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Abstract

This report introduces three new Schur complement approximations for the aug-
mented Lagrangian preconditioner based on the method proposed by He, Vuik and
Klaij [SIAM J. Sci. Comput., 40 (2018), pp. A1362-A1385]. The incompressible
Navier-Stokes equations discretized by a stabilized �nite element method are utilized
to evaluate these new approximations of the Schur complement. A wide range of
numerical experiments in the laminar context determines the most e�cient Schur
complement approximation and investigates the e�ect of the Reynolds number, mesh
anisotropy and re�nement on the optimal choice. Furthermore, the advantage over
the traditional Schur complement approximation is exhibited.

Mathematics subject classi�cation: 65F10, 65F08.

Key words: incompressible Navier-Stokes equations, stabilized �nite element method,
block structured preconditioners, Schur complement approximations, augmented La-
grangian preconditioner.

1 Introduction

Block structured preconditioners [11,30,31] are often utilised to accelerate the convergence
of the Krylov subspace solvers for the saddle point systems arising from the incompress-
ible Navier-Stokes equations. The key to attain e�cient block structured preconditioners
is the spectrally equivalent and numerically cheap approximation of the Schur comple-
ment [2,29]. There exist several state-of-the-art approximations of the Schur complement,
e.g. the least-square commutator (LSC) [8,9], pressure convection-di�usion (PCD) opera-
tor [21, 32] and the approximations from the block structured SIMPLE(R) [24, 25, 33] and
augmented Lagrangian (AL) preconditioner [3, 15] etc. Among them, the AL precondi-
tioner exhibits attractive features with stable �nite element methods (FEM) used for the
discretization, e.g. the purely algebraic and simple construction of the Schur complement
approximation and robustness with respect to the mesh re�nement and Reynolds number,
at least for academic benchmarks. Motivated by these advantages, the further extension to
the context of �nite volume method (FVM) [17] and the modi�ed variant [4] with reduced
computational complexities are promoted. Recently, the authors of this paper propose a
new variant of the AL preconditioner [18] for the Reynolds-Averaged Navier-Stokes (RANS)
equations discretized by a stabilized FVM, which are widely used to model turbulent �ows
in industrial computational �uid dynamic (CFD) applications.

Although the solution procedure of the RANS equations consists of solving a sequence
of linear systems in saddle point form, the research in [18] shows that the straightfor-
ward application of the AL preconditioner leads to a very slow convergence of the Krylov
subspace solvers. The challenges encountered in the turbulent calculations [12, 28, 34] are
inevitable factors which could cause the breakdown of the AL preconditioner, including
the high Reynolds number, high-aspect ratio cells near the very thin boundary layer and
the signi�cant variation in the value of viscosity due to the presence of the eddy-viscosity.
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To overcome these challenges, an alternative method to approximate the Schur comple-
ment for the AL preconditioner is introduced in [18], which leads to a new variant of the
AL preconditioner. This new method approximates the Schur complement through its in-
verse form and facilitates the utilization of the existing Schur complement approximations.
Among the available candidates, the Schur complement approximation from the SIMPLE
preconditioner [22, 24] is chosen and substituted into the inverse Schur complement ap-
proximation for the AL preconditioner. This choice is motivated from the notion that it
reduces to a scaled Laplacian matrix [22, 24] with the considered FVM and its promising
e�ciency on the turbulent applications of the maritime industry [23, 24]. Consequently,
the so-arising new variant of the AL preconditioner reduces the number of Krylov subspace
iterations by a factor up to 36 compared to the original one [18].

Since the new method to approximate the Schur complement for the AL preconditioner
use the existing Schur complement approximations, the following questions straightfor-
wardly raise. Does the utilization of other existing Schur complement approximations
deliver a better performance than that from the SIMPLE preconditioner? If so, which
Schur complement approximation is the most e�cient one? Does the optimal choice de-
pend on the test problem and parameters arising from the physics and discretization, e.g.
the Reynolds number and grid size? To answer these questions, in this paper we utilize the
existing Schur complement approximations not only from the SIMPLE preconditioner but
also from the LSC and PCD operators to construct the new Schur complement approxima-
tion in the AL preconditioner. Moreover, extensive comparisons between the considered
Schur complement approximations are carried out on a wide range of numerical experi-
ments to evaluate the e�ect of the Reynolds number, mesh anisotropy and re�nement on
the optimal choice. These numerical evaluations are considered in the context of lami-
nar �ows, which is motivated by the expectation that the obtained results can provide a
fundamental guideline for the more complicated turbulent �ow calculations.

In this paper we use the mixed FEM which does not uniformly satisfy a discrete inf-sup
condition [11] to discretize the Navier-Stokes equations governing laminar �ows, which is
chosen by the following considerations. First, the existing Schur complement approxima-
tions are originally designed with �nite element methods used for discretization. Therefore,
it is expected to apply the new Schur complement approximation for the AL preconditioner
in the FEM context. In addition, this closes a gap in the application of the new Schur
complement approximation. Second, both the stabilized FEM [11] and FVM [12] lead to
saddle point system with a nonzero (2, 2) block which arises from the pressure stabilization.
Thanks to this similarity, a minor adaption is required to extend the new variant of the
AL preconditioner from the stabilized FVM to the stabilized FEM. Finally, the utilization
of stabilized FVM degrades the generality to some extent since the Schur complement
approximation in the SIMPLE preconditioner reduces to a special formation [22,24]. How-
ever, this special formation can not be obtained with other stabilization and discretization
methods. Using stabilized FEM, all Schur complement approximations considered in this
paper are expressed in their de�ned manners, including that from the SIMPLE precondi-
tioner. In this way, a convincing evaluation of the novel Schur complement approximation
for the AL preconditioner can be expected.
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The structure of this paper is given as follows. The saddle point system arising from the
incompressible Navier-Stokes equations is introduced in Section 2, followed by a brief survey
of the existing approximations of the Schur complement. Section 3 illustrates the method
using these existing Schur complement approximations to construct the new approximation
of the Schur complement in the AL preconditioner. Section 4 includes numerical results
on varying laminar benchmarks. Conclusions and future work are outlined in Section 5.

2 Problem formulation

In this paper we consider the steady, laminar and incompressible Navier-Stokes equations
as follows

−ν∆u + (u · ∇)u +∇p = f on Ω,

∇ · u = 0 on Ω.
(1)

Here u is the velocity, p is the pressure, the positive coe�cient ν is the kinematic vis-
cosity and f is a given force �eld. Ω is a 2D or 3D bounded and connected domain with
the boundary ∂Ω. On the boundaries of the computational domain, either the Dirichlet
boundary condition u = g or Neumann boundary condition ν ∂u

∂n
− np = 0 is imposed,

where n denotes the outward-pointing unit normal to the boundary.
After the Picard linearization and FEM discretization [11], the incompressible Navier-

Stokes equations convert to the following linear system in saddle-point form[
A BT

B − 1
ν
C

] [
u
p

]
=

[
f
g

]
with A :=

[
A BT

B − 1
ν
C

]
, (2)

where the matrices B and BT correspond to the divergence and gradient operators, re-
spectively. Picard linearization leads to the matrix A in block diagonal structure, and each
diagonal block corresponds to the convection-di�usion operator. Due to the presence of
the convective term, A is not symmetric.

