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Abstract

Cancer is one of the leading causes of death. To
reduce the amount of deaths caused by cancer, a
number of different screening methods are used to
detect cancer in an earlier stage, to improve sur-
vival rates when treating patients with cancer. Cur-
rent screening methods are often invasive, costly
and not very accurate. Therefore, new methods
are being sought that aim to be cheaper, less in-
vasive and provide more accurate results. One of
these methods is fragmentomics. Multiple methods
have been proposed to use fragmentomics analy-
sis in the context of screening for cancer, includ-
ing using the short/long ratio as well as investigat-
ing the nucleotides at the ends of the fragments.
Across previous works using fragmentomics anal-
ysis to predict cancer, different pre-proccessing
steps are used, with limited explanation why the
pre-processing methods were chosen. Research
into the effects of pre-processing steps used when
using fragmentomics analysis is lacking. Two
main pre-processing steps in the field are correct-
ing GC-bias and filtering on MAPQ. Here we in-
vestigated the impact of three GC-correction meth-
ods by applying the correction method and then
analyzing the resulting fragmentation profiles us-
ing short/long fragment ratios. Furthermore, three
different MAPQ filtering thresholds were studied.
This showed that Deeptools correction of the GC-
bias lowered performance, with the accuracy drop-
ping from 77.8% to 69.4%. Applying LOESS cor-
rection using all fragments at the same time re-
sulted in an accuracy of 83.3%, while applying
LOESS correction using the short and long frag-
ments separately resulted in an accuracy of 91.7%.
The impact of filtering the data based on mapping
quality was determined by comparing the results of
analysing all fragments, analyzing only fragments
with mapping quality 5, 20 or 30. This showed that
not filtering by mapping quality has a big impact
on the profiles of cancer samples, with a KS-test
statistic of 0.08 for MAPQ 5 and MAPQ 20 and
larger differences in correlations between healthy
and cancer samples. The performance of classi-
fication was much higher when not filtering, with
an accuracy of 97.3%, which dropped whenever
the filtering threshold was raised, bottoming out at
62.7% for a threshold of MAPQ 30. Due to limita-
tions with the study, the combined pre-processing
of not filtering on MAPQ and using the LOESS
separate correction were not studied.

1 Introduction

Cancer is one of the leading causes of death, causing nearly
one out of 6 deaths [1]. In an attempt to reduce the amount
of people dying due to cancer, a number of tests to screen
for cancer have been devised in the last decades, with vary-
ing amounts of succes. One example is a colorectal screening

program in the Netherlands forecasted to lead to the preven-
tion of 2900 deaths annually [2]. Most of these screening
methods have certain drawbacks, which can be the cost or
the invasiveness of the procedure or their accuracy. There is
a constant search for new methods, which are less invasive,
cheaper or more accurate. One of these potential new meth-
ods is fragmentomics analysis.

Fragmentomics is a rapidly evolving field studying frag-
mentation patterns in cell free DNA (cfDNA). cfDNA is re-
leased into the bloodstream through various mechanisms, the
primary mechanism is believed to be cell death [3]. cfDNA
carries both genetic and epigenetic information about its tis-
sue of origin. In recent years evidence was found that these
genetic and epigenetic characteristics are different depending
on whether an individual is healthy or has cancer [4]. An
example of this can be found in figure 1 showing the frag-
ments lengths of a healthy individual and an individual with
colorectal cancer.
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Figure 1: Fragment lengths of healthy sample compared to a col-
orectal sample.

The method works by drawing a blood sample from the
subject. The cfDNA is then sequenced, and the position of the
fragment compared to the reference genome is determined.
This leads to a dataset containing the location as well as the
genetic code of all the fragments found. Each processed frag-
ment is called a read.

Fragmentomics analysis is showing promising results, a
classifier trained using the ratio between short (150 base pairs
or less) and long (151 base pairs or more) to screen for can-
cer had sensitivities up to 99% with a specificity of up to 98%
[5]. Another recent method is using the last three base pairs.
Multiple combinations where found which are more preva-
lent in people with cancer as well as patterns which were less
frequent in people with cancer. Training a model with this
feature showed a 72% detection at 95% specificity [6].

While many methods are being tested to determine the pos-
sibilities of using fragmentomics as a biomarker to predict
cancer, research on the impact of pre-processing the data as
well as the effects of pre-analytical values on the predictive
qualities of machine learning models designed to screen for



cancer is currently lacking. This study will attempt to answer
some questions with regards to the effects of pre-processing
data used in fragmentomics analysis. The main question to be
answered is: What is the impact of different pre-processing
steps and pre-analytical values on fragmentomics analysis?

