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SUMMARY

We consider a technique to estimate an approximate gradient using an ensemble of randomly chosen control
vectors, known as Ensemble Optimization (EnOpt) in the oil and gas reservoir simulation community. In
particular, we address how to obtain accurate approximate gradients when the underlying numerical mod-
els contain uncertain parameters because of geological uncertainties. In that case, ‘robust optimization’ is
performed by optimizing the expected value of the objective function over an ensemble of geological mod-
els. In earlier publications, based on the pioneering work of Chen et al. (2009), it has been suggested that a
straightforward one-to-one combination of random control vectors and random geological models is capa-
ble of generating sufficiently accurate approximate gradients. However, this form of EnOpt does not always
yield satisfactory results. In a recent article, Fonseca et al. (2015) formulate a modified EnOpt algorithm,
referred to here as a Stochastic Simplex Approximate Gradient (StoSAG; in earlier publications referred
to as ‘modified robust EnOpt’) and show, via computational experiments, that StoSAG generally yields
significantly better gradient approximations than the standard EnOpt algorithm. Here, we provide theoreti-
cal arguments to show why StoSAG is superior to EnOpt. © 2016 The Authors. International Journal for
Numerical Methods in Engineering Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

1.1. Reservoir simulation and optimization

Reservoir simulation is a branch of fluid mechanics concerned with the numerical simulation of mul-
tiphase flow through heterogeneous porous media in the form of subsurface hydrocarbon (oil and
gas) reservoirs; for example, [1] or [2]. Oil and gas are produced by drilling wells into these reser-
voirs, which, after an initial period of dry oil production, normally start to co-produce increasing
amounts of water that is always naturally present in any hydrocarbon reservoir. To maintain suffi-
cient reservoir pressure and increase ultimate oil recovery, it is often necessary to also drill dedicated
injection wells and inject gas, water, or chemicals (e.g., polymers to increase the water viscosity)
into the reservoir. The flow through injection and production wells is controlled by specifying flow
rates, pressures, or valve settings (either at surface or downhole) in the wells, which may vary over
time. The optimal operation of these wells is, therefore, a time-dependent multivariable optimiza-
tion problem that typically aims to maximize the economic benefit (e.g., total oil production minus
water injection and disposal costs) over the producing life of the reservoir [3]. The most efficient
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optimization techniques are gradient based where the gradient vector (i.e., the search direction in
control space) is computed using an adjoint formulation, a method also known as optimal control
[4]. For applications to reservoir production optimization, see for example, [5–10] and further ref-
erences therein. The beauty of the adjoint method is that it is independent of the number of control
variables and generates a gradient of the objective function with respect to the entire control vector
(i.e., the controls for all wells over all time steps) in a single forward simulation plus one additional
backward or adjoint simulation. Once a gradient has been computed, it can be used in a gradient-
based algorithm of choice, ranging from a simple steepest ascent to more complex quasi-Newton
algorithms with line search or trust region approaches [11]. Because of geological uncertainties, the
spatial distribution of the flow-relevant parameters of subsurface reservoirs is only approximately
known, and therefore, the simulations are often performed using an ensemble of reservoir flow mod-
els, an approach referred to as robust optimization [12]. In robust optimization, the optimal control
is defined as the expected value of the objective function over the ensemble of geological models,
each of which needs to be simulated over the entire producing reservoir life to compute its corre-
sponding objective function value. In an adjoint-based implementation of robust optimization, the
number of simulations to compute a single gradient vector therefore scales linearly with the number
of geological ensemble members.

1.2. Ensemble optimization

Unfortunately, implementation of the adjoint in a reservoir simulation code is time consuming and
code intrusive, and therefore, various alternative optimization methods are being used. One of these,
a non-intrusive approximate gradient method known as Ensemble Optimization (EnOpt), has gained
considerable popularity over the past years in the reservoir simulation community following the
pioneering work of Chen et al. [13, 14]. In the simplest form of EnOpt, an approximate gradient
is computed by simulating the response of a single (deterministic) reservoir model for an ensemble
of stochastically generated different well-control vectors, where each control vector contains the
settings for the set of all wells over all time steps. Do and Reynolds [15] provided an analysis of
the deterministic EnOpt method and demonstrated its close connection to other stochastic gradient
estimation techniques such as simultaneous perturbation stochastic approximation (SPSA, [16, 17])
and the simplex gradient method [18]. Stordal et al. [19] recently demonstrated that deterministic
EnOpt can also be interpreted as a special case of a machine learning algorithm known as Gaussian
mutation (Amari et al. [20]). Note that in this deterministic implementation of EnOpt, the number
of simulations to compute a single gradient vector scales linearly with the number of control vectors
in the control ensemble.

The concept of generating an approximate gradient from an ensemble of control vectors for a sin-
gle reservoir model has its roots in the work of Lorentzen et al. [21], but the name EnOpt was coined
by Chen et al. [13] (see also [14]). However, in most cases, when people refer to EnOpt, they refer
to the implementation of Chen et al. [13], which pertains to robust optimization. In a naive robust
implementation of EnOpt, one expects to need an ensemble of control vectors for each member of
the ensemble of geological models. That would imply that the number of simulations to compute a
single gradient vector would scale linearly with the product of the number of control vectors and the
number of geological models. However, Chen et al. [13] propose to pair each random control vector
with a single randomly chosen geological model. In that way, the number of simulations is dramat-
ically reduced, and just like for the robust adjoint method, the number of simulations to compute
a single gradient scales linearly with the number of geological models. Obviously, the quality of
the approximate gradient obtained with EnOpt will have an effect on the gradient-based optimiza-
tion procedure in which it is applied, and a few studies that have been published suggest that the
one-to-one pairing of control vectors and geological realizations, as proposed by Chen et al. [13], is
therefore not necessarily the best choice to be used in reservoir optimization studies. Raniolo et al.
[22] observed that EnOpt did not provide a good search direction for an optimization problem related
to the injection of polymers to enhance oil recovery. They indicate that improved performance of
the optimization procedure can be obtained by a procedure in which five control perturbations are
paired with each geological model. Unfortunately, the authors did not compare their results with
those obtained with EnOpt; moreover, they only used a selection of representative geological mod-
els rather than the entire ensemble. Fonseca et al. [23] studied the effect of different ratios of control
perturbations to geological models with the aid of hypothesis testing. They tested a variety of robust
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EnOpt formulations and concluded that ‘In general, irrespective of the gradient formulation, using
higher ratios (i.e. 1:10, 1:20, 1:50 etc.) always leads to better quality gradient estimates’.