For the �nite element discretization satisfying the LBB ('inf-sup') stability condition
[11], no pressure stabilization is required and C = 0 is taken. When LBB unstable �nite
elements are applied, the nonzero matrix C corresponds to a stabilization operator. Based
on the motivations presented in the introduction, in this paper we use the Q1-Q1 mixed
�nite element approximation where the equal �rst-order discrete velocities and pressure
are speci�ed on a common set of nodes. Among the available stabilization methods [1, 5�
7, 13, 20] speci�ed for the Q1-Q1 discretization, we choose the approach introduced in [7].
The main motivation is that there is no stabilization parameter required in the following
operator

C(proj)(ph, qh) = (ph − Π0ph, qh − Π0qh), (3)

where Π0 is the L
2 projection from the pressure approximation space into the space P0 of

the piecewise constant basis function. This projection is de�ned locally: Π0ph is a constant
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function in each element �k ∈ Th. It is determined simply by the following local averaging

Π0ph|�k
=

1

|�k|

∫
�k

ph, for all �k ∈ Th, (4)

where |�k| is the area of element k. Due to the locality as illustrated by equation (4), the
stabilization matrix C can be assembled from the contribution matrices on macroelements
in the same way as assembling a standard �nite element mass matrix. Taking the 2D
rectangular grid as an example, the 4 × 4 macroelement contribution matrix C(macro) is
given by

C(macro) = M (macro) − qqT |�k|, (5)

where M (macro) is the 4 × 4 macroelement mass matrix for the bilinear discretization and
q = [1/4, 1/4, 1/4, 1/4]T is the local averaging operator. The null space of the macroelement
matrix C(macro) and assembled stabilization matrix C consist of constant vector, see [7,11]
for more details.

Block structured preconditioners are meant to accelerate the convergence of the Krylov
subspace solvers for saddle point systems as (2). They are based on the block LDU
decomposition of the coe�cient matrix given by

A = LDU =

[
A BT

B − 1
ν
C

]
=

[
I1 O

BA−1 I2

] [
A O
O S

] [
I1 A−1BT

O I2

]
, (6)

where S = −(ν−1C +BA−1BT ) is the so-called Schur complement. A combination of this
block factorization with a suitable approximation of the Schur complement is utilised to
successfully design the block structured preconditioners, which are given as follows

PF =

[
A O

B S̃

] [
I1 Ã−1BT

O I2

]
, (7)

PL =

[
A O

B S̃

]
, PU =

[
A BT

O S̃

]
. (8)

Multiplying the LD and DU factors of (6) results in the block lower- and upper-triangular
preconditioners PL and PU , respectively. Preconditioner PF is based on the multiplication
of the LDU factors. The term Ã−1 denotes some approximation of the inverse action of
A, which is given either in an explicit form or implicitly de�ned via an iterative solution
method with a proper stopping tolerance.

It is not practical to explicitly form the exact Schur complement due to the action of
A−1, typically when the size is large. This implies that the most challenging task is to �nd
the spectrally equivalent and numerically cheap approximation of the Schur complement,
which is denoted by S̃ in (7) and (8). As follows we brie�y introduce several state-of-the-art
Schur complement approximations which are utilised to construct the new approximation
of the Schur complement for the AL preconditioner. We refer for more details of the Schur
complement approximation to the surveys [2, 29�31] and the books [11,27].

In the following illustration, we use the notation p to indicate the operators de�ned on
the pressure space and the notation u for the operators de�ned on the velocity space.
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(1) The pressure convection-di�usion operator S̃PCD.

This approximation, denoted by S̃PCD, is proposed by Kay et al [21] and de�ned as

S̃PCD = −LpA−1
p Mp, (9)

where Mp is the pressure mass matrix, and Ap and Lp are the discrete pressure
convection-di�usion and Laplacian operators, respectively. Although the PCD Schur
complement approximation (9) is originally proposed for stable �nite element meth-
ods, it is straightforwardly applicable for the discretizations needing a stabilization
term, e.g. the Q1-Q1 pair. For more details about this extension we refer to [11].
On the other hand, this approximation requires users to provide the discrete oper-
ators Ap and Lp and preset some arti�cial pressure boundary conditions on them.
The boundary conditions could strongly e�ect the performance so appropriate ones
should be carefully selected based on the problem characteristic [10, 19]. Applying
the PCD Schur complement approximation involves the action of a Poisson solve, a
mass matrix solve and a matrix-vector product with the matrix Ap.

(2) The least-square commutator S̃LSC .

Elman et al [8] originally propose this method for stable �nite element discretizations
and then extend it to alternatives [9] that require stabilization. For system (2) with

a nonzero stabilization operator C, the LSC Schur complement approximation S̃LSC
is de�ned as

S̃LSC = −(BM̂−1
u BT + C1)(BM̂−1

u AM̂−1
u BT + C2)−1(BM̂−1

u BT + C1), (10)

where M̂u denotes the diagonal approximation of the velocity mass matrix Mu, i.e.
M̂u = diag(Mu). Given the stabilization matrix C assembled from the macroelement

contribution matrix C(macro) (5), the contribution matrices C
(macro)
1 and C

(macro)
2 for

the associated stabilization matrices C1 and C2 are introduced by

C
(macro)
1 =

1

|�k|
· C(macro), C

(macro)
2 =

ν

|�k|2
· C(macro), (11)

where ν denotes the viscosity parameter. For the derivation of C
(macro)
1 and C

(macro)
2

we refer to [9]. The implementation of the LSC Schur complement approximation
does not require any arti�cial boundary condition and consists of one matrix-vector
product with the middle term in (10) and two solves with the other term. When the
LSC Schur complement approximation is applied to stable �nite element discretiza-
tions, the matrices C1 and C2 are set to zero in (10).

(3) The approximation S̃SIMPLE from the SIMPLE preconditioner.

SIMPLE (Semi-Implicit Pressure Linked Equation) is used by Patanker [28] as an
iterative method to solve the Navier-Stokes problem. The scheme belongs to the
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class of basic iterative methods and exhibits slow convergence. Vuik et al [25, 33]
use SIMPLE as a preconditioner in a Krylov subspace method, achieving in this
way, a much faster convergence. Regarding the Schur complement S = −(ν−1C +
BA−1BT ) of system (2), the SIMPLE preconditioner approximates A by its diagonal,

i.e. diag(A), and obtains the approximation S̃SIMPLE as

S̃SIMPLE = −(ν−1C +Bdiag(A)−1BT ). (12)

Substituting S̃SIMPLE and Ã−1 = diag(A)−1 into (7) leads to the so-called SIMPLE
preconditioner. For stable �nite element discretizations, C = 0 is set in system
(2) and correspondingly in the Schur complement approximation (12). The easy
implementation and promising performance on the complicated maritime problems
[23, 24] make the SIMPLE preconditioner and its variants attractive in real world
applications.

The main goal of this paper is to utilise the above mentioned Schur complement approx-
imations to construct a new approximation of the Schur complement in the AL precondi-
tioner, with more details presented in the next section. Theoretical analysis and numerical
evaluation of the above Schur complement approximations fall out of the scope of this
work and we refer to [11, 16, 31] for more results. Here we summarize the key di�erences.

S̃PCD requires the construction of additional matrices on the pressure space while S̃LSC
and S̃SIMPLE rely on matrices which could be easily generated or are readily available.
As seen from S̃LSC , the stabilization terms C

(macro)
1 and C

(macro)
2 are easily obtained by

substituting the available term C(macro) into (11). On the other hand, S̃PCD easily extends

to the stabilized elements and a minor adaption is required by S̃SIMPLE for this extension.
However, S̃LSC does not immediately apply and needs appropriate stabilization terms C1

and C2. We further note that boundary conditions for the pressure unknowns, which have
few physical meanings, have to be considered for Lp and Ap in S̃PCD. What boundary
conditions work best with a speci�c type of problem is usually based on experimental
knowledge [10,19].

