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ABSTRACT

Compromise alternatives have an intermediate pedoce on each or most attributes rather
than having a poor performance on some attributelsaastrong performance on others. The
relative popularity of compromise alternatives amatecision-makers has been convincingly
established in a wide range of decision contexts.digcuss three choice models that capture a
potential preference for compromise alternativese @pproach, which is introduced in this
paper, involves the construction of a so-called mamise variable which indicates to what
extent (i.e., on how many attributes) a given aliéive is a compromise alternative in its choice
set. Another approach consists of the recentlypéhtced random regret-model form, where the
popularity of compromise alternatives emerges eeadogsly from the regret minimization-
based decision rule. A third approach consistshef ¢ontextual concavity model, which is
known for favoring compromise alternatives by meahsa locally concave utility function.
Estimation results on a stated route choice datds®t that, in terms of model fit and predictive
ability, the contextual concavity and random regretdels appear to perform better than the

model that contains an added compromise variable.

Keywords: Compromise effect; Route-choices; Random Regmatt€xtual concavity



1 INTRODUCTION

Compromise alternatives have an intermediate pmedoce on each or most attributes rather
than having a poor performance on some attributdsaastrong performance on others (relative
to other alternatives in the choice set). In fieltjacent to transportation, most notably in
consumer researghhe preference among decision makers for comm®miternatives has been
well established empirically as one of the mostangnt and persistent choice set-composition
effects (e.g., [1]-[4]). Attempts to capture thighavioral phenomenon have led to the
development of different choice models that allaw ¢apturing the popularity of compromise
alternatives (e.g., [3]); the arguably most elegamd effective of these models is the so-called
Contextual Concavity model or from here on CCM [hough it seems quite obvious that also
in many transportation contexts compromise altéreatexist, virtually no attention has been
paid so far in our field to the development anditgsof choice models that allow for capturing

their relative popularity in the context of trangjation related decision making.

This paper discusses and empirically tests theexhentioned CCM and two alternative discrete
(travel) choice models that allow for capturing thelative popularity of compromise
alternatives. One approach is based on creating-ealled compromise-variable for each
alternative, which indicates to what extent (i@, how many attributes) an alternative is a
compromise alternative in a given choice set. Huproach is new, to the best of the authors’
knowledgé. A second approach is based on the recently intedl Random Regret
Minimization-approach or RRM from here on; see 4B [6]. Although theoretical derivations

2 More specifically, preferences for compromise rali¢éives have been shown in the context of choaasng
apartments, among mouthwashes, among political festos, among investment portfolios, among on-tiages
and among laptops, to name just a few examples.

* Take for example the situation where a travelerosks between different mode-route-departure time
combinations: some combinations may perform verll imeterms of one attribute (like travel time, ¢pswhile
performing very poorly on others (like travel cosdther combinations may perform reasonably (bt very) well

on all attributes. Such latter combinations aréedatompromise alternatives.

* Note that[1] presented a model that adds a dummighle to an alternative’s utility function. The rdmy-
variable equaled 1 if an alternative was a compseraiternative in terms of both attributes considén that study,
and O otherwise. This approach resembles our apprdaut is less sensitive, especially when the rermdf

attributes increases.



and numerical examples presented in the two ciggmegs have suggested that Random Regret-
based travel choice models are theoretically egoedb assign relatively high choice
probabilities to compromise alternatives, theseepado not present an empirical analysis of that
claim. [7] do so, as they highlight how an estirda®RM-model favors compromise alternatives
in the context of online date-selection data. Hosvewn contrast with this paper, [7] do not
present out-of-sample tests of predictive perforteanor do they compare the RRM-model with

alternative model forms other than the linear-inapaeters logit model.

