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Smoothed Isotonic Estimators of a
Monotone Baseline Hazard in the
Cox Model
HENDRIK P. LOPUHAÄ AND ENI MUSTA
Delft Institute of Applied Mathematics, Delft University of Technology

ABSTRACT. We consider the smoothed maximum likelihood estimator and the smoothed
Grenander-type estimator for a monotone baseline hazard rate �0 in the Cox model. We ana-
lyze their asymptotic behaviour and show that they are asymptotically normal at rate nm=.2mC1/,
when �0 ism � 2 times continuously differentiable, and that both estimators are asymptotically
equivalent. Finally, we present numerical results on pointwise confidence intervals that illustrate the
comparable behaviour of the two methods.

Key words: asymptotic normality, Cox regression model, hazard rate, isotonic estimation,
kernel smoothing, smoothed Grenander estimator, smoothed maximum likelihood estimator

1. Introduction

The semi-parametric Cox regression model is a very popular method in survival analysis that
allows incorporation of covariates when studying lifetime distributions in the presence of right
censored data. The ease of interpretation, resulting from the formulation in terms of the hazard
rate and the proportional effect of the covariates, and the fact that the regression coefficients
(parametric component) can be estimated while leaving the baseline distribution unspecified
favour the wide use of this framework, especially in medical applications. On the other hand,
because its first introduction (Cox, 1972), much effort has been spent on giving a firm math-
ematical basis to this approach. Initially, the attention was on the derivation of large sample
properties of the maximum partial likelihood estimator of the regression coefficients and of the
Breslow estimator for the cumulative baseline hazard (e.g., see Efron, 1977; Cox, 1975; Tsiatis,
1981). Although the most attractive property of this approach is that it does not assume any
fixed shape on the hazard curve, there are several cases where order restrictions better match
the practical expectations (see van Geloven, 2013, for an example of a decreasing hazard in a
large clinical trial for patients with acute coronary syndrome). Estimation of the baseline haz-
ard function under monotonicity constraints has been studied in Chung & Chang (1994) and
Lopuhaä & Nane (2013).

Traditional isotonic estimators, such as maximum likelihood estimators and Grenander-type
estimators, are step functions that exhibit a non normal limit distribution at rate n1=3. On the
other hand, a long stream of research has shown that, if one is willing to assume more regu-
larity on the function of interest, smooth estimators might be preferred to piecewise constant
ones because they can be used to achieve a faster rate of convergence to a Gaussian distri-
butional law and to estimate derivatives. Isotonized smooth estimators, obtained either by a
least squares projection, maximum likelihood or penalization, are studied in Mukerjee (1988),
Ramsay (1998), Eggermont & LaRiccia (2000), van der Vaart & van der Laan (2003) and
in Mammen (1991), who also compares isotonized kernel estimators with smoothed isotonic
estimators in the regression setting. Smoothed maximum likelihood estimators (SMLEs) for
monotone functions have also been investigated by Durot et al. (2013) to bootstrap from a

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-3356-4307
http://creativecommons.org/licenses/by/3.0/


754 H. Lopuhaä and E. Musta Scand J Statist 45

smooth decreasing density estimate, by Groeneboom et al. (2010) for the current status model,
together with a maximum smoothed likelihood estimator (MSLE), and by Groeneboom &
Jongbloed (2013) for estimating a monotone hazard rate, together with a penalized least squares
estimator. Other references for combining shape constraints and smoothness can be found in
Chapter 8 in Groeneboom & Jongbloed (2014). Distribution theory was first studied by Muker-
jee (1988), who established asymptotic normality for a kernel smoothed least squares regression
estimator, but this result is limited to a rectangular kernel and the rate of convergence is slower
than the usual rate for kernel estimators. In van der Vaart & van der Laan (2003), it is shown
that the isotonized kernel density estimator has the same limit normal distribution at the usual
rate nm=.2mC1/ as the ordinary kernel density estimator, when the density is m times continu-
ously differentiable. Similar results were obtained by Groeneboom et al. (2010) for the SMLE
and the MSLE and by Groeneboom & Jongbloed (2013) for a smoothed Grenander-type
estimator.

Smooth estimation under monotonicity constraints for the baseline hazard in the Cox model
was introduced in Nane (2013). By combining an isotonization step with a smoothing step
and alternating the order of smoothing and isotonization, four different estimators can be con-
structed. Two of them are kernel smoothed versions of the maximum likelihood estimator and
the Grenander-type estimator from Lopuhaä & Nane (2013). The third estimator is a MSLE
obtained by first smoothing the loglikelihood of the Cox model and then finding the maxi-
mizer of the smoothed likelihood among all decreasing baseline hazards. The forth one is a
Grenander-type estimator based on the smoothed Breslow estimator for the cumulative hazard.
Three of these estimators were shown to be consistent in Nane (2013). Moreover, the last two
methods have been studied in Lopuhaä & Musta (2017a) and were shown to be asymptotically
normal at the usual rate nm=.2mC1/, where m denotes the level of smoothness of the baseline
hazard. The main interest of the present paper is to investigate the asymptotic behaviour of the
first two methods, the SMLE and a smoothed Grenander-type estimator.

This is particularly challenging for the Cox model, because the existing approaches to these
type of problems for smoothed isotonic estimators do not apply to the Cox model. The situa-
tion is different from isotonized smooth estimators, such as the MSLE and a Grenander-type
estimator based on the smoothed Breslow estimator, which are studied in Lopuhaä & Musta
(2017a). In the latter paper, the main idea is that the isotonic smooth estimator can be repre-
sented as a least squares projection of a naive estimator (smooth but not monotone), which is
simpler to analyze and asymptotically equivalent to the isotonic smooth estimator.

The smoothed Grenander-type estimator in the ordinary right censoring model without
covariates was investigated by Lopuhaä & Musta (2017b). Following the approach in Groene-
boom & Jongbloed (2013), asymptotic normality was established by using a Kiefer–Wolfowitz
type of result, recently derived in Durot & Lopuhaä (2014). Unfortunately, the lack of a
Kiefer–Wolfowitz type of result for the Breslow estimator provides a strong limitation towards
extending the previous approach to the more general setting of the Cox model. Recently,
Groeneboom & Jongbloed (2014) developed a different method for finding the limit distribu-
tion of smoothed isotonic estimators, which is mainly based on uniform L2-bounds on the
distance between the non-smoothed isotonic estimator and the true function, and also uses
that the maximal distance between succeeding points of jump of the isotonic estimator is of the
order Op.n�1=3 logn/. A sketch of proof in the right censoring model is given in Section 11.6
of Groeneboom & Jongbloed (2014). However, these two key ingredients heavily depend on
having exponential bounds for tail probabilities of the so-called inverse process, or rely on a
strong embedding for the relevant sum process. Exponential bounds for tail probabilities of
the inverse process are difficult to obtain in the Cox model and a strong embedding for the
Breslow estimator is not available. Nevertheless, inspired by the approach in Groeneboom &
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Jongbloed (2014), we obtain polynomial bounds, which will suffice for obtaining uniform L2-
bounds, and we avoid using the maximal distance between succeeding points of jump of the
non-smoothed isotonic estimator, by establishing a sufficiently small bound on the expected
supremum distance between the non-smoothed isotonic estimator and the true baseline hazard.

This leads to asymptotic normality at rate nm=.2mC1/ of the SMLE and the smoothed
Grenander-type estimator, which are also shown to be asymptotically equivalent. By means of
a small simulation, we investigate the finite sample behaviour in terms of asymptotic confidence
intervals corresponding to the limit normal distributions, as well as bootstrap confidence inter-
vals based on a smooth bootstrap proposed by Burr (1994) and Xu et al. (2014). As expected,
no estimator performs strictly better than the other.

The paper is organized as follows. In Section 2, we specify the Cox regression model and
provide some background information that will be used in the sequel. The kernel smoothed
versions of the Grenander-type estimator and of the maximum likelihood estimator of a non-
decreasing baseline hazard function are considered in Section 3. We only consider the case of a
nondecreasing baseline hazard. The same results can be obtained similarly for a non-increasing
hazard. The results of a small simulation study are reported in Section 4, and we conclude with
a brief discussion in Section 5. In order to keep the exposition clear and simple, most of the
proofs are delayed until Section 6, and remaining technicalities have been put in the Supporting
Information online.

2. The Cox regression model

LetX1; : : : ; Xn be an i.i.d. sample representing the survival times of n individuals, which can be
observed only on time intervals Œ0; Ci � for some i.i.d. censoring times C1; : : : ; Cn. One observes
i.i.d. triplets .T1; �1; Z1/; : : : ; .Tn; �n; Zn/, where Ti D min.Xi ; Ci / denotes the follow up
time, �i D 1¹Xi�Ciº is the censoring indicator and Zi 2 R

p is a time independent covariate
vector. Given the covariate vector Z; the event time X and the censoring time C are assumed
to be independent. Furthermore, conditionally on Z D ´; the event time is assumed to be
a nonnegative r.v. with an absolutely continuous distribution function F.x j ´/ and density
f .x j ´/. Similarly, the censoring time is assumed to be a nonnegative r.v. with an absolutely
continuous distribution function G.x j ´/ and density g.x j ´/. The censoring mechanism is
assumed to be non-informative, i.e., F and G share no parameters. Within the Cox model, the
conditional hazard rate �.x j ´/ for a subject with covariate vector ´ 2 R

p is related to the
corresponding covariate by

�.x j ´/ D �0.x/ eˇ
0
0´; x 2 R

C;

where �0 represents the baseline hazard function, corresponding to a subject with ´ D 0, and
ˇ0 2 R

p is the vector of the regression coefficients.
Let H and H uc denote, respectively, the distribution function of the follow-up time and the

sub-distribution function of the uncensored observations, i.e.,

H uc.x/ D P.T � x;� D 1/ D

Z
ı1¹t�xº dP.t; ı; ´/; (1)

where P is the distribution of .T;�;Z/. We also require the following assumptions, some of
which are common in large sample studies of the Cox model (e.g., see Lopuhaä & Nane, 2013):

(A1) Let �F ; �G and �H be the end points of the support of F; G and H . Then

�H D �G < �F � 1:

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
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(A2) There exists � > 0 such that

sup
jˇ � ˇ0j��

E

h
jZj2 e2ˇ

0Z
i
< 1:

(A3) There exists � > 0 such that

sup
jˇ � ˇ0j��

E

h
jZj2 e4ˇ

0Z
i
< 1:

Let us briefly comment on these assumptions. While the first one tells us that, at the end of
the study, there is at least one subject alive, the other two are somewhat hard to justify from a
practical point of view. One can think of (A2) and (A3) as conditions on the boundedness of
the second moment of the covariates, uniformly for ˇ in a neighbourhood of ˇ0.

By now, it seems to be rather a standard choice estimating ˇ0 by Ǒn, the maximizer of
the partial likelihood function, as proposed by Cox (1972). The asymptotic behaviour was
first studied by Tsiatis (1981). We aim at estimating �0, subject to the constraint that it is
increasing (the case of a decreasing hazard is analogous), on the basis of n observations
.T1; �1; Z1/; : : : ; .Tn; �n; Zn/. We refer to the quantity

ƒ0.t/ D

Z t
0

�0.u/ du

as the cumulative baseline hazard and, by introducing

ˆ.xIˇ/ D

Z
1¹t�xº eˇ

0´ dP.t; ı; ´/; (2)

we have

�0.x/ D
h.x/

ˆ.xIˇ0/
; (3)

where h.x/ D dH uc.x/=dx (e.g., see (9) in Lopuhaä & Nane, 2013). For ˇ 2 R
p and x 2 R,

the function ˆ.xIˇ/ can be estimated by

ˆn.xIˇ/ D

Z
1¹t�xºe

ˇ0´ dPn.t; ı; ´/; (4)

where Pn is the empirical measure of the triplets .Ti ; �i ; Zi / with i D 1; : : : ; n. Moreover, in
lemma 4 of Lopuhaä & Nane (2013), it is shown that

sup
x2R

jˆn.xIˇ0/ � ˆ.xIˇ0/ j D Op.n
�1=2/: (5)

It will be often used throughout the paper that a stochastic bound of the same order holds
also for the distance between the cumulative hazard ƒ0 and the Breslow estimator

ƒn.x/ D

Z
ı1¹t�xº

ˆn.t I Ǒn/
dPn.t; ı; ´/; (6)

but only on intervals staying away of the right boundary, i.e.,

sup
x2Œ0;M�

jƒn.x/ �ƒ0.x/j D Op.n
�1=2/; for all 0 < M < �H ; (7)

(see theorem 5 in Lopuhaä & Nane, 2013).

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
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Smoothing is done by means of kernel functions. We will consider kernel functions k
that are m-orthogonal, for some m � 1, which means that

R
jk.u/j jujm du < 1 andR

k.u/uj du D 0, for j D 1; : : : ; m � 1, if m � 2. We assume that

k has bounded support Œ�1; 1� and is such that
Z 1
�1

k.y/ dy D 1I

k is differentiable with a uniformly bounded derivative.

(8)

We denote by kb its scaled version kb.u/ D b�1k.u=b/. Here, b D bn is a bandwidth
that depends on the sample size, in such a way that 0 < bn ! 0 and nbn ! 1, as n ! 1.
From now on, we will simply write b instead of bn. Note that if m > 2, the kernel function k
necessarily attains negative values, and as a result, also the smooth estimators of the baseline
hazard defined in Section 3 may be negative and monotonicity might not be preserved. To avoid
this, one could restrict oneself to m D 2. In that case, the most common choice is to let k be a
symmetric probability density.