3 Augmented Lagrangian preconditioner

The focus of this section is the new method to approximate the Schur complement in the
augmented Lagrangian (AL) preconditioner. In the following, we �rst brie�y recall the AL
preconditioner and then introduce the new method followed by a comparison with the old
one.

The motivation of applying the AL preconditioner is to circumvent the challenge on
�nding the e�cient approximation of the Schur complement S for the original system (2),
c.f., [3, 4]. To apply the AL preconditioner, the original system (2) is transformed into an
equivalent one with the same solution [4, 17], which is of the form[

Aγ BT
γ

B − 1
ν
C

] [
u
p

]
=

[
fγ
g

]
with Aγ :=

[
Aγ BT

γ

B − 1
ν
C

]
, (13)
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where Aγ = A + γBTW−1B, BT
γ = BT − γ/νBTW−1C and fγ = f + γBTW−1g. This

transformation is obtained by multiplying γBTW−1 on both sides of the second row of
system (2) and adding the resulting equation to the �rst one. Clearly, the transformed
system (13) has the same solution as system (2) for any value of γ and any non-singular
matrix W . The Schur complement of the transformed system (13) is Sγ = −(ν−1C +
BA−1

γ BT
γ ).

The AL preconditioner is applied for the equivalent system (13), which is to be solved.
Using the block DU decomposition of Aγ, the ideal AL preconditioner PIAL and its variant,
i.e. the modi�ed AL preconditioner PMAL, are given by

PIAL =

[
Aγ BT

γ

O S̃γ

]
and PMAL =

[
Ãγ BT

γ

O S̃γ

]
, (14)

where S̃γ and Ãγ denote the approximations of Sγ and Aγ, respectively.

First we consider the approximation Ãγ. Given the original pivot matrix A =

[
A1 O
O A1

]
and the divergence matrix B =

[
B1 B2

]
in the 2D case, the transformed pivot matrix

Aγ = A+ γBTW−1B can be written as

Aγ =

[
A1 + γBT

1 W
−1B1 γBT

1 W
−1B2

γBT
2 W

−1B1 A1 + γBT
2 W

−1B2

]
.

Contrary to PIAL, PMAL approximates Aγ by its block upper-triangular part, i.e. Ãγ with
a zero (2,1) block, such that the di�culty of solving the systems with Aγ is avoided [4].
When applying PMAL one needs to solve the sub-systems with the diagonal blocks of Aγ,
i.e. A1 + γBT

1 W
−1B1 and A1 + γBT

2 W
−1B2, which do not contain the coupling between

two components of the velocity so that it is much easier to solve, compared to Aγ involved
in PIAL. This advantage motivates us to choose PMAL in this paper.

3.1 New Schur approximation in the AL preconditioner

Finding an e�ective approximation of the Schur complement Sγ is the key for the ideal
and modi�ed AL preconditioners. This paper is meant to use the available Schur ap-
proximations for the original system (2), as introduced in Section 2, to construct a new
approximation of Sγ. The new Schur complement approximation is realized by using the
following lemma.

Lemma 3.1 Assuming that all the relevant matrices are invertible, then the inverse of Sγ
is given by

S−1
γ = S−1(I − γĈW−1)− γW−1, (15)

where S = −(Ĉ +BA−1BT ) denotes the Schur complement of the original system (2) and

Ĉ is de�ned as Ĉ = ν−1C.
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Proof. For the proof we refer to [4, 17].
Lemma 3.1 is originally revealed by [4] and used to derive the old approximation of

Sγ, which is discussed in the next section. Here, Lemma 3.1 is viewed from another side.
Since Lemma 3.1 builds the connection between the Schur complements Sγ and S, the
natural and simple method to approximate Sγ is substituting the approximation of S into

expression (15). In this way, the new approximation of Sγ, denoted by S̃γ new, is derived
in the inverse form as

S̃−1
γ new

= S̃−1(I − γĈW−1)− γW−1, (16)

where S̃ denotes the approximation of S.
The novel approach provides a framework to use the known Schur complement approx-

imation S̃ for the original system (2) to construct S̃γ new in the AL preconditioner, which
is applied to the transformed system (13). Substituting the Schur complement approxima-

tions demonstrated in Section 2, i.e. S̃PCD, S̃LSC and S̃SIMPLE into expression (16), three

variants of S̃γ new are derived as

• S̃−1
γ PCD = S̃−1

PCD(I − γĈW−1)− γW−1 with S̃PCD de�ned by (9),

• S̃−1
γ LSC = S̃−1

LSC(I − γĈW−1)− γW−1 with S̃LSC de�ned by (10),

• S̃−1
γ SIMPLE = S̃−1

SIMPLE(I − γĈW−1)− γW−1 with S̃SIMPLE de�ned by (12).

Following other related references [3, 4], in this paper we choose the matrix parameter

W to the diagonal approximation of the pressure mass matrix, i.e. W = M̂p = diag(Mp).
It is trivial to obtain the action of W−1 in the transformation (13) and the new Schur com-

plement approximation (16). Applying the new Schur complement approximation S̃γ new

converts to solve a system with it and the choice ofW = M̂p focuses the complexity mainly

on the solve of S̃. This implies a limited increase of the complexity when implementing the
new Schur complement approximation S̃γ new compared to S̃. In addition, the considerable

e�orts to optimize the approximation S̃ can straightforwardly reduce the computational
time of S̃γ new.

When applying stabilized FVM, the inverse of Sγ is expressed in a similar manner as
Lemma 3.1 [18] and this similarity facilitates the extension of the new Schur complement
approximation from the stabilized FVM to the stabilized FEM. Regarding the new Schur
complement approximation, there are two main di�erences between [18] and this work.

First, only S̃γ SIMPLE is considered in [18] and in this paper we introduce three variants,

i.e. S̃γ PCD, S̃γ LSC and S̃γ SIMPLE. In this way, the comparison between them is expected
to answer the questions raised in the introduction section. Second, In [18] �nite volume dis-
cretization stabilized by the pressure-weighted interpolation method [26] is applied, which

leads to S̃SIMPLE in a reduced form. The generality is degraded since this special form
of S̃SIMPLE can not be obtained by using other stabilization and discretization methods
in general. In this paper, the approximations S̃PCD, S̃LSC and S̃SIMPLE are expressed
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in their de�ned manners so that a convincing assessment of the new Schur complement
approximation can be expected.

Based on the above approach, it is easy to see that there is no extra requirement on
the value of the parameter γ. This advantage of the new Schur complement approximation
can be more clearly seen in the next section, where the contradictory requirements on the
values of γ in the old approach are presented.

3.2 Old Schur approximation in the AL preconditioner

The starting point to construct the old approximation of the Schur complement in the AL
preconditioner is also Lemma 3.1. However, the strategy is totally di�erent. Choosing
W1 = γĈ +Mp and substituting W1 into expression (15) we have

S−1
γ = S−1(I − (γĈ +Mp −Mp)(γĈ +Mp)

−1)− γ(γĈ +Mp)
−1

= S−1Mp(γĈ +Mp)
−1 − γ(γĈ +Mp)

−1

= (γ−1S−1Mp − I)(Ĉ + γ−1Mp)
−1.

