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Introduction

A ship sailing at sea is exposed to forces due to wind, current and waves. These forces
not only cause the motions of the ship, which can be very annoying for its passengers,
but also account for the resistance of the ship or drift the ship away from its course. The
resistance of the ship is balanced by the propulsive power of the ship, and is desired to
be as small as possible to save fuel and to keep the costs of transport as low as possible.
The drifting of the ship can be checked by adjusting the angle of the rudder.

The two most important contributions to the resistance of a ship are the resistance due
to viscosity and the resistance due to the excitation of waves. In still water, the second
contribution is called the wave resistance. Especially for high forward speed, this con-
tribution may become larger than the viscous contribution. The corresponding steady
waves are characteristic for a ship sailing at a constant speed, and can easily be spotted
when you watch a ship go by while waiting for an open bridge: This wave pattern and the
corresponding wave resistance can be approximated by a method called RAPID, which
has been developed at the MAritime Research INstitute (MARIN) in recent years. Un-
like most other methods, it takes into account the non-linear behaviour of the waves and
therefore gives more reliable predictions for the wave resistance than linearized methods.

When the sea is not calm, and the ship sails in incoming waves then, besides the steady
resistance, the ship experiences a time-varying force. When the mean value of the incom-
ing waves is zero, this force nevertheless can have a mean value which is non-zero due
to quadratic effects. The direction of this force is the direction that the incoming waves
propagate, sd the incoming waves want the push the ship ahead of them. This means
that, when the waves come in front, the ship experiences an extra resistance, called the
added resistance, which leads to a power loss. Besides this power loss, a transverse force
will drift the ship from its course, and a rotating moment about the ship's vertical axis
leads to a change of its course. TherefOre, eventually, the ship will sail in head waves or
following waves, unless this is prevented by adjusting the angle between the rudder and
the forward direction of the ship.

It is important that, before a ship is built, as much as possible is known about the ship's
performance in calm water and in waves. Therefore, a scale model of the ship can be
built and tested in a basin in which a uniform stream and incoming waves are generated.
This is done, amongst others, at the MARIN in Wageningen. These model tests are very
expensive and, although they are irreplaceable, a tool is sought that can assist these tests,
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gain more physical insight and maybe take over some of the tests once it has been thor-
oughly validated. This tool is found in simulating the model basin on a computer. With
the increase in computer power, it has become possible to simulate a ship's behaviour
in waves numerically. These simulations are based on mathematical descriptions of the
physics of the ship and the sea. Although they are always an approximate description of
reality, under certain circumstances they can be very helpful in the process of optimizing
the performance of a ship.

In this thesis we derive a mathematical and numerical model that can determine the mo-
tions of and the forces on a ship sailing in waves. Emphasis is laid on making the model
suitable for moderate and high speeds of the ship. For low speeds, various models already
exist that are too simple however, to obtain reliable results when we increase the speed,
because they use a very simple approximation of the steady flow around the ship. Because
the interaction between the steady flow around the ship on the one hand and the incoming
waves, the motion of the ship and the drift forces on the other hand is very strong, we need
a better description for the steady flow. Therefore, we use the non-linear steady flow, that
can be determined by RAPID, to model the steady flow around the ship. It is very hard
to determine the remaining, time-dependent waves that propagate over the steady waves,
because some non-linearities are involved. Therefore, we make some assumptions on the
steepness of these time-dependent waves and the amplitudes of the motions of the ship,
which allow us to linearize the equations that describe the propagation of these waves and
the ship's motions. The result is a linear mathematical model that, unfortunately, cannot
be solved analytically. Therefore, it has to be discretized, and the resulting numerical
model is solved on a computer. This way we obtain an approximation of the solution of
the mathematical model, which was a linearized version of a more difficult mathematical
model, which was again an approximation of reality. Although this involves three simpli-
fication steps, we shall see that we can obtain some very nice predictions for the motions
of and the forces on a ship sailing in waves.

In the first chapter we derive the mathematical model that describes the time-dependent
flow around a ship and the motions of a ship. We assume that the fluid is inviscid and
irrotational, which allows us to introduce a velocity potential that satisfies the equation
of Laplace inside the fluid domain. The linearization is carried out and a linear free-
surface condition and a linear hull condition are derived. By means of a boundary-element
method, the three-dimensional problem is reduced to a two-dimensional problem, in which
only the strength of pulsating sources on the boundaries (the free surface and the hull of
the ship) has to be determined. Due to the linearization, separate expressions are found
for the steady forces on the ship in calm water, the harmonic forces on the ship, which
have a zero mean value and are of first order in the steepness of the incoming waves, and
the th-ift forces, which generally have a non-zero mean value and are of second order in
the steepness of the incoming waves.
Special attention is paid to the absorption of outgoing waves. In our model, the size of
the sea is finite. Near the edges of this finite area, a special condition must be applied to
absorb outgoing waves and to avoid that waves reflect and go back to the ship.
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In the second chapter we discretize the mathematical model and transform it into a nu-
merical model that can be solved on a computer. The hull of the ship and the free surface
are divided into small areas, called panels, and on each of these panels the strength of
the sources is assumed to be constant. Because of the linearization around the steady
flow, we need the steady wave, the steady fluid velocities and several derivatives of these
velocities. The steady wave and the steady velocities are directly calculated by RAPID.
However, the derivatives have to be determined with difference schemes, and these are
introduced. When this has been. done we discretize the linear free-surface condition. It
contains derivatives of the unsteady velocity potential in space and time. We discretize
the time derivatives by using a difference scheme with a constant time step. This results
in a time iteration in which we have to recalculate the unsteady flow at each time level.
We discretize the space derivatives with upwind difference schemes. The result is a matrix
equation for the unknown source strengths which can be solved with LU-decomposition.

In the third chapter we carry out an accuracy and stability analysis for a simplified model.
We test whether or not several difference schemes are capable of predicting the correct
wave amplitude and the correct wavelength. The stability of the time stepping depends
on the rate at which the solution grows in each time step. If this rate is larger than one,
the time stepping is unstable. We derive a discrete dispersion relation from which this
growth rate can be found. It is shown that for moderate and high speeds, upwind differ-
ence schemes have to be used to guarantee stability. The more accurate central difference
schemes can only be used if the ship has a small forward speed.

In the fourth chapter we apply the model to a test ship. We investigate the convergence
of the steady waves, the, derivatives of the steady velocities, and the convergence of the
unsteady waves. We implement and compare two methods that simulate the incoming
waves, and the best method is applied to the calculations in the fifth chapter. There, we
apply the model to an LNG carrier. We calculate the motions and the added resistance
of this ship for three moderate speeds, and for several lengths and angles of the incoming
wave. The results are compared with measurements, carried out at the MAREN. Finally,
conclusions are drawn and recommendations are made to improve the model.



Chapter 1

Mathematical formulation

In this chapter a mathematical model is presented that describes the unsteady water flow
around a sailing ship. Because of the complex non-linearity of this model, some assump-
tions are made to linearize it. By means of perturbation techniques, equations are derived
for the first- and second-order forces on a ship, and the equation of motion is formulated.
Artificial damping is used to absorb outgoing waves and an investigation is made on how
large the damping should be. Finally, we use Green's second identity to formulate a method
to solve the Laplace equation.

1.1 Overview of recently developed methods
In the recent past, a lot of research in the field of unsteady potential-flow solvers has
been done. When one starts developing a new model and computer code, it is important
to have an overview of what already has been done, and prevent the wheel from being
invented twice. Most of the potential-flow solvers use some kind of boundary-integral
method, which can be derived from Green's theorem, resulting in the well-known panel
methods. The methods can roughly be divided in three groups: the linear methods, the
semi non-linear methods and the fully non-linear methods.

LINEAR METHODS

The most simple, but also the most practical methods are the linear methods. Although
in some sense the amplitude of the solution must be assumed small, it is mostly possible
to apply such models to a wide variety of applications without major difficulties. In a
linear model, the time dependence can be removed by assuming that the solution is har-
monic in time. This leads to the so-called frequency-domain approach. If no assumption
is made on the time behaviour of the solution, a time-domain approach has to be used.
The frequency-domain methods are generally the fastest, but are limited to simulating one
frequency at a time. Furthermore, irregular frequencies may appear at which the solution
becomes unbounded. When random seas are to be simulated, it is far more efficient to
use a time-domain approach.



6 CHAPTER 1. MATHEMATICAL FORMULATION

The approach that can be followed to solve the linear equations depends on the kind of
linearization that is used and whether or not forward speed is involved. Generally, if the
coefficients in the linear free-surface condition are independent of space, it is possible to
find a Green function that satisfies the free-surface condition. If the coefficients are space
dependent, it is mostly not possible to find such a Green function. The advantage of
the use of a Green function that satisfies the free-surface condition is that singularities
only have to be distributed over the ship's hull. The disadvantage is that the free-surface
condition has to be relatively simple which often restricts the applicability of the model.
Furthermore, it can be rather difficult to calculate this Green function. Without forward
speed, it is very efficient to use a Green function that satisfies the free-surface condition
and the radiation condition. Clement [11] found an ordinary differential equation for the
time-domain Green function that makes it possible to calculate it very efficiently. With
forward speed, the Green function becomes much more difficult to evaluate. When, for
example, the source and field point are both on the free surface, this function becomes
highly oscillatory, which makes its integration difficult. Huijsmans used the frequency-
domain version of this Green function in his method to determine the mean wave drift
force in current [17]. Korsmeyer and Bingham [21] use the time-domain version of this
Green function to solve the forward speed diffraction problem in their code TIMIT. Re-
cently, developments by Chen and Noblesse 110] have lead to a method that is able to
calculate the highly oscillatory part of the Green function more accurately and efficiently.
The same holds for the integrated Green function, which they call the "super Green func-
tion". Ba and Guilbaud [2] also developed a method that calculates the Green function
fast, but to the author's knowledge, it has not been applied to a seakeeping code yet.

When the linear free-surface condition is more complicated, Green functions satisfying
the free-surface condition cannot be found anymore. With forward speed, this happens
for example when a linearization is carried out about a space-dependent steady flow like
the double-body flow, instead of the uniform flow. In that case, it is very convenient
to use a distribution of Rankine sources to obtain a solution. Prins [28] developed a
time-domain code using the Rankine source and the double-body flow and applied this
code successfully to a tanker with a small forward speed. Sierevogel [31] extended this
code with a very effective absorbing boundary condition which makes it possible to use
a much smaller part of the free surface in the computations. However, when she tried to
increase the speed she got erroneous results for an LNG carrier, which is probably due to
the fact that the double-body flow is used. Similarly, Skourup, Büchmann and Bingham
[321 developed the linear time-domain code WAVETANK that determines the first and
second-order potentials for several three-dimensional objects in waves. The results for
the runup on a vertical mounted cylinder agree very well with the non-linear results from
Ferrant [14]. At the MIT, several linear Rankine panel methods have been developed
successfully, like the SWAN code by Nakos [24]. All these mentioned codes, however, are
restricted to low speeds of the ship or current, because only first-order effects on forward
speed are taken into account. Bertram [5] developed a linear frequency-domain Rank-
me panel method that takes into account the non-linear steady flow. His results have
not shown yet that his method is capable of predicting the added resistance correctly.



1.1. OVERVIEW OF RECENTLY DEVELOPED METHODS 7

Iwashita [18] developed the method further but encountered difficulties in predicting the
correct wave elevation.

SEMI NON-LINEAR METHODS

Because linear methods are restricted to waves and motions with small amplitudes, meth-
ods have been developed that overcome such problems by adding some non-linearities.
At the MIT for example, the computer code SWAN has been developed. Started as a
linear code by Nakos [24], some non-linear features have been built in the code as welL
The so-called weak scatterer method, see Huang and Sclavounos [16], does not require
the amplitude of the incoming waves and the ship motions to be small. The only as-
sumption that is made is that the waves that are diffracted and radiated by the ship are
small, so the ship has to be slender. In that case, a linearization about the time-varying
position of the incoming wave can be made, and the exact body boundary condition can
be applied at the instantaneous submerged ship surface, resulting in a semi non-linear
method. The Laplace equation is solved by distributing Rankine sources over the body
surface and part of the free surface. However, at high forward speed the incoming wave
is significantly diffracted, especially by a non-slender ship, and the method is no longer
valid, which makes this approach not suitable for our purposes. The multi-level computer
code LAMP developed by by Lin and Yue [23] uses a similar approach, but with a mixed-
source formulation. Close to the ship in an inner domain, Rankine sources are applied,
and on the boundary of the inner domain the transient Green function is applied, so the
radiation condition is automatically fulfilled

NON-LINEAR METHODS

The rather complex and time-consuming fully non-linear methods have become popular
in recent years because of the huge increase in computer power. The complexity lies in
the fact that in case of non-linearities a time-domain algorithm has to be used in which
a regridding is necessary because the geometry of the free surface and the position of
the floating object changes during the simulation. This regridding is very expensive in
terms of computational time. Another problem is that it is rather difficult to determine
the intersection between the floating object and the free surface. With the increase of
computer power, and the development of new algorithms, these methods become more
and more promising. At the university of Twente, for example, research by Romate [30],
Broeze [6], van Daalen [12], de Haas [15] and Berkvens [3] resulted in a method that is
able to determine the non-linear waves around several two-dimensional floating objects
for zero forward speed. In three dimensions results have been obtained for an oscillat-
ing sphere and for waves diffracting around a vertical mounted cylinder. Tanizawa [34]
developed a similar, two-dimensional method with which large-amplitude body motions
can be simulated. Another method called ANSWAVE, developed by Ferrant [14], is able
to calculate the non-linear runup on a vertical cylinder with current. Similarly, Beck et
al. [9] developed a numerical wave tank in which the non-linear waves around a vertical
truncated cylinder can be determined They use a desingularized method, in which the
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sources are located above the free surface instead of on the free surface, as discussed in
section 2.2.1. Finally, at the MIT a method has been developed to solve the non-linear
wave body interactions with forward speed, see Kring et al. [22]. It has successfully been
applied to a heaving Mobile Offshore Base and looks a very promising candidate for future
non-linear seakeeping studies.

However, until now all these non-linear methods involve simplified geometries, or are
limited to zero forward speed or small forward speed of the floating object and are therefore
not yet capable of simulating the behaviour of commercial ships. Therefore, in this thesis
we present a linear code. A time-domain algorithm is used so the code is not restricted
to regular waves, and the steady flow is approximated by the non-linear flow to allow
moderate and high speeds of the ship.

1.2 Introduction
The mathematical model presented in this chapter aims to predict the forces acting on a
ship sailing in water waves, and its subsequent motions. The emphasis is laid on making
the model suitable for moderate and high speeds of the ship, because until now, computer
codes were mostly based on low-speed approximations.

There are a number of ways to model the water flow around a ship. Some of these are very
complex, and it must therefore be considered whether these formulations are really nec-
essary to capture the most important physics. The most exact description of the flow of
water is given by the Navier-Stokes equations, which take into account the water's viscos-
ity. Viscosity in ship hydrodynamics can be important in turbulent areas like, for example
near a rudder, propulsor or a sharp edge of the hull, but none of these is considered in this
thesis. Near the hull, a small boundary layer exists in which viscous effects dominate, but
this layer does not really affect the large-scale interactions of ocean waves and ship me-
tions. Only the roll motion of the ship is strongly influenced by viscosity, but fortunately,
the roll motion does not affect the added resistance very much. In this study, the effect
of viscosity is therefore neglected and potential theory is used to describe the flow of water.

-

Although this is a major simplification, the remaining problem is still very complicated
due to the presence of a moving free surface and a surface-piercing body. The boundary
condition on this free surface is non-linear in two ways. First, it is defined on a moving
surface which is part of the solution and not known in advance. Second, the condition
itself is non-linear because it contains products of the velocity potential. The steady non-
linear problem (so without incoming waves and ship motions) has been solved numerically
by Raven [29], amongst others. As indicated in the previous section, some efforts have
been made to tackle the unsteady non-linear problem. Until now, the resulting models
are restricted to simplified geometries or small forward speeds. Furthermore, the corre-
sponding computer programs are very time consuming. We therefore decided to make a
further simplification by linearizing the conditions on the free surface and the hull of the
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ship.

As said, when the ship oniy has a forward speed, the non-linear problem can relatively
easy be solved. The resulting steady base flow can be used to linearize the unsteady flow
if the unsteady flow is assumed to be small. This way we incorporate the steady solution
into our linear unsteady solution and let the two interact by means of linearized unsteady
boundary conditions. Because all the steady characteristics of the ship are now included
in the model, such as trim, sinkage and the steady wave profile, it is also suitable for
moderate and high speeds.

1.3 The non-linear formulation

Figure 1.1: View of the geometry

We consider a symmetrical, smoothly-shaped ship sailing with a constant velocity U in
incoming waves that propagate in a direction which makes an angle 9 with the forward
direction of the ship. We choose a coordinate system fixed to the ship and moving with
its mean velocity. Standing in this coordinate system it is as if the ship has no forward
speed and as if there is a current with velocity U coming from the bow side of the ship.
The frequency at which the incoming waves are encountered changes due to this forward
speed, unless the ship sails in beam waves. The x-axis is along the direction of this current
in the symmetry plane of the ship. The z-axis points upwards and the origin lies in the
undisturbed free surface z = 0. The ship is free to rotate around or translate along any
of its axes. The water depth h is supposed to be constant and, therefore, the bottom
corresponds to the plane z = h.
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The two objects in this study, the fluid and the ship, form a complex combination. Both
have not only typical characteristics, they also interact. The moving fluid will search its
way around the ship and unsteady forces and moments are generated by pressure changes
in the fluid. These forces will cause the ship to rotate and translate, which again will
generate motions of the fluid. In the mathematical model we therefore need separate
descriptions for the behaviour of the fluid and the ship, and some condition describing
the interaction between the two.

Water is a fluid with a low viscosity, which means it is not sticky like, for example, oil.
Therefore, a first approximation that we make is that the water is not viscid at all, which
simplifies our equations considerably. The influence of viscosity on the hydrodynamics
of the ship is limited to a thin boundary layer near the hull, which does not influence
the large-scale effects of incoming waves and ship motions very much, and justifies this
approximation. If we also assume that the flow is irrotational and incompressible, a
velocity potential exists, which gradient is the velocity of a fluid particle

i:=fj

Inside the fluid domain this potential satisfies the equation of Laplace, which follows from
the conservation of mass

=0

The solution of this equation is unique if, on the boundaries of the fluid domain, a linear
combination of the potential and its normal derivative is given, and if in at least one point
the potential is given. The solution is determinate, but for a constant if the value of the
potential is nowhere specified. After differentiating, this constant disappears, so it has no
influence on the velocity field. This implies that on the boundaries of the fluid domain,
which are the free surface, the bottom of the water and the hull of the ship, we need
conditions relating the potential and its normal derivative. Fortunately there are physical
demands for these boundaries, which will give us these relations.

On the free surface two physical conditions hold. The first is the dynamic free-surface
condition, stating that the pressure should equal the atmospheric pressure, which is true
when we neglect surface tension. The pressure p inside the fluid follows from the equation
of Bernoulli, which relates it to the velocity potential

_PPo =+.+gz_U2
Imposing atmospheric pressure on the unknown free surface z = ( gives the dynamic
free-surface condition

onz= (1.1)
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The second is the kinematic condition, stating that a fluid particle cannot leave the free
surface, which is mathematically described by

aaç aa a a--+--+---=o onz=axax ayay at ôz

If these two conditions are combined, the free-surface elevation can be eliminated,
resulting in a condition that only contains the velocity potential

a2 - a (a a a a \ (a 1 -. - \ a+VV+j--+---j I+V.VI+g=0 onz=(at2 at \ a ar ay Oy( j \ 3t 2 ,i a
(1.2)

Care must be taken with the definition of the derivatives in this condition. The gradient,
V, is defined as the vector with partial derivatives in x, y and z-direction. The partial
derivatives - and -, however, are here defined as operators working on a functiOn that
is defined at the free surface z = (, so if F = F(x, y, ç(x, y)), these partial derivatives
relate as follows to the partial derivatives and

aF(x,y,((x,y)) aF
+

aFaç
and

aF(x,y,ç(z,y)) aF aFa(
ax( ax az ax ay( ay az ay

So implicitly, the vertical partial derivative is hidden in these expressions. The partial
derivatives and can be obtained by calculating the differences between points on
the free surface, so we can use very simple difference schemes for a flat plane.

The bottom of the water is a fixed boundary and no fluid particles may cross it. This
means that the normal velocity of a fluid particle at the bottom should be zero and that
only a tangential velocity component is allowed, which is expressed by

=0 atz=han

The condition on the hull of the ship should take into account the interaction between
the motion of the hull and the motion of the water at the hull. Just like the bottom of
the water, the hull of the ship cannot be crossed by a fluid particle. The water should
therefore have the same normal velocity as the ship's hull, which is expressed by

a aa
onH(t) (1.3)

where is the displacement and H(t) the exact position of the ship's hull in the ship-thed
coordinate system.

To obtain a unique solution, we have to impose a radiation condition. This condition
states that waves generated by the ship should propagate away from the ship. This
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may sound obvious, but it is not. Because computer memory is limited, we can take
into account only a small part of the free surface around the ship. When waves reach
the edge of this computational domain, they may reflect and return to the ship if no
proper condition is imposed. There are a lot of methods to avoid this and all have their
advantages and disadvantages. We choose to damp the waves by introducing an artificial
damping zone on the free surface. When waves enter this damping zone, their amplitudes
decrease along the direction of propagation. If the damping is strong enough the waves
have vanished when the edge of the computational domain is reached and cannot reflect.
An extensive discussion on the use of artificial damping can be found in section 1.5.

1.4 The linear formulation
It is very difficult and time consuming to solve the non-linear equations formulated in
the previous section, especially when the ship has a forward speed. With the increase
of computer power, non-linear calculations become more and more promising. With the
present state of computer technology, however, it is not yet possible to calculate the
non-linear time-varying flow around a sailing ship within acceptable time limits yet. We
therefore decided to make some approximations and linearize the boundary conditions.