3. Smoothed isotonic estimators

We consider smoothed versions of two isotonic estimators for �0, i.e., the maximum likelihood
estimator O�n and the Grenander-type estimator Q�n, introduced in Lopuhaä & Nane (2013). The
maximum likelihood estimator of a nondecreasing baseline hazard rate �0 can be characterized
as the left derivative of the greatest convex minorant of the cumulative sum diagram consisting

of points P0 D .0; 0/ and Pj D
�
OWn.T.jC1//; Vn.T.jC1//

�
, for j D 1; : : : ; n�1, where OWn

and Vn are defined as

OWn.x/ D

Z  
e Ǒ
0
n´

Z x
T.1/

1¹u�sº ds

!
dPn.u; ı; ´/; x � T.1/;

Vn.x/ D

Z
ı1¹u < xº dPn.u; ı; ´/;

(9)

with Ǒn being the partial maximum likelihood estimator (see lemma 1 in Lopuhaä & Nane,
2013). For a fixed x 2 Œ0; �H �, the SMLE O�SM

n of a nondecreasing baseline hazard rate �0 was
defined in Nane (2013) by

O�SM
n .x/ D

Z .xCb/^�H
.x�b/_0

kb.x � u/ O�n.u/ du: (10)

The Grenander-type estimator Q�n of a nondecreasing baseline hazard rate �0 is defined as
the left hand slope of the greatest convex minorant Qƒn of the Breslow estimatorƒn. For a fixed
x0 2 Œ0; �H �, we consider the smoothed Grenander-type estimator Q�SG

n , which is defined by

Q�SG
n .x/ D

Z .xCb/^�H
.x�b/_0

kb.x � u/ Q�n.u/ du: (11)

Uniform strong consistency on compact intervals in the interior of the support Œ�;M � �

Œ0; �H � is provided by theorem 5.2 of Nane (2013),

sup
x2Œ�;M�

ˇ̌̌
Q�SG
n .x/ � �0.x/

ˇ̌̌
! 0; with probability one. (12)

Strong pointwise consistency of O�SM
n in the interior of the support is established in

theorem 5.1 in Nane (2013). Under additional smoothness assumptions on �0, one can obtain

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
the Foundation of the Scandinavian Journal of Statistics.



758 H. Lopuhaä and E. Musta Scand J Statist 45

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

Fig. 1. Left panel: The maximum likelihood estimator (piecewise constant solid line) of the baseline hazard
(dashed) together with the smoothed maximum likelihood estimator (solid). Right panel: The Grenan-
der estimator (piecewise constant solid line) of the baseline hazard (dashed) together with the smoothed
Grenander estimator (solid).

uniform strong consistency for O�SM
n , similar to (12). Inconsistency at the boundaries is a

frequently encountered problem in such situations and can be partially avoided by using a
boundary corrected kernel. One possibility is to construct linear combinations of k.u/ and
uk.u/ with coefficients depending on the value near the boundary (e.g., see Zhang & Karuna-
muni, 1998; Durot et al.,2013; or Lopuhaä & Musta, 2017b). Then, it can be proved, exactly as
it is done in Lopuhaä & Musta (2017b), that uniform consistency holds on Œ0;M � � Œ0; �H �.

Figure 1 shows the SMLE (left) and the smoothed Grenander-type estimator (right) for a
sample of size n D 500 from a Weibull baseline distribution with shape parameter 1.5 and
scale 1. For simplicity, we assume that the real valued covariate and the censoring times are
uniformly .0; 1/ distributed and we take ˇ0 D 0:5. We used a boundary corrected triweight
kernel function k.u/ D .35=32/.1 � u2/31¹juj�1º and bandwidth b D n�1=5.

In the remainder of this section, we will derive the pointwise asymptotic distribution of both
smoothed isotonic estimators, in (10) and (11). As already mentioned, our approach is inspired
by techniques introduced in Section 11.6 of Groeneboom & Jongbloed (2014). We briefly
describe this approach for the smoothed Grenander estimator, for which the computations are
more complicated. We start by writing

Q�SG
n .x/ D

Z
kb.x � u/ dƒ0.u/ C

Z
kb.x � u/ d. Qƒn � ƒ0/.u/: (13)

The first (deterministic) term on the right hand side of (13) gives us the asymptotic bias.
The method applied in Lopuhaä & Musta (2017b) for the right censoring model continues by
decomposing the second term in two partsZ

kb.x � u/ d. Qƒn � ƒn/.u/ C

Z
kb.x � u/ d.ƒn � ƒ0/.u/;

and then uses the Kiefer–Wolfowitz type of result

sup
t2Œ0;�H �

j Qƒn.t/ �ƒn.t/j D OP

�
n�2=3.logn/2=3

�
; (14)

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
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to show that
R
kb.x � u/ d. Qƒn � ƒn/.u/ converges to zero. Finally, results from empirical

process theory are used to show the asymptotic normality of
R
kb.x � u/ d.ƒn � ƒ0/.u/.

This approach cannot be followed in our case because of the lack of a Kiefer–Wolfowitz type
of result as in (14) for the Cox model.

Alternatively, we proceed by describing the main steps of the L2-bounds approach intro-
duced in Groeneboom & Jongbloed (2014). On an event En with probability tending to one,
we will approximateZ

kb.x � u/ d. Qƒn � ƒ0/.u/ (15)

by
R
�n;x.u; ı; ´/ dP.u; ı; ´/, for some suitable function �n;x (lemma 3.1), whose piecewise con-

stant modification N�n;x integrates to zero with respect to the empirical measure Pn (lemma 3.2).
This enables us to approximate (15) byZ

N�n;x.u; ı; ´/ d.Pn � P/.u; ı; ´/ C

Z �
N�n;x.u; ı; ´/ � �n;x.u; ı; ´/

�
dP.u; ı; ´/: (16)

Then, the key step is to bound the second integral in (16) by means of L2-bounds on the
distance between the ordinary Grenander estimator and the true baseline hazard (lemma 3.3).
The last step consists of replacing N�n;x by a deterministic function �n;x (lemma 3.4) and use
empirical process theory to show thatZ

�n;x.u; ı; ´/ d.Pn � P/.u; ı; ´/

is asymptotically normal.
Before we proceed to our first main result, we will formulate the steps described earlier in

a series of lemmas. Let x 2 .0; �H / and 0 < M < �H . For n sufficiently large, such that
0 < x � b < x C b < M , define

an;x.u/ D
kb.x � u/

ˆ.uIˇ0/
; for u � x C b; (17)

where ˆ.uIˇ0/ is defined in (2), and an;x.u/ D 0 for u > x C b. We then have the following
approximation for (15). The proof can be found in Section 6.

Lemma 3.1. Suppose that (A1)–(A2) hold. Let an;x be defined by (17) and let Ǒn be the partial
MLE for ˇ0. There exists an event En, with 1En ! 1 in probability, such that for

�n;x.u; ı; ´/ D 1En

²
ı an;x.u/ � e Ǒ

0
n ´

Z u
0

an;x.v/ d Qƒn.v/
³
; (18)

it holdsZ
�n;x.u; ı; ´/ dP.u; ı; ´/ D � 1En

Z
kb.x � u/ d. Qƒn � ƒ0/.u/ C Op.n

�1=2/:

Next, we consider a piecewise constant modification Nan;x N̂ n of an;xˆn, which is constant
on the same intervals as Q�n. Let �0 D x � b, �mC1 D x C b and let .�i /miD1 be successive
points of jump of Q�n in the interval .x � b; x C b/. Then, for u 2 .�i ; �iC1�, we choose

Nan;x N̂ n.uI Ǒn/ D an;x. OAn.u//ˆn. OAn.u/I Ǒn/; (19)

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
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where for u 2 .�i ; �iC1�,

OAn.u/ D

8̂<̂
:
�i ; if �0.t/ > Q�n.�iC1/; for all t 2 .�i ; �iC1�;
s; if �0.s/ D Q�n.s/; for some s 2 .�i ; �iC1�;
�iC1; if �0.t/ < Q�n.�iC1/; for all t 2 .�i ; �iC1�:

(20)

Furthermore, let En be the event from lemma 3.1 and define

N‰n;x.u/ D
Nan;x N̂ n.uI Ǒn/

ˆn.uI Ǒn/
1En ; u 2 Œx � b; x C b�; (21)

and N‰n;x.u/ D 0, for u ¤ Œx � b; x C b�. Note that, because u � x C b < M < T.n/ on
the event En, we have ˆn.uI Ǒn/ > 0 (see the proof of lemma 3.1), and thus N‰n;x.u/ is well
defined. Now, define the following piecewise constant modification of �n;x by

N�n;x.u; ı; ´/ D ı N‰n;x.u/ � e Ǒ
0
n ´

Z u
0

N‰n;x.v/ d Qƒn.v/: (22)

We then have the following property. The proof can be found in Section 6.

Lemma 3.2. Let N�n;x be defined in (22). ThenZ
N�n;x.u; ı; ´/ dPn.u; ı; ´/ D 0: (23)

At this point, it is important to discuss in some detail how we will obtain suitable bounds
for the second integral in (16). In order to do so, we first introduce the inverse process QUn. It is
defined by

QUn.a/ D argmin
x2Œ0;T.n/�

¹ƒn.x/ � axº ; (24)

and it satisfies the switching relation Q�n.x/ � a if and only if QUn.a/ � x, for x � T.n/.
In their analysis of the current status model, Groeneboom et al. (2010) encounter an inte-
gral that is similar to the second integral in (16). They bound this integral using that the
maximal distance between succeeding points of jump of the isotonic estimator is of the order
Op.n

�1=3 logn/. Such a property typically relies on the exponential bounds for the tail proba-
bilities of QUn.a/, obtained either by using a suitable exponential martingale (e.g., see lemma 5.9
in Groeneboom & Wellner, 1992), or by an embedding of the relevant sum process into Brow-
nian motion or Brownian bridge (e.g., see lemma 5.1 in Durot et al., 2012). Unfortunately,
an embedding of the process ƒn is not available, and in our current situation, the martingale
approach only yields polynomial bounds for tail probabilities of QUn.a/. A polynomial bound
was also found by Durot (2007) (see her lemma 2), leading to

sup
x2In

E

h�
Q�n.x/ � �0.x/

�pi
� Kn�p=3; (25)

for p 2 Œ1; 2/ and some interval In (see her theorem 1). By intersecting with the event En from
lemma 3.1, we extend (25) to a similar bound for p D 2. Groeneboom & Jongbloed (2014)
provide an alternative approach to bound the second integral in (16), based on bounds for (25)
with p D 2. Unfortunately, they still make use of the fact that the maximum distance between
succeeding points of jump of the isotonic estimator is of the order Op.n�1=3 logn/ to obtain
a result similar to (28). Nevertheless, we do follow the approach in Groeneboom & Jongbloed
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(2014), but instead of using the maximum distance between succeeding points of jump of Q�n,
we use a bound on

E

"
sup

x2Œ�;M�

�
Q�n.x/ � �0.x/

�2#
; (26)

for 0 < � < M < �H . Exponential bounds for the tail probabilities of QUn.a/ would
yield the same bound for (26) as the one in (25) apart from a factor logn. Because we can only
obtain polynomial bounds on the tail probabilities of QUn.a/, we establish a bound for (26) of
the order O.n�4=9/. This is probably not optimal, but this will turn out to be sufficient for our
purposes and leads to the following intermediate result, of which the proof can be found in
Section 6.

Lemma 3.3. Suppose that (A1)–(A2) hold. Fix x 2 .0; �h/ and let �n;x and N�n;x be defined
by (18) and (22), respectively. Assume that �0 is differentiable, such that �0

0
is uniformly bounded

above and below by strictly positive constants. Assume that x 7! ˆ.xIˇ0/ is differentiable with a
bounded derivative in a neighborhood of x and let k satisfy (8). Then, it holdsZ ®

N�n;x.u; ı; ´/ � �n;x.u; ı; ´/
¯

dP.u; ı; ´/ D Op.b
�1n�2=3/:

The last step is to replace N�n;x in the first integral of (16) with a deterministic approximation.
This is done in the next lemma, of which the proof can be found in Section 6.

Lemma 3.4. Suppose that (A1)–(A3) hold. Fix x 2 .0; �h/. Assume that �0 is differentiable,
such that �0

0
is uniformly bounded above and below by strictly positive constants. Assume that

x 7! ˆ.xIˇ0/ is differentiable with a bounded derivative in a neighborhood of x. Let N�n;x be
defined in (22) and define

�n;x.u; ı; ´/ D 1En

�
ı an;x.u/ � eˇ

0
0´

Z u
0

an;x.v/ dƒ0.v/
�
; u 2 Œ0; �H �: (27)

where an;x is defined in (17) and En is the event from lemma 3.1. Let k satisfy (8). Then, it holdsZ ®
N�n;x.u; ı; ´/ � �n;x.u; ı; ´/

¯
d.Pn � P/.u; ı; ´/ D Op.b

�3=2n�13=18/COp.n
�1=2/

(28)

We are now in the position to state our first main result.

Theorem 3.5. Suppose that (A1)–(A3) hold. Fix x 2 .0; �h/. Assume that �0 is m � 2 times
continuously differentiable in x, such that �0

0
is uniformly bounded above and below by strictly

positive constants. Moreover, assume that t 7! ˆ.t Iˇ0/ is differentiable with a bounded deriva-
tive in a neighborhood of x and let k satisfy (8). Let Q�SG be defined in (11) and assume that
n1=.2mC1/b ! c > 0. Then, it holds

nm=.2mC1/
�
Q�SG
n .x/ � �0.x/

�
d
! N.	; 
2/;

where

	 D
.�c/m

mŠ
�
.m/

0
.x/

Z 1
�1

k.y/ym dy and 
2 D
�0.x/

cˆ.xIˇ0/

Z
k2.u/ du: (29)

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
the Foundation of the Scandinavian Journal of Statistics.



762 H. Lopuhaä and E. Musta Scand J Statist 45

Furthermore,

nm=.2mC1/
�
Q�SG
n .x/ �

Q�SM
n .x/

�
! 0; (30)

in probability, where Q�SM
n .x/ is defined in (10), so that Q�SM

n .x/ has the same limiting distribution
as Q�SG

n .x/.