Section 2 introduces the CCM-model and the tworrsditive modeling approaches described
above as alternatives for the CCM-approach. Ini@ecB and 4 the mentioned modeling
approaches are compared (also with a linear-inApatexs logit model that does not allow for
capturing any relative popularity of compromiseeatittives) in the context of stated route
choice data collected recently among a sample @aéifDoommuters. Subsequently, estimation
results (Section 3) and out-of-sample validatisults (Section 4) are presented and discussed in

detail. Conclusions and discussion are providezkstion 5.

2. THREE MODELS THAT CAPTURE POTENTIAL PREFERENCES FOR
COMPROMISE ALTERNATIVES

21.  Alogit-model with a compromise variable

The approach introduced here to generate potepteferences for compromise alternatives
involves the construction of a so-called comprorviagable which measures the extent to which
a given alternative, in the context of a given choset, is a compromise alternative. More
specifically, the variable indicates on how mantrilatites a particular alternative scores in-
between the other alternatives in the sens®bhaving an extreme (highest or lowest) value on
that attribute. In notation, assuming a choicecsetainingJ alternatives each being described

in terms ofM attribute-levelsc;,,, the compromise variablg can be denoted as follows:

Ci = Zm=1..M Iim(minm < Xim < maxm) (1)



Here,min,, = min{xlm, ...,x]m}, max,, = max{xlm, ...,x]m}, and/;,, (min,, < x;,, < max,,)
equals one imin,, < x;;,, < max,, and zero otherwise. By definitiod; € {0,1,...,m, ..., M} .
When this compromise-variable is added to a conweal linear-in-parameters utility function,

the following form is obtained:

Vi=Bc G+ Ym=1.M Bm * Xim 2)

Parametef indicates the presence and strength of a preferleEmccompromise alternatives (a

positive sign is expected). Adding i.i.d. Extremalie Type | errors results in logit-probabilities.

2.2.  Aregret-based logit-model

The second approach used in this paper to accomenpdeterences for compromise alternatives
is based on the recently developed Random Regneinitiation-approach (RRM) to discrete
choice modeling [5]. The RRM-model postulates thahen choosing between alternatives,
decision-makers aim to minimize anticipated randegret, and that the level of anticipated
random regret that is associated with the considelternativa is composed of an i.i.d. random
error, which represents unobserved heterogeneitygret and whose negative is Extreme Value
Type I-distributed, and a systematic regret. Syatenregret is in turn conceived to be the sum
of all so-called binary regrets that are associatéti bilaterally comparing the considered

alternative with each of the other alternativethm choice set.

The level of binary regret associated with comparine considered alternative with another
alternative is conceived to be the sum of the regrets thatsseciated with comparing the two

alternatives in terms of each of thbirattributes. This attribute level-regret in turrfosmulated

asin(1 + exp[Bm - (Xjm — xim)])- Systematic regret is thus written as:



Ri =X jei X In(1 + exp[Br - (xjm — xim)]) 3)

Acknowledging that minimization of random regremsathematically equivalent to maximizing
the negative of random regret, choice probabilitresy be derived using a variant of the logit

formulation: the choice probability associated wigqualsP (i) = % > Note that the
j=1.J €XP(=R;

resulting model consumes as many parameters asngertdmnal linear-in-parameters logit-
model, and that the model can be estimated usarglatd software-packages such as Biogeme
and NLOGIT (version 5). The RRM-model has beenettstmpirically in a wide range of
decision-contexts including but not limited to mgd®ute-, departure time-, vehicle type-, and

destination-choices. See [6] for a concise ovenoéthis empirical evidence.

One important difference between the RRM-model #ral conventional linear-in-parameters
logit model is that the RRM-model implies a par&utype of semi-compensatory behavior.
This is a direct result of the convexity of theneggfunction: improving an alternative in terms of
an attribute on which it already performs well tefa to other alternatives generates only small
decreases in regret. Deteriorating to a similaremixtthe performance on another equally
important attribute on which the alternative hapaor relative performance may generate
substantial increases in regret. As a result, tttengé to which a strong performance on one
attribute can make up for a poor performance othemalepends on the relative position of each
alternative in the set.