1.4.1 The free-surface condition
In order to linearize the free-surface condition, we have to assume that the time-dependent
flow around the ship is small in some sense. The small parameter we use in the lineariza-
tion is the wave steepness = , where A is the amplitude and .\ the length of the
time-dependent waves. It is not sufficient to require only a small wave amplitude, be-
cause then short waves might still break; a strongly non-linear effect that has not been
accounted for by a linear model. If the wave steepness is assumed to be small, waves
cannot break. The velocity potential is now decomposed into a steady, time-independent
part , and an unsteady, time-dependent part (. Because the time-dependent part is
assumed to be small, it can be perturbed using the wave-steepness parameter

(, t) = c1. () + c (, t) = (f) + 1) (, t) + f22) (, t) +... (1.4)

Z is the solution of the flow problem without ship motions and incoming waves, so there
is only a stream, with uniform velocity U at infinity, flowing around the ship. This steady
solution is assumed to be known, and there are a number of ways to represent it, resulting
in various linear free-surface conditions.

-

A very simple and straightforward way to model this flow is to assume that the water
does not "feel" the presence of the ship and goes right through it, which means that the
steady flow is uniform in the entire fluid. This assumption has the advantage that it leads
to a relatively easy free-surface condition which can be solved by means of analytical tech-
niques. This approximation is only valid for very slender ships and low speeds however,
so it is not suitable for our model because we want to be able to obtain results for general
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but smoothly-shaped hulls and moderate to high speeds.

Figure 1.2: Top view of uniform-flow approximation.

A flow pattern which bears more resemblance to reality is the double-body flow. In this
case the flow around the ship is approximated by the flow around the double body, which
is the ship together with its reflection in the calm water plane z = 0. Because there is
no longer a free surface, no waves are generated, but at least the no-flux condition on
the hull of the ship is satisfied. This method is also only valid for low speeds; for higher
speeds the steady wave pattern has to be taken into account.

Figure 1.3: Side view of double-body-flow approximation.

It was shown by Raven [29] that to compute the wave resistance at finite speed, the
complete non-linear free surface has to be taken into account. He therefore developed a
method, RAPID, that can solve the non-linear steady flow, including trim and sinkage,
around several types of vessels. RAPID means RAised Panel Iterative Dawson and the
method obtains an approximation of the non-linear steady flow in a number of iterations,
starting from a first guess and updating the previous approximation in each iteration.
The solution found with RAPID satisfies up to a small discretization and truncation error

axox ayay az
+ - =0 onz=(5 (1.5)

is the steady free-surface elevation that satisfies

(8 = - . - U2) (1.6)
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On the hull, the steady flow satisfies the no-flux condition

onH (1.7)
On

and of course it satisfies the Laplace equation inside the fluid domain. We use the discrete
RAPID solution of these equations to approximate the steady-flow potential . In the
derivation of the linear unsteady free-surface condition we will assume that the RAPID
velocities satisfy the boundary conditions (1.5) and (1.7) exactly, but we must always
keep in mind that we are dealing with an approximation of the non-linear steady flow.

Figure 1.4: Side view of non-linear flow.

When the perturbed potential (1.4) is substituted in the dynamic free-surface condition
(1.1), we find up to order()

+ V8 + - U2) on z =

This condition is imposed on an unknown surface z = which is part of the solution.
This non-linearity is removed by expanding the dynamic free-surface condition (DFSC)
in a Taylor series around the known steady free surface

(DFSC) I= = (DFSC) Iz=C + ((- -- (DFSC) +0 ((( - c)) (1.8)
9z

If we also use the fact that the perturbed expression for the wave elevation looks like

c=(3 +fC,1)+0(f2)

then we find

= __i. (8.3_U2) +f ( --1 (1)+.i)
2g

_±.(1)
( .

+ 0 (2) on z ( (1.9)

This means that the first-order wave elevation equals

(IL
__+8.L1)) /(i+!P_(3.3)) onz=( (1.10)(1) 1 (04)

/ \ 2gOz
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The same linearization procedure can be applied to the combined free-surface condition
(1.2). When we substitute the perturbation series for the potential in that condition we
find up to order

1 'a a a3 a "II2 + g- + f + s
+

'a3 a a. a\+ ---
+

((i)
+ +

az

1

(a4')
a a41 a

+ ----- + ------)
IIsI2) = 0 on z = ( (1.11)

where III2 (a)2 +
()2

+
()2

is the sum of the squares of the three steady
velocities. With a Taylor-series expansion similar to (1.8), we transfer this condition to
the known surface z = (. If we use the fact that on this surface, the steady potential
and surface elevation satisfy the steady kinematic free-surface condition (1.5), we find

a2(l)
2V5 - -. 1

((1) a a'_a IIiI2+ +V3 V i)) +
2 ax axç. +

a41 (l)a ( (! + 2+ +
ax ay ay() sII + = 0 on z = ( (1.12)

This free-surface condition was already derived by Newman [25] and was used in the
seakeeping program FREDDY developed at the Technical University of Hamburg, see

[5].

Far away from the ship, where the steady flow is uniform, so = Ux, this condition
reduces to the Kelvin condition

a')
+ U2c9' + = 0 on z = 0 (1.13)

' 2U Wu

at2
+ aat ax2 az

When we compare these two linear free-surface conditions, it can be seen that the first
contains two extra terms compared to the second one. The first extra term is a term
with the products of unsteady velocities and partial derivatives of the squared velocity
along the steady free surface. The second extra term is a transfer term which is included
because the free-surface condition is imposed on the steady free surface instead of on
the actual free surface. Both terms contain first and/or second derivatives of the steady
velocity. If we want to use condition (1.12) we must first make sure that these derivatives
can be calculated accurately. An investigation on their convergence is therefore made in
chapter 4 for the test ship and in chapter 5 for the LNG carrier.

Bertram
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1.4.2 The hull boundary condition
The boundary condition on the hull (1.3) is non-linear in the sense that it is imposed on a
moving boundary H(t), which position is part of the solution and not known in advance.
Timman and Newman [351 showed that if the displacement relative to the mean position
of the ship is small, the boundary condition can be linearized about the mean position
by using a Taylor expansion. To guarantee a small displacement, the amplitude of the
incoming waves must be small, and the frequency of the incoming wave may not be near
the eigenfrequency of the ship. This is because a small force near the eigenfrequency can
still lead to large ship motions. The Taylor expansion results in the following condition

O(1) _)
at (1.14)

where (') is the total first-order displacement vector, consisting ofa translation A(1) and
a rotation i(') relative to the centre of gravity of the ship , so

= + x ( - (1.15)

As can be seen, the hull boundary condition not only contains steady velocities on the
hull, but also their derivatives. These derivatives must be examined carefully, because
it can be hard to determine them accurately. Especially near stagnation points like for
example at a blunt bow, it can be impossible to do so.

1.5 Absorbing boundary condition
When a ship sails at sea it will generate waves by diffracting incoming waves or by radiat-
ing waves. At a large sea these waves propagate away from the ship without encountering
any obstacles that can reflect them back and they will disappear into infinity. We want our
mathematical model to behave in the same way, which is made difficult by the fact that
we have to truncate our free surface somewhere. This is because an infinite free surface
cannot be discretized into a finite number of free-surface elements, which is required for
a computer simulation. Therefore, a special condition has to be imposed to absorb waves
that reach the truncation and to avoid that they reflect and propagate back to the ship.
A lot of research has been done on absorbing boundary conditions and some methods will
be summarized shortly.

Sommerfeld's radiation condition

A very popular method to absorb waves is to use Sommerfeld's radiation condition [331
on a vertical boundary that connects the free surface and the sea bottom. It relates the
normal velocity and the time derivative of in terms of the local normal phase velocity c

0C- + - = 0
at
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This condition ensures that waves with phase velocity c are absorbed. Waves with other
phase velocities are only partially absorbed and may reflect. The problem is to choose the
appropriate phase velocity. It can be estimated in advance with an asymptotical analysis,
or it can be estimated from data during the simulation. Because no continuous range of
phase velocities can be dealt with, and because it is hard to determine the appropriate
phase velocity,we prefer other methods.

DtN Relation

Sierevogel [31} developed an absorbing boundary condition independent of frequency
called a DtN (Dirichlet-to-Neumann) relation. In her method, the fluid domain is divided
in an inner and an outer domain. In the inner domain near the ship the double-body flow
is used to approximate the steady flow, in the outer domain the Kelvin condition (1.13) is
imposed on the free surface. By using a Green function that satisfies the discretized Kelvin
condition, the flow also satisfies this condition and only the flow in the inner domain has
to be solved. The disadvantage of this method is that the outer domain has to be in an
area where the steady flow can be assumed uniform. When the non-linear wave pattern
is used, the inner domain should be quite large because the non-linear disturbance of the
steady flow can stretch over a wide area. Another disadvantage is that the. method is
quite extensive and costs a lot of work to implement compared to other simpler methods
that achieve almost the same results.

Damping zone

To avoid reflections, it is also possible to use a damping zone on the free surface. This
method consists of adding some extra terms to the free-surface condition which will damp
the waves. Because it is very easy to implement this method and because it can absor.b
waves at a wide frequency range at the same time, we will use it in our model. The extra
term that we add to our linear free-surface condition is

In the vicinity of the ship the damping strength, ii, is zero. Near the truncation of the free
surface, it should be chosen non-zero. This change in damping strength must go smoothly
because a sudden, discontinuous, increase can behave like a rigid wall and may reflect the
waves. We therefore choose a linearly-increasing damping strength, ranging from zero
at the start of the damping zone to the maximal damping strength at the free-surface
truncation. The maximal damping strength depends on the range of frequencies of the
waves that must be absorbed and the size of the damping zone.
To obtain a criterion expressing how large the maximal damping strength must be chosen,
we look in detail at the Kelvin condition with damping

U2
U +g-+u + -oa2(l) a2(l) a2(1) ((1) Ui.) -+ 2U + az2 az ôt 9x

on z = 0
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Figure 1.6: Example of the position of the
damping zone. The shaded region corre-
sponds to the damping zone, in the white
region the damping is zero.

( g

klo 4U2cos2O=_1
4U2 COB2 0

(1 ± /1 + 4rcos9)2
(1 ± iv'1 - 4rcos9)2

cos 9+y sin 9)

For simplicity we assume that this condition
holds for the damping zone, which is allowed
because the damping zone is not near the
ship. Furthermore, we assume that the water
depth is infinite. We consider a surface wave
propagating over the free surface according
to

1) =

The wave must satisfy the free-surface con-
dition, and substituting it leads to a damped
version of the dispersion relation

w2 + 2Ukw cos C - U2k2 cos2 0 + gk + ii (iw - iUk cos 0) = 0

We assume that frequency, speed, wave angle and damping strength are known and express
the wave number k in terms of these quantities. If there is no damping, the solutions of
the dispersion relation are

if 1 + 4r cos 9 0,

if 1 + 4r cos 9 < 0

where r = If 1 + 4r cos 8 < 0 the wave number has a non-zero imaginary part, which
means that the waves are evanescent, so no damping is required.
If the damping is non-zero, no simple expression can be found for the wave number, but
the solutions look like

k = k + ik2

where k,. is the real part and k the imaginary part of k. The dispersion relation has two
solutions. In most cases one solution corresponds to a very short wave, and the other to a
longer wave. We will only consider the longer waves, because the short waves damp very
fast; the grid size is too large to represent them. When a wave propagates at a wave angle
0 in the damping zone over a distance /zx2 + Zy2, where tanG = , the amplitude of
the waves is multiplied by a factor
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) free surface damping zone

Figure 1.5: Example of linearly-increasing damping strength behind a ship.
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So if k2 is negative, the waves are damped. The amount of damping can be enlarged by
increasing the size of the damping zone or by enlarging the damping strength in order to
decrease k. Figure 1.6 shows that damping zones may exist in front of, along the sides of
and behind the ship. In most of our calculations, the speed of the flow and the encounter
frequency of the incoming waves are high enough to ensure that waves can only propagate
in downstream direction, which implies that the damping zones in front of and behind
the ship are redundant. We therefore look more in detail at the damping zone along the
sides of the ship. We consider a damping zone of infinite length and width B like the
one shown in figure 1.7. The damping strength ii is taken to be constant (the average
value of the linearly-increasing damping strength) for simplicity, because this is the only
way we can make a statement about the amount of damping. A wave with wave angle 0
that enters this damping zone will travel through it over a distance This means that
waves with wave angles close to zero are damped well because they spend a long time in
the damping zone.

Ly B

Figure 1.7: Example of infinitely-long damping zone with width B.

Figure 1.8 shows the amount of damping for downstream waves at Froude number 0.2
and r = 1 if the damping strength ii = 6 and the width of the damping zone B is half a
ship's length. The Froude number is defined as Fn = . As can be seen, the wave at
wave angle 0 0.9 is damped the least, but still for almost 90 percent. Waves at wave
angles which are almost zero are damped nearly completely, as expected.
We can now try to find the smallest value of ii, for fixed Froude number and fixed r,
where all the waves are damped for at least 90 percent. If we do this for a range of
r-values and several Froude numbers, we obtain the 90-percent curves, which are shown
in figure 1.9. It shows that most damping is required for low-frequency waves. This is
because low-frequency waves are longer than high-frequency waves, so they have to be
damped in an area which is small compared to their wavelength. It is therefore expected
that in this low-frequency region the damping zone is not very effective. This can be
solved by enlarging the width of the damping zone, but this increases the number of
panels and therefore the computational time. Figure 1.9 also shows that the higher the
Froude number, the more damping is required. Finally, we may conclude that for values
of r larger than one, this method can be applied without problems. Below that value,
the method should be used with care, because the large damping strength may cause the
damping zone to act like a wall that reflects the waves instead of absorbing them.
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0.1
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ii

Fn=0.1
Fn=0.15
Fn=0.2
Fn=0.25- Fn=0.3

Figure 1.8: Amount of damping for down- Figure 1.9: 90-percent damping curves for
stream wave angles, B = 0.5L, ii = 6 and increasing r and several Froude numbers.
Fn = 0.2.

1.6 Forces and moments
The mathematical model is developed to obtain an estimation of the forces and moments
on the ship and the subsequent motions. Because the water is assumed to be inviscid,
the only forces in our model are pressure forces. They can be obtained by integrating the
pressure over the wetted surface of the ship

=ffPdS (1.16)

where is the unit normal vector, directed into the ship. Due to the linearization,
only the pressure on the mean position of the hull is known, and the wetted part of the
hull is unknown. Therefore, to evaluate (1.16) we need perturbation theory. We follow
the method outlined by Pinkster [27] and extended by Prins [28], who showed that the
expression for the forces and moments can be perturbed into

and U = + +

where all contributions can be calculated by evaluating the flow quantities on the mean
position of the hull. Prins neglected contributions of second and higher order in the ship's
velocity when deriving formulas for the first- and second-order forces and moments. He
could do this, because he only considered ships sailing with a small forward speed. Be-
cause we do not make this assumption, we have to reformulate the perturbed expressions
for the forces and moments.

First we have to express the pressure on the actual position of the hull in terms of the
pressure on the mean position of the hull. Because the motion of the ship is assumed to
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=

PIT

I = f1(]) + + 0 (f3)
(1) + f2(2) + 0 (f3)

= XX+f1 X (_.ig) +f22) X
= + f2d2 + 0 (f3)

= 1+ffl x+f2(2) x+0(f3)

- ) +0(f3)

The perturbation series for the pressure and the displacement can be substituted into
(1.17), after which the components of the perturbation series for the pressure on the
exact position of the hull can be retrieved by collecting equal powers of c

PH5 = Ps
= + (1)

= (2) + (2) 25 + + (di) \)2Ps

The components of the perturbation series of the pressure on the mean position of the
ship follow from Bernoulli

_p(gz+s.s_u2)
(fl\

= . 1)

+
fç(2)

p + ') . 1) +

+
Ps +

+ f2c,

+ 2(2)
+ 0
+ 0

(3)

(f3)

be small, the pressure can be expanded in a Taylor series around the mean position of
the ship, H

PH =p+d-p7+ (5.)2+o(I3) (1.17)

The integral over the wetted part of the hull can be estimated by an integral over the
mean wetted surface and an oscillatory disturbance of it. For the force this becomes

F=ffds=ffds+ ffdSffmdS+f f pndzdl (1.18)

H 17 IT wi (,+3

The oscillatory part of the wetted surface is estimated by the difference between the un-
steady wave elevation on the waterline of the ship and the vertical motion of the ship.

We now perturb all flow quantities using the small parameter f, as we did for the potential

=
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When we substitute this perturbation series into (1.18), we obtain an expression for the
force on the exact position on the hull in terms of flow quantities on the mean position of
the hull. The same can be done for the moments of course. By collecting powers of , we
can find expressions for the steady, the first, and the second-order forces and moments.

1.6.1 Steady forces and moments
The steady forces and moments are given by

fR\
F=ffPHsidS= (\o

I Ms=ffPHs(_x9)xfldS= (ol
17

mg) o)

R is the wave resistance due to the steady forward speed of the ship, which is balanced
by the propulsive force of the ship. The vertical pressure force on the ship is balanced by
the gravitational force on the ship's mass. According to Archimedes' law, this force also
equals the gravitational force on the mass of the displaced water, so m = p, where L is

the volume of the ship below the steady waterline. The steady moment is zero, because
the ship is in equilibrium. If the steady moment would be non-zero, a change in dynamic
trim and sinkage woald see to it that the equilibrium position is reached.

1.6.2 First-order forces and ship motions
The first-order contributions for the forces and moments are given by

(1)

= ff + PH371) dS = p ff (_-. + V . dS +

(i x + (1' + x g)) . dS (1.19)

= ff
(pj1)

( - x + PH3' x (( - x dS =

H

_Pff(Vs.V1)+) (-) xdS+

(1) +
ff

(ri) x - )) . p3 - ) xffdS (1.20)

H

Note that the contribution containing the steady moment is zero because the ship is in
equilibrium. These first-order forces and moments will cause the ship to carry out a first-
order rotational and translational motion. This motion is described by Newton's second
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law

a' (p(i)M--=(i)

where = (x'), çl), ci',
))T

is a vector containing the first-order trans-
lations and rotations. M is the mass matrix containing the mass of the ship and the
moments of inertia. The forces and moments also depend on the motion, as can be seen
in (1.19) and (1.20). A part of them depends directly on the motion, the so-called restor-
ing forces and moments. This motion dependence can be compared with the motion of a
mass connected to a string, where the restoring force on the mass is proportional to the
displacement of the mass. In order to remove all motion dependencies from the forces, we
shift these restoring forces and moments to the left-hand side of (1.21), so they become
part of the differential equation. We do this by using restoring-force coefficients Cj,,
which are defined in the following way

(ar) = c

where C is a 6 x 6 matrix containing the restoring-force coefficients. The separate entries
in this matrix can be obtained by choosing all the entries, but one, in the motion vector Y
zero, and by calculating the correspondent restoring forces and moments. The resulting
coefficients are listed in Appendix A. A part of the first-order forces depends directly
on the first-order potential. Implicitly, this part depends on the motion of the ship as
well. This can be observed by looking at the hull boundary condition (1.3), that relates
the normal fluid velocity at the hull to the motions of the ship. In order to solve the
motions of the ship, this dependency has to be removed. We do this by giving the ship
a ftxed motion in one translational or rotational direction at a certain frequency and by
calculating the resulting hydrodynamic first-order forces. These forces now completely
depend on the motion of the ship and can be related by using added mass and damping
coefficients

F A ' B-
' at ' at

where i is the direction of the force and j the direction of the motion. The same can be
done for the moments, of course. The damping coefficients correspond to the part of the
force which is out of phase with the motion, while the added-mass coefficients correspond
to the part of the force that is in phase with the motion. The damping term is uniquely
determined, while the added-mass coefficients could be taken as part of the restoring-force
coefficients, because both coefficients correspond to the in-phase part of the force. This
is not done because the restoring-force coefficients are independent of frequency while the
added-mass coefficients are not. Now, all motion dependence has been removed from the
forces and moments and the equation of motion (1.21) can be rewritten into

(M+A)B1+C1= (F
(1.22)

at at

(1.21)
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The only remaining force in the equation of motion is the force due to incoming waves.
Solving this equation involves three separate simulations. First a simulation has to be
run in which the added-mass and damping coefficients are calculated. This means the
ship is given a motion while no incoming waves are considered. Second, incoming waves
are taken into account without any ship motions, from which the forces and moments in
(1.22) can be calculated. Third, the equation of motion can be solved and the simulation
has to be run one more time to obtain the fluid characteristics with incoming waves and
ship motions. The disadvantage of equation (1.22) is that it is a frequency-dependent
equation, which means that the incoming-wave force may only contain one frequency at
a time. In a realistic sea state this of course never happens. This can be overcome by
using an equation of motion that is independent of frequency, derived by Ogilvie [26]

t -
321

JK(
c9' (Pnc\t - s)(s)ds =(M+A--B--+cY+
Os

0

In this equation K (t) is the step-response matrix, which entries are the step-response
functions K,3. These are oscillating, rapidly-decaying functions which account for the
memory part of the equation of motion. The relations between the frequency-dependent
added-mass and damping coefficients and the step-response functions are

00 00

A(w) =1 - IK(t)sin(wt)dt
cJJ

0 0
00

K(t) = f (B(w) - ) cos(wt)cki (1.25)

0

which follow immediately from applying the Fourier transform to (1.23). Although these
step-response functions are not used in any of the calculations in this thesis, they can easily
be programmed to simulate random seas. The step-response functions can be determined
with a method developed by Prins [28], who matched them with Laguerre polynomials,
but it is not certain that this method can also be used for moderate and high speeds. In
that case, they have to be determined by calculating the frequency-dependent damping
coefficients, and by substituting these in equation (1.25).

1.6.3 Second-order forces and moments
The first-order forces are harmonic if the incoming waves are harmonic, so these forces have
a mean value which is zero. The drifting of a ship can therefore only be explained by the
existence of second-order forces. These forces contain products of first-order quantities and
have a mean value which is non-zero. The second-order contributions in our perturbation
series for the forces are

(2)

= fJ (pH8 + PHPflP + pHdS) + 4f f p3 + p) dzdl
11' wI

(1.23)

B(w) = + f K(t) cos(wt)dt (1.24)
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Since we only want the know the average value of these forces, we leave out the terms
that have zero mean value. This leads to

((2)
= K- p ff

(1) 'dS
+ ff ((i) ((i) x ( - . pdS

x M 52 )
- p ff (i

. ) (, ( a()

±pgfç,(j1) (ç(ì) _c))d1+f
wi wl

The waterline integral is derived by expanding the steady pressure in a Taylor series
around the steady free surface

'9p3
Ps = P5Iz=c + (z - () -;;:-

z=C

Because the steady pressure is zero on the steady free surface, a first-order expression re-
mains. If we furthermore realize that = pg(,, the second-order expression in (1.26)
is obtained.

