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Abstract

Sleep apnea is a common sleep disorder, whose diag-
nosis can strongly benefit from home-based screening. As
the total sleep time is essential to assess the sleep apnea
severity, a sleep-wake classifier was developed based on
heart rate and respiration. These two signals were se-
lected as they can be measured using unobtrusive sensors.
A 1D convolutional neural network (CNN) was designed to
classify 30s epochs of tachograms and respiratory induc-
tance plethysmography (RIP) signals. The input based on
beat-to-beat variability allows the use of different sensor
types. A dataset of 56 patients with an apnea-hypopnea
index (AHI) below 10 was used to train and validate the
network. This CNN was applied to an independent test
set of ECG and RIP signals of 25 subjects. Of these, 8
subjects were simultaneously monitored using an unobtru-
sive capacitive-coupled ECG (ccECG) sensor integrated
in a mattress. Artefact removal and data correction was
performed on this acquired data. The performance on
the independent dataset of ECG and RIP is comparable
to state-of-the-art, with κ = 0.48. However, application
on the ccECG data resulted in a drop in performance, with
κ = 0.30. This was caused by a low amount of remaining
wake epochs after data cleaning. Importantly, the network
classified 30s segments of sleep apnea patients, without re-
lying on past or future information for feature extraction.

1. Introduction

Obstructive sleep apnea (OSA) has the highest preva-
lence among sleep disorders. As it is closely associated
with obesity and advancing age, the prevalence is expected
to further increase [1]. The disorder is characterized by
repeated breathing interruptions, resulting in hypoxaemia
and arousals from sleep. Overall, these events fragment
the patient’s sleep and reduce phases of rapid eye move-
ment and slow wave sleep, leading to excessive daytime
sleepiness as well as cardiovascular problems. Patients
suspected of OSA are referred to the hospital for diagno-

sis. There, the severity of sleep apnea is assessed by the
Apnea-Hypopnea Index (AHI), which is the number of res-
piratory events (apneas and hypopneas) per hour of sleep.
Thus, the amount of sleep needs to be quantified to not
underestimate the AHI, as would be the case when count-
ing the full time in bed. In clinical practice, EEG signals
are analysed for sleep scoring. As such, the overall proce-
dure poses a high level of obtrusiveness for the patient and
is furthermore expensive and laborious. Therefore, it is
desired to perform sleep apnea screening at home with un-
obtrusive sensors, allowing a normal sleeping environment
and follow up over multiple days. Many emerging unob-
trusive sensor technologies for sleep monitoring are based
on cardiac and respiratory signals. As a consequence, the
development of novel algorithms for automated sleep stag-
ing based on these unobtrusive signals is an active topic of
research. However, most classification algorithms so far,
were developed for healthy people. But in OSA patients,
altered heart rate variability and sleep fragmentation com-
plicates algorithm design and validation.

Often, feature-based approaches were implemented to
differentiate between sleep stages when expert knowledge
was available [2, 3]. Thus, one disadvantage was this re-
quired level of prior knowledge. Another disadvantage
was the extensive processing for feature extraction. Fur-
thermore, these algorithms classified 30s or 60s epochs,
although the features were based on longer surrounding
signal segments. As such, they included contextual in-
formation, but required long segments of good quality.
In contrast, a neural network automatically derives fea-
tures by representation learning from a raw signal of any
length. Malik et al. performed sleep-wake classification
solely using the instantaneous heart rate (IHR) and a one-
dimensional convolutional neural network (1D CNN) [4].
In the current study, a sleep-wake classifier based on this
1D CNN was developed for sleep apnea patients. It was
not only fed with tachograms, but also respiratory induc-
tance plethysmography (RIP) signals from polysomnog-
raphy (PSG). The use of tachograms allows a straight-
forward application of other sensors capturing the beat-to-
beat variability. Additionally, the network was designed
to process independent 30s epochs, to alleviate the re-
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Figure 1: Data processing flow and data selection.

quirement of successive good quality segments. Further-
more, data from capacitive-coupled ECG acquired from a
mattress-integrated sensor was applied to test the devel-
oped algorithm [5].

2. Methods

2.1. Dataset

The dataset comprised 81 patients with AHI<10, who
were referred to the sleep lab of UZ Leuven for a diag-
nostic PSG. Out of these, 56 (70%) patients were used
for training and validation, and 25 (30%) patients were
kept for testing. Within the test patients, 8 were recorded
with a ccECG. Additionally, the algorithm was applied to
a dataset of 158 subjects with a full AHI range of 29.5 ±
23.6.

