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Abstract
Automated negotiation agents can highly benefit
from learning their opponent’s preferences. Mul-
tiple algorithms have been developed with the two
main categories being: heuristic techniques and
machine learning techniques. Historically, heuris-
tic techniques have dominated the field, but with
the recent development in the field of machine
learning, this is no longer true. The main goal of
the paper is to compare these two techniques quan-
titatively using the Pearson correlation of bids. The
models that were chosen as the heuristic and ma-
chine learning baseline are the Smith and the Per-
ceptron models, respectively. Our results show that
the two baselines have similar performance. This
leads us to conclude that machine learning algo-
rithms have caught up with their heuristic counter-
parts. Furthermore, we have also found a statisti-
cally significant correlation between the Perceptron
model’s accuracy and the seen bid space.

1 Introduction
Negotiation has shaped our civilization from the dawn of
time, but, counter-intuitively, humans appear to be ill-
equipped for negotiation [7]. An investigation conducted on
senior-level executives found that ”95 percent reached subop-
timal outcomes in a realistic business simulation” [16].

Automated negotiation [5] offers a possible solution to this
problem. The application of this system includes: negotiating
the right of passage between pedestrians and self-driving cars
[8] or negotiating prices on an intelligent energy grid [6].

One of the main issues the negotiation agents face is not
having access to their opponent’s preference profile, which is
usually kept private. However, learning the opponent’s pref-
erences can significantly improve the effectiveness of auto-
mated negotiation programs [3; 4; 13], so it is an actively
researched topic in the field of automated negotiation.

Several techniques have been developed for estimating
the opponent’s preferences [9; 17; 18; 19], each having its
strengths and weaknesses. Two main types of opponent mod-
eling techniques can be identified: heuristic algorithms and
machine learning.

The heuristic methods have been researched extensively [9;
17]and the state-of-the-art (SOTA) models have been iden-
tified [4]. A 2013 comparison [4] found that most SOTA
heuristic techniques converge quickly towards their maxi-
mum achievable accuracy, but they tend to decay towards the
end of the negotiation when the opponents change their strat-
egy. Furthermore, the same study concluded that most SOTA
algorithms are close to perfect accuracy, so the field has little
room for improvement.

Machine learning has historically been dominated by its
heuristic counterparts when used to model the opponent [4].
However, this has started to change in recent years [19] due
to new improvements in machine learning techniques. These
new developments have also been extended to calculate the
opponent’s preferences [10].

Given the improvements that machine learning has seen in
recent years, it is not clear which of the two methods pre-
sented above is better at estimating the opponent’s preference
profile. Furthermore, machine learning techniques have sur-
passed their heuristic counterparts in other fields, with a note-
worthy example being the recent victory of AlphaZero [15]
over Stock Fish 8 in the game of chess. However, no re-
cent study that was concerned with automated negotiation has
compared these two techniques directly, so a scientific gap is
present.

The goal of this paper is to fill this gap by answering the
following research question: How do machine learning tech-
niques compare with the SOTA heuristic techniques when
used to calculate the opponent’s preferences?

2 Related Work

The first type of related work contains literature studies [1; 3;
13], which analyze multiple opponent modeling techniques
from a qualitative perspective. They do not compare the dif-
ferent techniques directly but offer the strengths and weak-
nesses of each method individually. These studies usually an-
alyze just the state-of-the-art methods available at publishing,
so they were used to isolate promising techniques quickly.
Furthermore, the surveys were compared with each other to
understand the field’s evolution over time. This evolution
could be used to identify promising techniques in the field
further. For example, if a method was encountered multiple
times in multiple papers, this was a strong indication that that
specific model had not become obsolete and was still in use,
i.e., the method had passed the test of time. These surveys
also explain related concepts in automated negotiation, e.g.,
preference estimation, strategy prediction, and opponent clas-
sification [3], which are not analyzed by this study directly
but are still relevant. However, these surveys are limited in
their comparison capabilities due to the qualitative analysis
used in them.

