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Abstract

Time-discounting in behavioural economics is modelled using mechanical system dynamics
through the economic engineering framework. The economic engineering framework is being
developed at the Delft Center for Systems and Control, and uses mechanical system dynamics
to model economic processes and systems. Time-discounting is the calculation of the present
value of the received utility from future consumption. Presently behavioural economists have
not been able to reach a consensus on how to model time-discounting behaviour. Two theo-
ries dominate economic literature: exponential discounting theory and hyperbolic discounting
theory. These theories are treated separately by economists and have separate fields of ap-
plication. Exponential discounting theory and hyperbolic discounting theory are shown to be
related through the dynamics of the damped harmonic oscillator.

Exponential and hyperbolic discounting theory are linked to the dynamics of the critically
damped and overdamped mechanical system respectively. The dynamics of the underdamped
mechanical system are linked to the time-discounting behaviour of a trader. Moreover, the
parameters of the damped harmonic oscillator are interpreted economically, resulting in the
following analogues: the natural frequency is analogous to the risk-free discount rate, the
damping ratio is analogous to time-preference, and the real part of the eigenvalues are anal-
ogous to the exponential discount rate. Modelling time-discounting using mechanical system
dynamics therefore results in a time-discounting model based on economic first principles.
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Chapter 1

Introduction

Philosophers, economists, psychologists, and policymakers have discussed the topics preceding
time-discounting throughout history [6]. Socrates speaks of man ‘ruling over himself’ in
Plato’s Gorgias: “that a man should be temperate and master of himself, and ruler of his
own pleasures and passions” [7, p. 284]. Adam Smith linked this quality to the success of
national economies in The Wealth of Nations in 1776 [8]. Psychologist George Ainslie invented
the term “Picoeconomics” in 1992 to describe economics within the individual and its relation
to consumption behaviour [9].

1-1 Time-Discounting and Economic Engineering

The field of behavioural economics is committed to studying how consumers make real-world
choices. Behavioural economists develop predictions about people’s choices, and study the
discrepancies with the purely "rational" consumer [3, p. 566]. Behavioural economists study
time-discounting to understand how people make decisions across time, called intertemporal
choices [10].

Time-discounting and time-preference are fundamental concepts in behavioural economics
[10, 11, 12, 6]. Academic interest these topics has continuously increased over the past decades
(see Figure 1-1). Time-discounting is the present valuation of utility to be received from
future consumption [10]. Time-preference is a measure for the preference for sooner rewards
over delayed rewards [10, 13]. The concepts time-discounting and time-preference are further
demonstrated in Section 2-1.

Behavioural economists have thus far been unable to reach consensus on a model for time-
discounting [6, 14]. Currently over 20 different functions have been proposed and regressed on
empirical data [15]. However, unaccountable anomalies are found for each of these discount
functions [10, 16]. Section 2-2 and Section 2-3 demonstrate two discount functions that
dominate economic literature.

In 1949 A.W. Phillips built a hydraulic machine, called the Moniac, to model a national
economy. The machine, shown in Figure 1-2, simulates a national economy by use of pipes,
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2 Introduction

New publications with topic "time preference" and
"time discount" per year (years 1994 - 2018)
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Figure 1-1: Graph illustrating the rising interest in time-preference and time-discounting; data
retrieved from ISI Web of Knowldedge.

pumps, valves and water reservoirs. The design objective was to build an analogue computer
that would solve differential equations from an economic model. The main purpose of the
machine was to provide a visual understanding of the differential equations that modelled
the economic processes [1, 17, 18]. The machine, in the words of Morgan and Boumans,
“...remains one of the few "objects" which the history of economic science can boast, ...”
[19].

The economic engineering group at the Delft Center for Systems and Control (DCSC) studies
economics from the viewpoint of a system and control engineer. Economic processes and
systems are analysed comparable to the Moniac: analogous mechanical system models pro-
vide insight into the dynamical behaviours of the economic processes and systems [20]. The
economic engineering analogy is presented in Chapter 3.

The economic engineering analogy does not yet provide a modelling framework for time-
discounting [20]. The analogy must be expanded to be able to interpret and provide a first
principles model for time-discounting. The research frontier can be summarised as follows:

e Current time-discounting theories solely rely on regression models and are unable to
account for empirical data.

e Existing time-discounting theories are presented as conflicting, but conclusive evidence
has not been demonstrated.

e The economic engineering analogy does not provide a straightforward way to model
time-discounting.
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1-2 Research Effort and Contributions 3

Figure 1-2: The Moniac analogue hydraulic computer. Image from Fortune Magazine's 1952
March issue [1, p. 100].

1-2 Research Effort and Contributions

The research effort is aimed at unifying economic time-discounting theories by modeling time-
discounting using mechanical system dynamics. Hyperbolic discounting theory is linked to
the dynamics of the overdamped second-order system in Chapter 4. In Chapter 5, exponential
discounting theory is linked to the dynamics of the critically damped second-order system.

In Chapter 4 I model hyperbolic discounting theory using mechanical system dynamics. This
is done as follows: In Section 4-1 a ‘mechanical’ discount function is constructed. This allows
for a comparison to be made between economic theory and the dynamics of the analogous
mechanical system. The mechanical discount function based on the dynamics of the over-
damped second-order system is subsequently compared to hyperbolic and quasi-hyperbolic
discounting theory in Section 4-2.

The parameters of the damped harmonic oscillator are interpreted for time-discounting in
Section 4-4. The economic engineering analogy provides a first principles framework to in-
terpret economics. I extend the analogy for time-discounting by a qualitative comparison
between the parameters of mechanics and concepts from economic theory.

In Chapter 5 the dynamics of the critically damped harmonic oscillator are linked to expo-
nential discounting theory in economics. Furthermore, an interpretation of the underdamped
system is provided. In Section 5-3 I visually show how the eigenvalues of the system reveal
the type of time-discounting that is present.

The contributions can be summarised as follows:

e Exponential and hyperbolic discounting theory are connected through the dynamics of
the damped harmonic oscillator.

Master of Science Thesis Sten Edvard Svedhem



4 Introduction

e A first principles model for time-discounting is constructed.

e The economic engineering analogy is extended to include time-discounting.

1-3 Model Predictive Control in Behavioural Economics

Consumer theory is based on the optimisation of utility under a certain endowment [3]. I
develop ideas for future work in Chapter 6. A consumer is to be modelled as a model predictive
controller and plant. A model for time-discounting is critical as it allows the valuation of future
time-steps.
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Chapter 2

Time-Discounting in Economics

This chapter introduces the concept of time-discounting in economics. Time-discounting and
its mathematical application in economics are demonstrated in Section 2-1. Although many
discounting methods have been proposed [15], this chapter restricts its exposition to two
dominant discounting methods: exponential discounting and hyperbolic discounting. These
methods form the basis of time-discounting theory [10]. Fundamental differences between
these two theories are discussed. The chapter is concluded with a summary of the standing
issues that behavioural economists are facing concerning time-discounting.

2-1 Time-Discounting and Time-Preference

Time-preference is a measure for the preference for sooner rewards over delayed rewards [10,
13]. A high time-preference is associated with demographics such as younger age, and lower
income and education. It is also associated with impulsive behaviours such as relationship
infidelity, smoking, a higher body mass index, and high credit card debt [21, 22, 23].

Time-discounting is the present valuation of a future cost or benefit [10]. Time-discounting
differs from time-preference in that it is quantified by economists. This quantification is done
through a discount function that relates the discount to time. Financial industries apply an
exponential discount function, which is presented in Section 2-2 [15]. Regressing empirical
data on various functions shows that consumers are best described by a hyperbolic discount
function, which is presented in Section 2-3 [24, 25].

I define the terms ‘intertemporal choice’, ‘time-preference’, and ‘time-discounting’ to be used
in this thesis:

Definition 2.1. Intertemporal choices are choices of consumption over time.

Definition 2.2. Time-preference is a measure for the preference for immediate utility over
delayed utility.

Definition 2.3. Time-Discounting is the process of determining the present valuation of a
future benefit.

Master of Science Thesis Sten Edvard Svedhem



6 Time-Discounting in Economics

Consumption is the destruction of an owned asset, such that the consumer receives utility
from consumption. I define utility as a “numeric measure of a person’s happiness” [3, p. 54].
I adopt the definition of time-preference as used by Frederick, Loewenstein and O’Donoghue
in [10, p. 3], stated in Definition 2.2. High time-preference shows myopia of an individual,
whereas low time-preference indicates an individual has a higher level of indifference for the
future versus the present.

The Mathematics of Time-Discounting

A consumer faces a stream of consumption ¢(t) over a specified time-period, 0 < ¢ < T. The
expected utility U that is extracted from the consumption over the given time-period is then
given by:

U= /0 £ ulet), ) di (2-1)

Here, u(c(t),t) is the instantaneous utility function that assigns a utility value u(t) to the
consumption stream c¢(t) at every time ¢. Time-discounting is carried out by multiplying the
instantaneous utility function with a discount function f(¢). The discount function assigns a
weighting value, a discount factor, that depends on the time-distance between a future time
t and the present time instant ¢ = 0 [10, 26].

It is assumed that when an individual is faced with a choice between differing consumption
plans c¢i(t), ca(t), ... ,en(t) at time t = 0, he will choose the consumption plan with the
highest value of expected utility, max(U;, Us, ..., Uy). This is in essence, the dynamic utility
maximization problem that defines the problem of intertemporal choice [26].