The same can be done for the moments, which results in

=
(4!

(_g)xdS+ff () x () x (-9))).5 (-9)xdS

_pff((1).) (1)+.1)) (-) xdS+' x (M')
+pgf (1) (ç,j1) - 4k))

( - x Tdi
+

(ç(i)2 (1)2) ( - x

We see that to determine the average value of the second-order forces and moments, we
only have to solve first-order quantities. Therefore, from now on, we drop the superscript
'1' in these quantities, and also the subscript u if it is obvious that an unsteady quantity
is involved. So 41)

becomes (') becomes 2,
(1) becomes (, etcetera.

1.7 Solving the Laplace equation
There are a number of ways to solve the Laplace equation in the fluid domain. Mostly
boundary-integral methods are used, but finite-element, finite-volume and finite-difference

()2
(1)2\

d1)c -
z=(.

(1.26)

Ps (( X ( ig)) < >< >< >< (( g) X dS
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methods can be used as well. These field methods have the disadvantage that it can be
quite difficult to generate their three-dimensional grid, especially near curving boundaries
like the free surface, or the hull of the ship. Grid generation for the boundary-integral
method is very easy, because only the boundaries of the fluid domain have to be dis-
cretized. The disadvantage is, however, that difficult integrals of the Green function have
to be evaluated. Fortunately, this evaluation has already been done in the past by other
researchers working with boundary-integral methods. Still, it takes a lot of time to de-
termine all these integrals on a computer. The computational time required to solve the
system of equations obtained by field methods is larger than the time required to solve
the system of equations obtained by a boundary-integral method. The boundary-integral
method requires more memory, however, as shown by Raven [29]. Because we develop a
time-domain code, the time aspect is more important than the memory aspect.
For these reasons we choose a boundary-integral method, which is based on Green's second
identity, to solve Laplace's equation. We apply Green's second identity to the velocity
potential q5 in the fluid domain l with boundary O and the following Green function

G() 1 1--- r=ã5 r'=ã!-6'

where ' is the mirror image of with respect to the bottom, B. This Green function
satisfies the bottom boundary condition, which implies that we do not have to distribute
sources on the bottom. After applying Green's identity we find

Tç5
= ff (- () G (, ) - () (, )) dS (1.27)

8fl\B

where

11 iffEcl\ac2orEB
T= iffEô\B

1°

We assume that in the second case, is on a smooth part of the boundary; otherwise
the factor changes, depending on the local space angle of the boundary. The normal
in (1.27) is pointing into the fluid domain. Therefore, some care must be taken when we
calculate the forces and moments on the ship. In that case we have to use the normal
pointing into the ship, so out of the fluid domain. Because Green's identity must be ap-
plied to a closed boundary, the integral in (1.27) is not only over the free surface and the
hull, but also over a boundary at infinity that connects the free surface and the bottom
as can be seen in figure 1.10. The integral over the last boundary vanishes if the potential
is only the perturbation of the incoming potential, because according to Prins [28] the
asymptotic behaviour of the potential is of 0 (*) The integral equation can be solved
by prescribing the potential, its normal derivative, or a linear combination of both in a
finite number of collocation points on the boundary. The relation between the potential
and its normal derivative is given by the boundary conditions. A set of linear equations is



1.7. SOLVING THE LAPLACE EQUATION 27

then found for the potential or its normal derivative, which can be solved with standard
numerical techniques.

To obtain the pressure distribution on the hull, the velocity must be determined, which
might be done by numerical differentiation of the potential. Because this easily leads to
errors at curved parts of the bull, we decided to use another boundary-integral formulation
from which derivatives can be calculated directly.

ci'
steady free surface

ci,

Figure 1. .10: Cross section of fluid domain and boundaries used in Green's theorem.

We suppose a potential field q5' exists in a virtual domain ci' above the free surface, inside
the hull arid below the bottom. This domain is bounded by the boundaries of ci and by
boundaries at infinity. If we apply Green's theorem to this virtual domain we obtain

T''()=
Ol\ B

where

Ii iNEci'\acior2EB
T'= ifeacl\B

0 ifci'
The minus sign occurs because the inner normal in the virtual domain is minus the inner
normal in the fluid domain. The integrals over boundaries at infinity disappear again,
and when we add this equation to equation (1.27) we find

Tb+T'qY=

ci,

Because ci' is a virtual domain, we can choose any boundary condition we want. If we
choose ' = on the boundary 3ci, the only contribution in the boundary integral comes

hull -/

oci3ci00

ci,

ci

B(ottom)
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from the jump in the normal velocity, a = - -, resulting in a source-only formulation.
It is also possible to use a dipole distribution on the boundaries but then, the influence
coefficients that are involved are more difficult to determine. An advantage of the use of
dipoles is that lifting surfaces can be modeled, but these are not considered in this thesis.
The same can be done to derive an integral equation for the velocity. If is inside the
fluid domain, on the hull, or on the free surface, this results in

)= ffa(G(xds (1.28)

= (1T)a()ii+ ffo() G(x1t)dS (1.29)

8fl\B

So when the source strength is known, the velocities can be computed directly. A clisad-
vantage of this approach is that 3NJ3Nh extra influence coefficients have to be calculated,
where N13 is the number of panels on the free surface and Nh the number of panels on
the hull. Furthermore, these coefficients have to be stored in the computer's memory,
because the pressure on the hull must be evaluated in each time step.



Chapter 2

Numerical formulation

In this chapter we discretize the mathematical model that we derived in chapter 1. A
panel method is used to discretize the boundary integral, and difference schemes are used
to discretize the tangential space derivatives and the time derivatives in the free-surface
condition. Difference schemes are introduced to obtain derivatives of the steady velocities
on the free surface and on the hull. The velocity potential is split in a symmetrical and
an asymmetrical part, and calculated separately using symmetry relations. Finally, an
outline is given of the parallelization of the computer code.

2.1 Introduction
With analytical methods, a solution of the model that was presented in the previous chap-
ter cannot be found. Therefore, it is necessary to construct a numerical approximation
of this solution that must be as close as possible to it. To accomplish this, we have to
discretize the integral equation and the boundary conditions.

We use a first-order panel method to discretize the boundary integral. This means that we
divide the boundaries into small quadrilateral panels with constant source strength. The
free-surface boundary condition contains tangential space derivatives and time deriva-
tives. The tangential space derivatives are discretized with upwind difference schemes
to guarantee numerical stability. The space derivatives in the normal direction can be
obtained directly from the integral equation. The time derivatives are obtained with back-
ward difference schemes that relate the potential at a certain time level to the potential
at previous time levels, so we have to recalculate the potential on each time level in a
time-stepping procedure. It is also possible to use a frequency-domain approach. In that
case, the wave pattern is assumed to be harmonic in time at a certain frequency, and no
time stepping is required. A disadvantage, however, is that waves, oscillating at more
than one frequency at a time cannot be simulated. It is well known that incoming waves
with several frequencies cause slowly varying drift forces. The low-frequency part of these
drift forces causes large ship motions if this low frequency is near the resonance frequency
of the ship. Another disadvantage is that frequency-domain models are not suitable for
modeling non-linear effects. If we use a time-domain model, we may be able to extend our
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model to a non-linear one sometime in the future, when computer power has increased
sufficiently.

The discrete boundary conditions are applied to a set of collocation points. This leads to
a set of equations for the sourcestrengths, which we solve in each time step with Gaussian
elimination. The number of panels has to be as small as possible, because the computing
time is of third order in the number of panels. To accomplish this we make use of symme-
try relations. We split up the wave pattern in a symmetrical and an asymmetrical part
and calculate both parts separately by using mirror sources. Although the simulation has
to be run twice now, the total simulation time will decrease because the number of panels
is reduced by a factor 2.

We used this numerical model to write a computer program that simulates the motions
of and calculates the forces on a ship sailing in waves. To save time, and to make efficient
use of memory, we wrote a parallel computer code, using the PVM package.

2.2 Discretization of the boundary integral
The discretization of the boundary integral consists of two parts. First, we have to divide
a part of the steady free surface and the entire hull into panels. Second, we have to choose
a certain shape for the source function a. This can be done in a number of ways, ranging
from a very simple first-order approximation of flat panels and constant sources on each
panel, to a higher-order approximation that, for example, uses splines to describe the
geometry of a panel and the shape of the source function. A first-order approximation
leads to a relatively easy evaluation of influence coefficients, and to a number of unknown
source strengths that equals the number of panels. A higher-order approximation leads
to a more difficult evaluation of the influence coefficients, and to a larger number of
unknowns per panel. Although the panels can be taken larger due to the higher accuracy,
this mostly increases the size of the leading matrix.
We use a linearization method in which the non-linear steady flow is used to approximate
the unsteady flow. The non-linear steady flow is calculated by RAPID with a first-order
panel method, so the steady velocities may contain first-order errors, and derivatives of
velocities errors of even lower order. It is impossible to get a higher accuracy for the
unsteady flow, because the inaccuracies in the steady flow affect the unsteady solution as
well. Therefore, we will use a first-order panel method in our model: If RAPID would have
used a higher-order method, or if we would have used a non-linear approach instead of a
linearization about a steady base flow, it would have been worthwhile to use a higher-order
panel method. Especially in non-linear methods, where waves can get close to breaking,
it is recommended to use a higher-order panel method.
Several authors, for example Bertram [4], Nakos [24], Prins [28] and van 't Veer [36],
also used first-order panel methods to solve diffraction problems, and got good agreement
between their calculations and measurements. Our decision to use a first-order panel
method is therefore not only based on restrictions due to the linearization, but also on
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Figure 2.1: Top view and side view of a quadrilateral panel consisting of two triangles.
The diagonals are used to determine the average normal.

is divided into a number of these panels. Because we use an artificial-damping zone,
outgoing waves are damped and will vanish, so we only have to use a small part of the
free surface near the ship, which we will refer to as the computational free surface. The
size of the computational free surface depends on the length of the unsteady waves. If
the frequency of the waves and the speed of a ship is such that r > 0.25, waves do not
propagate in upstream direction. In that case only a small part of the free surface on the
upstream side of the ship has to be taken into account. Otherwise, a damping zone is
required, the length of which depends on the length of the upstream waves.
On the downstream side of the ship, the size of the computational free surface depends
on the length of the downstream waves. If T > 0.25, this size can be chosen quite small,
because waves that reflect against the free-surface truncation behind the ship cannot
propagate back to the ship, so in this case no damping zone behind the ship is needed.
If r < 0.25, this size must be chosen in the order of the largest wavelength, and some
artificial damping must be added to the free-surface condition. Along the side of the ship,
the size of the computational free surface should be chosen in the order of the length of
one transverse wave, and artificial damping should always be added to the free-surface
condition in that area. Of course, we must realize that the wavelength depends on the
direction of propagation, so longitudinal waves have a length that differs from the length
of transverse waves.
A typical example of a free-surface grid is shown in figure 2.2. As can be seen, we use a
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some very promising results from the recent past.

We assume that each panel consists of two flat triangles, forming a quadrilateral, which
allows us to use non-flat panels. With non-flat panels, curved parts of the boundary can
easier be discretized. This is important, because the steady free surface as well as the
hull have curved parts. The normal on a panel, however, is not uniquely determined
if the panel is not flat. We therefore define the average normal on a panel to be the
normalized outer product of the two diagonals of the quadrilateral panel. One of these
diagonals may not be inside the panel, as illustrated in figure 2.1. The steady free surface



Figure 2.2: Example of free-surface grid in our code.

grid that approximately follows the streamlines of the steady flow. This makes it easier
to obtain derivatives in the direction of the steady flow, as we shall see later. The grid
size in the ydirection is small near the ship, and relatively large further away from the
ship, because accuracy is less important there. The quotient of the largest and smallest
panel size is about a factor 3. In the xdirection, the grid size is small near the bow and
the stern of the ship, and somewhat larger in the midship region, in front of the ship, and
behind the ship. The reason for this is that near the bow and the stern, the gradients of
the fluid velocity are expected to be largest.

Like the free surface, the hull is also divided into panels. We use a structured grid in our
calculations. This means that the hull is divided into segments along the xaxis, and
each segment is divided into the same number of panels. The panel corners coincide with
panel corners of adjacent segments. This makes it easier to find the nearest panels, which
are required to obtain the derivatives of velocities on the hull. The size of the panels must
be such that even the smallest waves we are interested in can be represented on them. In
general, the size of the panels on the bow and on the stern will be smaller than in the
midship region, because the gradients of the fluid velocity are expected to be largest near
the bow and the stern.

Now that the free surface and hull have been divided into panels, we can discretize the
source function c on these panels. The simplest option is to assume that it has constant
strength per panel. The boundary integral for the potential (1.28) then turns into a sum
over all panels, of source strength times an influence coefficient If we have N panels
on the hull and free surface together, the potential in a collocation point x, becomes

(2.1)
j=1
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When the collocation point and the panel are close to each other, the influence coefficients
G,2 are calculated with analytical formulas listed by Prins [28]. When the distance
between the collocation point and the panel is large, these coefficients are calculated
numerically. The same procedure can be applied to discretize the boundary integral for
the velocity (1.29)

= (1 - T)ajff + aj II dS = (1 - T)a + ajd7tij (2.2)
j=1 j=1

To obtain the influence coefficients we split up the unit vectors e, 2 and e3 into
a direction normal to the panel, and a direction tangential to the panel. The integral of
the normal derivative of G over a panel is obtained with analytical formulas again, which
are listed by Prins [28]. The integral of the tangential derivative of G over a panel is
obtained with formulas derived by Fang [13]. When the collocation point and the panel
are far away from each other, numerical integration is used again.

Romate [30] showed that the use of a constant-source formulation with a linear panel
description leads to a truncation error of order 2 for equation (2.1), and of order for
equation (2.2), where is the maximum panel size. This means that, in theory, second
derivatives of the potential contain errors of order zero, meaning that these derivatives
do not converge when the panel size is reduced. In practice, fortunately, the velocity
distribution is usually sufficiently smooth, especially for small panel sizes, to obtain a
convergent prediction of the second derivative.

2.2.1 Raised panels
The singularity distribution.does not have to be located on the free surface itself; it can
also be located at a short distance above the free surface, as long as the collocation points,
where the boundary condition has to be satisfied, stay on the free surface. This raised-
panel approach has become rather popular lately, especially in non-linear methods. Beck
et al. [9] used a raised singularity distribution to determine the non-linear unsteady waves
near a vertical mounted or truncated cylinder. Beck's arguments for the use of raised sin-
gularities were that they make it possible to calculate the influence coefficients with simple
numerical quadratures, and that the velocities in the fluid and on the boundaries can be
calculated directly from the source distribution. Raven [29] used raised singularities to
solve the non-linear steady problem. He also lists a number of advantages of this ap-
proach, some of which also apply to our problem. First, the velocity field induced in the
fluid is much smoother than with a free-surface singularity method. Second, like Beck
also indicates, the integrals of Green functions over panels are desingularized because the
collocation points are not located inside the panels, which is easier to evaluate. Third, it is
easier to extend our model to a non-linear one. In the non-linear case, the position of the
free surface changes in time and, with the raised-panel method, only the position of the
collocation points has to be updated in each time step. The position of the singularities is
fixed, which is much simpler and more stable. Fourth, numerical damping and dispersion
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is reduced when raised panels are used, which will be shown in chapter 3. Jensen [19], like
Raven, successfully used a desingularized method to compute the non-linear steady waves
around ship hulls. However, he did no theoretical study on the accuracy of his method.
His non-linear results were used in a seakeeping program developed by Bertram [5] that
uses raised singularities as well. The disadvantage of the use of raised singularities is that
it reduces the conditioning of the matrix. Therefore, the distance between the singulari-
ties and the free surface must be kept relatively small. In practice, a distance of maximal
three times the longitudinal size of a panel is possible.

Because of these considerations, we include the possibility to use raised panels in our
model. Of course the panels can also be placed on the free surface as usual. When raised
panels are used, the hull of the ship has to be extended to the singularity plane to obtain
a closed boundary, as shown in figure 2.3. Therefore, a part of the hull is located above
the steady waterline, and a boundary condition must be applied there. Because this is
a non-physical domain, we can choose any boundary condition we want, as long as the
boundary conditions on the steady free surface and on the mean position of the hull are
not violated. We therefore choose the easiest solution, and let the source strength on the
hull be zero above the steady waterline.

hull panels and hull collocation points

Figure 2.3: Free-surface and hull singularity plane if raised panels are used.

2.3 Discretization of the free-surface condition
The boundary integral has now been discretized, and what remains to be done is to de-
termine the source strengths o,. At first sight it might be thought that this can be done
by substituting the discretized boundary integrals (2.1) and (2.2) into the free-surface
condition (1.12) and the hull condition (1.14), and satisfy them in a set of collocation
points. if this can be carried out, only errors arise from the discretization of the bound-
ary integral, and spatial derivatives in (1.12) are calculated free from any other errors.
Unfortunately, this approach does not work, because some numerical damping is required
to suppress instabilities that occur in the time integration of the free-surface condition.
An extensive investigation on stability, numerical damping and numerical dispersion is
presented in chapter 3. There, it is shown that our numerical scheme can be made stable

singularity plane

Iz

free-surface collocation points
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by using upwind difference schemes for the first and second tangential derivatives of the
potential in (1.12). Therefore, we first discretize the tangential space derivatives and the
time derivatives in (1.12), and then substitute the discretized boundary integrals.

Linear, time-dependent flow problems are mostly solved in the frequency domain. Then,
it is assumed that one characteristic frequency describes the time dependence of the flow,
so time derivatives can be obtained exactly, and only the spatial behaviour of the flow
has to be determined. The disadvantage of this approach is that non-linear effects can
never be included. The ultimate research goal is to be able to calculate the non-linear
free-surface flow around a freely-sailing commercial ship. Our research may be extended
to deal with these non-linearities, so a time-domain approach is followed. Furthermore, by
using step-response functions it is possible to simulate general, non-harmonic time signals.

If a time-domain approach is used, the time derivatives that occur in the free-surface
condition (1.12) have to be discretized. We use a uniform time step, t, and second-
order difference schemes for the first, and second derivatives of

a22 i
- (t)2 (2 5Z_1 + 4j2 52_3) + 0 ((i.t)2)

= (c5i - + + o ((At)2)

We seeP that the potential on the three previous time levels has to be stored to calculate
the potential at the current time level, after which we proceed to the next time level.

The discretization of the unsteady potential's space derivatives is more difficult. To
see how to proceed, we rewrite the free-surface condition (1.12), where we also use the
difference schemes for the time derivatives, (2.3) and (2.4).

;) + .
.

+ - ç) .
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where T is the transfer term
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and S is an abbreviation for
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on z = ( (2.5)

on z = (2.6)
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f is a function that depends on the history of the potential
i-2 +

V
T'\ (2-' - !i_2)

(t) gS) zt
First, we will look in detail at the derivative of q in the direction of the steady velocity,
VcI. Because the steady velocity is parallel to the steady free surface, this is a tangential
derivative. Although the collocation points lie on the curved, steady free surface, z =
this derivative can be obtained by numerical differentiation in the flat x, y-plane. To make
this clear, we make use of the partial derivative - and - (see chapter 1, section 2),
and rewrite the derivative into8.V++(-++

Ox Ox Oy Oy Ox Ox Oy Oy j Oz Ox Ox Oy Oy

where we used the steady kinematic free-surface condition in the first step. So, if we
consider the potential on the free surface to be a function of x and y only, the tangential
derivative can be obtained by means of very simple difference schemes for a flat plane. To
determine V8 Vq5, we use a second-order upwind difference scheme. In this difference
scheme, only collocation points are used that are upstream of the collocation point where
the derivative is required, and of course that collocation point itself. This ensures a
numerically-stable time integration. In chapter 3 we show that central difference schemes
mostly lead to instable schemes, whereas upwind schemes never do.
The difficulty in obtaining this derivative is that the collocation points are mostly not in
the direction of the steady flow, because our grid only approximately follows the steady
stream lines, as shown in figure 2.4. For simplicity, we assume here that the panels are
rectangular, and all have the same size. To obtain two values of the potential in the
direction of the steady flow, we interpolate the potential from two nearby collocation
points with the same x-coordinate, which results in the values of the potential with
second-order accuracy on the positions marked with an 'o' in figure 2.4. Higher-order
interpolation does not lead to higher-order accuracy, because the accuracy of the potential
is only of second order in a first-order panel method. In the difference scheme we now use
the potential in the point itself, and in the points where we interpolated the potential,

= - sjj1 and x2 = - which results in

V43 =
q5 () - 2() + 5 ()

+ ((/s)) (2.8)

This is a second-order scheme if the potentials are free of errors. Unfortunately, the poten-
tials contain errors due to the discretization of the source distribution, the discretization
of the boundaries, and the interpolation. This error is of second order in the panel size,
which means that the derivative (because of dividing by s) contains a first-order error.
Because in each interpolation two collocation points are used, the final difference scheme
includes maximal 5 of the N13 free-surface collocation points, so it looks like

N1

= (2.9)
j=1
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v8
Figure 2.4: Example of the method to determine the difference scheme for VcI

If i is kept constant, at most 5 of the are non-zero. If panels of non-rectangular shape
are used, equation (2.8) slightly changes, but the idea remains the same. Because our
computational free surface is limited in size, this method cannot be applied on the last
row of panels on its upstream edge. Because there are no upstream panels, it is not pos-
sible to use an upwind difference scheme. If r> , this can easily be solved by imposing
the condition = 0 on these panels, because waves cannot propagate in the upstream
direction. Therefore, apart from incoming waves, no waves exist. If r < , waves can also
propagate in upstream direction. In that case, the condition = 0 can also be imposed, as
long as a damping zone, that damps the waves sufficiently, is placed between the ship and
the upstream edge of the computational domain. In that case, the waves have vanished
by the time they have reached the last row of panels, and the condition = 0 makes
sense. This means that, if r < , the size of the computational domain in front of the
ship may have to be be quite large because the appropriate damping zone has to fit. If
the speed of the ship is sufficiently small, central or downwind difference schemes can also
be used. No special condition has to be imposed on the last row of panels in that case.
The meaning of "sufficiently small" will be investigated in chapter 3.