As explained in [5] and [6], RRM’s theoretical atyil to accommodate a preference for
compromise alternatives follows directly from thgarticular type of semi-compensatory

behavior. More specifically, the RRM-model preditiiat having a (very) poor performance on

® Importantly, in contrast with other (travel) mosleind theories that are based on regret-minimizatie RRM-
model focuses on so-called riskless choices (#athoice situations in which the decision makeassumed to
know with certainty the values of the attributes adfernatives). The RRM model postulates that ag las
alternatives are characterized in terms of multgtieibutes, this implies that trade-offs have torhade by the
decision-maker, and that as a result there wiltdgget in the sense that there will generally béeast one non-
chosen alternative that outperforms a chosen orterins of one or more attributes. Note though, thatRRM

model can easily be extended to cover risky degisiaking as well, as explained in [6].



one attribute causes much regret, while havingeayjvstrong performance on another attribute
does not necessarily compensate for this poor pediace. As a result, RRM-models predict
that it is more efficient (in terms of avoiding reg and gaining market share) to be a
compromise alternative: even when a compromisenatize fails to have a strong performance
on any of the attributes (relative to the otheeralatives in the set), RRM-models predict that it
will still only generate modest levels of regretlasg as it does not have a particularly poor
performance on any of the attributes.

The RRM model has in common with the CCM (see belinat ‘non-compromise’ alternatives

are treated asymmetrically: it pays off more toidveaving a relatively poor performance on
any attribute, than it does to achieve a very gfrparformance on one or more attributes. In
contrast with the CCM, the RRM model generatesguegices for compromise alternatives by
definition, and irrespective of estimated parameftaiues. Whereas the CCM is capable of
capturing preferences for compromise alternativeedreme alternatives, or none of these
(depending on the estimated value for the concap#@yameter), the RRM model structure
postulates a preference for compromise alternatives. To avejoktition, and for reasons of

space limitations, we refer to [5] and [6] for ama@laborate and formal discussion of how the

RRM-model accommodates preferences for compronitsenatives.

2.3.  Thecontextual concavity model

[3], who were the first to introduce the CCM-modsliggested that the utility associated with
evaluating an attribute-level of an alternativeaipower function of a term that equals the
partworth utility associated with the level of ttatribute for the alternative minus the partworth
utility associated with the least-preferred val@iehat attribute in the given choice task. We use
the following equation for the systematic utilitie$ choice alternatives (our notation, and
assuming a choice set containihglternatives each described in term$/ttributesx; indexi

represents an alternative, indeindicates an attribute):

Vi = Em=1..M(ﬁm *Xim — Bm - %m)(pm 4)



Here,X,, stands for the least preferred level of attribute the context of the given choice task
(in practice this is the attribute value which #malystbelieves to be the least preferred), apd

is an attribute-specific concavity parameter whghxpected (but not constrained) to be smaller
than 1 and positive. As highlighted by [3], the C@M\del with a concavity parameter between
0 and 1 assigns a relatively high choice probabtlit compromise alternatives by means of
downwardly adjusting the utilities of the best penfing attributes to a greater extent than the
utilities of attributes with an intermediate perf@ance. This is due to the concavity of the utility
function. As such, CCM’s treatment of ‘non-compremi alternatives’ is intrinsically
asymmetric: whenp™ € ]0,1[, it is more beneficial (in terms of attaining agtmér choice
probability) to avoid a relatively poor performanoa any attribute, than it is beneficial to

achieve a very strong performance on one or maonewses.

As [3] note, wherp™ equals 1, the CCM model is equivalent to a liregdtitive logit model and

wheng™ is greater than 1, there is a preference for mdralternatives rather than compromise
alternatives. Note that the term ‘contextual’ reféo the fact that the concavity is exhibited
relative to the least preferred attribute level. &iding i.i.d. errors to the observed utilities, a
logit-model is obtained. To avoid repetition, awod feasons of space limitations, we refer to [3]
for a more elaborate and formal discussion of Heev@CM assigns higher choice probabilities

to compromise alternatives.