For large values of γ such that ‖ γ−1S−1Mp ‖� 1, the term γ−1S−1Mp can be neglected

so that we have S̃γ old as follows

S̃γ old = −(Ĉ + γ−1Mp). (17)

The choice of W1 = γĈ +Mp is not practical since the action of W−1
1 is needed in the

transformed system (13). One practical choice is to omit the term γC in W1 and replace

Mp by its diagonal approximation, which leads to W = M̂p. The choice of W = M̂p and

S̃γ old is used in the related work, for instance [4, 17] where stabilized discretizations are
employed.

The contradictory requirements in the above approximation are shown as follows. The
approximation S̃γ old is obtained if and only if W1 = γĈ + Mp and large values of γ are

chosen. However, W = M̂p is spectrally equivalent to W1 = γĈ + Mp only when γ is

small. This means that it is contradictory to tune the value of γ so that W = M̂p and

S̃γ old could be simultaneously obtained. By contrast, this contradictory requirements are
avoided by applying the new Schur complement approximation as given in Section 3.1. This
disadvantage of the old Schur complement approximation re�ects in the slower convergence
rate of the Krylov subspace solvers compared to the new Schur complement approximation.
See more results in the numerical section.

3.3 Summary of the Schur complement approximations

At each Picard iteration, we solve either the transformed system (13) with the coe�cient
matrix Aγ or the original system (2) with the coe�cient matrix A. We apply the modi�ed
AL preconditioner PMAL (14) and the block upper-triangular preconditioner PU (8) to the
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transformed and original systems, respectively. The Schur complement approximations
applied in PMAL and PU are summarized in Table 1.

Table 1: Summary of the linear systems to be solved, applied preconditioners and approx-
imations of the Schur complement utilized therein.

linear system preconditioner Schur complement approximations

transformed system with Aγ PMAL S̃γ PCD, S̃γ LSC , S̃γ SIMPLE , S̃γ old

original system with A PU S̃PCD, S̃LSC , S̃SIMPLE

With the choice of W = M̂p = diag(Mp) and de�nition of Ĉ = ν−1C, the Schur com-
plement approximations applied in the modi�ed AL preconditioner PMAL are summarized
as

1. S̃−1
γ PCD = S̃−1

PCD(I − γĈM̂−1
p )− γM̂−1

p with S̃PCD as (9),

2. S̃−1
γ LSC = S̃−1

LSC(I − γĈM̂−1
p )− γM̂−1

p with S̃LSC as (10),

3. S̃−1
γ SIMPLE = S̃−1

SIMPLE(I − γĈM̂−1
p )− γM̂−1

p with S̃SIMPLE as (12),

4. S̃γ old = −(Ĉ + γ−1Mp).

The �rst three approximations are derived from the new approach S̃γ new (16) and the last

one corresponds to the old approach S̃γ old (17).
As illustrated above, the new approximations of the Schur complement in the AL

preconditioner involve the Schur complement approximations in the block upper-triangular
preconditioner PU for the original system. The Schur complement approximations used in
PU are given as follows

1. S̃PCD = −LpA−1
p Mp,

2. S̃LSC = −(BM̂−1
u BT + C1)(BM̂−1

u AM̂−1
u BT + C2)−1(BM̂−1

u BT + C1),

3. S̃SIMPLE = −(Ĉ +Bdiag(A)−1BT ).

Due to the small size of test problems and the lack of code optimization, the complexity
comparison of preconditioners PMAL and PU is done based on the following costs analysis
in this paper, instead of reporting the computational time. Firstly, we consider the costs of
using the modi�ed AL preconditioner PMAL for a Krylov subspace method that solves the
system with Aγ. The preconditioner is applied at each Krylov iteration and the modi�ed

AL preconditioner involves the solution of the momentum sub-system 'mom-u' with Ãγ
and the pressure sub-system 'mass-p' with S̃γ. Furthermore, at each Krylov iteration
additional costs are expressed in the product of the coe�cient matrix Aγ with a Krylov
residual vector bres. Thus, the total costs at each Krylov iteration are
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• PMAL: mom-u with Ãγ + mass-p with S̃γ + Aγ × bres.

Clearly, the di�erence of costs by applying PMAL arises from solving the pressure sub-
system 'mass-p' with di�erent Schur complement approximations. If we ignore the mul-
tiplications in the de�nition of the new Schur complement approximation S̃γ new, �nding

the solution of the pressure sub-system in PMAL with three variants derived from S̃γ new,

i.e., S̃γ PCD, S̃γ LSC and S̃γ SIMPLE is reduced to solve the pressure sub-system in PU with

S̃PCD, S̃LSC and S̃SIMPLE, respectively. Systems involved in S̃PCD, S̃LSC and S̃SIMPLE are
shown in Table 2. The costs of applying the old Schur complement approximation S̃γ old are
also included in Table 2 for a comparison with the new Schur complement approximation
S̃γ new. Note that all involved systems are of the same size. If we assume a comparable
complexity to solve di�erent involved systems, the analysis in Table 2 shows that the costs
of using PMAL with S̃γ PCD and S̃γ LSC are roughly the same and two times of that with

S̃γ SIMPLE and S̃γ old.

Table 2: Pressure sub-system 'mass-p' with S̃γ in PMAL and S̃ in PU , and the systems
involved therein.

'mass-p' with S̃γ new 'mass-p' with S̃ systems involved in S̃

S̃γ PCD S̃PCD Lp and Mp

S̃γ LSC S̃LSC (BM̂−1
u BT + C1) twice

S̃γ SIMPLE S̃SIMPLE Ĉ +Bdiag(A)−1BT

'mass-p' with S̃γ old � systems involved in S̃γ old

S̃γ old � Ĉ + γ−1Mp

Secondly, we consider the costs of applying the upper block-triangular preconditioner
PU with di�erent Schur complement approximations, which are used for the original system.
Similar to the analysis of PMAL, we obtain the total costs at every Krylov iteration as

• PU : mom-u with A + mass-p with S̃ + A× bres.

Also, varying Schur complement approximations S̃ results in the di�erence of costs by
applying PU . Based on the analysis in Table 2 and the assumption of a comparable
solution complexity for all involved systems, we �nd out that the costs of applying PU
with S̃PCD and S̃LSC are roughly the same and two times of that with S̃SIMPLE.

Lastly, we compare the costs between PMAL and PU . As mentioned before, solving the
pressure sub-system with the new Schur complement approximation S̃γ new in PMAL can

be reduced to calculate the solution of the pressure sub-system with S̃, which is the Schur
complement approximation used in PU . Thus, the di�erence of costs between PMAL and
PU focuses on the solution of the momentum sub-system and the product of the coe�cient
matrix with the Krylov residual vector. More non-zero �ll-in in Aγ and Aγ [17], compared
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to A and A, results in a heavier matrix-vector product when applying PMAL at each Krylov
iteration. However, the heavier complexity of PMAL could be paid o� by a reduced number
of Krylov iterations. In this paper we obtain a faster convergence rate preconditioned
by PMAL with the new Schur complement approximations, compared to PU used for the
original system. The time advantage of PMAL needs a further assessment which is included
in future research plan.

4 Numerical experiments

In this section, we carry out numerical experiments on the following 2D laminar bench-
marks:

(1) Flow over a �nite �at plate (FP)
This example, known as Blasius �ow, models a boundary layer �ow over a �at plate
on the domain Ω = (−1, 5) × (−1, 1). To model this �ow, the Dirichlet boundary
condition ux = 1, uy = 0 is imposed at the in�ow boundary (x = −1; −1 ≤ y ≤ 1)
and also on the top and bottom of the channel (−1 ≤ x ≤ 5; y = ±1), representing
walls moving from left to right with speed unity. The plate is modeled by imposing
a no-�ow condition on the internal boundary (0 ≤ x ≤ 5; y = 0), and the Neumann
condition is applied at the out�ow boundary (x = 5; −1 < y < 1), i.e., ν ∂u

∂n
−np = 0.