The focus of this thesis is the time-discounting process. Time-discounting is the determination
of the present value of a future benefit (Definition 2.3). The mathematical representation of
time-discounting is the argument of the integral in Equation 2-1 [5, 10]. The present valuation
PV from consumption at time 7 within the time-period 0 <t < T is given by:

PV(c(r)) = f(7) ule(t), 7) (2-2)

Time-discounting is not restricted to consumption planning alone. For example, to calculate
the Net Present Value (NPV) of a bond, future payments are time-discounted and added
up to determine its market price [3]. Another example is the Discounted Cash Flow (DCF)
method to valuate a business, by adding together time-discounted expected future profits over
a set time-horizon [27]. I simplify Equation 2-2 so that both consumption discounting and
financial discounting are included in a general equation:

X(t) = f(t) X(0) (2-3)

The present valuation of a future economic event X (¢), be it consumption, a payment, profit
or otherwise, is equal to the time-discounted valuation of the event taking place at the present
X(0). Here, f(t) once again represents the discount function.

The question that remains is: What does the discount function look like? This question
has extensively been researched by Strotz [26] and Koopmans [28]. Among other postulates,
deductions, and definitions, the bounds of the function are defined: f(t) € [0, 1] where
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2-2 Exponential Discounting 7

t € [0, 00). Over 20 different discount function have been proposed; [15] presents an overview
and analysis. In the following sections, I present the exponential discount function and the
hyperbolic discount function [14].

2-2 Exponential Discounting

In 1937 Paul Samuelson proposed the first discount function; this has come to be known as
the exponential discount function [12]. In his paper A Note on the Measurement of Utility the
discount function was presented as an assumption to understand utility measurement. The
exponential discount function has however been widely adopted, and remains the standard
time-discounting method in financial industry [10, 15].

The exponential discount function is characterised by a constant discount rate. It is formu-
lated in Equation 2-4, and a graph of the function is shown in Figure 2-1.

f)y=et (2-4)

The instantaneous, continuous-time, discount rate is denoted by 7, and is measured in per
time-units 1/[time|. The instantaneous discount rate is calculated from discrete-time rates by
r = In(1 + d), where d denotes the discrete-time discount rate in per time-unit. An example
application is carried out in Example 2.1.

Example 2.1. An individual’s discount rate for an expected transaction is estimated to be
at 10% per year (due to interest, opportunity cost, risk, etc.). Using Equation 2-4, this
individual’s exponential discount function for the expected transaction is thus (displayed in
Figure 2-1):

f(t) — e~ In(140.1) ¢

Payment of a thousand euros is expected in siz months (half a year). The exponentially
discounted present value (PVegp) of the transaction is then calculated using Equation 2-3.

PV = Xo5 = £(0.5) Xg = e 11059000 = 953,46 €

Master of Science Thesis Sten Edvard Svedhem



8 Time-Discounting in Economics

An Exponential Discount Function

T T

1 T

09 1

0.8 1
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0.6 1
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Time [years]

Figure 2-1: An exponential discount function discounting at a rate of 10 % per year

The exponential discount function has gained a lot of popularity because of its simplicity [10].
It is equivalent to the exponential radio-active decay function, and is indifferent to the near
future versus the time-instants farther away. In other words, it time-discounts linearly in time.
This makes the function particularly suitable for financial industries as many institutions
strive to be indifferent to time [15].

2-3 Hyperbolic Discounting

Empirical research shows that humans and animals are not indifferent to time [24, 25]. This
means that the exponential discount function is not a suitable function to model consumer
behaviour. A discount function that deals with this critique is the hyperbolic discount function

[10].

The hyperbolic discount function is characterized by a steep initial discount and a flat discount
in the far away future. The hyperbolic discount function is given in Equation 2-5, and a graph
of the function is shown in Figure 2-2 [3, p. 575]

ft) = (2-5)

Here, the hyperbolic discount rate is denoted by k, and is measured in per time-units 1/[time].
As opposed to the exponential discount rate (where a certain percentage is discounted over
time), the hyperbolic discount rate does not provide an intuitive meaning. An example
application of the hyperbolic discount function follows in Example 2.2.

Sten Edvard Svedhem Master of Science Thesis



2-4 Comparing Exponential and Hyperbolic Discount Functions 9

Example 2.2. Similar to Equation 2.1 a future payment is expected. The hyperbolic discount
rate for this individual is estimated from historical data on similar transactions. The rate is
set at 0.25 per year. Using Equation 2-5, the hyperbolic discount function for this individual
and transaction is thus (displayed in Figure 2-2):

1

1) = 1+0.25¢

Payment of a thousand euros is expected in six months (half a year). The hyperbolically
discounted present value (PVy,,) of the transaction is then calculated using Equation 2-3.

PVhyp = f(0.5) Xo = -1000 = 888,89 €

1+0.125

A Hyperbolic Discount Function

T T

0.8 1

0.6 4

0.4 1

0.2 J

0.1r m

0 1 1 1 1 1
0 5 10 15 20 25 30

Time [years]
Figure 2-2: A hyperbolic discount function with a discount-rate of 0.25 per year

Hyperbolic discounting is described by economists as time-discounting with a diminishing
discount rate. In Figure 2-2 we can observe that the initial discount rate is steep, and flattens
out as time continues into the future.

2-4 Comparing Exponential and Hyperbolic Discount Functions

Two discount functions - an exponential and a hyperbolic functions - are plotted in Fig-
ure 2-3. The exponential discount function has a yearly (discrete-time) discount rate of
10 % per year; the hyperbolic discount function has a continuous-time hyperbolic discount
rate of 0.25 per year. The discount rates have been chosen arbitrarily to make a qualitative
comparison between the two functions.

Master of Science Thesis Sten Edvard Svedhem



10 Time-Discounting in Economics

Exponential versus Hyperbolic Discount Function

T

Exponential Discount Function
Hyperbolic Discount Function

0 5 10 15 20 25 30
Time [years]

Figure 2-3: An illustrative example of the differences in characteristics between exponential and
hyperbolic discount functions

It can be observed that the hyperbolic discount function discounts at a declining rate. Initially,
it discounts much faster than the exponential discount function. This also becomes clear from
the quantitative examples in Examples 2.1 and 2.2. The hyperbolically discounted present
value is much lower than the exponentially discounted present value. It can be observed from
Figure 2-3 that hyperbolic discounting assigns higher value to long-term events (longer than
15 years) than exponential discounting.

Integrating the exponential and hyperbolic discount functions over limitless time-horizon,
leads to an interesting insight. Whereas the integral converges for the exponential discount
function, it goes of to infinity for the hyperbolic discount function (see Equation 2-6).

o0 1 o 1
_Ttdtzf / dt: 2—6
/0 ¢ r o 1+ Kkt > (2-6)

As the hyperbolic discount function discounts at very low rates at time-instants far away, and
its integral does not converge, economists argue that the hyperbolic discount function should
be used when valuating intergenerational policies like pensions and climate-policy [29].

Another discount function has been developed to bridge between the exponential and hyper-
bolic discount function. The method is known as '8 — §’ discounting, or ’quasi-hyperbolic’
discounting, and is discussed in Appendix A. This function was first proposed in 1968 by
Phelps and Pollak [30], and has gained popularity through the work of David Laibson in
1997. The discount function is a modification of the discrete-time exponential discount func-
tion with a constant discount rate. It mimics the hyperbolic discount function, but remains
linear in time [5].
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2-4 Comparing Exponential and Hyperbolic Discount Functions 11

2-4-1 Dynamic Consistency

There exists a qualitative difference between the two time-discounting methods in economic
terms — economists call this dynamic (in)consistency [10, 26]. The concept is demonstrated
at the hand of Example 2.3.

Example 2.3. This ezample illustrates the concept of dynamic consistency (copied from [25]).

1. Choose between:

(a) One apple today.

(b) Two apples tomorrow.
2. Choose between:

(a) One apple in one year.

(b) Two apples in one year plus one day.

A consumer makes a decision for both problems. If given the possibility to alter his decision
in exactly one year, the consumer will stick with his initial plan if he time-discounts exponen-
tially. The time-difference between options (a) and (b) is equal. Under a constant exponential
discount rate, this will result in exactly the same decision. Therefore, economists call this
consumer dynamically consistent [25].

Dynamic-inconsistency occurs when different options are chosen for both problems. When
applying a hyperbolic discount method, the consumer might valuate an apple at the present
to be worth more than two apples the next day. The declining discount rate will however
always result in the choice for (b) in problem 2. Redeciding in one year might result in a
change of choice, which makes the consumer dynamically inconsistent by the standard of
economists [26].

As dynamically inconsistency is observed in actual behaviour, economists assume that con-
sumers apply a type of hyperbolic discount method [25].
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12 Time-Discounting in Economics

2-5 Standing Issues in the Study of Time-Discounting

The exponential discounting method is an inadequate model to describe behaviour [10, p. 14].
Empirical data shows that exponential discount rates are not constant, but are in fact declin-
ing. This is captured in a hyperbolic discount function by economists [24].

The hyperbolic discount function deals with critique on the exponential discount function
[10, 26]. Experiments on pigeons results in data that shows a strong correlation with a
hyperbolic discount function [24]. The exponential and hyperbolic discount functions have
been compared in further trials; results speak in favour of the hyperbolic discount function
for consumer behaviour [31].

Exponential discounting is unable to explain dynamically inconsistent behaviour, because of
its constant discount rate. Hyperbolic discounting is however able to explain and predict
dynamic-inconsistency.