Proof. Choose 0 < � < x < M 0 < M < �H , so that for n sufficiently large, we have
� < x � b � x C b � M 0. Consider the event En from lemma 3.1 and choose �1; �2 > 0

and �3, such that it satisfies (65). We write

Q�SG
n .x/ D

Z
kb.x � u/ d Qƒn.u/

D

Z
kb.x � u/ dƒ0.u/ C 1En

Z
kb.x � u/ d. Qƒn � ƒ0/.u/

C 1Ecn

Z
kb.x � u/ d. Qƒn � ƒ0/.u/:

(31)

Because 1Ecn ! 0 in probability, the third term on the right hand side tends to zero in
probability. For the first term, we obtain from a change of variable, a Taylor expansion, and
the properties of the kernel:

nm=.2mC1/
²Z

kb.x � u/ �0.u/ du � �0.x/

³

D nm=.2mC1/
Z 1
�1

k.y/ ¹�0.x � by/ � �0.x/º dy

D nm=.2mC1/
Z 1
�1

k.y/

´
��00.x/by C � � � C

�
.m�1/
0

.x/

.m � 1/Š
.�by/m�1 C

�
.m/

0
.�n/

mŠ
.�by/m

μ
dy

!
.�c/m

mŠ
�
.m/

0
.x/

Z 1
�1

k.y/ym dy;

(32)

with j�n � xj < bjyj. Finally, for the second term on the right hand side of (31), lemmas 3.1
to 3.4 yield that

nm=.2mC1/1En

Z
kb.x � u/ d. Qƒn � ƒ0/.u/

D nm=.2mC1/
Z
�n;x.u; ı; ´/ d.Pn � P/.u; ı; ´/ C op.1/:

(33)

For the first term on the right hand side of (33), we can write

nm=.2mC1/
Z
�n;x.u; ı; ´/ d.Pn � P/.u; ı; ´/

D nm=.2mC1/1En

Z
ıkb.x � u/

ˆ.uIˇ0/
d.Pn � P/.u; ı; ´/

� nm=.2mC1/1En

Z
eˇ
0
0´

Z u
0

an;x.v/ dƒ0.v/ d.Pn � P/.u; ı; ´/:

(34)
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We will show that the first term on the right hand is asymptotically normal and the second
term tends to zero in probability. Define Yn;i D n�.mC1/=.2mC1/�ikb.x � Ti /=ˆ.Ti Iˇ0/,
so that the first term on the right hand side of (34) can be written as

1Enn
m=.2mC1/

Z
ıkb.x � u/

ˆ.uIˇ0/
d.Pn � P/.u; ı; ´/ D 1En

nX
iD1

.Yn;i � E ŒYn;i �/ :

Using (3), together with a Taylor expansion and the boundedness assumptions on the
derivatives of �0 and ˆ.xIˇ0/, we have

nX
iD1

Var.Yn;i /

D n�1=.2mC1/

´Z
k2
b
.x � u/

ˆ.uIˇ0/2
dH uc.u/ �

�Z
kb.x � u/

ˆ.uIˇ0/
dH uc.u/

�2μ

D n�1=.2mC1/

´
1

b

Z 1
�1

k2.y/
�0.x � by/

ˆ.x � byIˇ0/
dy �

�Z
kb.x � u/ �0.u/ du

�2μ

D
�0.x/

cˆ.xIˇ0/

Z 1
�1

k2.y/ dy � n�1=.2mC1/
Z 1
�1

yk2.y/

�
d

dx
�0.x/

ˆ.xIˇ0/

	
xD�y

dy C o.1/

D
�0.x/

cˆ.xIˇ0/

Z 1
�1

k2.y/ dy C o.1/:

(35)

Moreover, jYn;i j � n�.mC1/=.2mC1/ˆ.M Iˇ0/
�1 supx2Œ�1;1� k.x/, so that

Pn
iD1

E


jYn;i j

21¹jYn;i j>�º
�
! 0, for any � > 0, because 1¹jYn;i j > �º D 0, for n sufficiently large.

Consequently, by Lindeberg central limit theorem, and the fact that 1En ! 1 in probability,
we obtain

1Enn
m=.2mC1/

Z
ıkb.x � u/

ˆ.uIˇ0/
d.Pn � P/.u; ı; ´/! N.0; 
2/: (36)

For the second term on the right hand side of (34), write

nm=.2mC1/
Z

eˇ
0
0´

Z u
0

an;x.v/ dƒ0.v/ d.Pn � P/.u; ı; ´/ D

nX
iD1

�
QYn;i � EŒ QYn;i �

�
:

where

QYn;i D n�.mC1/=.2mC1/eˇ
0
0Zi

Z Ti
0

kb.x � v/

ˆ.vIˇ0/
dƒ0.v/:

We have

nX
iD1

Var. QYn;i /�
nX
iD1

E

h
QY 2n;i

i
� n�1=.2mC1/

Z
e2ˇ
0
0´

�Z u
0

kb.x � v/

ˆ.vIˇ0/
dƒ0.v/

�2
dP.u; ı; ´/;
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where the integral on the right hand side is bounded by Z xCb
x�b

kb.x � v/

ˆ.vIˇ0/
dƒ0.v/

!2
ˆ.0I 2ˇ0/ �

ˆ.0I 2ˇ0/

ˆ2.M Iˇ0/

 Z xCb
x�b

kb.x�v/ dƒ0.v/

!2
DO.1/:

Hence, the second term on the right hand side of (34) tends to zero in probability. Together
with (31), (32) and (36), this proves the first part of the theorem.

For the SMLE, we can follow the same approach and obtain similar results as those in
lemmas 3.1 to 3.4. The arguments are more or less the same as those used to prove lemmas 3.1
to 3.4. We briefly sketch the main differences. First, instead of Qƒn, we now use

Oƒn.x/ D

Z x
0

O�n.u/ du

in (15). Then, because the maximum likelihood estimator is defined as the left slope of the
greatest convex minorant of a cumulative sum diagram that is different from the one corre-
sponding to the Grenander-type estimator, lemmas 3.1 and 3.2 will hold with a different event
OEn and N‰n;x will have a simpler form (see lemmas B.1–B.2 and definition (S10) in Supporting

Information). Similar to the proof of lemma 3.3, the proof of its counterpart for the maximum
likelihood estimator (see lemma B.8 in Supporting Information) is quite technical and involves
bounds on the tail probabilities of the inverse process corresponding to O�n (lemma B.5), used to
obtain the analogue of (26) (lemma B.6). Moreover, the inverse process related to the maximum
likelihood estimator is defined by

OUn.a/ D argmin
x2ŒT.1/;T.n/�

°
Vn.x/ � a OWn.x/

±
; (37)

where Vn and OWn are defined in (9), and we get a slightly different bound on the tail probabili-
ties of OUn (compare lemma 6.3 and lemma B.5 in Supporting Information). The reason is that
the martingale decomposition of the process Vn.t/ � a OWn.t/ has a simpler form. The counter-
part of lemma 3.4 (see lemma B.10 in Supporting Information) is established in the same way,
replacing Q�n by O�n. For details, we refer to Section B in Supporting Information.

From (31) and (33), we have that

nm=.2mC1/ Q�SG
n .x/ D nm=.2mC1/

Z
kb.x � u/ dƒ0.u/

C nm=.2mC1/
Z
�n;x.u; ı; ´/ d.Pn � P/.u; ı; ´/ C op.1/

(38)

where �n;x is defined in (27) and where

nm=.2mC1/
Z
�n;x.u; ı; ´/ d.Pn � P/.u; ı; ´/! N.0; 
2/: (39)

Similarly, from the results in Section B of Supporting Information, we have that there exists
an event OEn, such that

nm=.2mC1/ Q�SM
n .x/ D nm=.2mC1/

Z
kb.x � u/ dƒ0.u/

C nm=.2mC1/
Z
O�n;x.u; ı; ´/ d.Pn � P/.u; ı; ´/ C op.1/;

(40)

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 45 Smoothed isotonic hazard estimators 765

where O�n;x is defined in (27) with bEn instead of En, where 1 OEn ! 1 in probability, and where

nm=.2mC1/
Z
O�n;x.u; ı; ´/ d.Pn � P/.u; ı; ´/! N.0; 
2/: (41)

Together with (39) and (41), this means that

nm=.2mC1/
�
Q�SG
n .x/ �

O�SM
n .x/

�
D

�
1 OEcn

1En � 1Ecn1 OEn

�
� nm=.2mC1/

Z ²
ıan;x.u/ � eˇ

0
0´

Z u
0

an;x.v/ dƒ0.v/
³

d.Pn � P/.u; ı; ´/C op.1/

D 1 OEcn
Op.1/ � 1EcnOp.1/ C op.1/ D op.1/;

because 1 OEcn
! 0 and 1Ecn ! 0 in probability.

Note that in the special case ˇ0 D 0 and m D 2, we recover theorem 3.2 in Lopuhaä &
Musta (2017b) and theorem 11.8 in Groeneboom & Jongbloed (2014), for the right censoring
model without covariates. The fact that Q�SG

n .x/ and O�SM
n .x/ are asymptotically equivalent does

not come as a surprise, because for the corresponding isotonic estimators according to theorem

2 in Lopuhaä & Nane (2013), for x 2 .0; �H / fixed, n1=3
�
Q�n.x/ � O�n.x/

�
! 0, in probability.

However, we have not been able to exploit this fact, and we have established the asymptotic
equivalence in (30) by obtaining the expansions in (38) and (40) separately for each estimator.

Remark 3.6. The estimators considered in theorem 3.5 are based on the partial maximum like-
lihood estimator Ǒn, which defines the Breslow estimator, see (6), and the cumulative sum
diagram from which the SMLE is determined, see (9). However, theorem 3.5 remains true, if
Ǒ
n is any estimator that satisfies

Ǒ
n � ˇ0 ! 0; a.s., and

p
n. Ǒn � ˇ0/ D Op.1/ (42)

In particular, this holds for the partial MLE for ˇ0. See, e.g., theorems 3.1 and 3.2 in Tsi-
atis (1981). When proving consistency of the bootstrap, we are not able to establish bootstrap
versions of theorems 3.1 and 3.2 in Tsiatis (1981), but, in view of this remark, it is sufficient to
assume the bootstrap version of (42).

4. Numerical results for pointwise confidence intervals

In this section, we illustrate the finite sample performance of the two estimators considered
previously by constructing pointwise confidence intervals for the baseline hazard rate. We con-
sider two different procedures: the first one relies on the limit distribution and the second one
is a bootstrap based method. In all the simulations, we use the triweight kernel function, which
means that the degree of smoothness is m D 2. The reason for choosing a second-order ker-
nel is that higher order kernels may also take negative values, which then might lead to non
monotone estimators for the baseline hazard.

4.1. Asymptotic confidence intervals

From theorem 3.5, it can be seen that the asymptotic 100.1 � ˛/%-confidence intervals at the
point x0 2 .0; �H / are of the form
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�SI
n .x0/ � n�2=5 ¹ O	n.x0/ ˙ O
n.x0/q1 � ˛=2º ;

where q1�˛=2 is the .1 � ˛=2/ quantile of the standard normal distribution, �SI
n .x0/ is the

smooth isotonic estimator at hand (SG or SMLE) and O
n.x0/, O	n.x0/ are corresponding plug-
in estimators of the asymptotic mean and standard deviation, respectively. However, from the
expression of the asymptotic mean in theorem 3.5 for m D 2, it is obvious that obtain-
ing the plug-in estimators requires estimation of the second derivative of �0. Because accurate
estimation of derivatives is a hard problem, we choose to avoid it by using undersmoothing.
This procedure is to be preferred above bias estimation, because it is computationally more
convenient and leads to better results (see also Hall, 1992; Groeneboom & Jongbloed, 2015;
Cheng et al., 2006). Undersmoothing consists of using a bandwidth of a smaller order than
the optimal one (in our case n�1=5). As a result, the bias of n2=5.�SI

n .x0/ � �0.x0//, which
is of the order n2=5b2 (32), will converge to zero. On the other hand, the asymptotic vari-
ance is n�1=5b�1
2 (see (35) with m D 2). For example, with b D n�1=4, asymptotically
n2=5.�SI

n .x0/ � �0.x0// behaves like a normal distribution with mean of the order n�1=10 and
variance n1=20
2. Hence, the confidence interval becomes

�SI
n .x0/ ˙ n�3=8 O
n.x0/q1�˛=2; (43)

where

O
n.x0/ D
�SI
n .x0/

cˆn.x0I Ǒn/

Z 1
�1

k.y/2 dy: (44)

Note that undersmoothing leads to confidence intervals of asymptotic length OP .n�3=8/,
while the optimal ones would be of length OP .n�2=5/. In our simulations, the event times
are generated from a Weibull baseline distribution with shape parameter 1.5 and scale 1. The
real valued covariate and the censoring time are chosen to be uniformly distributed on the
interval .0; 1/ and we take ˇ0 D 0:5. We note that this setup corresponds to around 35%
uncensored observations. Confidence intervals are calculated at the point x0 D 0:5 using
10,000 sets of data and we take bandwidth b D cn�1=4, with c D 1, and kernel function
k.u/ D .35=32/.1 � u2/31¹juj � 1º.

It is important to note that the performance depends strongly on the choice of the constant c,
because the asymptotic length is inversely proportional to c (44). This means that by choosing
a smaller c, we get wider confidence intervals, and as a result, higher coverage probabilities.
However, it is not clear which would be the optimal choice of such a constant. This is actually a
common problem in the literature (see for example Cheng et al., 2006 and González-Manteiga
et al., 1996). As indicated in Müller & Wang (1990), cross-validation methods that consider
a trade-off between bias and variance suffer from the fact that the variance of the estimator
increases as one approaches the endpoint of the support. This is even enforced in our setting,
because the bias is also decreasing when approaching the endpoint of the support. We tried a
locally adaptive choice of the bandwidth, as proposed in Müller & Wang (1990), by minimizing
an estimator of the Mean Squared Error, but in our setting, this method did not lead to better
results. A simple choice is to take c equal to the range of the data (Groeneboom & Jongbloed,
2015), which in our case corresponds to c D 1.

Table 1 shows the performance of the estimators. The four columns corresponding to SG
and SMLE list the average length (AL) and the coverage probabilities (CP) of the confidence
intervals given in (43) for various sample sizes. Results indicate that the SMLE behaves slightly
better, but as the sample size increases, its behaviour becomes comparable with that of the
SG estimator. Even though the coverage probabilities are below the nominal level of 95%,
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Table 1. The AL and the CP for 95% pointwise confidence intervals of the baseline hazard rate at the point
x0 D 0:5 based on the asymptotic distribution.

