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1
INTRODUCTION

1.1. MOTIVATION
Dysarthria [7] is a speech sound disorder triggered by neurological damage to the mo-
tor speech system. Speech affected by dysarthria is influenced by restricted movement
of the tongues, lips, and jaws. It could be caused by different reasons such as stroke,
traumatic brain injury, cerebral palsy, Parkinson’s disease, amyotrophic lateral sclerosis
(ALS), multiple sclerosis, and so on. Dysarthric speech differs from normal speech in
many aspects [26]. Compared to normal speech, dysarthric speech has poorer articula-
tion, slower speech rate, reduced or increased loudness [27], and pitch variation[27] due
to muscle weakness or coordination issues. It dramatically influences the ability of peo-
ple with dysarthric speech to communicate with others and the influence grows with the
increase of the severity of dysarthric speech.

Nowadays, automatic Speech Recognition (ASR) is widely used in daily life with high
accuracy. More and more smart devices are used in our daily life making our lives more
convenient. Integrated into various applications, ASR enhances convenience and effi-
ciency in daily tasks. From telecommunications to smart home automation, ASR enables
hands-free communication and voice controls. However, individuals with dysarthria
cannot benefit from mainstream ASR due to the low performance of dysarthric speech
recognition compared to normal speech [30]. In order to improve dysarthric speech
recognition performance, some researchers include dysarthric speech in their training
material [29], while others aim to improve the intelligibility of dysarthric speech through
the conversion of dysarthric speech to normal speech to ensure that the speech is audi-
ble and clear enough to be easily understood by listeners. Our project will focus on the
latter one.

Various voice conversion (VC)[19] and signal processing (SP) techniques have been
proposed to transform dysarthric speech into normal speech, we refer to these together
as “speech conversion techniques”. Ideally, these speech conversion techniques adapt
the various dysarthric speech characteristics to become more similar to those of normal
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speech. One such approach is GAN (Generative Adversarial Network)-based voice con-
version (VC) [28, 12, 22, 5, 21, 11]. For VC-based techniques, MaskCycleGAN-VC [12]
has been shown to outperform cycleGAN-VC [28], showing approximately 4% absolute
better performance for male speakers and 9% for female speakers in dysarthric speech
recognition [21]. StarGAN-VC [4] also shows promise [5]. Interestingly, SP techniques
such as time-stretching have been shown to have an equal or even better recognition
performance than state-of-the-art VC models [21], even though time stretching only fo-
cuses on adapting only one dysarthric speech characteristic, i.e., speech rate, to that of
normal speech, while VC aims to convert all dysarthric speech characteristics to normal
speech characteristics at the same time.

There are usually two ways to evaluate VC results [24]. The objective approach uses
an ASR system to assess the error rates of the converted speech. The subjective approach
has human listeners judge the converted speech [11], e.g., on their naturalness or intel-
ligibility.

Although research exists that compares different voice conversion techniques [16, 31,
19], it is not clear if these methods work equally well for different severities of dysarthric
speech. In this work, we compare different dysarthric-to-normal speech conversion ap-
proaches for two levels of severity (low and high severity) by doing phone recognition on
the converted speech with an ASR system trained on normal speech. By answering this
question, we could potentially further improve dysarthric speech recognition for differ-
ent severities. Moreover, although it is often assumed that the naturalness of the con-
verted speech is important for ASR performance, this question is actually unanswered.
We therefore investigate the naturalness and intelligibility of the resulting speech using
human listening experiments and correlate the mean opinion scores (MOS) to the ASR’s
phone error rates (PER).

1.2. RESEARCH QUESTIONS
This research aims to compare the performance of speech conversion techniques across
two levels of dysarthric speech severity, both objectively and subjectively, and to investi-
gate the relationship between objective and subjective evaluations. Specifically, we com-
pare two state-of-the-art VC-based techniques (Masked Cycle-GAN and Star-GAN ) and
two SP-based techniques (time stretching and loudness, as dysarthric differs in loud-
ness from normal speech [27]) for speech conversion. Our main research questions are
as follows:

• RQ1: Which speech conversion technique leads to the highest recognition perfor-
mance for two severities of dysarthric speech?

• RQ2: Which speech conversion technique improves the naturalness and intelligi-
bility of dysarthric speech for human listeners?

• RQ3: Does increased naturalness lead to better ASR performance for dysarthric
speech?

• RQ4: Does increased intelligibility lead to better ASR performance for dysarthric
speech?
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1.3. OVERVIEW
This thesis includes several chapters. Chapter 2 will introduce the necessary background
for this work. In Chapter 3, we will explain the methodology used in this thesis, includ-
ing the dataset, experiment setup, different techniques we are going to compare, and the
evaluation methods. Chapter 4 will list all the results we get from the experiments, in-
cluding the objective results and subjective results. In Chapter 5 and Chapter 6, we will
discuss the results and draw a conclusion, respectively.





2
BACKGROUND

In this section, we lay the foundation necessary for comprehending the thesis by introduc-
ing essential background information. Section 1 explains the nature of dysarthric speech,
providing a detailed overview of what is dysarthric speech. Following that, Section 2 in-
troduces dysarthric to normal conversion, outlining the VC systems employed in trans-
forming dysarthric speech to normal speech. Section 3 is dedicated to explaining the ba-
sic knowledge of Generative Adversarial Networks (GANs). Subsequently, Sections 4 and
5 focus on the application of StarGAN—a specific variant of GANs. Section 4 describes
the architecture of StarGAN. Section 5 explores the utilization of StarGAN for converting
speech with one characteristic into another and the architecture of StarGAN-VC. At last,
we present the evaluation metrics adopted in our experiment, which are crucial for assess-
ing the effectiveness of the voice conversion processes.
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2.1. DYSARTHRIC SPEECH
Dysarthria[7] is a speech sound disorder resulting from neurological injury of the mo-
tor speech system. Dysarthric speech is often characterized by its poorer articulation,
slower speech rate, reduced loudness, changes in voice quality (such as breathiness,
hoarseness, or nasal speech), and so on because of limited tongue, lip, and jaw move-
ment. The causes of dysarthria are diverse and can include stroke, traumatic brain in-
jury, cerebral palsy, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), multiple
sclerosis, and Guillain-Barre syndrome, among others. The specific characteristics of
dysarthric speech can vary widely among individuals, depending on the underlying cause
and the severity of the neurological impairment.

Dysarthria could be categorized according to which part of the nervous system is
implicated[6]. Each category has particular characteristics which are associated with
underlying neurological conditions. The detailed categorization and characteristics are
shown as follows [2, 7]:

• Flaccid Dysarthria: This type of dysarthria is associated with damage to the lower
motor neurons, leading to weakness, and reduced muscle tone in the speech mus-
cles. Speech may exhibit characteristics such as breathiness, imprecise articula-
tion, reduced loudness, and hypernasality.

• Spastic Dysarthria: Spastic dysarthria results from bilateral damage to the upper
motor neurons, leading to increased muscle tone, spasticity, and reduced range of
motion in speech muscles. Speech may exhibit slow rate, strained vocal quality,
reduced stress, and harsh or strained voice.

• Ataxic Dysarthria: Ataxic dysarthria is characterized by deficits in coordination
and control of speech movements due to damage to the cerebellum or its connec-
tions. Speech may exhibit irregular articulatory breakdowns, excessive or irregular
variations in pitch and loudness, and difficulties with prosody and rhythm.