Measuring time-discounting is a complicated task. Experimental data is heavily influenced
by the type of elicitation method used, and besides that real-world data is hard to collect
[29, 32]. The estimations of the discount function therefore vary widely among studies [10]. As
a consequence, predictions based on these estimations result in poor performance compared
to real-world behaviour.

Economists have thus far been unable to reach consensus on a general model for time-
discounting. Over 20 different discount functions have currently been proposed [15], but
many economists find empirical data to be anomalous with their predictions based on these
functions [10, 16]. Therefore, new methods should be developed to unify the existing theories
on time-discounting.
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Chapter 3

The Economic Engineering Analogy

The philosophy of approach of this thesis in presented in 3-1. The mathematical similarity
between the dynamics of a first-order system and exponential discounting is demonstrated.
This results in various questions that are answered by the economic engineering analogy.
An exposition of the economic engineering analogy follows. The chapter concludes with the
research frontier of the economic engineering framework.

3-1 Philosophy of Approach: Exponential Discounting as First-
Order Dynamics

Exponential time-discounting function shows similarity with the radio-active decay function.
The philosophy of approach is to understand time-discounting as for example, radio-active
decay. Where the radio-active decay is analogous to the depreciating value over time.

Exponential time-discounting is captured by the following equation (see Section 2-2):
X(t)=e " X(0) (3-1)

Where r is the exponential discount rate; X (t) is the present valuation of the economic event
at time ¢; X (0) is the valuation of the economic event if it were to take place instantaneously.

Equation 3-1 resembles the solution of a first-order differential equation. In this section
I investigate if, and how, this mathematical resemblance can lead to a useful mechanical
analogue. I start the investigation with a first-order mechanical system, consisting of a spring
and a damper.

Figure 3-1 depicts a first-order mechanical system. It consists of a linear spring and a linear
damper where the spring force Fyyring and the friction force Fiiction (exerted by the damper)
are given by Equation 3-2. The terms and their corresponding units are summarised in Table
3-1.

Fspring = k@ Fhiiction = 0% (3-2)
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14 The Economic Engineering Analogy

k |:jb

NONNNNN

Figure 3-1: A first-order mechanical system, consisting of a linear spring and a linear damper
(modified from [2, p. 223])

x  generalised position  [m] k spring constant {%J
&  generalised velocity {%} b damping coefficient [%}
F force {I‘E—Qm}

Table 3-1: Relevant terms system Figure 3-1

The equation of motion of the system in Figure 3-1 — a first-order spring-damper system
without external forcing — is given by Equation 3-3 [2].

bi+kz=0 (3-3)

From the equations of motion, the solution for z(¢) can be derived. The solution is given in
Equation 3-4 [2, p. 224].

2(t) = 2(0) e b (3-4)

By comparing Equation 3-1 and Equation 3-4 we can recognise that the function x(t) is anal-
ogous to the exponential discounting process. x(t) is the exponentially discounted valuation
of the event that is ¢ time-units in the future. z(0) is the valuation of the event occurring at
the planning instant. We can further conclude that the eigenvalue of the mechanical system
is analogous to the exponential discount rate. This means that the exponential discount rate
r is analogous to k/b [2].

The mechanical system can be interpreted as a discounting system as follows: The system
is initialised with an instantaneous valuation x(0), and the time is set to ¢ = 0 when time-
discounting is applied. The present valuation PV of the event occurring in the future is then
equal to the solution x(¢) that follows from the equations of motion. This can be seen as a
form of mental accounting, where a consumer takes the influence of time into consideration
for his valuation [33].

By analysing the exponential discount function through the mechanical system, the discount
rate has been decoupled into a spring- and a damping element. To successfully develop a
theory, answers to the following questions are however required:

e What are the economical analogues of the generalised position z, and the generalised
velocity &7

Sten Edvard Svedhem Master of Science Thesis



3-2 The Economic Engineering Framework 15

e What are the economical analogues of the constituents of the mechanical system (the
spring coefficient k& and the damping coefficient b)?

3-2 The Economic Engineering Framework

The economic engineering framework extends the mapping between the electrical and mechan-
ical domain to the economic domain. This allows the application of modelling and control
techniques from engineering science [20]. I discuss the following mechanical phenomena of
the mechanical-economic analogy: inertia, force, and energy. These phenomena are relevant
to the understanding of time-discounting.

3-2-1 Inertia Follows from Demand

The economic engineering framework is built around the economic analogies of generalised
position, generalised velocity, and momentum. The position variable ¢ is defined as the asset
stock, in this thesis handled using the generic unit [#]. In practice, the asset stock is measured
either in number of units, meters of textile, or kilograms of resource. The generalised velocity
is analogous to a flow of assets; positive flow increases the asset stock (out of production
or purchases), negative flow decreases the asset stock (because of consumption or sales).
Economic engineering defines price as analogous to momentum. Price is measured in euros
per unit [€/#]. Table 3-2 presents an overview of the central assumptions of economic
engineering [20].

Mechanics Economics

q position m asset #
m

q velocity — asset flow #

S yr

kgm . €

p  momentum price —

s #

Table 3-2: Central assumptions economic engineering
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16 The Economic Engineering Analogy

In classical mechanics, the linear momentum p is a function of velocity; p = p(¢). The
momentum is defined as the product of particle mass and its velocity, see Equation 3-5
[20, 34].

p=mq (3-5)

In economics, price and flow are connected through demand. Graphically, this is presented
through the demand curve, see Figure 3-2. The demand curve links the quantity demanded to
the reservation price. The reservation price is a consumers’ maximum willingness to pay, per
unit [3]. Economic engineering treats the quantity demanded as a flow of goods (quantity de-
manded over time ¢) [20]. As a consequence, the reservation price is analogous to momentum

p(4)-

RESERVATION
PRICE

QUANTITY DEMANDED

Figure 3-2: A typical demand curve found in economics textbooks (modified from [3, p. 6])

A central assumption in Newtonian mechanics is that mass is constant [35]. Taking into
account Equation 3-5, this implies that mass of a particle is equal to the change in momentum
divided by the velocity change:

0 d
m=2L=L (3-6)
dq dq
The demand curve in Figure 3-2 violates the equality in Equation 3-6. To ensure a constant
mass in the economic analogy, I infer Assumption 3.1 throughout this thesis. This assumption

is central in economic engineering [20].

Assumption 3.1. The demand curve is linear; the slope of the demand curve is thus constant.

Figure 3-3 depicts a linear demand curve. The downward sloping line implies a negative
value for ”"economic mass”; this is a misinterpretation however. When an exchange of trade
occurs, the supply price and the demand price have to be in opposite directions to fulfil
Newton’s third law of motion [36]. Furthermore, the velocities must also run in opposite
directions to correspond to either sales or purchases. These considerations are ignored in
economics, as these quantities are not treated as vectors in economics. Economic engineering
does include these considerations [20]. Table 3-3 formalises the definition of mass in the
mechanical-economic framework.
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3-2 The Economic Engineering Framework 17

PRICE

QUANTITY DEMANDED

Figure 3-3: A linear demand curve (modified from [3, p. 271])

Mechanics Economics

€yr
42

Table 3-3: Mass is analogues to the slope of the demand curve

m mass kg slope of the demand curve

3-2-2 Force as a Cost

Force is known as a cost in the economic engineering. Costs are measured in monetary units
per asset per time-unit. Acceleration is analogous to the time-derivative of the asset flow [20].

The total force acting on a particle is defined as the rate of change of its momentum. This is
known as Newton’s second law of motion. As mass is constant in both classical mechanics and
in the mechanical-economic analogy, force is equal to the product of mass m and acceleration,
see Equation 3-7 [34, 36].

F=p= " (mi)=mi (3-7)

The cost and acceleration analogy is summarised in Table 3-4.

Mechanics Economics
B . m s
G acceleration - flow change  —
s yr
kem €
F force g2 cost
S #yr

Table 3-4: Force in economic engineering

Springs and Dampers

The economic engineering analogues of springs and dampers are rent and depreciation respec-
tively. The analogue of the spring constant k is the rental rate. The damping coefficient b is
analogous to the depreciation coefficient [20].
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18 The Economic Engineering Analogy

The first-order system in Section 3-1 consists of a linear spring and a linear damper. A spring
is a store of distance, a damper dissipates energy from movement [20)].

Fspring =kq

Flriction = b q
The spring force is interpreted as a storage cost or the benefit of owning an asset (depending
on the sign). A damper is interpreted as dissipating value from a closed economic system.

For example, a sales tax dissipates value from the system only if a flow of goods ¢ is present
[20]. Table 3-5 summarises.

The rental rate k and depreciation coefficient b are not measurable quantities in economics.
This limits the application of the Newtonian method to model to real-world economic systems
using the economic engineering analogy [20].

Mechanics Economics
k €
k stiffness —g rental rate o
S #2yr
: : kg - .
b damping coefficient — depreciation coefficient e
s

Table 3-5: Mechanical elements in economic engineering

3-2-3 Energy as a Cash Flow

A damped second-order mechanical system exhibits three types of energy: kinetic energy,
potential energy, and heat. In economics these represent various types of cash flows. They
are discussed in this section.

The energy of a mechanical system is defined as the time-derivative of its force multiplied
with its velocity, see Equation 3-8 [2]. Cash flow is the economic analogue of energy, and is
measured in monetary units per year, see Table 3-6 [20].

