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Abstract We consider operators T satisfying a sparse domination property

|〈T f, g〉| ≤ c
∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q|

with averaging exponents 1 ≤ p0 < q0 ≤ ∞. We prove weighted strong type bound-
edness for p0 < p < q0 and use new techniques to prove weighted weak type
(p0, p0) boundedness with quantitative mixed A1–A∞ estimates, generalizing results
of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case p0 = 1 we
improve upon their results as we do not make use of a Hörmander condition of the
operator T . Moreover, we also establish a dual weak type (q ′

0, q
′
0) estimate. In a last

part, we give a result on the optimality of the weighted strong type bounds including
those previously obtained by Bernicot, Frey, and Petermichl.
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248 D. Frey, B. Nieraeth

1 Introduction

In recent years, after a solution was found to the well-known A2 conjecture [24], the
role of sparse operators has become increasingly important in the weighted theory
of many operators, see for instance [5,12,14,29,31] and references therein. Sparse
domination yields optimal quantitative Ap estimates for 1 < p < ∞, for exam-
ple, for the classical Riesz transforms in Rn . As has been shown by Bernicot, Frey,
and Petermichl [6], the idea of sparse domination reaches far beyond the theory of
Calderón–Zygmund operators. Indeed, one can consider the Riesz transform ∇L−1/2

in, e.g. a convex doubling domain in Rn , where L is the Laplace operator with respect
toNeumann boundary conditions. Generally, the Riesz transform in such a setting does
not satisfy any pointwise regularity estimates and therefore falls outside of the class
of Calderón–Zygmund operators. However, it satisfies a sparse domination property
which does in fact yield the quantitative weighted bounds from the A2 conjecture.
In Rn , foregoing the full range of 1 < p < ∞, one can consider the Riesz trans-
form for elliptic operators L = − div(A∇) for A with bounded, complex coefficients.
Such operators are only bounded in L p for a certain range p0 < p < q0, and it was
established in [6] that they satisfy a sparse domination property

|〈T f, g〉| ≤ c
∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q|

fromwhichgeneral quantitativeweightedbounds in the respectiveweighted L p-spaces
are deduced.

For Calderón–Zygmund operators, weightedweak type (1, 1) estimates were estab-
lished by Lerner et al. [33] and later improved upon by Hytönen and Pérez [26]. In
this article, we establish the corresponding (p0, p0) estimate in the more general set-
ting described above. The arguments used in [33] rely on introducing weights in the
classical arguments involving Calderón–Zygmund decompositions f = g+b and the
vanishing mean value property of the ‘bad’ part b in combination with the Hörmander
condition of the kernel of the operator. In general, the operators we are considering
here need not be integral operators at all and for the more general operators such as the
Riesz transform associated to an elliptic operator, an argument by Blunck and Kun-
stmann [8] (see also [23]) gave a weak type (p0, p0) boundedness using an adapted
L p0 Calderón–Zygmund decomposition, where a certain cancellation of the operator
with respect to the semigroup generated by the elliptic operator replaces the regularity
estimates of the kernel. Weights were then introduced into this argument by Auscher
andMartell [2], but it seems like these techniques do not yield optimal bounds in terms
of the constants of the weights. Therefore, we give a new argument to establish the
corresponding bounds while still recovering the old bounds found in [26].

Here, in order to combine the previous approaches and to tie the theory together, we
deduce quantitative weighted bounds directly from sparse domination assumptions.
We introduce weights into a weak boundedness argument for sparse operators where
there exists a Calderón–Zygmund decomposition with the property that the ‘bad’
part b cancels completely. We then combine this with generalizations of the main
lemmata used in [33]. Moreover, we leave the Euclidean setting and extend the results
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Weak and Strong Type A1–A∞ Estimates 249

to more general doubling metric measure spaces including certain bounded domains
and Riemannian manifolds as was also studied in [8] and [2,3].

In a last part we show that the strong type weighted estimates are optimal, given a
precise control of the asymptotic behaviour of the unweighted L p operator norm of T
at the endpoints p = p0 and p = q0. We give an example of such an operator in the
case p0 = 1, q0 = n.

1.1 The Setting

We consider the Euclidean space Rn equipped with a Borel measure μ that satisfies
0 < μ(B) < ∞ for all balls B and which satisfies the doubling property, i.e. there is
a C > 0 such that

μ(2B) ≤ Cμ(B) (1.1)

for all balls B, where 2B denotes the ball with the same centre as B and whose radius
is twice that of the radius of B. Taking the smallest such C we define ν := log2 C ,
which we refer to as the doubling dimension. We write |E | := μ(E) and for each
measurable set E of finite non-zero measure and each 0 < p ≤ ∞ we will write

〈 f 〉p,E := ‖ f χE‖L p(|E |−1dμ),

where χE denotes the indicator function of the set E . We write 〈 f, g〉 := ∫
f g dμ,

and define p′ = p/(p − 1) ∈ [1,∞] for 1 ≤ p ≤ ∞.
For α ∈ {

0, 1
3 ,

2
3

}n we will consider the translated dyadic systems

Dα :=
⋃

k∈Z

{
2−k([0, 1)n + m + (−1)kα

) : m ∈ Zn},

and D := ∪αDα .
The collectionD is used as a replacement for the collection of balls or the collection

of all cubes in Rn , which is justified by the fact that for any ball B(x; r) ⊆ Rn there is
a cube Q ∈ D so that B(x; r) ⊆ Q and diam(Q) ≤ ρr for a constant ρ = ρ(n) > 0,
and for any cube P ⊆ Rn there is a cube Q ∈ D such that P ⊆ Q and �(Q) ≤ 6�(P),
where �(R) denotes the side length of a cube R.

We say that a collection S ⊆ D is called η-sparse for 0 < η ≤ 1 if for each
α ∈ {

0, 1
3 ,

2
3

}n there is a pairwise disjoint collection (EQ)Q∈S ∩Dα of measurable
sets so that EQ ⊆ Q and |Q| ≤ η−1|EQ |.
Remark 1.1 Since Rn is connected and unbounded, the doubling property implies
that μ(Rn) = ∞ [21]. We are working in Rn for notational reasons only; since our
applications lie in a more general framework, our arguments are written so that they
work with minimal adaptations in general doubling metric measure spaces X . Our
main results remain true even when μ(X) < ∞, for example when X is a bounded
Lipschitz domain in Rn . We will detail how this can be seen in Sect. 4.

We let D be a space of test functions on Rn with the property that it is dense in
L p(w) for all 1 ≤ p < ∞ and all weights w ∈ A∞, for example, D = C∞

c (Rn).
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250 D. Frey, B. Nieraeth

Definition 1.2 Let T be a (sub)linear operators, initially defined on D, with the fol-
lowing property: There are 1 ≤ p0 < q < q0 ≤ ∞ and constants c > 0 and 0 < η ≤ 1
so that for each pair of functions f, g ∈ D there is an η-sparse collection S ⊆ D so
that

|〈T f, g〉| ≤ c
∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q|. (1.2)

Then we will write T ∈ S(p0, q0), or T ∈ S(p0, q0;μ) if we wish to emphasize
the underlying measure, and we shall refer to the operators in this class as sparsely
dominated operators.

If T ∈ S(p0, q0), then it extends to a bounded operator on L p for all p0 < p < q0,
see Proposition 2.2. For examples of operators in this class we refer the reader to Sect.
1.3

Whenwriting that a constantC = C(T ) > 0 depends on T , wemean that it depends
on the constants c, η in the domination property (1.2). We remark that the sum on the
right-hand side of (1.2) can be split into 3n sums by considering the different dyadic
grids, simplifying the proofs by only having to consider a single dyadic grid at a time.
Finally, we remark that if T is linear, then T ∈ S(p0, q0) if and only if T ∗ ∈ S(q ′

0, p
′
0),

where T ∗ denotes the dual operator of T .
We will write A � B when there is a constant C > 0, independent of the important

parameters, so that A ≤ CB. Moreover we write A � B if A � B and B � A.

1.2 Main Results

For 1 ≤ p0 < q0 ≤ ∞ we consider an operator T ∈ S(p0, q0). Then T will be of
strong type (p, p) for any p0 < p < q0 and of weak type (p0, p0), see Proposition
2.2. As a matter of fact, T will satisfy weighted boundedness for various classes of
weights. It has been shown in [6] that for p0 < p < q0 and anyw ∈ Ap/p0 ∩RH(q0/p)′
we have

‖T ‖L p(w)→L p(w) �
[
w(q0/p)′

]max
(

1
p−p0

,
q0−1
q0−p

)/(
q0
p

)′

Aφ(p)

≤
(
[w]Ap/p0

[w]RH(q0/p)′
)max

(
1

p−p0
,
q0−1
q0−p

)

, (1.3)

where φ(p) = (q0/p)′(p/p0 − 1) + 1, and that the exponent in the last estimate is
optimal for sparse operators. This generalizes the positive result of the well-known
A2-conjecture, stating that for all Calderón–Zygmund operators T one has

‖T ‖L p(w)→L p(w) � [w]max
(

1
p−1 ,1

)

Ap
. (1.4)

Indeed, the result in (1.3) recovers this result since Calderón–Zygmund operators
are in the class S(1,∞). Historically, the estimate (1.4) was first proven to be true for
the Beurling–Ahlfors transform by Petermichl and Volberg [38], solving an optimal
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Weak and Strong Type A1–A∞ Estimates 251

regularity problem for solutions to Beltrami equations. In between this period and the
time that (1.4) was established in full generality by Hytönen [24], it was shown by
Lerner, Ombrosi, and Pérez [32] that for all Calderón–Zygmund operators T one has

‖T ‖L p(w)→L p(w) � pp′ log
(
e + 1

p − 1

)
[w]A1 (1.5)

for all 1 < p < ∞, showing a significantly better exponent of the constant of the
weight when considering the smaller class of weights A1 ⊆ Ap. Using mixed A1–A∞
type estimates, this result was improved by Hytönen and Pérez [26] to

‖T ‖L p(w)→L p(w) � pp′[w]
1
p′
A∞[w]

1
p

A1
, (1.6)

for 1 < p < ∞, where they are considering Wilson’s A∞ constant

[w]A∞ = sup
B a ball

1

w(B)

∫

B
M (wχB) dμ,

which appears in [41–43]. They also provided an improvement to (1.4) using mixed
Ap–A∞ type estimates. Such mixed type estimates have also appeared in the recent
work by Li [34], who gives a direct improvement of (1.3).

