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Abstract

Number the cells of a (possibly infinite) chessboard in some way with the num-
bers 0, 1, 2, . . . . Consider the cells in order, placing a queen in a cell if and only if
it would not attack any earlier queen. The problem is to determine the positions
of the queens. We study the problem for a doubly-infinite chessboard of size Z× Z
numbered along a square spiral, and an infinite single-quadrant chessboard (of size
N × N) numbered along antidiagonals. We give a fairly complete solution in the
first case, based on the Tribonacci word. There are connections with combinatorial
games.

Keywords: Tribonacci word, Tribonacci representation, Greedy Queens, Wythoff
Nim, combinatorial games, Sprague-Grundy function
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1 Queens in exile

Figure 1: The great plain of Attaḱıa. [John Tenniel, Illustration for Lewis Carroll, Through
the looking-glass and what Alice found there (1871).]

The rival queens in the mythical country of Attaḱıa have been quarreling, and have
agreed to go into exile. The great plain has been divided into squares, which have been
numbered in a square spiral (Figs. 1, 2). The first queen settles at square 0. The next
queen proceeds along the square spiral and settles at the first square she reaches from
which she cannot attack the first queen: this is square 9. The process is repeated for
all the queens. Each queen settles at the first square along the spiral from which she
cannot attack any queen who is already settled. The positions of the first nine queens
are indicated by circles in Fig. 2. The squares along the spiral where they settle form the
sequence

0, 9, 13, 17, 21, 82, 92, 102, 112, 228, 244, 260, 276, 445, 467, 489, 511, 630, . . . (1)

(A2730591 in [15]).
Figure 3 shows the positions of the first 1409 queens. At this scale one can see that the

points lie essentially on four straight lines, and that the configuration has cyclic four-fold
symmetry. The main goals of the first part of the paper are to determine the positions

1Six-digit numbers prefixed by A refer to entries in the On-Line Encyclopedia of Integer Sequences
[15].

the electronic journal of combinatorics 27(1) (2020), #P1.52 2

https://oeis.org/A273059


Figure 2: Squares of a doubly-infinite chessboard numbered along a square spiral. Posi-
tions of the first nine exiled queens are circled. [Figure courtesy of Jessica Gonzalez.]

of the queens, to establish the cyclic symmetry, and to show that the slopes of the four
lines are ±ψ and ±1/ψ, where ψ ≈ 1.8393 is the Tribonacci constant, the real root of
x3 = x2 + x+ 1. These results are established in Sections 2–6.

In Section 2 we first show that the positions of the queens are determined by certain
recursively defined quadruples of integers Xn, Yn, Mn, Pn, n > 0 (see (2), Tables 1, 2, and
Theorem 1). A study of the first differences ∆Xn, etc., of the Xn, Yn, Mn, Pn sequences
suggests that all four can be defined in terms of a certain three-letter sequence that we
call the “theme song”, and denote by Θ(a, b, c) (Section 3).

Rather surprisingly, the theme song turns out to be a disguised version of the classic
three-letter Tribonacci word T(a, b, c) (see Theorem 2 in Section 4). Section 5 contains
a number of properties of the Tribonacci word that will be used later. Some of these
properties appear to be new (Theorems 13–17, for example), although it is difficult to be
certain because so much has already been published about the Tribonacci word.

In Section 6 we establish our main theorem, Theorem 20, which shows that the rows
of the XYMP table are in one-to-one correspondence with the terms of the theme song Θ
(or, if we ignore the initial n = 0 term, with the terms of the Tribonacci word T). Corol-
lary 21 establishes some unexpected connections between the Xn, Yn, Mn, Pn sequences
and the An, Bn, Cn sequences studied in [2, 4, 8] and in §5.4. Remark (iv) following
Theorem 20 shows that the slopes of the lines containing the queens are as claimed.
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Figure 3: Positions of the first 1409 queens (those with maximum coordinate in the range
−1000 to 1000). At this scale the points lie essentially on four straight lines. [Figure
courtesy of Alois Heinz.]

The reader may wonder why we use both the theme song Θ(a, b, c) and the Tribonacci
word T(a, b, c), when these sequences are so similar. The answer is that we need T(a, b, c)
because so much is known about its properties (see Section 5), whereas Θ(a, b, c) is more
in tune with the XYMP table, since the lengths 6, 5, 4 of the images θ(a), θ(b), θ(c)
(see (6)) match the block structure of the table, as can be seen by comparing (4) and (5)
with (7).

In Section 7 we consider the same problem in the setting of combinatorial games. The
positions of the queens are the P-positions in a certain game, and so correspond to the 0
entries in the table of Sprague-Grundy values for the game (see Fig. 4 below). Although
we have been able to determine the positions of the queens, we have not been able to
answer a natural question about the Sprague-Grundy values: are all the rows, columns,
and diagonals of Fig. 4 permutations of the nonnegative integers (Conjecture 22)?

Similar questions can be asked for chessboards of other shapes. The general setting
for the problem is that the cells of the board are numbered in some way with the numbers
0, 1, 2, 3, . . . . We consider the cells in order, placing a chess queen in cell n if and only if
it would not attack any earlier queen. The problem is to determine the positions of the
queens.

In Section 8 we consider the case of an infinite N×N board (that is, a single-quadrant
board), where the squares are numbered along successive antidiagonals, as shown in Ta-
ble 5. For this version of the problem, the data shows overwhelmingly that the queens
lie essentially on two straight lies, of slopes φ and 1/φ, where φ is the golden ratio. It is
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regrettable that we have not been able to prove this. On the other hand, we have been
able to prove that all the rows and columns of the Sprague-Grundy table are permutations
of the nonnegative integers (although not that the diagonals are). So for this problem,
our results are both weaker and stronger than for the queens-on-a-square-spiral problem.

Many other examples can be found in [15]. These include:

• the board formed from a 45-degree sector of a single quadrant (cells {(x, y) ∈ N×N :
x > y}) (A274650),

• finite boards of size n× n (A308880, A308881),

• boards with hexagonal cells (A274820, A296339),

• one may also ask similar questions using other chess pieces instead of queens: kings
(A275609), knights (A308884), rooks (A308896), or Maharajas (pieces that combine
the moves of a queen and a knight [12]: A307282).

Much is known about these examples, but there is no space to discuss them here. There
are many open questions.

Historical remarks. To the best of our knowledge, the first mention of any of these
queens-in-exile problems was in [15], in October 2001, when Antti Karttunen contributed
A065188, a version of the single-quadrant sequence A275895. He called it a “Greedy
Queens” sequence (referring to the fact that the queens are placed using the greedy
algorithm—no disrespect to the queens was intended). The problem on the Z× Z board
stated at the beginning of this article was introduced (using somewhat different language)
by Paul D. Hanna in June 2008 when he submitted A140100–A140103 to [15] (these are
the Xn, Yn,Mn, Pn sequences), and implicitly stated what is now Theorem 1 below. The
Sprague-Grundy values for the single-quadrant version were contributed by Alec Jones
in April 2016, in A269526. The connections between the exiled queens problems and
combinatorial games were pointed out by Allan C. Wechsler in a comment on A274528.
The Sprague-Grundy values for the Z×Z board numbered along a square spiral originated
in A274640, contributed in June 2016 by Zak Seidov and Kerry Mitchell. Since then, a
large number of other authors (too many to mention here) have added further sequences
of this type, or contributed comments, computer programs, additional terms, etc.