E= / Fgdt (3-8)
Mechanics Economics
k 2
U energy g72n cash flow —
s yr

Table 3-6: The economic engineering energy analogy

Kinetic Energy

The definition of kinetic energy follows from expanding Equation 3-8, see Equation 3-9 [2,
p. 21]. It becomes apparent that the kinetic energy is defined by the variation of the momen-
tum, or the price in economics [20].

d
Ban = [ Fadt= [ -qat= [aap (3-9)
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3-2 The Economic Engineering Framework 19

The economic analogue of kinetic energy is consumer surplus. Consumer surplus is the total
utility received minus the nominal price value of the good [3, ch. 14]). Figure 3-4 depicts
a demand curve. The curve represents a consumers price valuation of the good per flow
quantity. At price p, the surplus from consumption is then represented by the shaded area in
Figure 3-4.

PRICE

QUANTITY DEMANDED

Figure 3-4: Kinetic energy is analogous to the surplus from consumption (modified from [3,
p. 256])

Standard economic practice is to measure the return of consumption in utility units, named
utils [3, ch. 4]. However, money metric utility measures utility in monetary units. Where one
util is equal to one monetary unit. Therefore, consumer surplus is a virtual cash flow (the
extra utility gained from consumption, measured in monetary units) [37, ch. 10].

Potential Energy

Potential energy is stored in distance q. Expanding Equation 3-8 leads to the representation
of the potential in Equation 3-10. Example 3.1 provides intuition on the cash flow that is
analogous to potential energy.

Epot = /qut: /Fspring dq (3'10)

Example 3.1 (Parking Delft City Centre). A parking permit in the city centre of Delft costs
165 €/yr for the first car. A permit for a second car and above will cost the resident 474 €/yr
per car [38].

Summarising this information in the economic engineering framework results in the following
equation for the cost Fopping:

€
Foprine(q) = 165 o for0<qg<1
preng 474 #éyr forqg>1
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20 The Economic Engineering Analogy

The cash flow to be paid for having two parking permits in the city center of Delft then follows
from Equation 3-10 (where the integration takes place over the two parking spots q).

2 €
Epot = / Fspring dq =639 —
0 yr

Heat

Friction forces result in dissipation in a mechanical system [36]. The energy exits the system
in the form of heat, and is directly dependent on the velocity, see Equation 3-11 [20].

Q = /Fdamper th (3—11)

Depreciation is the economic engineering analogue of dissipation. Heat is then analogous to
the depreciated value [20].

3-3 Research Frontier of Economic Engineering

Economic engineering provides a basis to model economic phenomena and processes using
engineering modelling methods. Previous theses within the economic engineering group have
modelled the labour market, leasing companies, and monetary policy [39, 40, 41]. Others
have researched economic applications of Lagrangian and Hamiltonian mechanics [42, 43].

The economic engineering framework does not provide a straightforward method to model
time-discounting, even though it answers the questions that have come forward in Section
3-1. The following points need to be addressed:

e The economic engineering framework must find a way to reproduce existing discount
functions.

e The economic engineering analogies k and b as the rental rate and depreciation coefficient
do not represent economic quantities. Example 3.1 uses the analogue of a spring force
as it represents an economic quantity, namely the price of a parking place per year.
Defining time-discounting will thus require different parameters that allow a practical
economic interpretation.
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Chapter 4

Time-Discounting as Mechanical
System Dynamics

This chapter applies the economic engineering framework the hyperbolic time-discounting
theory. A mechanical discount function is proposed in Section 4-1 to make the economic engi-
neering framework compatible with economic theory. This allows a comparison between the
economic engineering approach and economic theory. The overdamped second-order system
exhibits hyperbolic behaviour that can be seen in hyperbolic discounting; this is investigated
in Section 4-2.

The economic engineering framework is limited as its analogues for the spring constant and
damping coefficient are not measurable quantities in economics. In Section 4-3 the dynamics
of the damped harmonic oscillator are proposed as the economic engineering representative
for time-discounting. This allows the various parameters of the damped harmonic oscillator
to be interpreted economically, which is done in Section 4-4. Section 4-5 concludes.

4-1 A Mechanical Discount Function Based on System Dynamics

Economists regress empirical data on discount functions [44]. The economic engineering
analogy reproduces economic data through dynamical system models [20]. I synchronise the
two approaches by constructing a ‘mechanical’ discount function based on system dynamics.

The time-discounting process is governed by the following equation (see Chapter 2):
X(t) = f(t) X(0) (4-1)

X(t) is the present valuation of an economic event in the future. X(0) is the valuation of the
same event occurring at t = 0. The discount function f(¢) relates the two. Rearranging this
equation results in:

Ft) = S0t (42)
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22 Time-Discounting as Mechanical System Dynamics

Momentum in physics is analogous to the reservation price economics (see Chapter 3). Under
the assumption of money metric utility the present valuation X (¢) is analogous to momentum
p(t). Therefore, the mechanical discount function for the economic engineering framework is:

p(t)
t) = —= 4-3
f mech( ) p(O) ( )
The mechanical discount function is defined as the dynamics of the reservation price (all
valuations of the economic event taking place in the future) divided by the reservation price

at t = 0. Or simply put: the normalised reservation price.

4-2 Hyperbolic Discounting as Overdamped Second-Order Dynam-
ics

The mechanical second-order system is depicted in Figure 4-1. The system consists of a mass,
spring, and a damper. The economic engineering analogies of these elements are the price
elasticity, rental rate, and depreciation constant respectively (see Chapter 3.

4,4,
k
—

1]
—L1p

m

ANANANANANAN

Q0

Figure 4-1: The second-order mechanical system (modified from [2, p. 246])

The system dynamics are captured by the equation of motion. The equation of motion of the
second-order system is presented in Equation 4-4 [2].

mi+bi+kqg=0 (4-4)

The progression of the reservation price p(t) is derived from the equation of motion. The
derivation is carried out in Appendix B. The progression of the reservation price is given in
Equation 4-5.

p(t) = e Pt po cosh (woq t) + (m Go Wod — B mﬁf}o-ﬁ-po) sinh (woq t) (4-5)
od

For ease of notation § is defined in Equation 4-6. Furthermore, the overdamped frequency
Wod 18 defined in Equation 4-7. The initial conditions are given by ¢(0) = ¢go and p(0) = po
respectively.

=
Il
|

(4-6)

Wod =1/ B% — k/m (4-7)
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4-2 Hyperbolic Discounting as Overdamped Second-Order Dynamics 23

From Equation 4-5, it can immediately be observed that hyperbolic effects are present in the
system. Both the hyperbolic sine and hyperbolic cosine are found in the equation. This
strengthens the hypothesis that the overdamped second-order system can be used as an
analogue for hyperbolic time-discounting.

It can be recalled from Section 2-3 that the hyperbolic discount function is given by Equation
4-8, where k is the hyperbolic discount rate. The function is plotted for various values of the
discount rate in Figure 4-2.

1

fhyp (t) = m

(4-8)

Hyperbolic Discount Functions with Differing Rates

T T
\ k = 17[%l/yr]
0.9 k = 30[%lyr] | |
k = 70[%/yr]
0.8 | \ k =120[%/yr] | |
\ k =200[%/yr]
0.7 1
0.6 [ 1
L205F — 1
0.4} R
\\
0.3 1
0.2 [ 1
0.1f T
0 Il Il Il Il Il Il Il Il Il

0 05 1 15 2 25 3 35 4 45 5
Time [yr]

Figure 4-2: Hyperbolic discount functions with differing hyperbolic discount rates
The proposed mechanical discount function is plotted against the hyperbolic discount function

in Figure 4-3. The system parameters have been chosen such that the system is overdamped
(B8 > k/m [2]). The system parameters are:

em=1 €#};r
¢« b=10
e k=5 #2€yr
The initial reservation price is set at pg = —3 % The initial asset stock is set at gg = 3 #.

The hyperbolic discount rate for the economic discount function is set at 200 %/yr.

We observe in Figure 4-3 that the mechanical discount function initially discounts quickly,
and then transitions into a slower discount around ¢ = 0.4 yr. This can be explained by the
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24 Time-Discounting as Mechanical System Dynamics

Melchanical Discount Functions versus Hyperbolic Discount Function

- fmech
—— Hyperbolic Discount Function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [yr]

Figure 4-3: The proposed mechanical discount function versus the hyperbolic discount function

fact that the overdamped second-order system has a fast and a slow eigenvalue; initially the
fast eigenvalue is dominant, later the slow eigenvalue takes over.

The economic hyperbolic discount function initially discounts faster, and transitions into a
slower discount later on. The transition is smoother than the mechanical discount function.
This can be explained by the fact that the discounting behaviour is determined by a single
discount rate, whereas the mechanical discount function relies on two different eigenvalues
(one fast short term, and one slow longer term eigenvalue).

In Figure 4-4 the mechanical discount function is plotted against the 5 — d-discount function
(see Appendix A) which was briefly discussed in Chapter 2. The discrete-time discount func-
tion is given in Equation 4-9. The 8 — §-function in Figure 4-4 has the following parameters:
B = 0.5 (dimensionless); § = 0.8 (dimensionless); the time-step is At = 1/2 yr.

f(r)=p30" where: 7=1{0,1,2,...} (4-9)
t=T1At

The discrete-time 8 — d-function discounts with a factor S in the first time-step, and addi-
tionally discounts ¢ for all time-steps. The -parameter thus acts as the fast initial discount,
whereas the §-parameter is a slow discount rate that is linear in time. This further strengthens
the idea that the hyperbolic time-discounting process consists of two eigenvalues (one fast,
one slow).