The second type of related work contains studies that an-
alyze different opponent models from a quantitative perspec-
tive [4; 19]. They employ numerical evaluation in order to
compare the different models directly. Baarslag et al. [4]
have analyzed multiple opponent models submitted to the
Automated Negotiation Agents Competition [2], and also
the metrics used to analyze the accuracy of such a model.
The study has identified three categories of opponent mod-
els: Bayesian models, Frequency models, and Value mod-
els. The researchers have found the best performing model in
each category: IAMhaggler Bayesian Model [18], Smith Fre-
quency Model [17] and, CUHK Value Mode [9], respectively.
Furthermore, the same study concluded that these ”best mod-
els are close to being perfectly accurate, which means there
is only limited improvement concerning performance” [4].
Note that the best Bayesian model had almost half the ac-
curacy of the other two methods. Their results may indicate
that the SOTA algorithmic methods outperform the machine
learning techniques. However, the study failed to analyze
more advanced machine learning methods, so there is a gap
in the available research.



3 Methodology
3.1 Formalizing negotiation
A bilateral negotiation is defined as the exchange of bids be-
tween two agents. One agent starts the negotiation session by
offering a bid. The opponent can accept it or offer another
bid back, i.e., a counter-offer. The negotiation continues until
one of the agents accepts the opponent’s bid. This can pose
a problem, as it is not guaranteed that the negotiation session
will end. In order to solve this problem, a time-based deadline
is introduced to each negotiation round. In case the deadline
is reached, the negotiation ends without consensus. Note that
some agents are aware of this deadline and will change their
strategy if the deadline approaches.

In order to facilitate easy communication between the ne-
gotiating parties, the agents need to agree on the structure
of the bid before the start of the negotiation session. A
bid ω is defined as a n-dimensional vector of issues ω =
[ω1, ω2, ω3, ..., ωn], each issue ωi having mi possible val-
ues from a given domain : ∀i ∈ [ 1, n] =⇒ ωi ∈
[ω1

i , ω
2
i , ..., ω

mi
i ]. The negotiation domain, i.e., bid space: Ω

is defined as the set containing all possible bids that an agent
can send in a specific negotiating session. The domain Ω is
known by both parties before starting the negotiation.

The agents need the capability of comparing different bids
with the scope of ranking them, as is the case with any negoti-
ating session. In order to solve this problem, a utility function
U is introduced, which evaluates a bid numerically. This util-
ity function maps any bid to a value between zero and one,
i.e., ∀ω ∈ Ω =⇒ U(ω) ∈ [ 0, 1]. The utility function
can be expressed as a linear combination between a set of
weights [w1, w2, ..., wn] and the evaluation of the issue val-
ues [U(ω1), U(ω2), ..., U(ωn)], as seen in Equation 1:

U(ω) = U(ω1, ω2, ..., ωn) =
∑n

i=1 wi ∗ U(ωi) (1)

The utility function U represents an agent’s preference
model. This preference profile is unique for each domain and
two different agents usually do not share the same preference
profile. Furthermore, the preference profile is kept private by
both agents in order to avoid exploitation.

3.2 Opponent modeling
The goal of opponent modeling is to estimate the utility func-
tion of the opponent based on the agent’s bid history. Note
that the bids are received during the negotiation and not be-
fore, so the accuracy of the opponent model will gradually
increase as the negotiation develops and more bids become
available (i.e. the opponent starts revealing more about him-
self).

The models that will be analyzed and compared in this pa-
per are presented below:

Smith Frequency Model
The Smith Frequency Model [17] will be used as the SOTA
algorithmic baseline, as it converges quickly to a high accu-
racy opponent model. This is enabled by the assumption that
the opponent’s bids always have maximal utility (i.e. the op-
ponent’s utility for the bids his offering is always equal to

one). Barslaag et. al. [4] have found that these assump-
tions can be detrimental in some cases, more specific when
the deadline approaches and the opponent starts to change its
strategy conceding more making our initial assumption false.

The Smith Frequency Model works by counting how many
times the opponent changes each bid but also the frequencies
of the issue values. The model then makes the assumption
that the issues that change the least are the most important
for our opponent, so they will have the biggest weight. Fur-
thermore, the model evaluates the issue values proportionally
with their frequency in the opponent’s bids.