Very recently, Fokkink and Rust introduced in [9] a two-pile combinatorial game they
call Splythoff, where the P-positions are given by the queen positions (Xn, Yn). This is
another variant of Wythoff’s Nim. It is different from the game we discuss in Section 7,
since their piles contain only nonnegative numbers of tokens.

Notation. The ternary Tribonacci word will be denoted by T = t1t2t3 · · · , or by
T(a, b, c) when we wish to emphasize which three-letter alphabet is being used. ψ =
1.839286755214 . . . is the Tribonacci constant, the real root of x3 − x2 − x − 1, and φ is
the golden ratio. |S| denotes the cardinality of a set, the length of a word, or the absolute
value of a complex number. For a set S, mex(S) is the minimum excluded value, that
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is, the smallest nonnegative number not in S [10]. For a sequence {sn}, the difference
operator is defined by ∆sn := sn+1 − sn. We use a centered dot (·) to indicate concate-
nation of words (or, rarely, the product of two numbers). Z and N are the integers and
nonnegative integers, respectively. For any undefined terms from combinatorial games or
combinatorics on words, see [1, 10, 13].

2 Queens on a square spiral

In this section we study the problem on a doubly-infinite chessboard. The cells are unit
squares centered at the points of a Z×Z grid. We construct a “square spiral” by starting
at the central square and proceeding counter-clockwise, moving successively East, North,
West, South, East, North, . . . . The cells are numbered 0, 1, 2, 3, . . . (see Fig. 2). The
exiled queens are placed according to the rule specified in the opening paragraph of the
previous section.

We take the x-axis to point South and the y-axis to point East, as shown in the
coordinate axes in Fig. 2. This puts the main line of queens (the queens in cells 0, 9, 82,
228, 445, 630, . . . in the first quadrant, and is also consistent with having the origin for
the single-quadrant version of the problem (Section 8) in the top left corner of the board,
as in the discussions of the related games Wyt Queens and Wythoff’s Nim in [3].

We consider the square spiral as being built up from a series of square “shells”. Shell
0 is the starting cell at the center. Shell k (k = 1, 2, . . .) consists of the 8k cells labeled
(2k − 1)2 to 4k(k + 1). The spiral traverses shells 0, 1, 2, . . . in order. Shell k has four
edges, each containing 2k cells. Edge 1 (on the right) consists of cells (2k − 1)2 through
4k2 − 2k, edge 2 (at top): cells 4k2 − 2k + 1 through 4k2, edge 3 (on left): cells 4k2 + 1
through 4k2 + 2k, and edge 4 (at bottom): cells 4k2 + 2k+ 1 through 4k2 + 4k. The spiral
traverses shell k along successive edges 1, 2, 3, 4.

We see that the cyclic group of order 4 generated by (x, y) 7→ (−y, x) preserves the
points in each shell.

As Paul Hanna realized in 2008, the positions of the queens in the spiral are determined
by certain quadruples of nonnegative integers Xn, Yn, Mn, Pn (n > 0), defined by X0 =
Y0 = M0 = P0 = 0 and, for n > 0,

Xn = mex{Xi, Yi : i < n},
Mn = mex{Mi, Pi : i < n},
Yn = Xn +Mn,

Pn = Xn + Yn, (2)

where mex denotes “minimum excluded value” as defined above. The initial values of
these quadruples are shown in Table 1 (the “XYMP table”), and a more extensive list is
given in Table 2 below. These are Paul Hanna’s sequences A140100–A140103.

The following properties are immediate consequences of the definition: {Xn} and {Yn}
are a pair of complementary sequences, as are {Mn} and {Pn}. All four sequences are
monotonically increasing, so ∆Xn > 1, ∆Mn > 1, ∆Yn > 2, ∆Pn > 3. Also ∆Xn 6 2
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Table 1: Initial values of Xn, Yn,Mn, Pn.

n Xn Yn Mn Pn
0 0 0 0 0
1 1 2 1 3
2 3 5 2 8
3 4 8 4 12
4 6 11 5 17
5 7 13 6 20
6 9 16 7 25
7 10 19 9 29
8 12 22 10 34
9 14 25 11 39
10 15 28 13 43
11 17 31 14 48

(if ∆Xn = 3 there would be a pair of adjacent Y values differing by 1, contradicting
∆Yn > 2). Similarly ∆Mn 6 2, ∆Yn 6 4, ∆Pn 6 6. (In fact ∆Yn is never 4 and ∆Pn
is never 6, although we will not prove this until Section 6.) Also Yn > Xn + 1 and
Pn >Mn + 2 for n > 0.

Let qn (n > 0) denote the (x, y) coordinates of the nth queen in the spiral. We
saw in Fig. 2 that q0 = (0, 0), q1 = (1, 2), q2 = (−2, 1), q3 = (−1,−2), q4 = (2,−1),
q5 = (3, 5), . . . .

The following theorem is implicit in Paul Hanna’s remarks in A140100–A140103.

Theorem 1. After the initial queen is placed at q0 = (X0, Y0), the subsequent queens are
placed at

q4k+1 = (Xk, Yk), q4k+2 = (−Yk, Xk), q4k+3 = (−Xk,−Yk), q4k+4 = (−Yk, Xk), (3)

for k = 0, 1, 2, . . . .

Proof. Note that the points (3) lie on shell Yk of the spiral, and this set of four points is
preserved by the cyclic group of order 4. We establish (3) by induction on k. The result
is true for k = 1.

Suppose that the hypothesis holds for k = 0, 1, . . . , n. Call a square “free” if a queen
at that square would not attack any existing queen. After q0, . . . , q4n+4 have been placed,
a square (x, y) is not free if any of the following hold:

• x is equal to ±Xi or ±Yi for some 0 6 i 6 n,

• y is equal to ±Xi or ±Yi for some 0 6 i 6 n,

• y − x is equal to ±Mi or ±Pi for some 0 6 i 6 n,
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• y + x is equal to ±Mi or ±Pi for some 0 6 i 6 n,

because (x, y) would then be on the same row, column, or diagonal as one of the existing
queens.

When we move along the spiral after placing q4n+4, the first square we reach that does
not satisfy any of these conditions is (by (2)) (Xn+1, Yn+1), which is therefore q4n+5. Since
0 < Xn+1 < Yn+1, this lies on edge 1 of shell Yn+1.

As we continue around the spiral, we next reach edge 2 of the same shell. Since
the configuration of existing queens is preserved by the cyclic group, we would have
q4n+6 = (−Yn+1, Xn+1), except we must check that this square does not attack the queen
q4n+5 we just placed. However, the line from (−Yn+1, Xn+1) to (Xn+1, Yn+1) has slope
(Yn+1 − Xn+1)/(Yn+1 + Xn+1), which is not ±1, since neither Xn+1 nor Yn+1 is 0. So
q4n+6 = (−Yn+1, Xn+1).