1.3. Modified EnOpt formulations

The original version of (robust) EnOpt, as proposed by Chen et al. [13] in 2009, implicitly pro-
duces a smoothed version of the approximate gradient because it can be interpreted as a gradient
pre-multiplied with the covariance matrix used in generating the random controls. Chen et al. [13]
also propose a doubly smoothed version, which is obtained by an additional (explicit) multiplication
with the covariance matrix. Thereafter, various alternative formulations have been proposed, with
or without smoothing, while the theoretical connections between EnOpt and other stochastic opti-
mization methods also have been investigated. Do [24] and Yan and Reynolds [25] observe that, for
a deterministic reservoir description, very similar estimates of the economic objective are obtained
regardless of whether G-SPSA (a variety of classic SPSA), EnOpt, or a simplex gradient is used
to estimate optimal well controls. For the deterministic case, Do and Reynolds [15] provide a the-
oretical argument to establish why optimization algorithms that use seemingly different stochastic
approximations of the gradient as the search direction in an ascent or descent algorithm should yield
similar results provided the same degree of the smoothing of the gradient is used in each algorithm,
thereby explaining the observations in [24] and [25].

Do and Reynolds [15] also present a modified version of EnOpt that requires fewer assumptions
to formulate a search direction than the one used in standard (deterministic) EnOpt, and they demon-
strate that this modified EnOpt gradient and the original version perform virtually identically for the
case of a single (i.e., deterministic) reservoir model. However, in a robust optimization framework,
Fonseca et al. [23, 26, 27] observe that a generalization of the modified EnOpt gradient used in [15]
results in an algorithm that usually performs substantially better than the standard EnOpt formula-
tion of Chen et al. [13]. In the remainder of this paper, we will refer to this improved algorithm as
the Stochastic Simplex Approximate Gradient formulation (StoSAG; in earlier publications referred
to as ‘modified robust EnOpt’).

The objective of this paper is to provide a theoretical foundation for the results observed by
Fonseca et al. [23, 26, 27] and the aforementioned observations of Raniolo et al. [22]. In particular,
we show that the standard EnOpt formulation cannot be expected to obtain a reliable search direction
in the robust case unless all the reservoir models are very similar.

2. ROBUST OPTIMIZATION

We consider the problem of finding u; which maximizes the expectation over m of a nonlinear
functional of the form J D J.m;u; y.m; u//; where m is a random vector with a known probability
density function (pdf), u is a vector of system inputs (controls), and y D y.m;u/ is the output vector,
which is, in turn, a function of the system response to input vector u for a given model m [28]. In
many applications of interest, for a given m and u, y.m;u/ is the solution of a system of nonlinear
partial differential equations for an initial-boundary-value problem. As we assume that this system
of equations is deterministic, J is a function of u and m only, that is, J D J.m;u/. Often, the
solution of the initial-boundary-value problem can only be approximated via the solution of a system
of nonlinear discrete equations generated from a finite volume of finite element formulation as is
the case for the problems considered in [13, 23, 26, 27] as well as the examples presented here.

Throughout, we assume that the uncertainty in m can be represented by sampling its pdf to obtain
an ensemble of Ne realizations (i.e., geological models in our setting), mi , i D 1; 2; � � �Ne and thus
approximate the expectation of J with respect to m as the mean of the set ¹J.mi ;u/º

Ne
iD1, that is,

JE .u/ D
1

Ne

NeX
iD1

J.mi ;u/; (1)

where JE .u/ denotes the approximation of the expectation EmŒJ.m;u/�. As our objective is theo-
retical understanding, it suffices to assume that the only constraints on the problem are upper and
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lower bounds on the control vector, u, and denote the vector of upper bounds by uup and the vector
of lower bounds by ulow. Thus, the robust optimization problem is stated as

max
u
JE .u/ D max

u

1

Ne

NeX
iD1

J.mi ;u/;

s.t. ulow � u � uup:

(2)

3. ENSEMBLE OPTIMIZATION

All the methods that generate a stochastic gradient approximation ([13, 15, 21, 23, 25–27]) use the
stochastic gradient d` or a (singly or doubly) smoothed version of it to generate a search direction.
For concreteness, we assume that the steepest ascent algorithm is used for optimization; although,
this is not pertinent to the theoretical discussion. For the robust optimization problem of Eq. (2), we
write the steepest ascent algorithm as

u`C1 D u` C ˛`d` (3)

for ` D 1; 2; � � � until convergence where ` is the iteration index. Note that we take the liberty of
referring to Eq. (3) as the steepest ascent algorithm even if d` represents an approximation of the
gradient premultiplied by a covariance matrix to obtain a preconditioned steepest ascent direction. In
Eq. (3), u1 is the initial guess, and ˛` is the step-size obtained via a line search in the search direction
d` at iteration `. In EnOpt, u is considered to be a random vector with a Gaussian distribution
centered at u` and covariance matrix CU` , that is, at iteration `, u � N .u`;CU`/. This notation
indicates that it is possible to generate a new covariance matrix, for example, by covariance matrix
adaptation [19, 29–31]. For our purposes, however, it suffices to consider the covariance matrix as
fixed so we assume throughout that u � N .u`;CU/ at iteration `.

At iteration ` of EnOpt, we generate Np independent control perturbations (random samples),
Ou`;j , j D 1; 2; � � �Np from the distribution N .u`;CU/. The sample mean is denoted by Ou` and
given by the following equation:

Ou` D
1

Np

NpX
jD1

Ou`;j : (4)

At each iteration `, Chen et al. [13] define J.m;u`/ by

J.m;u`/ �
1

Np

NpX
jD1

J.mj ; Ou`;j /: (5)

Note that this basic EnOpt formulation uses a 1:1 ratio of control perturbations Ou`;j to reservoir
models mj , that is, Ne D Np . Although Chen et al. did not give a specific interpretation of Eq. (5),
the right side of Eq. (5) can be interpreted as an approximation of the mean of J.m;u`/. With basic
EnOpt, the search direction is then computed as

d`;ss�eno D
1

Np � 1

NpX
jD1

. Ou`;j � Ou`/.J.mj ; Ou`;j / � J.m;u`//; (6)

where the meaning of the subscipts in d`;ss�eno will be clarified shortly, and where the right side
of Eq. (6) is the standard estimator of the cross covariance between u` and J.m;u`/. Chen et al.
[13] indicate that the search direction in Eq. (6) provides a reasonable approximation to the ‘singly-
smoothed’ or preconditioned true gradient CUruJE .u`/, where JE .u`/ D EmŒJ.m;u`/� is the
approximation of the expectation of J.m;u`/ with respect to m as defined by Eq. (1). The most
commonly used EnOpt implementation is obtained by multiplying the preceding equation for the
search direction by CU to obtain the ‘standard’ EnOpt search direction given by
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d`;ds�eno D CU

0
@ 1

Np � 1

NpX
jD1

. Ou`;j � Ou`/.J.mj ; Ou`;j / � J.m;u`//

1
A ; (7)

which Chen et al. interpret as an approximation to the ‘doubly smoothed’ true gradient
C2UruJE .u`/.