• Hypokinetic Dysarthria: Hypokinetic dysarthria is predominantly associated with
movement disorders, particularly Parkinson’s disease, characterized by reduced
movement and rigidity. Speech may exhibit rapid rate, reduced loudness (hypo-
phonia), monopitch, monoloudness, and imprecise articulation.

• Hyperkinetic Dysarthria: Hyperkinetic dysarthria involves involuntary movements
affecting speech production, resulting in variable speech rate, irregular articula-
tory breakdowns, and dysfluencies. Speech may be characterized by hypernasal-
ity, voice tremor, and abnormal prosody.

• Mixed Dysarthria: Mixed dysarthria presents features of more than one type of
dysarthria, often resulting from complex neurological damage affecting multiple
neural pathways. Speech characteristics may vary depending on the combination
of underlying deficits.

It could also categorized based on the severity or speech intelligibility[13].

• High Intelligibility: Intelligibility between 76% and 100%.
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• Mid Intelligibility: Intelligibility between 51% and 75%.

• Low Intelligibility: Intelligibility between 26% and 50%.

• Very Low Intelligibility: Intelligibility between 0% and 25%.

2.2. DYSARTHRIC TO NORMAL SPEECH CONVERSION

Dysarthric to normal speech conversion means transforming the speech influenced by
dysarthria into normal and intelligible speech. The following are some voice conversion
systems which transform dysarthric to normal speech:

Discover Cross-Domain Relations with Generative Adversarial Networks(DiscoGAN)
was first proposed by [14] and then was applied to transforming dysarthric speech into
normal speech by [22] along with Mean Square Error (MSE) regularization. In [22], they
first extract cepstral features using AHOCODER from both dysarthric speech and corre-
sponding control speech. Then they use Dynamic Time Warping (DTW) [25] to do the
time-alignment between dysarthric speech and controlled speech. Then DiscoGAN is
used to learn the mapping from dysarthric speech to corresponding normal speech. At
last, the speech was reconstructed using AHOCODER again. It was trained and evaluated
on the UASpeech corpus and was proven that this voice conversion system outperforms
the baseline e Deep Neural Network(DNN)-based system with by 13.16% and 9.64% for
male speakers and female speakers respectively. Also, according to the subjective evalu-
ation, the results were shown more natural and intelligible compared to the baseline.

MaskCycleGAN-VC[12] and StarGANv2-VC[15] are proposed to apply to transform-
ing dysarthric to normal speech in [17]. It is proven that StarGANv2-VC outperforms
MaskCycleGAN-VC in transforming dysarthric speech into normal speech and was shown
as an efficient method to enhance the quality of dysarthric speech. The detailed infor-
mation about these two architectures will be introduced later.

Besides, there is also Fuzzy ASC-GAN[10] which integrates CycleGANv2-VC and Fuzzy
C-means clustering to convert dysarthric speech to normal speech, which shows the po-
tential to help patients with dysarthric voices, achieving an average accuracy of 93.35%
in S2T evaluation.

2.3. GENERATIVE ADVERSARIAL NETWORK

The Generative Adversarial Network is a kind of deep learning algorithm which is pro-
posed by [9] in 2014. It learns the distribution of given training samples in order to gen-
erate new data samples that are similar to the given ones. It is formed by two neural
networks which are called generator and discriminator.

2.3.1. GENERATOR

The generator usually takes a random distribution or a latent vector as an input. As the
model is training, it will learn to generate data samples that are similar to the training
data samples.
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2.3.2. DISCRIMINATOR

The discriminator acts as a classifier which is to distinguish between real data from the
training data set and fake data generated from the generator.

During the training process, the generator and the discriminator will be trained to-
gether in a competitive manner, which means the generator will try to generate data
samples similar to real data to fool the discriminator, but the discriminator will try to
distinguish between real data and fake data.

2.3.3. OBJECTIVE FUNCTION

The GAN is trained through a minimax game, where the Generator tries to minimize a
function while the Discriminator tries to maximize it. The objective function is shown
below:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz (z)[log(1−D(G(z)))] (2.1)

For here, pdata represents the distribution of the real data, and pz (z) represents the
random input from the generator.

2.3.4. TRAINING

The training process alternates between the following two steps:

UPDATING THE DISCRIMINATOR

Optimize D to maximize the probability of correctly classifying real and generated data.

∇θd

1

m

m∑
i=1

[
logD(x(i ))+ log

(
1−D(G(z(i )))

)]
(2.2)

UPDATING THE GENERATOR

Optimize G to minimize the probability that D can correctly classify the generated data
as fake. This is equivalent to minimizing the following:

∇θg

1

m

m∑
i=1

log
(
1−D(G(z(i )))

)
(2.3)

2.4. STARGAN
2.4.1. STARGAN
StarGAN[4] is an innovative approach in the field of image-to-image translation, par-
ticularly in scenarios where you want to translate an image from one domain to an-
other among multiple domains using only a single model. This is a significant advance-
ment over previous methods that typically required training individual models for each
domain translation pair, making the process much more efficient and scalable. The
core idea behind StarGAN is to enable a single neural network model to learn mappings
among multiple domains. For instance, in facial attribute modification (e.g., changing
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hair color, age, or gender), rather than training a separate model for each attribute modi-
fication, StarGAN can handle all these transformations using one model. This is achieved
through the use of a domain label that specifies the target domain for image translation.

StarGAN is also composed of two neural networks: a generator (G) and a discrimi-
nator (D). The generator takes an input sample and a target domain label as input and
generates an sample that aims to belong to the target domain. The discriminator aims to
discriminate between real and fake samples and classify the data into the corresponding
domain class. Figure 2.1 shows the details of the training process.

Figure 2.1: Overview of StarGAN from [4]

ADVERSARIAL LOSS

In order to make the fake data indistinguishable from the real data, the adversarial loss
is designed like this:

Lad v = Ex [logDsr c (x)]+Ex,c [log(1−Dsr c (G(x,c)))] (2.4)

In this case, Dsr c (x) represents the real data distribution probability, and the G(x,c)
represents the sample generated by the generator based on the input sample x and input
label c. The generator will try to minimize this objective function, but the discriminator
will try to maximize it.

DOMAIN CLASSIFICATION LOSS

The domain classification loss is to help the generator produce data that not only resem-
bles real data but is also accurately classified to the target domain. There are two clas-
sification losses designed to optimize the generator and the discriminator respectively.
For the generator, the classification loss is:

LG
cl s =−Ex,c ′ [logDcl s (c|G(x,c))] (2.5)

For the discriminator, the classification loss is:

LD
cl s =−Ex,c [logDcl s (c ′|x)] (2.6)
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RECONSTRUCTION LOSS

This function is to encourage the generator to produce an output that closely resembles
the original sample when reconstructed back to the original domain. This is crucial for
maintaining the content of the sample while changing the domain-specific attributes.
The loss function is designed as follows:

Lr ec = Ex,c,c ′ [∥x −G(G(x,c),c ′)∥1] (2.7)

Here, c represents the target domain, c represents the original domain, and x repre-
sents the original input sample. The L1 norm is adopted as reconstruction loss.

2.4.2. STARGAN V2 AND STARGAN V2-VC
StarGAN v2[3] is an advanced deep-learning model designed for image-to-image trans-
lation tasks. It is an extension of the original StarGAN architecture, which was devel-
oped to perform versatile image translation tasks across multiple domains using a single
model. The difference from the original StarGAN is that StarGANv2 uses a style code
instead of a fixed label to represent diverse styles of different domains.