Perceptron Model
The Perceptron opponent model, proposed by Zafari et al. in
2016 [19], will be used as the machine learning technique to
be compared with the algorithmic baseline. This model does
not make any assumptions about the opponent’s utility value.
Furthermore, at each step the model updates just the issue
values of the current bid, so the model is resistant to decay,
but it will converge slower towards the right value. However,
the proposed technique is part of the supervised learning class
of machine learning techniques. This means that they require
labeled data in order to be trained. This label data consists of
the opponent’s actual utility function, information that is not
available during the negotiation.

The Perceptron model overcomes the need for the oppo-
nent’s utility by requiring an estimation instead. Estimation
of the opponent’s utility is a problem solved by opponent
modeling, but that is not an option here since the model has
not yet been trained. In order to overcome this problem, a
rough estimation is needed, which will impact the accuracy
of the model.

In order to make our comparison independent of the choice
of estimation, we propose two baseline models: the Bad Per-
ceptron and the Perfect Perceptron. The first model will al-
ways assume that the opponent’s bids have maximal utility,
i.e., U(ω) = 1. This assumption is not usually true so this
model’s accuracy will be used as a lower bound in the com-
parison. On the other hand, the Perfect Perceptron will have
access to the opponent’s actual utility, so this model will be
used as a theoretical upper bound in the comparison.

Finally, the implementation of the model is slightly
changed in order to increase its accuracy. In the original pa-
per [19], the evaluation of the issue values is initialized with
a value of 0.5. We found that this initialization produced bad
results against agents that lowered their utility function, es-
pecially when they start offering bids with utility under 0.5.
When this happens, the Perfect Perceptron model starts clas-
sifying these seen bids as having less utility than all of the
unseen bid space. In order to overcome this problem, the Per-
ceptron model was initialized with a value closer to 0, more
specifically 0.1.

3.3 Evaluating the opponent model
Prior comparisons [4] have found there is a linear correspon-
dence between the accuracy of the opponent model and the
performance of the agent that incorporates the said model.
However, this does not hold for all accuracy metrics, so the
proper accuracy measures need to be used.



The opponent model will be tested in isolation using the
Pearson correlation of bids [11], which can be seen in Equa-
tion 2:

dP (U,U
′) =

∑
ω∈Ω(U(ω)−U)(U ′(ω)−U ′)√∑

ω∈Ω(U(ω)−U)2
∑

ω∈Ω(U ′(ω)−U ′)2
(2)

where U denotes the actual utility function of the opponent,
U’ denotes the predicted utility function (i.e. the utility func-
tion computed by our algorithm), U denotes the average util-
ity of the opponent over the whole bid space U =

∑
ω∈Ω U(ω)

|Ω| ,
and finally, U denotes the average estimated utility of the op-
ponent over the whole bid space U ′ =

∑
ω∈Ω U ′(ω)

|Ω| .

4 Implementation and Experiment
4.1 Environment
A negotiation environment was needed in order to facilitate
easy communication between the agents. The environment
enforces some of the negotiation constraints and also random-
izes the domain and opponents used in each session. The
environment was built using the GENIUS framework [12],
which has become a standard in the field.

The environment consists of a list of domains, a list of op-
posing agents, and a deadline. At the start of a negotiating
round, a random domain, preference profile, and opponent
are picked. This ensures that the experiment is performed in
a random manner, on multiple distinct permutations, increas-
ing the generality of the results. After the round is started, the
environment is tasked with exchanging the bids between the
agents, but also to end the negotiation session in one of two
cases: an agent accepts the opponent’s bid or the deadline is
reached. After the end of the negotiation session, the environ-
ment is reset—a new opponent-domain pair is generated and
a new preference profile is picked for both agents.

Each experiment will take into account the results over
multiple negotiation sessions. This implementation allows
for easily setting up a new experiment in which we use just a
subset of the available domains and opponents. This allows
for a more granular exploration of the behavior of different
opponent modeling techniques against different classes of op-
ponents and domains.

4.2 Domain and Preference Profile
In order to further increase the generality of the results,
the domain was also randomly generated using the GENIUS
framework [12]. Firstly, the different domains vary in the
number of issues per bid and also in the number of available
values per issue. Note that the issue values are not randomly
generated, as these values are not important just the evalua-
tion that the agent applies to these values is important.

Secondly, two preference profiles are generated for each
domain. The preference profile consists of: the evaluation
of the issue values U(ωi) and the issue weights wi. These
values are used by the agents to compute the utility values of
the bids, as seen in Equations 1. The preference profiles are
also shuffled at the start of each negotiation session, in order
to further increase the generality of the experiment.