As there are several possible formulations for a search direction [23], we digress to define some
notation. In the remainder of our paper, any optimization algorithm that uses a search direction
obtained by some modification of Eq. (6) will be designated by using ‘EnOpt’ in its name. Whenever
an EnOpt search direction approximates CU times the gradient, its name will include ‘singly-
smoothed’, and the associated search direction will include ss in its subscript. If the EnOpt search
direction approximates C2U times the gradient, its name will include ‘doubly-smoothed’, and the
associated search direction will include ds in its subscript. With this notation, the steepest ascent
search direction that uses the formula of Eq. (6) to generate the search direction will be referred to as
‘singly-smoothed EnOpt’, or simply as ‘ss-EnOpt’; sometimes, the terminology ‘basic EnOpt’ will
also be used for this algorithm. The eno in the subscript refers to EnOpt, and the ` still indicates the
iteration index. The steepest ascent algorithm that employs CU times d`;ss�eno as the search direc-
tion, that is, Eq. (7), will be referred to as ‘doubly-smoothed EnOpt’ or ‘ds-EnOpt’ (or ‘standard
EnOpt’), and the associated search direction will be denoted by d`;ds�eno. Later, we will introduce
StoSAG algorithms. One way to define an StoSAG, search direction will be with a formula that, sim-
ilar to Eq. (6), has the form of an approximate cross-covariance (cc) and where the search direction
is an approximation of CU times the gradient. Following the notation we introduced for EnOpt but
adding ‘cross-covariance’ to its name, the method will be named ‘singly-smoothed cross-covariance
StoSAG’ or simply ‘ss-cc-StoSAG’, and the search direction at iteration ` of the associated steep-
est ascent algorithm will be denoted by d`;ss�cc�sto, where sto in the subscript indicates StoSAG.
Multiplying d`;ss�cc�sto by CU gives the search direction of ‘doubly-smoothed cross-covariance
StoSAG’ (ds-cc-StoSAG) with the resulting search direction denoted by d`;ds�cc�sto. As shown
later, by starting from the direction d`;ss�cc�sto and using a matrix pseudo inverse, we can obtain
the simplex gradient that provides an approximation of the true gradient. Using the simplex gra-
dient as the search direction in steepest ascent therefore gives us another way to define a StoSAG
search direction, which, at iteration `, will be denoted by d`;sto. This search direction may also
be premultiplied by CU or C2U, which leads to the names ‘singly-smoothed StoSAG’ (ss-StoSAG)
and ‘doubly-smoothed StoSAG’ (ds-StoSAG) with corresponding search directions d`;ss�sto and
d`;ds�sto, respectively. Table I summarizes the various names and notations.

In an attempt to show that d`;ss�eno (defined in Eq. (6)) indeed represents a reasonable approx-
imation of CU times the true gradient ruJE .u`/, Chen et al. [13] then make two assumptions, the
first of which is that

Ou` D
1

Np

NpX
jD1

Ou`;j � u`: (8)

Because the set ¹ Ou`;j º
Np
jD1 are samples from N .u`;CU`/, Ou` defined in Eq 4 is an unbiased, con-

sistent estimator of u`, and therefore, Eq. (8) is a good approximation for Np sufficiently large.

Table I. Names and notations of different fomulations.

Name Alternate name Short name Search direction

singly-smoothed EnOpt basic EnOpt ss-EnOpt d`;ss�eno
doubly-smoothed EnOpt standard EnOpt ds-EnOpt d`;ds�eno
unsmoothed StoSAG StoSAG d`;sto
singly-smoothed StoSAG ss-StoSAG d`;ss�sto
doubly-smoothed StoSAG ds-StoSAG d`;ds�sto
singly-smoothed cross-covariance StoSAG ss-cc-StoSAG d`;ss�cc�sto
doubly-smoothed cross-covariance StoSAG ds-cc-StoSAG d`;ds�cc�sto
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However, this approximation may actually be inaccurate if the upper and/or lower bounds on u
force truncation of the samples. For example, suppose that the controls are simply the total liq-
uid rates at producers and at iteration ` some of these controls are close to the lower bound of
zero and some are close to the upper bound. Then a sample Ou`;j may have some negative entries,
which have to be truncated to zero in order to run the simulator to evaluate the objective func-
tion value. Depending on the implementation and physics, it may also be necessary to truncate
entries of Ou`;j that exceed the upper bound. In these circumstances, Eq. (8) becomes an invalid
approximation because the truncated versions of the vectors Ou`;j are no longer samples from the
distribution N .u`;CU/.

The second assumption of Chen et al. [13] is that for any m,

J.m;u`/ D
1

Np

NpX
jD1

J.mj ; Ou`;j / � J.m; Ou`/ � J.m;u`/: (9)

The assumption of Eq. (9) is tenuous as it suggests that for any realization mj of m, J.mj ;u`/ D
J.m;u`/ from which it follows that

J.m1; u`/ � J.m2;u`/ � � � �J.mNe ;u`/; (10)

which is clearly an invalid approximation unless the variance in the prior model for the random
vector m is sufficiently small, so that when the vector of controls u` is applied to each of these
models, the same value of the objective function is obtained. It is important to note that if we assume
that Eqs. (9) and (10) hold, then, we must also have J.m;u`/ D J.m; u`/, where m can be taken as
the mean of the mj ’s or the mean of the underlying probability density function for m. However, we
show in Section 6 that using this last result in basic EnOpt does not produce a correct approximation
of the gradient of CU�JE .u/ defined in Eq. (1).

Stordal et al. [19] recently provided a theoretical analysis of the single and multiple reservoir
formulations of standard EnOpt in which they demonstrate that both can be interpreted as special
versions of a machine learning algorithm called ‘Gaussian mutation optimization’ [20]. Stordal et
al. [19] also show that, although the multiple-reservoir version of EnOpt theoretically converges to
an unbiased estimate of the true gradient, the use of a 1:1 ratio of control perturbations to geological
models results in an approximate gradient with a much larger variance than the use of independent
sets of perturbations for each geological realization.

4. THEORETICAL ARGUMENTS

Instead of relying on the potentially unreliable approximations of Eqs. (8) and (9), it would be far
better to use a search direction that does not rely on these approximations. Specifically following
Fonseca et al. [23, 26, 27], we define a basic foundational search direction by

d`;ss�cc�sto D
1

Ne

NeX
kD1

0
@ 1

Np

NpX
jD1

. Ou`;j � u`/.J.mk; Ou`;j / � J.mk;u`//

1
A ; (11)

where Np is the number of random control perturbations, and Ne is the number of random geolog-
ical models, while we assume the two random variables to be mutually uncorrelated. As we will
see more clearly later, the preceding equation means that at each iteration of steepest ascent, we use
Np random samples to generate an approximation to CUruJ.mk; u`/. We could use different sets
of Np samples for each mk , or, for computational efficiency, we can use the same Np samples to
generate the approximation of CUruJ.mk;u`/ for all k. If we use a different set of control perturba-
tions for each mk , k D 1; 2; � � �Ne , then, we have to change notation slightly; that is, we let Ou`;j;k ,
k D 1; 2; � � �Ne denote the set samples used to generate an approximate gradient of J.mk;u`/. In
this case, Eq. (11) should be replaced by
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d`;ss�cc�sto D
1