Second, an expression is required that describes the derivative of in the direction of

-- (ai3u2 T

,

To accomplish this, we split up the vector I into two parts. One is in the direction of the
steady velocity, and the other is perpendicular to that direction, so

1= + with . = 0

Upwind difference schemes are used again to deal with the derivative in the direction of
V3. We obtain the remaining derivative, in the direction of ?, by calculating it directly

S

S

:

I -S.----



38 CHAPTER 2. NUMERICAL FORMULATION

from the source distribution, so by taking the inner product of equation (2.2) with .

Because this derivative has no component in the direction of the steady velocity, no in-
stabilities will appear.

Third, we have to determine the second derivative of in (2.5). We obtain this derivative
by applying the difference scheme for the first derivative twice, so

N1 N1 N1 N1

v8 (' ) i) = = = > 7jkqk)
j=1 j=1 k=1 k=1

N1

where Yik =
j=1

It can be shown that, if i is kept constant, at most 21 of the 7ik are non-zero, but mostly
this number is much smaller. When this scheme is applied far away from the ship, where

= Ux, it reduces to

()2 ((:i) - - x) + - 2Lx) - 2( - 3z.x) + - 4x))

Again, problems are encountered on the panels that are close to the upstream edge of the
computational free surface. On the last two rows of panels, it is not possible to use an
upwind difference scheme for the second derivative. This means that we have to impose
the condition q5 = 0 on the second row of panels as well.

In equation (2.5), all quantities can now be expressed in terms of the unknown source
strengths. The tangential derivatives of the potential are expressed in terms of the po-
tential itself; the potential is related to the source strengths by expression (2.1), and the
derivative in the direction of f by expression (2.2). The discretized free-surface condition
is now applied to all free-surface collocation points. These collocation points are located
on the steady free surface in the centre of a panel, or, in case of raised panels, below the
centre of a panel. This results in N5 equations for the N = N15 + Nh unknown source
strengths, where Nh is the number of panels on the hull. The remaining Nh equations are
obtained by applying the hull boundary condition (1.14) to the hull collocation points,
that are located in the centre of a panel again. The normal derivative in (1.14) can be
related to the source strengths by taking the inner product of equation (2.2) with the
normal vector of the appropriate panel. This results in a further Nh equations, which
completes the set of equations. Finally, this set of equations is solved with Gaussian
elimination.

2.4 Derivatives of the steady velocity
In the linearized free-surface condition and the hull boundary condition, several derivatives
of the steady velocity field occur. Because RAPID only calculates the velocity field, we
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have to use difference schemes to obtain these derivatives. A problem that occurs is
that, in theory, the velocities are obtained with an accuracy of the order of the panel
size, because RAPID uses a first-order panel method. This means that, when these
velocities are used in a difference scheme, the error is amplified and may be of order zero.
Fortunately, the error in the velocity is often not randomly distributed, but is a smooth
function of space. This means that we may write for the steady velocity in the x-direction

& &.

The exact velocity, on the left-hand side of this equation, is expressed in terms of the
velocity calculated by RAPID, , and a certain error of 0 (ax). We now differentiate
this RAPID velocity in the x-direction with a first-order scheme, which results in

- (x - x) O2
S + (x) + 0 ((x)2)=---(x)------(x)

Ox

So if the function I is smooth and has a bounded first derivative and if exists, we
may assume that the error in the derivative of the velocity is of the order of the panel size
as well. If the first derivative of the error function f is also smooth, it can be shown that
the second derivative of the velocity can be calculated with first-order accuracy as well.
In general, the error function will be smooth if the velocity field is smooth. This means
that it may be difficult to calculate the derivatives of the velocity field near the ship's bow
and stern, because smoothness cannot be guaranteed in those regions. For the moment
we assume, however, that all derivatives can be calculated, and we therefore concentrate
on the construction of appropriate difference schemes.

2.4.1 The derivatives of the squared velocity
In order to calculate

"3q10 Oq13\
+

IIlI on z =

we need to know the partial derivatives of the squared steady velocity along the steady
free surface in the x- and in the y-direction. The derivative in the direction of the steady
velocity is known from the non-linear steady free-surface condition (1.5). This means
that the derivative in one more direction is required Because the largest component of
the steady-velocity vector is generally in the xdirection, the other direction is taken to
be the y-direction. The derivative in this direction is obtained with a difference scheme.
Finally, from the derivatives in the ydirection and in the direction of the steady velocity,
the derivative in the x-direction can be obtained.

To calculate the first-order wave elevation, we need to know the vertical derivative of the
squared velocity that occurs in the function S (2.7). We obtain this vertical derivative by
calculating the steady velocity on two extra surfaces below the free surface, at distances

z and 2hz, as shown in figure 2.5.
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Figure 2.5: Steady free surface and the two levels below it that are used to obtain the
vertical derivative.

This can easily be done once the source strengths in RAPID are known, and it only
requires the calculation of some extra influence coefficients. The derivative of the squared
velocity in the zdirection can now be obtained by means of a second-order difference
scheme, similar to the one used for the time derivative (2.4), so

II3Il (es) - 2IIsiI2 (Cs - LZ) + IIlI2 (C - 2z)
+ 0 ((zz)2)

2gôz 2ghz

The required size of the vertical distance can be estimated by applying the difference
scheme to a very simple first-order approximation of the steady velocity

=ei(UAesinkz)+eAecoskx with A= 0(U) and k = (2.10)

This means that II 12 = U2 - 2UAe' sin kx + A2e2. When this expression is sub-
stituted in the difference scheme, it can be derived that the error, , can be estimated
by

II (z)2 --- (2UIAIk3 + 8A2k3)
3 2g

Because A = 0(U), we have to demand that k2 (z)2 << 1 to have a high accuracy. This
means that when the wave number increases (so the wavelength decreases), the vertical
distance z has to be chosen smaller to obtain the same accuracy.

2.4.2 The transfer term
Because the position of the time-dependent free surface is not known, we linearized the
free-surface condition about the steady free surface by using a Taylor expansion. This
transfer from the time-dependent free surface to the steady free surface lead to an extra
term in the linearized free-surface condition, which we have called the transfer term, see
(2.6). The vertical derivative in this transfer term is obtained again with a difference
scheme that includes points on the free surface, and on two levels below the free surface,
as shown in figure (2.5). This means that at these three levels, we have to determine

1 ' 2q(x,y,z)= ---+----) IlV8II (2.11)
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On the free surface, this function q should be zero if the exact steady velocities are used.
In practice it is non-zero because the velocities Vc13 satisfy the discretized counterpart of
(2.11) that is programmed in RAPID. Therefore, we do not set q zero, but calculate it
with the same difference scheme that we will use to determine q on the two surfaces below
the free surface. If the errors on all three surfaces are about the same, they will cancel
each other out when the vertical derivative is calculated. If q would have been set zero on
the steady free surface, the discretization error on the two surfaces below it would have
been amplified by . Therefore, we need a difference scheme to obtain the derivative
of the squared velocity in (2.11) on all three levels. To accomplish this, we select five
collocation points on the free surface that are located close to the point (xi, y, () where
the transfer term has to be calculated. In this total of six points, the squared velocity is
calculated and fitted with a polynomial

III2 = a1 + a2(x - x) + a3(y - Yz) + a4(x - Xj)( - y) + a5(x - x)2 + a6(y - Yi)2
(2.12)

The six coefficients are determined such that in the six collocation points, this polynomial
takes on the exact values of IIV8II2. The derivatives and p-- can be found by
differentiating the polynomial and substituting x and y, so

= a2 and _IIII2 = a3
az 8y

The same can be done on the two surfaces below the free surface. On all these levels the
vertical steady velocity is also known, so the function q can be calculated.

A criterion for the vertical distance can be obtained by substituting (2.10) into the function
q, which results in

q = UA2ke2 sin 2kx

If this function is substituted in the difference scheme for the vertical derivative, it can
be shown that the error, , satisfies

Jej (z)2 UA21C4

This error has dimension ms3, likethe transfer term. To be able to say something about
the error, we have to make it dimensionless. If we multiply with we find

II = - id < (Lz)2 Lk

If we assume that A = 0(U), it follows that the restriction (z)2 Lk3 << 1 must be
fulfilled in order to get an accurate approximation of the transfer term.
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2.4.3 Derivatives of the velocity on the hull
Both the hull boundary condition (1.14) and the formula for the drift forces (1.26) contain
derivatives of velocities on the hull. Therefore, we have to develop a method that deter-
mines the derivatives of both the steady and the unsteady velocity field on the hull. Only
the velocity is known on the hull, so we have to construct a difference scheme to obtain
these derivatives. A problem is that three or more hull collocation points generally do
not lie in a straight line, so the difference scheme has to take into account the curvature
of the hull.

S

t

Figure 2.6: Method to determine derivatives of velocities on the hull.

If, at collocation point o, the derivatives of the velocities are required, we proceed as
follows. Two nearby collocation points Xb and Xe are selected such that, when we connect
the three points with two straight lines, the angle between these lines is as close as
possible to 180 degrees (a straight line). These three points are used to define a new,
two-dimensional coordinate system (t, s), as shown in figure 2.6. The relation between
these coordinates and the old space coordinates = (x, y, z)T is

-. -.' -, +s_. .,
IXeXOII IXOXOII

where is the projection of o on the line through Xb and Xe. It can be found with

(D_b)T(e_b)
IIXebiI2 (XeXb)

In this coordinate system, a parabola s(t) = a + bt + ct2 is fitted through the points ,

xo and Xe. When we differentiate, for example, the velocity in the x-direction, u, with
respect to t we obtain

ôu ôuds &uôx aut9y ôuäz ds ft9u0x Ouäy auaz\

+!O;
- £'II dt Io o'II
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With a simple central difference scheme, we can obtain this derivative in the desired point
so in t = 0. If we also differentiate the velocities in the y-direction (v) and in the

z-direction (w) with respect to t, we obtain three equations for the unknowns Vu, Vv
and w. The number of unknowns can be reduced if we use the following relations

avau awau away
- ay 3x t9z 3y -

So only six unknowns remain. Another three equations are found by applying the same
procedure to the collocation point and two other points, see figure 2.6. These two points
are selected such that the direction in which these points lie is different from the direction
belonging to the first two points, and preferably orthogonal or nearly orthogonal to it.
Furthermore, the curvature has to be small again. This way we obtain six equations for
the six unknowns. We must be careful when we try to solve this system of equations,
because it only contains information on tangential derivatives. No information is included
on the normal derivative of the normal velocity, for example, which means that the system
of equations might become singular. This can be avOided by adding the Laplace equation
to the system of equations, which is then solved with a least-squares method.

The main difficulty is to find the surrounding points in such a way that they satisfy the
demands of small curvature and near-orthogonality. Sometimes, on parts of the hull with
high curvature, it is just not possible to find such points. In that case, we must fall back
on simple first-order schemes, or even just set the derivatives to zero to avoid large errors.

2.4.4 Interpolation of steady velocities and derivatives
Because the steady problem and the unsteady ptoblem both have their own characteris-
tics like wavelength, wave amplitude and direction of wave propagation, the grid used in
RAPID mostly differs from the grid used in our code. We therefore calculate the deriva-
tives of the steady velocity on the RAPID grid, and interpolate the velocities and the
derivatives to our grid. In general, the resolution (number of panels per steady wave-
length) will be less in our code than in RAPID. After all, we only have to model the
influence of the steady flow on the unsteady waves (which are mostly longer), whereas
RAPID actually has to resolve the steady flow. The interpolation can therefore be done
very accurately and works as follows Near each collocation point on our grid, six colloca-
tion points on the RAPID grid are selected, and the velocities, their derivatives and the
steady wave elevation are approximated by polynomials like (2.12). The values on our grid
can then be obtained by substituting the appropriate coordinates into these polynomials.

When we choose the size of our panels, the main criterion is the number of panels per
unsteady wavelength. However, we must also make sure that the steady wave is still
represented accurately. This may give problems when a long unsteady wave propagates
over a relatively small steady wave. Because the number of panels that we can use is
limited, high accuracy cannot be guaranteed in this case.
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2.5 Incoming waves
We model incoming waves by using an incoming-wave potential that satisfies the Kelvin
condition (1.13), the bottom boundary condition and the Laplace equation, so

cosh(k(z+h))ç= --sin (wtkxcos9kysin9) (2.13)
cosh (kh)

where is the wave amplitude, w0 the wave frequency in the earth-fixed frame of reference,
k the wave number, 0 the wave angle and w the wave frequency in the ship-fixed frame
of reference (the encounter frequency). The wave number and the frequencies relate as

w = w0 + Uk cos 0 ktanh(kh) =

Far away from the ship, where the steady flow is uniform, the Kelvin condition holds and
this wave propagates undisturbed. When it comes close to the ship, it will be distUrbed
by the presence of the ship and the steady waves around it The difference between
this disturbed .wave and the incoming, wave is called the diffracted wave. There are two
possibilities to incorporate this diffracted wave in our model. First, we can calculate the
total wave (incoming plus diffracted wave) by imposing a condition on the edge of the
computational domain that will generate incoming waves. Second, we can in advance
split up the wave potential in an incoming-wave part (2.13) and a diffracted part and
only calculate the latter. If we abbreviate the boundary conditions on the free surface
(i = 1) and the hull (i = 2) into = 0, where L, is a linear operator, and substitute

= r1 + tdjf, the following relation holds

LbdIf =

This means that we have to apply the linear operators to the incoming-wave potential
(2.13), which f'ow become forcing functions on the right-hand side of the boundary cQndi-
tions, and we only have to calculate the diffracted potential. In addition to the diffracted
and incoming waves, radiated waves exist as well, of course, but these can be calculated
independent of the method that we use to simulate the incoming waves. In chapter 4 we
will apply the two methods to a test ship, compare them, and decide which is best.

2.6 Symmetry relations
Because the ship is symmetrical about its center plane, y 0, we can make use of
symmetry relations to calculate the flow field. This reduces the number of panels by a
factor two, since the flow field only has to be calculated on one side of the ship. Because
the computational cost for the LU-decomposition is of third order in the number of panels,
this decomposition will become eight times faster. The decomposition, however, has to :be
done for both the symmetrical and the asymmetrical part of the flow field (except for head
and following waves, since the asymmetrical part is zero then), so the total computational
cost for the decomposition will be reduced a factor four The computational cost for the
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time iteration is of second order in the number of panels. Therefore, when the number of
panels is halved, the time iteration will become four times as fast. The total time required
for the iterations will be reduced by a factor two, since both the symmetrical part and
the asymmetrical part of the flow field have to be calculated. We therefore split up the
potential in a symmetrical part, , and an asymmetrical part, according to

3 + ((y) + (y)) a = -
To calculate the added mass and damping, we have to look separately at the symmetrical
motions, surge, heave and pitch, and the asymmetrical motions, sway, roll and yaw. The
first three result in symmetrical waves and the last three in asymmetrical waves.
To calculate the diffracted wave, we have to split the incoming wave into a symmetrical
and an asymmetrical part, which are given by

cosh (k(z + h))= cos(kysinO)sin(wt - kxcos8)
cosh (kh)

a . . cosh(k(z+h))= sin (ky sin 9) cos (wt - kx cos 9)
cos

If the incoming wave is symmetrical, for head waves for example, the diffracted wave
will also be symmetrical, and the corresponding forces and moments on the ship result
in surge, heave and pitch motions only. A similar statement holds for the asymmetrical
part, that only results in sway, roll and yaw motions. There is no wave angle at which the
symmetrical part of the wave is zero, so in any wave condition the surge, heave and pitch
motion are involved. By calculating both parts separately, and adding them afterwards,
we can find the total diffracted wave and all ship motions.

The symmetry or asymmetry can be imposed upon the potential by making use of mirror
panels, like we did to fulfill the bottom boundary condition (see chapter 1, section 7).
This time, the panels are mirrored in the plane y = 0 instead of in the bottom. If the
source strength on these mirror panels is the same as on the original panels, the potential
is symmetrical. If it changes sign, the potential is asymmetrical, so

N' \
(i( ffG(a)dSe± ffG(2i)dS)

j=1 /
(2.14)

where is a panel with positive y-coordinate, and aci the reflection of this panel
in the plane y = 0. This reduces the number of influence coefficients we have to calculate
by a factor two. A similar formula holds for the gradient of the potential. By first
reflecting the ship and free surface in the bottom of the water, and then in the plane
y = 0, four panel surfaces are obtained, as shown in figure 2.7. This means that per
panel we have to evaluate four influence coefficients for the potential, and twelve for the
gradient. The panels that are reflected in the bottom are in general far away from the
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Figure 2.7: Panel surfaces reflected in the bottom and the plane y = 0.

collocation points, so the corresponding influence coefficients can be evaluated numerically
quite fast. When the forces and moments on the ship have been calculated, we integrate
pressure and normal over the starboard side of the ship only, and multiply it by two for
symmetrical/symmetrical and asymmetrical/asymmetrical pressure-normal combinations.
Symmetrical/asymmetrical combinations yield zero. The expression for the hydrodynamic
part of the first-order force, for example, becomes

P(')=_Pff(+'s.)&is=_2p ff dS

H fl3

This formula shows that there is no coupling between symmetrical and asymmetrical
modes, so a symmetrical motion will generate no force in the y-direction, or moments
around the x- and z-axes, and vice versa. The calculation of the second-order force is
more complicated because the second-order force contains products of the potential. The
first term in the drift-force formula (1.26), for example, becomes

dS = p ff 2q5 Vn2 dS2

(' .

+ . a)
723

Because the symmetrical and asymmetrical parts are calculated separately, the first one
that is calculated has to be stored. In head or following waves, the asymmetrical part is
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zero, so here storing is not necessary.

We may conclude that it is very profitable to use symmetry relations. The total time
needed for the LU-decompositions is reduced by a factor four, for the calculation of the
influence coefficients by a factor two, and for the time iteration also by a factor two,
whereas only some extra storage is required to calculate several drift-force terms.

2.7 Parallelization of the computer code
The numerical model we described is translated in a computer program, written in For-
tran. The package PVM (Parallel Virtual Machine) is used to parallelize the code, so that
efficient use can be made of the memory of several computers. Furthermore, a decrease in
computational time was obtained by spreading the calculation of the influence coefficients
over the available computers.

Because we solve the source strengths, in each time step we have to determine the velocity
potential and the velocities with four matrix-vector multiplications. The velocity poten-
tial is needed to determine the wave height and the pressure on the hull. The velocities
are also needed to determine the pressure on the hull. Therefore, we have to store five
large matrices in the memory of the computers. First, there is the LU-decomposition of
the global matrix, second there is a matrix with influence coefficients with which we can
determine the velocity potential from the source strengths, and finally, there are three
matrices with influence coefficients with which we can determine the fluid velocity from
the source strengths. Each of these matrices is built and stored on a separate computer.
The PVM software deals with the interaction between the several processors.

The calculation of the influence coefficients can very easily be spread over the available
computers. Therefore, on each of the computers, a part of the influence coefficients is
calculated and stored on file. The computer on which a matrix with influence coefficients
is built then scans all the computers and reads the influence coefficients from these files.
Mostly, the same grid, and therefore the same influence coefficients, are used for several
simulations with different lengths of the incoming wave. Therefore, in later simulations,
the influence coefficients only have to be read from file. The calculation of the influence
coefficients accounts for a large part of the total computational time, so this paralleliza-
tion speeds up the simulation enormously.

A typical, double precision case with 3500 panels, run on 8 parallel HP 735 workstations
is still quite time consuming. Calculating all influence coefficients takes about 3 hours.
The LU-decomposition takes about 40 minutes (this is not parallelized) and each of the
three time iterations takes 30 minutes if 300 time steps are used (also not parallelized).
Of course in case of oblique waves the LU-decomposition and the time iterations have
to be repeated for the asymmetrical part of the flow. This shows the limitations of the
method.
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Chapter 3

Accuracy and stability analysis

In this chapter we investigate the accuracy and stability of the numerical scheme that
we described in chapter 2. To accomplish this we consider the simplified case of a wave
propagating at a certain angle of incidence over a uniform flow. We compare the dispersion
relation in the continuous case with the dispersion relation that holds after discretizing the
free surface and the free-surface condition. Differences between the two relations indicate
inaccuracies in the numerical scheme. The stability is related to the magnitude of the
growth rate. This investigation is an extension of the work of Nakos [24], Raven [29] and
Sierevogel [31].

3.1 Introduction
A mathematical model cannot always be solved exactly. Although a unique solution might
exist, usually this solution cannot be expressed in terms of elementary functions. There-
fore, a numerical model must be used which describes the mathematical model accurately,
and which gives an approximation of the real solution. Unfortunately, this approximation
is never free of errors, moreover, sometimes the model even becomes unstable, in which
case no solution is found at all. Of course it is important to know the magnitude of the er-
ror, because without it the approximation is useless, and whether instabilities can appear.

These considerations apply to our model as well. We use a panel method to solve the
Laplace equation with linear conditions on the boundaries, and make approximations by
dividing the boundaries into panels, by assuming that the source strength is constant on a
panel, and by discretizing the free-surface condition. Therefbre, the solution we find will
differ from the unknown solution of the non-discretized problem and will contain errors.

Because we try to simulate water waves it is best to talk about errors in terms of wrongly
predicted wavelengths and wave amplitudes. An error in wavelength is called a dispersion
error, and an error in wave amplitude is called a damping error (or amplification error). We
will investigate the dependence of these errors on some of the discretization parameters
in the numerical model, such as grid size and raised-panel distance. Furthermore, the
influence of several difference schemes on these errors will be investigated. We do this by
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considering a harmonic wave at a fixed wave frequency that propagates over an infinitely
large free surface that has a constant grid size. By deriving a discrete dispersion relation,
the length and amplitude of this wave can be found and compared with the exact values
which follow from the continuous dispersion relation.
To investigate the stability, we have to look at the waves the other way round. We consider
a wave with a certain length, and from the discrete dispersion relation we can find the
rate at which the amplitude grows in each time step, and derive a stability criterion.
Similar investigations have been carried out by Nakos [24], Raven [29] and Sierevogel
[31]. We combine and extend their work so that it is applicable to our numerical scheme.
Büchmann [7] also made a stability analysis for his numerical scheme and checked whether
his predictions correspond to the actual behaviour of his scheme. It turns out that, due
to simpliflcations iii the stability analysis, it gives a necessary but non-sufficient condition
for stability.