4.3 Agent
In order to test the opponent model as close to real-life condi-
tions as possible, an automated negotiation agent had to be
implemented. The agent needs to be able to receive bids,
evaluate them, and decide if it accepts the offer or generates a
counter-offer. This main functionality was achieved with the
help of the following components, shown in Figure 1.

Figure 1: Diagram that shows how the agents interact with the envi-
ronment and the components of the PPO agent

Opponent Model
The opponent model gradually receives the bids of the op-
ponent and generates an estimated utility function. In total,
three classes are implemented, one for each opponent model
discussed in the previous section: Smith Frequency model,
Bad Perceptron model, and Perfect Perceptron model. All
classes are run in parallel, with the scope of comparing their
accuracy given the same sequence of bids.

Policy
The policy is a neural network that dictates the behavior of the
agent based on the bid history and is implemented using the
Proximal Policy Optimization algorithm proposed by Schul-
man et al. [14]. The policy receives as input the utility of
the last four bids and will output the goal for the agent in the
form of two values: the agent’s utility goal and the opponent’s
utility goal.

The policy needs to be trained, so the two distinct nego-
tiation domains are created: training and testing. This sep-
aration ensures that any high results are due to the agent’s
capability to be applied to a general negotiation problem and
not due to overfitting.

Bidding Strategy
The bidding strategy combines the previous two components
in order to decide if the opponent’s offer should be accepted
or not. Firstly, the bidding strategy calculates for the current
bid both the agent’s utility and also the estimated utility of the



opponent. Secondly, these values are compared with the goals
generated by the policy. If the utilities of the current bid are
higher than the goals, the current offer is accepted. If the bid
does not satisfy this criterion, a random counter offer will be
generated and sent to the environment. The counter-offer is
picked by randomly selecting bids until one that satisfies the
goal is found. Note that it is not guaranteed that such a bid
exists, so this process will end after a set number of iterations
by returning the closest bid to the goal that was found so far.

4.4 Opposing agents
To simulate a realistic environment, we tested our agent
against multiple opponents, each with a different strategy.
This ensures that our agents will experience a wide range of
bidding strategies, and in turn, our opponent modeling tech-
niques will be tested against a wide range of behaviors. In
total, we tested against four agents, all of which use a time-
based strategy. This means that all agents will start with a
utility goal of one, which is lowered as the negotiation pro-
gresses. The utility goal is used by the agents to decide which
bids are acceptable or not. When an agent receives a new bid,
it will compare its utility with the current goal. If the util-
ity is higher than the goal, the agent will accept the offer. If
the utility of the bid is not sufficient, the agent will generate
a counter-offer that satisfies this requirement. If more than
one bid satisfies this criterion, the agent will pick one at ran-
dom. This bidding strategy does not take into account any
type of opponent modeling, i.e., the opponents don’t look at
our agent’s preferences when picking a bid. The agents lower
their utility goal as follows:

• The Hardliner agent will very slowly lower his utility
goal.

• The Conceder agent will quickly lower his utility goal.

• The Boulware agent will behave as a Hardliner at the be-
ginning of the round and as a Conceder when the dead-
line will approach.

• The Linear agent will linearly lower his utility goal.

5 Results
In total, five experiments were conducted, the result of which
will be presented below. All the results are calculated over
500 negotiation sessions, using all three models: the Smith
Frequency model, the Bad Perceptron model, and the Perfect
Perceptron model. Furthermore, each result analyzes just a
subset of the available domains and opponents.

The first experiment analyzes the behavior of all models
against all four opponents using all domains. The results can
be seen in Figure 2, and they show how the accuracy of the
different models evolves over the negotiation session. The y-
axis indicates the average accuracy of each model, calculated
in terms of the Pearson correlation of bids. The x-axis shows
the number of bids the opponent has offered, i.e., the number
of bids the models have analyzed. Note that these bids are
not unique and the opponents can offer the same bid multiple
times. The standard deviation of the samples is also shown
with a vertical line.

Figure 2: Graph showing the mean and standard deviation of the
accuracy, against all opponents.

Figure 3: Graph showing the mean and standard deviation of the
accuracy, against the Hardliner agent.