Ne

NeX
kD1

0
@ 1

Np

NpX
jD1

. Ou`;j;k � u`/.J.mk; Ou`;j;k/ � J.mk;u`//

1
A : (12)

Using the naming conventions introduced earlier, we refer to the search direction of Eq. (12) (or
Eq. (11)) as the singly-smoothed cross-covariance StoSAG (ss-cc-StoSAG) search direction or
gradient. Just like the ss-EnOpt search direction defined in Eq. (6), the ss-cc-StoSAG search direc-
tion can be interpreted as an approximation to the singly-smoothed true gradient CUruJE .u`/.
Assuming all second derivatives of J are continuous and bounded, the error in the first-order
Taylor series

J.mk; Ou`;j;k/ D J.mk; u`/C .ruJ.mk;u`//
T . Ou`;j;k � u`/ (13)

is given by

ej;k D
1

2
. Ou`;j;k � u`/

THk;`. Ou`;j;k � u`/ D O k Ou`;j;k � u`k
2
2; (14)

where Hk;` denotes the Hessian matrix given by

Hk;` D ruŒ.ruJ.mk;u`//
T �: (15)

Using Eq. (13) in Eq. (12) gives the approximation

d`;ss�cc�sto D
1

Ne

NeX
kD1

0
@ 1

Np

NpX
jD1

. Ou`;j;k � u`/. Ou`;j;k � u`/
TruJ.mk;u`/

1
A : (16)

We let Eu denote the expectation with respect to u. Then, taking the expectation of Eq. (16)
assuming that all Ou`;j;k are samples from N .u`;CU/ gives

EuŒd`;ss�cc�sto� D
1

Ne

NeX
kD1

2
4 1

Np

NpX
jD1

�
EuŒ. Ou`;j;k � u`/. Ou`;j;k � u`/

T �
�
ruJ.mk;u`/

3
5

D CU

 
1

Ne

NeX
kD1

ruJ.mk;u`/

!
D CUrJE .u`/:

(17)

For later reference, we note that the error in Eqs. (16) and (17) is O.maxj;k k u`;j;k � u` k2/;
where all norms considered in the paper refer to the `2 norm. Recall that the motivation of the Chen
et al. EnOpt formulation is to first obtain a search direction that approximates CUrJE .u`/ and
then to provide additional smoothing by multiplying this search direction by CU; see the discussion
centered on Eqs. (9–16) in [13]. It is imperative to note that we have obtained a search direction,
which approximates CUrJE .u`/ without invoking the potentially invalid assumptions of Chen et
al. represented by Eqs. (8) and (9).

It is also important to note that one of the advantages of ss-EnOpt (Eq. (6)) used by Chen et al.
[13] is its computational efficiency, which arises from the fact that Eq. (6) uses only one perturbation
of the control vector u` per model realization so that each application of Eq. (6) requires exactly
Ne D Np evaluations of J.m;u/ and hence requires only Ne simulation runs per application. On
the other hand, the more theoretically sound search direction of Eq. (12) requires NpNe evaluations
of J.m;u/ (NpNe simulation runs) per application. However, one can selectNp D 1when applying
Eq. (12), and in this case, ss-cc-StoSAG has the same computational efficiency as ss-EnOpt. Note
that Eq. (17) still holds for Np D 1. Moreover, Fonseca et al. [26, 27] show that Eq. (12) with
Np D 1 leads to a methodology that results in a higher objective function value than is achievable
with ss-EnOpt; in [23], they show that far more accurate estimates of CUrJE .u`/ can be obtained
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by using Np >> 1. In the example considered here, we use Np D 1 to obtain StoSAG algorithms
that require the same computational effort as ss-EnOpt (or ds-EnOpt) to generate a search direction
at each iteration of the steepest ascent algorithm.

5. COMMENTS ON STOCHASTIC SIMPLEX APPROXIMATE GRADIENT

Another interesting aspect of the work of Fonseca et al. [23, 26, 27] is that they observe that higher
objection function values can be obtained if in place of using Eq. (12) to form a steepest ascent
search direction, one instead generates an approximation for rJE .u`/ to use as a search direction.
One can also multiply this approximate gradient by CU or C2U to obtain a search direction. While
we are not certain that this observation is general, we believe their suggestion may be important
when the bounds on u force the truncation of some components of a sample Ou`;j � N .u`;CU/.
Their suggestion may also be important, whenever it is unclear what correlation length to choose in
a covariance function in order to generate the covariance matrix CU or when the optimal solution
of the well control problem is such that the values of two temporally consecutive controls at a well
are radically different, as occurs, for example, when the optimal solution is bang-bang [7, 32, 33].
When the vectors Ou`;j;k used in Eq. (12) are truncated,

Eu

2
4 1

Np

NpX
jD1

. Ou`;j;k � u`/. Ou`;j;k � u`/
T

3
5 ¤ CU; (18)

and Eq. (17) is no longer valid. However, one can still obtain an approximation of CUrJE .u`/ by
first using a simplex gradient [15, 18, 23, 26, 27, 34] to approximate rJE .u`/ and then multiplying
this gradient by CU. For information on the simplex gradient formulation in general see, for example,
[18]. Specifically, we define theNu�Np matrix� OU`;k and theNp�1 vector�j`;k , respectively, by

� OU`;k D
�
Ou`;1;k � u` Ou`;2;k � u` � � � Ou`;Np ;k � u`

�
; (19)

and

�j`;kD
�
J.mk; Ou`;1;k/�J.mk ; u`/ J.mk; Ou`;2;k/�J.mk ;u`/ � � �J.mk; Ou`;Np ;k/�J.mk ;u`/

�T
;

(20)

for k D 1; 2; � � �Ne . Then using the first order Taylor series of Eq. (13) and the definitions of
Eqs. (19) and (20), it easily follows that for each k, k D 1; 2; � � �Ne ,

NpX
jD1

. Ou`;j;k � u`/.J.mk; Ou`;j;k/ � J.mk; u`// D � OU`;k.�j`;k/

�
�
� OU`;k.� OU`;k/

T
�
ruJ.mk;u`/:

(21)

Thus, as in [15, 23, 26, 27, 34], an approximate stochastic gradient, denoted by ru;stoJ.mk;u`/; is
given by

ru;stoJ.mk;u`/ D
�
� OU`;k.� OU`;k/

T
�C
� OU`;k.�j`;k/ � ruJ.mk; u`/; (22)

for k D 1; 2; � � �Ne where the superscriptC on a matrix denotes the Moore–Penrose pseudo-inverse.
By the properties of the Moore–Penrose pseudo-inverse,