SG SMLE SG0 SMLE0 Kernel Grenander
n AL CP AL CP AL CP AL CP AL CP AL CP

50 1.411 0.732 1.583 0.751 1.281 0.915 1.426 0.944 1.458 0.727 0.980 0.440
100 0.996 0.740 1.101 0.796 0.984 0.941 1.057 0.958 1.055 0.756 0.757 0.500
500 0.545 0.824 0.563 0.857 0.538 0.949 0.559 0.977 0.560 0.822 0.449 0.615
1,000 0.421 0.852 0.430 0.883 0.419 0.957 0.430 0.979 0.429 0.845 0.359 0.657
5,000 0.232 0.910 0.234 0.916 0.232 0.969 0.234 0.981 0.234 0.884 0.215 0.764

SG and SMLE use Ǒn, while SG0 and SMLE0 use ˇ0. AL, average length; CP, coverage probabilities;
SMLE, smoothed maximum likelihood estimator.

smoothing leads to significantly more accurate results in comparison with the non-smoothed
Grenander-type estimator given in the last two columns of Table 1. The confidence intervals for
the Grenander-type estimator are constructed on the basis of theorem 2 in Lopuhaä & Nane
(2013), i.e., they are of the form Q�n.x0/ ˙ n�1=3 OCn.x0/q1�˛=2.Z/, where

OCn.x0/ D

 
4 Q�n.x0/ Q�

0
n.x0/

ˆn.x0I Ǒn/

!1=3
;

q˛.Z/ is the ˛-quantile of the distribution of Z D argmint2R¹W.t/ C t2º, with W as a stan-
dard two-sided Brownian motion starting from zero. In particular, q0:975.Z/ D 0:998181. The
main advantage of using the non-smoothed Grenander-type estimator is that it does not involve
the choice of a tuning parameter. However, the performance is not satisfactory, because we still
need to estimate the derivative of �0, which is difficult if the estimator of �0 is a step function.
Here, we use the slope of the segment Œ Q�n.T.i/; Q�n.TiC1/� on the interval ŒT.i/; T.iC1/� that
contains x0.

We also compare the performance of the SG estimator and the SMLE with that of the
ordinary (non-monotone) kernel estimator

�sn.x0/ D

Z
kb.x0 � u/ dƒn.u/;

which is shown in columns 10–11 of Table 1. We note that the kernel estimator coincides with
the naive estimator that approximates the isotonized smoothed Breslow estimator, see Section 4
in Lopuhaä & Musta (2017a). In their proof of theorem 4.3, it is shown that �sn exhibits a limit
distribution that coincides with the one of the smooth estimators in theorem 3.5. Also, the
numerical results in Table 1 confirm that the performance of the kernel estimator is comparable
with that of the smoothed isotonic estimators. However, we notice that the latter ones have
slightly better coverage probabilities and shorter confidence intervals.

Moreover, as noticed in Lopuhaä & Musta (2017a), estimation of the parameter ˇ0 also has
a great effect on the accuracy of the results. The columns 6–9 of Table 1 show that if we use
the true value of ˇ0 in the computation of the estimators, the coverage probabilities increase
significantly, but in this case, the confidence intervals for the SMLE become too conservative.
Although the partial ML estimator Ǒn is a standard estimator for the regression coefficients,
the efficiency results are only asymptotic. As pointed out in Cox & Oakes (1984) and Ren &
Zhou (2011), for finite samples, the use of the partial likelihood leads to a loss of accuracy.
Recently, Ren & Zhou (2011) introduced the MLE for ˇ0 obtained by joint maximization of the
loglikelihood in the Cox model over both ˇ and �0. It was shown that for small and moderate
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Fig. 2. 95% pointwise confidence intervals based on the asymptotic distribution for the baseline hazard
rate using undersmoothing. SMLE, smoothed maximum likelihood estimator.

sample sizes, the joint MLE for ˇ0 performs better than Ǒn. However, in our case, using this
estimator instead of Ǒn, does not bring any essential difference in the coverage probabilities.

Pointwise confidence intervals, for a fixed sample size n D 500, at different points of the
support are illustrated in Figure 2. The results are again comparable and the common feature
is that the length increases as we move to the left boundary. This is due to the fact that the
length is proportional to the asymptotic standard deviation, which in this case turns out to be
increasing, 
2.x/ D 1:5

p
x=.cˆ.xIˇ0//. Note that ˆ.xIˇ0/ defined in (2) is decreasing.

4.2. Bootstrap confidence intervals

In an attempt to improve the coverage probabilities, we also construct bootstrap confidence
intervals. Studies on bootstrap confidence intervals in the Cox model are investigated in Burr
(1994) and Xu et al. (2014). In the latter paper, the authors investigate several bootstrap pro-
cedures for the Cox model. We will use one (method M5) of the two proposals for a smooth
bootstrap that had the best performance and were recommended by the authors.

We fix the covariates and we generate the event time X�
i

from a smooth estimate for the cdf
of X conditional on Zi :

OFn.x jZi / D 1 � exp
°
�ƒsn.x/e

Ǒ 0
nZi

±
;

where ƒsn is the smoothed Breslow estimator

ƒsn.x/ D

Z
kb.x � u/ƒn.u/ du:

The censoring times C�
i

are generated from the Kaplan–Meier estimate OGn. Then we
take T �

i
D min.X�

i
; C�
i
/ and ��

i
D 1¹X�

i
�C�

i
º. For constructing the confidence intervals,

we take 1,000 bootstrap samples .T �
i
; ��
i
; Zi /, and for each bootstrap sample, we compute the

smoothed Grenander-type estimate Q�SG;�
n .x0/ and the smoothed maximum likelihood estimate

O�SM;�
n .x0/. Here, the kernel function is the same as before and the bandwidth is taken to be
b D n�1=5. Then, the 100.1 � ˛/% confidence interval is given by
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q�˛=2.x0/; q

�
1 � ˛=2.x0/

�
; (45)

where q�˛.x0/ is the ˛-percentile of the 1,000 values of the estimates Q�SG;�
n .x0/ or O�SM;�

n .x0/.
The average length and the empirical coverage for 1,000 iterations and different sample sizes

are reported in Table 2. We observe that bootstrap confidence intervals behave better than
confidence intervals in Table 1, i.e., the coverage probabilities are closer to the nominal level
of 95%. Comparing also with the two alternative estimators considered in Lopuhaä & Musta
(2017a), we notice that the SMLE and the MSLE have better coverage probabilities than the
smoothed Grenander-type and isotonized Breslow estimator, respectively.

In order to provide some theoretical evidence for the consistency of the method, we would
like to establish that, given the data .T1; �1; Z1/; : : : ; .Tn; �n; Zn/, it holds

n2=5
�
�SI;�
n .x/ � �SI

n .x/
� d
! N. Q	; 
2/; (46)

for some Q	 2 R (possibly different from 	 in theorem 3.5) and 
2 as in (29), where �SI
n is one

of the smooth isotonic estimators at hand and �SI;�
n is the same estimator computed for the

bootstrap sample. A detailed investigation of (46) is beyond the scope of this paper. Neverthe-
less, in view of Remark 3.6, we are able to obtain (46) for the smoothed Grenander estimator,
if Ǒ�n � Ǒ

n ! 0, for almost all sequences .T �
i
; ��
i
; Zi /, i D 1; 2; : : :, conditional on the

sequence .Ti ; �i ; Zi /, i D 1; 2; : : :, and
p
n. Ǒ�n �

Ǒ
n/ D O�p.1/. By the latter, we mean that

for all � > 0, there exists M > 0, such that

lim sup
n!1

P �n

�p
n j Ǒ�n �

Ǒ
n j > M

�
< �; P � almost surely:

where P �n is the measure corresponding to the distribution of .T �; ��; Z/ conditional on the
data .T1; �1; Z1/, : : : ; .Tn; �n; Zn/, with T � D .min.X�; C�/ and �� D 1¹X��C�º; Z/,
where X� conditional on Z has distribution function OFn.x j Z/ and C� has distribution
function OGn. To prove (46), we mimic the proof of theorem 3.5, which means that one needs to
establish the bootstrap versions of lemmas 3.1–3.4. A brief sketch of the arguments is provided
in Appendix C of Supporting Information.

Then, we can approximate the distribution of n2=5.�0.x0/ � �SI
n .x0// by the distribution of

n2=5.�SI;�
n .x0/ � �SI

n .x0// � . Q	 C 	/. Consequently, we can write

P �n ¹q
�
˛=2.x0/ � �SI;�

n .x/ � q�1�˛=2.x0/º

D P �n

°
�0.x0/ 2

h
q�˛=2.x0/ � n

�2=5. Q	 C 	/; q�1�˛=2.x0/ � n
�2=5. Q	C 	/

i±
Table 2. The AL and the CP for the 95% bootstrap
confidence intervals of the baseline hazard rate at the
point x0 D 0:5, using the tri-weight kernel and
b D n�2=5.

SMLE SG
n AL CP AL CP

100 1.870 0.948 1.376 0.899
500 0.730 0.942 0.660 0.892
1,000 0.521 0.960 0.487 0.902
5,000 0.247 0.957 0.239 0.938

AL, average length; CP, coverage probabilities;
SMLE, smoothed maximum likelihood estimator.
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Table 3. The AL and the CP for the 95% bootstrap
confidence intervals of the baseline hazard rate at the
point x0 D 0:5, using the tri-weight kernel and
b D n�1=4.

SMLE SG
n AL CP AL CP

100 1.901 0.954 1.415 0.900
500 0.749 0.951 0.672 0.918
1,000 0.540 0.950 0.501 0.924
5,000 0.262 0.965 0.252 0.952

AL, average length; CP, coverage probabilities;
SMLE, smoothed maximum likelihood estimator.

This means that we should actually take Œq�
˛=2

.x0/; q
�
1�˛=2

.x0/� � n�2=5. Q	 C 	/ instead
of (45). The use of (45) avoids bias estimation. However, because the effect of the bias is of
the order n�2=5, the results are still satisfactory. In order to further reduce the effect of the
bias, we also investigated the possibility of constructing bootstrap confidence intervals with
undersmoothing, i.e, we repeat the previous procedure with bandwidth b D n�1=4. Results
are shown in Table 3. We notice that the length of the confidence interval increases slightly and
the coverage probabilities improve significantly. To summarize, also the bootstrap confidence
intervals are affected by the choice of the bandwidth, but the results are more satisfactory in
comparison with the ones in Table 1.

5. Discussion

In this paper, we considered smooth estimation under monotonicity constraints of the base-
line hazard rate in the Cox model. We investigated the asymptotic behaviour of two estimators,
which are the kernel smoothed versions of the monotone MLE and a Grenander-type estima-
tor. The main result is that they are asymptotically equivalent with a normal limit distribution
at rate n�m=.2mC1/, where m is the degree of smoothness assumed for the baseline hazard.
Two other methods that combine smoothing and isotonization for estimation of the baseline
hazard in the Cox model were considered in Lopuhaä & Musta (2017a). As shown in theo-
rems 3.6 and 4.4 in Lopuhaä & Musta (2017a), the smoothed Grenander-type estimator, the
SMLE and the isotonized kernel estimator are all asymptotically equivalent, while the MSLE
exhibits a different asymptotic bias (which might be smaller or larger than the one of the pre-
vious three estimators). This means that, from the theoretical point of view, there is no reason
to prefer one estimator with respect to the other (apart from the fact that the kernel smoothed
estimators are differentiable while the other two are usually only continuous).

The method used to establish asymptotic normality for the estimators in this paper is quite
different from the ones in Lopuhaä & Musta (2017a). In the latter paper, the isotonization
step was performed after a smoothing step. As a consequence, the resulting estimators are
asymptotically equivalent to corresponding naive estimators that are combinations of ordinary
kernel type estimators, to which standard techniques apply. This approach does not apply to
the smoothed isotonic estimators in this paper. Alternatively, we followed the approach from
Groeneboom & Jongbloed (2014) based onL2-bounds for the isotonic estimator. The approach
had to be adapted at several points leading to L2-bounds that are suboptimal, but sufficient
for our purposes.

Furthermore, we investigated also the finite sample performance of these estimators by
constructing pointwise confidence intervals. First, making use of the theoretical results, we
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construct pointwise confidence intervals based on the limit distribution with undersmoothing
to avoid bias estimation. Results confirm the comparable behaviour of the four methods and
favour the use of the smoothed isotonic estimators instead of the unsmoothed Grenander-type
estimator or the non-isotonic kernel estimator. However, coverage probabilities are far from the
nominal level and strongly depend on the choice of the bandwidth and the accuracy in the esti-
mation of the regression coefficient ˇ0. Because most of the well-known methods to overcome
these problems do not seem to work in our setting, a thorough investigation is still needed for
improving the performance of the confidence intervals. Instead, we choose to exploit pointwise
confidence intervals based on bootstrap procedures. As it turns out, the simple percentile boot-
strap works better than the studentized one. Such a phenomenon was also observed in Burr
(1994). The four estimators, the SMLE, the smoothed Grenander-type estimator, the MSLE
and the isotonized smoothed Breslow estimator, again exhibit comparable behaviour, but the
SMLE and the MSLE have slightly better coverage probabilities. The performance is satis-
factory, but still further investigation is required for bandwidth selection and correcting the
asymptotic bias, which might improve the results.