The Reynolds number is de�ned by Re = UL/ν and the reference velocity and
length are chosen as U = 1 and L = 5. On the FP �ow, we consider four Reynolds
numbers as Re = {102, 103, 104, 105}, which correspond to the viscosity parameters
ν = {5 · 10−2, 5 · 10−3, 5 · 10−4, 5 · 10−5}, respectively.
Since stretched grid is typically needed to compute the �ow accurately at large
Reynolds numbers, stretched grid is generated based on the uniform Cartesian grid
with 12× 2n · 2n cells. The stretching function is applied in the y-direction with the
parameter b = 1.01 [c.f. [24]]:

y =
(b+ 1)− (b− 1)c

(c+ 1)
, c = (

b+ 1

b− 1
)1−ȳ, ȳ = 0, 1/n, 2/n, ...1. (18)

(2) Flow over backward facing step (BFS)
The L-shaped domain is known as the backward facing step. A Poisseuille �ow
pro�le is imposed on the in�ow (x = −1; 0 ≤ y ≤ 1). No-slip boundary conditions
are imposed on the walls. The Neumann condition is applied at the out�ow (x =
5;−1 < y < 1) which automatically sets the out�ow pressure to zero. Using the
reference velocity and length U = 1 and L = 2 and the viscosity parameters ν =
{2 ·10−2, 2 ·10−3}, the corresponding Reynolds numbers are Re = UL/ν = {102, 103}.
The BFS �ow is more complicated than the �at-plate �ow as it features separation, a
free shear-layer and reattachment. On the BFS �ow we do not consider the Reynolds
number Re > 103 since the increase of the Reynolds number by an order of magnitude
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will transfer the �ow to be turbulent. On this case we only consider uniform Cartesian
grid with 11× 2n · 2n cells.

(3) Lid driven cavity (LDC)
This problem simulates the �ow in a square cavity (−1, 1)2 with enclosed boundary
conditions. A lid moving from left to right with a horizontal velocity as:

ux = 1− x4 for − 1 ≤ x ≤ 1 y = 1.

In order to accurately resolve the small recirculations, we consider stretched grid
around the four corners. Stretched grid is generated based on the uniform Cartesian
grid with 2n · 2n cells. The stretching function is applied in both directions with
parameters a = 0.5 and b = 1.01 [24]

x =
(b+ 2a)c− b+ 2a

(2a+ 1)(1 + c)
, c = (

b+ 1

b− 1
)
x̄−a
1−a , x̄ = 0, 1/n, 2/n, ...., 1. (19)

The reference velocity and length U = 1 and L = 2 and the viscosity parameters
ν = {2 · 10−2, 2 · 10−3, 2 · 10−4} result in the following Reynolds numbers Re =
{102, 103, 104}. For the same reason as BFS, a larger Reynolds number Re > 104 is
not considered on this case.

In order to explore the performance of PMAL and PU with varying Schur complement
approximations as summarized in Table 1 and Table 2, numerical evaluations are classi�ed
into four categories as follows.

(C1) On small Reynolds number and uniform grid
In this category we consider the FP, BFS and LDC cases on the small Reynolds
number Re = 102 and uniform Cartesian grid.

(C2) On moderate Reynolds number and uniform grid
In this category we apply the moderate Reynolds number Re = 103 on the FP, BFS
and LDC cases. Similar to the �rst class of experiments, uniform Cartesian grid is
used here to check the variation of performance when increasing the Reynolds number
by an order of magnitude.

(C3) On moderate Reynolds numbers and stretched grid
This category contains the tests carried out on the FP and LDC cases with stretched
grid. The stretching functions for the FP and LDC cases are (18) and (19), respec-
tively. Still, the moderate Reynolds number Re = 103 is employed for the two tests.
Comparing with the second class of experiments, this category is meant to investigate
the e�ect of mesh anisotropy.

(C4) On large Reynolds numbers and stretched grid
The LDC case with Re = 104 and FP case with Re = {104, 105} are included in
this class of tests to assess how the Krylov subspace solver behaves at relatively large
Reynolds numbers. Here stretched grid is employed to accurately resolve the problem
characteristics.
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In this paper all experiments are carried out based on the blocks A, B, C, C1, C2, Ap,
Mp, Lp and Mu and the right-hand side vector rhs, which are obtained at the middle step
of the whole nonlinear iterations. Numerical experiments in [17] show that the number
of linear iterations varies during the nonlinear procedure. The motivation of choosing the
middle step of the nonlinear iterations to export the blocks and vector is that a represen-
tative number of linear iteration can be obtained, compared to the averaged number of
linear iterations through the whole nonlinear procedure. The relative stopping tolerance
to solve the linear system by GMRES is chosen equal to 10−8. The restart functionality of
GMRES is not used in this paper. Since the preconditioners PMAL and PU involve vari-
ous momentum and pressure sub-systems, all these sub-systems are directly solved in this
paper to avoid the sensitiveness of iterative solvers on the varying solution complexities.

As pointed out in Section 2, the application of the Schur complement approximation
S̃γ PCD needs to preset boundary conditions for the pressure Laplacian Lp and convection-
di�usion Ap operators. In this paper, we follow the suggestions of [10, 19] to use Dirichlet
boundary conditions along in�ow boundaries to de�ne Lp and Ap. This means that the rows
and columns of Lp and Ap corresponding to the pressure nodes on an in�ow boundary are
treated as though they are associated with Dirichlet boundary conditions. For the enclosed
�ow, we algebraically add h2I to Lp and Ap to make them non-singular, where h denotes
the grid size and I is the identity matrix of proper size. Such arti�cial pressure boundary
conditions are only imposed on the preconditioner. The coe�cient matrix and right-hand
side vector are not a�ected by these boundary node modi�cations.

4.1 On small Reynolds number and uniform grid

In this subsection we carry out experiments on the FP, BFS and LDC cases with uniform
Cartesian grid and small Reynolds number Re = 102. The number of Krylov iterations
to solve the transformed system preconditioned by the modi�ed AL preconditioner PMAL

is given in Table 3. The Schur complement approximations S̃γ PCD, S̃γ LSC , S̃γ SIMPLE

in PMAL are derived from the new method S̃γ new (16) and the approximation S̃γ old cor-
responds to the old Schur complement approximation (17). In this paper, the reported
number of Krylov iterations is obtained by using the optimal value of γ, which results in
the fastest convergence rate of the Krylov subspace solver. The following observations are
made from Table 3.

Except S̃γ SIMPLE, we see that the other Schur complement approximations result in
the independence of Krylov iterations on the mesh re�nement at the three test cases. In
terms of the number of Krylov iterations, S̃γ LSC is superior to the other Schur complement
approximations on the FP and BFS cases by the reduced number of iterations and equally
e�cient as S̃γ PCD and S̃γ old on the LDC case. To understand this advantage, we take the
FP case as an example and plot the eigenvalues of the preconditioned Schur complement
matrix S̃−1

γ Sγ in Figure 1. As can be seen, S̃γ LSC leads to more clustered eigenvalues
and the smallest eigenvalue further away from zero. Such a distribution of eigenvalues is
favorable for the Krylov subspace solver and a faster convergence rate can be expected. We
know that there can be matrices where there is no relation between the spectrum and the
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convergence of GMRES [14], especially if the matrix is strongly non normal. We include
the spectrum because in our examples the properties of the spectrum are in line with the
convergence properties of GMRES.