..� OU`;k/
C/T D ..� OU`;k/

T /C D
�
� OU`;k.� OU`;k/

T
�C
� OU`;k; (23)

and thus, Eq. (22) is equivalent to

ru;stoJ.mk;u`/ D ..� OU`;k/
C/T .�j`;k/ � ruJ.mk; u`/; (24)
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where the pseudo inverse of .� OU`;k/ can be obtained by singular value decomposition [35].
Except for the fact that this gradient is stochastic because the Ou’s are random vectors; the term
ru;stoJ.mk;u`/ is simply the simplex gradient of J at .mk;u`/ [18]. It is important to note that the
approximations of Eqs. (21) and (24) apply regardless of how the perturbations around u` are gen-
erated. In particular, there is no need to assume that they are generated from a Gaussian distribution.
In fact, they could be generated by a Sobol sequence as recently suggested in [36]. Then to obtain
smoothing, one could multiply ru;stoJ.mk; u`/ defined in Eq. (22) by a true covariance matrix CU,
or by C2U to obtain double smoothing. With the simplex gradient of Eq. (22), the search direction for
maximizing the expected objective function value as approximated by Eq. (1) is given by

d`;sto D ru;stoJE .u`/ D
1

Ne

NeX
kD1

ru;stoJ.mk;u`/: (25)

Throughout, we refer to the case where just d`;sto is used as the search direction as unsmoothed
StoSAG, or, sometimes, simply StoSAG. The algorithms that use CUd`;sto and C2Ud`;sto, respec-
tively, as the search direction in the steepest ascent algorithm are referred to as singly-smoothed
StoSAG (ss-StoSAG) and doubly-smoothed StoSAG (ds-StoSAG), respectively. Note that, like
ss-cc-StoSAG, ss-StoSAG uses a search direction that is an approximation of CU times the true gra-
dient, but the two search directions are distinctly different. Additional smoothing of the gradient as
in ds-EnOpt, ds-cc-StoSAG, or ds-StoSAG can provide controls that vary more smoothly with time,
which are simpler to impose in a real operational setting. However, there are two potential negative
consequences to smoothing. First, one does not know how much temporal smoothing to impose a
priori and too much temporal smoothing can yield suboptimal results if the true optimal controls
for a well vary significantly from one control step to the next. Such a large change occurs when
the optimal solution is bang-bang, [7, 32, 33, 37], that is, the optimal rate control at a well changes
from its upper bound on one control step to zero on the next control step; see the first example of
[37] for an illustration. The second problem occurs when a perturbed control generated to calculate
the stochastic gradient is outside one of its bounds, for example, is less than zero for a rate or an
(ICV) setting. In this case, the perturbed control must be truncated back to its bounds. If perturba-
tions are truncated back to bounds, the expectations of the ss-EnOpt, ds-EnOpt ss-cc-StoSAG, and
ds-cc-StoSAG search directions no longer approximate CU or C2U times the true gradient. In addi-
tion to properly accounting for truncation of samples from N .u`;CU/, unsmoothed StoSAG also
avoids imposing too much temporal smoothness on the controls at a well for a case where the true
optimal controls vary significantly from one control step to the next.

6. A CLOSER LOOK AT ENSEMBLE OPTIMIZATION

As noted in Section 3, the generally invalid assumption that Eq. (9) holds implies that

J.m;u`/ D J.m;u`/; (26)

where m is the mean of the mj ’s or the mean of the underlying pdf for m. Using Eq. (26) and the
assumption that Eq. (8) holds in the ss-EnOpt formula of Eq. (6) gives

d`;ss�eno�mod D
1

Np

NpX
jD1

. Ou`;j � u`/.J.mj ; Ou`;j / � J.m;u`//; (27)

where the additional subscript mod indicates ‘modified’. It is important to note that we do not
actually have to assume that Eqs. (8) and (9) hold. Instead, following [15] for the fixed reservoir
model case and [23, 26, 27] for the case with geological uncertainty, we can simply define the
search direction of Eq. (27) directly and then try to show that the resulting search direction or its
expectation approximates the true gradient or a smoothed version of the true gradient. In Eq. 27, we
have replaced the factor 1=.Np � 1/ in the original basic EnOpt formulation by 1=Np because we
no longer approximate the mean of the distribution for u.
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We assume that all derivatives of J are continuous and bounded. Then a second order Taylor
series terms gives

J.mj ; Ou`;j / � J. Nm;u`/ D .ruJ. Nm;u`//
T . Ou`;j � u`/C .rmJ. Nm;u`//

T .mj � Nm/

C
1

2
. Ou`;j � u`/

THu;j . Ou`;j � u`/C e1;j (28)

for j D 1; 2; � � �Np with e1;j given by

e1;j D . Ou`;j � u`/
T
�
rmŒ.ruJ /

T �
�T
.mj � Nm/C

1

2
.mj � Nm/THm;j .mj � Nm/; (29)

where Hu;j is the Hessian with respect to u, Hm;j is the Hessian with respect to m and these Hes-
sians and all other second degree terms in the previous two equations are evaluated at . NmT ;uT

`
/T .

For simplicity, we simply neglect terms higher than the second order as the second order terms
asymptotically represent the largest error terms neglected in the various stochastic search directions
considered. Substituting Eq. (28) into Eq. (27), it follows easily that

d`;ss�eno�mod D

0
@ 1

Np

NpX
jD1

. Ou`;j � u`/. Ou`;j � u`/
T

1
AruJ. Nm;u`/C e2 C e3; (30)

where e2 and e3, respectively, are given by

e2 D
1

2Np

NpX
jD1

�
. Ou`;j � u`/

�
. Ou`;j � u`/

THu;j . Ou`;j � u`/
��

(31)

and

e3 D
1

Np

NpX
jD1

�
. Ou`;j � u`/e1;j

�
: (32)

The error e2 satisfies k e2 kD O.maxj ¹k Ou`;j � u` k3º/ and thus goes to zero as the magnitude of
the perturbations goes to zero, that is, as Ou`;j ! u`. However, the error term e3 contains terms that
behave like O.k Ou`;j�u` kk mj� Nm k2/. Because the magnitudes of the k mj� Nm k terms are fixed
by the uncertainty in the prior model for m and cannot be changed, k e3 kD O.maxj ¹k Ou`;j�u` kº/
and thus goes to zero more slowly than k e2 k or the StoSAG error , both of which are third order in
maxj ¹k Ou`;j � u` kº; see the comment following Eq. (17) for the magnitude of the term neglected
in the StoSAG direction given in Eq. (16).