The results indicate that the models have similar accuracy.
The Smith Frequency has higher accuracy at the beginning
of the round, but the other models catch up after 50 bids.
Furthermore, the results also show the Perfect Perceptron
model to have, on average, higher accuracy than the Smith
Frequency mode. However, the difference in accuracy is too
small to draw any conclusions, so a more in-depth analysis is
required.

The following four experiments will analyze just one type
of opponent. The results will be used to identify the preferred
model against a specific opponent but also to identify if some
opponents are harder to model. Furthermore, these results
can also be used to analyze how each opponent’s behavior
contributed to the results seen in Figure 2.

The first analyzed opponent was the Hardliner agent. The
results can be seen in Figure 3. All the models have almost
identical behavior against this opponent. This is expected, as
the Hardliner always offers bids with maximal utility, so the
assumption that both the Smith Frequency and Bad Percep-



Figure 4: Graph showing the mean and standard deviation of the
accuracy, against the Conceder agent.

tron models make is correct. Furthermore, the Perfect Percep-
tron does not have higher accuracy than the other two mod-
els, indicating that the extra information is not advantageous
against this opponent.

The second analyzed opponent was the Conceder agent,
with the results shown in Figure 4. The assumption that the
opponent offers only bids with maximal utility does not hold
for this opponent. This does not seem to matter for the first
30 bids, as the models have a similar performance during
this period. After the first 30 bids, both models that make
this assumption start to degrade, with the Bad Perceptron
being more resistant at first. Furthermore, the Bad Percep-
tron model continues to degrade until it reaches zero accu-
racy. However, the large standard deviation indicates that the
available data is not consistent in the final region of the ne-
gotiation. In contrast to the other two models, the Perfect
Perceptron can model this type of opponent very well, reach-
ing a high accuracy quickly. This is an indication that the
Perceptron model requires an accurate estimation of the op-
ponent’s utility for the current bid in order to properly model
this opponent.

The third experiment analyzed the Boulware agent. The re-
sults for this opponent can be seen in 5. This agent changes its
bidding strategy from a Hardliner to a Conceder after approx-
imately 50 bids. We would expect to see the model starting to
degrade when this transition happens, as both the Bad Percep-
tron model and Smith Frequency model had trouble modeling
the Conceder agent. However, the results show that this is not
the case, as all three models perform very similarly to each
other reaching an almost perfect accuracy. It is interesting to
note that the Perfect Perceptron does again not benefit in a
meaningful way from the extra information it has access to.

The last experiment was conducted on the Linear agent,
with the result being shown in Figure 6. The results show that
the Smith model dominates at the start of the round, but this
domination is short-lived with the Perfect Perceptron Model
overtaking Smith after around 50 bids. Furthermore, the Bad
Perceptron is very close in terms of accuracy to the Smith
model the most of the round, with the notable difference be-

Figure 5: Graph showing the mean and standard deviation of the
accuracy, against the Boulware agent.

Figure 6: Graph showing the mean and standard deviation of the
accuracy, against the Linear agent.

ing located at the end after 100 exchanged bids.
It is interesting to note that all the models performed bet-

ter against the opponents who lowered their utility goal over
time. This may seem counter-intuitive, as these opponents do
not follow the assumption that their bids always have max-
imal utility. We believe the better performance is due to the
ability of these agents to offer a larger number of unique bids.
As an agent lowers his utility goal, more of the bid space will
become available, and in turn, more unique bids can be of-
fered.

In order to test this hypothesis, the evolution of the ex-
plored bid space has been plotted in Figure 7 for each oppo-
nent. The percentage of the seen bid space can be seen on the
y-axis. The x-axis encodes the same information as before,
the number of exchanged bids.

However, a strange behavior can be observed, which has
been marked with a vertical line in Figure 7. The percentage
of the bids space goes down for all opponents at a later stage
in the negotiation, which should be impossible. An opponent



Figure 7: Graph showing the time evolution of the average bid space
explored by all opponents.

Figure 8: Scatter plot showing the correlation between the accuracy
of a model and the explored bid space, for each model.