The mechanical discount function is able to mimic both the hyperbolic discount function
and the 8 — d-discount function. This is based on the hand-tuned system. Minimum variance
parameter estimation will result in further convergence. The overdamped second-order system
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4-3 The Damped Harmonic Oscillator as a Time-Discounting System 25

Mechanical Utility Discount Function Versus § — ¢ Discount Function

1
0.9 IT - fmech
| ——— (-6 Discount Function
0.8 f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [yr]

Figure 4-4: The mechanical utility discount function resembles the 5 — § discount function

is therefore an effective analogue for hyperbolic time-discounting. By applying the economic
engineering framework, time-discounting dynamics can now be provided by an analogous
mechanical second-order system.

4-3 The Damped Harmonic Oscillator as a Time-Discounting Sys-
tem

This section addresses the following issue: The economic engineering variables b and & (the
depreciation coefficient and the rental rate) are not readily available in economics. In this
section, I therefore switch to the damped harmonic oscillator representation of the second-
order system. Doing so allows extension of the economic engineering framework by finding the
correct economic engineering analogues of the parameters of the damped harmonic oscillator.
This extension is carried out in Section 4-4.

The harmonic oscillator is, similar to the second-order system, a system that moves to restore
to its equilibrium position when a displacement is applied. It is of interest as the system
is described through, among other parameters, its natural frequency. Economic dynamic
behaviour is described in rates, which should be interpreted as frequencies [20]. The equation
of motion of the damped harmonic oscillator is given in Equation 4-10 [2].

G+20wnG+wiq=0 (4-10)

The system is described through the damping ratio ¢, and the undamped natural frequency
wp, which is the undamped oscillation rate. The natural frequency is defined in Equation
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26 Time-Discounting as Mechanical System Dynamics

4-11 [2].

k
Wp =4 — 4-11
sy (1)
The damping ratio is defined in Equation 4-12 [2]. By substituting the definitions of the
damping ratio and the natural frequency into Equation 4-10, the original equation of motion
of the second-order system in Section 4-2 is retrieved.

b b
2mw,  2vVmk

The characteristic equation of the equation of motion of the damped harmonic oscillator is
given in Equation 4-13 [2].

(= (4-12)

s2+ 20w s +w2 =0 (4-13)

The eigenvalues of the system follow by solving the quadratic Equation 4-13:
$12 = —Cwn £/ w? —w? (4-14)

4-4 Extending the Mechanical-Economic Framework

In this section the economic engineering framework is extended. The damped harmonic
oscillator is considered as a time-discounting system. This requires the damping ratio ¢ and
eigenfrequency w,, to be linked to economic variables.

4-4-1 The Eigenvalues Provide the Exponential Discount Rate

The eigenvalues of the second-order time-discounting system system are economically inter-
preted in this subsection. In Section 3-1 it was shown that the eigenvalue of a first-order
mechanical system was analogous to the instantaneous exponential discount rate from expo-
nential discounting theory. This subsection investigates if a similar analogy counts for the
second-order mechanical system.

The eigenvalues of the damped harmonic oscillator are given in Equation 4-14. They can be
further expanded to be defined for the under-, critically-, and overdamped system respectively,
see Equation 4-15.

—Cwp £ iwpy/1 — (2 if¢<1
51,2 = f(wn +e if C =1 (4—15)
—Cwp £ ewpy/C2 -1 if¢>1

Here, i is the complex number with the property i> = —1; ¢ is the dual number with the
property €2 = 0; and ¢ is the double number with the property €2 = 1. They correspond to

circular-, parabolic-, and hyperbolic geometry respectively [45].
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4-4 Extending the Mechanical-Economic Framework 27

The solution for the reservation price progression over time, takes the form of Equation 4-16;
where P; and P» follow from the initial conditions of the system [2].

p(t) = Pre?! + Pye! (4-16)

The eigenvalues in Equation 4-15 have a special structure where the eigenvalues for all three
domains (under-, critically-, and overdamped) are complex-, double-, or dual conjugate with
equal real part. This is summarised in Equation 4-17; where y denotes either the complex-,
double-, or dual number depending on the domain of the system.

sip=azxby a,beR (4-17)

Recognizing the structure of the eigenvalues allows the expansion of the form of the reservation
price in Equation 4-16. The real part of the eigenvalues are separated from the circular-,
parabolic-, and hyperbolic effects of the system, see Equation 4-18.

p(t) = et (P! 4 Petvt) (4-18)
= e~%nt x (Second Order Effects) (4-19)

By doing so, the first-order effects have effectively been separated from the second-order
effects of the system, see Equation 4-19. The first-order effect is one of a constant discount
rate, whereas the second-order effect can result in oscillatory or hyperbolic behaviour.

From Section 3-1, we know that the eigenvalue of the first-order system is analogous to the
exponential discount rate. From the structure in Equation 4-19 it becomes clear that for
the second-order system the exponential discount rate is analogous to the real part of the
eigenvalues. Table 4-1 summarises.

Mechanics Economics
Cwp decay rate/envelope yr—!

exponential discount rate yr—!

Table 4-1: Exponential discount rate analogy

4-4-2 The Damping Ratio as the Time-Preference

The damping ratio ¢ is economically interpreted in this subsection. The damping ratio is
a dimensionless parameter that varies for underdamped- (¢ < 1), overdamped (¢ > 1), or
critically damped ({ = 1) second-order systems. The influence of the damping ratio can
be investigated by varying the value of the damping ratio while other parameters are kept
constant.

Figure 4-5 shows the hyperbolic discount function for increasing hyperbolic discount rates.
Figure 4-6 shows the mechanical discount function for increasing values of the damping ratio

(. Both Figures are presented on page 30. Where m = 5 %, wp = 0.08 yr~!, and with
initial conditions ¢(0) = 3 and p(0) = —1. The mechanical discount function is defined as in

Section 4-1: fiech = %.
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28 Time-Discounting as Mechanical System Dynamics

The dynamics of the reservation price p(t) for the overdamped harmonic oscillator are derived
in Appendix C-2, and is given by:

p(t) = e Cwnt po cosh (woq t) + (m Go Wod — Cwn W) sinh (woq t) (4-20)
od

The definition of time-preference can be recalled from Chapter 2 (Definition 2.2): Time-
preference is a measure for the preference for immediate utility over delayed utility. This
means that an increased time-preference translates to a steeper discount function [10]. In
Figure 4-5 this means that a higher time-preference is linked to a higher discount rate.

Increasing the damping ratio results in a steeper discount function, this can be observed
in figure 4-5. This is effect is similar to increasing the hyperbolic discount rate, which can
be concluded from Figure 4-6. It can thus be concluded that the damping ratio is in fact
analogous to the time-preference of the economic system. This is summarised in Table 4-2.

Mechanics Economics
¢ damping ratio — time-preference factor —

Table 4-2: Time-preference analogy

4-4-3 The Natural Frequency as the Risk-Free Discount Rate

The natural frequency is economically interpreted in this subsection. The critically damped
system is considered for this purpose, which means that the damping ratio is set to { = 1.
This allows for a qualitative comparison between the properties of the system and economic
properties.

The critically damped system will return to the equilibrium position in the shortest amount
of time [46]. This means that the economic system will discount only for exogenous variables,
and not for behavioural effects. The exogenous effect that needs to be discounted for is that
of interest [11]. The discounted reservation price will take the following form (by substituting
¢ = 1 into Equation 4-19):

p(t) = e “mt x (Second Order Effects) (4-21)

By eliminating the behavioural effects (damping ratio) from the equation it becomes clear that
the critically damped system only discounts the natural frequency. The natural frequency
thus compensates for the rate of interest. The discount rate that compensates for the interest
rate is known as the risk-free rate, or risk-free discount rate [3]. Table 4-3 summarises.

Mechanics Economics
T

1

wp natural frequency yr—' risk-free discount rate yr—

Table 4-3: Natural frequency analogy
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4-5 Conclusion: Economic Engineering Models Hyperbolic Discounting 29

4-5 Conclusion: Economic Engineering Models Hyperbolic Dis-
counting

The economic engineering framework has been made compatible with existing economic time-
discounting theory by defining a mechanical discount function in Section 4-1. This has allowed
a comparison between the overdamped second-order system as a time-discounting system and
both the hyperbolic and 5 — ¢ discount functions in Section 4-2. From this comparison it was
concluded that the overdamped second-order system is a valid representative for hyperbolic
time-discounting dynamics.

To increase understanding of time-discounting within the economic engineering framework
the damped harmonic oscillator was adopted in Section 4-3. This allowed for a practical
economic interpretation of the parameters of the mechanical time-discounting system. This
was carried out in 4-4 and is summarised in Table 4-4.

The focus of this chapter has been the application of the economic engineering framework to
time-discounting theory. The straightforward method was to use the analogy between hyper-
bolic discounting theory and the overdamped second-order system. With known economic in-
terpretations of the parameters of the mechanical time-discounting system, the underdamped
and critically damped systems can be investigated. This will be carried out in Chapter 5.

Mechanics Economics
¢ damping ratio — time-preference factor —
Wn, natural frequency — yr—! risk-free discount rate yr—!

1

Cwy, decay rate/envelope yr~' exponential discount rate yr~

Table 4-4: Extensions of economic engineering
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30 Time-Discounting as Mechanical System Dynamics

Hyperbolic Discount Functions with Differing Rates
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Figure 4-5: Hyperbolic discount functions with differing hyperbolic discount rates
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Figure 4-6: Various values for damping ratio for the damped harmonic oscillator
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Chapter 5

The Damped Harmonic Oscillator as
an Economic Representative

The goal of this thesis is to unify economic time-discounting theory by applying the economic
engineering framework. The hypothesis is that the second-order damped harmonic oscillator is
able to provide the dynamics of the discounting paths described in economic theory. The two
dominant economic time-discounting theories are exponential and hyperbolic discounting [10].
The dynamics of hyperbolic discounting theory were reproduced in the previous chapter. This
chapter is dedicated to the dynamics of exponential discounting, represented by the critically
damped system, and the economic interpretation of the underdamped system.