Following a line of reasoning that Chen originally pursued to justify basic EnOpt in her Ph.D.
thesis [38], we note that for each j , mj , and Ou`;j are independent random variables and thus taking
the expectation (EŒ : �) of e3 with respect to the joint distribution givesEŒe3� D 0, so the expectation
of Eq. (30) is given by

EŒd`;ss�eno�mod � � E

2
4
0
@ 1

Np

NpX
jD1

. Ou`;j � u`/. Ou`;j � u`/
T

1
A
3
5rJ. Nm; u`/; (33)

or, for the case where Ou`;j � N .u`;CU/,

EŒd`;ss�eno�mod � � CUruJ. Nm; u`/; (34)

where the bias in Eqs. (33) and (34) is O.maxj ¹k Ou`;j � u` k3º/. Thus, in expectation, the error in
the modified EnOpt search direction of Eq. (27) is O.maxj ¹k Ou`;j � u` k3º/, which is of the same
order as the StoSAG error. However, because of the e1;j terms that appear in e3, the autocovariance
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of e3, EŒ.e3 � EŒe3�/.e3 � EŒe3�/T � may have large entries, so the variances of the components of
e3 may be large; note that this last observation is consistent with the results of [19].

As a tangential aside, the fact that errors in the stochastic search directions involve the term
O.maxj ¹k Ou`;j � u` kº/ provides a motivation for choosing a covariance C`U for u such that as
` increases, the variances in C`U decrease, or more precisely, such that det C`U decreases because
the confidence intervals associated with samples of N .u`;CU/ are proportional to det C`U; [39,
40]. In fact, a decreasing perturbation size is necessary to prove convergence of one of the ear-
liest theoretically sound algorithms that use a stochastic gradient, namely, the original SPSA
algorithm [16, 17].

7. NUMERICAL EXAMPLES

7.1. Optimal well control problem

The first example that we consider in this paper is to estimate simultaneously the well controls
(pressures and/or flow rates) and downhole ICV settings in a three-phase (oil-gas-water) reservoir
to maximize the expectation of an economic objective function in a water-alternating-gas (WAG)
enhanced oil recovery (EOR) process. (ICVs allow for the indvidual inflow control into a well from
different subsurface layers). For such an application, we let the vector m represent the flow-relevant
rock properties of the reservoir simulation gridblocks. The objective function for a specific reservoir
model, mi , is defined by

Ji .mi ;u/ D
NtX
nD1

8<
: �tn

.1C b/
tn
365

2
4NPX
jD1

�
ro � q

n
o;j � cw � q

n
w;j

�
�

NIX
kD1

�
cwi � q

n
wi;k
C cgi � q

n
gi;k

�35
9=
; ;

(35)

for i D 1; 2; � � �Ne . Here, u is an Nu-dimensional column vector, which contains all the well con-
trols (ICV settings and rates or pressures) at all wells over the production lifetime; n denotes the
nth time step of the reservoir simulator; Nt is the total number of time steps; the time at the end of
the nth time step is denoted by tn; �tn is the nth time step size; b is the annual discount rate; NP
and NI denote the number of producers and injectors, respectively; ro is the oil revenue, in $/STB
(where STB indicates ’stock tank barrel’, i.e., 5:61 f t3 at 60 deg. F and 14.7 psi); cw , cwi , and cgi ,
respectively, denote the disposal cost of produced water and the cost of water injection, in units of
$/STB, and the cost of gas injection, in units of $/Mscf (thousand standard cubic feet, i.e., at 60 deg.
F and 14.7 psi); qno;j and qnw;j , respectively, denote the average oil production rate and the average
water production rate at the j th producer for the nth time step, in units of STB/day; qn

wi;k
and qn

gi;k
,

respectively, denote the average water injection rate and the average gas injection rate at the kth
injector for the nth time step, in units of STB/day. For the three-phase example considered in this
work, we neglect the revenue from hydrocarbon gas production and the disposal cost of injected gas
.CO2/ that is produced. The economic objective function as defined in Eq. (35) is typically referred
to as the Net Present Value (NPV) in the reservoir optimization literature.

The second example considered in this paper pertains to estimating the well controls in a two-
phase (oil–water) reservoir to maximize the expectation of the NPV in a ‘water flooding’ production
scenario. Although the physics in this example are somewhat simpler and do not involve hydrocar-
bon phase-equilibrium computations as required to simulate WAG, the reservoir structure is more
complex, and the numerical model contains a much larger number of grid blocks.

7.2. Example 1: Water alternating gas flooding optimization

We consider the optimization of WAG flooding for a 3D synthetic reservoir where the injected gas
is carbon dioxide, CO2. The reservoir simulation model is on a 25 � 25 � 3 grid with grid block
dimensions given by �x D �y D 100 ft and �´ D 30 ft. For robust optimization, we generate 15
geological realizations (models) to represent the uncertainty in the reservoir description. Figure 1
shows six realizations of the log-permeability distribution for the first layer. Permeability is the
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Figure 1. Log-permeability distribution of six realizations for the first layer.

inverse resistance to flow of the porous medium expressed in units of mD D 1:06 � 10�14ft2. Per-
meability values are usually highly uncertain and may vary over the reservoir with several orders of
magnitude. The set of natural logarithms of all grid block permeability values constitutes the vector
m, which therefore has 25�25�3 D 1875 elements. The second and third layers have the same het-
erogenity features as the first layer but with the permeability field of layer 2 equal to the permeability
field of layer 1 multiplied by 0.6; the permeability field of layer 3 is equal to the permeability field of
layer 1 multiplied by 0.3. The reservoir contains four injection wells and nine producers. All wells
are vertical fully penetrating wells (i.e., being open to flow over the entire reservoir height), and their
locations are shown in the realizations of the permeability fields that are displayed in Figure 1. Each
of the wells is equipped with an ICV in each of the three layers. The porosity is homogeneous with
� D 0:2. No capillary pressures are included and the reservoir rock is assumed to be incompress-
ible. The initial reservoir pressure is 4500 psi at the top of the reservoir. The producing reservoir
lifetime is set equal to 2880 days. A compositional reservoir simulator (i.e., a simulator capable of
performing phase equilibrium calculations for complex hydrocarbon mixtures), GEM (Computer
Modeling Group, Calgary, Canada) (Version 2009.10), is used for reservoir simulation [41].

Because of the density difference between water, oil, and CO2, phase segregation will occur
resulting in ‘over ride’ and ‘under ride’ of the injected CO2 and water, respectively, resulting in early
‘break through’ of these undesirable fluids in the production wells. The ICVs provide the capabili-
ties to partly counteract these ‘gravity segration’ effects, and the physical mechanisms that drive the
optimization are therefore both the heterogeneity in the permeability and density difference between
the reservoir fluids. To optimize JE .u/, the oil price is set equal to $ 80.0/STB; the water injec-
tion cost is $5.0/STB; the gas injection cost is $1.5/Mscf; the disposal cost of produced water is
$5.0/STB; the annual discount rate is 0.1. Here, we neglect the revenue of hydrocarbon gas produc-
tion and the cost of disposing of injected CO2 gas that is produced. Within the producing lifetime,
we can set each of the well control or ICV settings 16 times in control intervals of 2880=16 D 180

days. We let uo denote the n0-dimensional column vector (no D .9 C 4/ � 16 D 208) of all
well controls (rates or pressures), and uv denote the nv-dimensional column vector of ICV settings
(nv D .9C 4/ � 3 � 16 D 624) so that the vector of all control settings is given by

u D
�

uo

uv

	
: (36)
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In the EnOpt and StoSAG algorithms, we generate perturbations from a covariance matrix. This
covariance matrix is block diagonal and has the form