Before moving to the empirical part of the papeshould be noted that there is a fundamental
difference between the CCM- and RRM-models on the ltand, and the compromise variable-
model on the other hand. That is, in the first tnadels preferences for compromise alternatives
emerge from behavioral premises that themselves do nogcty or explicitly refer to
compromise alternatives or compromise seeking behawn the CCM-model these preferences
emerge from locally concave utility functions, andhe RRM-model they emerge from convex
regret-functions. In contrast, the compromise \deanodel postulates explicitly that
individuals are focused on identifying and choosamnpromise alternatives. It may also be
noted at this point that of the three models tlegiegate preferences for compromise alternatives,
the RRM is the most parsimonious: it consumes ncemarameters than a linear-in-parameters

logit model.



3. A STATED ROUTE-CHOICE EXPERIMENT

The data collection effort focused on route chdiebavior among commuters who travel from
home to work by car. A total of 550 people were gl@ah from an internet panel maintained by
IntoMart, in April 2011. Sampled individuals wereleast 18 years old, owned a car, and were
employed. It was taken care of that the sample nepresentative for the Dutch commuter in
terms of gender, age and education level. Of tH&s® people, 390 filled out the survey

(implying a response rate of 71%).

Respondents to the survey were asked to imagindypethetical situation where they were
planning a new commute from home to work (eithecaose they had recently moved, or
because their employer had recently moved, or lsecthey had started a new job). They were
asked to choose between three different routes diffgred in terms of the following four
attribute§, with three levels each: average door-to-door eraime (45, 60, 75 minutes),
percentage of travel time spent in traffic jams%il@5%, 40%), travel time variability (5, £15,

+ 25 minutes), and total costs (€5.5, €9, €12.9teNhat for these attributes the least-preferred
values per choice task are easily identified, sihogay be safely assumed that for each attribute,

lower values are preferred over higher ones.

Using the Ngene-software package [8], a so-cabdptirnal orthogonal in the differences’-design
of choice sets was created [9] to ensure a statilti efficient data collection. This design
resulted in nine choice tasks per respondent add &hoice observations in total. Figure 1
shows one of these tasks. It may be noted heréitbathoice-task presented in Figure 1 presents
a genuine compromise alternative: route B scordsetween the other two routes in terms of
every singly attribute. In other words, its compreeavariable takes on the value four, while

those of alternatives A and C take on the value.zer

® Note that these attributes have been repeatedigdfday other studies to be of considerable impogainc

determining route choice behavior, although theyuanlikely to be the only relevant factors in tecision.
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Average travel time (mmutes)

Percentage of travel time in congestion (% 10% 25% 40%

Travel time variability (minutes) *5 +15 +25

Travel costs (Euros) €12,5 €9 €5,5

YOUR CHOICE

Figure 1: An example route choice-task featuring a full-fledged compromise alternative

Importantly, this particular choice set is the onhe in the experiment with such a full-fledged
compromise alternative: other choice sets featorapromise-variable scores lower than four.
For example, the choice set depicted in Figure filte in the following values for the

compromise-variable: C(A) = 2, C(B) = C(C) = 1.this latter choice set, alternative A is still a
compromise-alternative, but only to a limited extenhas an extreme performance on two out

of four attributes (congested travel time and trawosts).

10



Average travel time (minutes) 60

Percentage of travel time in congestion (%) 10% 25% 40%

Travel time variability (minutes) +15 125 *5

Travel costs (Euros) €5,5 €12,5 €9
YOUR CHOICE
O ] ]

Figure 2: An example route choice-task without a full-fledged compromise alter native

4. EMPIRICAL ANALYSES

Four models were estimated on the choice datagubka Biogeme-freeware package [10], [11]:
first, a linear-in-parameters logit-model was estied (Model ). Then, the compromise variable
was added to the equation (Model Il). Subsequetitey RRM-model was estimated (Model IlI).