Similar arguments show that q4n+7 = (−Xn+1,−Yn+1) and q4n+8 = (Yn+1,−Xn+1).
Thus (3) holds for k = n+ 1.

3 The “theme song”

Although it is not immediately apparent, all four columns of the XYMP table are vari-
ations on a single sequence. This “theme song” is most visible when we examine the
differences {∆Pn} of the Pn column of the table, keeping in mind the observations about
these differences that were made following (2). The differences {∆Pn} begin

3, 5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 3, . . . , (4)

where we have inserted spaces to highlight the block structure. The differences of the other
columns show a similar, although less obvious, structure. For example, the differences
{∆Xn} begin

1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, . . . , (5)

where we have used the same block lengths. As we will prove in Theorem 20, all four
column differences are instances of the sequence Θ = Θ(a, b, c) (the “theme song”), the
fixed point of the morphism θ defined over the alphabet {a, b, c} by

θ : a→ cabaaba, b→ cababa, c→ caba . (6)

Θ(a, b, c) begins

c, a, b, a, c, a, b, a, a, b, a, c, a, b, a, b, a, c, a, b, a, a, b, a, c, . . . , (7)

and, as we will see, {∆Pn} = Θ(5, 4, 3) and {∆Xn} = Θ(2, 1, 1).
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Table 2: The sequences Xn, Yn, Mn, Pn and their differences, the identification of the
rows with the “theme song” Θ(a, b, c) = {tn : n > 0}, and the sequences An, Bn, Cn.

n tn Xn Yn Mn Pn ∆Xn ∆Yn ∆Mn ∆Pn An Bn Cn

0 c 0 0 0 0 1 2 1 3 0 0 0
1 a 1 2 1 3 2 3 1 5 1 2 4
2 b 3 5 2 8 1 3 2 4 3 6 11
3 a 4 8 4 12 2 3 1 5 5 9 17
4 c 6 11 5 17 1 2 1 3 7 13 24
5 a 7 13 6 20 2 3 1 5 8 15 28
6 b 9 16 7 25 1 3 2 4 10 19 35
7 a 10 19 9 29 2 3 1 5 12 22 41
8 a 12 22 10 34 2 3 1 5 14 26 48
9 b 14 25 11 39 1 3 2 4 16 30 55
10 a 15 28 13 43 2 3 1 5 18 33 61
11 c 17 31 14 48 1 2 1 3 20 37 68
12 a 18 33 15 51 2 3 1 5 21 39 72
13 b 20 36 16 56 1 3 2 4 23 43 79
14 a 21 39 18 60 2 3 1 5 25 46 85
15 b 23 42 19 65 1 3 2 4 27 50 92
16 a 24 45 21 69 2 3 1 5 29 53 98
17 c 26 48 22 74 1 2 1 3 31 57 105
18 a 27 50 23 77 2 3 1 5 32 59 109
19 b 29 53 24 82 1 3 2 4 34 63 116
20 a 30 56 26 86 2 3 1 5 36 66 122
21 a 32 59 27 91 2 3 1 5 38 70 129
22 b 34 62 28 96 1 3 2 4 40 74 136
23 a 35 65 30 100 2 3 1 5 42 77 142
24 c 37 68 31 105 1 2 1 3 44 81 149
25 a 38 70 32 108 2 3 1 5 45 83 153
26 b 40 73 33 113 1 3 2 4 47 87 160
27 a 41 76 35 117 2 3 1 5 49 90 166
28 c 43 79 36 122 1 2 1 3 51 94 173

4 The Tribonacci word

It was a further surprise to discover that Θ(a, b, c) is itself a lightly disguised version of
the classic Tribonacci word. The Tribonacci word T = T(a, b, c) = {tn : n > 1} is the
fixed point of the Tribonacci morphism

τ : a→ ab, b→ ac, c→ a . (8)

T(a, b, c) begins

a, b, a, c, a, b, a, a, b, a, c, a, b, a, b, a, c, a, b, a, a, b, a, c, a, . . . . (9)

There is an extensive literature–see for example [2, 4, 7, 8, 14, 16], as well as the references
cited in those papers.
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Theorem 2. We have
Θ(a, b, c) = c ·T(a, b, c). (10)

Proof. The morphism α := τ 3 maps

a→ abacaba, b→ abacab, c→ abac .

If the prefix aba in these three images is changed to a suffix, α becomes θ; that is, for
single letters x, α(x) aba = aba θ(x). So α(x) = aba θ(x)(aba)−1, and since α and θ are
morphisms, α(w) = aba θ(w)(aba)−1 for any word w, that is,

α(w) aba = aba θ(w) . (11)

We prove (10) by showing that, for all k > 0,

θk(c) c = c αk(c) . (12)

We use induction on k. The result is certainly true for k = 0 and 1. Suppose it holds for
k, and set w = αk(c) in (11). We have

c αk+1(c) aba = c aba θ(αk(c)), by (11),

= θ(c)θ(αk(c))

= θ(c αk(c))

= θ(θk(c) c) (by the induction hypothesis)

= θk+1(c) caba ,

and canceling aba from both sides we obtain c αk+1(c) = θk+1(c) c, as required. Letting
k →∞ in (12) completes the proof of (10).

In view of Theorem 2 we define t0 = c, so that Θ(a, b, c) = {tn : n > 0}.

5 Properties of the Tribonacci word

The Tribonacci word T = {tn : n > 1} is an analog for a three-letter alphabet of the
even more classic two-letter Fibonacci word (see A003849 for an extensive bibliography).
In this section we discuss various properties of T for use later in the paper. Most of the
properties are analogs of similar properties of the Fibonacci word.

5.1 The Tribonacci representation of numbers

Define the Tribonacci numbers {Tn : n > 0} as follows: T−3 = 0, T−2 = 0, T−1 = 1, and
Tn = Tn−1 + Tn−2 + Tn−3 for n > 0 (A000073).

For E = e1e2 · · · ei any finite string of 0’s and 1’s, let [E]T be the number n =∑
16j6i ejTi−j; we call this a Tribonacci representation for n. Among all such representa-

tions, one is canonical , that obtained by the greedy algorithm (repeatedly subtract the
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largest possible Tribonacci number). As is well known (cf. [4]), the canonical representa-
tion is uniquely characterized by not containing three consecutive 1’s. For integers n > 0,
let (n)T be this canonical representation for n, written with the least significant digit
on the right. For example, 111 and 1000 are both representations of the number 7, but
only the latter is canonical. Note that we are distinguishing between [E]T , which is a
number, and (n)T , which is a binary string. The notations are combined in the formulas
in Theorems 14 and 15.

Lemma 3. Let x, y be binary strings. Then [x]T = [y]T if and only if [x0]T = [y0]T .

Proof. Let z be the canonical Tribonacci representation of the integer [x]T . Then [z]T =
[x]T , so it suffices to prove that [x]T = [z]T if and only if [x0]T = [z0]T , where z is
canonical.