CU D

�
CoU O
O I

	
; (37)

where the O’s denote null matrices, and I is the nv � nv identity matrix. The matrix CoU is a block
diagonal matrix, where each kth matrix on the diagonal block is denoted by CUo

k
and is associated

with the subvector uo
k

of u0 that contains all the well controls for well k. Here, to impose some
temporal smoothness on the the well controls (rates or pressures) for well k, CUo

k
is generated from

a spherical covariance function [42] with variance equal to .0:1/2 and time correlation length equal
to 720 days, which is equivalent to four control steps. However, gas injection rates are not correlated
with water injection rates, and so effectively, when sampling from N .u`;CU/, only two consecutive
water rates are correlated, and only two consecutive gas rates are correlated. The appearance of
the identity matrix in Eq. (37) indicates that there is no correlation between ICV settings. In this
example, five types of search directions (out of the seven listed in Table I) are used to estimate the
optimal well controls and ICV settings that maximize JE .u/:

(1) ds-EnOpt, d`;ds�eno defined in Eq. (7);
(2) StoSAG, d`;sto, defined in Eq. (25);
(3) ss-StoSAG, d`;ss�sto D CUd`;sto;
(4) ss-cc-StoSAG, d`;ss�cc�sto defined in Eq. (12), with Np D 1;
(5) ds-cc-StoSAG, d`;ds�cc�sto D CUd`;ss�cc�sto.

We use a steepest ascent optimization algorithm with simple backtracking as line search. At itera-
tion ` of the steepest ascent, we generate Ne D 15 samples of the Gaussian random control vector
u with each sample corresponding to one geological model, where Ou`;j � N .u`;CU/. In steepest
ascent, the initial step size is 1.0, and the maximum number of step-size cuts (each with a factor 0.5)
is set equal to 5. If five steps sizes do not yield an increase in JE , we set the new estimate, u`C1 of
the optimal u equal to the u that gave the largest value of JE obtained during the line search. We
allow a maximum of 4000 total reservoir simulation runs. For this relatively small example, the sim-
ulations took about 3.5 minutes per simulation run so that the entire optimization procedure could
be performed sequentially. For more realistic, large-scale reservoir simulations, which may have run
times in the order of several hours, parallel processing will be a practical necessity. Fortunately, the
StoSAG algorithms, just like the EnOpt algorithms, are embarrassingly parallel.

Figure 2 shows the expectation of NPV (Eq.( 1)) versus the number of reservoir simulation runs
using steepest ascent with the five different search directions enumerated in the aforementioned text.

Figure 2. Expectation of Net Present Value versus number of simulation runs for different search direction
formulations; yellow: ds-EnOpt (standard); green: StoSAG; dark blue: ss-StoSAG; purple: ss-cc-StoSAG;

red: ds-cc-StoSAG.
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Figure 3. Estimated well controls for producers at different control steps calculated from StoSAG and
ds-cc-StoSAG; units are psi.

Figure 4. Estimated well controls for gas injectors at different water-alternating-gas cycles calculated from
StoSAG and ds-cc-StoSAG; units are �107 scf/day.

It is clear that ds-EnOpt (standard EnOp) generates the lowest expected NPV while the StoSAG
search direction proposed by Fonseca et al. [23, 26] and ds-cc-StoSAG generate the highest average
NPV. Note that although both ds-cc-StoSAG and ds-EnOpt impose the same degree of smooth-
ing, ds-cc-StoSAG results in a much higher NPV than is obtained with ds-EnOpt. It is curious
to note that StoSAG (unsmoothed), which uses a stochastic approximation to the gradient as the
search direction, and ds-cc-StoSAG, which utilizes an approximation of C2U times the gradient as
the search direction, yield very similar final values of NPV. However, as expected, the well controls
and ICV settings obtained with ds-cc-StoSAG are much smoother than those obtained with StoSAG
(Figures 3–6). In these figures, the vertical axes refer to the well number (recall that there are nine
producers and four injectors), while the horizontal axis in Figures 3 and 5 refer to the control interval
(16 in total). In Figures 4 and 6, the horizontal axis has a related but slightly different intepretation:
although there are 16 control intervals at injection wells, the well controls are gas injection rates
at odd numbered control steps and water injection rates at even numbered time steps, so only eight
control steps (referred to as ‘WAG cycles’) are shown in Figures 4 and 6. The color scale in Figure 3
corresponds to the pressures (at the top of the reservoir) in the production wells, while the color
scales in Figure 4 refer to the gas rates in the injection wells. In Figures 5 and 6, ICV 1 refers to
the ICV setting of layer 1, which is the top layer with the highest permeability distribution; see the
discussion of the permeability fields of Figure 1.

In order to quantify the smoothness of the control at an individual well, or, more precisely, the
variation in a well’s controls over the total prescribed reservoir life, the total variation of the function
representing well controls is calculated on a well-by-well basis. As the control function at a well is
a piecewise constant function, its total variation is given by the sum of the absolute values of the
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Figure 5. Estimated settings of inflow control valve 1 for producers at different control steps calculated from
StoSAG and ds-cc-StoSAG on a scale from closed (0) to fully open (1).

Figure 6. Estimated settings of inflow control valve 1 for gas injectors at different water-alternating-gas
cycles calculated from StoSAG and ds-cc-StoSAG on a scale from closed (0) to fully open (1).
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Table II. Total variation of the estimated well
controls for different producers and aver-
age total variation across all the producers;

StoSAG and ds-cc-StoSAG.

StoSAG ds-cc-StoSAG
Prod. index (�103 psi) (�103 psi)

1 4.82 3.66
2 5.19 5.35
3 5.46 3.87
4 6.33 3.49
5 4.57 0.78
6 4.31 3.90
7 5.99 2.50
8 4.89 3.62
9 7.27 1.50
Average 5.42 3.19

Table III. Total variation of the estimated well
controls for gas injectors and average total vari-
ation across all the gas injectors; StoSAG and

ds-cc-StoSAG.

StoSAG ds-cc-StoSAG
Inj. index (�107 scf/day) (�107 scf/day)

1 3.73 1.39
2 3.92 2.30
3 5.64 2.17
4 5.89 1.81
Average 4.79 1.92

Table IV. Total variation of the estimated ICV settings for producers; StoSAG and ds-cc-StoSAG.