There are a large number of pre-processing steps used in
fragmentomics, as well as a large number of pre-analytical
values that might influence the fragmentomics analysis. Due
to the limited scope, a selection of two pre-proccesing steps
was made. The pre-processing steps chosen to be analyzed
were the GC-correction and filtering based on mapping qual-
ity.

GC-Bias

Due to the nature of sequencing, fragment abundance may
be inaccurate due to GC-bias [7]. To receive more accu-
rate counts, multiple methods exist to correct this bias. One
such method used in the DELFI paper is using LOESS re-
gression to determine what amount of coverage is explained
by the GC-content and then subtracting this explained cov-
erage from the found coverage [5]. The DELFI paper does
this separately for short and long fragments, loosely based
on work done by Benjamani & Speed [8]. Another method
to correct GC-bias is using the Deeptools libraries functions
computeGCBias and correctGCBias. These methods imple-
ment the methods proposed in the Benjamani & Speed paper
[8].

We evaluated the impact of correcting GC-bias using the
Deeptools GC-correction algorithm, the LOESS method as
described in the DELFI paper and the LOESS method applied
to all fragments equally. This was done to answer the ques-
tion: How do different GC-correction methods influence the
downstream fragmentomics analysis using short/long ratios.

MAPQ

When aligning the fragments, there is a chance that the frag-
ment is not aligned at the correct place on the reference
genome. This uncertainty is expressed in a MAPQ score.
This MAPQ score is calculated using the following formula:

—10l0g10(p)

Where p is the probability that the alignment is misaligned.
A MAPQ of 30 thus corresponds a 99.9% certainty that the
alignment is correct. A MAPQ of 20 corresponds to a cer-
tainty of 99%. And a MAPQ of 5 corresponds to a certainty
of roughly 68%.

In the literature a number of different MAPQ values were
found that are used in fragmentomics analysis for cancer
screening. The DELFI [5] paper uses a MAPQ of 30, and
the 4-MER[9] paper uses a MAPQ of 20 while the FREIA[6]
paper uses a MAPQ of 5. To answer the question of the ef-
fect of different MAPQ values when filtering the data on the
downstream fragmentomics analyisis these three MAPQ val-
ues were chosen to study.

2 Methodology

The data that will be used for all experiments is a subset of the
data published by the DELFI paper [S5]. This subset contains
50 samples of people who have breast cancer, 113 samples of

Median
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Bin 1 0.22 0.20 0.21 0.25 0.28 0.22
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Figure 2: Schematic showing creation of median profile. First
the median value for bin one gets found for samples 1-30. Then
this median value is chosen for the median profile. In this case, the
median value is 0.22 belonging to sample 1, so the value for bin 1 of
the median profile is 0.22. This process is repeated for all bins. So
for the last bin, the median value found is 0.23, belonging to sample
17. In this case the value from sample 17 is chosen for the median
profile, thus the value of bin 587 of the median profile is 0.23.

healthy people, 26 samples of people with colorectal cancer
and 75 samples of people with lung cancer. 19 lung sam-
ples were collected after the patient had undergone treatment,
all other samples where drawn before the patient underwent
treatment [5]. Due to problems with file corruption the actual
amount of samples used differ between experiments. All the
data used was anonymized.

For all sub questions we created a fragmentomics profile
for each sample, where the short/long ratio was calculated for
5Mb windows. For all experiments, reads that were unpaired
or were secondary aligned were filtered out. All reads that are
not in the autosomal chromosomes were filtered out as well.
We Z-score normalized all the ratios to reduce the effect of
outliers. To create the median healthy profile 30 samples were
taken at random. Then a median profile was created by taking
the median of all samples per bin. A schematic of this process
can be found in figure 2. Two median profiles were created,
one for the experiments concerning GC-bias, and one for the
MAPQ experiment. The profile consists of one column which
is unprocessed, and three columns for the different methods
used in case of the GC-bias profile, and also three columns
for the different MAPQ filtering thresholds used.