To continue on along this line of results, we establish the following:

Theorem 1.3 Let 1 ≤ p0 < p < q0 ≤ ∞, T ∈ S(p0, q0), and w ∈ A1 ∩ RH(q0/p)′ .
Then there is a constant c = c(T, ν, n) > 0 so that

‖T ‖L p(w)→L p(w) ≤ ccp
[
w(q0/p)′

] 1
p′
A∞

[
w(q0/p)′

] 1
p(q0/p)′

A1
, (1.7)

with

cp =
[(

p′

q ′
0

)′] 1
q′
0

[(
p′
0

p′

)′ ( p

p0

)′] 1
p0

.

In particular, we have

‖T ‖L p(w)→L p(w) � cp
[
w(q0/p)′

] 1
q′
0

A1
≤ cp

(
[w]A1[w]RH(q0/p)′

) q0−1
q0−p

. (1.8)

Our result (1.7) recovers (1.6) when setting p0 = 1, q0 = ∞. One shows that (1.8)
follows from (1.7) by applying (2.1) and Proposition 2.1(ii). This result recovers the
exponent in (1.5) when q0 = ∞.

The constants found in the estimate (1.7) can be used to establish weighted weak
type (p0, p0) boundedness. In the work of Lerner, Ombrosi, and Pérez [32] it was
shown that for all Calderón–Zygmund operators T and all weights w ∈ A1 one has
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252 D. Frey, B. Nieraeth

‖T ‖L1(w)→L1,∞(w) � [w]A1 log(e + [w]A1). (1.9)

This result is related to the weakMuckenhoupt–Wheeden conjecture, which is now
known to be false [36], stating that one has linear dependence on [w]A1 on the right-
hand side of (1.9), and the logarithm can be removed. However, the result (1.9) was
improved by Hytönen and Pérez [26] to

‖T ‖L1(w)→L1,∞(w) � [w]A1 log(e + [w]A∞). (1.10)

It is expected that this dependence on the constants of the weight is optimal.
Both the proofs of (1.9) and (1.10) rely on taking a Calderón–Zygmund decompo-

sition f = g + b. Here, the Hörmander condition of the kernel of T is used to deal
with the ‘bad’ part b, using an argument that can already be found in [37] (namely,
they use [18, Lemma 3.3, p. 413]). Since we are making no such assumptions on our
operators, which may not even be integral operators, we rely on new methods to deal
with this term, using only sparse domination. We establish the following result:

Theorem 1.4 Let 1 ≤ p0 < p < q0 ≤ ∞, T ∈ S(p0, q0), and w ∈ A1 ∩ RH(q0/p0)′ .
Then there is a constant c = c(T, p0, q0, ν, n) > 0 so that

‖T ‖L p0 (w)→L p0,∞(w) ≤ cψ(w)

with

ψ(w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[w]A1 log(e + [w]A∞) if p0 = 1, q0 = ∞;
[w]

1
p0
A1

[w]
1
p′0
A∞ log

(
e + [w]A∞

) 2
p0 if p0 > 1, q0 = ∞;[

wq ′
0

]

A∞
[w]A1[w]RHq′

0
if p0 = 1, q0 < ∞;

[
w(q0/p0)′

]1+ 1
p0

A∞

(
[w]A1[w]RH(q0/p0)′

) 1
p0 if p0 > 1, q0 < ∞.

We note that in particular we recover the bound (1.10). It is of interested to point out
that we get this bound even for operators outside of the class of Calderón–Zygmund
operators that are in S(1,∞), see Example 1.8.

We also establish a dual result of the type first studied in [33], generalizing the
result [26, Theorem 1.23]. Here we denote by T ∗ the dual operator of T for linear T .

Theorem 1.5 Let 1 ≤ p0 < q0 ≤ ∞, T ∈ S(p0, q0) linear and w ∈ A1. Then there
is a constant c = c(T, p0, q0, ν, n) > 0 so that

∥∥∥∥∥∥
T ∗ f

w
1
q′
0

∥∥∥∥∥∥
Lq′

0,∞
(w)

≤ c
([w]A∞ log

(
e + [w]A1

)) 1
q′
0 ‖ f ‖q ′

0

for all f ∈ Lq ′
0 .
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Using the ideas of [35], we then establish optimality of the weighted estimates in
terms of the asymptotic behaviour of the unweighted L p operator norm of T at the
endpoints p = p0 and p = q0. We refer to Definition 5.1 for the definition of the
exponents αT (p0) and γT (q0).

Theorem 1.6 Let 1 ≤ p0 < q0 ≤ ∞, let T ∈ S(p0, q0), and let w ∈ Ap/p0 ∩
RH(q0/p)′ . Then the exponent in the estimate

‖T ‖L p(w)→L p(w) �
[
w(q0/p)′

]max
(

1
p−p0

,
q0−1
q0−p

)/(
q0
p

)′

Aφ(p)

from [6] is optimal under the assumption that αT (p0) = 1/p0 and γT (q0) = 1/q ′
0.

Moreover, for w ∈ A1 ∩ RH(q0/p)′ , the exponent in the estimate

‖T ‖L p(w)→L p(w) �
[
w(q0/p)′

] 1
q′
0

A1

from Theorem 1.3 is optimal under the assumption that γT (q0) = 1/q ′
0.

In the example of the Riesz transform on two copies of Rn glued smoothly along
their unit circles [9], it is known that q0 = n and γT (q0) = (n − 1)/n, and thus the
weighted estimate is optimal. See Example 5.5.

1.3 Examples

There is a wealth of examples of sparsely dominated operators. Other than the class
of Calderón–Zygmund operators, our main examples can be found in [6, Sect. 3]. See
also the earlier work [2]. We point out several examples of particular interest here.

Example 1.7 (Riesz transform associated with elliptic second-order divergence form
operators). Let A be a complex, bounded, measurable matrix-valued function in Rn

satisfying the ellipticity condition Re(A(x)ξ · ξ) ≥ λ|ξ |2 for all ξ ∈ Cn and a.e.
x ∈ Rn . Then one can define a maximal accretive operator

L f := − div(A∇ f )

which generates a semigroup (e−t L)t>0. If both the semigroup and the family
(
√
t∇e−t L)t>0 satisfy L p0–Lq0 off-diagonal estimates, then the Riesz transform

R := ∇L−1/2 is in the class S(p0, q0). In particular we point out that if we are
using the Lebesgue measure in dimension ν = n = 1, we have p0 = 1 and q0 = ∞
so thatR ∈ S(1,∞). We refer the reader to [1] for more values of p0 and q0 in other
dimensions in the Euclidean setting and to [6] for details on the sparse domination
result.

Example 1.8 (Riesz transform associated to Neumann Laplacian) Suppose 
 is the
Laplace operator associated with Neumann boundary conditions in a bounded convex
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254 D. Frey, B. Nieraeth

doubling domain in Rn . As studied in [40], the Riesz transform ∇
−1/2 will not in
general have a kernel satisfying pointwise regularity estimates and is thus not in the
class of Calderón–Zygmund operators. However, this operator does belong to the class
S(1,∞) and will therefore satisfy the bound (1.6). Note that for this example we need
to apply our results to a metric measure space other than Rn . We refer the reader to
Sect. 4 for an overview of the theory in bounded domains.

Example 1.9 (Fourier multipliers) Let m be the function in Rn defined by m(ξ) =
1− |ξ |2 for |ξ | ≤ 1 and m(ξ) = 0 elsewhere. For δ ≥ 0, the Bochner–Riesz operator
Bδ is defined as the Fourier multiplier Bδ f := (mδ f̂ )∨. Then, for any δ > 0 there
exists a 1 < p0 < 2 so that for any 0 < ε < 2 − p0 we have Bδ ∈ S(p0 + ε, 2). For
details we refer the reader to [5].

2 Preliminaries

2.1 Notation

For 1 ≤ p < ∞ we denote by Mp the uncentred dyadic maximal operator

Mp f := sup
Q∈Dα

〈 f 〉p,QχQ,

where it will be made clear from the context which dyadic gridDα we are considering,
and where we will write M := M1. Similarly we define MB

p and MB to be the
uncentred maximal operators with respect to balls rather than cubes.

We list some of the basic definitions and facts about weights. Ameasurable function
w : Rn → (0,∞) is called a weight. We identify a weight w with a Borel measure
by setting

w(E) :=
∫

E
w dμ

for all measurable sets E ⊆ Rn . For 1 ≤ p ≤ ∞ we, respectively, denote by L p(w)

and L p,∞(w) the Lebesgue and weak Lebesgue spaces with measure w.
For 1 ≤ p < ∞ we say that w ∈ Ap if

[w]Ap := sup
Q∈D

〈w〉1,Q〈w−1〉p′−1,Q < ∞,

where for p = 1 we use the limiting interpretation 〈w−1〉p′−1,Q = 〈w−1〉∞,Q =
(ess infQ w)−1. We say that w ∈ A∞ if its Wilson A∞ constant is finite, that is, if

[w]A∞ := sup
B a ball

1

w(B)

∫

B
MB(wχB) dμ < ∞,

where the supremum is taken over all balls B ⊆ Rn . For an overview of this constant
we refer the reader to [27] and references therein. In particular we point out that for a
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dimensional constant c = c(n, ν) > 0 we have

c[w]A∞ ≤ [w]Ap ≤ [w]Aq , 1 ≤ q < p < ∞, (2.1)

where the first inequality here can be found in [26, Proposition 2.2], while the second
one follows from Hölder’s inequality.

For 1 < s ≤ ∞ we say that w ∈ RHs if

[w]RHs := sup
Q∈D

〈w〉s,Q〈w〉−1
1,Q < ∞.

For s = 1 we will use the interpretation RH1 = A∞, where we set [w]RH1 := 1.
We provide some facts about the classes A1 and A∞ that we will use.