Section 5-1 contains the investigation of the hypothesis that the critically damped system
provides the exponentially discounted dynamics. Section 5-2 is dedicated to the economic in-
terpretation of the remaining underdamped harmonic oscillator dynamics. Section 5-3 further
investigates the role of the eigenvalues of the economic engineering time-discounting system.
Section 5-4 concludes.

5-1 Exponential Discounting as Critically Damped Dynamics

A critically damped system returns to its equilibrium position along the shortest possible
trajectory [46]. From Section 4-4-3 we know that this translates to time-discounting taking
place without behavioural influences. Therefore, it can be stated that { = 1 is time-preference
neutral behaviour.

Financial industries apply time-preference neutral discounting [15]. Therefore, an exponential
discount function is applied. The choice for this discount function relies on two qualitative
properties: its simplicity and the fact that it is dynamically consistent (see Section 2-4-1)
[10, 12]. This section investigates the hypothesis that the critically damped time-discounting
system represents the form of time-discounting that the exponential discount function exerts.
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32 The Damped Harmonic Oscillator as an Economic Representative

That exponential time-discounting function is formulated as follows (see Chapter 2):
X(t) =e " X(0) (5-1)

The present valuation of future consumption X (¢) is equal to the discounted instantaneous
consumption X (0). The exponential discount function is given by f(t) = e~", where r is the
instantaneous exponential discount rate. Figure 5-1 shows the exponential discount function
for differing yearly discount rates.

Exponential Discount Functions with Differing Rates

r =10[%/yr]
091 r =20[%/yr] | ]
r =40[%l/yr]
0.8 | r =65[%/yr] | 7
0.7 .
0.6 ]
L6051 .
4 |- -
0 \\\
03r ]
0.2 .
01r |
O Il Il Il Il Il Il Il I

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Time [yr]

Figure 5-1: Exponential discount functions with differing exponential discount rates

The critically damped harmonic oscillator results in the following definition for the reservation
price (derivation in Appendix C):

pt) = et (po — o (mendo + po) t) (52)

It can be observed that the system exponentially discounts two terms: the valuation at ¢t = 0
and a time-dependent term. Comparing Equations 5-1 and 5-3 it should be noted that both
are discounting the valuation at ¢ = 0. The risk-free discount rate w, and the exponential
discount rate r are not equivalent in economic definition however.

p(t) = e~ <p0 —wn(mwngo + po) t) (5-3)
st 2nd order effects
exp. disc.

Figure 5-2 shows the exponential discount function plotted against the mechanical discount
function from Chapter 4 ( fiech = %). A discount is applied to compensate for 10 % annually.

The parameters and initial conditions are given in the table below.

It can be observed that the resulting discount functions are almost equivalent for the given
parameters. Even though exponential discounting is a first-order process and the damped
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5-2 Trading Behaviour as Underdamped Dynamics 33

wn:—lno.9¢ g =3 #
m:3% Po = %
r:—ln0.9$

Table 5-1: Parameters and initial conditions dynamics plotted in Figure 5-2

Me(1:hanical Discount Functions versus Exponential Discount Function
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— Exponential Discount Function

0.8 [

0.6 [

04

0.2

Time [yr]

Figure 5-2: The mechanical discount function versus the exponential discount function

harmonic oscillator is a second order system. From this it can be concluded that the critically
damped harmonic oscillator at least under some conditions is able to represent exponential
discounting.

The damped harmonic oscillator is able to represent hyperbolic discounting when it is over-
damped, and exponential discounting when it is critically damped.

5-2 Trading Behaviour as Underdamped Dynamics

In this section, the underdamped dynamics of the damped harmonic oscillator are investigated
and interpreted in economic terms. Whereas the critically- and overdamped systems where
linked to the exponential and hyperbolic discounting theories, I have found no economic
literature on sinusoidal discounting. The hypothesis is that there is an economic interpretation
to the underdamped time-discounting system despite missing economic literature.

The damped harmonic oscillator is underdamped for damping ratios/time-preference factors
0 < ¢ < 1[2]. The reservation price dynamics are derived in Appendix C and shown in
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34 The Damped Harmonic Oscillator as an Economic Representative

Equation 5-4.

p(t) = e “nt pg cos (wa t) — (m gowd + Cwn W) sin (wq t) (5-4)
wd

here, wy is called the damped frequency, and is defined as [2]:

Wi = wny/1 — ¢2 (5-5)

Figure 5-3 shows the mechanical discount function for the underdamped system. The pa-

rameters are: m = 3 i‘ig‘y, wyn, = 100 df’w = 0.02. The initial conditions are: gy = 0# and

—90 €
po = 20 7
Underdamped Mechanical Discount Function

0.8

04r

_04 -

-0.8 1

1 1 1 1 1 1 1 1 1 1 I

0 5 10 15 20 25 30 35 40 45 50
Time [days]

Figure 5-3: Discounting behaviour of a trader

It can be observed that the underdamped discount function shows oscillations with decreasing
amplitude. Furthermore, the discount function oscillates around 0, and thus also takes neg-
ative values. This conflicts with the assumptions economists have made about the discount
function, namely that f(t) € [0, 1] [26, 28]. I relax this assumption however, so that the
mechanical discount function may take negative values as well.

The underdamped dynamics can be interpreted as the behaviour of a trader. A trader wants
to sell (negative discount function values) goods when they are overpriced and purchase
(positive discounting values) goods when they are cheap [47]. The underdamped mechanical
discount function is particularly fit to model trading in a cyclical or volatile market. In a
such a market price dynamics oscillate around a underlying "true value" price [48, 49].
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5-2 Trading Behaviour as Underdamped Dynamics 35

Figure 5-4 highlights the discounting envelope of the discount function. The discounting
envelope is equal to:

Discouting Envelope = e~¢“n? (5-6)

The discounting envelope is an exponential, which translates economically to the trader dis-
counting the amplitude of the oscillations linearly in time.

Underdamped Mechanical Discount Function

_1 | 1 1 1 |
0 10 20 30 40 50

Time [days]

Figure 5-4: The underdamped discounting envelope is an exponential

The damped frequency in Equation 5-5 is the rate of the oscillations of the system. The
damped frequency is dependent on the time-preference factor ¢ and the natural discount rate
wy, (see Equation 5-5). A time-preference closer to 0 implies a higher damped frequency; a
time-preference closer to 1 implies a lower damped frequency.

A trader wants to match his discounting frequency with the frequency of the price move-
ments of securities. Econometric science has developed several techniques to detrend price
movements resulting in its underlying sinusoidal movements [48]. These sinusoids are then
synchronised with the discounting behaviour to maximise capital gains [49].

Figure 5-5 shows the time period of the damped oscillation. The trader matches this time
period with the market cycle, which allows him to make a profit. The damped frequency is
thus analogous to the frequency of the market cycle (formalised in Table 5-2).

Mechanics Economics
1 volatility rate/market cycle frequency yr—

wq damped frequency yr~ 1

Table 5-2: Damped frequency analogy
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36 The Damped Harmonic Oscillator as an Economic Representative

Underdamped Mechanical Discount Function

Market Cycle Time Period
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Figure 5-5: The duration of a market cycle is analogous to the time period of the damped
oscillation

5-3 The Eigenvalues Reveal the Discounting Behaviour

The economic interpretation of the dynamics of the underdamped harmonic oscillator com-
pletes the understanding of the dynamics of the damped harmonic oscillator as an economic
representative. The economic engineering time-discounting system can be summarised as
follows:

e Underdamped dynamics: Trading in cyclical or volatile markets (see Section 5-2).
e Critically damped dynamics: Exponential discounting (see Section 5-1).

e Overdamped dynamics: Hyperbolic discounting (see Section 4-2).

The type of economic behaviour is a consequence of the time-preference factor (. By plotting
the eigenvalues in a three dimensional system (real-, imaginary-, and hyperbolic axis), the
various behaviours can clearly be distinguished. The eigenvalues for the damped harmonic
oscillator are given by:

—Cwp Eiwpy/1 — (2 if¢<1
s12 =4 —Cw, +¢ if¢=1 (5-7)
—Cwp Eewp/C2—1 if¢>1

Figure 5-6 plots the normalised eigenvalues (s12/wy) of the damped harmonic oscillator for
the values ¢ € [0,4]. It can be observed that:
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5-3 The Eigenvalues Reveal the Discounting Behaviour 37

e The overdamped system, representing hyperbolic discounting, has eigenvalues that lie
on an actual hyperbola. The asymptotes are in the real-hyperbolic plane: + (wy, €.

e The eigenvalues meet at ( = 1, and make a 90° angle out of the complex plane when
increasing (,

Exponential discounting takes place when ¢ = 1, and the eigenvalues meet at the point —1
on the real axis. It can be recalled from the previous section that the discounting envelope
for the underdamped system is also a single exponential path. It can be inferred that with
eigenvalues in the complex plane, the system is exponentially discounted.

In economic terms, it can be said that on the hyperbolic axis is where consumer behaviour
takes place. A large distance between the eigenvalues implies a higher time-preference. Fi-
nancial institutions operate within the complex plane; a constant discount is used to calculate
the present value of future gains, and a trader matches his or her trading frequency with the
rate of market cycles.