We calculated the correlation between the healthy me-
dian profile and the sample using the Spearman correlation
method, this was only done for samples which are not part of
the 30 selected samples for the creation of the median pro-
file. A KS-test was used to determine the difference between
the profiles before and after processing. To evaluate the ef-
fects on predicting cancer, a simple 1-NN classifier was made,
where the class assigned is equal to the closest profile accord-
ing to the Spearman correlation using Euclidean distance. A
train/test split was made, with a 70/30 split.



GC-Bias correction

All reads with a MAPQ < 30 were filtered out. All chromo-
somes were divided up into bins of 100 kilobase (Kb). Per
bin, the amount of short and long fragments was collected, as
well as the average GC-content of that bin. If a bin had less
than 10 short or long fragments, it was disregarded for future
analysis. If the length of a bin was less than 100 Kb, due to it
being the last bin of a chromosome, counts were scaled based
on what percentage of 100 Kb was covered by the bin. Le.
if the bin only contained 50 Kb, both short and long count
would be scaled by a factor of 2.

For the LOESS correction based on short and long at the
same time, the short and long counts are summed to create
a total count per bin. The bottom 1 percent and top 1 per-
cent were excluded for creating the LOESS regression curve,
to reduce the effect of outliers. A LOESS regression curve
was created, with the counts on the y-axis and the average-gc
content on the x-axis, with a span of 0.75. For all bins, the
prediction of coverage explained by the GC-content obtained
by the LOESS curve was subtracted from the coverage of that
bin. To return the coverage to the original scale, the median
count of all the bins was added. By dividing this by the orig-
inal count a scale value was created. The same process was
done for short and long counts as well.

This resulted in 3 scale values per 100 Kb bin, one to scale
both short and long with at the same time, one separately for
short and one separately for long. Spearman correlation be-
tween GC and short coverage as well as between GC and long
coverage was calculated before the LOESS regression correc-
tion, as well as for the correction that was executed on both
short and long fragments at the same time and for the sep-
arate corrections to determine the effectiveness of the GC-
correction.

Afterwards, the chromosomes were divided up into 5 Mb
bins. Short to long ratios were calculated per bin, one us-
ing just the raw counts, one where both short and long frag-
ments were scaled according to the scale value found for their
100 Kb window using LOESS regression and one where short
and long ratios were scaled separately using the scales found
when doing the LOESS correction separately.

For the Deeptools correction, the computeGCBias and cor-
rectGCBias commands were used to create a GC-corrected
BAM file. For this file the Spearman correlation between GC
and short and long coverage were calculated. Furthermore
the short/long ratios were calculated for 5 Mb windows. This
was done for all samples to create fragmentation profiles.

MAPQ filtering

All chromosomes were divided up into bins of 5 megabase
(Mb). Per bin, ratios of short to long were calculated for all
reads, all reads with a MAPQ > 5, all reads with a MAPQ
> 20 and all reads with a MAPQ > 30. If the amount of
short or long fragments was less than 10, the ratio for that bin
is set to NaN to be disregarded in further analysis. This was
done for all samples to create fragmentation profiles.

3 Results

GC-Bias correction

Figure 3a shows that for all GC-bias correction methods
healthy samples correspond closely to the healthy median
profile. With the correlation being slightly higher for the
unproccesed data and the LOESS whole method compared
to the LOESS seperate method and the Deeptools method.
However, for all methods except the LOESS seperate method
there were some profiles with very low correlation to the
healthy median profile, which are classified as outliers in fig-
ure 3a. The minimum correlations for these methods was ar-
round 0.70. The minimum correlation for the LOESS seper-
ate was much higher, with a minimum correlation found of
0.83. Interestingly, the profile that was the minimum correla-
tion found was the same when correcting using Deeptools, the
LOESS whole method or not correcting at all. However, the
method that outperforms the others in minimum correlation is
the only method with a different profile that is the minimum.

Figure 3b shows that correlations between the healthy me-
dian profile and the cancer samples are lower compared to
the correlations between the healthy median profile with the
healthy samples found in 3a. A median correlation of 0.85
was found when no processing was done as well as when
Deeptools processing was executed. A median correlation of
0.84 was found for both LOESS methods. As can be seen in
figure 3b a lot more samples were classified as outliers and
the inter quartile ranges are larger compared to the healthy
samples. Correlations for the separate cancer types can be
found in A.

Table 1 shows that the LOESS method correcting both
short and long fragments at the same time leads to a KS-
statistic of 0.04 for both cancer and healthy samples. The
KS-statistic is higher for both the LOESS seperate and the
Deeptools method, with 0.13 and 0.09 being the statistic for
the LOESS seperate method for healthy and cancer samples
respectively and the Deeptools method has a KS-statistic of
0.06 for healthy samples and of 0.10 for cancer samples.