Figure 2.2: Overview of StarGAN v2 from [3]

Here is an overview of the StarGANv2 in Figure 2.2. We can see that there are two
components added to the StarGANv2 compared to the StarGAN: the mapping network
and the style encoder. The mapping network will generate a style code s based on the
input latent vector z and domain label y . The formula is shown below:

s = Fy (z) (2.8)

In this way, the mapping network will learn the style representation of multiple domains.
The style encoder will extract the style code of the input data x and its domain label

y according to the formula below:
s = Ey (x) (2.9)

In this way, the style encoder will learn the style representation of different reference
data.
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StarGANv2-VC[15] is an application of the StarGANv2[3] architecture specifically tai-
lored for voice conversion tasks. Voice conversion means to modify the speech char-
acteristics of a source speaker to match those of a target speaker while retaining the
linguistic content. StarGANv2-VC[15] extends the capabilities of StarGANv2 to handle
voice conversion by employing similar principles but applied to speech signals.

Similar to StarGANv2 which has a generator and discriminator to transfer an sam-
ple of one style into another, StarGANv2-VC also has a generator and a discriminator.
Each speaker will be treated as a unique domain. The overview of StarGANv2 is shown
in Figure 2.3. There are five main components: Generator, F0 network, Style Encoder,
Mapping Network, and Discriminator. All the components are similar to the ones in
StarGANv2, which we have mentioned in the previous section, except for the F0 net-
work. For a given input mel-spectrogram, the F0 network is to extract its fundamental
frequency as input features.

Figure 2.3: Overview of StarGANv2-VC from [15]

ADVERSARIAL LOSS

Given an input mel-spectrogram X and a style code s, the generator will be trained to
generate a new mel-spectrogram in the target domain according to adversarial loss. D
means discriminator, and G means generator.

Lad v =EX ,ysr c

[
logD

(
X , ysr c

)]+
EX ,ytr g ,s

[
log

(
1−D

(
G(X , s), ytr g

))] (2.10)

ADVERSARIAL SOURCE CLASSIFIER LOSS

This extra adversarial loss is specifically for the source classifier. C E(ů) means cross-
entropy loss function.

Ladvcls = EX ,ytr g ,s
[
CE

(
C (G(X , s)), ytrg

)]
(2.11)



2

12 2. BACKGROUND

STYLE RECONSTRUCTION LOSS

In order to maintain the characteristics of the original speech, StarGANv2-VC uses a style
reconstruction loss to make sure the style code can be reconstructed through generated
data samples.

Lst y = EX ,ytr g ,s
[∥∥s −S

(
G(X , s), ytr g

)∥∥
1

]
(2.12)

STYLE DIVERSIFICATION LOSS

The style diversification loss is used to maximize the difference between generated sam-
ples with different styles, including both mean absolute error and also mean absolute
error of F0 features.

Ld s = EX ,s1,s2,ytr g [∥G (X , s1)−G (X , s2))∥1

]
+

EX ,s1,s2,ytr g [∥Fconv (G (X , s1))−Fconv (G (X , s2)))∥1

] (2.13)

SUMMARY

To summarize all the objective functions of the generator, the formula is shown below:

min
G ,S,M

Lad v +λad vcl s Lad vcl s +λst y Lst y

−λd s Ld s +λ f 0L f 0 +λasr Lasr

+λnor mLnor m +c yc Lc yc

(2.14)

The formula for summarizing all the objective functions of the discriminator is shown
below:

min
C ,D

−Lad v +λcl s Lcl s (2.15)

2.5. MASKCYCLEGAN-VC
MaskCycleGAN-VC[12] is proposed based on the conventional CycleGANv2-VC which
overcomes the disadvantage of CycleGANv2-VC that could not capture the characteris-
tics of time-frequency structures. The most important thing about MaskCycleGAN-VC
is that it uses a novel auxiliary task called Filling in Frame (FIF). Given an input mel-
spectrogram, a temporal mask will be put on the given mel-spectrogram. In this way, the
model can learn the time-frequency structures in the process of filling in the frames in
the mask area based on the surrounding frames. Also, unlike the CycleGANv3-VC, also a
variant of CycleGANv2-VC, MaskCycleGAN-VC will not increase the number of parame-
ters a lot.

As is shown in Figure 2.4, when there is an input x, a mask m which has the same
size as x will be created. The black parts of m in the Figure means its value is zero, and
the white part means its value is one. And the mask m will be applied to x with element-
wise product. In this way, the missing frames will be created since the black region will
be zero, while the other parts will keep the same as the original value. Then the concated
x̂ and m will be put into the Generator to generate y ′. The function of m is to tell the
converter to fill in which part of the frames. Then another generator will reconstruct the
x ′′ based on generated y’ and m′ to compare x ′′ with the original input x. m′ means the
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mask with all ones and its function is to assume that all the missing frames have already
been filled in. In order to make x ′′ similar to x, the first generator will try to learn how to
fill in the missing frames and learn the time-frequency structures during this process.

Figure 2.4: Overview of MaskCycleGAN-VC from [12]

2.6. EVALUATION METRIC

2.6.1. PER
Phoneme Error Rate (PER), is a metric used in Automatic Speech Recognition (ASR) sys-
tems to evaluate their performance. It measures the accuracy of phoneme-level tran-
scriptions generated by an ASR system compared to a reference transcription. Phonemes
are the smallest units of sound that distinguish meaning in a language.

Errors are calculated based on the differences between the aligned phonemes. Errors
can be classified into three types:

• Substitution (S): When a phoneme in the ASR output is different from the corre-
sponding phoneme in the reference transcription.

• Deletion (D): When a phoneme in the reference transcription is missing in the ASR
output.

• Insertion (I): When a phoneme appears in the ASR output but not in the reference
transcription.

The PER will be calculated according to the following formula:

PER = S +D + I

N
×100% (2.16)

Where:

• S: the number of the substitution errors
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• D: the number of the deletion errors

• I: the number of the insertion errors

2.6.2. CER
Character Error Rate (CER), is another metric used in ASR systems to evaluate their per-
formance. The difference from PER is that it measures the accuracy of character-level
transcriptions compared to reference transcription.

Errors can be also divided into three types the same as PER: Substitution (S), Deletion
(D), and Insertion (I). The difference is that CER focuses on the character level.

The CER will also be calculated according to the following formula:

C ER = S +D + I

N
×100% (2.17)



3
METHODOLODY

In this section, we outline the methodology adopted to conduct the experiment, encom-
passing the introduction of the dataset (Section 1), the experimental setup (Section 2), the
technological frameworks(Section 3, Section 4, Section5), and the evaluation methods uti-
lized (Section 6).
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We will compare two state-of-the-art VC-based techniques (Masked Cycle-GAN and
Star-GAN ) and two SP-based techniques (time stretching and loudness. Figure 3.1 pro-
vides a visual overview of speech conversion methods and evaluation procedures em-
ployed in this study. As is shown in Figure3.1, we will first convert dysarthric speech
using the methods previously mentioned. And we will do the objective evaluation and
subjective evaluation of the converted speech. Finally, we will analyze the correlation
between objective results and subjective results. The detailed methodology will be in-
troduced in the following sections.

Figure 3.1: Overview of Methodology

3.1. DATASET
In this part, we will introduce the dataset we used in the experiments, including the
dataset we use for converting from dysarthric speech to normal speech and also the
dataset we use to train our evaluation model.