As analyzed in Section 3.3, at each Krylov iteration the costs of applying PMAL with
S̃γ LSC are roughly the same as S̃γ PCD and two times of that using S̃γ SIMPLE and S̃γ old.

If we assume the computational expense of applying PMAL with S̃γ old to be unit at each
iteration, the total costs by using all Schur complement approximations on the �nest grid
are presented in Table 4 and calculated by multiplying the expense per iteration by the
number of iterations. In the other classes of evaluations we also use this method to calculate
the total computational costs.

Results in Table 4 show that the minimal computational costs are achieved by using
S̃γ old in PMAL. Although less Krylov iterations are needed by using S̃γ LSC in PMAL seen

from Table 3, the reduced number of iterations does not pay o� the heavier costs of S̃γ LSC .

In this class of experiments, it seems that the old Schur complement approximation S̃γ old

is more e�cient than the other approximations due to the less computational costs in total.

Table 3: Re = 102 and uniform grid: the number of GMRES iterations to solve the
transformed system with Aγ preconditioned by PMAL with di�erent Schur complement
approximations and the optimal value of γ in parentheses.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case:

n = 5 26(1.e-1) 17(8.e-2) 43(2.e-1) 38(2.e-1)

n = 6 25(1.e-1) 25(8.e-2) 67(2.e-1) 38(2.e-1)

n = 7 25(1.e-1) 26(8.e-2) 100(2.e-1) 38(2.e-1)

BFS case:

n = 5 34(2.e-2) 17(2.e-2) 42(1.e-1) 36(1.e-1)

n = 6 42(3.e-2) 21(2.e-2) 60(1.e-1) 36(1.e-1)

n = 7 45(3.e-2) 22(2.e-2) 87(1.e-1) 36(1.e-1)

LDC case:

n = 6 17(2.e-2) 17(2.e-2) 34(1.e-1) 19(1.e-1)

n = 7 18(2.e-2) 20(2.e-2) 48(1.e-1) 19(1.e-1)

n = 8 18(2.e-2) 22(2.e-2) 63(1.e-1) 19(1.e-1)
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Table 4: Re = 102 and uniform grid: the total costs of applying PMAL with di�erent
Schur complement approximations on the �nest uniform Cartesian grid.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case: 50 52 100 38

BFS case: 90 44 87 36

LDC case: 36 44 63 19

Figure 1: FP and Re = 102: plot of eigenvalues of the preconditioned matrices S̃−1
γ Sγ at

the uniform Cartesian grid with 12× 25 · 25 cells.
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4.2 On moderate Reynolds number and uniform grid

In this subsection we choose the moderate Reynolds number Re = 103 to evaluate the per-
formance of the Schur complement approximations used in the modi�ed AL preconditioner
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PMAL and compare with the evaluations at Re = 102 in Section 4.1. Based on the number
of Krylov iterations presented in Table 5, we see that the independence of Krylov iterations
on the mesh re�nement is achieved by using the Schur complement approximations S̃γ PCD

and S̃γ LSC in PMAL, which is also observed in Section 4.1. Contrary to the observations

in Section 4.1, the old Schur complement approximation S̃γ old does not result in the mesh

independence of Krylov iterations at Re = 103. With the utilization of S̃γ SIMPLE the
number of Krylov iterations is dependent of the grid size at both Re = 102 and 103.

Results in Table 5 show that the smallest number of Krylov iterations is obtained by
using S̃γ LSC in PMAL, which also results in the minimal total costs in Table 6. The
total costs are calculated by using the same method as Section 4.2. Taking the mesh
independence into account, the utilization of S̃γ LSC will lead to a further reduction of

total costs on �ner grids over S̃γ SIMPLE and S̃γ old, which require more iterations with

mesh re�nement. Compared to S̃γ PCD which also results in the mesh independence of

Krylov iterations, the application of S̃γ LSC reduces the total computational costs at least
two times on the FP and BFS cases, and this reduction factor can also be expected on
�ner grids. On the LDC case S̃γ LSC is equally e�cient as S̃γ PCD.

For the tests at Re = 103 it shows that S̃γ LSC is superior to the other Schur complement
approximations by the reduction of Krylov iterations and total computational costs. In
the �rst class of tests with Re = 102, the superiority of S̃γ old is seen. This implies that
the optimal Schur complement approximation in PMAL depends on the Reynolds number.

Table 5: Re = 103 and uniform grid: the number of GMRES iterations to solve the
transformed system with Aγ preconditioned by PMAL with di�erent Schur complement
approximations and the optimal value of γ in parentheses.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case:

n = 5 54(8.e-3) 29(8.e-3) 34(2.e-2) 76(6.e-2)

n = 6 55(8.e-3) 18(8.e-3) 51(2.e-2) 90(6.e-2)

n = 7 56(8.e-3) 17(8.e-3) 99(2.e-2) 95(6.e-2)

BFS case:

n = 5 66(4.e-3) 45(3.e-3) 49(1.e-2) 71(3.e-2)

n = 6 63(4.e-3) 27(3.e-3) 77(1.e-2) 76(3.e-2)

n = 7 65(3.e-3) 29(3.e-3) 142(1.e-2) 84(3.e-2)

LDC case:

n = 6 30(4.e-3) 54(1.e-3) 66(7.e-3) 36(2.e-2)

n = 7 28(4.e-3) 29(4.e-3) 52(1.e-2) 42(2.e-2)

n = 8 29(4.e-3) 29(4.e-3) 85(1.e-2) 48(2.e-2)

19



Table 6: Re = 103 and uniform grid: the total costs of applying PMAL with di�erent
Schur complement approximations on the �nest uniform Cartesian grid.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case: 112 34 99 95

BFS case: 130 58 142 84

LDC case: 58 58 85 48

4.3 On moderate Reynolds number and stretched grid

Table 7: Re = 103 and stretched grid: the number of GMRES iterations to solve the
transformed system with Aγ preconditioned by PMAL with di�erent Schur complement
approximations and the optimal value of γ in parentheses.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case:

n = 5 59(8.e-3) 90(7.e-3) 37(2.e-2) 69(6.e-2)

n = 6 66(8.e-3) 89(7.e-3) 63(2.e-2) 85(6.e-2)

n = 7 62(8.e-3) 117(6.e-3) 119(2.e-2) 92(6.e-2)

LDC case:

n = 6 65(2.e-3) 98(2.e-3) 57(7.e-3) 69(1.e-2)

n = 7 41(2.e-3) 58(2.e-3) 46(7.e-3) 40(1.e-2)

n = 8 38(2.e-3) 84(2.e-3) 75(7.e-3) 54(1.e-2)

Table 8: Re = 103 and stretched grid: the total costs of applying PMAL with di�erent
Schur complement approximations on the �nest stretched grid.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case: 124 234 119 92

LDC case: 76 168 75 54

This subsection is meant to investigate the in�uence of mesh anisotropy on the perfor-
mance of the modi�ed AL preconditioner PMAL. To compare with Section 4.2, we apply
the stretched grid and moderate Reynolds number Re = 103 on the FP and LDC cases.
The number of Krylov iterations and total computational costs are presented in Table 7
and Table 8, respectively. From Table 7 we note that only S̃γ PCD results in the mesh
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independence and the minimal number of Krylov iterations. Although the total costs of
applying S̃γ PCD are more than that by using S̃γ SIMPLE and S̃γ old on the considered �nest

grid, as seen from Table 8, less costs in total by using S̃γ PCD can be expected on �ner

grids due to the mesh independence. Therefore, we think that S̃γ PCD is superior to the
other Schur complement approximations on the tests with Re = 103 and stretched grid.