LOESS (W) LOESS (S) Deeptools
Healthy (N=98) 0.04 0.13 0.06
Cancer (N=103) 0.04 0.09 0.08

Table 1: Median KS-statistic between the methods and the un-
processed sample.
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Figure 3: Spearman correlation for healthy samples 3a and cancer samples 3b with the median healthy profile for different GC-bias
correction methods. Box-whisker plot showing the Spearman correlation for 70 healthy samples and 145 cancer samples. The x mark inside
the box shows the mean of the data, the line shows the median. The top whisker shows either 1.5x the distance of the IQR from the third
quartile or the maximum value, while the bottom whisker shows either 1.5x the distance of the IQR from the 1st quartile or the minimum

value. Points falling outside 1.5x the IQR are plotted as dots

Using 1-NN classifying based on the closest sample ac-
cording to the Spearman correlation gives some interesting
results. A test train split of 70/30 was used, leading to 69
healthy training samples and 101 cancer training samples as
well as 29 healthy test samples and 43 cancer test samples.
As can be seen in 2 the LOESS separate method has the high-
est accuracy and specificity at 91.7% and 90.7% respectively
and is tied for the highest sensitivity at 93.1%. Applying the
Deeptools correction actually worsens performance, with the
accuracy dropping from 77.8% when not correcting for GC
to 69.1% when using the Deeptools method.

No processing  LOESS (W)  LOESS (S)  Deeptools
Accuracy 77.8% 83.3% 91.7% 69.4%
Specificity  74.4% 76.7% 90.7% 65.1%
Sensitivity  82.8% 93.1% 93.1% 75.9%

Table 2: 1-NN results for different GC-correction methods. Near-
est neighbours were determined using the Spearman correlation be-
tween profiles. Results are from a test set containing 29 healthy
samples and 43 cancer samples.

For some additional analysis, Spearman correlation be-
tween coverage and average GC-content was calculated be-
fore and after applying the methods. The results can be seen
in figure 4. The figure shows that all methods are effective
at reducing GC-bias to some extent, as the correlations are
closer to 0 after correction compared to before. Correcting
the GC-bias using Deeptools leaves more GC-bias than with
the other methods. Correcting GC-bias for all fragments si-
multeanously using the LOESS method leads to good results
for long fragments, but for short fragments there is still some
bias left. Doing the LOESS correction separately for short
and long fragments leads to low GC-bias for both short and
long fragments.

B Loess (s) long

B Deeptools short
O Deeptools long

o %—A—ﬁs

Figure 4: Spearman correlation before and after the various
methods for healthy patients (N=63). Correlation is shown for
both short and long fragments separately. The blue data shows cor-
relations before processing, the green data shows correlations using
the LOESS method applied to all fragments simultaneously, the pur-
ple fragments show the correlations after LOESS correction done
separately and the brown fragments the correlations after Deeptools
GC-correction.

MAPQ filtering

When not filtering on MAPQ, the median amount of frag-
ments retained from the unfiltered sample was 100% for
healthy samples and 94.2% for samples from patients with
cancer. When filtering on MAPQ 20, this drops down to
99.4% and 93.3% respectively and when filtering on MAPQ
30, this additionally drops down to 98.3% and 92.2%.

To gain a better understanding of how MAPQ is distributed
for cancer samples and healthy samples, histograms of the
MAPQ distribution were plotted. This plot can be found
in figure 5. Notably, the only apparent difference between
healthy and cancer samples is the lack of fragments with a
MAPQ below 5. The rest of the distributions appear to be
similar. To gain further inside in the distribution of the low
MAPQ fragments, an extra plot was made for the cancer sam-



ples showing only the fragments below MAPQ 5. As can be
seen in figure Sc, almost all fragments with a MAPQ < 5
have a MAPQ of 0. The average length of fragments with a
MAPQ lower than 5 was shorter than the average length of the
rest of the fragments for all cancer samples which had frag-
ments with MAPQ < 5. The amount of reads with a MAPQ
< 5 was

The location of these fragments with a MAPQ < 5 on the
reference genome was investigated. As can be seen in figure
6a, the location where there are relatively more MAPQ < 5
fragments then MAPQ > 5 are clustered together. The bin
with the most of these low MAPQ fragments was located in
the centre of chromosome 1, with 4.1% of fragments with a
MAPQ < 5 being present in this single bin. Plotting just a
single chromosome shows that most of the clusters that can
be seen in figure 6a are around the centromere. An exam-
ple of these chromosomes is plotted in figure 6b. The other
chromosomes can be found in Appendix C

For 10 fragments below MAPQ 5 an evaluation of the ori-
gin of the read was done using the BLAST[10] tool. For all
these fragments there was a 100% identity and 100% cover-
age match for at least one chromosome in the human genome.