3.1.1. UASPEECH
UASpeech[13] is a database consisting of dysarthric speech, including recordings from
19 speakers with cerebral palsy. Each speaker contributes 765 isolated words, compris-
ing a combination of 300 distinct uncommon words and repetitions of digits, computer
commands, radio alphabet phrases, and common words. The data collection process
employs an 8-microphone array alongside a digital video camera to ensure comprehen-
sive recording.

The database is recorded and divided into three distinct blocks, each containing 255
words. Within each block, 155 words are repeated, encompassing digits, radio alpha-
bet letters, computer commands, and common words drawn from the Brown corpus of
written English. Additionally, each block includes 100 uncommon words, carefully se-
lected from children’s literature using a greedy algorithm to maximize token counts of
infrequent biphones.

By providing a repository of dysarthric speech samples, UASpeech serves as an im-
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Table 3.1

Speakers Intelligibility
F02 Low
F03 Very low
F04 Mid
F05 High
M05 Mid
M08 High
M09 High
M10 High

portant resource for the advancement of automatic speech recognition technologies for
helping individuals with neuromotor disabilities.

UASpeech contains speakers with different types of dysarthria and different levels of
severity and allows us to compare different speech conversion techniques for different
severities. We followed the selection and dataset split method in [21] with a balanced
gender in our training and test sets. Four male speakers (M05, M08, M09, M10) and four
female speakers (F02, F03, F04, F05) were used. For controlled speakers, we also chose
four male speakers and four female speakers with the same label but they are different
speakers from dysarthric ones. The detailed information about the selected speakers is
shown in Table 3.1. For our experiment, in order to evaluate the performance on high
and low severities, we divided the speech into two groups as follows:

• Low Severity: M05 M08 M09 M10 F04 F05

• High Severity: F02 F03

3.1.2. TIMIT
TIMIT[8] is a corpus specifically designed for research in the development and evalua-
tion of ASR and related fields. The TIMIT dataset encompasses a total of 6300 utterances,
with each of the 630 speakers contributing 10 sentences. These speakers represent di-
verse dialect divisions across the United States, with approximately 70% being male and
30% female. Each speaker’s set of 10 sentences amounts to approximately 30 seconds
of speech material, resulting in a corpus totaling around 5 hours of speech data. No-
tably, all speakers are native speakers of American English and have been assessed by a
professional speech pathologist to be free of clinical speech pathologies.

Recorded using two microphones, the TIMIT dataset consists of 2-channel record-
ings. Initially digitized at a sampling rate of 20 kHz, the speech signals were subsequently
subjected to digital filtering, debiasing, and downsampling to 16 kHz. This preprocess-
ing ensures the quality and consistency of the recorded speech data, and lays a solid
foundation for robust and reliable analyses in automatic speech recognition and related
research.

To make our results more comparable to the literature [21], we used TIMIT [8] to train
the ASR system for the objective evaluations. Since TIMIT is an English corpus, it allows
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us to do the evaluation for converted UASpeech data samples which are also English.

3.2. SIGNAL-PROCESSING TECHNIQUES
The dysarthric speech of TIMIT is converted using the two signal processing approaches
and the two VC methods:

LOUDNESS INCREASING (LI)
Dysarthric speech typically exhibits lower loudness compared to normal speech[27].
Therefore, the primary purpose of employing the loudness-increasing method (LI) is to
make the loudness of dysarthric speech comparable to the average loudness of normal
speech. Here, we use two variations of the loudness increase implementation:

• LI.1: The average loudness of normal speech over all control samples is estimated.
Then we set the loudness of each dysarthric speech sample with a lower loudness
to the average loudness of normal speech. The detailed algorithm is shown below:

• LI.2: The loudness of dysarthric speech and the corresponding normal speech is
estimated for each file separately. Then the loudness of the dysarthric speech was
set to the loudness of the normal speech in case it was lower.

LOUDNESS NORMALIZATION (LN)
The loudness normalization method (LN) method aims to match the loudness of ev-
ery dysarthric speech sample, thus not only those with a lower loudness than normal
speech, to be the same as the average loudness of normal speech. Here, we use two
variations of the loudness increase implementation:

• LN.1: The average loudness of normal speech over all control samples is esti-
mated. All dysarthric speech files are replaced with the average loudness of normal
speech.
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• LN.2: We calculate the loudness of dysarthric speech and the corresponding nor-
mal speech. Then the loudness of the dysarthric speech sample is set to that of the
corresponding normal speech.

3.3. TIME STRETCHING ( TS)
The primary objective of time-stretching (TS) is to match the duration of dysarthric
speech with that of the corresponding normal speech. The TS factor is determined by
the ratio of the duration of dysarthric speech to the duration of normal speech. For in-
stance, if the dysarthric speech lasts 4 seconds and the normal speech is 2 seconds, the
TS factor would be 2. We apply TS using the librosa.effects.time_stretch function with
the estimated factor and ensure that the dysarthric speech matches the duration of its
corresponding normal speech.



3

20 3. METHODOLODY

3.4. GAN-BASED VC MODELS
Each VC model is trained and evaluated on dysarthric speech using a leave-one-speaker-
out cross-validation scheme. All the combinations of the training set and test set are
shown in Table 3.2.

Training Set Evaluation Set
M08, M09, M10 M05
M05, M09, M10 M08
M05, M08, M10 M09
M05, M08, M09 M10
F03, F04, F05 F02
F02, F04, F05 F03
F02, F03, F05 F04
F02, F03, F04 F05

Table 3.2: Training set and evaluation set combinations

MaskCycleGAN-VC, an extension of CycleGAN-VC2, aims to transform the speech
characteristics of a source speaker into those of a target speaker. Unlike traditional VC
methods that often require paired data of source-target speaker pairs, MaskCycleGAN-
VC only requires unpaired data from both speakers. MaskCycleGAN-VC is trained using
a technique called filling in frames (FIF), which means we will randomly select a part of
the mel-spectrogram to mask and try to fill in the missing part when training the model.
Compared with CycleGAN-VC2, there is no additional module needed to learn the time-
frequency structures, and it has better conversion performance. In our experiments, we
use the same experiment settings as in [12]. The VC model was trained for 300 epochs.

3.4.1. STARGANV2-VC
The state-of-the-art StarGANv2-VC model generalizes to a variety of VC tasks, such as
many-to-many, cross-lingual, and singing conversion. It uses an auxiliary input c to con-
trol the output of generators while CycleGAN only learns a direct mapping between two
domains. c denotes an attribute label, represented as a concatenation of one-hot vec-
tors, each of which is filled with 1 at the index of a class in a certain domain and with
0 everywhere else. In our experiment, there are two domains: dysarthric speech and
normal speech. We will follow the implementation of [15] and preprocess the data to
fit this model. We first join the audio together and then split them into 5-second long
files since the common length of speech in UASpeech[13] is about 1 to 2 seconds. The
StarGANv2-VC is trained for 150 epochs.
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3.5. EVALUATION

3.5.1. OBJECTIVE EVALUATION (PHONEME ERROR RATE (PER))
We use the KALDI Toolkit [20] to build a Gaussian Mixture Model-Hidden Markov Model
(GMM-HMM) based ASR system. The ASR is trained with 39 Mel Frequency Cepstral
Coefficients (MFCC) and the model is trained until the tri3 stage (i.e., tri-phone based
model using Linear Discriminant Analysis (LDA), Maximum Likelihood Linear Trans-
form (MLLT), and Speaker Adaptive Training (SAT)).

The ASR system is used for the objective evaluation of the original dysarthric speech,
normal speech, and converted speech. The results are reported in PER.