Note that on the FP and LDC cases with stretched grid, PMAL with S̃γ LSC is not
mesh independent any more and performs the worst. This is contrary to the observations
with uniform Cartesian grid seen in Section 4.2. To check the e�ect of mesh anisotropy,
we put the number of Krylov iterations on both uniform and stretched grids together.
In this way, Table 9 and Table 10 are generated for the FP and LDC cases respectively,
and from them we clearly see that mesh anisotropy deteriorates the e�ciency of S̃γ LSC .
Considering the FP case as an example, on the �nest stretched grid of n = 7 the number
of Krylov iterations preconditioned by PMAL with S̃γ LSC increases by a factor about 7

compared to the �nest uniform grid. The less e�ciency of PMAL with S̃γ LSC arising from
the mesh anisotropy is also seen on the LDC case from Table 10. On the other hand, the
number of Krylov iterations preconditioned by PMAL with the other Schur complement
approximations seems robust with respect to mesh anisotropy on the FP and LDC cases.

The less e�ciency of S̃γ LSC on the stretched grid can be explained by the results
in Figure 2, where we consider the FP case at Re = 103 and plot the eigenvalues of
the preconditioned matrix S̃−1

γ LSCSγ for both uniform and stretched grids. As seen from
Figure 2, stretching the grid considerably spreads the distribution of the eigenvalues of the
preconditioned Schur complement S̃−1

γ LSCSγ, which makes the convergence of the Krylov
subspace solver more di�cult.

Table 9: FP and Re = 103: the number of GMRES iterations to solve the transformed
system with Aγ preconditioned by PMAL with di�erent Schur complement approximations
and the optimal value of γ in parentheses. Both the uniform and stretched grids are
applied.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

uniform grid

n = 5 54(8.e-3) 29(8.e-3) 34(2.e-2) 76(6.e-2)

n = 6 55(8.e-3) 18(8.e-3) 51(2.e-2) 90(6.e-2)

n = 7 56(8.e-3) 17(8.e-3) 99(2.e-2) 95(6.e-2)

stretched grid

n = 5 59(8.e-3) 90(7.e-3) 37(2.e-2) 69(6.e-2)

n = 6 66(8.e-3) 89(7.e-3) 63(2.e-2) 85(6.e-2)

n = 7 62(8.e-3) 117(6.e-3) 119(2.e-2) 92(6.e-2)
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Table 10: LDC and Re = 103: the number of GMRES iterations to solve the transformed
system with Aγ preconditioned by PMAL with di�erent Schur complement approximations
and the optimal value of γ in parentheses. Both the uniform and stretched grids are
applied.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

uniform grid

n = 6 30(4.e-3) 54(1.e-3) 66(7.e-3) 36(2.e-2)

n = 7 28(4.e-3) 29(4.e-3) 52(1.e-2) 42(2.e-2)

n = 8 29(4.e-3) 29(4.e-3) 85(1.e-2) 48(2.e-2)

stretched grid

n = 6 65(2.e-3) 98(2.e-3) 57(7.e-3) 69(1.e-2)

n = 7 41(2.e-3) 58(2.e-3) 46(7.e-3) 40(1.e-2)

n = 8 38(2.e-3) 84(2.e-3) 75(7.e-3) 54(1.e-2)

Figure 2: FP and Re = 103: plot of eigenvalues of the preconditioned matrices S̃−1
γ LSCSγ

at the uniform Cartesian and stretched grids with 12× 25 · 25 cells.
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4.4 On large Reynolds number and stretched grid

In this subsection we apply large Reynolds numbers Re ≥ 104 and stretched grids on
the LDC and FP cases. Results in Table 11 and Table 12 illustrate that the fastest
convergence rate of the Krylov subspace solver and the minimal computational costs in
total are achieved by using S̃γ SIMPLE in PMAL on the two tests. Taking the FP case at

Re = 104 as an example, from Table 12 we see that the utilization of S̃γ SIMPLE reduces the
total costs at least two times with respect to the other Schur approximations. The reduction
factor turns to �ve at least when applying an even larger Reynolds number Re = 105 on
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the FP case, which is seen from Table 13. In the context of large Reynolds numbers, it
appears that S̃γ SIMPLE is the optimal Schur complement approximation in the modi�ed
AL preconditioner PMAL. In contrast to the previous tests, at large Reynolds numbers
none of the considered Schur complement approximations lead to the mesh independence
of PMAL. The reason and possible improvement on this issue are to be explored in future
research.

To investigate the e�ect of the Reynolds number, we take the FP case as an example
and in Figure 3 plot the number of Krylov iterations preconditioned by PMAL at varying
Reynolds numbers. It appears that only S̃γ SIMPLE results in the robustness of PMAL with
respect to the Reynolds number. To understand the reasons, we compute the extremal
eigenvalues of the preconditioned Schur complement matrix S̃−1

γ Sγ and present them in
Table 14. Rmin and Rmax denote the smallest and largest real parts of the eigenvalues
and Imax corresponds the largest imaginary part. These extremal values correspond to the
boundaries of the rectangular domain containing all eigenvalues. Regarding S̃−1

γ SIMPLESγ,
the values of Rmin slightly decrease and remain the same order of magnitude. Together
with the decrease of Rmax/Rmin and Imax, the eigenvalues are further clustered. However,
less clustered eigenvalues are yielded by using the other Schur complement approximations.
This explains the robustness of PMAL with S̃γ SIMPLE with respect to the Reynolds number.

Table 11: Re = 104 and stretched grid: the number of GMRES iterations to solve the
transformed system with Aγ preconditioned by PMAL with di�erent Schur complement
approximations and the optimal value of γ in parentheses.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case:

n = 5 363(8.e-4) 369(6.e-4) 35(2.e-3) 93(1.e-2)

n = 6 334(8.e-4) 336(6.e-4) 53(3.e-3) 128(2.e-2)

n = 7 346(8.e-4) 374(6.e-4) 83(4.e-3) 192(2.e-2)

LDC case:

n = 6 113(3.e-4) 97(2.e-4) 34(1.e-3) 46(5.e-3)

n = 7 143(3.e-4) 235(2.e-4) 45(1.e-3) 65(5.e-3)

n = 8 159(4.e-4) 309(2.e-4) 80(2.e-3) 106(5.e-3)
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Table 12: Re = 104 and stretched grid: the total costs of applying PMAL with di�erent
Schur complement approximations on the �nest stretched grid.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case: 692 748 83 192

LDC case: 318 618 80 106

Table 13: FP and Re = 105: the number of GMRES iterations and total costs to solve
the transformed system with Aγ preconditioned by PMAL with di�erent Schur complement
approximations and the optimal value of γ in parentheses. The stretched grid is applied.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

iterations:

n = 5 1000+ 1000+ 26(1.e-4) 136(1.e-3)

n = 6 1000+ 1000+ 35(2.e-4) 192(2.e-3)

n = 7 1000+ 1000+ 58(3.e-4) 310(2.e-3)

total costs:

n = 7 2000+ 2000+ 58 310
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Figure 3: FP and stretched grid: plot of the number of GMRES iterations preconditioned
by PMAL at varying Reynolds numbers.
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(a) PMAL with S̃γ PCD