Finally, the CCM-model is estimated (Model IV).

With respect to Model I, it may be noted that weoaestimated a model where the parameter
associated with the compromise variable was allotedary randomly between respondents
(but not within choices made by the same respopddiiis panel-specification allows for
compromise preferences to be considered as peityamaits. The panel model resulted — as is
to be expected — in a slightly higher model fidan significant (though not large) estimated
value for the standard deviation of the compronpaemeter. Other estimation results remain
similar to those obtained for the non-panel modelallow for a meaningful comparison across
the four models, we have chosen not to considepadimel-specification in the remainder of this

paper, and focus on the logit specifications irtea

11



With respect to Model 11l and Model IV, it may beted that we also tested for significant
compromise parameters. However, in the contexhef@GCM-model the associated parameter
was insignificant at any reasonable level. In tloatext of the RRM-model, the associated
parameter was only significant at a 10%-level. lreminore, the RRM-model with the added
compromise variable performed worse than the RRMehavithout compromise variable in
terms of every singly test of out-of-sample pradeability. Therefore we only report results for

the CCM-model and RRM-model without compromise afale.

With respect to Model IV, the following remarks deto be made: first note that [3] also
presented a Normalized CCM, called NCCM. This madkés into account possible differences
in observed attribute-ranges across alternativeyden choice tasks. Since in our data, the
chosen experimental design implied that attribideges across alternatives did not differ
between choice tasks (for example, travel timeagdbwaried between 45 and 75 minutes within
each choice task), this NCCM gave the exact sandehfd on our data as did the CCM, but
with a more complicated model form. From here ¢ NCCM is therefore ignored in this
paper. Furthermore, note that we also estimate@lsl-€ariant which constrained all attribute-
specific concavity-parameters to be equal. Thistted significant loss in model fit, also when
corrected for the associated gain in degrees efibm. Results from this constrained model are
therefore not reported here. Furthermore, note thatestimated concavity parameters for
attributes ‘travel time’ and ‘travel time varialyli were not significantly different from one at
any reasonable level of significance (implying alzee of concavity for those attributes).
Restricting these parameters to one led to the saode| fit, but with an associated gain of 2
degrees of freedom. This latter CCM-model varianthie one presented in Table 1. In this
model, the estimated concavity parameter for ‘trawsts’ is significantly different from one at a
5% level of significance, while the estimated cotyaparameter for ‘% of travel time spent in

congestion’ is significantly different from oneaafl%- level of significance.

12



Table 1: Estimation results (robust t-values between brackets)

Moded | Modéd I Model Il | Modd IV
Base- Base-model + RRM - CCM-
model Compromise- model model
variable
Average travel time -.0673 -.0695 -.0468 -.0697
(-35.13) (-34.21) (-32.50) | (-33.46)
% of travel time in congestion -.0273 -.0295 -.0181 -.0358
(-17.39) (-17.42) (-16.66) | (-11.83)
Travel time variability -.0316 -.0320 -.0210 -.0314
(-11.86) (-11.92) (-11.86) | (-11.91)
Travel costs -.173 -.164 -.113 -.241
(-21.52) (-19.36) (-20.28) (-5.78)
Compromise-variable - 1100 - -
(5.27)
Concavity par. - - - .6984
(travel costs) (5.47)
Concavity par. - - - 422
(% time spent in congestion) (5.57)
Nr of cases 3510 3510 3510 3510
Final-LL -2613 -2600 -2605 -2589
Adj. Rho-square 321 .324 .323 327

A number of relevant findings appear in Table tstfiit appears that in all four models the
estimated travel-related parameters have the esghexiin and are highly significant. What is
important to note when inspecting Table 1, is fherameters associated with the four attributes
appear to hardly differ between the linear-in-pagtnlogit models with and without the added

compromise variable (I versus Il). This suggesét the compromise variable is actually picking

13



up a distinct behavioral effect that is not confdeeh with the direct effects of attributes
themselves. This can also be seen when inspettenddtrect) mean elasticities which give the
percentage change in choice probability resultirgnf a percentage change in one of the
alternative’s attribute’s levels (Table 2): alsodhalifferences between models with- and without

the compromise variable are small.