2.2. Data processing and selection

In this study the network was developed based on PSG
signals, and later applied onto an unobtrusive signal. This
resulted in development of different preprocessing steps,
and these are illustrated in Figure 1. On the one hand, full-
night recordings of ECG and RIP were extracted from the
PSG. Therefore, preprocessing was performed over the full
signal and afterwards cut into non-overlapping windows of
30s. On the other hand, the ccECG sensor was a multi-
electrode array in which the best available channels were
selected window-based. Additionally, the ccECG data was
preprocessed using a 60s window to apply a state-of-the-
art quality indicator [6]. If the segment quality did not meet
the standard, it was discarded and the remaining segments
were further cut into 30s. Every 30s ccECG segment was
further processed individually and additional data cleaning
was required as the sensor was prone to movement arte-
facts. The detailed processing steps of every signal were
the following:

ECG: First, the signal was low-pass filtered with a cut-
off frequency of 125 Hz and downsampled to 250 Hz.
Then, artefacts were detected due to movement or bad skin
contact, resulting in saturation of the signal or small ampli-
tude noise. A segment of 30s was removed if the peak-to-
peak (PP) amplitude of the segment was equal or smaller

than 3% of the maximum PP amplitude. Following, R-
peak detection was performed using the Pan-Tompkins al-
gorithm [7]. From the RR-interval, the resulting IHR was
derived and expressed in beats per minute (BPM). The
unevenly sampled IHR data points were interpolated at
4 Hz by a piecewise cubic hermite interpolating polyno-
mial. The overall mean was removed from the IHR per pa-
tient. This way, inter-subject variability was removed but
the inter-sleep stage variability retained. Finally, the sig-
nal was cut into non-overlapping windows of 30s. These
signals were used for training, validation and Test 1.

RIP: The RIP signal was filtered similarly as the ECG
signal and corresponding artefact segments were removed.
It was further low-pass filtered at 2 Hz and downsampled
to 4 Hz. Then, the complete signal was normalized by
removing the overall mean and dividing by the standard
deviation. Finally, the signal was cut into non-overlapping
windows of 30s, followed by the subtraction of the median
per segment. These signals were used for training, valida-
tion and Test 1.

ccECG: First, R-peak detection was performed on 30s
segments, with the method proposed in [8]. Segments with
less than 15 peaks were discarded. From the remaining
segments, the IHR was derived and expressed in BPM, and
further interpolated at 4 Hz. Outliers were identified if the
IHR value was outside the range of 40 to 180 BPM, or the
segment’s median value ± 20 BPM, or the segment’s me-
dian value ± (3 × the standard deviation). These outliers
were indicated with NaN and compensated if the interval
of subsequent NaNs was no longer than 2.5s. This gap
was filled by mirroring the values preceding the gap. As
the neural network cannot process NaN values, every seg-
ment containing NaNs (i.e. outliers which could not be
filled in) was discarded. Therefore, outlier correction was
important to not discard epochs with minor artefacts and
retain as many segments as possible. Finally, the median
of all remaining segments was subtracted from every seg-
ment. After this data processing, several subjects had an
insufficient amount of remaining wake epochs to obtain a
representative classification result. Therefore, only sub-
jects with at least 20 wake epochs were included and these
subjects defined Test 2. The subjects of Test 2 and their
remaining segments defined Test 3.

In the case of the ccECG data, Test 2 and Test 3 were
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identical. However, the ECG and RIP signals were also
sent through this ”ccECG pipeline” to make fair compar-
isons. First, the PSG signals of Test 2 were processed from
phase ”cut 30s”, and were applied for testing. Secondly,
from these processed PSG segments, only the segments
defined by Test 3 were applied for testing.

2.3. Network architecture

The network consisted of a convolutional part, to ex-
tract features, and a dense part, to classify the segments
(see Figure 2). Two separate unimodal networks were first
optimized using the cardiac or respiratory signal, based
on [4]. Once these networks were trained, they were com-
bined in a multimodal network. All networks consisted of
four types of layers. A first type were the convolutional
layers, (f, k, s) − Conv, with a depth f , a kernel size k,
and a stride s. After the convolutional block, dense lay-
ers, (n) −Dense, with n neurons were included. A third
type were dropout layers, (p)−Dropout, where p% of the
weights equal to zero in every training step to avoid overfit-
ting. The output layer is a softmax layer, Softmax(1, c),
delivering posterior class probabilities for every one of the
c classes. Weights of the convolutional layers of the op-
timized unimodal networks were frozen, in order to only
train the dense layers, using both ECG and RIP. In order
to assign an input segment to the sleep or wake class, the
threshold of posterior class probability was set at 0.5.

Figure 2: CNN-based classifier.

3. Results and discussion

With the rapid improvement of wearable and unobtru-
sive sensors, existing sleep staging algorithms were de-
signed to function with wearable input data by focusing
on cardiac and respiratory information. Similarly, the net-
work in this study was developed using tachograms, which
offers the possibility of application with different types of
sensors capturing the beat-to-beat variability. Moreover,

the current design also took into account the fact that wear-
able data is often distorted and only short segments of
good quality are delivered. Therefore, the network input
was purely based on single 30s segments, to learn features
which did not require past or future information. Also, the
data processing techniques were developed for these short
term segments. The investigation of different processing
and data selection mechanisms was therefore important in
the light of applying existing algorithms to wearable data.
As such, the current algorithm was compared with litera-
ture, and further on, the data processing and selection steps
were evaluated.

Table 1 displays the results of sleep-wake classifica-
tion using different data selections and preprocessing tech-
niques, and application on either the unimodal or multi-
modal network, including comparison with literature.