StoSAG ds-cc-StoSAG StoSAG ds-cc-StoSAG StoSAG ds-cc-StoSAG
Prod. index ICV 1 ICV 1 ICV 2 ICV 2 ICV 3 ICV 3

1 3.77 1.64 2.86 1.90 3.37 2.11
2 3.43 1.54 3.15 1.62 4.23 1.43
3 2.51 1.78 3.63 1.95 2.24 1.15
4 2.96 1.07 3.10 2.04 2.34 0.46
5 4.03 2.07 3.87 0.50 1.98 1.83
6 3.16 1.40 3.18 2.67 2.57 0.52
7 4.47 1.76 2.79 0.88 2.80 1.22
8 3.83 2.38 4.23 0.89 3.42 1.32
9 2.73 2.23 3.53 1.54 3.15 2.84
Average 3.43 1.76 3.37 1.55 2.90 1.43

differences between two consecutive well controls. The total variation of the function representing
each well’s ICV settings can be calculated on a well-by-well basis in a similar manner. As illustrated
in Tables II–V, the total variations of a well’s optimized controls and ICV settings are lower when the
optimized values are computed from ds-cc-StoSAG than when the optimized values are estimated
from StoSAG. Note the average total variation is also given in Tables II–V. Overall, the average
total variation of each ds-cc-StoSAG result is roughly one-half of the corresponding average total
variation for the StoSAG result. On average, each total variation computed from ds-EnOpt (standard
EnOpt) results that are not shown is within 10% of the corresponding total variation obtained from
ds-cc-StoSAG. Results similar to and consistent with those of Figures 4 and 6 and Tables III and V
were obtained for the water injection rate controls and ICV settings. Although smoother controls
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Table V. Total variation of the estimated ICV settings for gas injectors; StoSAG and ds-cc-StoSAG.

StoSAG ds-cc-StoSAG StoSAG ds-cc-StoSAG StoSAG ds-cc-StoSAG
Inj. index ICV 1 ICV 1 ICV 2 ICV 2 ICV 3 ICV 3

1 1.54 1.00 2.34 1.06 2.40 0.79
2 2.84 1.39 2.69 1.67 1.96 1.28
3 2.50 1.18 1.58 0.99 2.40 1.26
4 1.80 0.97 2.30 1.98 0.94 1.60
Average 2.17 1.14 2.23 1.43 1.92 1.23

Figure 7. One of the egg model realizations displaying the injector (blue) and producer (red) locations
[12, 43].

Figure 8. Six realization of the egg model displaying different permeability fields [12, 43].

and ICV settings are simpler to implement operationally, as noted earlier, too much smoothing can
lead to suboptimal results.

7.3. Example 2: water flooding optimization

The model, illustrated in Figure 7, was introduced in [12] along with an ensemble of equiprobable
geological scenarios, six of which are illustrated in Figure 8. The models represent a geological
setting of fossilized meandering channels (high-permeability sand stones) in clayish background
(low-permeability shales) in the form of discrete permeability fields modeled with 60 � 60 � 7 D
25; 200 grid cells of which 18,553 cells are active (i.e., non-zero). A detailed description including
reservoir and fluid properties of a standardized version of this ‘egg model’ is given in [43]. The
uncertainty in the models is described by the different channel orientations and permeability fields of
the models. The model is produced using eight peripheral water injection wells and four production
wells, which are simply connected to the reservoir in all seven layers without ICVs. No capillary
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Figure 9. Expectation of Net Present Value versus number of simulation runs for different search direction
formulations; yellow: ds-EnOpt (standard); green: StoSAG; dark blue: ss-StoSAG; purple: ss-cc-StoSAG;

red: ds-cc-StoSAG.

pressures are included, and the reservoir rock is assumed to be incompressible. We use a commercial
fully implicit black oil simulator ([44]) for the reservoir simulations in combination with EnOpt or
StoSAG algorithms to compute the gradient of J with respect to the controls u. The gradient is used
in a simple steepest ascent scheme, where we determine the step size with the aid of an inexact line
search and the Arjimo conditions following a trust region (i.e., step size restriction) approach as
described in [11].

In this example, water injection rates are the controls with a maximum allowable injection rate
per well fixed at 377 STB/day and a minimum rate of 0 STB/day. The producers are operated at
a minimum bottom hole pressure of 5584 psi without rate constraints. The producing life of the
reservoir is divided into 40 optimization time intervals of 90 days each, and the control vector u has,
therefore, 8� 40 D 320 elements. An optimal life-cycle strategy of injection rates for the individual
wells is obtained by optimizing the NPV as described in Eq. (35), with ro = 20 $/STB, cw = 3 $/STB,
and cwi = 0.8 $/STB, while cgi is irrelevant for our example because we only consider the flow of
oil and water. The discount rate b is set to 0. The initial strategy (starting point) of the life-cycle
optimization is a control vector with maximum injection flow rates at all control times.

Figure 9 illustrates the objective function values obtained from optimization using the same five
search directions considered in Example 1. For this example, we observe that StoSAG (green) results
in an approximately 25% higher expected objective function value than ds-EnOpt (yellow). Even
higher objective function values are obtained for the two single-smoothed varieties of StoSAG: ss-
StoSAG (dark blue) and ss-cc-StoSAG (purple). We note that in Figure 9, the values of the objective
function are versus the number of reservoir simulation runs, where 25 iterations correspond roughly
to 4000 reservoir simulation runs.

Figure 10 displays plots of the well controls versus time for the five different search direction.
The differnce in smoothness between the various formulations is clearly visible.

A key difference between the EnOpt and StoSAG search directions is the way the objective
function anomalies are calculated. In EnOpt, the anomalies �j`;k , k D 1; 2; � � �Np.D Ne/ are cal-
culated as J.mk; Ou`;k/�J.m; u`/, that is, with respect to the mean objective function value of the (1
to 1 paired) ensembles of controls and geological models (Eq. (7) or Eq. (6)). In the (1 to 1 paired)
StoSAG formulations, however, the anomalies are calculated as J.mk; Ou`;k/ � J.mk;u`/, that is,
with respect to the individual objective function values of the geological realizations (Eq. (11)).
The importance of the objective function anomalies is that they act as weighting factors in the
gradient estimate. Figure 11 illustrates that the objective function anomalies for StoSAG (red) are
significantly different to those of the ds-EnOpt (blue). For some realizations the ‘weights’ are even
opposite in sign, which explains the large difference between the two formulations.
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Figure 10. Well controls versus time for ds-EnOpt en four different StoSAG formulations; units are STB/day.
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Figure 11. Comparison of weights used in gradient estimate for the different gradient formulations; blue:
ds-EnOpt; red: StoSAG.

8. CONCLUSION

We have provided a theoretical explanation and understanding as to the superior performance of
StoSAG algorithms compared with EnOpt algorithms. Theoretically, a steepest ascent algorithm that
uses a search direction based on StoSAG should outperform ds-EnOpt or ss-EnOpt. We highlight the
reasons why the EnOpt algorithms will produce unsatisfactory results when used for optimization
under uncertainty, that is, when using geological ensembles with significantly different ensemble
members. We have provided two numerical examples involving different physical problems, which
illustrate the advantages of using StoSAG compared with EnOpt algorithms and highlight the main
benefits accrued.
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