Table 2: Direct elasticities (95% -confidence intervals between brackets)

Modd | Model 11 Moddl 111
Base-model Base-model + RRM -model
Compromise-
variable
Average travel time -2.82 -2.91 -3.03
[-2.97, -2.67] [-3.08, -2.74] [-3.20, -2.85]
% of travel time in congestion -47 -.51 -.48
[-.52, -.42] [-.56, -.46] [-.53, -.43]
Travel time variability -.32 -.33 -.33
[-.37, -.28] [-.37, -.28] [-.38, -.28]
Travel costs -1.06 -1.00 -1.06
[-1.15, -0.98] [-1.09, -0.91] [-1.15, -0.97]
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The reason for including RRM-elasticities in TaBlés that, in contrast with parameter values
themselves which cannot be compared directly betweear-in-parameters logit-models and
RRM-model$, elasticities can be compared across regret- tlity-based model types. Table 2
and 3 show that elasticities are roughly equal ssctbe RRM- and linear-in-parameters logit
models (Model | and Model Ill). This is in line wifindings from previous studies ([12], [13])
although these latter two studies reported diffeesrthat were somewhat larger than those we
found on our data.

In terms of model fit, it is seen that differendetween models are small. More specifically, it
appears that in the context of our data the RRMeh@slodel Ill) outperforms the linear-in-
parameters logit-model (Model 1), while a still tetmodel fit is obtained by Model Il (linear-in-
parameters logit-model + compromise variable). Mdde(CCM-model) achieves the highest
fit, also when correcting for the number of parangt Using the Likelihood-ratio statistic for
nested models (Models I, I, and IV) and Ben-Ak&&Swait’s test [14] for nonnested models
(model Il versus the other three models) it isduthat all differences in model fit are
significant at a 5%-level.

Interestingly, while the four models’ fit is roughequal, their implied predictions can differ
more substantially. Take for example the choicedggicted in Figure 1. Table 3 presents the
mean choice probabilities predicted for the thréiéednt routes, based on the parameter
estimates reported in Table 1. In line with expiates, Models I, Ill, and IV each predict a
higher mean choice probability for the compromiieraative (Route B) than does Model |
(linear-in-parameters logit model without comproenigariable). It appears that especially the

model which includes a compromise variable (Modlebttaches a higher choice probability to
Route B.

"In a (linear-in-parameters) RUM formulation, agraeter represents the amount of utility that imeaior lost by
increasing or decreasing the performance in terniseocorresponding attribute by one unit. Quitiéedently, in a

RRM-setting parameters reflect tbhpper bound of the extent to which a unit in- or decrease énfgrmance on an
attribute influences (bilateral) regret. Whethemnot this upper bound is reached for a one unibirdecrease in an

attribute’s value depends on the performance dadraghiernatives in the set in terms of the attebut

15



To test whether these results are statisticallyio@nt, we also computed 95%-confidence
intervals. This was done by making 1,000 draws ftbenmultivariate normal distribution of the
estimates (as implied by their means, standardsand covariances) and computing choice
probabilities for routes A, B and C for each mdlitirensional draw. The interval spans the
values from the 5% and the 95% quantiles of thegead valués

Table 3: Choice probability predictions
(per centages, rounded; based on routes presented in Figure 1;

95% confidence intervals between brackets)

RouteA | RouteB | RouteC

Model | 70 23 7
Base-model [68, 72] | [22, 24] [6, 8]
Model Il 65 30 6

Base-model + Compromise-variable | [62, 68] | [27, 32] [5, 7]

Model 1l 67 27 6
RRM-model [65, 69] | [26, 28] [6, 7]
Model IV 66 29 6
CCM-model [63,68] | [26,31] | [5,7]