In order to make a general statement about the accuracy and stability of the numerical
scheme, we have to make some simplifications. We approximate the steady flow by a
uniform flow, which means that our analysis is only valid far away from the ship where
the sea is undisturbed. When we substitute the uniform-flow potential Ux for the steady
potential I in the free-surface condition (1.12), we obtain the well-known Kelvin condi-
tion (1.13). Apart from the assumption that the uniform flow can be used, we also assume
that the free surface is infinitely large, and that the free-surface panels are rectangular
and all have the same size.

As described earlier, we can solve the Laplace equation by placing a source distribution
on the boundaries of the domain; the raised-panel surface (Ofl) and the hull (l2)

(, t)
= ff ( t) G (, ) d+ ff ( t) G (, ) d

801 802

If we substitute this boundary integral for the potential in the Kelvin condition, we obtain

ôa 8crOG 2 ffG OG) --G+2U--+Ua+ga daax ôx2

ôcrôG 2 G 8G\ -.

Jf (G+ 2U-- + U a +at a 2
gcr.) d on z = 0 (3.1)

802

Because we only consider errors that are caused by discretizing the raised surface and the
free-surface boundary condition, we assume that the source strength on the hull is known.
We then obtain an integral equation for the source strength on the raised surface only,
which can be written as

ff(
an'

W(x, y, t)a = RHS (3.2)
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The right-hand side contains, for example, information about the motion of the hull, and
can be used to generate waves. When we solve this integral equation, we obtain the
source strength and can then find the potential. Because we are interested in the wave-
like behaviour of the potential, it is convenient to write the potential as a superposition of
elementary waves, which can be achieved with Fourier transforms. First, we will apply the
continuous Fourier transform to equation (3.1). The integral equation (3.2) then becomes

W (k, 0, w) (k, 0, w) = I1Th (k, 0, w)

The zeros of the transformed integral operator W give the wave-like behaviour of the
potential. The equation W = 0 is called the continuous dispersion relation. Second, we
will divide the raised surface into panels and discretize the Kelvin condition. We can
then apply the discrete Fourier transform to the discretized equations and will find a
transformed integral equation

W(k,o,w)&(k,o,w) = i'(1c,0,w)

In the ideal situation, the discrete dispersion relation W = 0 will have exactly the same
solutions as the continuous dispersion relation. In practice, unfortunately, differences
always occur. By comparing the solutions of the two relations, a statement on the dis-
cretization error can be made. From the discrete dispersion relation, a stability criterion
can be derived as well.

3.2 The continuous dispersion relation

Figure 3.1: Wave with wave number k and
angle of incidence 0.

waves, according to the following variant of the Fourier transform

00 ir 00

1
(x,y,t) =

(2ir)3
fff /(k, 0, w)e tkxcøs 8kysin °kdkd0dw (3.3)

0

An elementary surface wave with wave num-
ber k, frequency w and angle of incidence 0
can be written as follows:

If the cosine of the angle of incidence is
positive, this wave propagates in positive x-
direction; if it is zero, this wave is a beam
wave, and if it is negative this wave propa-
gates in negative x-direction. This is shown
in figure 3.1. We can decompose any linear
wave into a number of these elementary
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ezfc
G

2k

e2f
t3z 2

(3.5)

z13 is the distance from the free surface, z = 0, to the raised surface, z = z13. The
Fourier transforms of the other terms in (3.1) follow immediately from differentiating the
definition of the inverse transform (3.3). Combining all the terms, we finally find the
continuous Fourier transform of equation (3.1)

= (w + 2Ukw cos 9 - U2k2 cos 92 + gk) = (3.6)

This expression gives us the Fourier transform of the source strength. The Fourier trans-
form of the potential follows from q = G and can be used to find the potential itself
from the inverse transform (3.3) in terms of a superposition of elementary waves

00 IT 00

- fff RHS Gei(wt_kxcoso_kIIsino)kdkdgdw
(3 7)

00ITO

From complex-integration theorems it follows that the zeros of the integrand in this ex-
pression give the wave-like contributions of the potential. We therefore have to solve the
continuous dispersion relation

+ 2Ukw cos 9 - U2k2 cos 92 + gk = 0,

which relates the wave number, wave angle, wave frequency and speed of the uniform
flow. If three of these quantities are known, the fourth can be determined. Here, we will
assume that all quantities are known except the wave number, which follows from solving
the dispersion relation. It can be shown that the behaviour of the solution depends on
the value of r = . If r , the dispersion relation has two real roots for all values of
8. Physically, this means that waves can propagate in all directions because the speed of

The "strength" of each elementary wave, , can be found from

000000

(k, 9, w)
=

fff 5(x, y, t)e_i(wtkx cosOkysin °dxdydt (3.4)
00-00-00

To obtain the Fourier transform of equation (3.1) we use the convolution theorem, which
states that the Fourier transform of a convolution is the product of the transforms of the
convoluted terms. Because equation (3.1) contains convolutions of the source distribu-
tion (or its time derivatives) with the Green function (Or its space derivatives) we need
their transforms. The transform of the source distribution will be called . The Fourier
transform of the Green function G and its vertical derivative are derived in Appendix
B and equal
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kt

0

Figure 3.2: Wave numbers
k,5 = k + ik in the complex plane for
r = , Fn = 0.4.

The two solutions of the dispersion relation are

= f 4U 52 (i ± .11 + 4r cos 0)2 if 1 + 4r cos 0 0,
(3 8)

± 4U2Cos29 (1 ± i/-1 - 4rcos0)2 if 1 + 4rcos0 <0.
In the next section we will derive the dispersion relation that holds after discrétization
of the Kelvin condition, the raised surface and the source distribution. The solutions of
this discrete dispersion relation will be compared with the solutions of the continuous
dispersion relation.

3.3 The discrete dispersion relation
The dispersion relation will change if the propagating wave no longer satisfies the contin-
uous equations, but now satisfies the discretized ones. We will investigate the influence
of the discretization of the raised surface, the source distribution and the Kelvin condi-
tion on the dispersion relation. We assume that the unbounded raised surface, located
at a distance z15 above the free surface, is divided into an infinite number of rectangular
panels with size zx x y, as shown in figure 3.3. The vertical distance z18 is related to
the panel size by Zf5 = JxLy. On each panel the source strength is assumed to be
constant. The collocation points with coordinates (Xm, y) are located below the middle
of a panel on the free surface z = 0. With these assumptions, the boundary integral for
the potential in a collocation point (Xm, y) becomes

(i-i-fl±x (i+fl±

c(xm,yn,0,t)= a,3(t) f f
dxodyo

2 ==-=- (i) (i-y 4ir/(xm - x0) + (yin Yo) + z

propagation of the upstream waves is greater
than the speed of the ship. If T > , and
1 + 4r cos 0 0, the dispersion relation has
two real roots, else it has two complex-conjugate
roots with non-zero imaginary parts. In the lat-
ter case the waves are evanescent, which means
that they are exponentially decreasing in ampli-
tude along the direction of propagation, which
can only happen if the wave propagates in up-
stream direction. The integration contours in
(3.7) can always be chosen such that the radi'
ation condition is fulfilled, see for example We-
hausen and Laitone [37].

0i,jGm_i,n_j
i=ooj=oo

(3.9)

0 k'
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Figure 3.3: Uniformly-spaced grid on the raised-panel surface

What remains to be discretized are the derivatives of the potential in the Kelvin condition.
For the space derivatives that are tangential to the free surface, either upwind or central
difference schemes can be used. Central difference schemes have the advantage that they
are very accurate, whereas upwind difference schemes have the advantage that they usually
lead to stable numerical schemes. In general, the derivatives can be written as follows

= dq5(xm_j) 4(xm) = ( )2d3 q(Xm_i) (3.10)

where, generally, almost all coefficients are zero. The time derivatives are obtained with
difference schemes that can be written as

i > dt(t_)
j=-00

1
00

(t,)
= (t)2 >

dtt) (t_3) (3.11)

where, again, almost all coefficients are zero. Looking at the Kelvin condition, we see
that the only term we have not discussed is . We obtain this term from the boundary
integral for by taking the vertical derivative

(i+)A.x (j+)ó,
= > o(t) f f z13 dxodyo 3-i00 (i-)x (i-)v 4ir ((xm - x0)2 + (Yn - yof +8)z

i00J00
(3.12)

Now that we have discretized the Kelvin condition, the source distribution and the raised
surface, the discrete dispersion relation can be derived. This is done by introducing a
discrete Fourier transform and its inverse, defined by the following pair of equations

00 00 00

(k,9,w) = xytXt > >
cb(xm,yn,tp) 6t ittkm os8kn.Aysin9) (3.13)

m=-00 n=oo p=oo
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(Xm,yn,tp) =
(2ir)3 f f f (k, , w) ez tkm.xcos9kisin °)d(k O)d(k sh O)d---

(3.14)

Note that in the limit case, x,Ay,t * 0, the discrete transform becomes the continuous
transform. The discrete Fourier transform of equations (3.9) and (3.12) can be obtained

by relating it to the continuous transforms G and (3.5) with the aliasing theorem.
This theorem relates the discrete Fourier transform of discrete values of a function to the
continuous Fourier transform of the function itself. If we also use the discrete convolution
theorem, the discrete dispersion relation can be derived, which is done in Appendix B.
We only mention the final result for the discrete dispersion relation, which is

00 00 00
2U

= (t) + Lxt
de3 c0s9 +

j=-00 j=-00 j=-00

U2
00

+g=0(x)2
de0s0

aj=-00

where G and Q are the discrete Fourier transforms of G,3 (3.9), and Q (3.12). They
are listed in appendix B, equations (B.16) and (B.17).

Unlike the continuous dispersion relation, this discrete dispersion relation cannot be solved
exactly. A numerical procedure as, for example, the method of Newton has to be used
to find the roots of the discrete dispersion relation in the complex plane. Usually, these
roots differ from the roots of the continuous dispersion relation (3.8), which indicates an
error due to the discretizations. In the next section we will investigate the dependence of
this error on a number of discretization factors.

3.4 Damping and dispersion
There are a number of ways to look at the discrete dispersion relation. In this section
we assume that the flow has reached a steady-state time-harmonic limit, so the wave
frequency is assumed to be known, as well as the propagation angle 0. From the discrete
dispersion relation, a discrete wave number kd can be found with numerical techniques.
We compare it with the corresponding solution of the continuous dispersion relation, k,
by relating them as follows

kd=k(1+CT+iC)

k is assumed to be real, so we consider non-evanescent waves. If the terms C and C,
are both zero, the two roots are equal and there is no discretization error. If C is pos-
itive, the predicted wave number is too large, which means that the wavelength is too
small. If C is negative the predicted wavelength is too large. In both cases we speak of
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numerical dispersion. A negative C. corresponds to numerical damping and a positive C
corresponds to numerical amplification, as can be derived from (3.14).

Source-discretization effects

First, we will study only source-discretization effects, so we assume that the time and
space derivatives of in the Kelvin condition are obtained exactly, without any error,
which leaves us with the following discrete dispersion relation

w2 + 2Uk cos 9 - U2k2 cos + = 0.
Q

In our analysis we will only consider the root with the '-' sign and omit the root with
the '+' sign (see equation (3.8)) because the latter usually corresponds to a short wave
which cannot be represented accurately on the free-surface grids that we use and will
damp very fast. The only discretizations left are the panel size and the distance from the
raised-panel surface to the free surface, z15. It turns out that if the collocation points are
chosen below the centre of a panel like we chose them, the numerical damping is zero.
Numerical damping is very useful to suppress instabilities, so we will introduce damping
by choosing appropriate difference schemes. Damping can also be introduced by shifting
the collocation points upstream like Raven [29] did, but that is not done here. Because the
damping is zero, we will only study the effect of the source discretization on the dispersion.

Figure 3.4 shows what happens to the dispersion of several downstream waves when we
increase the distance z1 = pJAxAy from the free surface to the raised-panel surface for
several values of i- and a fixed Froude number Fn = 0.4. The reference length L in this
Froude number is taken to be one in all the calculations in this chapter. We introduce
the non-dimensional longitudinal and transverse wave numbers & and fi

- kAxcosO kAysin9
2ir 2ir

& = 0.05 means we use 20 panels per longitudinal wavelength. ,c is the ratio of transverse
panel size Ay and longitudinal panel size Ax. It seems that, when p increases, the
dispersion becomes less in all cases and eventually approaches zero. This was also observed
by Raven [29] for the steady case. Figure 3.6 shows the same, but now for several upstream
waves with wave angle 0 = ir and a lower Froude number of 0.2. The Froude number was
lowered because otherwise only low-frequency upstream waves with a very long wavelength
exist, which is not very realistic. It can be seen that the dispersion becomes less if p
increases, like in the downstream case. We may conclude that it is sufficient to use p = 1
in our calculations, because for all T and wave angles shown, the dispersion is very small
compared to the p = 0 case.
Figure 3.5 shows what happens to the dispersion of a wave with length . = 1 at various
downstream angles if we increase the ratio #c = and keep Ax constant. We see that
for waves with zero wave angle, so for waves propagating along the x-axis, it does not
matter how large the transverse panel size Ay is. When we increase the wave angle to
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Figure 3.4: Dispersion for increasing ji and Figure 3.5: Dispersion for increasing ,c and
severair. Fm=0.4,O=0,,c=1,&=0.05. severalO. Fn=0.4,&=0.05,p=1,\=1.

with steps of , the dispersion depends more and more on the transverse panel size,
which could be expected since 0 = corresponds to a transverse wave. Figure 3.7 shows
the same, but now for a number of upstream waves with wave angles ranging from to
it in steps of , with length ) 3 and at a Froude number of 0.2. Again we see that a
small transverse panel size is only important for (nearly) transverse waves. It seems that

= 1 is a good choice; little dispersion in all cases and yet it is not too small, so the
number of transverse panels will not be too large.

Effect of the difference schemes

The choice of a difference scheme is very important to obtain an accurate prediction of
the wave pattern near a sailing ship. Some choices lead to instable solutions and some
lead to a lot of damping and dispersion. Unfortunately, a stable difference scheme without
any damping or dispersion does not exist. What we can do is investigate a few different
schemes and select the one which is stable and minimizes damping and dispersion.

First of all we need difference schemes for the time derivatives in (1.13). When, at a
certain time level, the first or second derivative of the potential must be determined,
only the potential at the current or previous time levels can be used in the difference
scheme, because the future potential is not yet known. Therefore, we must use a backward
difference scheme. The more time levels are used in this scheme, the more accurate the
scheme is. A drawback, however, is that the use of more time levels requires more memory
because the history of the potential has to be stored. We will investigate first-order,
second-order and third-ordet difference schemes for the time derivatives according to the
following formulas

1
- (ta) = (dcI (ta) + dt)cb (t1) + dt (t..2) + dt (t_3))

-3
0 0.4 1.20.8
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(i) (t) (t)where the coefficients d0 , d , d2 and dt) are

0

0.004

0.008

0.012

0.016

Cr

9=
9 = 5ir8

= ir/2

t92 1

d
(ta) = (do (ta) + (t1) + dtJ (t2) + dt/ (t_3) + (tt), (t))

(tt) dt), d(tt) (tt) (tt)where the coefficients d0 , 2 d3 and d4 are

In all three cases, we investigate the dependence of damping and dispersion on the di-
mensionless parameter

wLt
2ir

which corresponds to one, divided by the number of time steps per period.

Figure 3.8 shows the dispersion Cr for a downstream wave at wave angle 0 = 0 which,
as expected, increases in absolute value if the time step increases. With the first-order
scheme, the predicted wavelength is too long; with the second-order scheme the predicted
wavelength is too short. The third-order scheme much reduces dispersion compared with

2(t)
U0

(t)t1 .,(t)
U2

.,(t)
U3
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Third-order scheme

1 123
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p

Figure 3.6: Dispersion for increasing p and
several r. Fri = 0.2, 9 = ir, K = 1, & 0.05.

0 1 2
K

Figure 3.7: Dispersion for increasing ic and
several 9. Fri = 0.2, & = 0.05, p = 1, ,\ = 3.
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Figure 3.8: Dispersion for increasing and Figure 3.9: Damping for increasing and
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0.4, i = 1, , = 1, 0 = 0, = 0.05. 0.4, j.i = 1, ,c = 1, 0 = 0, & = 0.05.

the other two schemes, so speaking strictly from a dispersive point of view the third-order
scheme is best. Figure 3.9 shows the damping term C, which is negative if a first-order or
second-order scheme is used. If a third-order scheme is used, this term becomes slightly
positive, which means there is some numerical, amplification instead of damping. This
can lead to instabilities, so a first-order or second-order scheme is preferred. Since the
second-order scheme has the least damping, it is the best choice.

1st order
2nd order- 3th order

1st order
2nd order- 3th order
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Figure 3.10: Dispersion for increasing and Figure 3.11: Damping for increasing and
several difference schemes. T = 0.2, Fri = several difference schemes. T = 0.2, Fri =
0.2, i = 1, ,c = 1, 9 = ir, & = 0.05. 0.2, = 1, ,c = 1, 0 = ir, = 0.05.

Figures 3.10 and 3.11 show damping and dispersion for an upstream wave with angle
0 = ir. Again it can be seen that the third-order scheme has the least dispersion for
small time steps, but also has some numerical amplification. It is 'also noticeable that the

0.16 0.20.04 0.08 . 0.12
w
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third-order scheme leads to more damping and dispersion than the other schemes if a large
time step is used. This can be explained by the fact that the five points in the third-order
difference scheme are then distributed over a large part of the period of the potential. If
less points are used, a quite accurate derivative can still be obtained, even for a large time
step. From these examples we may conclude that it is best to use the second-order scheme.

We also need difference schemes for the tangential space derivatives of the potential in
(1.13). We will again investigate the dependence of damping and dispersion on some
difference schemes. These can be divided in two classes: upwind difference schemes and
central difference schemes. In an upwind difference scheme, only points are used that are
on the upwind (in aerodynamics) or in our case upstream side of the point where the
derivative is required. In a central difference scheme, points are used that are on both
sides of the point where the derivative is required. Although, generally, central difference
schemes are more accurate than upwind difference schemes, they have the disadvantage
that they often lead to instabilities. Upwind difference schemes, however, are well known
for their stabilizing properties. Physically this can be explained by the fact that new
information on the wave pattern mainly comes from the upstream side, especially at high
speeds, whereas the downstream side only contains old information. The difference scheme
for the first derivative of to x can be written as follows

(xe) = _ (d (X_3) + dçb (x_2) + dçb (x_) + d2cb (xi) + dffçb (x+)),

where the coefficients are given in the following table.

Table 3.1: Coefficients for first derivatives.

A similar formula holds for the second derivative of to x

1 (xx) , (xx) (xx)-- (xi) (d (x1_4) + dçb (z3) + d2 ix_2) + d1 (x_.) + d (xi) +

dffi2çi (xi+i))

These coefficients are given in table 3.2.
First, we will investigate the influence of these four difference schemes on the damping and
dispersion of some downstream waves when we vary the number of panels per wavelength.
Calculations were done for the cases T = 0.5 and 7 = 1.5. In all calculations we used the
Froude number Fm = 0.4, the angle of incidence 9 = 0, the relative height of the panel
surface p = 1, the relative width of a panel i = 1 and = 0.005, so 200 time steps per
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Table 3.2: Coefficients for second derivatives.
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Figure 3.12 Dispersion for several differ-
ence schemes, increasing & and r = 0.5.
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Figure 3.13: Damping for several difference
schemes, increasing &, and T = 0.5. Legend
as in figure 3.12.

period. A large number of time steps per period was used to make sure that the error is
mainly caused by the use of the spatial difference scheme.
Figure 3.12 shows the dispersion for i- = 0.5 and increasing & (so the number of panels per
wavelength decreases) for the four difference schemes. If upwind difference schemes are
used, the dispersion term C is negative, so the predicted wavelength is too long. If the
central difference scheme is used, the predicted wavelength is too short. It is interesting
to see that, for small &, the first-order upwind scheme has less dispersion than the second-
order. scheme and about the same as the third-order scheme . It is also remarkable that
the use of the central difference scheme leads to more dispersion than the use of the
upwind schemes. Figure 3.13 shows the damping forr = 0.5 and increasing &. Unlike the
dispersion, the damping is largest if the first-order upwind scheme is used. The second-
order upwind scheme also has some damping, but much less and the third-order scheme
even has some numerical amplification. The damping is nearly zero if the central scheme
is used. From these two figures we might conclude that it is best to use a central difference
scheme.

The next two figures, however, show that this statement is false. Figures 3.14 and 3.15
show the damping and dispersion again, but now for r = 1.5, corresponding. to a higher
frequency and a smaller wavelength. We see that the upwind difference schemes produce
results similar to the r = 0.5 case. If central difference schemes are used, a problem
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Figure 3.15: Damping for several difference
schemes, increasing & and 7 = 1.5. Legend
as in figure 3.12.

occurs at & = 0.155 and higher, because the discrete dispersion relation has no longer a
root near the solution of the continuous dispersion relation, but only a so-called spurious
root, which has a large real part (short wave) and a positive imaginary part. These short
waves will amplify rapidly and cause numerical instabilities. It is quite difficult to find
the point at which this happens, so we will study numerical stability in a different way in
the next section.

This investigation indicates that it is tempting to use central difference schemes because
of their high accuracy, but that using these schemes is also dangerous because, when the
speed of the flow and the frequency of the wave is increased, a point is reached where the
numerical scheme becomes unstable.

3.5 Temporal stability
In the previous section we made the assumption that the flow has reached a steady-state
time-harmonic limit, from which the corresponding wave number could be found. In this
section we will investigate what happens, as time goes by, to a wave at a certain angle 9
and with a certain length .\. Thus something can be said about the stability of the numer-
ical scheme, because a wave amplitude that remains bounded in time indicates a stable
scheme, whereas an unbounded wave amplitude indicates an unstable scheme. From the
definition of the inverse discrete Fourier transform (3.14) it can be seen that when we go
from one time level to the next, each frequency component of the potential is multiplied
by the growth rate Z = eit. An obvious criterion for stability is that the modulus of
this growth rate should be less or equal to one. If it exceeds one, the potential will become
unbounded, indicating an unstable numerical scheme. This stability will be referred to as
temporal stability according to the definitions of gim, Kring and Sciavounos [20].