Normalised Eigenvalues (51 2J'wn)

Trader Discounting
s Hyperbolic Discounting

Exponential Discounting
3 - Exponential Plane
2 —
)
; 1 —
@®
L —
807
o]
=
17
2
-3 -

M ——

_ 4 -1
¢=1-1¢=0 : :
Real axis Imaglnary axis

Figure 5-6: Normalised eigenvalues of the mechanical discounting system
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38 The Damped Harmonic Oscillator as an Economic Representative

Mec?anical Discount Functions over Different Time-Preference Domains
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Figure 5-7: Discounting behaviours of the damped harmonic oscillator

5-4 Conclusion: The Damped Harmonic Oscillator Represents Eco-
nomic Behaviour

The exponential discounting theory has been shown to be represented by the critically dis-
counted harmonic oscillator under certain conditions. Economic engineering therefore pro-
vides a link between the hyperbolic (overdamped) and exponential (critically damped) dis-
counting theories.

Furthermore, an economic interpretation has been given of the dynamics of the underdamped
harmonic oscillator. The discounting envelope is discounted exponentially, whereas the dis-
counting itself is a sine that oscillates between the envelope boundaries.

The damped harmonic oscillator allows inspection of the eigenvalues, which reveal the dis-
counting behaviour. Looking at a visual representation, the different discounting domains
(trader, exponential discounting, hyperbolic discounting) become apparent. Figure 5-7 shows
how the same system represents all three behaviours. Economic engineering has thus provided
a time-discounting system that unifies existing time-discounting theories.
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Chapter 6

Discussion and Future Research

6-1 Discussion

Time-discounting is captured by mechanical system dynamics through extension of the eco-
nomic engineering analogy. Previous models for time-discounting rely on regression of data
on predefined functions, whereas the extended economic engineering framework provides a
model based on economic first principles [10, 20].

The mechanical discount function takes the following form:

Frmean(t) = p(0)™* (P1 e’ + Py e”t) (6-1)

where s; and s9 are two conjugate complex valued eigenvalues of the economic system. This
discount function describes time-discounting by the summation of two exponentials. Such a
model has previously been proposed in behavioural economic literature, namely two expo-
nential discounting [15, 50]. The two exponential discount function is given by:

f@)=we ™+ (1 —w)e 2! (6-2)

where r1 and ry are two real valued discount rates, and w is a weighting factor.

Two exponential discounting uses two arbitrary real-valued discount rates, whereas the eco-
nomic engineering eigenvalues are conjugate, and are valued with a real component and a
complex-, dual-, or double component. The eigenvalues are defined by the time-preference
and the risk-free discount rate, whereas the two exponential discount function relies data-
fitting two discount rates and a weighting factor [50].

A single discount rate defines the exponential and hyperbolic discount functions, whereas this
thesis proposes the use of three parameters: mass, natural frequency, and damping ratio.
Although the simplicity of the exponential and hyperbolic discount functions is favored by
some scholars [14], previous research indicates that it is likely that more than one parameter
will be required to accurately describe time-discounting [44].
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40 Discussion and Future Research

Parameter estimation complicates practical application of the extended economic engineering
framework. The time-preference factor (analogous to the damping ratio) is not an existing
economic parameter with a cardinal scale, and will thus need to be investigated and calibrated
by economists. Exact data about demand and the risk-free discount rate is not readily
available in every situation and may also require estimation. Parameter estimation therefore
also relies on data-fitting with the extended economic engineering framework.

Despite increasing academic interest, behavioural economists have made limited progress in
describing the fundamentals of time-discounting and providing a generally accepted model
thereof [10, 6]. The extension of economic engineering in this thesis bases time-discounting
on economic first principles and captures exponential- and hyperbolic discounting behaviour
with the same system.

6-2 Future Research: The Consumer as a Model Predictive Con-
troller

This thesis is restricted to modelling time-discounting dynamics using the economic engineer-
ing framework. Economists study consumption planning through the utility maximisation
problem. This is a maximisation problem where the consumer optimises for utility over con-
sumption bundles that are affordable with the consumers’ wealth level. The problem is given
by [51, p. 50]:

max u(z) (6-3)

subject to  p-x <w (6-4)

where u(x) is the utility function that returns the utility for the given consumption bundle
x. The purchase price is denoted by p and the wealth level is denoted by w.

This optimisation is a static problem that only considers consumption in one time-period.
Attempts have been made to model consumer behaviour by including future time-periods
and considering income, savings and liquid assets [5]. In this model the consumer optimises
his consumption path at every time-step. I therefore propose to extend the field of economic
engineering by modelling the consumer as a Model Predictive Controller (MPC).

The time-discounting model developed in this thesis functions as the dynamic model of the
plant. Outputs of the system are the level of utility, as well as the consumers liquid and
illiquid assets. The consumer has a certain standard (views of its utility it deserves, and
growth of his liquid and illiquid assets) which functions as the reference signal. The issue of
self-control is then modelled as a tracking problem.

The consumer makes estimations of future utility levels and his (il)liquid assets based on
the current time-step g(k + j|k) (where j is an arbitrary future time-step). These estimates
follow from the consumers allocation of resources, who decides what and how much is to be
consumed or saved. These are the inputs u(k) to the system. A Model Predictive Controller
considers the system evolution over a prediction period N, [4]. Therefore the following in-,
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output and reference vectors are defined for the consumer:

a(k) = W' (k) . Wl Ny -] (6-5)
gy = [Tk +1R) . 9T+ MR (6-6)
Fk) = [rT(k) .. 1Tk + N, = 1) (6-7)

The consumer optimises his consumption plan by minimising his cost function J for every
time-step. In conventional MPC the cost function penalises both the tracking error and the
control effort [4]. The cost function has the following form:

(k) =[g(k) — 7 (k)| + Allak)| 3 (6-8)

where @Q and R are positive definite matrices that penalise the tracking error and the control
effort respectively. A is a nonnegative integer which is used as a tuning parameter in MPC
[4]. Figure 6-1 shows the control scheme of the MPC.
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control horizon _

prediction horizon
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Figure 6-1: Representation of the MPC control scheme [4]

The MPC allows extra constraints to be imposed on the optimisation. This is advantageous
since it allows known restrictions from economics to be implemented. Examples are (ignoring
interest rates) [5]:

Consumption [€] < Salary [€] + Liquid Assets [€] (6-9)
Salary + Assets (k — 1) — Consumption = Assets (k) (6-10)

The cost function allows for a real-life interpretation as it is a measure for how much a person
struggles with his consumption path under his life conditions. If he feels like he is not receiving
the amount of utility he deserves he will penalise the tracking error through the ) matrix
(this can be caused by unrealistic views of his standards, the reference signal, or his own
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views of his model dynamics are inadequate). A (responsible) family with newborn children
aims for stability, and will thus penalise the control effort through the R matrix.

The MPC consumer model will open up for disciplinary work with social sciences. Where are
problems found with drug addictions? Are these individuals discounting irresponsibly? Are
they no longer optimising their cost functions or do they use improper metrics (optimisation
algorithm)? Is their prediction horizon too short, or do they have an unrealistic reference
signal? The MPC based consumer model will lead to ample exciting research opportunities.
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Chapter 7

Conclusions

This research captures time-discounting through the dynamics of a mechanical system. The
mechanical system unifies existing time-discounting theories from economics. The over-
damped harmonic oscillator provides hyperbolic and quasi-hyperbolic time-discounting dy-
namics. The critically damped harmonic oscillator provides exponential time-discounting
dynamics.

Based on a qualitative comparison between mechanical systems theory and economic theory,
the economic engineering framework has been extended. Economic analogues of the damping
ratio, natural frequency, and damped frequency are included, such that the damped harmonic
oscillator can be interpreted as a time-discounting system, with the system parameters based
on economic first principles.

The economic engineering analogy is extended to include time-discounting: The natural fre-
quency is analogous to the natural discount rate. The damping ratio is analogous to time-
preference. The damped frequency is analogous to the market cycle frequency.

By analysing the time-domain dynamics of the under-, critically-, and overdamped harmonic
oscillator, this thesis presents the damped harmonic oscillator as a time-discounting sys-
tem. The underdamped system has oscillatory discounting dynamics, which is analogous to
a trader, where the damped frequency is analogous to the frequency of the market price. The
critically damped system discounts exponentially, which is analogous to financial institutions.
The overdamped system discounts hyperbolically, and is analogous to a consumer.

By analysing the eigenvalues of the damped harmonic oscillator, it can be concluded that they
reveal the discounting behaviour. When the eigenvalues lie within the complex plane, future
events are discounted at a constant rate. The real part of the eigenvalues is analogous to
the exponential discount rate; The complex part is responsible for the oscillatory behaviour.
When the eigenvalues lie in the real-hyperbolic plane, the real part also discounts future
events exponentially, but the second-order effects are responsible for hyperbolic movements.
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Appendix A

Beta-Delta Discounting

Beta-delta, or quasi-hyperbolic, discounting was proposed by Phelps and Pollak in 1968 [30].
It has gained great popularity after David Laibson’s paper in 1997. This paper has been cited
numerous times (over 150 times), and the discount function has been used to predict and
model human behaviour [5].

Beta-delta discounting uses a discrete-time discount function, and discounts utility according
to the structure in Equation A-1. From this equation, the discrete-time discount function can
be derived; this is presented in Equation A-2.

ur(er) = 07 up(er) (A-1)
f(r) =867 where: 7=1{0,1,2,...} (A-2)

We can recognise that §7 is the discrete time equivalent of an exponent e~ (=07 Beta-
delta discounting can thus be summarised as an exponential discount function multiplied by
a constant 5. The ( factor solves any issues with dynamic-inconsistency that exponential
discounting encounters. David Laibson writes [5]:

"When 0 < g < 1, the discount structure in Equation A-2 mimics the qualita-
tive property of the hyperbolic discount function, while maintaining most of the
analytical tractibility of the exponential discount function.”

