dwell time stretches

without a huge increase of TJT and HDHC. In summary, it is

better to combine PESP-TT with PESP-Rob in order to control

journey time consumption and acquire a robust timetable at the

same time. Moreover, PESP-Reg should be added to the model

to decrease optimization time as well as providing regular
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Fig. 2. Time-distance diagram of each obtained timetable for two periods

TABLE III
RESULTS OF DIFFERENT TIMETABLING MODELS

Modles
Obj val TJT Z1 HDHC Z2 TD MD Z3 NO SupT Opt time

[-] [min] [min] [min] [min] [min] [min] [-] [-] [min] [sec]

(A)Min TT 18.82 159 4.68 2376 14.14 9 1.50 0 0 6.5 0.31

(B)Min TT+Reg 18.40 163 4.79 2286 13.61 13 2.17 1 1 10.5 0.41

(C)Min Rob 18.33 186 5.47 2160 12.86 21 3.50 3 1 33.5 3212.85

(D)Min TT+ Rob 17.53 159 4.68 2160 12.86 9 1.50 0 0 6.5 2213.67

(E)Min TT+Reg+Rob 17.66 163 4.79 2162 12.87 13 2.17 1 1 10.5 2.03

(F)Min TT+Reg+Rob+Ovt 17.86 165 4.85 2186 13.01 9 1.50 0 0 12.5 1.30
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service, and PESP-Ovt could be applied when less overtakings

are preferred.

B. Robustness measures

Headway deviation of half the cycle time (HDHC) can

only give a general idea of robustness, since it is the sum

of all pairs of headway at each station. In practice, robustness

is quantified between successive events on the same station.

The headway between these successive events is defined as

Hij , (i, j) ∈ A∗
infra ∈ Ainfra, and can be calculated from the

obtained event times. In addition, even when the train order

is fixed, it is still hard to assess robustness by one indicator.

Therefore, this section introduces several measures to evaluate

robustness with headway processes from A∗
infra. Generally,

range, standard deviation (SD), and mean absolute deviation

(MAD) of Hij are used to assess robustness. When the number

of activities NH in A∗
infra is known, mean, SD and MAD of

headway can be calculated as follows.

H̄ = T/
∑

fl (22)

Hsd =
√∑

(Hij − H̄)2 (23)

Hmad = (
∑∣∣Hij − H̄

∣∣)/NH (24)

With the value of Hsd and Hmad obtained, it is still inapparent

how much robustness is achieved for a certain model. In case

all trains have the same type, [13] proved that the maximum

possible value of SD and MAD can be computed by

Hmax
sd = T ·

√∑
fl − 1/

∑
fl (25)

Hmax
mad = 2T · (

∑
fl − 1)/(

∑
fl)

2 (26)

In order to make them more comparative, the measures of

robustness are converted to a 0-1 scale as follows.

Robsd = Hsd/H
max
sd (27)

Robmad = Hmad/H
max
mad (28)

For the given line plan, H̄ , NH, Hmax
sd and Hmax

mad are around

8.6 min, 56, 21.0 min and 14.7 min, respectively. Table IV

describes all values of the measures explained above, as

well as additional measures. The sum of negative headway

deviation (NHD) is defined as the headways Hij lower than

the mean headway H̄ (LMH). The number of LMH (NLMH)

is expressed to compute the ratio of NLMH to all activities

NH. This ratio indicates the total deviation scale of headways.

RLMH = NLMH/NH (29)

TABLE IV
ROBUSTNESS MEASUREMENTS

Models
Robsd Robmad SD MAD NHD NLMH RLMH MinH MaxH SR MedH ModeH RModeH RMinH

[-] [-] [min] [min] [min] [-] [-] [min] [min] [-] [min] [min] [-] [-]