0.04 0.08 0.12 0.16 0.2
a

Figure 3.14: Dispersion for several differ-
ence schemes, increasing & and r = 1.5.
Legend as in figure 3.12.
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If second-order difference schemes are used to approximate the time derivatives of the
potential, the discrete dispersion relation can be written as a third-order polynomial in Z

5 2U
= (_ +

2U
D(x) +

U2_D
+ + (_

2D(z)) z2+\jt) 2 xAt (x)2
/ 4 1 2U (x))z 1

+ - (t)2 = 0 (3.15)

where D(x) = deik320s0 and = dej0s8, so a choice for a spatial

difference scheme has not yet been made. A third-order polynomial has three roots in
the complex plane. The numerical scheme is temporally stable if all these roots are inside
the unit circle in the complex plane. If one or more of the three roots is outside the unit
circle, the potential will exponentially increase in time and become unbounded.

First, we will investigate the temporal stability when central difference schemes are used
to approximate the spatial derivatives. The coefficients for these schemes are listed in
table (3.1) and (3.2). From equation (3.15), it can easily be derived that the coefficients
in the third-order polynomial are periodic in the longitudinal wave number a = k cos U
with period r and in the transverse wave number /3 = ksin9 with period Therefore,
we only have to investigate the temporal stability for waves with wave numbers and wave
angles that satisfy

1 1 1 -.1-.<a< U --</3<- (3.16)

When central difference schemes -are used this area can even be reduced further, because
the coefficients in the dispersion polynomial are even functions of & and /3. This means
that the area we have to investigate is the rectangular area 0 & < and 0 < /3
Straight lines starting in the origin of the &,3-plane correspond to waves with the same
wave angle, circles around the origin correspond to waves with the same wave number.
Given a wave number and wave angle that lie in this area, the three roots of the dispersion
polynomial can be calculated, after which we can conclude whether the temporal-stability
criterion is satisfied. It is not possible to calculate all three roots of the polynomial
analytically, so first one root is approximated by using Newton's method, after which the
two remaining roots can be calculated. The temporal stability, at fixed values of and
/3, only depends on the non-dimensional parameters

U U - /L zy
Fm = FnA =

T = V-, K = -, i
=

It turns out. that the last two parameters have hardly any influence on the temporal
stability, so we will only use tc = 1 and a = 1 here.
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Figure 3.16: Regions in the à,fl-plane in which the dispersion relation has at least one
root with modulus larger than one, for Fn = 0.2, it = 0.01 and several grid Froude
numbers.

Figure 3.16 shows the stability regions for several grid Froude numbers Fn, a Froude
number of 0.2 and a time step t = 0.01. In the shaded regions one or more roots
were found with modulus larger than one, so the shaded regions indicate instable wave
numbers and wave directions. When the grid Froude number is very small (so a large
panel size), no instabilities are found because almost all information about the waves
is lost and they damp very fast. When the grid Froude number is increased, a small
region appears where instabilities are found. This region first becomes larger when the
grid Froude number increases and finally disappears when the grid Froude number is very
large, corresponding to an extremely small panel size that can never be used in practice.
It can be concluded that the use of central difference schemes at a Froude number of 0.2
always leads to instabilities at some wave number and wave angle, except for extremely
coarse or fine grids. Of course there is also a dependence on the time step, which will
be examined later. A numerical scheme is defined to be temporally stable if in the total
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Figure 3.17: Instability region for At = 0.1
if we use central difference schemes.
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Figure 3.18: Instability region for At = 0.01
if we use central difference schemes.

It is possible to repeat this calculation for several Froude numbers and grid Froude num-
bers at a certain value of the time step At (or T). If we shade the region where, for at
least one value of & and , instabilities are found, we obtain an instability region that
only depends on the time step. We did this for three values of the time step, namely
At = 0.1, At = 0.01 and At = 0.001. The results are shown in figures 3.17, 3.18 and
3.19. In these figures the two straight broken lines combine points that have panel size
Ax = 0.1L and Ax = 0.001L. These lines have been drawn because in practice the panel
size always lies between these two values, so the area between these two lines is our area
of interest. Ax = OiL corresponds to a very coarse grid with only 10 panels along the
waterline of the ship. Ax = 0.001L corresponds to a very fine grid with 1000 panels along
the waterline of the ship. When the time step is large, At = 0.1, the instability region
is quite small. This can be explained by the fact that only low-frequency waves can be
represented accurately, so the high-frequency waves damp fast. When the time step is
decreased to At = 0.01, more instabilities are found which are for a large part located
in our area of interest. Finally, if the time step is reduced further to At = 0.001, almost
every choice of Froude number and grid Froude number leads to instabilities. From these
figures we may conclude that it is completely safe to use central difference schemes up to
a Froude number of 0.03. Above that, fine discretizations lead to instabilities. It seems
that, independent of the time step, the numerical scheme becomes unstable at a grid
Froude number Fn 0.9.

In the final figure we see what happens when we use 50% central and 50% upwind differ-
ence schemes with a time step At = 0.001. The instability region becomes smaller, but
is still very large. It turns out that, no matter how small the contribution of the central
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region (3.16) no points occur where the dispersion polynomial has a root with modulus
larger than one. This means that in figure 3.16 all shown grid Froude numbers lead to an
instable numerical scheme.
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3.6 Summary and conclusions
For a simplified model, in which we approximated the steady flow by the uniform flow
instead of the non-linear flow, we derived a continuous and discrete dispersion relation.
The solutions of these dispersion relations say something about the length and the am-
plitude of the predicted waves. Any differences between the solutions of the continuous
dispersion relation and those of the discrete dispersion relation indicate errors due to the
discretization of the free surface, the source distribution and the free-surface condition.
Therefore, these differences tell us how accurate our numerical scheme is.

Besides the accuracy, the temporal stability of the numerical scheme can be investigated
by considering the rate at which the solution grows in each time step. If the rate of growth
is larger than one, the numerical scheme is temporally unstable, else it is temporally stable.
This growth rate can be derived from the discrete dispersion relation. It turns out that,
if central difference schemes are used, the numerical scheme easily becomes temporally
unstable, especially for moderate and high speeds, whereas the use of upwind difference
schemes never leads to instabilities. Because of these considerations, we will only use
upwind difference schemes in the calculations in chapter 4 and chapter 5.
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difference scheme is, its use always causes instabilities for large Froude numbers. If only
upwind difference schemes are used, no instabilities are found at all.



Chapter 4

Test case

In this chapter we test the model with a fictitious test ship, sailing at a Froude number
of 0.35, which hull paneling is described analytically with a formula. The grid dependence
of the steady free-surface velocities and their derivatives is investigated, as well as the
grid dependence of the unsteady wave elevation and its dependence upon the time step.
Also, the dependence of the time-dependent force on the hull paneling is considered. A
comparison is made between two methods for simulating incoming waves of which the best
is used in the remaining calculations in this thesis. Finally, the effect of the transfer term
on the wave pattern and on the drift forces and moments is investigated.

4.1 Introduction
Before we simulate the behaviour of a commercial tanker in waves, we apply our algorithm
to a fictitious test ship. This way any possible errors in our model can be eliminated,
and it can be tested under severe conditions. Because this ship does not really exist, we
cannot compare the predictions with measurements, so the calculations in this chapter do
not say anything about the ability of our model to simulate reality
By reducing the grid size on the hull or the free surface, we can investigate the convergence
of the solution, both in the steady and the unsteady case. In the steady case we investigate
the convergence of the free-surface velocities, calculated by RAPID, and the derivatives
of these velocities, calculated with the difference schemes that were introduced in chapter
2. In the unsteady case we investigate the convergence of the wave pattern when the
free-surface grid and the time step are refined, and the convergence of the unsteady forces
on the ship in waves when the hull grid is refined.
The ship that we use in these test simulations is generated by the formulas in figure 4.1
where L is the length of the ship, B its breadth and d its draught. The use of this formula
makes it easy to generate the grid and to differentiate numerically over the hull. In all
calculations in this chapter we use the following values of length, breadth and draught

L=1 B=0.2 d=0.1

Every transverse cross-section of the ship is an ellipse, and the intersection of the ship
with the calm-water plane is a fourth-order polynomial, such that its tangent is parallel
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2(z)2f\ 1b(x)) -

b(x)=(1-8()2+16())

Figure 4.1: Cross section of the test ship

to the saxis at x = ± and x = 0. Of course this ship does not exist in reality and
therefore we will not try to predict the motions of the ship when it freely floats in waves.
We are not sure what will happen to this ship anyway when it sails in waves. It may
even be unstable and capsize the moment a wave hits the ship. We will only use this
ship to test whether our numerical algorithm is correct and whether the predicted steady,
diffracted and incoming waves and the forces converge.
With this formula, a hull paneling was generated that has 40 panels along the (starboard)
waterline and 17 panels at each of the 40 corresponding transverse cross sections of the
ship, resulting in a total of 680 panels.

Figure 4.2: Hull paneling of the test ship, Fm = 0.35, 680 panels on half hull.

RAPID was used to calculate the steady flow field around this hull at Fn = 0.35, which
resulted in the adjusted hull paneling shown in figure 4.2. Note that the top 6 panels
at each cross section have been stretched or shrunk in order to follow the contour of the
steady wave that intersects with the hull. Because RAPID uses raised panels, the top
panels are (partly) located above the steady waterline, and used to connect the hull panels
and the raised free-surface panels.
Figure 4.3 shows a top view of the steady wave pattern on an area stretching from
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Figure 4.3: Top view of the scaled steady wave pattern, ., at Fri = 0.35.

x = 0.8L to x = 0.9L, and from y = 0.4L to y = 0.4L. RAPID used 16 free-surface
strips in the upper half of this area, and each strip had approximately 30 panels per
wavelength, resulting in 67 panels per strip. Because of the beak-like shape of the bow,
no waves are generated there, but slightly further downstream, where the hull becomes
bulbous. This bulbous shape is the reason that very high waves are generated, resulting
in a very high wave resistance. This makes the ship useless from a ship builder's point of
view, but for testing the convergence of our predictions it is perfect.

4.2 Convergence of steady velocities and their deriva-
tives

Before we calculate the time-dependent flow, it is important to know if the correct steady
velocities and their derivatives are used in the free-surface condition (1.12). Therefore,
we test whether the velocities, the derivatives of the squared velocity and the transfer
term converge by looking at their grid dependence, and the dependence on the vertical
distance involved in calculating the vertical derivative. As indicated by Raven [29], the
dependence of the steady waves on the hull paneling is very small, so we do not consider
refining the grid on the hull. In all the calculations, the Froude number was 0.35, which
is about the highest Froude number at which RAPID can calculate a convergent solution
for this ship.
We investigate the convergence by comparing the steady flow at two different free-surface
grids: one with 30 panels per principal wavelength, ) = 2irFn2, and one with 60 panels
per principal wavelength. We only refine the grid in the longitudinal direction, because
this enables us to compare the results on the same strip of collocation points. If the grid
had also been refined in the transverse direction, the collocation points would also have
shifted in the transverse direction, making a direct comparison difficult. Moreover, the
dependence of the steady velocities on the longitudinal grid size is far more important
than the dependence on the transverse grid size because of the numerical differentiation
in RAPID along the stream lines. Large differences between the results for the two grids
indicate divergence, and the divergent terms must be eliminated from our unsteady free-
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surface condition because they also introduce errors in the unsteady waves.
The dependence of the vertical derivative on the distance z between adjacent planes is
investigated by halving this distance. This is only done for the coarsest grid.
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Figure 4.7: The transfer term on the strip of
collocation points closest to the ship for two
values of Zz and 30 panels per wavelength.

Figure 4.4 shows the steady wave pattern on the strip of collocation points that lies closest
to the ship, for both grids. These collocation points lie at a distance of approximately
Ly 0.009L metres from the ship or the x-axis. Figure 4.5 also shows the steady wave
pattern, but now at a distance Iy 0.105L. In both cases the difference between the
two predicted waves is very small. The further away from the ship, the larger the differ-
ence in the wave pattern will be due to differences in numerical damping and dispersion
between the two grids. This explains why figure 4.5 shows more differences than figure
4.4, especially near the wave crests and wave troughs.
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Figure 4.4: Steady wave pattern on strip of
collocation points closest to the ship.
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Figure 4.5: Steady wave pattern on strip of
collocation points at 0.105.
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To investigate the dependence of the vertical derivatives on the vertical distance .z
between adjacent planes, see figure 2.5, we calculated the function S (2.7), and the transfer
term T (2.6) on the coarsest grid and with two values of z, namely z = 0.0025L
and z = 0.005L. In chapter 2 we showed that S and can be calculated accurately if
(kzz)2 << 1 and T if (z)2 Lk3 << 1. The mentioned vertical distances easily fulfill this
condition. Figure 4.6 shows the function S on the strip of collocation points closest to
the ship. Almost no differences can be seen between the two predictions, which indicates
that the vertical derivative in (2.7) converges very well if the grid size stays the same.
The same holds for the vertical derivative in the transfer term, as can be seen in figure
4.7.
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LongitudinalFigure 4.8:

squared velocity on the strip
points closest to the ship.

Next, we investigate what happens to the derivatives of the steady velocity if the vertical
distance z is kept constant and the longitudinal grid size is halved. Figure 4.8 shows the
longitudinal derivative of the squared velocity when 30 or 60 panels per wavelength are
used. Almost no differences can be seen between the two predictions, which indicates a
very good convergence of this derivative. Figure 4.9 shows the transverse derivative when
30 or 60 panels per wavelength are used. Unlike in the previous figure, we observe some
differences between the two predictions here, especially near the peak values. This may be
explained by the fact that we obtained the transverse derivative with a difference scheme,
whereas we obtained the longitudinal derivative mainly from the steady free-surface con-
dition (1.5), which method gives more accurate results. However, the differences between
the plots are not large, so we can use these derivatives in the unsteady free-surface con-
dition without problems.

Now that we know that the first derivatives of the steady velocities can be calculated
quite accurately, it is time to go one step further and to investigate the convergence of
the transfer term, which contains a second derivative of the steady velocities. Figure
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4.10 shows the transfer term on the strip of collocation points closest to the ship. Un-
fortunately, large differences between the two predictions can be seen, especially in the
midship region. The same holds for the transfer term somewhat further away from the
ship. It seems that for this ship, which is of course an extreme case, considering its speed
and its bulbous shape, the transfer term cannot be calculated accurately on the entire
free surface. If we want to eliminate the transfer term from the unsteady free-surface
condition, we have to investigate the influence this term has on the unsteady solution,
which will be done later on.
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0.105 for 30 and 60 panels
wavelength, tz = 0.005L.
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4.3 Modeling incoming waves
If we are to calculate the motions of a ship and the drift forces on it, including an accurate
description of the incoming waves is very important. There are two methods to simulate
the incoming waves, which both have their advantages and their disadvantages. We will
compare the two methods by applying them to our model and by looking at the predicted
wave elevation. If the predicted wave elevation is almost the same, then both methods
can be used and we can choose the one that suits us best.
The first method to simulate incoming waves is to generate them with a numerical wave
maker. During the simulation the incoming wave propagates towards the ship, reaches
the ship, and at that moment we can determine the motions and the drift forces. The
advantage of this approach is that we simulate what happens in reality when a ship sails
in calm water and then suddenly encounters incoming waves, and what happens during
the measurements in the towing tanks at the MARIN, where wave makers are used to
generate waves. Therefore, if the waves do not suffer too severely from numerical damping
or dispersion, this approach most likely produces correct results. A disadvantage of this

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
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Figure 4.10: The transfer term on the strip
of collocation points closest to the ship for
30 and 60 panels per wavelength, Lz =
0.005L.
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approach is that a very fine grid has to be used on the side of the ship where the waves
come from to avoid numerical errors in the incoming wave before it has even reached the
ship. Furthermore, the simulation must be run for quite a long time because it takes some
time before the wave reaches the ship. We will refer to this method as the wave-maker
method.
The second method is to calculate only the diffracted wave. This means that we assume
that, in the entire fluid domain, we can split the time-dependent velocity potential in
two separate parts: the undisturbed incoming potential, and a disturbance called the
diffracted potential

= çbinc + cbdlf

This approach is always used in frequency-domain models. The incoming-wave potential
is given in equation (2.13). Of course a radiation potential must be added in case of ship
motions, but as said, these are not considered here. If we reduce the boundary conditions
on the steady free surface and the hull of the ship into

Lci5=O i=1,2

where L2 is a linear operator, then these boundary conditions change into

Lçbdf = i = 1,2

We see that the presence of the incoming wave leads to a forcing function on the right-hand
side of the boundary conditions. This means that we have to apply. the linear operator L
to the incoming-wave potential. Far away from the ship, the steady flow is uniform and
the incoming-wave potential satisfies the free-surface condition, so the right-hand side of
the free-surface condition is then zero. Close to the ship, the steady flow is far from uni-
form and the incoming-wave potential does not satisfy the free-surface condition at all. In
fact, the incoming-wave potential is based on a linearization about the calm-water plane,
whereas if we use it near the ship, we apply it to a condition on the non-linear, non-flat,
steady wave. It is therefore not sure that using this method is valid. We hope, however,
that all inaccuracies that enter our boundary condition are corrected in the diffracted
wave. So separately, the diffracted wave and the incoming wave do not represent physical
waves near the ship, but the sum of the two probably does. We will refer to this method
as the separation method.

Both methods have been implemented in our program and have been applied to the
test ship. The wave maker was simulated by letting the unsteady potential equal the
incoming-wave potential on the last two rows of collocation points on the upstream edge
of the free surface, and on a vertical boundary of sufficient depth that starts at this edge.
We only consider head waves in the comparison, but of course both methods are capable
of simulating other wave directions as well. In all calculations the same free-surface grid
was used, which stretched from x = L to x = L, and from y = 0 or the waterline of the
ship to y = 0.75L. It was divided into 24 strips of 117 panels.
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Because we consider incoming waves at one particular length A and the corresponding
encounter frequency w, eventually the total first-order wave elevation will oscillate at the
same frequency. We assume it can be written as

ç,l) r=Accoswt+Assinwt

Figures 4.12 and 4.13 show the cosine part of the wave pattern, A, and the sine part,
A, of the wave pattern near the ship, both scaled with the amplitude of the incoming
wave, (. The incoming wave has length A = 1.188L. A good agreement between the
two methods is found. When the wave-maker method is used, the incoming wave already
contains small errors when it reaches the ship. These errors mount when the wave prop-
agates downstream and this explains why larger differences between the two predicted
waves are found further downstream. When the separation method is used, the wave in
front of the ship is predicted exactly (in linear theory) and only the diffracted part of the
wave suffers from numerical damping and dispersion. On the downstream end of the free
surface differences occur due to the sudden truncation, which influences long waves more
than short waves. The agreement between the two methods justifies the assumption that
both methods can properly simulate the incoming waves.

Figures 4.14 and 4.15 show again the predicted wave pattern, but now for a shorter in-
coming wave with length A = O.764L. There is more damping and dispersion because the
number of panels per wavelength is smaller than in the previous case, so the differences
between the predictions are larger than those in the previous case. Again, these become
larger as the wave propagates downstream. A shift between the waves can clearly be seen
(dispersion) and, especially behind the ship, differences between the wave amplitudes
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Figure 4.12: Cosine part of the wave on
the strip of collocation points closest to the
ship when the separation method or the
wave-maker method is used, A = 1.188L.
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Figure 4.13: Sine part of the wave on the
strip of collocation points closest to the ship
when the separation method or the wave-
maker method is used, A = 1.188L. Legend
as in in figure 4.12.
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(damping) can be observed.
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Figure 4.16: Cosine part of the wave on the
strip of collocation points closest to the ship
when the separation method or the wave-
maker method is used, A = O.325L. Legend
as in in figure 4.12.

75

Finally, we compare the wave pattern for an incoming wave having length A = O.325L.
This is quite a short wave, corresponding to an average of about 19 panels per wavelength.
Because the grid is non-uniform, in some areas (midships and downstream of the ship)
only 10 panels per wavelength are used, whereas near the bow and the stern about 29
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Figure 4.17: Sine part of the wave on the
strip of collocation points closest to the ship
when the separation method or the wave-
maker method is used, A = O.325L. Legend
as in in figure 4.12.
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Figure 4.14: Cosine part ofthe wave on the
strip of collocation points closest to the ship
when the separation method or the wave-
maker method is used, A = O.764L. Legend
as in in figure 4.12.
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Figure 4.15: Sine part of the wave on the
strip of collocation points closest to the ship
when the separation method or the wave-
maker method is used, A = O.764L. Legend
as in in figure 4.12.
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panels per wavelength are used. This explains why in figures 4.16 and 4.17 large differ-
ences between the wave patterns can be seen. Both methods give unreliable results for
short waves and this can only be solved by using more panels. Unfortunately, this is not
possible right now because the memory of the workstations that we use limits the total
number of panels to about 3500.

We may conclude that, if sufficient panels per wavelength are used, both methods give
similar predictions for the incoming and diffracted waves. If, due to limited computer
memory, only a small number of panels per wavelength can be taken into account, both
methods result in waves with errors due to numerical damping and dispersion. In that
case, the separation method is the most reliable because only the diffracted part of the
wave contains numerical errors. Furthermore, the separation method requires less panels
because we can use a panel size that is quite large on the upstream side of the ship,
and because no vertical boundary is needed to generate waves. Finally, the separation
method requires less simulation time than the wave-maker method because the incoming
wave does not have to propagate from the wave maker to the ship. Therefore, we use the
separation method in the rest of the calculations in this thesis.

4.4 Convergence of unsteady waves and forces
When a numerical method gives a solution, this does not automatically mean that this
solution is correct. Errors in discretization or a discretization with a too low accuracy may
lead to non-convergence if a finer mesh or time step is used. Therefore, we test whether
the numerical solution converges by comparing the unsteady wave elevation computed
with several free-surface grids and with several time steps. A convergence test is made
for the combination of incoming and diffracted waves near the waterline of the ship and
for a transverse wave cut after a forced heave motion. The dependence of the unsteady
forces on the hull grid is also investigated. In all calculations the Froude number is 0.35
again.