3.5.2. SUBJECTIVE EVALUATION (NATURALNESS AND INTELLIGIBILITY )
We set up our subjective evaluation experiments as follows. Based on the best-performing
methods from our objective evaluation, we used the two best-performing loudness con-
version methods, TS, and the best-performing VC method and compared those for nat-
uralness and intelligibility to the original dysarthric speech and normal speech.

EXPERIMENT SETUP

The experiments were run on the Qualtrics Platform [23], and the participants were re-
cruited through Prolific and volunteers. The experiments were carried out separately for
naturalness and intelligibility to avoid confusion with the participants on the specific
task and to avoid results from potentially influencing each other.

In each experiment, the converted speech is divided into 6 different blocks. We
choose a normal speech block, a dysarthric speech block, LI(1 and 2) or LN(1 and 2)
blocks, a TS block, and one last block from StarGANv2-VC or MaskCycleGAN-VC. In to-
tal, we will have 6 blocks in total. And for each block, we have F02, F03, F04, F05 four
female speakers and M05, M08, M09, and M10 four males speakers. In total, we have 8
speakers for each block. For each speaker, we randomly choose 10 samples. So there will
be 80 speech samples for each block.

The reason why we set the number in this way is that the samples have an average
duration of 1-2 seconds and with a goal to complete the subjective test in one hour, we
use 10 samples for each speaker. In total, we chose 480 sample speeches for evaluation.
However, as there are only 455 unique words in the UASpeech dataset, there was some
overlap between the words of different blocks. To decrease the influence of this kind of
overlap, repeated words only occurred in the normal speech block. The normal speech
was always the last block of the experiment. All other 5 blocks appeared randomly for
each participant and the samples in each block were also presented in random order for
each participant.

NATURALNESS EXPERIMENT SETTING

There are 10 participants recruited for the naturalness evaluation experiment. They are
recruited via social media. Seven of them are female, two of them are male, and one
of them prefer not say about his or her gender. All of the participants are not native
speakers of English. The first languages they speak include Chinese, Dutch, Flemish, and
Hindi. The ages of the participants range from 25 to 26. The subjective evaluation forms
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are distributed via the URL link, so the participants can complete their forms online at
wherever they are.

For the naturalness evaluation, mean opinion score (MOS)[mos] is used. The par-
ticipants are provided with a definition of naturalness, i.e., it is defined as the extent to
which the speech sample sounds like that of a normal human speaker in terms of e.g., in-
tonation, voice quality, speaking rate, rhythm, and intensity. After listening, participants
were asked to rate the sample speech on a five-point scale: 1 for "Bad," 2 for "Poor," 3
for "Fair," 4 for "Good," and 5 for "Excellent." They were made aware that some of the
speech samples will sound highly natural while others may sound artificial due to dete-
rioration caused by computer processing. Then the participants are asked to carefully
listen to each speech sample and provide a rating of the speech sample’s naturalness.
The detailed introduction we use in the experiment is shown in Figure 3.2 below.

Figure 3.2: Instructions of naturalness experiment
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INTELLIGIBILITY EXPERIMENT SETTING

There are 10 participants recruited for the intelligibility evaluation experiment. They are
recruited via both social media and the Prolific recruiting Platform. Nine of them are
recruited via Prolific with payment and one of them joins as a volunteer. Seven of them
are female and three of them are male. Nine of the participants are native speakers of
English. The first language of the other speaker is Dutch. The ages of the participants
range from 21 to 59. The participants also finish the evaluation form online at wherever
they are.

For the intelligibility evaluation, the participants are required to carefully listen to
each speech sample and type in the words they heard.

We also inform participants to carefully check the spelling of their answers. We used
the character error rate (CER) as our evaluation metric (instead of the PER we use for ob-
jective evaluation because the participants are not professional linguists who can con-
vert words into phonemes). In order to avoid the influence of lower-case and upper-case
in error rate evaluation, we converted all answers into lower-case. Figure ??

Figure 3.3: Instructions of intelligibility experiment





4
RESULTS

In this section, we will first show the results of the objective evaluation of the four speech
conversion techniques, including the baseline results of our evaluation system, the perfor-
mance of loudness increasing method, time stretching method, MaskCycleGAN-VC, and
StarGANv2-VC. This will help us to answer RQ1. Then we will describe the experimen-
tal results of subjective results, focusing on intelligibility and naturalness, to answer RQ2.
Then, we will show the results of the correlation between objective evaluation and subjec-
tive evaluation.
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4.1. RESULTS OF THE OBJECTIVE EVALUATION

4.1.1. EVALUATION SYSTEM
Before comparing the four speech conversion techniques, we will first show the result of
our evaluation system which will indicate how well our evaluation system performed on
the TIMIT dataset. The result on the test set is 21.6%. Our converted speech samples will
be evaluated with this evaluation system. For the comparison result by [21], the result is
21.8%. The results are close and make it easy to compare our results to the results of [21].

Table 4.1 shows the ASR performance for normal speech, dysarthric speech, and
converted speech through all methods we use. The PER results are initially calculated
for each speaker. Subsequently, we categorize these results into high-severity and low-
severity groups. For normal speech, we do not have separate high-severity and low-
severity groups, so these results remain undivided and will be empty for those categories.

The results table is organized into four blocks:

• Normal speech and dysarthric speech

• Converted speech using signal processing techniques

• Converted speech using voice conversion (VC) models

• Comparison results from [21]

For normal speech, our PER results for all controlled speakers are better than those
reported in the experiment by [21]. This improvement is also observed in the average
results for both high-severity and low-severity groups.

Regarding dysarthric speech, although the average results for both high-severity and
low-severity groups are better than those from [21], some individual speakers do not fol-
low this trend. Specifically, speakers F04, M08, and M09 show worse results, with average
decreases of 0.6% for F04, 1.7% for M08, and 0.6% for M09.

This difference between the results of our work and the results reported in [21] in nor-
mal and dysarthric speech might be caused by the use of the second version of UASpeech
in our experiment which is noise-reduced and gets rid of the influence of the noise sig-
nals.

In the following sections, I will present the results of each method separately and
conclude with a comparison of all methods.

4.1.2. LOUDNESS INCREASING

LI.1
We can see the results of LI,1 from the second block from Table 4.1. For both the high-
severity and low-severity groups, the average values are worse than the original average
value. In the high-severity group, all individuals experienced worse results. However,
in the low-severity group, we observed improvements for speakers F03, M05, M08, and
M09. Specifically, the absolute PER for speaker F03 was reduced by 0.5% compared to the
original dysarthric speech. For speaker M05, the absolute PER was reduced by 0.2%, for
speaker M08 by 0.2%, and for speaker M09 by 0.4% compared to the original dysarthric
speech.
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LI.2
From the results of LI.2 shown in the second block of Table 4.1, we observe improve-
ments in the average value for the high-severity group. All individuals in the high-severity
group show improvements. Specifically, the absolute phoneme error rate (PER) of speaker
F02 was reduced by 0.5% compared to the original dysarthric speech, and the PER of
speaker F03 was reduced by 0.9%.

Although LI.2 degrades the average value for the low-severity group, there are still
some individual improvements. The absolute PER of speaker F04 was reduced by 1.9%,
and for speaker M05, it was reduced by 0.6% compared to the original dysarthric speech.
Notably, the PER results for speakers F05 and M10 increased significantly compared to
other speakers. The PER for speaker M05 increased by 3.7%, and for speaker M10, it
increased by 2.9%.