(A)Min TT 0.30 0.38 6.38 5.52 -154.43 34 0.61 3 23 0.33 6 3 0.41 0.41

(B)Min TT+Reg 0.24 0.26 5.06 3.78 -105.86 33 0.59 3 19 0.27 8 3 0.20 0.20

(C)Min Rob 0.18 0.20 3.76 3.00 -84.00 28 0.50 3 18 0.25 8.5 9 0.14 0.07

(D)Min TT+ Rob 0.22 0.26 4.65 3.84 -107.43 34 0.61 3 20 0.28 6 6 0.34 0.05

(E)Min TT+Reg+Rob 0.15 0.17 3.16 2.50 -70.00 21 0.38 3 15 0.20 9 9 0.21 0.14

(F)Min TT+Reg+Rob+Ovt 0.21 0.25 4.37 3.64 -101.86 33 0.59 3 18 0.25 8 8 0.14 0.13
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Fig. 3. Headway distributions of timetable for different models
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The minimal headway (MinH) and maximal headway (MaxH)

are applied to identify the range of headways, and the scale

of range (SR) could make this measure more readable. The

maximum range can be considered as T for all timetables,

and the scaled range is then calculated by

SR = (MaxH−MinH)/T (30)

The median headway (MedH) and mode headway (ModeH)

are collected to show an overview of headways distribution

within the range, and the corresponding ratio for the number

of mode headway (RModeH) is also derived. The ratio for

the number of minimal headway (RMinH) can show the

vulnerability of the timetable. A timetable with more numbers

of minimal headway is more sensitive to even small delays.

As can be seen from Table IV, model (A) has the worst

robustness with a maximum or minimum of all measures.

Model (E) can be recognized as the best robustness according

to the lowest Robsd, Robmad, RLMH and SR. With compar-

ison of RMinH between timetable (A) with (D), and (B) with

(E), it can be found that PESP-Rob could lead to a lower

number of minimal headways. This is also verified by model

(C) with only 7.14% of RMinH from Table IV. PESP-Reg tries

to enlarge robustness by all indicators except RModeH and

RMinH, with (A) in contrast with (B), and (D) with (E). The

minimization of dwell time stretches leads to a less robustness

timetable from almost all aspects of our measures, except for

a slight decrease of RMinH. This means that overtakings could

help to improve robustness to some extent, as it could lead to

less capacity consumption for a pair of trains, and leave more

time for other trains.

Fig. 3 shows the headway distribution of each model in

histograms with the dashed line representing the position of

H̄ . The radar diagram is designed to analyze overall robustness

in Fig. 4, including Robsd, Robmad, RLMH, SR and RMinH

from Table IV. All these values are between 0 to 1, with the

smaller the better robustness. Therefore, the enclosed area by

lines with the same color is proposed to stand for the overall

robustness of each timetable. It can be concluded that timetable

(E) is more insensitive to delays compared with others by

overall robustness.

Fig. 4. Robustness measures

IV. CONCLUSIONS

This paper presented several extended PESP models with

objectives of minimal train journey time, headway deviation

of half the cycle time, and the number of dwell time stretches.

Regularity constraints for different frequencies of train lines

were developed. Robustness objectives and constraints were

introduced to obtain a robust timetable. Moreover, a variable

dwell time supplement was proposed to reduce dwell time

stretches as well as overtakings. By comparison of timetables

from six models, it can be summarized that regularity con-

straints and robustness constraints are both useful to improve

robustness, especially, PESP-Rob reduces the number of mini-

mal headways. In addition, the benefit of PESP-Reg is proved

to have less computation time, and PESP-Ovt could attribute

to have less overtakings but with some robustness loss. The

future work is to integrate this timetabling model with line

planning, and improve robustness at the line planning level,

and multiple overtakings would also be taken into account.
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Università degli Studi Roma Tre

Dipartimento di Ingegneria,

Sezione di Informatica e Automazione,

via della vasca navale 79, 00146 Rome, Italy

Email: {sama,dariano,pacciarelli}@ing.uniroma3.it

Paola Pellegrini, Joaquin Rodriguez
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Abstract—Railway traffic is often perturbed by unexpected
events. To effectively cope with these events, the real-time railway
traffic management problem (rtRTMP) seeks for train routing
and scheduling methods which minimize delay propagation. The
size of rtRTMP instances is strongly affected by the number of
routing alternatives available to each train. Performing an initial
selection on which routings to use during the solution process
is a common practice to simplify the problem. The train routing
selection problem (TRSP) reduces the number of routings available
for each train to be used in the rtRTMP. This paper describes
an Ant Colony Optimization (ACO) algorithm for the TRSP, and
analyses its application in two different contexts: at tactical level,
based on historical data and with abundant computation time, or
at operational level, based on the specific traffic state and with a
limited computation time. Promising results are obtained on the
instances of the Lille terminal station area, in France, based on
realistic traffic disturbance scenarios.