Proposition 2.1 (i) Aq = ⋃
1≤p<q Ap for 1 < q ≤ ∞ and RHs = ⋃

s<r≤∞ RHr

for 1 ≤ s < ∞. In particular we have w ∈ A∞ if and only if w ∈ Ap for some
1 ≤ p < ∞.

(ii) For 1 ≤ p < ∞, 1 ≤ s < ∞ we have w ∈ Ap ∩ RHs if and only if ws ∈
As(p−1)+1. Moreover, we have

[ws]As(p−1)+1 ≤ ([w]Ap [w]RHs

)s
.

(iii) There are constants c, κ > 0 depending only on the doubling dimension ν, so
that for every w ∈ A1 we have

MB
q w ≤ c[w]A1w for 1 ≤ q ≤ 1 + 1

κ[w]A∞
.

Proof For (i) we refer the reader to [20,41]. Property (ii) can be found in [28].
Property (iii) is a consequence of [27, Theorem 1.1]. Indeed, this result states that

there are constants c, κ > 0 depending only on ν such that for any ball B we have
〈w〉q(w),B ≤ c〈w〉1,2B , where q(w) := 1 + 1/(κ[w]A∞). Thus, (iii) follows from
Hölder’s inequality and the definition of A1. ��

2.2 Weighted Boundedness of Sparsely Dominated Operators

We wish to give some heuristic arguments as to why we can expect certain weighted
boundedness of sparsely dominated operators.We start with the following observation:

Proposition 2.2 Let 1 ≤ p0 < q0 ≤ ∞ and T ∈ S(p0, q0). Then T is of strong type
(p, p) for all p0 < p < q0 and of weak type (p0, p0).

The verification of the strong boundedness is by now standard, see also [13]. While
theweak type boundedness should bewell known,we could not find a precise reference
for the cases where p0 > 1. For the case p0 = 1 we refer the reader to [12, Theorem
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E], see also [4, Proposition 6]. For completeness we give a proof of the general case
here, which we defer to the end of this section.

We will show that if an operator T lies in S(p0, q0;μ), then T must also lie in
S(q−, q+;w) for appropriate weights w, and for certain q− < q+ depending on w.
Then Proposition 2.2 implies that T satisfies weighted boundedness.

First we note that if we have a sparse collectionS ⊆ D with respect to the reference
measureμ, thenS is also sparse with respect to all weightsw ∈ A∞. Indeed, suppose
w ∈ Ap for some 1 ≤ p < ∞ and supposeS is η-sparse with (EQ)Q∈S ∩Dα as one
of the associated pairwise disjoint collections. Then, by Hölder’s inequality (use the
first equation in (2.2) with f = χEQ , p = 1),

w(Q) ≤
( |Q|

|EQ |
)p

[w]Apw(EQ) ≤ η−p[w]Apw(EQ).

Hence,S is [w]−1
Ap

ηp-sparse with respect to the measure w with the same collections
(EQ)Q∈S ∩Dα .

Next we observe that for any 1 ≤ p ≤ q < ∞ it follows from Hölder’s inequality
that

〈 f 〉p,Q ≤ [w]
1
q
Aq/p

(
1

w(Q)

∫

Q
| f |qw dμ

) 1
q

,

〈gw〉q ′,Q |Q| ≤ [w]
1
p
RH(q/p)′

(
1

w(Q)

∫

Q
|g|p′

w dμ

) 1
p′

w(Q).

(2.2)

Thus, if T ∈ S(p0, q0;μ) andw ∈ Ap1/p0 ∩RH(q0/q1)′ for some p0 < p1 ≤ q1 < q0,
then it follows from the self-improvement properties (i) of Proposition 2.1 that we
can find p0 ≤ q− < p1, q1 < q+ ≤ q0 so that w ∈ Aq−/p0 ∩ RH(q0/q+)′ . Picking
appropriate functions f , g, and by applying the sparse domination property to the pair
f , gw, we find a sparse collection S ⊆ D so that by (2.2) we have

∣∣∣∣
∫

(T f )gw dμ

∣∣∣∣ �
∑

Q∈S

(
1

w(Q)

∫

Q
| f |q−w dμ

) 1
q−

(
1

w(Q)

∫

Q
|g|q ′+w dμ

) 1
q′+

w(Q).

In other words, we have T ∈ S(q−, q+;w) and thus we obtain the boundedness

T : L p(w) → L p(w), w ∈ Ap1/p0 ∩ RH(q0/q1)′ , p1 ≤ p ≤ q1.

For the casewhere p1 = q1 = p0 and thuswhenw ∈ A1∩RH(q0/p0)′ , an analogous
reasoning shows that for some p0 < q+ we have T ∈ S(p0, q+;w). Hence, it follows
from Proposition 2.2 that T is of weak type (p0, p0) with respect to such weights.

Our main results deal with the cases p1 = p0 where we establish quantitative
bounds of T in terms of the characteristic constants of the weight in the situations

T : L p(w) → L p(w), w ∈ A1 ∩ RH(q0/p)′ ,

T : L p0(w) → L p0,∞(w), w ∈ A1 ∩ RH(q0/p0)′ .
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Proof of Proposition 2.2 By splitting into 3n terms, we may assume without loss of
generality that our sparse domination occurs in a single dyadic grid Dα throughout
our arguments.

Let p0 < p < q0 and let f ∈ L p ∩ D, g ∈ L p′ ∩ D. Then we can find a sparse
collection S ⊆ Dα so that

|〈T f, g〉| �
∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q| �

∑

Q∈S
ess infQ

(
Mp0 fMq ′

0
g
)|EQ |

�
∫

Mp0 fMq ′
0
g dμ.

By using Hölder’s inequality and by noting that p > p0, p′ > q ′
0, it remains to

observe that ‖Mp0 f ‖p � ‖ f ‖p and ‖Mq ′
0
g‖p′ � ‖g‖p′ . Hence, T extends to a

bounded operator in L p.
For the second assertion we will use the equivalence

‖T ‖L p0→L p0,∞ � sup
‖ f ‖p0=1

sup
E⊆Rn

0<|E |<∞
inf
E ′⊆E

|E |≤2|E ′|
sup

|h|≤χE ′
|E | 1

p0
−1|〈T f, h〉|, (2.3)

with f, h ∈ D, see [19, Exercise 1.4.14]. Given such an f with ‖ f ‖p0 = 1 and
E ⊆ Rn of finite positive measure we define

� :=
{
MB(| f |p0) > K |E |−1

}
, E ′ := E\�,

where K is chosen large enough to ensure that |E | ≤ 2|E ′|. Let h ∈ D with |h| ≤ χE ′ .
Then we can find a sparse collection S ⊆ Dα such that

|〈T f, h〉| �
∑

Q∈S
〈 f 〉p0,Q〈h〉q ′

0,Q
|Q| =

∑

Q∈S
Q∩E ′ �=∅

〈 f 〉p0,Q〈h〉q ′
0,Q

|Q|. (2.4)

We proceed by taking a Calderón–Zygmund decomposition of | f |p0 ∈ L1. We can
find a disjoint collection P ⊆ Dα of cubes so that � = ∪P∈P P and functions g,
(bP )P∈P so that | f |p0 = g + ∑

P∈P bP and

supp bP ⊆ P,

∫

P
bP dμ = 0, (2.5)

‖g‖∞ � |E |−1, ‖g‖1 � 1. (2.6)

Noting that for all P ∈ P we have P ∩ E ′ = ∅, the properties of the dyadic system
imply that for any Q ∈ S with Q ∩ E ′ �= ∅ we have P ⊆ Q whenever P ∩ Q �= ∅.
But then by (2.5) and arguments similar to the ones in the first part of the proof we
have
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∑

Q∈S
Q∩E ′ �=∅

〈 f 〉p0,Q〈h〉q ′
0,Q

|Q| =
∑

Q∈S
Q∩E ′ �=∅

(
1

|Q|
∫

Q
g dμ

) 1
p0 〈h〉q ′

0,Q
|Q|

� ‖|g| 1
p0 ‖q‖h‖q ′ . (2.7)

Thus, by combining (2.4) and (2.7), we find using (2.6) that

|〈T f, h〉| �
(

‖g‖1−
p0
q∞ ‖g‖

p0
q
1

) 1
p0 ‖h‖∞|E ′| 1

q′ � |E | 1q − 1
p0 |E | 1

q′ = |E |1− 1
p0 .

Hence, we may conclude from (2.3) that ‖T ‖L p0→L p0,∞ < ∞, finishing the proof. ��

Remark 2.3 The cancellation of the ‘bad‘ part b in our proofs occurs because we are
able to perform our Calderón–Zygmund decomposition in the same dyadic grid as
where the sparse domination occurs, see Lemma 4.6. The usual Whitney decomposi-
tion argument that is used for Calderón–Zygmund decompositions in general doubling
metric measure spaces, as can be found for example in [11,39], is not precise enough
for this particular argument and we need to adapt the results so that they work with
our dyadic grids.

3 Proofs of the Main Results

Throughout these proofs we fix α ∈ {
0, 1

3 ,
2
3

}n and only consider cubes taken from
the gridDα . We also only consider the dyadic maximal operatorsMp to be taken with
respect to this grid to facilitate some of the arguments and for simpler constants in our
estimates. Recall that D denotes a space of functions in Rn which has the property
that it is dense in L p(w) for all 1 ≤ p < ∞ and all weights w ∈ A∞.

As an analogue to [32, Lemma 3.2] and [26, Lemma 6.1], our main lemma is the
following:

Lemma 3.1 LetS ⊆ Dα be η-sparse, and let 1 ≤ p0 < p < q0 ≤ ∞, 1 < q < ∞.
Then there is a constant c = c(η, n, ν) > 0 so that

∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q| ≤ ccp(q

′)
1
p′ ‖ f ‖

L p
(
Mq(q0/p)′w

)‖g‖
L p′

(
w1−p′

)

for all f, g ∈ D and w ∈ Lq(q0/p)′
loc , where cp is as in Theorem 1.3.

We point out that a similar type of result is established in [15, Theorem B].

Remark 3.2 In the unweighted case we note that
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∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q| ≤ η−1‖Mp0 f ‖p‖Mq ′

0
g‖p′

≤ η−1
[(

p

p0

)′] 1
p0

[(
p′

q ′
0

)′] 1
q′
0 ‖ f ‖p‖g‖p′ .