LN.1
According to Table 4.1, the average performance for both the high-severity and low-
severity groups is slightly degraded after applying LN.1. However, there are some indi-
vidual improvements. In the high-severity group, speaker F03 shows improvement with
a reduction in PER of 0.5%. In the low-severity group, the PER for speaker F04 is reduced
by 0.2%. Despite this improvement, LN,1 did not significantly enhance ASR performance
for most speakers in the low-severity group.

LN.2
In Table 4.1, the ASR performance of converted speech using LN.2 is presented. For the
high-severity group, there is an average improvement with a decrease of 0.6% in PER.
Specifically, speakers F02 and F03 both show an improvement of 0.6%. However, for the
low-severity group, the average result is degraded. Although we observed an improve-
ment for speaker F04 with a decrease of 2.1% in PER, LN.2 did not show enhancement in
ASR performance for most speakers in the low-severity group.

4.1.3. TIME STRETCHING

Following the application of the time-stretching technique, improvements are evident
for both the high-severity and low-severity groups, as indicated in Table 4.1. In the
high-severity group, there is an average improvement of 18.3%. Specifically, speaker F02
shows an improvement of 27%, and for the low-severity group, the improvement is 9.4%.

However, not all individuals in the low-severity group experience improvements.
Speakers M08 and M09 exhibit worse performance compared to the original dysarthric
speech. This aligns with the findings reported in [21]. The average performance of both
the high-severity and low-severity groups in our experiment closely resembles the results
reported in [21]. Regarding individual speakers, while M08 in our experiment demon-
strates worse results, similar to [21], M09 not only fails to show improvement but also
exhibits worse performance compared to the original dysarthric speech. This discrep-
ancy might be attributed to differences in the evaluation system between our experiment
and [21]. For the original dysarthric speech, our results indicate a worse performance for
speaker M09 compared to the results reported in [21].



4

28 4. RESULTS

Table 4.1: Objective Results (PER) for original dysarthric speech and converted dysarthric speech by various
techniques for individual speakers. The best results for each speaker across all techniques are highlighted in
bold.

High Severity Low Severity

F02 F03 Avg-High F04 F05 M05 M08 M09 M10 Avg-Low

Normal Speech 55.7 60.8 - 72.0 51.9 50.2 48.0 56.0 53.7 -
Dysarthric Speech 109.0 89.3 99.2 80.5 82.5 95.7 63.3 70.6 68.9 76.9

Loudness LI.1 109.2 89.9 99.6 80.0 87.2 95.5 63.1 70.2 71.8 78.0
Loudness LI.2 108.5 88.4 98.4 78.6 86.2 95.1 63.3 70.8 71.8 77.6

Normalization LN.1 110.3 88.8 99.8 80.3 87.0 98.1 65.2 71.9 71.8 79.05
Normalization LN.2 108.4 88.7 98.6 78.4 86.3 96.8 64.2 70.9 71.8 78.1

TS 82.0 79.9 80.9 75.2 69.3 74.1 68.9 71.8 65.0 70.7

MaskedCycleGAN 120.1 96.3 108.2 81.9 95.1 99.7 69.5 74.5 78.0 83.1
StarGAN 117.8 88.9 103.4 80.3 89.0 102.0 72.7 74.2 71.8 81.7

Normal Speech by [21] 56.9 61.6 - 74.0 53.1 53.9 48.2 57.6 55.6 -
Dysarthric Speech by [21] 109.0 89.8 99.4 79.9 85.9 94.0 64.1 70.0 68.8 77.1

TS by [21] 81.8 79.3 80.55 75.5 67.9 76.6 68.9 70.4 65.4 70.8
MaskCycleGAN by [21] 116.9 96.3 106.6 78.8 89.9 102.5 73.8 77.1 67.3 81.5

4.1.4. MASKCYCLEGAN-VC
According to the results of MaskCycleGAN-VC in the third block of Table 4.1, we observed
degraded results in both the high-severity and low-severity groups. This trend is also
evident for individual speakers within each group, with all individuals showing worse
results. In [21]’s experiments, the average performance for both the high-severity and
low-severity groups is similar to ours. However, it’s noteworthy that although the average
results for both groups are worsened, some individuals in the low-severity group, such as
F04 (improvement of 1.7%) and M10 (improvement of 1.6%), still show improvements.

One possible explanation for this difference is that during the training process of
MaskCycleGAN-VC, the missing frames are randomly selected, leading to slight differ-
ences in the performance of our model compared to the model in [21].

4.1.5. STARGANV2-VC
Based on the results of StarGANv2-VC, we observe that the average ASR performance
is degraded for both the high-severity and low-severity groups. However, looking at in-
dividual results, speaker F02 in the high-severity group shows an improvement with a
decrease in PER of 0.4% compared to the original dysarthric speech. In the low-severity
group, speaker F04 also shows a marginal improvement, with PER decreasing from 80.5%
to 80.3%.

In conclusion, StarGANv2-VC did not demonstrate effectiveness in improving ASR
performance for most speakers in either the high-severity or low-severity groups.

4.1.6. OVERALL

To compare all the methods we use, we look into the whole Table 4.1. For both the low-
severity and high-severity groups, time-stretching (TS) led to substantial improvements
in ASR recognition performance compared to the original dysarthric speech, while both
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Table 4.2: Subjective results (MOS) for original dysarthric and converted dysarthric speech by various tech-
niques for individual speakers.

High Severity Low Severity

F02 F03 Avg-High F04 F05 M05 M08 M09 M10 Avg-Low

Normal Speech 4.01 3.9 - 3.78 4.15 4.07 3.95 3.84 3.93 -
Dysarthric Speech 2.68 2.36 2.52 3.23 3.75 2.81 3.76 3.34 3.88 3.47

Loudness LI.1 2.14 2.01 2.08 3.02 3.84 2.81 3.63 3.11 3.85 3.38
Loudness LI.2 2.40 2.16 2.28 2.76 3.80 2.58 3.40 2.97 3.56 3.18

TS 1.90 1.01 1.78 2.62 3.13 2.31 3.43 2.88 3.58 2.99

StarGAN 2.14 2.65 2.08 3.02 3.84 2.81 3.63 3.11 3.85 3.38

Table 4.3: Subjective results (CER) for original dysarthric and converted dysarthric speech by various tech-
niques for individual speakers.

High Severity Low Severity

F02 F03 Avg-High F04 F05 M05 M08 M09 M10 Avg-Low

Normal Speech 9.36 15.63 - 24.27 20.20 6.30 12.02 13.47 14.81 -
Dysarthric Speech 64.25 91.94 80.79 53.06 21.69 38.48 17.81 53.47 21.64 36.23

Loudness LI.1 78.56 82.39 81.45 64.27 23.13 52.92 37.43 63.78 16.34 44.00
Loudness LI.2 63.88 94.07 77.57 58.78 28.54 39.31 19.35 37.40 32.92 39.69

TS 91.91 98.11 95.02 81.01 42.07 79.60 41.71 54.42 29.29 56.27

StarGAN 91.18 98.38 95.46 87.07 71.63 77.77 77.61 71.37 86.97 79.13

VC methods led to degradations in performance. In line with earlier findings by [21],
time-stretching outperformed state-of-the-art VC methods for improving dysarthric speech
recognition. Although LI.2 and LN.2 also improve the performance of the high-severity
group, the improvements are slight. Also, Of the four loudness methods, two increasing
the loudness techniques gave overall slightly better results than normalizing loudness,
and thus are used for the subjective evaluations. Of the two VC methods, StarGANv2-VC
gave slightly better results than MaskedCycle-GAN and is thus used for subjective evalu-
ation.
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4.2. RESULTS OF THE SUBJECTIVE EVALUATION

4.2.1. NATURALNESS EVALUATION

Table 4.2 shows the results of the listening experiment for the naturalness evaluation. It
consists of the converted speech using different speech conversion methods, the dysarthric
speech, and the normal speech again for the speakers individually and averaged for the
two severities. Table 4.2 shows that both normal speech and dysarthric speech achieve
higher scores compared to converted speech. Additionally, normal speech scores higher
than dysarthric speech, indicating that listeners perceive normal speech as more natural
than dysarthric speech, even though neither is distorted by any method.