First, we investigate the dependence of the unsteady wave profile near the hull on the
free-surface paneling, without changing the hull paneling. For that purpose, we calculated
the wave profile in incoming head waves with a length A = 1.188L, then A = 0.764L and
finally A = 0.325L. In the first two cases use was made of a damping zone on the side
of the ship in the area 0.4L < y < O.75L, which was divided in eight strips. In the last
case, the use of a damping zone was no longer necessary due to the angle of the diffracted
waves. This enabled us to refine the grid further. The area between y = 0 or the waterline
of the ship, and y = 0.4L was divided in 16 free-surface strips. Each strip extended from
x = L to x = L. In the first two cases (A = 1.188L, A = 0.764L), each strip was divided
in 115, then in 59 and finally in 32 panels. In the last case (A = 0.325L), each strip was
divided in 176, then in 115 and finally in 59 panels. On the hull, the paneling shown in
figure 4.2 was used, containing 680 panels. As said before, ship motions are not considered.

Figures 4.18 and 4.19 show the cosine part of the wave pattern, A, and the sine part, A,
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on the strip of collocation points closest to the ship for an incoming wave having length
A = 1.188L. Because the dispersion relation has two real roots if the wave angle is zero,
the diffracted wave has two downstream wave components. One component has length
A = 1.188L, like the incoming wave, and one has length A = 0.236L. Because r >> 0.25,
waves do not propagate upstream. The coarsest discretization corresponds to an average
of 19 panels per incoming-wave length, the discretization with 59 panels to an average
of 35 panels per incoming-wave length, and the finest discretization to an average of 68
panels per incoming-wave length. Of course the grid is not uniform, and near the bow
and the stern of the ship the panel size is three times as small as that on the upstream
and downstream side of the computational domain. Also, we must realize that we need
at least 10 to 15 panels per steady wavelength (2irFri2) to represent the steady wave,
and preferably much more. The coarsest discretization has about 12 panels per steady
wavelength, so this requirement is only just fulfilled.
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We see that the unsteady wave pattern near the ship converges very well if more panels
are used. Small differences between the three predictions can be seen near the peak values
at x = 0.2L and x = 0.2L, which is not surprising, and at the downstream edge of the
computational domain. These last differences occur because the panel size in that area is
larger than the average panel size, and because the truncation of the free surface has some
influence on the wave pattern, especially for long waves. It seems that the short-wave
component is very small because if it had not been, larger differences would have been
found in the final refinement step.. The incoming wave is undisturbed until it reaches the
point x 0.55L, which means that the diffracted wave does not propagate upstream,
as it would not in reality.
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Figure 4.19: Sine part of the incoming and
diffracted wave on the strip of collocation
points closest to the ship if 115, 59 and 32
panels are used, A = 1.188L. Legend as in
in figure 4.18.
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Figure 4.18: Cosine part of the incoming
and diffracted wave on the strip of collo-
cation points closest to the ship if 115, 59
and 32 panels are used, A = 1.188L.
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Figures 4.20 and 4.21 show the same as figures 4.18 and 4.19, but for a shorter wavelength
A = 0.764L. Now, the diffracted wave also contains a component with length A = 0.192L.
Again, a very good agreement is found between the wave pattern on the coarse and the
fine grids. This is remarkable because the coarsest grid corresponds to an average of only
12 panels per incoming-wave length. The other two grids correspond to 23 and 44 panels
per incoming-wave length. Our numerical scheme is apparently very accurate and only a
small number of panels per unsteady-wave length have to be taken into account, as long
as the steady wave is represented accurately as well. Notice that the further downstream,
the larger the differences between the two waves become because the errors mount. Due to
damping and dispersion, the error becomes larger when the distance over which the wave
propagates becomes larger. Again, the short-wave component seems to be very small.
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Figure 4.20: Cosine part of the incoming
and diffracted wave on the strip of colloca-
tion points closest to the ship if 115, 59 and
32 panels are used, A = 0.764L. Legend as
in in figure 4.18.
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We also calculated the incoming and diffracted wave for an incoming wave having length
A = 0.325L. Because this is a short wave, we used more panels in the convergence study.
To accomplish this, we had to remove the damping zone and use these extra panels
to refine the grid further. The damping zone is redundant at this wavelength because
the wave angle of the diffracted waves will be small, so any possible reflections will end
up far behind the ship. Figures 4.22 and 4.23 show the resulting wave pattern when
24 strips of 59, 115 and 176 panels are used. The coarsest paneling, corresponding to
10 panels per incoming-wave length, results in large differences between the predicted
waves in comparison with the other two cases, which correspond to 19 and 29 panels per
wavelength. The differences between the last two cases are much smaller. Although the
number of panels per wavelength is about the same, the differences between the three
predicted waves at wavelength A = 0.325L seem to be much larger than the differences
between the three predicted waves at the two longer wavelengths. This can be explained by
the fact that the error in the wave depends upon the distance, relative to the wavelength,
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Figure 4.21: Sine part of the incoming and
diffracted wave on the strip of collocation
points closest to the ship if 115, 59 and 32
panels are used, A = 0.764L. Legend as in
in figure 4.18.
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Figure 4.24: Cosine part of the wave eleva-
tion in heave at a transverse cut, x = 0.5L,
if 32, 24 and 16 strips of 70 panels are used,
T = 2.01.

that the wave has traveled. When a wave has traveled one wavelength, the errors in the
wave will be the same, regardless its length, if the same number of panels per wavelength
is used. Because relatively, a short wave travels a longer distance than a long wave, it will
contain a larger error if it travels the same absolute distance.
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Figure 4.25: Sine part of the wave elevation
in heave at a transverse cut, x = 0.5L, if
32, 24 and 16 strips of 70 panels are used,
r = 2.01. Legend as in in figure 4.24.

To investigate the influence of the transverse panel size, we force the ship to heave at a
particular frequency with amplitude 1X31, and look at a transverse wave cut at z 0.5L,
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Figure 4.23: Sine part of the incoming and
diffracted wave on the strip of collocation
points closest to the ship if 176, 115 and 59
panels are used, ) = 0.325L. Legend as in
in figure 4.22.
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Figure 4.22: Cosine part of the incoming
and diffracted wave on the strip of colloca-
tion points closest to the ship if 176, 115
and 59 panels are used, \ 0.325L.
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so at the stern of the ship. Figures 4.24 and 4.25 show this transverse wave cut for 8 strips
of 70 panels inside the damping zone (y > 0.4L), and for 32, then for 24 and finally for
16 strips of 70 panels outside the damping zone. This means that in the damping zone,
the transverse panel size is not refined. The frequency of the heave motion was such that
T = 2.01. At a Froude number of 0.35, this corresponds to radiated downstream waves
that have a length of A = 0.764L and A = 0.192L. In the area near the ship, which is
the most important one because we need the wave elevation at the waterline to calculate
the drift forces, the wave pattern converges very well. Further away from the ship larger
differences between the predicted waves can be seen, especially near the peaks in the wave
elevation. The reason for this is that the transverse panel size is not uniformly distributed.
Near the ship, the transverse panel size is three times as small as near the damping zone,
so less differences occur near the ship when we refine the grid.

Another important parameter in the discretization is the time step t. Therefore, we
calculated the wave pattern again on the strip of collocation points that lies closest to
the ship, with 12, 24 and 48 time steps per period. The length of the incoming wave was
A = 0.5L. 116 panels were used in longitudinal direction and 24 in transverse direction.
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Figure 4.26: Wave pattern at t = on
the strip of collocation points closest to the
ship. A = 0.5L, 116 x 24 panels.
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Figure 4.27: Wave pattern at t = on
the strip of collocation points closest to the
ship. A = 0.5L, 116 x 24 panels. Legend as
in figure 4.26

Figure 4.26 shows the wave pattern at t = and figure 4.27 the wave pattern at t =
Some small differences can be seen between the largest time step and the two other time
steps. Between the two smallest time steps, only behind the ship some differences can
be seen. These differences are all due to the effect of the time step on the damping and
dispersion. This explains why the further downstream, the larger the differences in the
wave pattern are. We also repeated the calculation with 96 time steps, but then there
were no visible differences anymore. This shows that it is sufficient to use about 50 time
steps per period in the calculations, something which was also observed by Prins [28],
who used the same time discretization.

0.6 1
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Now that we know the dependence of the wave pattern on the free-surface panel density
and the time step, we turn our attention to the influence of hull-panel refinement. We
look what happens to the predicted wave elevation and the predicted first-order forces
on the ship, sailing in incoming waves, when we use three different hull panelings. First,
we use the familiar hull paneling with 40 strips of 17 panels, shown in figure 4.2. We
subsequently refine this paneling in the longitudinal direction along the waterline, which
results in 80 strips of 17 panels. Finally, we refine the hull paneling in vertical direction,
which results in 40 strips of 34 panels. In all the calculations we used the same free-surface
grid, consisting of 24 strips of 88 panels in the area L <z < L, 0 < y <0.75L.
We would like to show the unsteady wave elevation, but found that there were no visible
differences between the three cases. It turns out that whereas the size of the free-surface
panels greatly affects the wave elevation, the influence of the panel size on the hull is small.
This is because refinement of the free-surface paneling reduces damping and dispersion,
whereas refinement of the: hull paneling merely gives a more accurate prediction of the
forces on the ship, without influencing the way the waves propagate aro.ind the ship.
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Figure 4.28: Cosine part of the heave force
in bow-quartering waves if 40 x 17, 40 x 34
and 80 x 17 hull panels are used.

3.

3

Therefore, we investigate the dependence of the forces on the hull paneling. Figures 4.28
and 4.29 show the vertical force on the ship in bow-quartering waves (wave angle 45
degrees). On the horizontal axis the value of r is shown. r = 1.5 corresponds to a wave
with length A = 0.93L, r = 4 to a wave with length A = 0.24L. Just as for the wave
elevation, we can write for the vertical force

F Acoswt+A5sinwt

where w is again the encounter frequency of the incoming wave. Both the cosine part and
the sine part of the force show considerable differences at all wavelengths when the hull

1.5 2 2.5 3 3.5 4

7-

Figure 4.29: Sine part of the heave force in
bow-quartering waves if 40 x 17, 40 x 34 and
80 x 17 hull panels are used. Legend as in
in figure 4.28.
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paneling is refined. In short waves (high values of r), the influence of the longitudinal
refinement is considerable, whereas in long waves both refinements seem to have some
influence. Therefore, it seems necessary to use a very accurate grid on the hull of the
ship. A small error in the predicted unsteady forces leads to a similar error in the pre-
dicted motions of the ship and a possibly even larger error in the predicted drift forces
and moments. Therefore, in the next chapter, we will use a more accurate grid in our
calculations for the LNG carrier.

4.5 Influence of the transfer term
When we investigated the convergence of the transfer term (2.6) in section 4.2, we found
that reducing the grid size resulted in substantial differences in the transfer term near
the waterline of the ship. Therefore, we have to investigate whether this transfer term
influences our prediction of the unsteady wave pattern and the drift forces and moments.
If the influence is large, then errors in the transfer term will lead to errors in the predicted
unsteady waves, so we would have to eliminate the transfer term from our equations, which
would leave us with an inconsistent linearization. If the influence is small, then the local
errors in the transfer term will hardly influence the wave pattern. In that case, it would
be better to include the transfer term in our model because for large parts of the free
surface an accurate prediction of the transfer term can still be obtained.
It is especially important to have an accurate prediction of the wave height at the bow
and the stern of the ship, because these have a large influence on the predicted added
resistance in waves. After all, to calculate the second-order forces and moments, we have
to integrate the square of the wave elevation over the steady waterline. This contribution
to the drift forces turns out to be the most important one, and a 10-percent error in the
wave height canr in theory, lead to a 21-percent error in the quadratic term.

Figures 4.30 and 4.31 show the cosine and the sine part of the wave pattern for an in-
coming head wave having length A = 1.188L. All calculations were done on on a grid
with 24 strips of 117 panels. We see that, in this case, the influence of the transfer term
on the wave pattern is significant. In figure 4.30, the largest difference between the two
predicted waves, about 15 percent, is found near the point x = 0.2L. In the second
figure, a 13-percent difference can be seen near x = 0.35L. These are local errors; the
differences are much smaller in the other regions, but still large enough to influence the
predicted added resistance considerably. As said, an error in the first-order wave elevation
leads. to an even larger error in the predicted added resistance. Therefore, it is necessary
to include the correct transfer term in our calculations. Unfortunately, for this ship and
this Froude number, on certain areas on the free surface the transfer term cannot be
calculated accurately from the RAPID velocities. Therefore, the predicted wave pattern
is not reliable in the places where the transfer term is not reliable.

Figures 4.32 and 4.33 show the same as figures 4.30 and 4.31, but for a smaller wavelength,
A = 0.764L. Near the bow, a difference of 15 percent occurs again, whereas in other parts
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Figure 4.30: Cosine part of the incoming
and diffracted wave on the strip of collo-
cation points closest to the ship with and
without the transfer term, A = 1.188L.
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Finally, figures 4.34 and 4.35 show the wave pattern for an incoming wave having length
A = 0.325L. It seems that, independent of the length of the wave, neglecting the transfer
term leads to a 15-percent difference in the wave elevation at the bow and the stern.
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along the waterline the differences are very small, so the same conclusion may be drawn
as in the previous case.
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Figure 4.31: Sine part of the incoming and
diffracted wave on the strip of collocation
points closest to the ship with and without
the transfer term, A = 1.188L. Legend as
in in figure 4.30
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Figure 4.32: Cosine part of the incoming
and diffracted wave on the strip of collo-
cation points closest to the ship, with and
without the transfer term, A = 0.764L. Leg-
end as in in figure 4.30.
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Figure 4.33: Sine part of the incoming and
diffracted wave on the strip of collocation
points closest to the ship, with and without
the transfer term, A = 0.764L. Legend as
in in figure 4.30.



84 CHAPTER 4. TEST CASE
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Figure 4.34: Cosine part of the incoming
and diffracted wave on the strip of collo-
cation points closest to the ship with and
without the transfer term, A = 0.325L. Leg-
end as in in figure 4.30.

We have seen that the wave elevation is significantly influenced if we leave out the transfer
term, so it is expected that the waterline integral in equation (1.26) will also be largely
influenced if we leave out the transfer term. To investigate the influence oL the transfer
term on the predicted drift forces and moments, we calculated the added resistance and
the pitch drift moment in head waves with and without the transfer term. Again, ship
motions are not considered. Therefore, only two drift-force terms remain, namely

/ lap3I: ff ') . q'dS, II: f (\pg + r) 1)2d1
wi

Similarly, only two drift-moment terms remain. To calculate the waterline integral, the
wave elevation on this waterline is required. Because the wave elevation is only known in
the collocation points on the steady free surface, we extrapolate from these collocation
points to the waterline to obtain the required wave elevation.
Figure 4.36 shows the added resistance in head waves with a length ranging from A = 0.3L
to A = 1.2L. Because we do not consider ship motions, the added resistance has no
resonance peak. Independent of the wavelength, there is a difference between the two
predictions of about iF 0.25, which is 15 percent of the smallest value and 7 percent of
the largest value shown in this figure. Although this is smaller than might be expected, it
is still a significant difference. Figure 4.37 shows the pitch drift moment with and without
the transfer term, and similar differences between the two can be seen. The heave drift
force is not shown because the waterline integral is zero then (the third component of the
normal vector is zero on the waterline in case of vertical side walls of the ship). We may
therefore conclude that it is absolutely necessary to include an accurate prediction of the
transfer term in our model. When the transfer term cannot be calculated accurately, it
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Figure 4.35: Sine part of the incoming and
diffracted wave on the strip of collocation
points closest to the ship with and without
the transfer term, A = 0.325L. Legend as
in in figure 4.30.
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Figure 4.36: Added resistance in head
waves, with and without the transfer term.
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cannot be left out as this is inconsistent, so the predicted drift forces and moments are
simpiy not reliable.

4.6 Summary and conclusions
We tested our model with a fictitious ship sailing at a Froude number of 0.35. This ship
and its speed were chosen such that our model could be tested under severe conditions.
Because of the bulbous shape of the ship, it generates high steady waves that disturb
the incoming waves significantly. The interaction between the steady and unsteady waves
is described by the linearized free-surface condition. In this free-surface condition, an
accurate prediction is required of the steady wave, of first derivatives of the steady veloc-
ities, and of the transfer term, which contains a second derivative of the steady velocities.
Therefore, we carried out a convergence study in which we investigated the dependence of
these steady quantities on the number of panels per steady wavelength. It turns out that
for this ship, the steady wave pattern and the first derivatives converge very well. The
transfer term, however, varies considerably, especially close to the ship, when the number
of panels per wavelength is increased. The effect of the transfer term on the predicted
unsteady waves and the predicted added resistance was found to be considerable, so a
consistent linearization should include an accurate approximation of the transfer term.

There are two methods to simulate incoming waves in the time domain: a wave-maker
method, in which waves are generated on the upstream side of the ship, and a separation
method, in which only the diffracted wave is calculated. We implemented both methods
and they gave similar results, except for short waves. In that case, the damping and
dispersion is large for both methods because too few panels per unsteady wavelength are
taken into account. Because of the limited computer memory on our workstations, this
could not have been avoided. For short waves, we have to switch to a larger and faster
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Figure 4.37: Pitch drift moment in head
waves, with and without the transfer term.
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computer, for example the CRAY T3E at the Deift University of Technology. Because
in the separation method, only the diffracted wave suffers from damping and dispersion,
and because the separation method takes less simulation time and requires less panels,
we use it in the remaining calculations in this thesis.

Also, we investigated the convergence of the unsteady waves. A very good agreement
was found between the predicted waves when the number of panels per wavelength was
increased. The largest differences between the waves occurred when short waves were
simulated. The wave pattern also converged very well when we reduced the transverse
panel size and the time step. The good convergence suggests that the difference schemes
that we use for the space and time derivatives are accurate enough for our purposes.



Chapter 5

Results for an LNG carrier

In this chapter we apply our model to an LNG carrier sailing in water with a depth of
175 metres, at Froude numbers 0.14, 0.17 and 0.2. At the highest Froude number the
convergence of the steady velocities and their derivatives is checked. The results for the
motions and the drift forces in several wave conditions are compared with measurements
carried out at the MARIN. To stress the necessity of our model, we show what happens
when the double-body flow or the uniform flow is used instead of the non-linear steady
flow.

5.1 Introduction
Natural gas is a bulky form of energy and must be concentrated before it can be trans-
ported economically. Over the years, for obvious economic reasons, the use of natural gas
has increased most rapidly in zones close to production sites, such as the United States,
Russia and Western Europe. This explains why, even today, only 19% of the world gas
production is exported. Most exports are transported by pipeline, but gas can also be
liquefied and shipped by sea in special carriers. Today, liquefied natural gas (LNG) ac-
counts for 26% of all gas exports, and the stage is set for a large and continuing increase
in the use of gas and international gas trade.
The fuel consumption of the LNG carrier accounts for a large part of the costs in this kind
of transport. The fuel feeds the engines of the ship to balance the resistance at the desired
service speed. In calm water, this resistance consists of a viscous resistance, air drag, and
a wave resistance that is related to the excitation of the steady wave pattern. When
incoming waves are encountered, the resistance increases considerably. This increase de-
pends on the shape of the hull, the speed of the ship and the frequency, the amplitude and
the angle of the incoming waves. Because the LNG carrier is built 'for intercontinental
gas transport, all kinds of sea states may be encountered, so it is important to know the
extra, or added, resistance at awidê range of lengths of the incoming wave and angles of
incidence.

Therefore, we apply our model to a 125,000 m3 LNG carrier sailing at Froude numbers
Fm = 0.14, Fri = 0.17 and Fn = 0.2 in water with a depth h = 175 metres. The main
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particulars of the LNG carrier are listed in table 5.1. We compare our predictions for the
motions of the ship and the added resistance at these Froude numbers with measurements
from the MARIN. Calculations will be done for wave angles 0 = 0 (head waves), 0 =
(bow-quartering waves) and 0 = (beam waves). We also vary the length of the incoming
waves. Before we can start the simulation, we have to check whether the steady velocities
and their derivatives converge by investigating their dependence on the grid size used to
calculate the steady flow.

Table 5.1 : Main particulars of the LNG carrier.

5.2 Convergence of steady velocities and their deriva-
tives

Just as we did in chapter 4 for the test ship, we investigate the convergence of the steady
free-surface velocities and their derivatives by refining the longitudinal grid size. All the
calculations are carried out for Froude number 0.2, because convergence at this highest
Froude number most likely implies that the velocities and their derivatives also converge
at the lower Froude numbers. The steady flow was first calculated on a grid that has 60
panels per steady wavelength in longitudinal direction, and then on a grid that has 120
panels per steady wavelength. To make a comparison possible, the grid size in transverse
direction is the same.
Figure 5.1 shows the hull paneling that is used in the calculations. The total carrier was
divided into 2380 panels, but because we make use of symmetry relations, we only used
the starboard side of the ship in the calculations, leaving 1190 panels. There were 70
panels along the waterline of the ship and 17 at each frame. The panels near the bow
and stern are taken smallest in order to make them represent the corresponding waves
correctly. In the midship region a somewhat larger segment suffices because the hull has
less curvature.

Denomination Symbol Unit Value
Length
Breadth
Draught

L
B
T

m
m
rn

273
42

11.5
Displacement L m3 98740
Block coefficient C8 {-] 0.749
Longitudinal centre of gravity from aft perpendicular AG m 138.66
Centre of gravity above base KG m 13.7
Longitudinal gyradius
Transverse gyradius

Ic, % L
% B

24
35

Natural heave period T s 9.4
Natural pitch period T8 s 9.4
Natural roll period T, s 16
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Figure 5.1: Hull paneling of LNG carrier for Froude number 0.2.
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Figure 5.2: Steady wave pattern, scaled with the length of the ship, Fn = 0.2.