Thus, it appears that adding the weight accounts for the extra term [(p′
0/p

′)′]1/p0 in
the constant cp, which depends on p if and only if p0 > 1. As a matter of fact, we
shall see in the proof of Lemma 3.4 that this constant appears in an application of
Kolmogorov’s Lemma to the maximal operator. This extra term is what causes the
additional terms in the quantitative bounds for p0 > 1 in Theorem 1.4 and at this
moment we are unsure whether it can be removed or not.

We break up the proof of the main lemma into a sequence of lemmata.

Lemma 3.3 For all f, g ∈ D and 0 < β ≤ 1 we have

∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q| �

∫
Mp0

((
Mq ′

0
g
)1−β

f

)
(Mq ′

0
g)β dμ.

Proof Note that for any Q ∈ Dα we have

〈g〉q ′
0,Q

= 〈g〉βq ′
0,Q

〈g〉1−β

q ′
0,Q

≤ 〈g〉βq ′
0,Q

ess infQ
(
Mq ′

0
g
)1−β

so that

〈 f 〉p0,Q〈g〉q ′
0,Q

≤
〈(
Mq ′

0
g
)1−β

f

〉

p0,Q
〈g〉βq ′

0,Q

≤ ess infQ Mp0

((
Mq ′

0
g
)1−β

f

)(
Mq ′

0
g
)β

.

Hence, if S ⊆ Dα is sparse, we find that

∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q| �

∑

Q∈S
ess infQ Mp0

((
Mq ′

0
g
)1−β

f

)(
Mq ′

0
g
)β |EQ |

≤
∫

Mp0

((
Mq ′

0
g
)1−β

f

)(
Mq ′

0
g
)β

dμ,

as desired. ��
Lemma 3.4 For all 1 ≤ q < ∞, w ∈ Lq

loc, p0 < p < q0, and f, g ∈ D, we have

∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q| � τp‖ f ‖L p(Mqw)‖Mq ′

0
g‖

L p′
(
(Mqw)

1−p′),
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where

τp =
[(

p′
0

p′

)′ ( p

p0

)′] 1
p0

.

For the proof of this lemma we require two results on dyadic maximal operators.
By the classical result of Fefferman and Stein [17] we have

‖M f ‖L1,∞(w) ≤ ‖ f ‖L1(Mw) (3.1)

and thus ‖M f ‖L p(w) ≤ p′‖ f ‖L p(Mw) for 1 < p < ∞ by the Marcinkiewicz
Interpolation Theorem. This implies that

‖Mq f ‖L p(w) ≤
[(

p

q

)′] 1
q

‖ f ‖L p(Mw), 1 ≤ q < p < ∞. (3.2)

Moreover, as a consequence of Kolmogorov’s Lemma we have

M ((M f )δ) � (M f )δ

1 − δ
, 0 < δ < 1 (3.3)

for f such thatM f < ∞. For this result we refer the reader to [10, Proposition 2] or
[20, Theorem 9.2.7].

Proof We will prove the stronger assertion

∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q| �

[(
p′
0

r

)′(max(r, p′)′

p0

)′] 1
p0

‖ f ‖L p((Mw)(1−r)/(1−p′))‖Mq ′
0
g‖L p′ ((Mw)1−r )

,

valid for all 1 < r < p′
0, generalizing a version of the result [30, Theorem 1.7] and its

proof in which the case p0 = 1, q0 = ∞ is treated. The result of the lemma follows
by taking r = (p′ − 1)/q + 1 ∈ (1, p′].

We set

β := min

(
p′ r − 1 + p′

0 − 1

p′
0(r − 1) + (p′

0 − 1)r
, 1

)

so that 0 < β ≤ 1.
By Lemma 3.3 and by Hölder’s Inequality we find that

∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q| �

∫
Mp0

((
Mq ′

0
g
)1−β

f

)(
Mq ′

0
g
)β

dμ

≤ I‖Mq ′
0
g‖β

L p′ ((Mw)1−r )
,

(3.4)
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where

I =
∥∥∥∥Mp0

((
Mq ′

0
g
)1−β

f

)∥∥∥∥
L

p′
p′−β ((Mw)(1−r)β/(β−p′))

.

We will consider two cases. First assume that

p′ r − 1 + p′
0 − 1

p′
0(r − 1) + (p′

0 − 1)r
≥ 1

and β = 1. Then

(p′ − 1)(r − 1 + p′
0 − 1) ≥ 2(p′

0 − 1)(r − 1)

so that

1 − r

1 − p′ ≤ 1

2

(
1 + r − 1

p′
0 − 1

)
< 1

by the assumption r < p′
0. Then it follows from (3.2) and (3.3) that

I = ∥∥Mp0 f
∥∥
L p((Mw)(1−r)/(1−p′)) ≤

[(
p

p0

)′] 1
p0 ‖ f ‖L p(M ((Mw)(1−r)/(1−p′))))

�
(

1

1 − 1−r
1−p′

) 1
p [(

p

p0

)′] 1
p0 ‖ f ‖L p((Mw)(1−r)/(1−p′))

≤
[
2

(
p′
0

r

)′] 1
p
[(

p

p0

)′] 1
p0 ‖ f ‖L p((Mw)(1−r)/(1−p′)),

as desired.
For the second case we assume that

p′ r − 1 + p′
0 − 1

p′
0(r − 1) + (p′

0 − 1)r
< 1 and β = p′ r − 1 + p′

0 − 1

p′
0(r − 1) + (p′

0 − 1)r
.

Then, using r < p′
0, we note that

p′

p′ − β
= p0 + r ′

2
> p0 and

(1 − r)β

β − p′ = 1

2

(
1 + r − 1

p′
0 − 1

)
< 1.
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Hence, we may apply (3.2) and (3.3) so that

I �

⎛

⎝ 1

1 − (1−r)β
β−p′

⎞

⎠

p′−β

p′
⎛

⎝
p′

p′−β

p′
p′−β

− p0

⎞

⎠

1
p0

‖(Mq ′
0
g)1−β f ‖

L
p′

p′−β
(
(Mw)(1−r)β/(β−p′)

)

≤
[
2

(
p′
0

r

)′] p′−β

p′ [
1 + 2

p0
r ′

(
r ′

p0

)′] 1
p0 ‖(Mq ′

0
g)1−β f ‖

L
p′

p′−β
(
(Mw)(1−r)β/(β−p′)

).

(3.5)
By Hölder’s Inequality we find that

‖(Mq ′
0
g)1−β f ‖

p′
p′−β

L
p′

p′−β ((Mw)(1−r)β/(β−p′))

=
∫

(Mq ′
0
g)

(1−β)p′
p′−β (Mw)

(1−r)(β−1)
β−p′ | f |

p′
p′−β (Mw)

1−r
β−p′ dμ

≤ ‖Mq ′
0
g‖

p′(1−β)

p′−β

L p′ ((Mw)1−r )
‖ f ‖

p′
p′−β

L p((Mw)(1−r)/(1−p′)).

Hence, by (3.5) we have

I �
[(

p′
0

r

)′( r ′

p0

)′] 1
p0 ‖ f ‖L p((Mw)(1−r)/(1−p′))‖Mq ′

0
g‖1−β

L p′ ((Mw)1−r )
.

Thus, the result follows from (3.4).
By combining the two cases, the assertion follows. ��

For the proof of Lemma 3.1 we will use a result that can be found in [32, p. 8] which
states that

‖M f ‖L p′ ((Mqw)1−p′ ) ≤
(
pq − 1

q − 1

)1− 1
pq ‖ f ‖L p′ (w1−p′ ) (3.6)

for 1 < p, q < ∞.

Proof of Lemma 3.1 Setting v := w(q0/p)′ , it follows from (3.6) that

‖Mq ′
0
g‖

L p′
((

Mq(q0/p)′w
)1−p′) = ‖M (|g|q ′

0)‖
1
q′
0

L p′/q′
0
(
(Mqv)

1−p′/q′
0
)

≤
⎛

⎜⎝

(
p′
q ′
0

)′
q − 1

q − 1

⎞

⎟⎠

1
q′
0
− 1

q′
0

(
p′
q′
0

)′
q

‖|g|q ′
0‖

1
q′
0

L

p′
q′
0
(
v
1−p′/q′

0
)

≤
[(

p′

q ′
0

)′] 1
q′
0

(q ′)
1
p′ + 1

q′ ‖g‖L p′ (w1−p′ ),

(3.7)
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where we used that

1

q ′
0

− 1

q ′
0

(
p′
q ′
0

)′
q

= 1

p′ + 1

q ′
0

(
p′
q ′
0

)′
q ′

≤ 1

p′ + 1

q ′ .

By maximizing the function t �→ t1/t for t ≥ 1, we note that (q ′)1/q ′ ≤ e1/e. Hence,
by combining Lemma 3.4 and (3.7), the result follows. ��

Proof of Theorem 1.3 Set v := w(q0/p)′ ∈ A1 and let κ be the constant from Proposi-
tion 2.1(iii). Setting q = 1 + 1/(κ[v]A∞), we have q ′ � [v]A∞ and

Mq(q0/p)′w = (Mqv)
1

(q0/p)′ � [v]
1

(q0/p)′
A1

w.

Hence, from Lemma 3.1 it follows that

|〈T f, g〉| � cp[v]
1
p′
A∞[v]

1
p(q0/p)′
A1

‖ f ‖L p(w)‖g‖L p′ (w1−p′ ),

proving the result. ��

Proof of Theorem 1.4 The proof uses arguments similar to the ones presented in the
proof of Proposition 2.2. We use the equivalence

‖T ‖L p0 (w)→L p0,∞(w)

� sup
‖ f ‖L p0 (w)=1

sup
E⊆Rn

0<w(E)<∞
inf
E ′⊆E

w(E)≤2w(E ′)

sup
|h|≤χE ′

w(E)
1
p0

−1
∣∣∣∣
∫

(T f )hw dμ

∣∣∣∣ .(3.8)

Fixing a function f ∈ D with ‖ f ‖L p0 (w) = 1 and a measurable set E , we set
� := {MB(| f |p0) > 2c[w]A1w(E)−1}, where MB denotes the uncentred max-
imal operator with respect to all balls B ⊆ Rn and where c = c(n, ν) > 0 is the
constant appearing in the inequality ‖MBφ‖L1,∞(w) ≤ c[w]A1‖φ‖L1(w), which is a
consequence of (3.1). We have

w(�) ≤ c[w]A1w(E)

2c[w]A1

∫
| f |p0w dμ = w(E)

2
(3.9)

and thus, setting E ′ := E\�, we have w(E ′) ≥ w(E) − w(�) ≥ w(E)/2.
By applying Lemma 4.6 with | f |p0 ∈ L1, we obtain a disjoint collectionP ⊆ Dα

of cubes so that � = ∪P∈P P and functions g, b so that | f |p0 = g + b, where

g = | f |p0χ�c +
∑

P∈P
〈| f |p0〉1,PχP
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and

‖g‖∞ � [w]A1

w(E)
.