® The same approach was used to derive confideneevatis for the elasticities, as presented in Table

16



The resulting confidence intervals suggest that éllodthe base model) provides significantly
different forecasts for the choice probability ¢fetcompromise alternative (route B) when
compared to the three models that capture prefesefar compromise alternatives: Model I's
mean prediction for B is not within the other thmedels’ 95% confidence interval and vice
versa. Another result can be obtained from theidente intervals: it appears that Model 11l (the
RRM model) is more precise than Model 1l (lineatpi@arameters logit with compromise
variable) and has a similar precision as Modehé (base model). This suggests an advantage, in

terms of precision, of the RRM model.

4.2.  Model validation: out-of-sample predictions

The data were split into an estimation-sample anélaation-sample by means of randomly
selecting two thirds of cases for estimation aravileg the remaining one third (1192 cases) for
testing out-of-sample predictive ability analysEstimation results of the four models on the
estimation-sample are very similar to those regbimeTable 1 (in terms of parameter values as
well as model fit statistics) and are not repottede for reasons of brevity. The following types
of generic validation analyses are performed incibratext of the validation sub-sample and are
summarized in Table 4: first, the likelihood of eka alternatives is computed for each case in
the validation set and for all four models; the me&these likelihoods is reported. Results for
the different models suggest that the CCM-model dadightly worse performance than the
other three differences, although it should be chdkat differences in terms of this metric are
very small and in fact can be ignored. Second|dfdikelihood of the validation sample (in the
context of each of the four models as estimatetherestimation sample) is reported. The CCM-
model performs best, in terms of this metric. Towdst row of Table 4 shows the rho bar
squared computed for the four models in the cordégte validation data. Also in the context of
this metric, differences are small — although tiféeence between the CCM-model and the
other models in favor of the former is worth notifNpte that in contrast with the previous two

measures, the rho-bar squared penalizes added gtaram
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Table 4: Predictive ability out-of-sample (best results per metric underlined)

Mode | Mode 11 Model 111 | Model 1V
Base- Base-model + RRM- CCM-
model Compromise- model model
variable
Mean likelihood of
chosen alternative 0.555 0.555 0.555 0.554
Log-likelihood of
validation sample -913 -910 -913 -905
Rho bar squared .300 301 .300 .304

As a second test of out-of-sample performance, aced on the ability of the four models to
predict the popularity of compromise alternativegarticular (see Table 5). More specifically,
for each of the nine choice tasks we identifieddbmpromise alternative (being the alternative
with the highest score on the compromise varial#epsequently, the actual ‘market share’
(relative choice frequency) for this alternativeoisserved in the context of those cases (out of
the 1192 selected cases) that corresponded withpdinigcular choice task. Because in the
validation sample the number of observations dffeacross the nine choice tasks, differences
between observed and predicted market shares glewexre weighted according to the relative
share of observations available per choice taskhm validation sample. Finally, choice
probability predictions made by applying the foundels are computed, and compared with the
actually observed market shares. Three metricsreperted in Table 5: the mean deviation
(positive values indicate aonderestimation of the choice probability for the compise

alternative, whereas negative values indicateoanestimation); the mean absolute deviation
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(which returns positive numbers by definition); aihe Root Mean Squared Error (which also

returns positive numbers by definition).

Table5: Ability to predict market shares of compromise alter natives

(best results per metric underlined)

Modd | Modd 11 Modd 111 | Model 1V
Base- Base-modd + RRM- CCM-
model Compromise- model model
variable
Mean deviation
(percentage points 1.7 -1.3 0.0 -0.7
Mean absolute
deviation 4.2 3.3 3.0 3.1
(percentage points
Root mean squared
error (RMSE)
4.8 4.1 3.8 3.6
(percentage points

Starting with the mean deviation, it appears thatlinear-in-parameters logit model without a
compromise variable underestimates the choice pililyaof compromise alternatives, while the

addition of a compromise variable leads to an ateration of compromise alternatives’ choice
probabilities. This finding is in line with intudn. The RRM-model appears to very accurately

predict the market share of compromise alternativiesn evaluated in terms of this metric. Also
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when considering the mean absolute deviation, R¥fnodel appears to outperform the other
models, although the difference with the CCM-madelery small. In terms of the RMSE, the
CCM-model appears to do best, closely followedhHsyRRM-model.