From the results of LI.1 in Table 4.2, we see that the average performance for both
high-severity and low-severity groups is decreased. However, speaker F05 in the low-
severity group shows a slight improvement. For LI.2, a similar trend is observed, with
average performance decreasing for both severity groups. Nonetheless, individual im-
provements are noted for speaker F02 in the high-severity group and speaker F05 in
the low-severity group. These results suggest that increasing the loudness of dysarthric
speech does not generally make it sound more natural for most speakers in either sever-
ity group.

The time-stretching technique results in a decrease in the average MOS score com-
pared to the original dysarthric speech in both high-severity and low-severity groups. No
individual improvements are observed, indicating that altering the speech rate (speed-
ing up or slowing down) does not enhance the naturalness of dysarthric speech and may
even worsen it.

StarGANv2-VC also degrades the average performance for both severity groups, but
some slight individual improvements are noted in both high-severity and low-severity
groups.

In conclusion, among the converted speech samples, the loudness LI.2 method achieved
the highest naturalness scores for high-severity dysarthric speech, while for low-severity
dysarthric speech, the highest MOS scores were obtained with the LI.1 loudness method
and the VC model.

4.2.2. INTELLIGIBILITY EVALUTION

Table 4.3 shows the intelligibility results in Character Error Rate (CER). The results demon-
strate that normal speech consistently achieves the best results, indicating that normal
speech is more intelligible than both dysarthric speech and converted dysarthric speech.

For the results of LI.1, we observe an increase in average CER for both high-severity
and low-severity groups. However, there are individual improvements: speaker F03 in
the high-severity group shows an improvement of 9.55%, and speaker M10 in the low-
severity group shows an improvement of 5.3%. For LI.2, the average performance of the
high-severity group improves, but the performance for the low-severity group worsens
compared to dysarthric speech.

Both the time-stretching (TS) technique and StarGAN worsen the average perfor-
mance of both severity groups. Additionally, there are no individual improvements for
these two methods, indicating that they make the converted speech less intelligible for
human listeners.
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To conclude, for high-severity speakers, the LI.2 method yields better results than the
original dysarthric speech. However, on average, none of the speech conversion meth-
ods improved intelligibility for the low-severity speakers. Among all the speech conver-
sion techniques, the LI.2 method delivers the best performance for both high-severity
and low-severity groups, while the VC model results in the worst performance for both
groups.

4.3. CORRELATION BETWEEN OBJECTIVE AND SUBJECTIVE RE-
SULTS

Figure 4.1 consists of two figures. The first one shows the correlation between natu-
ralness and ASR performance. The x-axis means the MOS Score which measures the
naturalness of the speech. The y-axis means the PER(%) which measures the ASR per-
formance of the speech. Different colors of dots represent dysarthric speech and speech
using different converting methods. The lines will show the prediction of the trend of
the correlation between naturalness and ASR performance. For all methods which are
shown in Figure 4.1, higher naturalness scores in the subjective evaluation led to better
ASR performance.

The second one shows the correlation between intelligibility and ASR performance.
The x-axis means the CER (%) which measures the intelligibility of the speech. The y-axis
means the PER(%) which measures the ASR performance of the speech. The dots and the
lines function the same as the first figure. For all methods which are shown in Figure 4.1,
higher intelligibility in the subjective evaluation led to better ASR performance.

In order to further investigate the correlation between objective and subjective re-
sults. We then computed the correlation coefficients and P value between the objective
and subjective results for all methods. The correlation coefficient[1] is a number range
from -1 to +1. When the correlation coefficient is between -1 and 0, it indicates that
there is a negative correlation between the variables; when the correlation coefficient is
between 0 and 1, it indicates that there is a positive correlation between the variables;
when the correlation coefficient is 0, there is no correlation between the two. When
the correlation coefficients get more close to 1 or -1, it indicates a stronger relationship.
What is noticeable that the objective results are averaged over all recording samples (as
the PER can be estimated for all the available data) while the subjective results are aver-
aged over the tested samples for which the naturalness experiments were completed by
the listeners.

Table 4.4 shows the correlation coefficients for dysarthric speech and converted speech
using all methods. Based on these results, the correlation coefficients of PER and MOS
score for all methods are negative. This indicates that a higher naturalness score is asso-
ciated with a lower PER, implying a better ASR performance. However, the significance
of this correlation varies among methods. The time-stretching (TS) method exhibits the
strongest correlation, with a p-value smaller than 0.01, indicating a statistically signifi-
cant relationship. In contrast, the correlations for LI.1 and LI.2 are not strong or signifi-
cant.

As shown in Table 4.4, the correlation coefficients of PER and CER for all methods are
positive. This suggests that a lower CER is associated with a lower PER, indicating better
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Figure 4.1: Correlation between MOS and PER (top) and CER and PER (bottom) for different methods
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Table 4.4: Correlaitonship between Intelligibility Results and ASR Performance for different methods

PER & MOS PER & CER
Correlation Coefficient P Value Correlation Coefficient P Value

Dysarthric Speech -0.77 0.024 0.54 0.16
LI.1 -0.68 0.060 0.50 0.21
LI.2 -0.58 0.12 0.52 0.18
TS -0.91 0.0018 0.96 0.0002

StarGAN -0.75 0.030 0.29 0.48

ASR performance. Again, the significance of this correlation varies. The TS method has
the strongest correlation, with a p-value smaller than 0.01, showing that this relationship
is statistically significant. For the LI.1, LI.2, and StarGANv2-VC models, the correlations
are neither strong nor significant.
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5.1. DISCUSSION
In our experiment, we choose two signal processing techniques (Loudness Increasing/Normalization
and Time Stretching) and two voice conversion models (MaskCycleGAN-vc and StarGANv2-
VC) for transforming dysarthric speech into normal speech. We trained one ASR system
to do the objective evaluation. We choose two evaluation metrics for subjective evalu-
ation, which are naturalness and intelligibility. The participants were recruited to carry
out the subjective evaluation experiments. Finally, we gather all the results to answer the
following questions:

• RQ1: Which speech conversion technique leads to the highest recognition perfor-
mance for two severities of dysarthric speech?

• RQ2: Which speech conversion technique improves the naturalness and intelligi-
bility of dysarthric speech for human listeners?

• RQ3: Does increased naturalness lead to better ASR performance for dysarthric
speech?

• RQ4: Does increased intelligibility lead to better ASR performance for dysarthric
speech?

Table 5.1 shows the all the results we get from objective evaluation and subjective
evaluation, making it clear to discuss in this part.