(a) Healthy

(b) Cancer

(¢) Cancer for MAPQ < 5

Figure 5: MAPQ distribution showing percentage of all reads in
category per MAPQ value. Maximum MAPQ value found was 60

Figure 7a shows that for all MAPQ values healthy samples
correspond closely to the healthy median profile. The IQR
of the correlations were also low, with an IQR of 0.05 for all
MAPQ values. However, there were some profiles with very

(a) Fragments across the entire genome.

(b) Fragments on the 9th chromosome. The centromere is plotted in
blue.

Figure 6: Location of fragments with a MAPQ lower than five
for a single breast cancer sample. The percentage of reads with
a MAPQ < 5 per 100Kb bin compared to the total amount of frag-
ments with a MAPQ < 5 is shown. If the share of fragments with
MAPQ < 5 is higher than the share of fragments with MAPQ > 5,
the bin is plotted green. If the share of MAPQ < 5 is smaller the bin
is plotted in red.

low correlation to the healthy median profile. There were lit-
tle outliers. Figure 7b shows that correlations between the
healthy median profile and the cancer samples are lower com-
pared to the correlation with the healthy samples. A median
correlation of 0.81 was found when no filtering was applied,
and a median correlation of 0.86 was found for MAPQ 5, 20
and 30. The IQR of the cancer samples was much higher,
varying between 0.11 to 0.13. As can be seen in figure 7b a
lot of samples were classified as outliers. Correlations for the
different cancer types can be found in appendix B.

As can be seen in table 3, median KS-statistics are low
for all MAPQ values, ranging from 0.00 to 0.08. Cancerous
samples have a higher KS-statistic, with KS-statistics ranging
from 0.07 to 0.08, compared to the healthy samples which
range between 0.00 and 0.03.

Using 1-NN classifying based on the closest sample ac-
cording to the Spearman correlation gives some interesting
results. A test train split of 70/30 was used, leading to 71
healthy training samples and 106 cancer training samples as
well as 30 healthy test samples and 45 cancer test samples.
Accuracy’s range from 62.7% to 97.3% as can be seen in ta-
ble 4. Increasing the MAPQ value on which is being filtered
leads to lower accuracy, sensitivity and specificity.
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Figure 7: Spearman correlation for healthy samples (7a) and cancer samples (7b) with the median healthy profile for different MAPQ
filtering thresholds. The x mark inside the box shows the mean of the data, the line shows the median. The top whisker shows the maximum
value, while the bottom whisker shows either 1.5x the distance of the IQR from the 1st quartile or the minimum value. Points falling outside
1.5x the IQR are plotted as dots

MAPQ5 MAPQ20 MAPQ 30
Healthy 0.00 0.02 0.03
Cancer 0.08 0.08 0.07

Table 3: Median KS-statistic between the different MAPQ values
and the unfiltered data from 99 healthy and 151 cancer samples.

No filter MAPQS5 MAPQ20 MAPQ 30

Accuracy 97.3% 69.3% 64.0% 62.7%
Specificity  95.6% 77.8% 71.1% 71.1%
Sensitivity  100.0%  56.7% 53.3% 50.0%

Table 4: 1-NN results for different MAPQ filtering thresholds.
Nearest neighbours were determined using the Spearman correlation
between profiles.



4 Responsible Research

Ethical considerations

DNA from human subjects is considered to be sensitive data,
thus it is important to use it in a safe manner. The data used
from the DELFI paper has been anonymized, making it im-
possible to trace back to the individuals who gave the sam-
ples [5]. Furthermore, due to nature of the data being short
DNA fragments and not a fully sequenced genome, it is hard
to match the DNA collected in this way to a DNA sample
collected from a person at some other time. This means the
risk of identifying someone with this data using existing DNA
records is also small.