5. CONCLUSIONS AND DISCUSSION

This paper presents and tests models that aret@lokgpture potential preferences for so-called
compromise alternatives, in the context of routeich data. (compromise alternatives have an
intermediate performance on each or most attribtgtger than having a poor performance on
some attributes and a strong performance on ojl@n& approach involves the construction of a
so-called compromise variable, which indicates tatwextent (i.e., on how many attributes) a
given alternative is a compromise alternative 81dhoice set. Another approach consists of
using a Random Regret-model form (RRM). In the ernof this latter model-type, preferences
for compromise alternatives emerge from the undeglynodel structure. The two proposed

model forms are compared with the Contextual Coitgzamodel (CCM), which has shown its

worth in terms of generating preferences for compse alternatives by means of a locally

concave utility function. The comparison is basadtated route choice dataset.

In terms of model fit, the CMM appears to haveighsl(but statistically significant) edge over

the other presented model forms, also when congdtr the number of parameters which is
higher for the CMM-model. A validation exercise one third of the data that was not used for
estimation shows that differences between modetsrims of generic out-of-sample predictive
ability are small; a mixed picture emerges regaydime performance of the different models,
although the CCM and the RRM-model appear to otdparthe other models (among these two

models, no clear ‘winner’ can be identified).

In this light it is worth noting that the RRM-modisl the most parsimonious model of the four
models used (together with the relatively poor @ening linear-in-parameters logit-model).
This suggests that the RRM-model may be considargdble alternative for the CCM-model,
especially when the number of attributes increélsesause increases in attribute-numbers imply
increases in the number of parameters used by @M-@odel if attribute-specific concavity

parameters are estimated). As another more geradledtion, our findings suggest that the two
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models where preferences for compromise alterraveerge indirectly from model structures
and behavioral premises (such as locally concaNigyftinctions or convex regret functions)
perform better empirically than the model that eifty postulates (by means of a compromise-

variable) that decision-makers identify and choasmpromise alternatives.

A number of directions for future research comentod. First, there is an obvious need to study
to what extent results obtained in this study hialdhe context of other travel choice-related
datasets (not only stated preference, but alscatedepreference datasets). Moreover, it would
be interesting to find out if there are circumstsor personality traits that trigger the kind of
decision-making that results in preferences for mamise alternatives. In this light, it is
interesting to point at the fact that the statediad experiment reported in this paper also
included a number of Likert-scale questions to oesignts concerning their attitude to decision-
making in general and in the context of the statamice experiment. We found that on the sub-
sample of individuals that (stated that they) foitrichportant to make the ‘right’ choices in the
experiment, a large and significant parameter aastst with the compromise variable was
found, while this parameter was insignificant ie tontext of the sub-sample of individuals that
(stated that they) did not find it important to reathe ‘right' choices in the experiment.
Similarly, we found that on the sub-sample of indiials that (stated that they) found it difficult
to make decisions when the stakes are high, a &rdesignificant parameter associated with the
compromise variable was found, while the parametas insignificant on the sub-sample of
individuals that (stated that they) did not findlifficult to make decisions when the stakes are
high.

Although in the context of other similar Likert-se@uestions no significant differences between
sub-samples were obtained, this does suggesthéathility of models to generate preferences
for compromise alternatives might be particulartyportant in the context of choices that are
considered by decision-makers to be important ardifficult. Note that these results are in line

with findings reported in the consumer choice &tare (e.g., [1]). More research is needed to

test these preliminary findings.
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