The networks were optimised based on the training and
validation sets. Here, it was observed that the unimodal
network reached a higher performance using respiratory
input compared to cardiac information. Although, when
combining the input signals, the latter seemed to have ad-
ditional information, which could increase the general per-
formance. However, application on different test sets did
not confirm this. Respiratory signals seemed to retain all
useful information, and the addition of a cardiac signal re-
sulted in a reduction of performance.

Training the network on low AHI data diminished the
effect of apnea segments on sleep-wake classification.
When the network was applied to data from the full AHI
range, the performance decreased. This was expected, as
heart rate and respiration are not only affected by sleep
stages, but also by apneic events and arousals. As these
apneic events most drastically disrupted the RIP signal, the
classification performance using only RIP decreased most,
from κ=0.51 to κ=0.44.

Furthermore, representation learning proved to be very
valuable compared to feature based classification, as the
one proposed in [2]. Although the algorithm proposed
in [3] presented state-of-the-art results based on ECG only,
features were complex and required several epochs. Addi-
tionally, a cross validation scheme was used. Nevertheless,
the sleep-wake classification in this work did outperform
the one of Malik et al. [4], in which the CNN reached a
κ of 0.26 using a 30s tachogram input. Additionally, the
studied population was not suffering from OSA.

Comparison of the PSG performance with ccECG-type
preprocessing on Test 2 showed negligible differences, de-
spite variations in processing pipeline. The main differ-
ence was the outlier-gap correction, although, as few arte-
facts were present in the PSG signals, few corrections were
carried out.

Further on, a large performance drop was observed from
ccECG-type Test 2 to Test 3, although both were using
PSG ECG signals. This could be accounted to the fact
that only half of the epochs were kept and the percentage
of wake epochs drastically dropped. With a low number
of wake epochs left, the sleep-wake classification problem

Page 3



Table 1: Classification results with different datasets. Values are indicated as mean ± standard deviation over patients,
except the last row. Additionally, results are compared with literature. Application of ccECG is indicated as (cc).

Process. Subset # AHI # Epochs % Wake Cohen’s Kappa score
ECG RIP ECG + RIP

Full rec. Train. 44 5.7 ± 5 1067 ± 126 20 ± 12 0.34 ± 0.01 0.54 ± 0.07 0.59 ± 0.03
Full rec. Valid. 12 5.4 ± 2 1085 ± 108 22 ± 11 0.40 ± 0.01 0.43 ± 0.04 0.47 ± 0.01
Full rec. Test 1 25 4.7 ± 3 1058 ± 115 15 ± 7 0.29 ± 0.18 0.51 ± 0.12 0.48 ± 0.13
Full rec. 158 29.5 ± 24 1064 ± 125 22 ± 12 0.27 ± 0.16 0.44 ± 0.17 0.42 ± 0.16
ccECG Test 2 4 5.8 ± 2 981 ± 192 24 ± 9 0.32 ± 0.14 0.51 ± 0.09 0.47 ± 0.15
ccECG Test 3 4 5.8 ± 2 482 ± 186 16 ± 8 0.14 ± 0.13 0.36 ± 0.08 0.29 ± 0.19
ccECG Test 3 4 5.8 ± 2 482 ± 186 16 ± 8 0.11 ± 0.14 (cc) 0.36 ± 0.08 0.30 ± 0.17
[2] Feature (�60s) 25 24.2 ± 20 831 ± 63 23 ± 11 - - 0.37
[3] Feature (�30s) 51 >5 960 ± 60 19 ± 13 0.60 ± 0.151 - -
[4] CNN (30s) <5 20 102 17.1 0.26 - -
1 Performance of 4-class problem: Wake, REM, N1/N2, N3

became more difficult. Indeed, mostly wake and N2 sig-
nals were discarded by quality assessment, as the signal
quality of ccECG dropped when a person moved. As fu-
ture work, a different quality assessment will be explored,
which only considers the beat extraction from a ccECG
epoch and not the correspondence of wave morphology
with ECG. This could increase the number of remaining
wake epochs.

Lastly, using the exact same processing and data selec-
tion with a different input, being either ECG or ccECG
signals, similar performances were obtained. The main
difference between both datasets was the more frequently
used outlier-gap compensation in the case of ccECG sig-
nals. This procedure, however, did not influence the clas-
sification results, and could therefore be considered as an
adequate procedure for this type of data and network.

4. Conclusion

A sleep-wake classifier was designed for application
with wearable and/or unobtrusive sensors, to enable home
monitoring of sleep apnea patients. Using PSG signals,
the performance was comparable to existing literature with
a similar dataset. More important, the network classified
short-term 30s segments, without relying on past or future
information for feature extraction. This increased poten-
tial application on wearable signals, as large parts of data
are often discarded due to inferior quality. However, ap-
plication on a cleaned dataset of ccECG and RIP resulted
in a drop in performance. This was due to a low num-
ber of non-discarded wake epochs per subject recording.
An extended ccECG data collection, including unobtrusive
respiration monitoring is expected for further development
and validation.
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