6. Proofs

Proof of Lemma 3.1. Define D.1/n .xIˇ/ D @ˆn.xIˇ/=@ˇ and let D.1/
nj
.xIˇ/ be the j th com-

ponent of D.1/n .xIˇ/, for j D 1; : : : ; p. Then according to the proof of lemma 3(iv) in
Lopuhaä & Nane (2013), for any sequence ˇ�n , such that ˇ�n ! ˇ0 almost surely, it holds

lim sup
n!1

sup
x2R

jD.1/n .xIˇ�n/ j < 1:

In fact, from its proof, it can be seen that

sup
x2R

jD.1/
nj
.xIˇ�n/j �

X
Ik�I

"
1

n

nX
iD1

jZi j e
� 0
k
Zi

#
!

X
Ik�I

E

h
jZj e�

0
k
Z
i

< 2p sup
jˇ�ˇ0j��

E

h
jZj eˇ

0Z
i
< 1

with probability 1, where the summations are over all subsets Ik D ¹i1; : : : ; ikº of
I D ¹1; : : : ; pº, and �k is the vector consisting of coordinates �kj D ˇ0j C �=.2

p
p/, for

j 2 Ik , and �kj D ˇ0j � �=.2
p
p/, for j 2 I n Ik . Therefore,

sup
x2R

jD.1/n .xIˇ�n/j �
p
p
X
Ik�I

 
1

n

nX
iD1

jZi j e
� 0
k
Zi

!
!
p
p
X
Ik�I

E

h
jZj e�

0
k
Z
i

with probability one. Hence, if for some �1 > 0,

En;1 D

8<:
ˇ̌̌̌
ˇ̌pp X

Ik�I

 
1

n

nX
iD1

jZi j e
� 0
k
Zi

!
�
p
p
X
Ik�I

E

h
jZj e�

0
k
Z
i ˇ̌̌̌ˇ̌ � �1

9=; ; (47)

then 1En;1 ! 1 in probability. Moreover, on this event, we have

sup
x2R

jD.1/n .xIˇ�n/j �
p
p
X
Ik�I

E

h
jZj e�

0
k
Z
i
C �1; (48)
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i.e., supx2R jD
.1/
n .xIˇ�n/j is bounded uniformly in n. For �2; �3; �4 > 0 and 0 < M < �H

define

En;2 D
°
n2=3 j Ǒn � ˇ0 j

2 < �2

±
; En;3 D

´
sup

x2Œ0;M�

j Qƒn.x/ � ƒ0.x/j < �3

μ
;

En;4 D

²
n1=3 sup

x2R

jˆn.xIˇ0/ �ˆ.xIˇ0/j � �4

³
; En;5 D ¹T.n/ > M º ;

(49)

where T.n/ denotes the last observed time. Because
p
n. Ǒn � ˇ0/ D Op.1/ (see theorem 3.2

in Tsiatis (1981)), together with (7) and lemma 4 in Lopuhaä & Nane (2013), it follows that
1En ! 1 in probability, for the event En D En;1 \En;2 \En;3 \En;4 \En;5.

From the definitions of an;x , �n;x and H uc, in (17), (18) and (1), respectively, we haveZ
�n;x.u; ı; ´/ dP.u; ı; ´/ D 1En

²Z
an;x.u/ dH uc.u/

�

Z
e Ǒ
0
n ´

Z u
vD0

an;x.v/ d Qƒn.v/ dP.u; ı; ´/
³
:

Then, by applying Fubini’s theorem, together with (3), we obtainZ
�n;x.u; ı; ´/ dP.u; ı; ´/

D 1En

²Z
an;x.u/ dH uc.u/ �

Z
an;x.v/

Z 1
uDv

e Ǒ
0
n ´ dP.u; ı; ´/ d Qƒn.v/

³
D 1En

²Z
an;x.u/ dH uc.u/ �

Z
an;x.v/ˆ.vI Ǒn/ d Qƒn.v/

³
D 1En

´Z
kb.x � u/

ˆ.uIˇ0/
dH uc.u/ �

Z
kb.x � u/

ˆ.uI Ǒn/

ˆ.uIˇ0/
d Qƒn.u/

μ

D 1En

´
�

Z
kb.x � u/ d. Qƒn � ƒ0/.u/ C

Z
kb.x � u/

 
1 �

ˆ.uI Ǒn/

ˆ.uIˇ0/

!
d Qƒn.u/

μ
:

The mean value theorem yieldsZ
kb.x � u/

ˇ̌̌̌
ˇ1 � ˆ.uI Ǒn/

ˆ.uIˇ0/

ˇ̌̌̌
ˇ d Qƒn.u/ D

Z
kb.x � u/

jˆ.uIˇ0/ � ˆ.uI Ǒn/j

ˆ.uIˇ0/
d Qƒn.u/

� j Ǒn � ˇ0j sup
y2R

ˇ̌̌̌
@ˆ.yIˇ�/

@ˇ

ˇ̌̌̌
Q�SG
n .x/

ˆ.x C bIˇ0/
;

with jˇ� � ˇ0 j � j Ǒn � ˇ0 j. According to lemma 3(iii) in Lopuhaä & Nane (2013), for
� > 0 from (A2),

sup
y2R

ˇ̌̌̌
@ˆ.yIˇ�/

@ˇ

ˇ̌̌̌
< sup
y2R

sup
jˇ�ˇ0 j< �

ˇ̌̌̌
@ˆ.yIˇ/

@ˇ

ˇ̌̌̌
< 1:

Furthermore, there exists M < �H , such that for sufficiently large n, we have x C b � M .
This yields the following boundˆ.x C bIˇ0/ � ˆ.M Iˇ0/ > 0. Moreover, according to (12),
Q�SG
n .x/! �0.x/ with probability one. Because j Ǒn � ˇ0j D Op.n

�1=2/ (see theorem 3.1 in
Tsiatis (1981)), it follows that
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1En

Z
kb.x � u/

ˇ̌̌̌
ˇ 1 � ˆ.uI Ǒn/

ˆ.uIˇ0/

ˇ̌̌̌
ˇ d Qƒn.u/ D Op.n

�1=2/;

which finishes the proof.

Proof of Lemma 3.2. By means of Fubini’s theoremZ
N�n;x.u; ı; ´/ dPn.u; ı; ´/

D

Z
ı N‰n;x.u/ dPn.u; ı; ´/ �

Z
e Ǒ
0
n ´

Z u
vD0

N‰n;x.v/ d Qƒn.v/ dPn.u; ı; ´/

D

Z
ı N‰n;x.u/ dPn.u; ı; ´/ �

Z
N‰n;x.v/

Z
1¹u�vºe

Ǒ 0
n ´ dPn.u; ı; ´/ d Qƒn.v/

D 1En

´Z
1Œx�b;xCb�.u/ı

Nan;x N̂ n.uI Ǒn/

ˆn.uI Ǒn/
dPn.u; ı; ´/ �

Z xCb
x�b

Nan;x N̂ n.vI Ǒn/ d Qƒn.v/

μ

D 1En

mX
iD0

Nan;x N̂ n.�i C 1I Ǒn/

´Z
1.�i ;�iC1�.u/ı

ˆn.uI Ǒn/
dPn.u; ı; ´/ �

�
Qƒn.�iC1/ � Qƒn.�i /

�μ

and (23) follows from the characterization of the Breslow estimator in (6).

To obtain suitable bounds for (26), we will establish bounds on the tail probabilities of QUn.a/
defined in (24). To this end, we consider a suitable martingale that will approximate the process
ƒn � ƒ0. For i D 1; 2; : : : ; n, let Ni .t/ D 1¹Xi�tº�i be the right continuous counting
process for the number of observed failures on .0; t � and Yi .t/ D 1¹Ti�tº be the at-risk process.
Then, for each i D 1; 2; : : : ; n,Mi .t/ D Ni .t/�Ai .t/, with Ai .t/ D

R t
0
Yi .s/eˇ

0
0Zi dƒ0.s/,

is a mean zero martingale with respect to the filtration

Fnt D 

®
1¹Xi�sº�i ;1¹Ti�sº; Zi W 1 � i � n; 0 � s � t

¯
:

(e.g., see kalbfleisch & Prentice, 2002). Furthermore, it is square integrable, because

E

h
Mi .t/

2
i
� 2C 2

Z t
0

E

h
1¹Ti�sºe

2ˇ00Zi

i
�20.s/ ds � 2C 2�H �20.�H /ˆ.0I 2ˇ0/ < 1:

Finally, it has predictable variation process hMi i D Ai .t/ (e.g., see Gill, 1984 or theorem 2 of
Appendix B in Shorack & Wellner, 1986). For each n � 1, define

Nn.t/ D

nX
iD1

Ni .t/; An.t/ D

nX
iD1

Ai .t/; Mn.t/ D Nn.t/ � An.t/: (50)

Then Mn.t/ is a mean zero square integrable martingale with predictable variation process

hMni.t/ D

nX
iD1

hMi i.t/ D

nX
iD1

Z t
0

1¹Ti�sº eˇ
0
0Zi dƒ0.s/ D

Z t
0

nˆn.sIˇ0/ dƒ0.s/;

where ˆn is defined in (4).

Lemma 6.1. Suppose that (A1)–(A2) hold. Let 0 < M < �H and let ˆ be defined in (2).
Then, the process
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Bn.t/ D

Z t^M
0

1

nˆ.sIˇ0/
dMn.s/ (51)

is a mean zero, square integrable martingale with respect to the filtration Fnt . Moreover, Bn has
predictable variation process

hBni.t/ D

Z t^M
0

�0.s/ˆn.sIˇ0/

nˆ2.sIˇ0/
ds:

Proof. Write

Bn.t/ D

Z t
0

Yn.s/ dMn.s/; whereYn.s/ D
1¹s�Mº

nˆ.sIˇ0/
;

and Mn D Nn � An. We apply theorem B.3.1c in Shorack & Wellner (1986) with Y , H , M ,
N and A, replaced by Bn, Yn, Mn, Nn and An, respectively. In order to check the conditions
of this theorem, note that Yn is a predictable process satisfying jYn.t/j <1, almost surely, for
all t � 0, and thatZ t

0

Yn.s/ dAn.s/ D
nX
iD1

Z t
0

1¹s�Mº

nˆ.sIˇ0/
1¹Ti�sºe

ˇ00Zi dƒ0.s/

D

Z t
0

1¹s�Mº

ˆ.sIˇ0/
ˆn.sIˇ0/ dƒ0.s/ < 1; a.s.:

Moreover, because for s � M we have ˆ.sIˇ0/ � ˆ.M Iˇ0/ > 0, it follows that

E

�Z 1
0

Y 2n .s/ dhMni.s/
	
D E

�Z 1
0

1¹s�Mº

nˆ2.sIˇ0/
ˆn.sIˇ0/ dƒ0.s/

	
�

�0.�H /M

n2ˆ2.M Iˇ0/

nX
iD1

E

h
eˇ
0
0Zi

i
< 1;

because of the assumption (A2). It follows from theorem B.3.1c in Shorack & Wellner (1986)
that Bn is a square integrable martingale with mean zero and predictable variation process

hBni.t/ D

Z t
0

Y 2n .s/ dhMni.s/ D
Z t
0

1¹s�Mº

nˆ2.sIˇ0/
ˆn.sIˇ0/ dƒ0.s/;

where ˆ and ˆn are defined in (2) and (4), respectively.

It is straightforward to verify that for t 2 Œ0;M � and M < T.n/,

ƒn.t/ � ƒ0.t/ D Bn.t/ C Rn.t/; (52)

where

Rn.t/ D

Z t
0

ˆn.sIˇ0/

ˆ.sIˇ0/
dƒ0.s/ � ƒ0.t/C

Z t
0

 
1

ˆn.sI Ǒn/
�

1

ˆ.sIˇ0/

!
dH uc

n .s/; (53)

with

H uc
n .x/ D

Z
ı1¹t�xº dPn.t; ı; ´/: (54)
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For establishing suitable bounds on the tail probabilities of QUn.a/, we need the following
result for the process Bn, which is comparable with condition (A2) in Durot (2007).

Lemma 6.2. Suppose that (A1)–(A2) hold. Let 0 < M < �H and let Bn be defined as in (51).
Then, there exists a constant C > 0 such that, for all x > 0 and t 2 Œ0;M �,

E

"
sup

u2Œ0;M�;jt�uj�x

.Bn.u/ � Bn.t//
2

#
�

C x

n
:

Proof. The proof is similar to that of theorem 3 in Durot (2007). First, consider the case
t � u � t C x. According to lemma 6.1, Bn is a martingale. Hence, by Doob’s inequality, we
have

E

"
sup

u2Œ0;M�; t�u�tCx

.Bn.u/ � Bn.t//
2

#
� 4E

h
.Bn ..t C x/ ^M/ � Bn.t//

2
i

D 4E
h
Bn ..t C x/ ^M/2 � Bn.t/

2
i

D 4E

"Z .tCx/^M
t

ˆn.sIˇ0/�0.s/

nˆ2.sIˇ0/
ds

#

�
4�.M/x

nˆ2.M Iˇ0/
E Œˆn.0Iˇ0/� ;

(55)

where according to (A2),

E Œˆn.0Iˇ0/� D
1

n

nX
iD1

E

h
eˇ
0
0 Zi

i
� C;

for some C > 0. This proves the lemma for the case t � u � t C x.
For the case t � x � u � t , we can write

E

"
sup

u2Œ0;M�;t�x�u�t

.Bn.u/ � Bn.t//
2

#
D E

"
sup

0_.t�x/�u�t

.Bn.u/ � Bn.t//
2

#

� 2E
h
.Bn.t/ � Bn.0 _ .t � x///2

i
C 2E

"
sup

0_.t�x/�u<t

.Bn.u/ � Bn.0 _ .t � x///2

#
:

Then similar to (55), the right hand side is bounded by

2E
h
.Bn.t/ � Bn.0 _ .t � x///2

i
C 8E

h
.Bn.t/ � Bn.0 _ .t � x///2

i
D 10E

h
Bn.t/

2 � Bn.0 _ .t � x//2
i
D 10E

�Z t
0_.t�x/

ˆn.sIˇ0/ �0.s/

nˆ2.sIˇ0/
ds
	

�
10 �.M/ x

nˆ2.M Iˇ0/
E Œˆn.0Iˇ0/� �

Cx

n
;

for some C > 0. This concludes the proof.

In what follows, let 0 < M < �H . Moreover, let U be the inverse of �0 on Œ�0.0/; �0.M/�,
i.e.,
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U.a/ D

8̂<̂
:
0 a < �0.0/I

��1
0
.a/ a 2 Œ�0.0/; �0.M/�I

M a > �0.M/:

(56)

Note that U is continuous and differentiable on .�0.0/; �0.M//, but it is different from the
inverse of �0 on the entire interval Œ�0.0/; �0.�H /�.