102 103 104 105

Reynolds number

0

200

400

600

800

1000

nu
m

be
r 

of
 it

er
at

io
ns

100

(b) PMAL with S̃γ LSC
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(c) PMAL with S̃γ SIMPLE
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(d) PMAL with S̃γ old

4.5 Summary of the Schur complement approximations in PMAL

Based on the above four classes of numerical evaluations, in Table 15 we summarize the
optimal Schur complement approximation in the modi�ed AL preconditioner PMAL. It
shows that the optimal Schur complement approximation, which leads to the fastest con-
vergence rate of the Krylov subspace solver, depends on the Reynolds number and mesh
anisotropy. At every class of evaluations, the optimal Schur complement approximation
is problem independent. Numerical evaluations in this paper show that S̃γ old is suitable

for the calculations with small Reynolds numbers and S̃γ SIMPLE delivers a better per-
formance for large Reynolds numbers due to its Reynolds robustness. In the context of
moderate Reynolds numbers, S̃γ LSC is more e�cient with uniform grids but sensitive to

mesh anisotropy. When stretched grids are employed, S̃γ PCD turns out to be the opti-
mal choice in the moderate Reynolds number context. Except the calculations at small
Reynolds numbers and uniform grids, the optimal Schur complement approximations on
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other classes of tests are derived from the new method S̃γ new proposed in this paper. This

demonstrates the advantage of the new approach over the traditional one S̃γ old. The mesh
independence of Krylov iterations is not achieved by using the optimal Schur complement
approximation only for the class of tests with large Reynolds numbers. The reason and
possible improvement on this issue are to be considered in future research.

Table 14: FP and stretched grid: the extremal eigenvalues of the preconditioned Schur
complement S̃−1

γ Sγ at varying Reynolds numbers. The stretched grid with 12× 25 · 25 cells
is used. Rmin and Rmax denote the smallest and largest real parts of the eigenvalues and
Imax corresponds the largest imaginary part.

Re = 102 Re = 103 Re = 104 Re = 105

S̃−1
γ PCDSγ

Rmin 0.2062 0.1283 0.1129 0.1992

Rmax 2.3315 4.2868e+1 4.1574e+2 1.3059e+3

Rmax/Rmin 1.1621e+1 3.3412e+2 3.6824e+3 6.5557e+3

Imax 0.2567 1.2106 1.1109e+1 1.2598e+2

S̃−1
γ LSCSγ

Rmin 0.2537 0.2530 0.8865 0.5652

Rmax 2.1509e+1 1.0623e+1 1.0973e+1 1.1309e+2

Rmax/Rmin 8.4782e+1 4.1991e+1 1.2378e+1 2.0009e+2

Imax 2.2301e+1 4.6429 4.6264e+1 8.8363e+2

S̃−1
γ SIMPLESγ

Rmin 0.6714 0.4075 0.1949 0.1541

Rmax 2.9729e+1 9.8786 3.1976 1.4942

Rmax/Rmin 4.4280e+1 2.4241e+1 1.6406e+1 9.6963

Imax 5.3308 1.0578 0.1630 0.1755

S̃−1
γ oldSγ

Rmin 0.161e-1 0.167e-1 0.3423e-2 0.1315e-3

Rmax 0.8000 0.9231 0.9524 0.9524

Rmax/Rmin 4.9689e+1 5.5275e+1 2.8011e+2 7.2382e+3

Imax 0.1081 0.2458 0.3078 0.3404
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Table 15: The optimal Schur complement approximation S̃γ opt in the modi�ed AL pre-
conditioner on varying classes of evaluations.

class of evaluations S̃γ opt mesh independence problem independence

Re = 102 and

uniform grid S̃γ old Yes Yes

Re = 103 and

uniform grid S̃γ LSC Yes Yes

Re = 103 and

stretched grid S̃γ PCD Yes Yes

Re ≥ 104 and

stretched grid S̃γ SIMPLE No Yes

4.6 Comparison between PMAL and PU .
To apply the modi�ed AL preconditioner PMAL, one needs to transform the original system
(2) to an equivalent one (13) with the coe�cient matrix Aγ. This transformation consumes
additional costs. Furthermore, at each Krylov iteration extra costs arise from the product
of Aγ with a Krylov residual vector due to more �ll-in in Aγ [17]. In this sense, the heavier
complexities of PMAL could be payed o� only by a reduced number of Krylov iterations,
compared to the block upper-triangular preconditioner PU applied to the original system.
In this section, we consider the comparisons between PMAL and PU on the LDC and FP
cases at the large Reynolds number Re = 104 and stretched grid which represent sti� tests
on the considered preconditioners.

It is revealed in Section 4.4 that S̃γ SIMPLE turns out to be the most e�cient Schur
complement approximation for the modi�ed AL preconditioner PMAL in this class of eval-
uations. Therefore, the comparison is carried out between PMAL with S̃γ SIMPLE and
PU and presented in Table 16. As seen, less iterations are needed when applying PMAL

with S̃γ SIMPLE. Considering the LDC case on the �nest grid, the application of PMAL

with S̃γ SIMPLE reduces the number of Krylov iterations by a factor about four, seven and

two, compared to that by using PU with S̃PCD, S̃LSC and S̃SIMPLE, respectively. On the
FP case, a further reduction factor of Krylov iterations is obtained by using PMAL with
S̃γ SIMPLE. One direction of future research is to verify whether the reduced number of

Krylov iterations could convert to the advantage of PMAL with S̃γ SIMPLE in terms of the
total computational costs.
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Table 16: Re = 104 and stretched grid: the number of GMRES iterations to solve the
transformed system withAγ preconditioned by PMAL and the number of GMRES iterations
to solve the original system with A preconditioned by PU .

PMAL for Aγ PU for A
S̃γ SIMPLE S̃PCD S̃LSC S̃SIMPLE

LDC case:

n = 6 34(1.e-3) 130 147 83

n = 7 45(1.e-3) 246 307 119

n = 8 80(2.e-3) 364 560 182

FP case:

n = 5 35(2.e-3) 879 661 62

n = 6 53(3.e-3) 1000+ 599 122

n = 7 83(4.e-3) 1000+ 809 229

5 Conclusion and future work

In this paper we introduce three variants based on the new method to approximate the
Schur complement for the AL preconditioner. To evaluate the performance, we classify
the numerical experiments to four categories according to the Reynolds number and mesh
anisotropy. At every class of evaluations we consider di�erent test problems. The optimal
Schur complement for every class of tests is determined and given in Table 15. It is seen
that the most e�cient Schur complement approximation is dependent of the Reynolds
number and mesh anisotropy, but problem independent. Furthermore, we �nd out that,
except the experiments at Re = 102 and uniform grid, the optimal Schur complement
approximations on the other three classes of tests are the variants derived from the new
method to approximate the Schur complement in the modi�ed AL preconditioner. This
demonstrates the advantage of the new approach over the traditional Schur complement
approximation.

In this paper we observe that for large Reynolds numbers Re ≥ 104 none of the con-
sidered Schur complement approximations can make the modi�ed AL preconditioner in-
dependent of the grid size. One planned future research is on the improvement which
allows the mesh independence. Another direction of future work is to evaluate whether the
advantage of the modi�ed AL preconditioner by the reduced number of Krylov iterations,
which is shown in this paper, can convert to the wall-clock time bene�t with respect to the
preconditioner applied to the original system.
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