The quasi-hyperbolic discount function is plotted against an exponential and a hyperbolic
discount function in Figure A-1. The used discount rates are chosen arbitrarily, but can be
found in [5].
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Figure A-1: Quasi-hyperbolic discount function versus exponential and hyperbolic discounting,
image copied from [5]
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Appendix B

Free-Response Solutions Overdamped
Second-Order System

This appendix presents the derivation of the solutions of the free-response of the second-
order system (Figure B-1). The system’s equation of motion is given in Equation B-1. The
progression of the asset stock ¢(¢) and the reservation price p(t) are derived.

q.49.9

T—

m

ANANANANANAN

Q0

Figure B-1: A second-order mechanical system (modified from [2, p. 246])

m(t)+bq(t)+kq(t)=0

Eigenvalues

The characteristic equation of the system is given by [2]:

ms>+bs+k=0

Subsequently, the eigenvalues are the solution of the quadratic equation:

b 1
51,2 = —7:|:7\/62 —4mk

2m  2m
__b vk
- 2m 4m?2 m
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(B-1)

Sten Edvard Svedhem



48 Free-Response Solutions Overdamped Second-Order System

For ease of notation, I define 8 as follows:

b

2m

g

Such that the eigenvalues are given by Equation B-2.

512 =—f=* \/ p? — % (B-2)

k
A second-order system is said to be overdamped when § > — [2]. Subsequently, I define the
m

/ k
Wod = /BQ_E

Such that the eigenvalues take the final hyperbolically conjugate form in Equation B-3.

overdamped frequency wyq as:

51,2 = —f £ Wod (B-3)

Homogeneous Solution

The solution for the progression of the asset stock ¢(t) takes the form of Equation B-4, where
@1 and Q9 constants. Which can be rearranged into Equation B-5 due to the structure of
the eigenvalues.

q(t) = Qe 4 Qg 2! (B-4)
_ Bt (Ql eWod b 4 Qg e Wed t) (B-5)

The asset flow () is consequently calculated by taking the time-derivative of ¢(¢). Applying
the product rule, and rearranging results in Equation B-6.

Q(t) = —Be T (Que! + Qrem )

et (Qrwoa ! = Qawoa e )
= ¢! ((woa — B) Que“9" — (woa + B) Qo e™4") (B-6)
The progression of the reservation price p(t) is then calculated in Equation B-7.

p(t) = m(t)
=me " ((woa — B) Q1 €' — (woa + ) Qe e ) (B-7)
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Initial Value Problem

The constants )1 and @2 follow the initial value problem. When time-discounting (at t = 0)
we have access to an initial stock and an instantaneous reservation price:
4(0) = qo p(0) = po

Substituting the initial values into Equation B-5 and Equation B-7 results in two independent
conditions for )7 and )2. The first condition is given in Equation B-8.

g(0) = e 0 (Qu e 0 4 Qp e 0)
=Q1+Q2=q (B-8)

The second condition is given in Equation B-9.
p(0) = m e ((woa — B) Q1 €40 — (woa + §) Qe ~1°0)
=m ((wod = B) Q1 — (wod + B) QQ) = po

—  (Wod — B) Q1 — (woa + B) Q2 = % (B-9)

Rearranging the first condition, and subsequently substituting the parametrisation of ()2 into
the second condition results in the value of ()1 in Equation B-10.

Q2 =qo— Q1
= (Wod — B) @1 — (wod + B) (g0 — Q1) = po/m
2Wod Q1 — (Woa + B) qo = po/m

0 = (Woa +B)q0 . po/m
! 2 Wod 2 Wod

q . Bqo+po/m
= %0 P90 T Bo/m B-10
@ 2 + 2 Woq ( )

Substituting Equation B-10 into the first condition, Equation B-8, results in the values for
@1 and Q2 (Equation B-11).

+ po/m + po/mm
@  Bao+po/ Q=B B po/ (B-11)
2 2wod 2 2wod

Q=

Hyperbolic Functions

Substituting the newly acquired values for @1 and Q2 into the equation for ¢(¢) (Equation
B-5) results into the complete free-response solution. Rearranging leads to the structure in
Equation B-12.

q(t) — e_ﬁt q£ + M ewodt + @ _ M e—wodt
2 2 Wod 2 2 Wod

_ ewodt -+ efwodt + m ewodt _ efwodt
—e Bt(% ( ) | Baotpo/ (B-12)
2 Wod 2
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50 Free-Response Solutions Overdamped Second-Order System

Take into account the following analytical definitions of the hyperbolic cosine and hyperbolic
sine [52, p. 86]:

X —X X —T
e’ +e . e’ —e
coshx = T sinh x = T

Combining these definitions, and Equation B-12 leads to the final form of the asset stock
progression ¢(t) in Equation B-13.

q(t) = e~ Pt (CJO cosh (woq t) + W sinh (woq t)) (B-13)
od

Taking the time-derivative results in ¢(t):

j(t) = —pe Pt (qa cosh (woa t) + Bao + po/m sinh (wod t))

Wod

+e P ((5 qo + po/m) cosh (woq t) + o Woq sinh (woq t))

= ¢ B¢ (po cosh (woq ) + <QO Wod — 3 WWH) sinh (wod t)) (B-14)
m Wod
Such that the progression of the reservation price takes its final form in Equation B-15.
p(t) = mq(t)
=t (Po cosh (woq t) + (m qo Wod — B W) sinh (wod t)> (B-15)
o
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Appendix C

Reservation Price Dynamics Damped
Harmonic Oscillator

In this appendix, the reservation price dynamics are defined for the trader-, exponential, and
hyperbolic discounting dynamics of the damped harmonic oscillator.

The eigenvalues for the damped harmonic oscillator are given by:
—Cwp £ iwpy/1 — (2 if¢<1
$12 = —Cwn +e if C =1 (C—l)
—Cwp Eewp/(C2 -1 if¢>1

where i is the complex number with the property i> = —1; € is the dual number with the
property €2 = 0; and € is the double number with the property €2 = 1. They correspond to
circular-, parabolic-, and hyperbolic geometry respectively [45].

I define the corresponding damped frequencies by:
iwpy1— (2 if{ <1
wg=1<¢ if(=1 (C-2)

ewny/ (2 —1 if¢>1

The dynamics of the position variable g takes the form (Equation B-4):

q(t) = Qre” ' + Q2 e’ (C-3)

where )1 and (2 are dependent on the initial conditions. The solution of the initial value
problem in Equation B-11 can be generalised to:

g | (Wnqo+po/m G  Cwnqo+po/m

o o T onfe Qp= B LB ()

Q=7 2wy 2 2 wd
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C-1 The Critically Damped System
The critically damped system has the property ( = 1. The position dynamics are given by:
q(t) = e~ (Ql e+ Q2 €Et> (C-5)

Since €2 = 0, it follows that €” = 0 for any integer n > 1. Through the taylor series expansion
we get [45]:

el =1+et et =1—et (C-6)

This results in the following position dynamics:

g(t) = et ( <q20 + W) (1+¢t) + <q2° - W) (1- et)) (C-7)

= e wnt <qo + (wn q + %0) t) (C-8)

The velocity dynamics are given by the time-derivative of the position dynamics:

G(t) = e=nt (1:2 W, (wnqo + f,j) t) (C-9)

The reservation price dynamics follow from p(t) = mq:

p(t) = eiwnt (p() — Wn (manO + pO) t) (C-lO)

C-2 The Overdamped System

The derivations of the overdamped second-order system can be found in Appendix B. Substi-
tuting the identity 8 = (w,, and redefining the overdamped frequency as woq = wp\/(2 — 1 in
Equations B-15, B-14, and B-15 results in the following dynamics for position, velocity, and
reservation price:

q(t) = e! <q0 cosh (woa t) + TP Gt t)> (C-11)
Wod

q(t) = e Swnt (];2 cosh (woq t) + <QO Wod — (Wn W) sinh (woq t)) (C-12)
od

p(t) = e cnt (pO cosh (woa t) + <m 4o Wod — CWwn W) sinh (wod t)) (C-13)
od
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C-3 The Underdamped System 53

C-3 The Underdamped System

The dynamics for the underdamped system can be calculated from the overdamped system.

Using the identities cosh z = cosiz and sinh z = —isin z, Equation C-11 can be rewritten as:
g(t) = e=Snt <q0 cos (iwpat) + ST FPOM™ oy i (i t)) (C-14)
Wod

The overdamped wyq and underdamped wyq frequencies are related as follows:

iwod = Twpy/C2 — 1 =wp\/1—(2=wu (C-15)

Substituting weq = —iwuq in Equation C-14 results in the position dynamics for the under-
damped system:

q(t) = e~ ownt (qo cos (1 (—i)wyda t) + w (—i) sin (i (—) wuq t))

— ¢ Cwnt (CIO cos (wud t) + W sin (Waq t)) (C-16)
ud

This allows the dynamics of the underdamped velocities, and reservation price dynamics to
be derived:

q(t) = e Cwnt (Po cos (wya t) — (qo wud + Cwn W) sin (wyq t)) (C-17)

m Wud
p(t) = e Cnt (po cos (W t) — <m qo Wud + Cwr, W) sin (wud t)) (C-18)
us
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