Suppose [x]T = [z]T . Consider obtaining z by applying the following replacement rule
repeatedly, until no more replacements can be done: 0111 is replaced by 1000. (If 111
appears as a prefix, treat it as if it were 0111.) Each replacement reduces the number
of 1’s, so the procedure must eventually halt. For example, if x = 1011011101, then the
following transformations take place (underlining highlights the block that is replaced):

1011011101→ 1011100001→ 1100000001.

This normalization procedure transforms every non-canonical binary Tribonacci represen-
tation into a canonical one.

Now observe that if we carry out the same process starting instead with x0, then the
rightmost 0 cannot participate in any of these replacements, and so we end up with z0.
Hence [x0]T = [z0]T .

On the other hand, if z is canonical, then so is z0. So if [x0]T = [z0]T , we can obtain z0
by processing the representation of x0 as above. If we perform these replacements, then
the last 0 of both representations never participates in a replacement, and so omitting
the last 0 gives exactly the same sequence of replacements. Hence [x]T = [z]T .

Note that the hypothesis that x and y are binary strings is necessary. For example, if
we write 4 in a non-canonical way as [20]T = [100]T , then 8 = [200]T 6= [1000]T = 7.

Corollary 4. Suppose x, y, w1, w2 are binary strings such that |w1| = |w2|, [xw1]T =
[yw2]T , and [w1]T = [w2]T . Then [x]T = [y]T .

Proof. Take the equality [xw1]T = [yw2]T and subtract the equality [w1]T = [w2]T from it.
The result is [x0i]T = [y0i]T , where i = |w1| = |w2|. Then by applying Lemma 3 i times,
we get [x]T = [y]T .

Corollary 5. Let e1 · · · ei be a binary Tribonacci representation for n. Then the quantity
[e1 · · · ei−1]T + ei does not depend on the particular representation e1 · · · ei chosen for n.

Proof. Let E = e1 · · · ei and F = f1 · · · fj be two binary Tribonacci representations for n.
Without loss of generality, we can assume that one of the representations is canonical.
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If ei = fj, then by Corollary 4 we get [e1 · · · ei−1]T = [f1 · · · fj−1]T , and hence

[e1 · · · ei−1]T + ei = [f1 · · · fj−1]T + fj.

Otherwise assume that ei = 0 and fj = 1. If F is the canonical representation for n,
then in carrying out the normalization procedure to convert E to F (as we did in the proof
of Lemma 3), we evidently cannot change E’s last bit, so fj = 0, a contradiction. So E
must be the canonical representation for n. Now consider carrying out the normalization
procedure to convert F to E. To change fj = 1 into the 0 corresponding to ei, the only
possibility is that the rightmost four bits of F are 0111 and the rightmost four bits of
E are 1000. Write E = E ′1000 and F = F ′0111. Then [E ′1000]T = [F ′0111]T , and by
Corollary 4 we get [E ′]T = [F ′]T . By applying Lemma 3 three times, we get [E ′000]T =
[F ′000]T . Adding [100]T + 0 = [011]T + 1 to both sides gives [E ′100] + 0 = [F ′011]T + 1,
as desired.

5.2 The Tribonacci morphism

Using the Tribonacci morphism (8), we define a sequence of finite binary words by Tn :=
τn(a) for n > 0. Then the Tribonacci word is T = limn→∞Tn.

Theorem 6. We have

τn(a) = Tn, n > 0,

τn(b) = Tn−1 ·Tn−2, n > 1,

τn(c) = Tn−1, n > 0.

Proof. An easy induction on n.

Lemma 7. We have Tn = Tn−1 ·Tn−2 ·Tn−3 for n > 3.

Proof. We have

Tn = τn(a) = τn−3(τ 3(a)) = τn−3(abacaba) = τn−3(abac)τn−3(ab)τn−3(a)

= τn−1(a)τn−2(a)τn−3(a) = Tn−1 ·Tn−2 ·Tn−3.

The next two lemmas are also easily established by induction:

Lemma 8. We have |Tn| = Tn for n > 0.

Lemma 9. For n > 0, Tn contains Tn−1 a’s, Tn−2 b’s, and Tn−3 c’s.

5.3 The Tribonacci word

Lemma 10. Let Um be the set of length-m binary strings consisting of the Tribonacci
representations (padded with leading zeros, if necessary) of the numbers from 0 to Tm− 1.
Then

Um = 0Um−1 t 10Um−2 t 110Um−3,

for m > 3, where t denotes disjoint union.
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Proof. Again an easy induction on m.

Theorem 11. ([8]). Let the Tribonacci representation of n − 1 be e1e2 · · · ei01j, where
j ∈ {0, 1, 2}. Then

tn =


a, if j = 0,

b, if j = 1,

c, if j = 2.

Proof. An easy proof by induction on n, where Tm + 1 6 n 6 Tm+1, using Lemma 9.

For n > 1 let Na(n), Nb(n), Nc(n) be the number of a’s, b’s, c’s respectively in t1 · · · tn.

Theorem 12. For n > 1 let the Tribonacci representation of n be e1e2 · · · ei. Then

Na(n) = [e1 · · · ei−1]T + ei,

Nb(n) = [e1 · · · ei−2]T + ei−1,

Nc(n) = [e1 · · · ei−3]T + ei−2.

Proof. We know from Theorem 11 that tn depends on the Tribonacci representation of
n − 1 rather than n, so for this proof we set ν = n − 1. The proof is by induction on ν.
Consider a ν in the range Tm 6 ν < Tm+1. We prove the result for Na(n), with the other
results being exactly analogous. The base cases are easy.

For the induction step, there are two cases to consider: (a) Tm 6 ν < Tm + Tm−1 and
(b) Tm + Tm−1 6 ν < Tm+1.

If (a) holds, then write ν = Tm + ν ′ with 0 6 ν ′ < Tm−1, and consider the length-m
Tribonacci representations of the numbers from 0 to ν − 1. Using Lemma 10, we see
that the length-m representations of the numbers from 0 to Tm − 1 start with 0, while
the numbers from Tm to Tm + ν ′ − 1 have representations that start with 10. For these
latter numbers, subtracting Tm removes a leading 1 from the Tribonacci representation,
and using Lemma 7 we see that the Tribonacci representations of the numbers from Tm
to Tm + ν ′ − 1 are those of the numbers from 0 to ν ′ − 1, except for this leading 1. By
Theorem 11 it follows that the number of a’s in tTm+1 · · · tTm+ν′ is equal to Na(ν

′).
Hence

Na(n) = Na(Tm) +Na(ν
′)

= Tm−1 +Na(ν
′) (by Lemma 9)

= Tm−1 + [e3 · · · ei−1]T + ei (by the induction hypothesis)

= [e1 · · · ei−1]T + ei.

Case (b) is similar.

Theorem 13. Let the Tribonacci representation of n − 1 be e1 · · · ei, the representation
of n− 2 be f1 · · · fj, and the representation of n− 4 be g1 · · · gk. Then

Na(n) = [e1 · · · ei−1]T + 1,

Nb(n) = [f1 · · · fj−2]T + 1,

Nc(n) = [g1 · · · gk−3]T + 1.
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Proof. We prove the result for Na(n), the others being similar. There are three cases,
depending on whether (n − 1)T = x0, x01, or x011. If (n − 1)T = x0, then x1 is a
representation of n; if (n−1)T = x01, x10 is a representation of n; and if (n−1)T = x011,
x100 is a representation of n. The result then follows by combining Corollary 5 with
Theorem 12

An analogous property to Theorem 13 for the Fibonacci word was established in [6,
Section 5].