Picking a function h satisfying |h| ≤ χE ′ and hw ∈ D, we apply the sparse domination
property to the pair f , hw to find a sparse collectionS ⊆ Dα so that, by using Lemma
3.1 with the weight wχE ′ , for all p0 < p < q0 and 1 < q < ∞ we have

∣∣∣∣
∫

(T f )hw dμ

∣∣∣∣ = |〈T f, hw〉| ≤
∑

Q∈S
Q∩E ′ �=∅

(
1

|Q|
∫

Q
g dμ

) 1
p0 〈hw〉q ′

0,Q
|Q|

� cp(q
′)

1
p′ ‖|g| 1

p0 ‖
L p

(
Mq(q0/p)′ (wχE ′ )

)‖hw‖L p′ (w1−p′ )

� cp(q
′)

1
p′ [w]

1
p0

− 1
p

A1
w(E)

1
p − 1

p0 ‖g‖
1
p

L1
(
Mq(q0/p)′ (wχE ′ )

)w(E ′)
1
p′ .

(3.10)
Note here that we have used the fact that the terms involving b cancel in the exact
same way as they do in the proof of Proposition 2.2.

Similar to what is done in [26,32,37], we deal with the term involving g as follows:
We remark that for a cube P ∈ Dα we have

M (φχPc)(x) = ess inf P M (φχPc) for all x ∈ P. (3.11)

Indeed, let x, y ∈ P and let R ∈ Dα so that x ∈ R. Then either R ⊆ P or P ⊆ R.
In the first case we have 〈φχPc 〉1,R = 0, while in the second case we have y ∈ R
and thus 〈φχPc 〉1,R ≤ M (φχPc)(y). Thus, we may conclude that M (φχPc)(x) ≤
M (φχPc)(y), proving (3.11) by symmetry. Using this result, we find, since E ′ ⊆ Pc

for all P ∈ P , that

∫

�

|g|Mq(q0/p)′(wχE ′) dμ ≤
∑

P∈P
ess inf P Mq(q0/p)′(wχPc)

∫

P
| f |p0 dμ

≤
∫

�

| f |p0Mq(q0/p)′w dμ.

Since g = | f |p0 on �c, we conclude that

‖g‖
L1

(
Mq(q0/p)′ (wχE ′ )

) ≤ ‖ f ‖p0
L p0 (Mq(q0/p)′w)

. (3.12)

We first assume that q0 < ∞. We set v := w(q0/p0)′ ∈ A1 and choose

p = p0 + q0 − p0
1 + 2κ[v]A∞

, q = 2 + 2κ[v]A∞
1 + 2κ[v]A∞

.
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Then we have q ′ = 2 + 2κ[v]A∞ � [v]A∞ , and

q

(
q0
p

)′/(
q0
p0

)′
= 1 + 1

κ[v]A∞

so that it follows from Proposition 2.1(iii) that

Mq(q0/p)′w � [v]
1

(q0/p0)′
A1

w.

Thus, it follows from (3.10), (3.12), and Proposition 2.1(ii) that

w(E)
1
p0

−1
∣∣∣∣
∫

(T f )hw dμ

∣∣∣∣ � cp[v]
1
p′
A∞[w]

1
p0

− 1
p

A1
[v]

1
p(q0/p0)′
A1

≤ cp[v]
1
p′
A∞

(
[w]A1[w]RH(q0/p0)′

) 1
p0 . (3.13)

Next, we note that

1

p′ = q0 − 1 + 2κ[v]A∞(p0 − 1)

q0 + 2κ[v]A∞ p0
≤ q0 − 1

2κ[v]A∞ p0
+ 1

p′
0

and thus

[v]
1
p′
A∞ � [v]

1
p′0
A∞ .

Moreover, we compute

cp =
[
2(q0 − 1)(q0 + 2κ[v]A∞ p0)

2κ[v]A∞(q0 − p0)

] 1
q′
0

×
[
p0(q0 + 2κ[v]A∞)(q0 − 1 + 2κ[v]A∞(p0 − 1))

(q0 − p0)2

] 1
p0

� [v]
1
p0
A∞

[
1 + (p0 − 1)[v]A∞

] 1
p0 .

Hence, it follows from (3.8) and (3.13) that

‖T ‖L p0 (w)→L p0,∞(w) � [v]A∞
[
1 + (p0 − 1)[v]A∞

] 1
p0

(
[w]A1[w]RH(q0/p0)′

) 1
p0 .

The result follows by considering the cases p0 = 1 and p0 > 1 separately.
Now we assume that q0 = ∞. Taking q = 1+ 1/(κ[w]A∞) we have q ′ � [w]A∞ .

Thus, from (3.10) and Proposition 2.1(iii) we obtain

w(E)
1
p0

−1
∣∣∣∣
∫

(T f )hw dμ

∣∣∣∣ � cp[w]
1
p′
A∞[w]

1
p0
A1

(3.14)
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for all p0 < p < ∞. Choosing p = p0 + 1/(log(e + [w]A∞)), we have

1

p′ = 1 + (p0 − 1) log(e + [w]A∞)

1 + p0 log(e + [w]A∞)
≤ 1

p0 log(e + [w]A∞)
+ 1

p′
0

so that

[w]
1
p′
A∞ � [w]

1
p′0
A∞ . (3.15)

Moreover, we compute

cp = p
[
p0(1 + (p0 − 1) log(e + [w]A∞))(1 + p0 log(e + [w]A∞))

] 1
p0

�
[
1 + (p0 − 1) log(e + [w]A∞)

] 1
p0 log(e + [w]A∞)

1
p0 .

Hence, by (3.8), (3.14), and (3.15), we conclude that

‖T ‖L p0 (w)→L p0,∞(w)

� [w]
1
p0
A1

[w]
1
p′0
A∞

[
1 + (p0 − 1) log(e + [w]A∞)

] 1
p0 log(e + [w]A∞)

1
p0 .

By considering the cases p0 = 1 and p0 > 1 separately, the desired result follows. ��
Proof of Theorem 1.5 We use the equivalence

∥∥∥∥∥∥
T ∗ f

w
1
q′
0

∥∥∥∥∥∥
Lq′

0,∞
(w)

� sup
E⊆Rn

0<w(E)<∞
inf
E ′⊆E

w(E)≤2w(E ′)

sup
|h|≤χE ′

w(E)
− 1

q0

∣∣∣∣∣∣

〈
T ∗ f

w
1
q′
0

, hw

〉∣∣∣∣∣∣
. (3.16)

Let f ∈ D with ‖ f ‖q ′
0

= 1 and let E ⊆ Rn with 0 < w(E) < ∞. We denote byMB
w

the uncentred maximal operator over balls with respect to the measurew dμ. Then we
define

� :=
{
MB

w

( | f |q ′
0

w

)
> 2cw(E)−1

}
,

where c = c(n, ν) > 0 is the constant appearing in the inequality ‖MB
w φ‖L1,∞(w) ≤

c‖φ‖L1(w). We have

w(�) ≤ cw(E)

2c

∫ | f |q ′
0

w
w dμ = w(E)

2

which, setting E ′ := E\�, implies that w(E ′) ≥ w(E) − w(�) ≥ w(E)/2.
By applying theWhitneyDecompositionTheorem to�, seeTheorem4.7,we obtain

a disjoint collection P ⊆ Dα of cubes so that � = ∪P∈P P with the property that
for each P ∈ P there exists a ball B(P) containing P so that B(P) ∩ �c �= ∅ and
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|B(P)| � |P|, where the implicit constant depends only on n and ν, see also the proof
of Lemma 4.6. Moreover, we obtain functions g, b so that | f |q ′

0 = g + b, where

g = | f |q ′
0χ�c +

∑

P∈P
〈| f |q ′

0〉1,PχP .

Next, we pick a function h satisfying |h| ≤ χE ′ and hw1/q0 ∈ D, and fix a p0 <

p < q0 to be chosen later. We apply the sparse domination property to the pair hw1/q0 ,
f to find a sparse collectionS ⊆ Dα so that, by applying Lemma 3.1 with the weight
w1/(q0/p)′ , we find that for all 1 < q < ∞ we have

∣∣∣∣∣∣

〈
T ∗ f

w
1
q′
0

, hw

〉∣∣∣∣∣∣
=

∣∣∣∣

〈
f, T

(
hw

1
q0

)〉∣∣∣∣ ≤
∑

Q∈S
Q∩E ′ �=∅

〈
hw

1
q0

〉

p0,Q

(
1

|Q|
∫

Q
g dμ

) 1
q′
0 |Q|

� cp(q
′)

1
p′ ‖hw

1
q0 ‖

L p

(
(Mqw)

1
(q0/p)′

)‖|g|
1
q′
0 ‖

L p′
(

w

1−p′
(q0/p)′

)

= cp(q
′)

1
p′ ‖hw

1
q0 ‖

L p

(
(Mqw)

1
(q0/p)′

)

×
⎛

⎝
∫

�c
| f |p′

w
1−p′

(q0/p)′ dμ +
∑

P∈P
〈 f 〉p′

q ′
0,P

∫

P
w

1−p′
(q0/p)′ dμ

⎞

⎠

1
p′

,

(3.17)
where the terms involving b cancel in the same way as before.