Lemma 6.3. Suppose that (A1)–(A2) hold. Let 0 < M < �H and let QUn and U be defined
in (24) and (56), respectively. Suppose that H uc, defined in (1), has a bounded derivative huc on
Œ0;M � and that �0

0
is bounded below by a strictly positive constant. Then, there exists an eventEn,

such that 1En ! 1 in probability, and a constant K such that, for every a � 0 and x > 0,

P
�®
j QUn.a/ � U.a/j � x

¯
\En \

®
QUn.a/ � M

¯�
� Kmax

²
1

nx3
;

1

n3x5

³
; (57)

for n sufficiently large.

Note that lemmas 6.2 and 6.3 correspond to theorem 3(i) and lemma 2 in Durot (2007).
It is useful to spend some words on the restriction to the event En \ ¹ QUn.a/ � M º. The
event ¹ QUn.a/ � M º is implicit in Durot (2007), because there the Grenander-type estimator
is defined by only considering ƒn on a compact interval not containing the end point of the
support. The event En is needed in our setup because of the presence of the covariates, which
lead to more complicated processes, and because we require (25) for p D 2.

Proof of Lemma 6.3. First, we note that from the definition of U and the fact that QUn is
increasing, it follows that j QUn.a/ � U.a/j � j QUn.�0.0// � U.�0.0//j, if a � �0.0/, and

1¹ QUn.a/�Mº j
QUn.a/�U.a/j � 1¹ QUn.a/ �Mºj

QUn.�0.M//�U.�0.M//j; if a � �0.M/:

Hence, it suffices to prove (57) only for a 2 Œ�0.0/; �0.M/�. LetEn be the event from lemma 3.1.
We start by writing

P
�®
j QUn.a/ � U.a/j � x

¯
\En \

®
QUn.a/ � M

¯�
D P

�®
U.a/ C x � QUn.a/ � M

¯
\En

�
C P

�®
QUn.a/ � U.a/ � x

¯
\En

�
:

(58)

First, consider the first probability on the right hand side of (58). It is zero, ifU.a/C x > M .
Otherwise, if U.a/ C x � M , then x � M and

P
�®
U.a/ C x � QUn.a/ � M

¯
\En

�
� P .¹ƒn.y/ � ay � ƒn.U.a// � aU.a/; for some y 2 ŒU.a/ C x;M�º \En/

� P

�²
inf

y2ŒU.a/Cx;M�
.ƒn.y/ � ay � ƒn.U.a// C a U.a// � 0

³
\En

�
:

From Taylor’s expansion, we obtain ƒ0.y/ � ƒ0.U.a// � .y � U.a// a C c .y � U.a//2,
where c D inft2Œ0;�F / �

0
0
.t/=2 > 0, so that with (52), the probability on the right hand side

is bounded by
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P

�²
inf

y2ŒU.a/Cx;M�
.Bn.y/ � Bn.U.a// C Rn.y/ � Rn.U.a//

Cc.y � U.a//2
�
� 0

±
\En

�
:

Let i � 0 be such that M � U.a/ 2 Œx2i ; x2iC1/, and note that, on the event En one has
T.n/ � M . Therefore, if U.a/ < y � M , then y � T.n/ and U.a/ < T.n/. It follows that
the previous probability can be bounded by

iX
kD0

P

 ´
sup
y2Ik

.jBn.y/ � Bn.U.a//j C jRn.y/ �Rn.U.a//j/ � c x2 22k

μ
\En

!
;

where the supremum is taken over y 2 Œ0;M �, such that y � U.a/ 2 Œx2k ; x2kC1/. Using that
P.X C Y � �/ � P.X � �=2/ C P.Y � �=2/, together with the Markov inequality, we
can bound this probability by

4

iX
kD0

�
c2x424k

��1
E

"
sup

y�M;y�U.a/2Œx2k;x2kC1/

jBn.y/ � Bn.U.a//j
2

#

C 8

iX
kD0

�
c3x626k

��1
E

"
sup

y<M;y�U.a/2Œx2k;x2kC1/

1En jRn.y/ � Rn.U.a//j
3

#
:

(59)

We have

E

"
sup

y<M;y�U.a/2Œx2k;x2kC1/

1En jRn.y/ � Rn.U.a//j
3

#

� 4E

"
sup

y<M;y�U.a/2Œx2k;x2kC1/

1En

ˇ̌̌̌ Z y
U.a/

�
ˆn.sIˇ0/

ˆ.sIˇ0/
� 1

�
�0.s/ds

ˇ̌̌̌3#

C 4E

24 sup
y < M;y � U.a/2Œx2k;x2kC1/

1En

ˇ̌̌̌
ˇ
Z y
U.a/

 
1

ˆn.sI Ǒn/
�

1

ˆ.sIˇ0/

!
dH uc

n .s/

ˇ̌̌̌
ˇ
3
35 :
(60)

For the first term in the right hand side of (60), we have

E

"
sup

y<M;y�U.a/2Œx2k;x2kC1/

1En

ˇ̌̌̌Z y
U.a/

�
ˆn.sIˇ0/

ˆ.sIˇ0/
� 1

�
�0.s/ds

ˇ̌̌̌3#

� E

241En
 Z .U.a/Cx2kC1/^M
U.a/

jˆn.sIˇ0/ � ˆ.sIˇ0/j

ˆ.sIˇ0/
�0.s/ ds

!335
�
x323.kC1/�3

0
.M/

ˆ.M Iˇ0/3
E

"
1En sup

s2Œ0;M�

jˆn.sIˇ0/ � ˆ.sIˇ0/j
3

#
�
x323.kC1/ �3

0
.M/�4

nˆ.M Iˇ0/3
;

where we have used (49). In order to bound the second term on the right hand side of (60), note
that on the event En,

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
the Foundation of the Scandinavian Journal of Statistics.



778 H. Lopuhaä and E. Musta Scand J Statist 45

sup
x2R

jˆn.xI Ǒn/ � ˆ.xIˇ0/j � sup
x2R

jˆn.xI Ǒn/ � ˆn.xIˇ0/j C sup
x2R

jˆn.xIˇ0/ �ˆ.xIˇ0/j

� j Ǒn � ˇ0j sup
x2R

jD.1/n .xIˇ�/j C
�4

n1=3
�

p
�2L C �4

n1=3
:

(61)

In particular, for sufficiently large n, we have supx2R
ˇ̌̌
ˆn.xI Ǒn/ � ˆ.xIˇ0/

ˇ̌̌
� ˆ.M Iˇ0/=2,

which yields that, for x 2 Œ0;M �,

ˆn.xI Ǒn/ � ˆ.xIˇ0/ �
1

2
ˆ.M Iˇ0/ �

1

2
ˆ.M Iˇ0/: (62)

Using (61), on the event En, for n sufficiently large, we can write

sup
s2Œ0;M�

ˇ̌̌̌
ˇ 1

ˆn.sI Ǒn/
�

1

ˆ.sIˇ0/

ˇ̌̌̌
ˇ � sup

s2Œ0;M�

ˇ̌̌
ˆn.sI Ǒn/ � ˆ.sIˇ0/

ˇ̌̌
ˆn.sI Ǒn/ˆ.sIˇ0/

�
2

ˆ2.M Iˇ0/
sup

s2Œ0;M�

ˇ̌̌
ˆn.sI Ǒn/ � ˆ.sIˇ0/

ˇ̌̌
� Cn�1=3;

for some C > 0. Consequently, for the second term in the right hand side of (60), we obtain

E

24 sup
y<M;y�U.a/2Œx2k;x2kC1/

1En

ˇ̌̌̌
ˇ
Z y
U.a/

 
1

ˆn.sI Ǒn/
�

1

ˆ.sIˇ0/

!
dH uc

n .s/

ˇ̌̌̌
ˇ
3
35

�
C 3

n
E

241En
 
1

n

nX
iD1

�i1¹Ti2ŒU.a/;.U.a/Cx2kC1/^M/�º

!335 � C 3

n4
EŒN 3�;

where N is a binomial distribution with probability of success

� D H uc..U.a/ C x2kC1/ ^M// � H uc.U.a// � sup
s2Œ0;M�

jhuc.s/jx2kC1:

Furthermore,

EŒN 3� D n�.1 � 3� C 3n� C 2�2 � 3n�2 C n2�2/ �

´
7n� , if n� � 1I

7n3�3 , ifn� > 1:

Using lemma 6.2 and the bound in (59), for the first probability on the right hand side of (58),
it follows that there exist K1; K2 > 0, such that for all a � 0, n � 1 and x > 0,

P
�®
U.a/ C x � QUn.a/ � M

¯
\En

�
� K1

iX
kD0

x2kC1

nx424k
C K2

iX
kD0

max

´
x2kC1

n3x626k
;
x323.kC1/

nx626k

μ

�
2K1

nx3

1X
kD0

2�3k C max

´
2K2

n3x5

1X
kD0

2�5k ;
8K2

nx3

1X
kD0

2�3k

μ
� Kmax

²
1

nx3
;

1

n3x5

³
:

(63)

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 45 Smoothed isotonic hazard estimators 779

We proceed with the second probability on the right hand side of (58). We can assume
x � U.a/, because otherwise P

�
QUn.a/ � U.a/ � x

�
D 0. We have

P
�®
QUn.a/ � U.a/ � x

¯
\En

�
� P

�²
inf

y2Œ0;U.a/�x�
Œƒn.y/ � ay � ƒn.U.a// C a U.a/� � 0

³
\En

�
:

Let i � 0 be such that U.a/ 2 Œx2i ; x2iC1/. By a similar argument used to obtain the
bound (59), this probability is bounded by

4

iX
kD0

�
c2x424k

��1
E

"
sup

y�U.a/;U.a/�y2Œx2k;x2kC1/

jBn.y/ � Bn.U.a//j
2

#

C 8

iX
kD0

�
c3x626k

��1
E

"
sup

y�U.a/;U.a/�y2Œx2k;x2kC1/

1En jRn.y/ � Rn.U.a//j
3

#
:

(64)

In the same way as in the first case, we also have

E

"
sup

y�U.a/;U.a/�y2Œx2k;x2kC1/

1En jRn.y/�Rn.U.a//j
3

#
�K2max

´
x2kC1

n3
;
x323.kC1/

n

μ
:

Exactly as in (63), lemmas 6.2 and (64) imply that

P
�®
QUn.a/ � U.a/ � x

¯
\En

�
� Kmax

²
1

nx3
;

1

n3x5

³
;

for some positive constant K. Together with (58) and (63), this finishes the proof.

Lemma 6.4. Suppose that (A1)–(A2) hold. Let 0 < � < M 0 < M < �H and suppose
that H uc, defined in (1), has a bounded derivative huc on Œ0;M �. Let Q�n be the Grenander-type
estimator of a nondecreasing baseline hazard rate �0, which is differentiable with �0

0
bounded

above and below by strictly positive constants. Let En be the event from lemma 3.1 and take �3
in (49) such that

0 < �3 <
1

8
min

°
.M � M 0/2; �2

±
inf

x2Œ0;�H �
�00.x/: (65)

Then, there exists a constant C such that, for n sufficiently large,

sup
t2Œ�;M 0�

E

�
n2=31En

�
�0.t/ � Q�n.t/

�2	
� C:

Proof. It is sufficient to prove that there exist some constants C1; C2 > 0, such that for each
n 2 N and each t 2 .�;M 0�, we have

E

�
n2=31En

°
. Q�n.t/ � �0.t//C

±2	
� C1; (66)

E

�
n2=31En

°
.�0.t/ � Q�n.t//C

±2	
� C2: (67)
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Let us first consider (66). We will make use of the following result

E

�
n2=31En

°
. Q�n.t/ � �0.t//C

±2	
D 2

Z 1
0

P

�
n1=31En.

Q�n.t/ � �0.t// � x
�
x dx

D 2

Z 2�
0

P

�
n1=31En.

Q�n.t/ � �0.t// � x
�
x dx

C 2

Z 1
2�

P

�
n1=31En.

Q�n.t/ � �0.t// � x
�
x dx

� 4�2C2

Z 1
2�

P

�
n1=31En.

Q�n.t/ � �0.t//>x=2
�
x dx

� 4�2 C 4

Z 1
�

P

�
n1=31En.

Q�n.t/ � �0.t// > x
�
x dx

for a fixed � > 0. We distinguish between the cases a C n�1=3x � �0.M/

and a C n�1=3x > �0.M/, where a D �0.t/. We prove that, in the first
case, there exist a positive constant C such that for all t 2 .�;M 0� and n 2 N,

P

�
n1=31En.

Q�n.t/ � �0.t// > x
�
� C=x3, for all x � �, and in the second case

P

�
n1=31En.

Q�n.t/ � �0.t// > x
�
D 0. Then (66) follows immediately.

First, assume a C n�1=3x � �0.M/. By the switching relation, we get

P

�
n1=31En.

Q�n.t/ � �0.t// > x
�
D P

�°
Q�n.t/ > a C n�1=3x

±
\En

�
D P

�°
QUn.a C n�1=3x/ < t

±
\En

�
:

Because a C n�1=3x � �0.M/, we have U.a C n�1=3x/ � M > t . Furthermore,
¹ QUn.a C n�1=3x/ < tº � ¹ QUn.a C n�1=3x/ < M º. Hence, together with lemma 6.3, we
can write

P

�°
QUn.a C n�1=3x/ < t

±
\En

�
� P

�°ˇ̌̌
U.a C n�1=3x/ � QUn.a C n�1=3x/

ˇ̌̌
> U.a C n�1=3x/ � t

±
\En \

°
QUn.a C n�1=3x/ < M

±�
� Kmax

´
1

n
�
U.a C n�1=3x/ � t

�3 ; 1

n3
�
U.a C n�1=3x/ � t

�5
μ
�

C

x3
;

(68)

because U.a C n�1=3x/ � t D U 0.�n/n
�1=3x, for some �n 2 .a; a C n�1=3x/, where

U 0.�n/ D �0
0
.��1
0
.�n//

�1 � 1= supt2Œ0;�H � �
0
0
.t/ > 0.