Figure 9: Graph showing the average accuracy against each oppo-
nents and the average bid space explored by each opponents.

can either offer a bid that was seen before or a bid that was not
seen before, so the percentage of the bid space that was seen
can either remain the same or grow. This behavior is due to
some negotiations ending earlier by reaching a consensus, so
less data is available towards the right side of the graph. Fur-
thermore, the vertical lines may indicate a good ”cutoff” for
the date, as they are situated roughly around the time mark at
which less than 20% of the initial negotiations are still active.

To further test the hypothesis that a model can better map
an opponent that explores more of the available bid space, all
the previous results have been averaged in Table 1. The av-
erage accuracy of each model has been calculated for all op-
ponents. Furthermore, the average percentage of the explored
bid space was also calculated for all opponents. The results
seem to indicate that the models have, on average, higher ac-
curacy against the opponents which explore more of the bid
space. The results were also plotted in Figure 8. The x-axis
shows the average explored bid space. The y-axis shows the
average accuracies of the models. It is easy to see from this
visualization that the values are highly correlated. So, the
results seem to indicate that the opponents that offer more
unique bids, and in turn reveal more about themselves, are
easier to model.

In order to test the statistical significance of our results,
the Pearson correlation coefficient and the p-value have been
calculated for the numbers in Table 1. The results for the
Smith Frequency model, Bad Perceptron model, and the Per-
fect Perceptron model are as follows: (r = 0.79; p = 0.20)
, (r = 0.96; p = 0.03) and, (r = 0.99; p = 0.005) ,
respectively. The results indicate that there is a significant
(p > 0.05) large positive correlation (r > 0.5) between the
accuracy of both Perceptron models and the percentage of the
seen bid space.

In order to further analyze the results shown in Table 1,
they are also displayed in Figure 9. Note that the graph has
a dual y-axis, with the accuracy being displayed on the left
and the explored bid space on the right. The results seem to
indicate that even with a significant increase in the percentage
of the explored bid space, the corresponding gains in accuracy
are minimal.

6 Discussion
Firstly, we will analyze how the Smith Frequency model com-
pares to the Bad Perceptron Model. The results in Figure 2
indicate that both models perform similarly, with the Smith
model dominating the start of the negotiation. This is ex-
pected, as both models make the same assumption: the op-
ponent’s utility is maximal. However, this assumption is used
differently by the two models. In the case of the Smith Model,
the assumption is directly used in the implementation and can
not be easily changed. This is not the case for the Bad Per-
ceptron Model, which does not need this assumption directly,
and it is only used to estimate the opponent’s utility for the
current bid. This assumption is not particularly advantageous
for the Perceptron model, as better estimations could be used.
It is interesting to note that the two models perform similar,
even if the assumption that both models make is to the detri-
ment of the Perceptron model.



Hardliner Conceder Boulware Linear
Smith Frequency 0.69 0.75 0.73 0.83
Bad Perceptron 0.68 0.77 0.72 0.79
Perfect Perceptron 0.68 0.84 0.73 0.82
Explored Bid Space 0.08% 1.64% 0.45% 1.55%

Table 1: The first three rows show the average accuracy of each model against each opponent. The last row shows the average explored bid
space for each opponent

Secondly, we will look at how the Smith Frequency model
compares to the Perfect Perceptron model. Most of the re-
sults seen in Figure 2 - 6 seem to indicate that a Perfect
Perceptron model always outperforms the Smith Frequency
model, with a notable exception being the start of the ne-
gotiation. This was somewhat expected, as the algorithmic
methods are known for their rapid convergence at the start
of the round, but is still impressive that the Smith Frequency
model manages to outperform another technique that has ac-
cess to perfect information. However, the Perfect Percetpron
always catches up after no more than 30 rounds, overtaking
the Smith model in Figure 2 and Figure 4. Furthermore, the
results shown in Figure 8 and Figure 9 also indicate that the
Perfect Perceptron performs, on average, similar to or better
when compared to the Smith Frequency model. The results
suggest that the Perceptron model has the potential of out-
performing the Smith Frequency model, given that a good
enough estimation of the opponent’s bid is given.

Next, we will compare the two Perceptron models. The
Perfect Perceptron model outperformed the Bad Perceptron
model in every experiment, as expected. However, com-
paring these two models still holds value, as it can help us
understand in which cases the additional information helped
the Perceptron model to better identify the opponent’s pref-
erences. Looking at Figure 9, it seems that the perfect in-
formation is only helpful against the Conceder and Linear
agent, more so for the first opponent. This is expected, as
the assumption made by the Bad Perceptron model does not
encapsulate the behavior of these opponents.