Choosing q = 1 + 1/(κ[w]A∞) so that q ′ � [w]A∞ , it follows from Proposition
2.1(iii) that

(q ′)
1
p′ ‖hw

1
q0 ‖

L p((Mqw)

1
(q0/p)′ )

� [w]
1
p′
A∞[w]

1
p(q0/p)′
A1

(∫
|h|pw p

q0 w
1

(q0/p)′ dμ

) 1
p

≤ [w]
1
p′
A∞[w]

1
p(q0/p)′
A1

w(E ′)
1
p . (3.18)

Next, since | f | � w(E)−1/q ′
0w1/q ′

0 in �c, we have

∫

�c
| f |p′

w
1−p′

(q0/p)′ dμ ≤ w(E)

q′
0−p′
q′
0

∫

�c
| f |q ′

0w

p′−q′
0

q′
0 w

q′
0−p′
q′
0 dμ ≤ w(E)

q′
0−p′
q′
0 . (3.19)

Furthermore, fixing a P ∈ P and x ∈ B(P) ∩ �c, we have

〈 f 〉p′−q ′
0

q ′
0,P

� 〈 f 〉p′−q ′
0

q ′
0,B(P)

≤
[
MB

w

( | f |q ′
0

w

)
(x)

] p′−q′
0

q′
0 〈w〉

p′−q′
0

q′
0

1,B(P)

� w(E)

q′
0−p′
q′
0 〈w〉

p′−q′
0

q′
0

1,B(P)
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and

〈
w

q′
0−p′
q′
0

〉

1,P
� [w]

p′−q′
0

q′
0

A1

〈
(MBw)

q′
0−p′
q′
0

〉

1,B(P)

≤ [w]
p′−q′

0
q′
0

A1
〈w〉

q′
0−p′
q′
0

1,B(P)

so that

∑

P∈P
〈 f 〉p′

q ′
0,P

∫

P
w

1−p′
(q0/p)′ dμ � [w]

p′−q′
0

q′
0

A1
w(E)

q′
0−p′
q′
0

∑

P∈P
〈| f |q ′

0〉1,P |P|

≤ [w]
p′−q′

0
q′
0

A1
w(E)

q′
0−p′
q′
0 . (3.20)

Thus, by combining (3.18),(3.19), and (3.20) with (3.17), we conclude that
∣∣∣∣∣∣

〈
T ∗ f

w
1
q′
0

, hw

〉∣∣∣∣∣∣
� cp[w]

1
p′
A∞[w]

1
p(q0/p)′
A1

[w]
p′−q′

0
p′q′

0
A1

w(E ′)
1
p w(E)

q′
0−p′
p′q′

0

≤ cp[w]
1
q′
0
A∞[w]

2
p(q0/p)′
A1

w(E)
1
q0 .

(3.21)

By writing L := log(e + [w]A1) and choosing

p = p0
q0

q0 + L
+ q0

L

q0 + L
∈ (p0, q0)

we have

[w]
2

p(q0/p)′
A1

= [w]
2

(q0/p0)′(p0+L)

A1
≤ e2/e

and

cp =
[
q0 − 1

q0 − p0
(p0 + L)

] 1
q′
0

⎡

⎢⎣p0

(
q0
p0

)′ p0 + L

L

(p0 − 1)
(
q0
p0

)′ + q0−1
q0−p0

L

L

⎤

⎥⎦

1
p0

� L
1
q′
0 .

Thus, by (3.16) and (3.21) we have

∥∥∥∥∥∥
T ∗ f

w
1
q′
0

∥∥∥∥∥∥
Lq′

0,∞
(w)

�
([w]A∞L

) 1
q′
0 ,

as desired. ��
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4 Extensions of the Results to Spaces of Homogeneous Type

This section is dedicated to extending our main results to spaces of homogeneous type
(X, d, μ). Here X is a set equipped with a quasimetric d, i.e. a mapping satisfying the
usual properties of a metric except for the triangle inequality, which is replaced by the
estimate

d(x, y) ≤ A(d(x, z) + d(z, y))

for a constant A ≥ 1, and μ is a Borel measure on X satisfying the doubling property,
i.e. there is a C > 0 such that

μ(B(x; 2r)) ≤ Cμ(B(x; r))

for all x ∈ X , r > 0. Taking the smallest such C we set ν := log2 C . Furthermore,
we write |E | := μ(E) for all Borel sets E ⊆ X . The doubling property implies that
for x ∈ X and R ≥ r > 0 we have

|B(x; R)| ≤ C

(
R

r

)ν

|B(x; r)|. (4.1)

In turn, this implies that if y ∈ B(x; R) for x ∈ X , then for 0 < r ≤ 2AR we have

|B(x; R)| ≤ C

(
2AR

r

)ν

|B(y; r)|. (4.2)

We make the additional assumption that 0 < |B| < ∞ for all balls B ⊆ X . This
property ensures that X is separable [7, Proposition 1.6].

Finally, we make the assumption that Lebesgue’s Differentiation Theorem holds.
This holds, for example, when X is a domain in Rn . Indeed, more generally, if A = 1
(that is, (X, d) is a metric space) and μ is an inner regular Borel outer measure, then
Lebesgue’s Differentiation Theorem holds, see [22, Sect. 14]. This assumption is used
for the L∞ bound on the good part in our Calderón–Zygmund decompositions.

We will consider the situations where X is unbounded and where X is bounded
separately, the latter situation being simpler. To facilitate this, we impose that the
underlying quasimetric space (X, d) has exactly one of the following properties:

(I) There is a constant γ > 0 so that

diam(B(x; r)) ≥ γ r (4.3)

for all x ∈ X , r > 0;
(II) diam X < ∞.

We note that property (I) and property (II) are mutually exclusive, since (I) implies that
X is unbounded. The extra assumption for the unbounded case is not too restrictive
in the sense that the unbounded spaces in our applications usually do satisfy property
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(I). We point out that when (X, d) is a connected metric space, then it satisfies either
(I) or (II):

Proposition 4.1 Suppose X is metric, connected, and unbounded. Then (I) holds with
γ = 1.

Proof Let r > ε > 0. The assumptions on X imply that X �= B(x; r − ε) ∪ B(x; r)c
and thus we can pick y ∈ B(x; r)\B(x; r − ε) so that diam(B(x; r)) ≥ d(x, y) ≥
r − ε, proving the result. ��
Anon-connected example where (I) holds with γ = 1/2 is the subset (−∞, 0)∪(1, 2)
of the real line. An example where (I) fails is any metric space that has an isolated
point.

We will use the following definition of a dyadic system in X .

Definition 4.2 Let 0 < c0 ≤ C0 < ∞ and 0 < δ < 1. If for each k ∈ Z we have a
pairwise disjoint collection Dk = (Qk

j ) j∈Jk of measurable subsets of X and a collec-

tion of points (zkj ) j∈Jk , then we call (Dk)k∈Z a dyadic system in X with parameters
c0, C0, δ, if it satisfies the following properties:

(i) for all k ∈ Z we have

X =
⋃

j∈Jk

Qk
j ;

(ii) for l ≥ k, if Q ∈ Dl and Q′ ∈ Dk , we have that either Q ∩ Q′ = ∅ or Q ⊆ Q′;
(iii) for each k ∈ Z and j ∈ Jk we have

B(zkj ; c0δk) ⊆ Qk
j ⊆ B(zkj ;C0δ

k);

(iv) for l ≥ k, if Ql
j ′ ⊆ Qk

j , then B(zlj ′ ;C0δ
k) ⊆ B(zkj ;C0δ

k).

The elements of a dyadic system are called cubes. We call zkj the centre of Q
k
j . If

Q ∈ Dk , then we call the unique cube Q′ ∈ Dk−1 so that Q ⊆ Q′, the parent of Q.
Furthermore, we say that Q is a child of Q′. Note that it is possible that for a cube Q
there exists more than one k ∈ Z so that Q ∈ Dk . Hence, when speaking of a child
or the parent of Q, this should be with respect to a specific k ∈ Z where Q ∈ Dk to
avoid ambiguity.

For a detailed discussion on the construction of dyadic systems and for the following
theorem we refer the reader to [25] and references therein.

Theorem 4.3 There exist 0 < c0 < C0 < ∞, 0 < δ < 1, ρ > 0 and a positive
integer K , so that there are dyadic system D1, . . . ,DK in X with parameters c0, C0,
δ so that for each x ∈ X and r > 0 there exists an α ∈ {1, . . . , K } and Q ∈ Dα so
that

B(x; r) ⊆ Q and diam(Q) ≤ ρr.
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Writing D := ∪K
α=1D

α , one defines the respective notions for weight classes
accordingly. Likewise, we say that a collection S ⊆ D is called η-sparse for 0 <

η ≤ 1 if for each α ∈ {
1, . . . , K

}
there is a pairwise disjoint collection (EQ)Q∈S ∩Dα

of measurable sets so that EQ ⊆ Q and |Q| ≤ η−1|EQ |.
For our main results we require that the Calderón–Zygmund decompositions

we take are adapted to the dyadic grids obtained from this theorem. The standard
Calderón–Zygmund decomposition as found in [11] is not precise enough for these
purposes, see also Remark 2.3.

For 1 ≤ p0 < q0 ≤ ∞ we may define the class S(p0, q0) as the class of those
operators T that satisfy the property that there is a constant c > 0 and an 0 < η ≤ 1
so that for each pair of functions f , g in an appropriately large class of functions on
X there is an η-sparse collection S ⊆ D so that

|〈T f, g〉| ≤ c
∑

Q∈S
〈 f 〉p0,Q〈g〉q ′

0,Q
|Q|.

The remainder of this section will be dedicated to proving the following result:

Theorem 4.4 Let 1 ≤ p0 < q0 ≤ ∞ and suppose that (X, d) satisfies either property
(I) or property (II). Then for T ∈ S(p0, q0), the results of Theorems 1.3 and 1.4
remain true, where the dependence on n of the constants changes to dependence on
the parameters of the dyadic system (and also γ in the case (I)). Similarly, the results
of Theorem 1.5 remain true in the case that property (I) is satisfied.

The main difficulty arises when one wants to take Calderón–Zygmund decomposi-
tions. We remark that in the cases (I) and (II) one can use the standard maximal cube
arguments and localization arguments, respectively, to conclude that our dyadic max-
imal operators satisfy the usual weak and strong boundedness results. The Lemmata
in Sect. 3 all follow in the more general setting in the same way as they have been
presented, where we replace the set of test functions D by another appropriate class
of functions that is dense in L p(w) for all 1 ≤ p < ∞, w ∈ A∞ such as the linear
span of the indicator functions functions over the balls in X .