Next, consider the case a C n�1=3x > �0.M/. Note that we cannot argue as in the previous
case, because for a C n�1=3x > �0.M/, we always have U.a C n�1=3x/ D M , so that we
loose the dependence on x. However, if n1=3. Q�n.t/ � �0.t// > x, then for each y > t , we
have

Qƒn.y/ � Qƒn.t/ � Q�n.t/ .y � t / > .a C n�1=3x/ .y � t /;

© 2018 The Authors. Scandinavian Journal of Statistics published by John Wiley & Sons Ltd on behalf of The Board of
the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 45 Smoothed isotonic hazard estimators 781

where a D �0.t/. In particular, for y D QM D M 0 C .M � M 0/=2, we obtain

P

°
n1=31En.

Q�n.t/ � �0.t// > x
±

� P

�°
Qƒn. QM/ � Qƒn.t/ >

�
a C n�1=3x

�
. QM � t /

±
\En

�
� P

�®
Qƒn. QM/ � Qƒn.t/ �

�
ƒ0. QM/ � ƒ0.t/

�
>�

a C n�1=3x
�
. QM � t / �

�
ƒ0. QM/ � ƒ0.t/

�±
\En

�
� P

 ´
2 sup
x2Œ0;M�

j Qƒn.x/ � ƒ0.x/j >
�
a C n�1=3x � �0. QM/

�
. QM � t /

μ
\En

!
;

(69)

also using that ƒ0. QM/ � ƒ0.t/ � �0. QM/. QM � t /. Furthermore, because
a C n�1=3x > �0.M/, it follows from (65) that�

a C n�1=3x � �0. QM/
�
. QM � t / �

1

4
.M � M 0/2 inf

x2Œ0;�H �
�00.x/ � 2�3; (70)

so that, by the definition of �3 in (49), the probability on the right hand side (69) is zero. This
concludes the proof of (66).

Next, we have to deal with (67). Arguing as in the proof of (66), we obtain

E

�
n2=31En

°
.�0.t/ � Q�n.t//C

±2	
� �2C2

Z 1
�

P

�
n1=31En.�0.t/ �

Q�n.t// � x
�
x dx;

for a fixed � > 0, where

P

�
n1=31En.�0.t/ �

Q�n.t// � x
�
D P

�°
QUn.a � n�1=3x/ � t

±
\En

�
;

with a D �0.t/. First of all, we can assume that a � n�1=3x � 0, because otherwise
P¹Q�n.t/ � a � n�1=3xº D 0. Because t D U.a/, as before, we write

P

�°
QUn.a � n�1=3x/ � t

±
\En

�
� P

�° ˇ̌̌
QUn.a � n�1=3x/ � U.a � n�1=3x/

ˇ̌̌
� t � U.a � n�1=3x/

±
\En

�
:

In order to apply lemma 6.3, we intersect with the event QUn.a � n�1=3x/ � M . Note that

P

�°
QUn.a � n�1=3x/ > M

±
\En

�
� P

�°
Q�n.M/ � a � n�1=3x

±
\En

�
D 0:

This can be seen as follows. If Q�n.M/ � a � n�1=3x, then for each y < M , we have

Qƒn.M/ � Qƒn.y/ � Q�n.M/.M � y/ � .a � n�1=3x/.M � y/:

In particular, for y D QM D M 0 C .M � M 0/=2, similar to (69), we obtain

P

�°
Q�n.M/ � a � n�1=3x

±
\En

�
� P

 ´
2 sup
x2Œ0;M�

j Qƒn.x/ � ƒ0.x/j �
�
�a C n�1=3x C �0. QM/

� �
M � QM

�μ
\En

!
:
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Because a D �0.t/ � �0.M
0/, we can argue as in (70) and conclude that the probability on

the right hand side is zero. It follows that

P

�°
QUn.a � n�1=3x/ � t

±
\En

�
� P

�°ˇ̌̌
QUn.a � n�1=3x/ � U.a � n�1=3x/

ˇ̌̌
� t � U.a � n�1=3x/

±
\En \

°
QUn.a � n�1=3x/ � M

±�
� Kmax

´
1

n
�
t � U.a � n�1=3x/

�3 ; 1

n3
�
t � U.a � n�1=3x/

�5
μ
:

To bound the right hand side, we have to distinguish between a � n�1=3x > �0.0/ and
a � n�1=3x � �0.0/. If a � n�1=3x > �0.0/, then the right hand side is bounded by
K=x3, because t � U.a � n�1=3x/ D U 0.�n/n

�1=3x, for some �n 2 .a � n�1=3x; a/, where
U 0.�n/ D �0

0
.��1
0
.�n//

�1 � 1= supt2Œ0;�H � �
0
0
.t/ > 0. Otherwise, if a � n�1=3x � �0.0/,

then we are done because then P

�
n1=31En.�0.t/ �

Q�n.t// � x
�
D 0. This can be seen as

follows. When a � n�1=3x � �0.0/, then for each y < t , we have

Qƒn.t/ � Qƒn.y/ � Q�n.t/.t � y/ � .a � n�1=3x/.t � y/:

In particular, for y D �0 D �=2, we obtain

P

�
n1=31En

�
�0.t/ � Q�n.t/

�
� x

�
� P

�°
Qƒn.t/ � Qƒn.�

0/ �
�
a � n�1=3x

� �
t � �0

�±
\En

�
� P

�°
Qƒn.t/ � Qƒn.�

0/ �
�
ƒ0.t/ � ƒ0.�

0/
�

�
�
a � n�1=3x

�
.t � �0/ �

�
ƒ0.t/ � ƒ0.�

0/
�±
\En

�
� P

 ´
2 sup
x2Œ0;M�

j Qƒn.x/ �ƒ0.x/j �
�
�aC n�1=3x

� �
t � �0

�
C �0.�

0/
�
t � �0

�μ
\En

!
:

Because a � n�1=3x � �0.0/, we can argue as in (70),�
�a C n�1=3x C �0.�

0/
�
.t � �0/ �

�
�0.�

0/ � �0.0/
� �
� � �0

�
�
1

4
�2 inf
x2Œ0;�H �

�00.x/ � 2�3;
(71)

and conclude that the probability on the right hand side is zero. This concludes the proof
of (67).

Lemma 6.5. Suppose that (A1)–(A2) hold. Fix x 2 .0; �h/. Let 0 < � < x < M 0 < M < �H

and suppose that H uc, defined in (1), has a bounded derivative huc on Œ0;M �. Let Q�n be the
Grenander-type estimator of a nondecreasing baseline hazard rate �0, which is differentiable with
�0
0

bounded above and below by strictly positive constants. Let En be the event from lemma 3.1
and assume that �3 satisfies (65). Then

1En

Z xCb
x�b

.�0.t/ � Q�n.t//
2dt D Op.bn

�2=3/:
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Proof. Markov’s inequality and Fubini, yield

P

 
b�1n2=31En

Z xCb
x�b

.�0.t/ � Q�n.t//
2 dt > K

!

�
1

K
E

"
b�1n2=31En

Z xCb
x�b

.�0.t/ � Q�n.t//
2 dt

#

�
2

K
sup

t2Œx�b;xCb�

E

h
n2=31En.�0.t/ �

Q�n.t//
2
i
:

For n sufficiently large Œx � b; x C b� � Œ�;M 0�, so that according to lemma 6.4, the right
hand side is bounded by 2C=K, for some constant C > 0. This proves the lemma.

Proof of Lemma 3.3. Take x < M < �H and n sufficiently large such that x C b � M .
With Nan;x N̂ n defined in (19), we have

Z ®
N�n;x.u; ı; ´/ � �n;x.u; ı; ´/

¯
dP.u; ı; ´/

D 1En

Z
1Œx�b;xCb�.u/ı

 
Nan;x N̂ n.uI Ǒn/

ˆn.uI Ǒn/
� an;x.u/

!
dP.u; ı; ´/

� 1En

Z
e Ǒ
0
n´

Z u
0

�
N‰n;x.v/ � an;x.v/

�
d Qƒn.v/ dP.u; ı; ´/

D 1En

Z xCb
x�b

 
Nan;x N̂ n.uI Ǒn/

ˆn.uI Ǒn/
� an;x.u/

!
dH uc.u/

� 1En

Z xCb
x�b

 
Nan;x N̂ n.vI Ǒn/

ˆn.vI Ǒn/
� an;x.v/

!
ˆ.vI Ǒn/ d Qƒn.v/

(72)

using Fubini, the definition of ˆ in (2), and the fact that Nan;x N̂ n and an;x are zero outside
Œx � b; x C b�. Write Ô n.u/ D ˆn.uI Ǒn/, Ô .u/ D ˆ.uI Ǒn/, and ˆ0.u/ D ˆ.uIˇ0/. Then
the right hand side can be written as

1En

Z xCb
x�b

an;x. OAn.u// Ô n. OAn.u// � an;x.u/ Ô n.u/

Ô
n.u/

�
ˆ0.u/�0.u/ � Ô .u/ Q�n.u/

�
du;

where OAn.u/ is defined in (20). The Cauchy–Schwarz inequality then yields

ˇ̌̌̌Z ®
N�n;x.u; ı; ´/ � �n;x.u; ı; ´/

¯
dP.u; ı; ´/

ˇ̌̌̌
� 1En

����� .an;x ı OAn/. Ô n ı OAn/ � an;x Ô nÔ
n

1Œx�b;xCb�

�����
L2

��� �ˆ0�0 � Ô Q�n�1Œx�b;xCb� ���
L2
:

(73)
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Furthermore,

1En

����� .an;x ı OAn/. Ô n ı OAn/ � an;x Ô n

Ô
n

1Œx�b;xCb�

�����
L2

� 21En

Z xCb
x�b

 
kb.x � OAn;x.u//

ˆ0. OAn.u//
�
kb.x � u/

ˆ0.u/

!2
du

C 21En

Z xCb
x�b

 
kb.x � OAn.u//

ˆ0. OAn.u//

!2 � Ô
n. OAn.u// � Ô n.u/

�2
Ô
n.u/2

du

� 21En

Z xCb
x�b

 
d

dy
kb.x � y/

ˆ0.y/

ˇ̌̌̌
yD�u

!2 �
OAn.u/ � u

�2
du

C 1En
c1

b2 Ô n.M/2

Z xCb
x�b

�
Ô
n. OAn.u// � Ô n.u/

�2
du

� 1En
c2

b4

Z xCb
x�b

�
OAn.u/ � u

�2
duC 1En

c1

b2 Ô n.M/2

Z xCb
x�b

�
Ô
n. OAn.u// � Ô n.u/

�2
du;

(74)

for some constants c1; c2 > 0, where we use the boundedness of k0, dˆ.xIˇ0/=dx and
1=ˆ.xIˇ0/ on Œ0; x C b� � Œ0;M �. Then, because �0.u/ � �0. OAn.u// D �0

0
.�/.u � OAn.u//

and �0
0

is bounded and strictly positive on Œ0;M � 	 Œx � b; x C b�, there exists a constant
K > 0 such that

ju � OAn.u/j � Kj�0.u/ � �0. OAn.u//j:

If u 2 .�i ; �iC1� and OAn.u/ > �i , then Q�n.u/ D Q�n. OAn.u// and we obtain

ju � OAn.u/j � Kj�0.u/ � Q�n.u/j C Kj Q�n. OAn.u// � �0. OAn.u//j

� 2Kj�0.u/ � Q�n.u/j:
(75)

This holds also in the case OAn.u/ D �i , simply because j�0.u/ � �0. OAn.u//j � j�0.u/

� Q�n.u/j. As a result, using lemma 6.5, for the first term on the right hand side of (74), we
derive that

1En
1

b4

Z xCb
x�b

�
OAn.u/ � u

�2
du �

C

b4
1En

Z xCb
x�b

�
�0.u/ � Q�n.u/

�2
du D Op.b�3n�2=3/:

(76)

For the second term on the right hand side of (74), we findˇ̌̌
ˆn. OAn.u/I Ǒn/ �ˆn.uI Ǒn/

ˇ̌̌
� 2 sup

x2R

ˇ̌̌
ˆn.xI Ǒn/ �ˆn.xIˇ0/

ˇ̌̌
C
ˇ̌̌
ˆ. OAn.u/Iˇ0/ �ˆ.uIˇ0/

ˇ̌̌
C 2 sup

x2R

jˆn.xIˇ0/ � ˆ.xIˇ0/j

� 2 j Ǒn � ˇ0j sup
x2R

ˇ̌̌
D.1/n .xIˇ�/

ˇ̌̌
C jˆ0.�Iˇ0/jj OAn.u/ � uj

C 2 sup
x2R

jˆn.xIˇ0/ � ˆ.xIˇ0/j;
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which, using (48), (5) and j Ǒn � ˇ0j D Op.n
�1=2/ (see theorem 3.2 in Tsiatis, 1981), leads to

b�21En

Z xCb
x�b

�
ˆn. OAn.u/I Ǒn/ � ˆn.uI Ǒn/

�2
du

� 8b�11En j
Ǒ
n � ˇ0 j

2 sup
x2R

ˇ̌̌
D.1/n .xIˇ�/

ˇ̌̌2
C 2b�21En sup

s2Œx�b;xCb�

ˆ0.sIˇ0/

Z xCb
x�b

�
OAn.u/ � u

�2
du

C 8b�1 sup
x2R

jˆn.xIˇ0/ �ˆ.xIˇ0/j
2

D Op.b
�1n�1/ C Op.b

�1n�2=3/ C Op.b
�1n�1/ D Op.b

�1n�2=3/:

Consequently, from (74) together with (62), for the first term on the right hand side of (73), we
obtain

1En

����� .an;x ı OAn/. Ô n ı OAn/ � an;x Ô nÔ
n

1Œx�b;xCb�

�����
2

L2

DOp.b
�3n�2=3/COp.b

�1n�2=3/

DOp.b
�3n�2=3/:

For the second term on the right hand side of (73), we first write��� �ˆ0�0 � Ô Q�n�1Œx�b;xCb� ���
L2

�
��� �ˆ0 � Ô ��01Œx�b;xCb� ���

L2
C

��� ��0 � Q�n� Ô 1Œx�b;xCb� ���
L2

(77)

On the event En, we find

1En

����ˆ0 � Ô ��01Œx�b;xCb����2
L2
� 2b1En j

Ǒ
n � ˇ0j

2 sup
x2R

ˇ̌
D.1/n .xIˇ�/

ˇ̌2
sup

u2Œ0;M�

�0.u/

D Op.bn
�1/;

and

1En

��� ��0 � Q�n� Ô 1Œx�b;xCb� ���2
L2
� ˆ.0; Ǒn/1En

Z xCb
x�b

�
�0.u/ � Q�n.u/

�2
du

D Op.bn
�2=3/;

due to lemma 6.5. It follows that

1En

��� �ˆ0�0 � Ô Q�n�1Œx�b;xCb� ���
L2
D Op.b

1=2n�1=3/:

Together with (73), this concludes the proof.