Index Terms—Railways; Train Scheduling and Routing; Graph
Theory; Ant Colony Optimization.

I. INTRODUCTION

In Europe, railway traffic demand has been steadily increas-

ing in the last decades. Railway infrastructure managers need

to face this ever increasing demand ensuring a good quality of

service. This, added to the limited space and funds available to

build new infrastructure in bottleneck areas, has stimulated in

recent years the development of efficient ways for improving

the reliability of the traffic. This reliability consists in the

capability of running trains precisely following a predefined

schedule. Typically, a hierarchical decision-making approach

is adopted when planning railway operations, resulting in a

series of tractable problems for which artificial intelligence

and operations research approaches have been proposed. These

problems can be grouped in three levels: strategic, tactical and

operational [13].

Train timetables which are in principle feasible may become

impossible to respect due to unexpected events disturbing

traffic. These unexpected events may find their origin within

the railway system (e.g., the delayed departure of a train due

to an unexpectedly high number of passengers getting on it at

a station) or be exogenous (e.g., a strong wind imposing speed

limitation on a portion of the infrastructure). The problems

dealing with the creation of new feasible working timetables in

real-time to cope with disturbances belong to the operational

level [10]. There is no general agreement on the most suitable

objective function for operational level problems. However,

the minimization of delay propagation is definitely one of

the most often used. It takes different forms in the existing

literature, as the minimization of the maximum [4] [6][18]

or of the total [14][15][17] delay indirectly caused by an

unexpected event, or the minimization of the deviation from

the timetable [2]. Other used objectives are based on the level

of service provided to the passengers [3][8][11][21].

The real-time Railway Traffic Management Problem

(rtRTMP) is one of the most important operational level prob-

lems. The rtRTMP consists in defining a feasible working

timetable in case of disturbances. In particular, it seeks for a

suitable train routing and scheduling solution (passing orders

and timings). This is necessary in case of detection of con-

flicting track requests (or simply conflicts) done by multiple

trains during disturbed operations. These are time-overlapping

requests, due to the fact that at least one of the involved trains

is not following its original schedule. In turn, this may be

due to an unexpected event either directly (e.g., as previously

mentioned, the train departed late from a previous station) or

indirectly (e.g., the train had to slow down to let the directly

impacted train pass first and is now late). The former is called

primary delay, and no action is possible to reduce it. The

latter is called secondary delay, and it depends on the rtRTMP

solution implemented (e.g., the secondary delays are different

depending on the train which has the authorization to pass first

on common track portions).

The rtRTMP is NP-Hard. The size of an rtRTMP instance

and, in general, the time required to solve it are strongly

affected by the number of routing alternatives available to

each train [20]. In the literature, different solution approaches

limit the number of routing variables, to simplify the solution
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process. The common practice is to select routings by following

infrastructure managers directives. However, these directives

are often based on the current (manual) practice, and are then

most likely far from being the optimal choices. Moreover, they

sometimes include a still very large number of routings.

In [20], we proposed a formalization of the Train Routing

Selection Problem (TRSP). It consists in the selection of

the suitable subsets of train routings, where the impact of

scheduling decisions is only heuristically evaluated. The TRSP

is to be solved as a preliminary step of the rtRTMP solution

process: the routings selected in the TRSP are the only ones

considered in the rtRTMP. Previous attempts to solve the TRSP

were based on a-priori [1] or random decisions [16]. Instead,

in [20] we proposed an Ant Colony Optimization (ACO) [9]

algorithm for this problem. In a thorough experimental analysis,

it proved to be very effective in allowing an improvement to

the rtRTMP final solution through the appropriate selection of

the train routing subsets. In the original paper, we applied

the ACO algorithm at the operational level: When conflicts

are detected, the ACO algorithm solves the TRSP in real-time

based on the specific traffic perturbation to be handled, and the

rtRTMP is solved afterwards with the returned routing subsets.