The DELFI data set contains data collected from hospitals
in the Netherlands, Denmark and the United States of Amer-
ica. This means that data is sampled from a predominantly
Caucasian population. A concern with this is that while the
methods discussed in this paper may work for regions with
similar demographics, it might not be as effective in popu-
lations with different demographics. A way to prevent this
issue is by using a secondary dataset with a different demo-
graphic, however due to the limited scope of this paper and
time constraints, this was not possible.

One more ethical risk to consider is the availability. While
costs of sequencing are getting lower, it can still be expen-
sive. This could potentially lead to a future were good cancer
screening is available only to the rich, increasing the already
existing gap in life expectancy caused by income.

Reproducibility

The DELFI data set used in this research is open to the
public, allowing access to the data used in this research to
anyone who wants to reproduce the results. The code used
to obtain the results in this research paper is available at
https://github.com/RainingBlue/ResearchProject. Lastly, the
method is described extensively in the methodology chapter,
including details such as settings used. All of these things
together should make this research highly reproducible.

5 Discussion

GC-Bias correction

The median KS-test statistic found was much higher for the
LOESS separate method and the Deeptools method compared
to the KS-test statistic for the LOESS whole method. Im-
plying that the LOESS method and the Deeptools method
are more transformative of the data. The correlation for the
healthy samples was slightly lower for the LOESS separete
and Deeptools methods compared to the unproccessed sam-
ples and the LOESS whole corrected samples. Median cor-
relations with the healthy profile were lower for all methods
for the cancer samples, with them being the lowest for both
LOESS methods. The difference in median correlation for
cancer and healthy samples was largest in the LOESS whole
method. This implies that healthy and cancerous samples are
most different when using this method.

However the LOESS separate method out performs the
LOESS whole method when doing 1-NN classifying. This
can be explained by the fact that there were less outliers and
that the IQR was smaller for the LOESS seperate method.

This means that all healthy samples are relatively close to
the median healthy profile. This can be seen due to the fact
that while the sensitivity is tied between the LOESS whole
and LOESS seperate methods, the LOESS separate method
scores a lot higher on specificity. The LOESS separate model
is better at identifying the healthy samples.

The smallest difference in median correlation is when us-
ing the Deeptools method, meaning that cancer samples and
healthy samples closely resemble eachother after process-
ing. This is confirmed by the Deeptools method performing
the worst in specificity, sensitivity and accuracy in the 1-NN
classfier.

The effect of the GC-bias correction methods on the
amount of GC-bias remaining was also determined. This
found that GC-bias was lower after applying all methods.
GC-bias is close to zero for both short and long fragments
when applying the LOESS separate method. LOESS whole
performs well on the long fragments, but worse on the short
fragments. This is presumably caused due to the fact that
there are more long fragments than short fragments present,
thus the correction is heavily biased towards correcting the
GC-bias for long fragments. The Deeptools methods per-
forms the worst of all GC-bias correction methods, only
slighly beating the unprocessed data on the amount of bias.

Although GC-bias was lower in the Deeptools method
compared to the unprocessed data, performance in the 1-NN
classifier were worse. This suggests that just removing GC-
bias will not automatically increase performance in classify-
ing cancer. However, the LOESS methods both significantly
out perform the unprocessed data, implying that reducing
GC-bias can increase performance when done using certain
methods.

MAPQ filtering

For all MAPQ values the KS-test statistcs were close to zero
for the healthy samples. Profiles after proccessing are thus
similair to the original profile, this makes sense, seeing as at
every MAPQ value only a small amount of fragments is fil-
tered out. Unsurprisingly the median correlations between
the healthy profiles and the healthy median profile also stay
roughly the same. With filtering on MAPQ 30 having a
slightly higher median correlation than not filtering or using
the other MAPQ values.

For cancer samples, the median KS-test statistic was much
larger then it was for the healthy samples for all MAPQ
thresholds. This is probably caused by the much higher
amount of fragments that is filtered out when filtering on
MAPQ. These much higher KS-test statistics also translate
to a large change in correlation between the median healthy
profile and the cancer samples. Correlation when not filtering
is much lower for the cancer samples then it is after filtering
using a MAPQ threshold. Filtering on MAPQ brings the can-
cerous samples thus closer to the healthy samples. This would
imply that accuracy drops when predicting cancer when filter-
ing on MAPQ, and indeed, this is the case. For the unfiltered
data performance is the best, with accuracies dropping when-
ever more fragments are filtered out.