5.4 The indexing sequences An, Bn, Cn.

Let An (n > 1) denote the index of the nth occurrence of the letter a in T, with similar
definitions for Bn and Cn. We also set A0 = B0 = C0 = 0. The initial values of An, Bn,
Cn are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
An 0 1 3 5 7 8 10 12 14 16 18 20 21 . . .
Bn 0 2 6 9 13 15 19 22 26 30 33 37 39 . . .
Cn 0 4 11 17 24 28 35 41 48 55 61 68 72 . . .

(13)

For further terms see Table 2 or A003144, A003145, A003146. These sequences are
inverses to the sequences Na(n), Nb(n), Nc(n) defined in §5.3. For example, A5 = 8, while
Na(8) = 5. They are studied in many references ([2, 4, 8]).

Theorem 14. We have

• An = [(n− 1)T0]T + 1,

• Bn = [(n− 1)T01]T + 1,

• Cn = [(n− 1)T011]T + 1.

Proof. We use Theorem 12, which tells us how many a’s (resp., b’s, c’s) occur in a prefix
of T of a given length. We prove the result for An, with the other results being proved
analogously. Let us count how many a’s there are in a prefix [(n−1)T0]T . By Theorem 12,
there are n − 1 of them. Similarly, Theorem 12 says that there are n a’s in the prefix
of length [(n − 1)T1]T . Since we index T starting at position 1, it now follows that the
symbol at position 1 + [(n− 1)T0] must be an a.

We also record some further properties of An, Bn, Cn established in [8]. For n > 1,
we have

An = mex{Ai, Bi, Ci : 0 6 i < n}, (14)

Bn = An + mex{Bi − Ai, Ci −Bi : 0 6 i < n}, (15)

Cn = An +Bn + n. (16)

There are some similarities with (2), and in particular (15) is consistent with equation (41)
of Corollary 21 below, although we will not prove this observation is correct until Section 6.
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Furthermore, T is the unique ternary sequence satisfying (14)–(16). Also from [8] (see
Remarks 2.1–2.3), we know that

{∆A} = Θ(2, 2, 1), {∆B} = Θ(4, 3, 2), {∆C} = Θ(7, 6, 4) . (17)

The next three properties are easy consequences of the definitions.

An = n+Na(n− 1) +Nb(n− 1), (18)

Bn = An +Na(An) +Nb(An), (19)

Cn = Bn +Na(Bn) +Nb(Bn). (20)

We prove (18), since the same argument will be used later. Since T is the fixed point of
τ , T = τ(T). Writing τ(tn) underneath tn, we see:

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
tn : a b a c a b a a b a c a b . . .

τ(tn) : ab ac ab a ab ac ab ab ac ab a ab ac . . .

Each letter tn in T produces an a in τ(tn), and this a is at position p, where p equals n plus
the total number of a’s and b’s before tn. This is exactly the assertion (18). Properties
(19) and (20) have similar proofs.

Many other properties are known, such as ([2, 8])

AAn + 1 = Bn, ABn = BAn + 1, ABn + 1 = Cn. (21)

5.5 Numerical bounds.

Appending a 0 to the Tribonacci representation of a number (as in the formula for An
given in Theorem 14) has about the same effect as multiplying the number by ψ. To get
precise estimates we must study the Tribonacci numbers Tn themselves.

From the theory of linear recurrences we know that if ψ, ψ2 and ψ3 := ψ2 denote the
roots of x3 = x2 + x+ 1 then there are constants c1, c2, and c3 := c2 such that

Tn = c1 ψ
n + c2 ψ

n
2 + c3 ψ

n
3 , for n > 0. (22)

The numerical values of these constants are ψ2 = −0.419643 . . . + 0.606291 . . . i, c1 =
0.336228 . . ., c2 = −0.168114 . . .− 0.198324 . . . i.

From (22) it is straightforward to show that, for n > 0, we have

|Tn − c1 ψn| 6 0.283 (0.738)n (23)

and

|Tn+1 − ψTn| 6 0.731 (0.738)n, (24)

|Tn+2 − ψ2Tn| 6 1.113 (0.738)n, (25)

|Tn+3 − ψ3Tn| 6 1.877 (0.738)n. (26)
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Theorem 15. For all n > 0 we have

−0.596 < [(n)T0]T − ψn < 0.856, (27)

−0.883 < [(n)T00]T − ψ2n < 1.460, (28)

−1.461 < [(n)T000]T − ψ3n < 2.298. (29)

Proof. We prove (27), the arguments in the other two cases being similar. We write n in its
canonical Tribonacci representation, say n = Te1 +Te2 +· · ·+Tes , where e1 > e2 > · · · > es.
Then [(n)T0]T = Te1+1 + Te2+1 + · · ·+ Tes+1, so

[(n)T0]T − ψn =
∑
16j6s

(Tej+1 − ψTej).

We break up this sum into two parts, one where 2 6 ej 6 18, and one where ej > 18.
From (24), the latter sum is bounded in absolute value by

∑
j>19 0.731 · 0.738 j 6 .009.

The former sum can be bounded by actually computing it for all n < T19 = 121415.
The minimum is achieved at n = 65915 and is, rounded down, equal to −0.587. The
maximum is achieved at n = 78748 and is, rounded up, equal to 0.847. Hence −0.596 <
[(n)T0]T − α1n < 0.856.

Theorem 16. For all n > 0,

bψnc − 1 6 An 6 bψnc+ 1, (30)

bψ2nc − 2 6 Bn 6 bψ2nc+ 1, (31)

bψ3nc − 3 6 Cn 6 bψ3nc+ 1. (32)

Proof. From Theorem 15 we get −.596 < [(n − 1)T0]T − ψ(n − 1) < .856. Since An =
[(n−1)T0]T+1, we have−.596 < An−1−ψ(n−1) < .856. Hence−.017 < ψn−An < 1.436,
so An − .017 < ψn < An + 1.436. Taking floors gives

An − 1 6 bψnc 6 An + 1,

which proves the first assertion. The other two have similar proofs, which we omit.

Values of n for which the “+ 1” on the right-hand sides of (30)–(32) are actually needed
seem quite rare, the first instances occurring at n = 12737, 329, and 2047, respectively
(see A275158, A278352, A278353).