This algorithm is named ACO-rtTRSP (real-time TRSP). The

time typically considered available for defining a new feasible

working timetable is between three and five minutes. In the

proposed framework, then, this time has to be shared by ACO-

rtTRSP and the rtRTMP solver. However, it is not necessarily

required to solve the TRSP at operational level.

This paper investigates when is the best moment to solve

the TRSP through our ACO algorithm. The first alternative is

to apply ACO-rtTRSP at the operational level, as in [20]. In

this case, the routing selection is based on the specific traffic

perturbation to be faced, but a limited computation time is

available. The second alternative is to apply the ACO algorithm

at the tactical level, right after the production of the original

timetable. In this case, no specific perturbation is to be tackled,

and the routing selection is based on historically observed

scenarios, which are likely to well represent future ones. The

solution time available to the ACO algorithm can be much

longer here than for the ACO-rtTRSP, allowing a possibly better

exploration of the search space. The algorithm applied at the

tactical level is named ACO-TRSP.

To compare the two possible alternatives, we evaluate the

benefit that solving the TRSP at the operational and at the

tactical level has on the rtRTMP. To do so, we perform a

computational analysis on the French railway infrastructure of

the Lille station area. The considered instances represent traffic

perturbed by train delays at their entrance in the station area,

and different instances with similar characteristics are used as

historical data to solve the TRSP at the tactical level.

II. THE REAL-TIME RAILWAY TRAFFIC MANAGEMENT

PROBLEM

As mentioned in the Introduction, the timetable developed at

the tactical level includes three main families of information:

routing assigned to each train, called timetable routing; passing

orders of different trains on common resources (track portions);

planned passing, arrival and departure times at stations or at

other relevant points. However, disturbances may affect the train

traffic flows, bringing to the emergence of conflicts and delays,

and hence making the original timetable infeasible.

The rtRTMP is the problem of defining a new feasible

working timetable by selecting a suitable (possibly optimal)

set of routing and scheduling decisions. In this paper, the

rtRTMP is modelled microscopically on a railway network. A

railway network is the part of the infrastructure under study,

usually representing a single train dispatching area. A network

is formed by block-sections and track-circuits. A track-circuit
represents the most microscopic part of the infrastructure. For

safety reasons, each track-circuit must be used by at most one

train at a time. A block-section is a sequence of track-circuits

between two consecutive signals. Signals, interlocking and

Automatic Train Protection (ATP) systems are used to impose

safety regulations between trains and control the train traffic

by setting up train routings and enforcing speed restrictions on

running trains. A train routing is a sequence of block-sections

that leads from an entry point to an exit point in the network,

represented by station platforms or border block-sections. The

running time of a train on a track-circuit represents the time

required by a train to traverse it. A minimum separation is

imposed by safety regulation between trains requiring the use

of the same tracks (or resources), and can be translated into

a minimum headway time between the starts of the running

times of the two trains on the specific resources. In particular,

the headway time is computed considering the route-lock

sectional-release interlocking system [12], in which the use

of a block-section locks only the block-sections sharing with

it a not yet released track-circuit. This interlocking system is

the most common in Europe nowadays. The objective function

considered is the minimization of the total secondary delays.

The rtRTMP is formulated as described in [15] and solved using

the RECIFE-MILP algorithm [16].

III. THE TRAIN ROUTING SELECTION PROBLEM

One of the decisions necessary to solve the rtRTMP is the

selection of a routing for each train. This routing must be

chosen in a set of available ones. This set contains the timetable

routing and its possible alternatives. An alternative routing must

have the same entry and exit point of the timetable one, as well

as stop in the same stations. If an entry or exit point corresponds

to a station platform, other platforms in the same station can

be considered as alternative entry or exit points. Considering

many available alternative routings translates, on the one hand,

into a higher flexibility and hence possibly a better solution
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achievable. On the other hand, the computation time required

to properly explore the larger search space and find such a better

solution may be long.