Finally, we will discuss how the behavior of different oppo-
nents influences the accuracy of the models. We have found
a statistically significant positive correlation between the ac-
curacy of the Perceptron model and the percentage of the bid
space that was explored by the opponent. This would indicate
that the accuracy of this model is highly dependent on the op-
ponent’s behavior. However, we have also found that a high
increase in the seen bid space corresponds to only a small in-
crease in the model’s accuracy. This could be problematic for
the further development of this model, as small increases in
accuracy would require a massive increase in the explored bid
space.

7 Responsible Research
Two distinct problems were taken into account when consid-
ering the responsibility of this research. On one hand, the
reproducibility of the research is always a concern, so extra
care has been taken to assure the reproducibility of this re-
search. On the other hand, the ethical aspects of the opponent
model have also been explored.

One of the most encountered problems by scientists, in
terms of reproducibility, is not having access to the original
code-base of the paper. Having access to the original code-
base can prove very useful, as it allows researchers to quickly
reproduce the results, but also to identify possible flaws in
the original setup. To mitigate this problem, the code used to
generate the results was made publicly available 1.

One of the last identified problems, in terms of repro-
ducibility, was the use of randomizing functions. Random
functions are usually used to increase the generality of the
problem, by shuffling the testing domain. This can pose a
problem, as two consecutive running of the code-base might
produce different results. To solve this problem, a seed was
introduced to the random number generator. This ensures the
reproducibility of the results in consecutive runs but also en-
ables the benefits of using a random function. Furthermore,
the seed was left unchanged in the final repository.

The ethical aspects that were analyzed are related to the
opponent’s exploitation. Opponent modeling is required be-
cause the agent like to keep their preference private in order
to avoid exploitation. This can pose a problem, as the current
procedure can model the opponent quite well. If the current
models keep improving, the agent might become vulnerable
to the same exploitation we are trying to avoid. In order to
mitigate this, the agents could study their opponent’s bid his-
tory, in order to identify any trends. A negative trend could
indicate that the opponent is using the information gathered
during the negotiation maliciously, i.e., the opponent is ex-
ploiting us.

8 Conclusions and Future Work
This paper analyzes how machine learning compares to the
SOTA heuristic techniques when used to model the oppo-
nent’s preferences. Historically, heuristic techniques have
dominated the field, but we have found this to no longer be
valid. Our main conclusion is that machine learning tech-
niques are at least as good as their algorithmic counterparts
when estimating the opponent’s preferences in a negotiation
problem.

Furthermore, we believe that further research has the po-
tential of increasing the accuracy of these techniques even
more. Previous research has concluded that heuristic mod-
els have just limited room for improvement. However, we
have shown that machine learning techniques can outperform
these heuristic models, given the right circumstances. There-
fore, we believe that machine learning techniques still have

1https://github.com/brenting/negotiation PPO/tree/
opponent-models-comparison

https://github.com/brenting/negotiation_PPO/tree/opponent-models-comparison
https://github.com/brenting/negotiation_PPO/tree/opponent-models-comparison


room for improvement, with the potential of increasing the
accuracy of the opponent model even higher than the current
state-of-the-art.

Finally, we have also found a statistically significant cor-
relation between the accuracy of the machine learning mod-
els and the percentage of the bid space that was explored by
the opponent. This can pose a problem, as this would sug-
gest that the model’s accuracy is limited by the opponent’s
behavior. Based on this, we believe that these models are ap-
proaching their theoretical limit, as they do not have a way of
influencing the explored bid space.
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gotiation between Autonomous Vehicles and Pedestri-
ans. In Mensch und Computer 2015 – Workshopband,
pages 525–532. De Gruyter, Berlin, Germany, Septem-
ber 2015.

[9] Jianye Hao and Ho-fung Leung. CUHKAgent: An
Adaptive Negotiation Strategy for Bilateral Negotia-
tions over Multiple Items. In Novel Insights in Agent-
based Complex Automated Negotiation, pages 171–179.
Springer, Tokyo, Japan, January 2014.

[10] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal
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