For RQ1, we conducted experiments to compare four different speech conversion
techniques. As shown in Table 5.1, time stretching leads to the highest recognition per-
formance in both high-severity and low-severity groups and has a significant advantage
compared to the results of other techniques which aligns with the finding in [21]. This
shows the effectiveness of improving the ASR performance of dysarthric speech for both
the high-severity group and the low-severity group. For loudness modification methods,
the results are really close to each other and worse than the results of time stretching.
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Both StarGANV2-VC and MaskCycleGAN-VC get worse results than the signal processing
techniques in both high-severity and low-severity groups. Specifically, MaskCycleGAN-
VC gets the worst result among all techniques. One possible explanation is the speed
rate might be a key difference between normal speech and dysarthric speech that leads
to the difference in ASR performance of them. The loudness difference between normal
and dysarthric speech is not significant and also will not make a big difference in ASR
performance. Moreover, increasing the loudness can introduce additional noise to the
original speech to make the results worse. Voice conversion models aim to convert all
characteristics of normal speech to match those of dysarthric speech. However, some
characteristics may not be important for automatic speech recognition, which could ex-
plain why these models are not effective in improving dysarthric speech recognition as
Time stretching. Additionally, in our experiment, StarGAN outperforms MaskCycleGAN,
which might be due to the differences in the vocoders used. StarGAN uses the Parallel
WaveGAN vocoder, while MaskCycleGAN uses the MelGAN vocoder.

For RQ2, we observed from the naturalness evaluation results in Table 5.1 that LI.2
(Loudness Increasing 2) gets the best result for the high-severity group and LI.1 (Loud-
ness Increasing 1) and StarGANV2-VC get the best result for the low-severity group. This
shows that the distortion of dysarthric speech using loudness increasing is relatively low
for both high and low-severity groups. Although there is some noise introduced by loud-
ness increasing, it has a relatively low influence on the perception of human beings.
For both high-severity and low-severity groups, the Time Stretching method all get the
worst performance. That might be caused by the speed up or slow down of the origi-
nal speech is easy to recognize for human beings. For Intelligibility evaluation results in
Table 4.3, LI.2 (Loudness Increasing 2) achieves the highest performance for both high-
severity and low-severity groups. It even gets a better intelligibility performance than
original dysarthric speech in the high-severity group and gets a close result with original
dysarthric speech in the low-severity group. This indicates that people could avoid the
influence of introduced noise brought by the loudness increasing, which align with the
finding in [18].

For RQ3, we calculate the correlation coefficients between objective evaluation re-
sults and naturalness scores which are shown in Table 4.4. For all the methods, the re-
sult shows that higher naturalness scores will lead to better ASR performance. However,
for different methods, the significance of correlation varies. For dysarthric speech, time
stretching and StarGAN, this kind of correlation is strong and significant. The strong cor-
relation means aiming to improve the naturalness of speech for these methods will lead
to better ASR performance. But for loudness increasing, it is not the case. One possible
reason is that although increasing loudness will get a relatively high MOS score for hu-
man beings, it has little influence on improving the ASR performance. What is found in
[18] is that it is easy for human beings to avoid the influence of noise.

For RQ4, we compute the correlation coefficients between objective evaluation re-
sults and intelligibility scores, as presented in Table 4.4. For all the methods, the re-
sult shows that higher intelligibility scores correlate with better ASR performance. the
strength of this correlation varies across different methods. Only for time stretching, the
correlation is significantly positive. This shows that we could improve the ASR perfor-
mance of the converted speech for time-stretching by making it sound more intelligible
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Table 5.1: All Results (PER, MOS, CER) for normal speech, original dysarthric speech, and converted dysarthric
speech by various techniques for individual speakers. The best results for each speaker across all techniques
are highlighted in bold.

High Severity Low Severity

F02 F03 Avg-High F04 F05 M05 M08 M09 M10 Avg-Low

Normal Speech (PER) 55.7 60.8 - 72.0 51.9 50.2 48.0 56.0 53.7 -
Normal Speech (MOS) 4.01 3.9 - 3.78 4.15 4.07 3.95 3.84 3.93 -
Normal Speech (CER) 9.36 15.63 - 24.27 20.20 6.30 12.02 13.47 14.81 -

Dysarthric Speech (PER) 109.0 89.3 99.2 80.5 82.5 95.7 63.3 70.6 68.9 76.9
Dysarthric Speech (MOS) 109.0 89.3 99.2 80.5 82.5 95.7 63.3 70.6 68.9 76.9
Dysarthric Speech (CER) 64.25 91.94 80.79 53.06 21.69 38.48 17.81 53.47 21.64 36.23

Loudness LI.1 (PER) 109.2 89.9 99.6 80.0 87.2 95.5 63.1 70.2 71.8 78.0
Loudness LI.1 (MOS) 2.14 2.01 2.08 3.02 3.84 2.81 3.63 3.11 3.85 3.38
Loudness LI.1 (CER) 78.56 82.39 81.45 64.27 23.13 52.92 37.43 63.78 16.34 44.00

Loudness LI.2 (PER) 108.5 88.4 98.4 78.6 86.2 95.1 63.3 70.8 71.8 77.6
Loudness LI.2 (MOS) 2.40 2.16 2.28 2.76 3.80 2.58 3.40 2.97 3.56 3.18
Loudness LI.2 (CER) 63.88 94.07 77.57 58.78 28.54 39.31 19.35 37.40 32.92 39.69

TS (PER) 82.0 79.9 80.9 75.2 69.3 74.1 68.9 71.8 65.0 70.7
TS (MOS) 1.90 1.01 1.78 2.62 3.13 2.31 3.43 2.88 3.58 2.99
TS (CER) 91.91 98.11 95.02 81.01 42.07 79.60 41.71 54.42 29.29 56.27

StarGAN (PER) 117.8 88.9 103.4 80.3 89.0 102.0 72.7 74.2 71.8 81.7
StarGAN (MOS) 2.14 2.65 2.08 3.02 3.84 2.81 3.63 3.11 3.85 3.38
StarGAN (CER) 91.18 98.38 95.46 87.07 71.63 77.77 77.61 71.37 86.97 79.13

for humans. However, for other speech conversion techniques, there is no significant
correlation between ASR performance and human intelligibility. This disparity under-
scores differing perceptual mechanisms between human listeners and ASR systems. Hu-
man beings are more robust to speech recognition[18].

5.2. LIMITATIONS AND FUTURE WORK
A limitation of our work is that for subjective evaluation, we could not implement a larger
experimental setup. For future work, we can address this issue by selecting more samples
for each speaker, adopting additional methods (including all those used for objective
evaluation), and recruiting more participants.

In addition, we divided dysarthria into two groups: high severity and low severity.
However, the characteristics of dysarthria are more subtle and detailed. Future research
can focus on exploring these specific characteristics in greater depth.





6
CONCLUSION

In our study, we conducted a comparative analysis of various signal processing and voice
conversion techniques aimed at transforming dysarthric speech into normal speech. The
evaluation encompassed objective evaluation and assessments of naturalness and intelli-
gibility. Our findings revealed that among the techniques investigated, time-stretching
exhibited superior performance in the objective evaluation experiment, outperforming
state-of-the-art voice conversion techniques. For all methods, we observed that increased
naturalness and increased intelligibility led to improved ASR performance. However, this
kind of correlation is significant for some methods, but not for others. For example, we
observed a significant positive correlation between naturalness and ASR performance and
between intelligibility and ASR performance for the time-stretching method. This indi-
cates if we could improve the naturalness and intelligibility of the converted speech, it
would lead to better ASR performance for this method. Taken together, these results show
that aiming to make dysarthric speech more natural sounding and more intelligible has a
effect on ASR performance for some methods. For other methods without this correlation,
future research should focus on improving (the acoustic modeling of) specific aspects of
dysarthric speech for improved dysarthric speech recognition.
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