To establish lemma 3.4, we need a slightly stronger version of lemma 6.4. Note that, in order
to have the uniform result in (78), we loose a factor n2=9 with respect to the bound in lemma 6.4.
This might not be optimal, but it is sufficient for our purposes.

Lemma 6.6. Suppose that (A1)–(A2) hold. Let 0 < � < M 0 < M < �H and suppose
that H uc, defined in (1), has a bounded derivative huc on Œ0;M �. Let Q�n be the Grenander-type
estimator of a nondecreasing baseline hazard rate �0, which is differentiable with �0

0
bounded
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above and below by strictly positive constants. Let En be the event from lemma 3.1 and assume
that �3 satisfies (65). Then, there exists a constant C > 0, such that, for each n 2 N,

E

"
n4=91En sup

t2.�;M 0�

�
�0.t/ � Q�n.t/

�2#
� C: (78)

Proof. We decompose .�;M 0� in m intervals .ck ; ckC1�, where ck D � C k.M 0 � �/=m,for
k D 0; 1; : : : ; m, and m D .M 0 � �/n2=9. Then, we have

sup
t2.�;M 0�

�
�0.t/ � Q�n.t/

�2
D max

0 � k � m�1
sup

t2.ck;ckC1�

�
�0.t/ � Q�n.t/

�2
:

On the other hand, the fact that �0 is differentiable with bounded derivative implies that

sup
t2.ck;ckC1�

�
�0.t/ � Q�n.t/

�2
� 2 sup

t2.ck;ckC1�

.�0.t/ � �0.ckC1//
2 C 2 sup

t2.ck;ckC1�

�
�0.ckC1/ � Q�n.t/

�2
� 2

 
sup

u2Œ0;M 0�

�00.u/

!2
.ck � ckC1/

2

C 2max
²�
�0.ckC1/ � Q�n.ck/

�2
;
�
�0.ckC1/ � Q�n.ckC1/

�2³

� 2

 
sup

u2Œ0;M 0�

�00.u/

!2
.M 0 � �/2

m2

C max
0 � k � m

�
�0.ck/ � Q�n.ck/

�2
C max

0�k�m�1
.�0.ckC1/ � �0.ck//

2 :

Here, we used that Q�n is nondecreasing, and therefore supt2.ck;ckC1�
�
�0.ckC1/ � Q�n.t/

�2
is

achieved either at t D ck or t D ckC1, for k D 0; 1; : : : ; m � 1. Hence,

sup
t2.�;M 0�

�
�0.t/ � Q�n.t/

�2
� 4 max

0�k�m

�
�0.ck/ � Q�n.ck/

�2
C6

 
sup

u2Œ0;M 0�

�00.u/

!2
.M 0� �/2

m2

� 4 max
0�k�m

�
�0.ck/ � Q�n.ck/

�2
C C1n

�4=9;

where C1 D 6
�
supu2Œ�;M 0� �

0
0
.u/
�2

. Consequently, using lemma 6.4, we derive

E

"
n4=91En sup

t2.�;M 0�

�
�0.t/ � Q�n.t/

�2#
� 4E

�
n4=91En max

0�k�m

�
�0.ck/ � Q�n.ck/

�2	
CC1

� 4n�2=9
mX
kD0

E

�
n2=31En

�
�0.ck/� Q�n.ck/

�2	
CC1

� 4
�
M 0 � � C 1

�
C C C1:

This concludes the proof of (78).
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Proof of Lemma 3.4. Take 0 < � < x < M 0 < M < �H . Let n be sufficiently large such that
x C b � M 0 < M < �H . Denote byRn the left hand side of (28). Write Gn D

p
n.Pn � P/

and decompose Rn D Rn1 C Rn2, where

Rn1 D n�1=21En

Z
ı1Œx�b;xCb�.u/

ˆn.uI Ǒn/

�
Nan;x N̂ n.uI Ǒn/ � an;x.u/ˆn.uI Ǒn/

�
dGn.u; ı; ´/;

Rn2 D n�1=21En

Z
1¹u>x�bº

"
e
Ǒ 0
n´

Z u^.xCb/
x�b

Nan;x N̂ n.vI Ǒn/

ˆn.vI Ǒn/
d Qƒn.v/

� eˇ
0
0´

Z u^.xCb/
x�b

an;x.v/ dƒ0.v/

#
dGn.u; ı; ´/:

Choose � > 0. We prove separately that there exists 
 > 0, such that

lim sup
n!1

P

�
b3=2n13=18jRn1j > 


�
� �

lim sup
n!1

P

�
n1=2jRn2j > 


�
� �:

(79)

We consider the following events.

An1 D
°
Q�n.M/ > K1

±
;

An2 D
´

sup
t2Œ�;M 0�

ˇ̌̌
�0.t/ � Q�n.t/

ˇ̌̌
> K2n

�2=9

μ
;

(80)

where K1; K2 > 0, and let An D An1 [ An2. Because Q�n.M/ D Op.1/, we can choose
K1 > 0, such that P.An1/ � �=3, and from lemma 6.6, we find that we can choose K2 > 0,
such that P.An2/ � �=3, so that P.An/ � 2�=3. First, consider Rn1. Because

P

�
b3=2n13=18jRn1j > 


�
� P .An/ C P

�°
b3=2n13=18jRn1j > 


±
\Acn

�
� 2�=3 C b3=2n13=18
�1E



jRn1j1Acn

�
:

(81)

It suffices to show that there exists 
 > 0, such that b3=2n13=18
�1E


jRn1j1Acn

�
� �=3,

for all n sufficiently large. Write

w.u/ D
1

ˆn.uI Ǒn/

�
an;x. OAn.u//ˆn. OAn.u/I Ǒn/ � an;x.u/ˆn.uI Ǒn/

�
D

an;x. OAn.u//

ˆn.uI Ǒn/

�
ˆn. OAn.u/I Ǒn/�ˆ. OAn.u/Iˇ0/

�
C

an;x.u/

ˆn.uI Ǒn/

�
ˆ.uIˇ0/ �ˆn.uI Ǒn/

�
C

1

ˆn.uI Ǒn/

�
an;x. OAn.u//ˆ. OAn.u/Iˇ0/ � an;x.u/ˆ.uIˇ0/

�
:

We will argue that the function Wn D b2n2=9w is uniformly bounded and of bounded varia-
tion. Because of (61), n1=3.ˆn. OAn.u/I Ǒn/ � ˆ. OAn.u/Iˇ0// and n1=3.ˆ.uIˇ0/ � ˆn.uI Ǒn//
are uniformly bounded. Moreover, they are of bounded variation, as being the difference of
two monotone functions. Similarly, 1=ˆn.uI Ǒn/ is of bounded variation and on the event En
it is also uniformly bounded. Furthermore, by the definition of an;x , we have

an;x. OAn.u//ˆ. OAn.u/Iˇ0/ � an;x.u/ˆ.uIˇ0/ D kb

�
x � OAn.u/

�
� kb.x � u/:
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This is a function of bounded variation, such that multiplied by b2n2=9, it is uniformly
bounded on the event Acn, because using (75), we obtainˇ̌̌

kb

�
x � OAn.u/

�
� kb.x � u/

ˇ̌̌
� b�2j OAn.u/ � uj sup

x2Œ�1;1�

jk0.x/j

� 2Kb�2j Q�n.u/ � �0.u/j sup
x2Œ�1;1�

jk0.x/j

� b�2n�2=92KK2 sup
x2Œ�1;1�

j k0.x/ j:

(82)

Finally, ban;x.u/ D bkb.x � u/=ˆ.uIˇ0/ is also a function of bounded variation, as
being the product of a function of bounded variation bkb.x � u/ with the monotone function
1=ˆ.uIˇ0/, and it is uniformly bounded. Then, because ban;x. OAn.u// is the composition of an
increasing function with a function of bounded variation that is uniformly bounded, it is also a
function of bounded variation and uniformly bounded. As a result, being the sum and product
of functions of bounded variation that are uniformly bounded, Wn D b2n2=9w belongs
to the class B QK of functions of bounded variation, uniformly bounded by some constant QK.
Consequently, it holds

Rn1 D n�1=21En

Z
ı1Œx�b;xCb�.u/w.u/ d

p
n.Pn � P/.u; ı; ´/

D b�2n�13=181En

Z
ı1Œx�b;xCb�.u/Wn.u/ d

p
n.Pn � P/.u; ı; ´/:

Let B QK be the class of functions of bounded variation on Œ0;M �, that are uniformly bounded
by QK > 0, and let Gn D ¹�B;n W B 2 B QKº, where �B;n.u; ı/ D ı1Œx�b;xCb�.u/B.u/.
Then, ı1Œx�b;xCb�Wn is a member of the class Gn, which has envelope
Fn.u; ı/ D QKı1Œx�b;xCb�.u/. Furthermore, if J.ı;Gn/ is the corresponding entropy-integral
(see Section 2.14 in van der Vaart & Wellner, 1996), then according to lemma A.1 in Supporting
Information, J.ı;Gn/ �

R ı
0

p
1 C C=� d�, for some C > 0. Consequently, together with

theorem 2.14.1 in van der Vaart & Wellner (1996), we obtain that

E


jRn1j1Acn

�
� b�2n�13=18E sup

�2Gn

ˇ̌̌̌Z
�B;n.u; ı; ´/ d

p
n.Pn � P/.u; ı; ´/

ˇ̌̌̌
� KJ.1;Gn/ kFn kL2.P/b�2n�13=18

� K0 .H uc.x C b/ � H uc.x � b//
1=2

b�2n�13=18 � K00b�3=2n�13=18;

because H uc is absolutely continuous. As a result,

b3=2n13=18
�1E


jRn1j1Acn

�
�

K00



� �=3

for sufficiently large 
. This proves the first part of (79).
We proceed with Rn2. Similar to (81),

P

�
n1=2jRn2j > 


�
� 2�=3 C n1=2
�1E



jRn2j1Acn

�
; (83)

and it suffices to show that there exists 
 > 0, such that n1=2
�1E


jRn2j1Acn

�
� �=3, for

all n sufficiently large. We write

n1=2Rn2 D 1En

Z �
e Ǒ
0
n´r1;n.u/ � eˇ

0
0´r2;n.u/

�
d
p
n.Pn � P/.u; ı; ´/;
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where

r1;n.u/ D 1¹u>x�bº

Z u^.xCb/
x�b

an;x. OAn.v//

ˆn.vI Ǒn/
ˆn. OAn.v/I Ǒn/ Q�n.v/ dv;

r2;n.u/ D 1¹u>x�bº

Z u^.xCb/
x�b

an;x.v/ �0.v/ dv;

are both monotone functions, uniformly bounded by some constant C on the event Acn \
En. Let MC be the class of monotone functions bounded uniformly by C > 0, and let
Gn D ¹�r;ˇ.u; ´/ W r 2 MC ; ˇ 2 R

P ; jˇ � ˇ0j � �2º, where �2 is chosen as in (49) and

�r;ˇ.u; ´/ D r.u/eˇ
0´. Then e Ǒ

0
n´r1;n.u/ is a member of the class Gn, which has envelope

Fn.u; ´/ D C exp

8<:
pX
jD1

.ˇ0;j � 
n/´j _ .ˇ0;j C 
n/´j

9=; ;
with 
n D

p
�2n�2=3 as the envelope of Gn. If JŒ �.ı;Gn; L2.P// is the bracketing integral (see

Section 2.14 in van der Vaart & Wellner, 1996), then according to lemma A.2 in Supporting
Information, JŒ �.ı;Gn; L2.P// �

R ı
0

p
1 C C=� d�, for some C > 0. Hence, together with

theorem 2.14.2 in van der Vaart & Wellner (1996), we obtain

E

�ˇ̌̌̌
1Acn\En

Z
e Ǒ
0
n´r1;n.u/ d

p
n.Pn � P/.u; ı; ´/

ˇ̌̌̌	
� E sup

�2Gn

ˇ̌̌̌Z
�r;ˇ.u; ´/ d

p
n.Pn � P/.u; ı; ´/

ˇ̌̌̌
� KJŒ �.1;Gn; L2.P// kFn kL2.P/ � K0;

for some K0 > 0. We conclude that,


�1E

�ˇ̌̌̌
1Acn\En

Z
e Ǒ
0
n´r1;n.u/ d

p
n.Pn � P/.u; ı; ´/

ˇ̌̌̌	
�

K0



� �=6;

for sufficiently large 
. In the same way, it can also be proved


�1E

�ˇ̌̌̌
1Acn\En

Z
eˇ0´r2;n.u/ d

p
n.Pn � P/.u; ı; ´/

ˇ̌̌̌	
�

K



� �=6

for sufficiently large 
, concluding the proof of (83) and therefore the second part of (79).

Supporting Information

Supplement to “Smoothed isotonic estimators of a monotone baseline hazard in the Cox
model”.


 Supplement A: Entropy bounds for the smoothed Grenander-type estimator.

 Supplement B: Smooth maximum likelihood estimator.

 Supplement C: Consistency of the bootstrap.
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