From now on we consider a fixed dyadic system D∗ = ∪k∈ZDk in X with param-
eters c0, C0, δ.

We first assume that we are in the easier case (II). We define the maximal operator
M with respect to the cubes Q ∈ D∗ by M f := supQ∈D∗〈 f 〉1,QχQ .

Lemma 4.5 (Calderón–Zygmund Lemma in the case (II)) Let f ∈ L1, λ > 0, and
let � := {M f > λ}. If � �= X, then we can find a pairwise disjoint collection of
cubesP ⊆ D∗ and a constant c > 0, depending only on the parameters of the dyadic
system, the doubling dimension ν, and the quasimetric constant A, so that

� =
⋃

P∈P
P,

and for each P ∈ P

λ < 〈 f 〉1,P ≤ cλ.
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Proof Fix k0 ∈ Z small enough so that c0δk0 > diam X . Then for any x ∈ X we
have B(x; c0δk0) = X . Hence, it follows from property (iii) of dyadic systems that
Dk0 = {X}.

Note that � �= X implies that 〈 f 〉1,X ≤ λ. Let x ∈ �. Then the set

Kx := {k > k0 | there is a Q ∈ Dk, x ∈ Q, 〈 f 〉1,Q > λ}

is non-empty. Thus, by well-orderedness there is a minimal kx ∈ Kx , and thus a cube
Px ∈ Dkx that contains x so that 〈 f 〉1,Px > λ. By minimality of kx , it follows that
〈 f 〉1,p(Px ) ≤ λ, where p(Px ) ∈ Dkx−1 denotes the parent of Px . By (4.2) and property
(iii) of dyadic systems this implies that

λ < 〈 f 〉1,Px ≤ c〈 f 〉1,p(Px ) ≤ cλ,

with c = C(2AC0/(c0δ))ν .
It remains to show that the hereby obtained collection P = (Px )x∈X is pairwise

disjoint. Indeed, assume that P1, P2 ∈ P so that P1∩ P2 �= ∅. We have either P1 ⊆ P2
or P2 ⊆ P1 by property (ii) of dyadic systems. Without loss of generality we assume
the first. Pick x ∈ X so that P1 = Px . Since x ∈ P2 and 〈 f 〉1,P2 > λ, minimality of
kx implies that P2 ∈ Dl for some l ≥ kx . Again by property (ii) of dyadic systems,
this implies that P2 ⊆ P1, proving that P1 = P2. The assertion follows. ��

Next, we consider the case (I). We define the maximal operator MB with respect
to the balls B ⊆ X by MB f := supB〈 f 〉1,BχB .

Lemma 4.6 (Calderón–Zygmund Lemma in the case (I)) Let f ∈ L1, λ > 0, and
let � := {MB f > λ}. If � �= X, then we can find a pairwise disjoint collection of
cubesP ⊆ D∗ and a constant c > 0, depending only on the parameters of the dyadic
system, the doubling dimension ν, the quasimetric constant A, and γ , so that

� =
⋃

P∈P
P,

and for each P ∈ P

〈 f 〉1,P ≤ cλ.

For the proof we use a version of the Whitney Decomposition Theorem. Note that the
diameter assumption (4.3) together with property (iii) of dyadic systems implies that
for any Q ∈ Dk we have

γ c0δ
k ≤ diam Q ≤ 2AC0δ

k . (4.4)

Theorem 4.7 (Whitney decomposition theorem for dyadic cubes) Let � � X be
open. Then there exists a pairwise disjoint collection of cubes P ⊆ D∗ such that

� =
⋃

P∈P
P
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and for each P ∈ P ,

diam P ≤ d(P,�c) ≤ 4A2C0

γ c0δ
diam P.

Proof We define

E := {
Q ∈ D∗ | Q ⊆ �, diam Q ≤ d(Q,�c)

}
.

Moreover we set

P := {Q ∈ E | there is a k ∈ Zso that Q ∈ Dk, p(Q) /∈ E },

where p(Q) ∈ Dk−1 denotes the parent of Q ∈ Dk . We will show that

⋃

P∈P
P = �.

Indeed, any P ∈ P is contained in �. Conversely, if x ∈ �, let (Qk
x )k∈Z be the

sequence of cubes in D∗ with x ∈ Qk
x and Qk

x ∈ Dk for all k ∈ Z. Since � is
open, there is a ball B = B(x; r) contained in �. Picking k0 large enough so that
2AC0δ

k0 < r , we find that

Qk
x ⊆ B(x; r) ⊆ �

for all k ≥ k0 by (4.4). Moreover, since d(Qk
x ,�

c) ≥ A−1(d(x,�c) − 2A2C0δ
k) ↑

A−1d(x,�c) as k → ∞, while diam(Qk
x ) ≤ 2AC0δ

k ↓ 0 as k → ∞, we can
find a k1 ∈ Z so that diam(Qk

x ) ≤ d(Qk
x ,�

c) whenever k ≥ k1. Hence, for all
k ≥ max(k0, k1) we have Qk

x ∈ E . Thus, the set

Kx :=
{
k ∈ Z | Qk

x ∈ E
}

is non-empty. We also claim that Kx is bounded from below. Indeed, if we choose
k2 ∈ Z small enough so that γ c0δk2 > d(x,�c), then

d(Qk
x ,�

c) ≤ d(x,�c) < diam(Qk
x )

for all k ≤ k2 by (4.4), and hence Qk
x /∈ E for k ≤ k2, proving the claim.

We set kx := min Kx ∈ Z. Then Qkx
x ∈ E while p(Qkx

x ) = Qkx−1
x /∈ E . Hence,

Qkx
x ∈ P , proving that x ∈ ∪P∈P P , as desired.
Next we will show thatP is pairwise disjoint. Suppose for a contradiction that we

have P1, P2 ∈ P so that P1 ∩ P2 �= ∅ and P1 �= P2. Let l1, l2 ∈ Z so that P1 ∈ Dl1 ,
P2 ∈ Dl2 and p(P1), p(P2) /∈ E . Without loss of generality we assume that l1 > l2
and thus P1 ⊆ P2 by property (ii) of the dyadic systems. Then also p(P1) ⊆ P2. Since
p(P1) /∈ E , we must have that either p(P1) � � or d(p(P1),�c) < d(p(P1)). The
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first case implies that P2 � �, contradicting the fact that P2 ∈ E . The second case
implies that

diam(P2) ≥ diam(p(P1)) > d(p(P1),�
c) ≥ d(P2,�

c),

again contradicting P2 ∈ E . We conclude that P is pairwise disjoint, as desired.
It remains to show that d(P,�c) < 4A2C0/(γ c0δ) diam P for all P ∈ P . Let

P ∈ P , P ∈ Dk so that p(P) /∈ E . Then either p(P) � � or d(p(P),�c) <

diam(p(P)). In the first case we have d(p(Q),�c) = 0, so in both cases we have

d(p(P),�c) < diam(p(P)) ≤ 2AC0δ
k−1 = 2AC0

γ c0δ
γ c0δ

k ≤ 2AC0

γ c0δ
diam P.

by (4.4). Hence,

d(P,�c) ≤ A(d(p(P),�c) + diam(p(P))) <
4A2C0

γ c0δ
diam P,

as desired. ��

Proof of Lemma 4.6 We apply the Whitney Decomposition Theorem to write � =
∪P∈P P .

If P ∈ P , P ∈ Dk with centre zP , we have

2d(zP ,�c) ≤ 2A diam P + 2Ad(P,�c) ≤
(
2A + 8A3C0

γ c0δ

)
diam P

≤
(
4A + 16A3C0

γ c0δ

)
C0δ

k =: τC0δ
k

so that

∅ �= B(zP ; 2d(z p,�
c)) ∩ �c ⊆ B(zP ; τC0δ

k) ∩ �c.

Since

∣∣∣B(zP ; τC0δ
k)

∣∣∣ ≤ C

(
τC0

c0

)ν

|B(zP ; c0δk)| � |P|

by (4.1), we may pick a point x ∈ B(z p; τC0δ
k) ∩ �c to conclude that

〈 f 〉1,P � 〈 f 〉1,B(z p;τC0δk)
≤ MB f (x) ≤ λ.

The assertion follows. ��
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Proof of Theorem 4.4 In both cases (I) and (II), the proof of Theorem1.3 holdsmutatis
mutandis. Moreover, in the case (I), the same is true for Theorem 1.4, where one uses
Lemma 4.6, and for Theorem 1.5, where one uses Theorem 4.7.

For Theorem 1.4 in the case (II), one replaces the set � in the proof by the set
� = {M (| f |p0) > 2[w]A1w(E)−1}. We claim that � �= X . Indeed, since X is
bounded, we have w(X) < ∞. Thus, by (3.1), we have

w(�) ≤ w(E)

2[w]A1

∫
| f |p0Mw dμ ≤ w(E)

2
≤ w(X)

2
< w(X),

proving the claim. Thus wemay apply Lemma 4.5 to decompose�, and the remainder
of the proof runs analogously. ��

5 Optimality of Weighted Strong Type Estimates

In this section we are going to show that the weighted strong type estimates in (1.3)
and (1.8) are optimal, given a certain asymptotic behaviour of the unweighted L p

operator norm of T . Such asymptotic behaviour is directly linked to lower bounds on
the (generalized) kernel of the operator, see Example 5.5. We improve upon the result
in [6], where it was shown that the estimate (1.3) is optimal for sparse forms. Indeed,
here we are directly using properties of the operator T itself rather than only its sparse
bounds.

Our method is an adaptation of the results of Fefferman and Pipher [16] and Luque
et al. [35]. We deduce sharpness of weighted bounds from the asymptotic behaviour
of the unweighted L p norm of T as p tends to p0 and q0, respectively. The proof
exploits the known sharp behaviour of the Hardy–Littlewood maximal function via
the iteration algorithm of Rubio de Francia.