For use in the proof of Theorem 20 we note that

ψCn > Cn+1 for n > 2 . (33)

Bounds on the inverse quantities are easier to derive, and we just state the result.
Deleting the least significant bit of the Tribonacci representation of n has about the same
effect as dividing n by ψ. From Theorem 12 we obtain:
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Theorem 17. For all n > 1,⌊
n

ψ

⌋
6
n

ψ
6 Na(n) 6

⌊
n

ψ

⌋
+ 1, (34)⌊

n

ψ2

⌋
6

n

ψ2
6 Nb(n) 6

⌊
n

ψ2

⌋
+ 1, (35)⌊

n

ψ3

⌋
6

n

ψ3
6 Nc(n) 6

⌊
n

ψ3

⌋
+ 1. (36)

6 The main theorem

We can now establish our main theorem, Theorem 20, which shows that the rows of the
XYMP table are in one-to-one correspondence with the terms of the theme song Θ (or, if
we ignore the initial n = 0 term, with the terms of the Tribonacci word T). The bijection
can be seen in the second column of Table 2.

Lemma 18. Let τ ′ be the morphism τ ′ : a→ ba, b→ ca, c→ a. Then

τ ′(c ·T(a, b, c)) = T(a, b, c) . (37)

Proof. Let A′n (n > 1) denote the index of the nth occurrence of the letter a in the image
τ ′(c ·T(a, b, c)), with similar definitions for B′n and C ′n. Write the terms of τ ′(c ·T(a, b, c))
under the corresponding terms of c ·T(a, b, c), as we did in the proof of (18)–(20) above.
As in that proof, we observe that each term of c·T(a, b, c) produces an a in the image, only
now the initial c produces an extra a at the start, and the a produced by tn ∈ T(a, b, c) is
displaced from n+ 1 by the number of copies of a and b in T(a, b, c) at or before tn. This
implies that

A′n+1 = n+ 1 +Na(n) +Nb(n).

So A′n = n + Na(n − 1) + Nb(n − 1) = An. Similar arguments show that B′n = Bn and
C ′n = Cn, and so (37) holds.

Lemma 19. Let τ ′′ be the morphism τ ′′ : a→ acab, b→ aab, c→ ab. Then

τ ′′(c ·T(a, b, c)) = T(a, b, c) . (38)

Proof. We have τ ′′ = τ ◦ τ ′ (first apply τ ′ then τ), and τ fixes T(a, b, c), so the result
follows from Lemma 18.

Theorem 20. We have

{∆X} = Θ(2, 1, 1),

{∆Y } = Θ(3, 3, 2),

{∆M} = Θ(1, 2, 1),

{∆P} = Θ(5, 4, 3).

(39)
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Proof. There are three parts to the proof. In the first part we show that, for any i > 1,
if terms 0 through Ci− 1 of {∆Y } (that is, the terms until just before the ith occurrence
of c = 2 in {∆Y }) agree with terms 0 through Ci − 1 of Θ(3, 3, 2), then terms 0 through
bψ(Ci − 1)c of {∆X} agree with terms 0 through bψ(Ci − 1)c of Θ(2, 1, 1).

We form the partial sums of the {∆Y } to get Ci terms of {Y }, compute the complement
to get a certain number of initial terms of {X}, and take the differences to get the initial
terms of {∆X}.

A 3 in the {∆Y } sequence corresponds to a succession . . . , x, x+ 2, x+ 3, x+ 5, . . . of
terms in {X}, with differences . . . , 2, 1, 2, . . . . The initial 2 was already present in {∆X},
so the 3 in {∆Y } produces a pair 1, 2 in {∆X}. Similarly, a term ∆Y = 2 produces
a single 2 in {∆X}. The initial Ci terms of {∆Y } are transformed by the action of
the map 3 → 1, 2; 2 → 2 into a sequence over the alphabet {1, 2}. We can state this
assertion in an equivalent way. We identify the initial terms of {∆Y } with the initial
terms of Θ(a, b, c) = Θ(3, 3, 2), and the initial terms of {∆X} with the initial terms of
Θ(a, b, c) = Θ(2, 1, 1). The map can be described as τ ′ : a → ba, b → ca, c → a, and
Lemma 18 guarantees that the image is indeed a prefix of Θ(2, 1, 1).

Table 3: Showing how the difference sequence {∆Y } generates a larger number of terms
of the difference sequence {∆X}. The first four lines refer to {∆Y } and {Y }, the second
four to {X} and {∆X}.

n : 0 1 2 3 4 5 6 7
Θ : c a b a c a b a

∆Yn : 2 3 3 3 2 3 3 3
Yn : 0 2 5 8 11 13 16 19
Xn : 0 1 3 4 6 7 9 10 12 14 15 17 18

∆Xn : 1 2 1 2 1 2 1 2 2 1 2 1 2
Θ : c a b a c a b a a b a c a
n : 0 1 2 3 4 5 6 7 8 9 10 11 12

n : 8 9 10 11 12 13 14
Θ : a b a c a b a

∆Yn : 3 3 3 2 3 3 3
Yn : 22 25 28 31 33 36 39
Xn : 20 21 23 24 26 27 29 30 32 34 35 37 38

∆Xn : 1 2 1 2 1 2 1 2 2 1 2 1 2
Θ : b a b a c a b a a b a c a
n : 13 14 15 16 17 18 19 20 21 22 23 24 25

This process is illustrated in Table 3. The first four rows show {∆Y } as Θ(a, b, c) =
Θ(3, 3, 2), and its partial sums {Y }. The second four rows show {X} being formed as the
complement of {Y }, and the identification of {∆X} with Θ(a, b, c) = Θ(2, 1, 1).
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From Theorem 2, in terms 1 through k := Ci − 1 of Θ(a, b, c) there are Na(k), Nb(k),
Nc(k) copies of a, b, c, respectively. After applying the map τ ′, and taking into account
the slightly irregular behavior at the start of these sequences, we obtain 2 + 2Na(k) +
2Nb(k) + Nc(k) = 2 + 2k − Nc(k) terms of {∆X}. For illustration, in Table 3, we may
take i = 2, C2 = 11, k = 10, and using Na(10) = 6, Nb(10) = 3, Nc(10) = 1, we see that
we obtain 19 + 2 = 21 terms of {∆X}, that is, terms 0 through 20.

Using (36), the number of terms we obtain is at least 1 + k(2 − 1/ψ3) = ψk + 1 =
ψ(Ci − 1) + 1. This completes the first part of the proof of the theorem.

In the second part of the proof we show that, for any i > 1, if terms 0 through Ci−1 of
{∆P} agree with terms 0 through Ci− 1 of Θ(5, 4, 3), then terms 0 through bψ2(Ci− 1)c
of {∆M} agree with terms 0 through bψ2(Ci − 1)c of Θ(1, 2, 1).

The argument is parallel to that for the first part: we proceed from {∆P} to {P} to
its complement, {M}, and then to {∆M} (see Table 4). Every 5 in {∆P} produces a
subsequence 1, 1, 1, 2 in {∆M}, every 4 produces 1, 1, 2, and every 3 produces 1, 2.