The TRSP is the problem of defining for each train a subset

of p routings chosen among its alternative ones. The so defined

subsets are then to be used as input for the rtRTMP to limit

the size of its search space.

We model the TRSP through a construction graph G =
(C,L) [20]. In the construction graph, each component ci ∈
C represents a single alternative routing for a train, and a

component exists for each possible alternative routings of all

trains. The non-oriented link li j ∈ L connects the two coherent

components ci and c j it refers to. Two components are coherent
unless they are alternative routings of two different trains which

use the same rolling stock, and, if they are such, unless they

imply the need for additional local movements to perform the

required turnaround, join or split operation. The construction

graph is thus formed by n disjoint sets of components, one for

each train, where n is the number of trains.

In the TRSP, the cost of a routing assignment to each train

is quantified in terms of potential delay. This is an estimation

of the delay propagation due to the assignment: the delay

propagation may be due to the routing assignment in itself (e.g.,

if the alternative routing requires a longer travel time than the

timetable one) and is represented by the cost ui of selecting

component ci, or it may be due to a combination of routing

assignments to different trains (for the emergence of conflicting

requests) and is represented by the cost wi j of selecting both

components ci and c j and thus link li j. Formally, selecting a

routing assignment for each train corresponds to building a

clique of cardinality n in the construction graph G.

In Figure III we report three examples feasible train routing

assignments for an instance including four trains (t1, t2, t3, t4),

as well as a resulting TRSP solution, in the framed Figure 1(d).

In the considered instance, t1 can use four routings, t2 and t4
two and t3 three. The construction graph G associated with the

example has {c1,c2,c3,c4} ∈ T1, {c5,c6} ∈ T2, {c7,c8,c9} ∈ T3,

{c10,c11} ∈ T4. All components are coherent, thus |L| = 44.

For each routing assignment in Figures 1(a), 1(b) and 1(c), the

selected components of each feasible routing assignment are

colored in black, while the other components are colored in

grey. Only the links connecting these components are shown,

for ease of visibility. The framed Figure 1(d) shows the resulting

TRSP solution (s) for p = 2: the two best routing assignments

(let them be ra2 and ra3) are considered and, for each train,

the alternative routings there considered are included in s.

IV. ANT COLONY OPTIMIZATION FOR THE TRSP

The ACO algorithm described here was first proposed in [20].

The proposed algorithm is inspired by the one developed for

the maximum clique problem in [22].

ACO is a meta-heuristic inspired by the foraging behaviour

of ant colonies. The routing assignments are incrementally

(a) ra1 (b) ra2

(c) ra3 (d) s if ra1 is discarded

Fig. 1. Three feasible train routing assigments for four trains and one TRSP
solution s for p = 2

constructed by each of the nAnts ants of a colony. At each step

of the construction process, an ant a selects a new component

probabilistically using the random proportional rule, which

is based on pheromone trails and heuristic information (i.e.,

the colony’s shared knowledge and a greedy measure on the

quality of a component which may be added to the current

partial routing assignment). Once all the ants of the colony

have built a routing assignment, the best one is stored and

the pheromone trails are updated accordingly. This process is

repeated iteratively until the time limit of computation.

Our ACO algorithm works on the construction graph G
as follows. For each ant a of the nAnts ones composing a

colony, the first component ci ∈C is randomly selected and is

inserted in the current partial routing assignment raa. The set of

candidates among which the ant can choose the next component

c j ∈C includes all the components linked to ci, i.e., all coherent

components. The component c j is chosen with a probability

computed via the random proportional rule, that is based on

the following pheromone trails and heuristic information raised

to the power of α and β , respectively.

The value of the heuristic information associated to each

li j ∈ L is η(li j) =
1

1+wi j+u j
, stating the desirability of selecting

c j after ci. After each addition of a component c j in the

partial routing assignment, the set of candidates is updated by

removing both c j and all components ch ∈ C : �l jh ∈ L, i.e.,

all components not coherent with c j. The routing assignment

construction process terminates when the set of candidates is

empty. A feasible routing assignment raa is accepted only if it

includes n components, where n is the number of trains.

Among the feasible routing assignments found in the current
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