We will work in a doubling metric measure space (X, d, μ) satisfying the assump-
tions from the Sect. 4. As amatter of fact, the only property we need is a precise control
of the L p norm of the maximal operator. More precisely, we letD := ∪K

α=1D
α be the

union of the dyadic grids in X obtained from Theorem 4.3. Then we define

Mq f := max
1≤α≤K

sup
Q∈Dα

〈 f 〉q,QχQ = sup
Q∈D

〈 f 〉q,QχQ

for 1 ≤ q < ∞, where we set M := M1. Using the shorthand notation ‖Mq‖p =
‖Mq‖L p→L p for p > q, we will use

‖M ‖p ≤ Kp′, (5.1)

which follows as in (3.2) with w = 1.
Let us first define the critical exponents that determine the asymptotic behaviour of

the unweighted L p operator norm of T .
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Definition 5.1 Let 1 ≤ p0 < q0 ≤ ∞. Let T be a bounded operator on L p for all
p0 < p < q0. We define

αT (p0) := sup

{
α ≥ 0 | ∀ε > 0, lim sup

p→p0
(p − p0)

α−ε‖T ‖L p→L p = ∞
}

.

For q0 < ∞ we define

γT (q0) := sup

{
γ ≥ 0 | ∀ε > 0, lim sup

p→q0
(q0 − p)γ−ε‖T ‖L p→L p = ∞

}
,

and for q0 = ∞

γT (∞) := sup

{
γ ≥ 0 | ∀ε > 0, lim sup

p→∞
‖T ‖L p→L p

pγ−ε
= ∞

}
.

For p0 < s < q0 we define

φ(s) :=
(q0
s

)′ ( s

p0
− 1

)
+ 1.

Then it follows from Proposition 2.1(ii) that for a weight w we have w ∈ As/p0 ∩
RH(q0/s)′ if and only if w(q0/s)′ ∈ Aφ(s).

We establish the following connection between the weighted strong type estimates
for T and the asymptotic behaviour of the unweighted L p operator norm at the end-
points p = p0 and p = q0.

Theorem 5.2 Let T be a bounded operator on L p for all p0 < p < q0. Suppose that
for some p0 < s < q0 and for all w ∈ As/p0 ∩ RH(q0/s)′ ,

‖T ‖Ls (w)→Ls (w) ≤ c
[
w(q0/s)′

]β/(q0/s)′

Aφ(s)
. (5.2)

Then

β ≥ max

(
p0

s − p0
αT (p0),

(q0
s

)′
γT (q0)

)
.

We also establish a version involving the A1 characteristics. Its proof follows the
same lines as the one for Theorem 5.2 and will therefore be omitted.

Theorem 5.3 Let T be a bounded operator on L p for all p0 < p < q0. Suppose that
for some p0 < s < q0 and for all w ∈ A1 ∩ RH(q0/s)′ ,

‖T ‖Ls (w)→Ls (w) ≤ c
[
w(q0/s)′

]β/(q0/s)′

A1
. (5.3)
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Then

β ≥
(q0
s

)′
γT (q0).

Proof of Theorem 5.2 We adapt the proof of [35], which is based on the iteration
algorithm of Rubio de Francia. Let p0 < p < s, and define the operator R by

Rh =
∞∑

k=0

1

2k
M k

p0h

‖Mp0‖kp

for h ∈ L p with h ≥ 0. We claim that then

(A) h ≤ Rh,
(B) ‖Rh‖p ≤ 2‖h‖p,
(C) [(Rh)p0 ]A1 ≤ 2p0‖M ‖p/p0 .

Properties (A) and (B) are immediate. Note that (B) uses the assumption p0 < p.
Property (C) can be seen as follows: By definition ofR, we have

Mp0(Rh) ≤ 2‖Mp0‖pRh.

Thus, using that ‖Mp0‖p = ‖M ‖1/p0p/p0
, we obtain for v = Rh

M (v p0) = (Mp0v)p0 ≤ (2‖Mp0‖pv)p0 = 2p0‖M ‖p/p0v
p0 ,

which yields (C).
Let us nowestimate ‖T ‖L p→L p , given (5.2). Let f ∈ L p. Then byHölder’s inequal-

ity,

‖T f ‖p =
(∫

|T f |p(R| f |)−(s−p) p
s (R| f |)(s−p) p

s dμ

)1/p

≤
(∫

|T f |s(R| f |)−(s−p) dμ

)1/s (∫
(R| f |)p dμ

) s−p
ps

.

We abbreviate w := (R| f |)−(s−p). Applying assumption (5.2) and (B) in the first
step and (A) in the second step yields

‖T f ‖p ≤ c
[
w(q0/s)′

]β/(q0/s)′

Aφ(s)

(∫
| f |sw dμ

)1/s

‖ f ‖
s−p
s

p

�
[
w(q0/s)′

]β/(q0/s)′

Aφ(s)

(∫
| f |p dμ

)1/s

‖ f ‖1−
p
s

p

= c
[
w(q0/s)′

]β/(q0/s)′

Aφ(s)
‖ f ‖p.
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= c
[
w(q0/s)′(1−φ(s)′)

](φ(s)−1)β/(q0/s)′

Aφ(s)′
‖ f ‖p,

since [w]Aq = [w1−q ′ ]q−1
Aq′ . Using the equality

(q0
s

)′ s − p

φ(s) − 1
= p0

s − p

s − p0

and Jensen’s inequality with exponent s−p
s−p0

< 1, we can write

[
w(q0/s)′(1−φ(s)′)

]

Aφ(s)′
=

[
(R| f |)(q0/s)′ s−p

φ(s)−1

]

Aφ(s)′
≤ [

(R| f |)p0]
s−p
s−p0
Aφ(s)′ .

We thus obtain

‖T f ‖p �
[
(R| f |)p0]β

s−p
p0

Aφ(s)′ ‖ f ‖p ≤ [
(R| f |)p0]β

s−p
p0

A1
‖ f ‖p.

From property (C) and (5.1) we can then deduce

‖T ‖L p→L p � ‖M ‖β
s−p
p0

p/p0
�

(
p

p − p0

)β
s−p
p0

.

This shows

lim sup
p→p0

(p − p0)
β

s−p
p0 ‖T ‖L p→L p � lim sup

p→p0
p

β
s−p
p0 < ∞

which by definition of αT (p0) implies that β ≥ p0
s−p0

αT (p0).
Now for the behaviour for p → q0 we follow the argument of [16]. We assume

q0 < ∞. The case q0 = ∞ has been treated in [35] already. We abbreviate q :=
(q0/s)′. Let p0 < s < p < q0. We again use the iteration algorithm of Rubio de
Francia, but slightly change the definition of the operator R. This time, we define R
by

Rh =
∞∑

k=0

1

2k
M k

q h

‖Mq‖k(p/s)′

for h ∈ L(p/s)′ with h ≥ 0. Then, just as before, we have

(A) h ≤ Rh,
(B) ‖Rh‖(p/s)′ ≤ 2‖h‖(p/s)′ ,
(C) [(Rh)q ]A1 ≤ 2q‖M‖(p/s)′/q .
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Let f ∈ L p. There exists h ∈ L(p/s)′ with ‖h‖(p/s)′ = 1 and h ≥ 0 so that by (A)

‖T f ‖sp = ‖|T f |s‖p/s ≤
∫

|T f |sh dμ ≤
∫

|T f |sRh dμ. (5.4)

It follows from the assumption (5.2) and (B) that

∫
|T f |sRh dμ ≤ c

[
(Rh)(q0/s)

′]sβ/(q0/s)′

Aφ(s)

∫
| f |sRh dμ

�
[
(Rh)(q0/s)

′]sβ/(q0/s)′

A1
‖ f ‖sp.

Hence, by (5.4) and (C), we have

‖T ‖L p→L p �
[
(Rh)(q0/s)

′]β/(q0/s)′

A1
� ‖M ‖β/(q0/s)′

(p/s)′/(q0/s)′ .

Using (5.1), we find

‖T ‖L p→L p �
(
p(q0 − s)

s(q0 − p)

)β/(q0/s)′

so that

lim sup
p→q0

(q0 − p)β/(q0/s)′ ‖T ‖L p→L p � lim sup
p→q0

(
p(q0 − s)

s

)β/(q0/s)′

< ∞.

By definition of γT (q0), this yields β ≥ (q0/s)′γT (q0), proving the assertion. ��
For the application of these results to sparsely dominated operators, we make the

following observation.

Proposition 5.4 Let 1 ≤ p0 < q0 ≤ ∞ and let T ∈ S(p0, q0). Then

αT (p0) ≤ 1

p0
, γT (q0) ≤ 1

q ′
0
.

Proof This is an immediate consequence of the fact that

‖T ‖L p→L p �
[(

p′

q ′
0

)′] 1
q′
0
[(

p

p0

)′] 1
p0

,

which follows from Remark 3.2. ��
From the above, we can deduce optimality of the weighted estimates as stated in

Theorem 1.6.
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Proof of Theorem 1.6 Let β denote the best constant in the estimate

‖T ‖L p(w)→L p(w) �
[
w(q0/p)′

]β/(q0/p)′

Aφ(p)
.

Then it follows from the result (1.3) from [6] that

β ≤ max

(
1

p − p0
,
q0 − 1

q0 − p

)
.

Conversely, it follows from Theorem 5.2 that

β ≥ max

(
p0

p − p0
αT (p0),

(
q0
p

)′
γT (q0)

)
= max

(
1

p − p0
,
q0 − 1

q0 − p

)

proving the first result. Using Theorem 5.3, the second result follows analogously. ��
Let us give an example of an operator T for which the exponent γT (q0) is known.

Example 5.5 Let M be a complete C∞ Riemannian manifold M of dimension n ≥ 3.
Assume that M is the union of a compact part and a finite number of Euclidean ends,
e.g. two copies of Rn glued smoothly along their unit circles. Then it was shown in
[9] that in the case that the number of ends is at least two, the corresponding Riesz
transform T is bounded from L p(M) to L p(M; T ∗M) if and only if 1 < p < n. More
precisely, it was shown in [9, Lemma 5.1] that the kernel of T decays only to order
n − 1. A straightforward calculation, analogous to the classical results (see e.g. [39,
p.42]), shows that this implies γT (q0) = γT (n) = n−1

n .
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