Table 4: Showing how the difference sequence {∆P} generates a larger number of terms
of the difference sequence {∆M}. The first four lines refer to {∆P} and {P}, the second
four to {M} and {∆M}.

n : 0 1 2 3 4
Θ : c a b a c

∆Pn : 3 5 4 5 3
Pn : 0 3 8 12 17
Mn : 0 1 2 4 5 6 7 9 10 11 13 14 15 16 18 19

∆Mn : 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1
Θ : c a b a c a b a a b a c a b a
n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n : 5 6 7 8 9
Θ : a b a a b

∆Pn : 5 4 5 5 4
Pn : 20 25 29 34 39
Mn : 21 22 23 24 26 27 28 30 31 32 33 35 36 37 38

∆Mn : 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2
Θ : b a c a b a a b a c a b a c a b
n : 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

We identify the initial terms of {∆P} with the initial terms of Θ(a, b, c) = Θ(5, 4, 3),
and the initial terms of {∆M} with the initial terms of Θ(a, b, c) = Θ(1, 2, 1). The map
can be described as τ ′′ : a → acab, b → aab, c → ab, and Lemma 19 guarantees that the
image is indeed a prefix of Θ(1, 2, 1).

When τ ′′ is applied to terms 0 through k := Ci−1 of Θ(a, b, c) we obtain 3+4Na(k)+
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3Nb(k) + 2Nc(k) terms of {∆M}. From (34)–(36), this quantity is at least 3 + k(4/ψ +
3/ψ2 + 2/ψ3) = ψ2k + 3, which is enough to complete the second part of the proof.

For the third part of the proof we use induction. The induction hypothesis is that
for some i > 2, terms 0 through Ci − 1 of {∆Y } agree with terms 0 through Ci − 1 of
Θ(3, 3, 2), and terms 0 through Ci − 1 of {∆P} agree with terms 0 through Ci − 1 of
Θ(5, 4, 3). From Table 2 we can verify that these assertions are true for all i 6 3.

From the first two parts of the proof the induction hypothesis implies that {∆X}
agrees with Θ(2, 1, 1) for ψC(i) terms, and {∆M} agrees with Θ(1, 2, 1) for at least
the same number of terms. Since {Y } = {X} + {M}, {∆Y } agrees with Θ(2, 1, 1) +
Θ(1, 2, 1) = Θ(3, 3, 2) for ψCi terms. Since {P} = {X} + {Y }, {∆P} agrees with
Θ(2, 1, 1) + Θ(3, 3, 2) = Θ(5, 4, 3) for ψCi terms. But by (33), ψCi > Ci+1 (this is where
we need i > 2), so the induction hypothesis holds for i+ 1. This completes the proof.

Remarks.

(i) The identification of {∆P} with Θ(5, 4, 3) establishes the bijection between the rows of
the XYMP table and the terms of the sequence Θ(a, b, c) (see column 2 of Table 2). The
label for row n > 0 is determined by the value of the quadruple (∆Xn,∆Yn,∆Mn,∆Pn):
if this is

(2, 3, 1, 5) then row n is labeled a,

(1, 3, 2, 4) then row n is labeled b,

(1, 2, 1, 3) then row n is labeled c. (40)

(ii) Since ∆Xn = 2 only in the first case, and ∆Mn = 2 only in the second case, we
conclude that:

row n is labeled a if and only if Xn + 1 ∈ {Y },
row n is labeled b if and only if Mn + 1 ∈ {P}, and
otherwise row n is labeled c.

(iii) We can now connect the Xn, Yn, Mn, Pn sequences with the An, Bn, Cn sequences.

Corollary 21. For n > 0,

Xn = Bn − An, (41)

Yn = Cn −Bn, (42)

Mn = Cn − 2Bn + An, (43)

Pn = Cn − An. (44)

Proof. These formulas follow from (17). The first one, for example, follows because
{∆B} − {∆A} = Θ(4, 3, 2) − Θ(2, 2, 1) = Θ(2, 1, 1) = {∆X}, by (39), and so Xn =
Bn − An.

These formulas can be confirmed by looking at the columns of Table 2.
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(iv) The queens in the first quadrant (cf. Fig. 3) have coordinates (Xn, Yn), n > 0, and
we can now determine the slope of the line that they (approximately) lie on. For

Yn
Xn

=
Cn −Bn

Bn − An
, (45)

which from Theorem 16 converges to (ψ3 − ψ2)/(ψ2 − ψ) = ψ as n increases.
(v) We can also answer a question left over from Section 2. From Theorem 20, we see
that ∆Yn is never 4, and ∆Pn is never 6. So there is no run of three consecutive Xn all
differing by 1, and no run of five consecutive Mn all differing by 1.

Figure 4: Sprague-Grundy values (A274641) for game based on the queens-in-exile prob-
lem on a square spiral. The cells with value 0 are both the P-positions for the game and
the locations of the exiled queens. [Figure courtesy of Jessica Gonzalez.]

7 The Sprague-Grundy values

The queens-in-exile problems can be described in terms of two-person, impartial, com-
binatorial games. We fix a numbering of the cells (such as along a square spiral, or by
antidiagonals). A queen is placed anywhere on the board, and the players take turns,
moving the queen to any lower-numbered cell which is a queen’s move away. The first
player who is unable to move loses. The Sprague-Grundy value of a cell is the “mex” of
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the values of the cells that are a legal move away [3, 10]. The P-positions are the cells
with Sprague-Grundy value 0, and are also the locations of the exiled queens.

For the Z× Z board numbered along a square spiral, the Sprague-Grundy values are
shown in Fig. 4. By construction, the Sprague-Grundy values along any row are distinct,
and similarly for any column, and any diagonal of slope ±1. The following conjecture is
very plausible but unsolved.

Conjecture 22. Every row, column, and diagonal of slope ±1 in the array of Sprague-
Grundy values is a permutation of N.

We do not even know, for example, that the numbers along the horizontal axis,

. . . , 24, 12, 16, 9, 14, 6, 5, 4, 2, 0, 1, 3, 7, 10, 11, 15, 8, 18, 23, 21, . . . , (46)

(A324778, A324774) include every nonnegative number.

Table 5: Single-quadrant board numbered along upwards antidiagonals; circles indicate
positions of exiled queens.

0 2 5 9 14 20 27 35 44 . . .

1 4 8 13 19 26 34 43 . . .

3 7 12 18 25 33 42 . . .

6 11 17 24 32 41 . . .

10 16 23 31 40 . . .

15 22 30 39 . . .
21 29 38 . . .
28 37 . . .
36 . . .
. . .

8 The single-quadrant board

We have fewer results about the positions of the queens in this version of the problem, so
we will start right away with the combinatorial game. This is played on an infinite N×N
board where the squares are numbered along successive upward antidiagonals, as shown
in Table 5. In the game, a queen is placed anywhere on the board, and the players take
turns moving it to a lower-numbered square that is a queen’s-move away. As usual the
first player unable to move loses. A small portion of the table of Sprague-Grundy values
is shown in Table 6, and a color-coded illustration of the top 500×500 corner of the table
is given in Fig. 5.
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Table 6: Sprague-Grundy values for single-quadrant board numbered along upwards
antidiagonals (A274528). The indexing of the rows and columns in this table start at 0.

0 2 1 5 3 4 9 10 12 . . .
1 3 4 0 7 2 5 11 . . .
2 0 5 1 8 6 4 . . .
3 1 2 4 0 7 . . .
4 6 0 3 1 . . .
5 7 8 6 . . .
6 4 3 . . .
7 5 . . .
8 . . .
. . .