A small sample of reads with a MAPQ of less than 5 were
checked to determine whether or not these reads were of hu-



man origin. All reads had at least one region of the human
chromosome with which there was a 100% match according
to BLAST [10]. For all cancer samples it was found that the
average length of the fragments with a MAPQ < 5 was lower
than for fragments with a MAPQ > 5. Most of the frag-
ments with a MAPQ below 5 had a MAPQ of 0. This might
be caused by reads with multiple exact matches. If multi-
ple exact matches occur, one read gets assigned at random.
The corresponding MAPQ is then set to 0. Most of the frag-
ments with a MAPQ < 5 were found near the centromeres of
the chromosomes. A potential explanation for this is that the
centromeres have repeating sequences, making them hard to
place. This does not however explain why there were no low
MAPQ fragments in healthy samples, however due to time
constraints this is left for future research.

These results indicate that filtering out the large amount of
fragments that are below a MAPQ of 5 when analyzing can-
cer samples makes the cancer samples more closely resemble
a healthy profile. This in turn increases the difficulty of clas-
sifying the samples correctly.

Limitations

Some of the BAM files used were corrupted, and some of the
files timed-out when applying Deeptools GC-bias correction.
This lead to fewer files to be able to be used than anticipated.
Due to only limited data being available, the test and train
sets were relatively small with only about 30 test samples for
healthy patients and about 45 test samples for patients with
cancer. A recommendation would be to repeat this process
with more data available.

Due to the limited scope of this paper, no validation of the
found results was made using proper models to predict cancer
such as linear regression or gradient boosting machine. The
data used only contains samples of subjects from the Nether-
lands, Denmark and the USA, which could potentially lead
to biases in the results found. Future research should aim to
include data from different geographical regions.

Due to the limited scope of this research, only the normal-
ized short/long ratios were used to determine the effects of
pre-proccesing the data. This is only one of several metrics
that are used in fragmentomics analysis.

6 Conclusions

Pre-processing data can have a heavy impact on the down-
stream fragmentomics analysis. Correcting for GC-bias using
the LOESS seperate and LOESS whole methods improves ac-
curacy when predicting cancer, while correcting GC-bias us-
ing Deeptools decreases this performance.

The difference in distributions does not appear to play a big
role in determining the effectiveness of the method in both
GC-correction as well as in predicting cancer. KS-test statis-
tics of the LOESS whole method were the lowest, while the
LOESS separate method were the highest, however, they both
outperformed the Deeptools method that has KS-test statisics
inbetween the two LOESS methods.

The difference between the healthy and cancer samples
median correlation does not appear to be the only thing in-
fluencing classifying capability. The LOESS whole method

had the largest difference between healthy and cancer sam-
ples, but was outperformed in specificity by the LOESS sepa-
rate method. This could potentially be caused by the fact that
the variability of the LOESS separate method is much lower,
however, this should be studied in future research.

Filtering on MAPQ has an even bigger effect. Not filtering
on MAPQ leads to a much higher accuracy then filtering with
a MAPQ threshold of 30. Filtering on MAPQ only has a
limited effect on the healthy samples, while there is a much
larger difference in the cancer samples.
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Figure 16: Fragments with MAPQ < 5 location on chromosome 3
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Figure 17: Fragments with MAPQ < 5 location on chromosome 4
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Figure 18: Fragments with MAPQ < 5 location on chromosome 5
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Figure 19: Fragments with MAPQ < 5 location on chromosome 6
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Figure 20: Fragments with MAPQ < 5 location on chromosome 7
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Figure 21: Fragments with MAPQ < 5 location on chromosome 8
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Figure 22: Fragments with MAPQ < 5 location on chromosome 9
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Figure 23: Fragments with MAPQ < 5 location on chromosome 10
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Figure 24: Fragments with MAPQ < 5 location on chromosome 11
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Figure 25: Fragments with MAPQ < 5 location on chromosome 12
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Figure 26: Fragments with MAPQ < 5 location on chromosome 13
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Figure 27: Fragments with MAPQ < 5 location on chromosome 14
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Figure 28: Fragments with MAPQ < 5 location on chromosome 15
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Figure 29: Fragments with MAPQ < 5 location on chromosome 16
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Figure 30: Fragments with MAPQ < 5 location on chromosome 17
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Figure 31: Fragments with MAPQ < 5 location on chromosome 18
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Figure 35: Fragments with MAPQ < 5 location on chromosome 22
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