Figure 5: The top 500 × 500 corner of the table of Sprague-Grundy values. The color
ranges from red (for values near 0 to blue (for values near 1000). [Figure courtesy of
Remy Sigrist.]

The squares where the exiled queens settle in this version of the problem (i.e., the 0’s
in the table) have indices, reading along the successive antidiagonals,

0, 7, 13, 23, 32, 96, 114, 142, 163, 183, 197, 261, 290, 446, 484, 581, . . . (47)
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(A275897). The first five of these values are indicated by the circles in Fig. 5.
An alternative way to specify the positions of the exiled queens is by the sequence

{Sc : c > 0} (A275895), which indicates which row contains the queen in column c (this
is well-defined, thanks to Theorem 23 below). The initial values of Sc are

0, 2, 4, 1, 3, 8, 10, 12, 14, 5, 7, 18, 6, 21, 9, 24, 26, 28, 30, 11, 13, 34, . . . . (48)

The only theorem we have for this version of thev problem is:

Theorem 23. Every column and every row of the table of Sprague-Grundy values is a
permutation of N.

Proof. (Based on arguments in A269526 given by Rob Pratt, Bob Selcoe, and N.J.A.S.
in June 2016.) There can be no repeated terms in any column, row, or diagonal, by con-
struction, so we must just show that there are no missing terms. Consider column c > 0.
Since the Sprague-Grundy values are calculated moving upwards along the antidiagonals,
a number k will appear in column c unless it is blocked by the presence of a k in an earlier
column. But the first c columns contain at most c copies of k, so eventually every k will
appear in column c.

Consider row r > 0, and suppose a number k never appears. There are at most r copies
of k in the earlier rows, and these can affect only a bounded portion of row r. Consider
a square (r, n), where n > 0 is large. If k is not to appear in that cell, there must be a
copy of k in the antidiagonal to the South-West. So in the right triangle bounded by row
r, column 0, and the antidiagonal through (r, n), there must be at least n+ 1− r copies
of k (allowing for the 6 r copies of k in the first r rows). Imagine these k’s replaced by
chess queens. By construction they are mutually non-attacking. But it is known ([17,
Problem 252], or A274616) that on a right triangular half-chessboard of side n, there can
be at most 2n/3 + 1 mutually non-attacking queens. Since 2n/3 + 1 < n+ 1− r for large
n, a k must eventually appear in that row.

As to the diagonals, although they appear to be permutations, there is no proof.

Conjecture 24. Every diagonal of the table of Sprague-Grundy values is a permutation
of N.

The argument using non-attacking queens breaks down here because the diagonal of the
half-chessboard contains only half as many squares as the sides. (The antidiagonals are
certainly not permutations of N, since they have finite length.)

We return to the discussion of the positions of the exiled queens. We observed in 2016
that the first 50000 queens appear to lie almost exactly on two straight lines, of slopes
φ and 1/φ, where φ is the golden ratio. Figure 6 shows a plot of the first 10000 queens.
This is similar to what we saw in Fig. 3, only now we do not have a proof that the points
lie on these lines, nor do we have a proof that the slopes are what they appear to be.

Donald Knuth (see Exercise 7.2.2.1–38 in [11]) investigated this question in 2018,
although his version of the problem is superficially different. In his problem, the queens
are placed column-by-column. A queen is placed in column c > 0 in the first square
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Figure 6: Positions of the first 10000 queens on the single-quadrant board. The points
appear to lie essentially on two straight lines. The tick-marks on the horizontal axis (the
column indices) are at 0, 2000, 4000, . . . , 10000, and on the vertical axis (the row indices)
at 0, 5000, 10000, 15000.

from which it cannot attack any earlier queen. However, it is easy to prove that it makes
no difference whether the board is scanned by successive antidiagonals or by successive
columns. The same sequence {Sc} is obtained in both cases.

Knuth has written an efficient program for computing this sequence, and finds that
the points are extremely close to the two lines: for c < 109, he finds that

−2 < Sc − cφ < 1, if Sc > c, (49)

−3 < Sc −
c

φ
< 5, if Sc < c. (50)

The evidence for the next conjecture is therefore overwhelming:

Conjecture 25. There are constants ε1, ε2 such that

|Sc − cφ | < ε1, if Sc > c, (51)∣∣∣∣ Sc − c

φ

∣∣∣∣ < ε2, if Sc < c. (52)

This combinatorial game can be described in a different way, which suggests a possible
attack on the conjecture. If the queen being moved is located at square (x, y), we represent
its position by two piles of tokens, of sizes x and y. The legal moves are to remove any
positive number of tokens from one pile, or to remove an equal positive number of tokens
from both piles, or to move a positive number of tokens from the y pile to the x pile (the
latter move corresponds to moving the queen down the antidiagonal). The first person
unable to move loses.

A simpler two-pile game is the classic Wythoff’s Nim (also called Wyt Queens) [3, 18],
which has the same moves except that moving tokens from one pile to another is not
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allowed. The array of Sprague-Grundy values can be found in [3, First edition, Chap. 3,
Table 3], [5], and A004481. The sequence {Wc} specifying which rows the queens are in
(the analog of {Sc}) is A002251:

0, 2, 1, 5, 7, 3, 10, 4, 13, 15, 6, 18, 20, 8, 23, 9, 26, 28, 11, 31, 12, 34, . . . . (53)

Wythoff [18] himself showed in 1907 that these points lie on two lines (A000201, A001950):

Wc = bcφc, if Wc > c, (54)

Wc =

⌊
c

φ

⌋
, if Wc < c. (55)

The reason we mention this is that Larsson and Wästlund [12] were able to analyze the
two lines of queens in Maharaja Nim, a variant of Wythoff’s Nim. Can their method be
adapted to our problem?

Although the array of Sprague-Grundy values for our problem looks irregular, it ap-
pears that the columns eventually become quasi-periodic. Column 1 is 2, 3, 0, 1, 6, 7, 4, . . .
(A004482), which is the Nim-sum r ⊕ 2, and has generating function

2− x− 2x2 + 3x3

(1− x)2(1 + x2)
=

(1 + x)(2− x− 2x2 + 3x3)

(1− x)(1− x4)
. (56)

All subsequent columns appear to have a generating function with denominator (1−x)(1−
x16). Column 2, for example, appears to have generating function g(x)/((1−x)(1−x16)),
where g(x) is

1 + 3 x+x2 − 3x3 − 2x4 + 8x5 − 5x6 + 3x7 + x8 + 5x9+

+x10 − 3x11 + x12 − 2x13 + 8x14 − 3x15 + 2x17.

Conjecture 26. Every column of the array of Sprague-Grundy values for the single-
quadrant problem has a a generating function with denominator (1− x)(1− x16).

(The conjecture also holds for columns 0 and 1.) If true, this would mean that every
column eventually becomes quasi-periodic with period 16, something that we find sur-
prising. No such property seems to hold for the rows of the table. The quasi-periodicity
of the Sprague-Grundy values for Wythoff’s Nim and certain other combinatorial games
was studied by Dress, Flammenkamp, and Pink in [5]. However, it does not seem that
Conjecture 26 follows from their work.
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