Figure 5.2 shows the steady wave pattern of the LNG carrier when it sails at Froude
number Fri = 0.2. To calculate it, RAPID used 60 panels per wavelength, and 14 panels
in transverse direction. Light areas correspond to wave crests, dark areas to wave troughs.
The principal wave length ) = 2irFri2 can clearly be traced, as well as the Kelvin wave
angle. By carrying out a pressure integration, one can find an estimation of the wave
resistance, which turns out to be R = 357.33kN. The vertical force and the trimming
moment can be used to estimate the sinkage and the trim angle. Besides the influence
that trim and sinkage have on the wave resistance and the steady wave pattern, they
also affect the zero-speed point of gravity, which is listed in table 5.1. The estimated
trim angle of 0.05 degrees and sinkage of 0.37 metres were therefore used to calculate the
correct point of gravity at Fn = 0.2.
The calculation with 120 panels per wavelength gave almost the same values for the resis-
tance, trim angle and sinkage as the calculation with 60 panels per wavelength, which is
a first indication of good convergence. To make sure the differences between the two pre-
dictions are indeed small, we compare their wave pattern, their derivatives of the squared
velocity and their transfer term.
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Figure 5.3: Steady wave pattern on the strip Figure 5.4: Steady wave pattern on the strip
of collocation points closest to the ship. of collocation points at 0.224.

Figure 5.3 shows the wave pattern on the strip of collocation points closest to the ship,
which lies at a distance of approximately Ly 0.O11L from the ship or the x-axis. As
can be seen there is hardly any difference between the two wave patterns. Only the wave
crest at x = iL, the wave trough at x = 0.6L and the wave slope starting at x = 0.25L
differ a bit.
Figure 5.4 shows the wave pattern on the eighth strip of collocation points, which lies at
a distance of about y 0.224L from the ship or the x-axis. More differences between
the two predictions are found here, especially near the peaks but, again, these differences
are not large. It turns out that they are mainly caused by differences between the ver-
tical velocities. We may conclude that the wave pattern (and therefore also the steady
velocities) converges well when the grid size is reduced.
The free-surface velocities and the velocities on two adjacent planes at distances fz and
2Lz from the free surface are used to determine the vertical derivative in the function S
(2.7). To investigate whether this derivative converges, we calculate this expression for
two values of LXz, namely zz = 0.00051L and iz = 0.00102L. In chapter 2 we showed
that the vertical derivative can be calculated accurately if (kz)2 << 1. The mentioned
vertical distances easily fulfill this condition. Figure 5.5 shows the value of S on the
strip of collocation points that lies closest to the ship. As can be seen there is no visible
difference between the two predictions. The relative difference between the two curves is
even less than one percent.
The transfer term also contains a vertical derivative. Therefore, we also calculated the
transfer term with the same two values of Liz. Figure 5.6 shows the result for the eighth
strip of collocation points. Unlike the two predictions for the function S, the two predicted
transfer terms differ a little, because the vertical derivative is taken from the derivatives of
velocities, which introduces some extra inaccuracies. Fortunately, the differences are very
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Figure 5.5: The function S on the strip of
collocation points closest to the ship for two
values of z, and 60 panels per wavelength.
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Figure 5.7: Tangential derivative in the
x-direction of the squared velocity for 60
and 120 panels per wavelength on the strip
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small again, so we may conclude that the vertical derivatives converge when the vertical
distance is decreased, and that the vertical distances we used are small enough.

Now that we know that the vertical derivatives give no problems, we can look what
happens to the velocity derivatives if we increase the number of panels in longitudinal
direction from 60 per wavelength to 120 per wavelength. Most likely this will influence
the tangential derivatives of the squared velocity, the transfer term and the function S.
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Figure 5.8: Tangential derivative in the
y-direction of the squared velocity for 60
and 120 panels per wavelength on the strip
of collocation points closest to the ship.
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Figure 5.6: The transfer term on the strip
of collocation points at 0.224 for two
values of z, and 60 panels per wavelength.
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Figure 5.7 shows the tangential derivative of the squared velocity, in the zdirection, on
the strip of collocation points that lies closest to the ship. When the number of panels per
wavelength is doubled from 60 to 120, no differences between the two predictions can be
seen, except at the stern. The y-derivative in figure 5.8 behaves similarly. Therefore, we
may conclude that there are no problems with the convergence of the tangential deriva-
tives of the squared velocity and that they may be included in the unsteady free-surface
condition.
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What remains tc be done is to check the convergence of the transfer term and the function
S. Therefore, these were also calculated with 60 and 120 panels per wavelength, while
Lz was kept constant. Figure 5.9 shows the function S near the ship. Near the bow, a
large peak can be seen when 120 panels per wavelength are used, which indicates strong
divergence in a single point. At the stern some differences between the two predictions
occur as well, but these are smaller, and the order of the approximation seems correct. If
we use the fine grid, then some smoothing algorithm has to be applied to eliminate the
peaks at the bow.
Figure 5.10 shows the transfer term at the bow. Just like in figure 5.9 some peaks can be
seen in several separate points, which indicates local divergence. The overall picture looks
quite good, however, showing only minor differences between the two predictions. Figure
5.11 shows the transfer term between the bow and the stern. Just behind the bow and
in front of the stern there are some rather large differences between the two predictions,
but at least the curves are smooth, without any strange peaks like near the bow. Finally,
figure 5.12 shows the transfer term at the stern. The same holds as for the transfer term
at the bow, although the divergence is less bad.

In most collocation points, the transfer term converges, and can be calculated. In collo-
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Figure 5.9: The function S on the strip
of collocation points closest to the ship for
60 and 120 panels per wavelength, iz =
0.00102L.
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Figure 5.10: Transfer term on the strip of
collocation points closest to the ship and
near the bow for 60 and 120 panels per
wavelength, Iz = 0.00102L.
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Figure 5.11: Transfer term on the strip of
collocation points closest to the ship be-
tween bow and stern for 60 and 120 panels
per wavelength, Az = 0.00102L.

Figure 5.12: Transfer term on the strip of
collocation points closest- to the ship and
near the stern for 60 and 120 panels per
wavelength, Lz = 0.00102L.

cation points where it diverges, like near the bow, it must be extrapolated with values of
the transfer term close by that do convergence. When a reasonable accurate value has
been obtained, the steady wave, the steady velocities and the derivatives can be used to
predict the motions and the resistance of the LNG carrier in waves.

5.3 Added mass, damping and ship motions
The added resistance can only be calculated if the motion of the ship is known. To de-
termine the motion of the ship, we must solve the equation of motion (1.22). Therefore,
the first thing to do is to determine all the coefficients in the equation of motion. The
mass of the ship and the moments of inertia are known and listed in table 5.1, except
the value of /c, which can be estimated if we assume that the mass of the ship is uni-
formly distributed over its hull. The restoring-force coefficients are estimated from the
steady flow around the ship, and formulas with which they can be determined are listed
in appendix A. The added mass and damping are obtained with a time-domain simulation.

The added mass and damping depend on the frequency of the motion. Therefore, a
simulation must be run for each required frequency and for each of the six motions. At
the start of the simulation, no unsteady waves exist, and to obtain a smooth continuation
of this; we have to make sure that the forced motion of the ship starts smoothly. Because
the highest time derivative in the free surface condition is a second derivative, we demand
that the potential, its first and its second derivative are zero at the start of the simulation.
This can be achieved by forcing the motions of the ship to be

Xj=A(1_e_ct)lsinwt i=1,2,3

935.3. ADDED MASS, DAMPING AND SHIP MOTIONS
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c is chosen such that after one period, T = , the amplitude of the motion is 99 percent
of its maximal value, A. Of course a similar formula holds for the rotational motion. At
the start of the simulation, waves at a wide and continuous range of frequencies are gener-
ated. After several periods of forced oscillation, the motion is harmonic with frequency w,
and after some more periods, all non-harmonic waves have been absorbed by the damping
zone, and the forces and moments on the ship are harmonic as well. The time this takes
depends on the length of the generated waves; in all the cases we study, four periods of
oscillation suffice. During the fifth period, the forces and moments are calculated, and
after the simulation they are fitted to the motion of the ship. The part of the force that
is in phase with the motion gives the added mass, and the part of the force that is out of
phase gives the damping, see section 1.6. Because the LNG carrier is symmetric about its
center plane, there is no coupling between the even motions surge, heave and pitch, and
the odd motions sway, roll and yaw, so and b2, are zero if i plus j is odd. In all sim-
ulations, 50 time steps per period were taken, which means that Lt = . We simulate
head waves, bow-quartering waves and beam waves with a length ranging from .A = 0.37L
to ) = 1.4L. This means that at Froude number 0.14, the lowest encounter frequency is

= 0.40s' (long beam wave), and the highest encounter frequency is w = 1.23s1 (short
head wave). This corresponds with values of r ranging from 0.30 to 0.91. Similarly, at
Froude number 0.17, r ranges from 0.36 to 1.19, and at Froude number 0.2 it ranges from
0.42 to 1.50. It is well known that when the Kelvin condition (1.13) is used, problems
occur near T = 0.25, because then, the dispersion relation has two equal roots and the
solution may become unbounded. Of course our free surface condition is different from
the Kelvin condition because we use the non-linear steady flow instead of the uniform
flow. Still, on parts of the free surface where the non-linear flow is uniform or nearly
uniform (outside the bow wave, see figure 5.2), a singularity may appear in a radiated or
diffracted wave when T approaches 0.25, resulting in an unreliable prediction. Therefore,
we have to be careful when we interpret our results at the low frequencies, especially when
the Froude number is low as well.

Figures 5.13 and 5.14 show several added-mass and damping coefficients. Unfortunately,
we have no measurements to compare with, so it is not possible to say whether they
are the right values. That will become clear when we use these values to compute the
motions. Probably, the oscillations for the low frequencies are due to reflections because
the long waves have not been absorbed properly.

When all the coefficients in the equation of motion have been determined, we can simulate
the behaviour of the LNG carrier in incoming waves. To simulate the incoming waves, we
use the separation method that we described in chapter 4. The incoming-wave potential
we use is given by equation (2.13). If the steady flow is uniform, the corresponding,
undisturbed, incoming-wave elevation is

Cinc (a cos (wt - kx cos 9 - ky sin 0)

We compare the motions of the ship with the incoming-wave elevation in the centre of
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gravity of the ship, so we write

X, = lxii cos (wt - kx9 cos9 ± 8j), f2, = cos (wt - kx9 cos U + 'y) i = 1,2,3

62 and Yi are the differences in phase between the incoming wave in the centre of gravity,
and the motion of the ship.

We simulate head waves, bow-quartering waves and beam waves with a length ranging
from A = 0.37L to A = 1.4L. At each Froude number, the same free-surface grid and hull
grid are used for all the wavelengths. As can be seen in the figures in section 2 of this
chapter, a large number of panels is needed to accurately represent the steady wave and
the velocity derivatives, especially the transfer term. If the Froude number is 0.14, the
principal wavelength is A = 2irFn2L O.12L. If the Froude number is 0.2, the principal
wavelength is about 0.25L. Of course, also some shorter waves exist, as can clearly be
seen in figure 5.3, for example. This means that the steady wave is shorter than the
unsteady waves that we try to predict. A free-surface grid that represents the steady
wave accurately should also be able to represent these longer unsteady waves. However,
to avoid reflections, the computational free surface should have a certain size. This size
depends on the length of the unsteady waves. The longer the waves, the larger the size of
the free surface and the damping zone should be. Because the grid size has to be small to
represent the steady wave, it is not possible to use a very large free surface and very wide
damping zone. Had the available computer memory not limited the number of panels to
about 3500, the total number of panels could have been increased considerably. Therefore,
we truncate the free surface at x = L, x = -L, and y = 0.75L and use this free-surface
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Figure 5.14: Added mass and damping a22, a66, a26, b22, b66 and b26.

size in all the computations, although actually we need a larger grid to represent the long
waves.

To solve the radiation problem, we smoothed the forced motions of the ship at the start
of the simulation; the same smoothing method is applied to the incoming waves as well.
After several periods of oscillation, the forces and moments on the ship are harmonic,
and from the amplitude and the phase of the forces and moments, we can determine the
amplitude and the phase of the harmonic motion of the ship.

Due to the symmetry of the ship, only three motions are possible in head waves: surge,
heave and pitch. Figure 5.15 shows our predicted amplitudes and phase differences, and
the measured values of these amplitudes and phase differences obtained at the MARIN.
The amplitude of the surge motion is predicted reasonably well. For short waves the
prediction is very good. When the wavelength increases, there is a point where the
amplitude is almost zero. In that point, a jump in the phase of the surge motion occurs
which is very hard to predict. For long waves, the surge amplitude is largest and some
small differences between our predictions and the measurements can be seen.
The amplitude of the heave motion in short waves is predicted very accurately. Again,
in long waves, small deviations occur. The phase difference is also predicted accurately.
There is no phase difference between the wave and the heave motion in long waves, which
means that the ship follows the motions of the waves. Of course in short waves this is no
longer the case.
The prediction of the amplitude of the pitch motion in short waves is very good. Again,
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there are some deviations in long waves. In long waves, the pitch motion is 90 degrees
out of phase with the incoming wave, so it is in phase with the wave slope.

The small deviations of the motions in long waves have several causes. First, like we
indicated before, the computational free surface is too small to represent long waves ac-
curately. Second, we get very close to the value T = 0.25, especially for the lowest Froude
number Fn = 0.14. Third, for low frequencies, the restoring-force coefficients have a large
influence on the motions of the ship. To determine these coefficients, we have to differ-
entiate the steady velocity on the hull of the ship. Especially at the bow and the stern
of the ship, this can be difficult due to the high curvature of the hull and the presence
of stagnation points. Therefore, the restoring-force coefficients may be inaccurate. The
derivatives of the steady velocities are also required to determine the added mass and
damping, so these may also be inaccurate for the low frequencies.

In bow-quartering waves, the lateral forces and moments are also non-zero, so besides the
even motions surge, heave and pitch, also the odd motions sway, roll and yaw have to be
determined. Figure 5.16 shows ourpredictions for the even motions and experimental data
obtained at the MARIN. The results are quite similar to those in head waves, but of course
they differ because the longitudinal wave number, k cos 9, is different (and therefore the
waves also have another encounter frequency), and because the transverse wave number,
k sin 9, is different. The encounter frequency of a bow-quartering wave is lower than that of
a head wave with the same length. Therefore the diffracted and radiated waves are longer
when the ship sails in bow-quartering waves than when it sails in head waves of the same
length. This explains why the deviations between the predicted and measured motions in
bow-quartering waves occur already at a smaller wavelength than the deviations in head
waves. The reasons for the deviations in long waves have already been discussed.
Figure 5.17 shows the odd motions in bow-quartering waves. The sway motion and the
yaw motion in waves with small and medium length are predicted very accurately. In long
waves however, our predicted amplitudes just follow a straight line, whereas the measured
amplitudes show some fluctuation. This has several reasons. First, in our model, the LNG
carrier has no rudder, whereas the prototype used in the measurements has. In long waves,
this has a significant influence on the lateral forces and moments on the ship. Second,
there is a coupling with the roll motion, especially for sway. As can be seen in figure 5.17,
our prediction for the roll motion is very bad, and due to its coupling with sway, it will
influence this motion as well. Third, we have the familiar problem of long waves on a too
small computational free surface.
Our prediction of the roll motion is very bad because we have no viscosity in our model.
It is well known that, to obtain a reasonable accurate prediction of the roll motion with
potential flow, one must add viscous roll damping to the ordinary damping that follows
from pressure integration. Empirical formulas exist for this roll damping, but it is not
obvious that these can be applied to a bulbous tanker sailing at moderate speed. There-
fore, viscous damping is not included in our model, and our model is not able to predict
the roll motion accurately. This has no serious consequences, since the effect of the roll
motion on the added resistance in oblique waves is not very large, unless the amplitude
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of the roll motion is very large.

Finally, figure 5.18 shows the sway and heave motion in beam waves. The roll motion is
not shown because our model cannot predict it accurately. The other motions are very
small in beam waves, hardly influence the added resistance, and are therefore not shown
either. The predictions for the sway and the heave motion are reasonably accurate. The
deviations from the measurements in beam waves are larger than in head waves and bow-
quartering waves. This is due to the fact that the encounter frequency is very low for
all wavelengths. The results hardly depend on the Froude number because the encounter
frequency of a beam wave is independent of the forward speed of the ship.

We can conclude that our model is able to predict the motions of the LNG carrier very
accurately at moderate and high encounter frequencies. Only the roll motion cannot
be predicted accurately because there is no viscosity in our model. For low encounter
frequencies, so in long head waves, in long bow-quartering waves and in beam waves,
differences between our predictions and the measurements can be observed. This is mainly
due to a computational free surface that is too small to fit and absorb the long waves.
Also, the absence of the rudder of the ship in our model and the coupling of sway with
the roll motion have some influence on the predictions. With these predicted motions we
will try to obtain a prediction of the added resistance.

5.4 Added resistance
The added resistance of the LNG carrier can be obtained from a final simulation in which
we include both the incoming wave and the motions of the ship. Again, we have to wait
several periods before the wave elevation and the ship's motions are harmonic. During the
final period, the second-order forces and moments are determined and afterwards, they
are averaged to obtain the added resistance of the ship, amongst others.
Before we compare our predicted added resistance with the measured values, we have to
stress the fact that it is rather difficult to obtain these measured values. At the MARIN,
the forces on the ship are measured by mooring a prototype of the ship with a number
of soft linear springs. From the displacement of the springs, the forces on the ship can
be determined. By averaging the longitudinal force and subtracting the wave resistance,
one can find the added resistance. The difficulty is that the springs may not interact with
the motions of the ship because the drift forces depend upon these motions. Therefore,
the spring constants of the mooring system are chosen such that the natural period of the
mooring system is well below the encounter frequency of the incoming wave, which is of
course also the frequency of the motions of the ship. A disadvantage of this method is
that it is difficult to control the heading of the ship once the vessel responds to the waves
and the current. Therefore, the surge motion is often repressed during the measurements.
A more extensive description of measuring drift forces can be found in Huijsmans [17].
This indicates how difficult it is to measure the drift forces, and that the measured values
may be influenced by the method of measurement. Therefore, we may never assume
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that the measured values are the exact values and must always keep a critical eye on the
method of measurement.
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Figure 5.15:
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motion in head waves.
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5.15.
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Figure 5.17: Sway, roll and ya* in figure
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Figure 5.19 shows our prediction of the added resistance in head waves, and measure-
ments from the MARIN. Especially at the highest Froude number, Fn = 0.2, hardly any
differences can be seen between our prediction and the measurements. Only the maxi-
mal value seems to be slightly underestimated. For the two lower Froude numbers, there
is some deviation in long waves. In that case, our method gives lower values than the
measurements. Remarkably, our method gives a good prediction for short waves as well.
Most linear methods are not capable of doing this and greatly underestimate the added
resistance in short waves. Therefore, our predictions in head waves are very good.
Figure 5.20 shows our prediction of the added resistance in bow-quartering waves. Un-
fortunately, the differences between our prediction and the measurements are larger than
in head waves. For long waves our model underpredicts the added resistance. For short
waves, the added resistance seems to increase again, which is not predicted by our model.
Only for waves with medium length the results are accurate.
There are several reasons for the deviations in long waves. First, there is the familiar
problem of a long wave on a too small free surface. This not only influences the predicted
motions, as we saw in the previous section, but also the predicted wave elevation. Since
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both the motions of the ship and the wave
elevation on the steady waterline are needed
to determine the added resistance, an er-
ror enters the predicted added resistance
twice. Second, the derivative of the first-
order pressure in the direction of the motion
is needed to calculate the added resistance,
as can be seen in equation (1.26). We are
not sure that this derivative can be calcu-
lated accurately. If it is not accurate, then
the inaccuracies in the added resistance are
large if the amplitude of the motion is large,
so for long waves. The prediction for short
waves will not be influenced by errors in the
pressure derivative. Finally, we showed that

the roll motion and the yaw and sway motion in long bow-quartering waves cannot be
determined accurately. This also has some influence on the added resistance. The devi-
ations in short waves probably occur due to the fact that the longitudinal wavelength,
A cos 8 (which is the length of the projection of the wave on the x-axis) is smaller for
a bow-quartering wave than for a head wave with the same length, and it is therefore
harder to represent the bow-quartering wave accurately than the head wave when the
same free-surface grid is used.

Figure 5.21 shows the added resistance in beam waves. The added resistance is for the
larger part determined by the difference in wave height between the bow and the stern,
and this difference is very small in beam waves, so the added resistance is small as well.
Only for short waves, the encounter frequency is such that the diffracted and radiated
waves that propagate along the waterline are short enough to cause a resistance increase.

1.4 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
A/L

in head Figure 5.20: Added resistance in bow-
quartering waves, legend as in figure 5.15.
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Figure 5.19: Added resistance
waves, legend as in figure 5.15.
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Figure 5.21: Added resistance in beam
waves, legend as in figure 5.15.
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Although our model underestimates it, it does predict this increase in added resistance.
In long waves, there is a small increase in the added resistance because the roll motion
is very large, which we did not show. Our model does not predict this large roll motion,
and therefore neither the slight increase in the added resistance.

5.5 Comparison with other linearizations
After having obtained good results with a quite complicated method, you can always
wonder whether similar results can be obtained with simpler methods that already exist.
Therefore, we repeat some of our calculations with other approximations of the steady
flow: the uniform flow and the double-body flow. These were described in chapter 1.
Sierevogel [31] also used the double-body flow to predict the motions and the added re-
sistance of the LNG carrier, and she got very poor results. Because our numerical model
and our mathematical model are very different from hers, it is not sure that in our case
the use of the double-body flow gives poor results as well.

We substitute these steady flows into our free-surface condition (1.12). If the flow is
uniform, this leads to the Kelvin condition on the calm-water plane, z = 0 (1.13). If
we use the double-body flow, this leads to a condition with similar terms as in condition
(1.12), except for the transfer term, which is zero because the normal velocity on the free
surface is zero. Furthermore, this condition is defined on the calm water plane instead of
on the actual steady free surface. Although this linearization about the double-body flow
is not consistent (for a derivation of the actual free-surface condition if the double-body
flow is used see Prins [28]), it will give enough insight to make some statements on the
use of the double-body flow.
Not only the free-surface condition is affected when other base flows are used, also the
body boundary condition and the equation of motion change. When we use uniform
flow, the derivatives of the steady flow along the hull are zero, which simplifies the body
boundary condition to

a a -=ri+U.n
On Ot Ox

The body boundary condition is not affected if the double-body flow is used, so the ve-
locity derivatives on the hull still have to be determined. Because the restoring-force
coefficients are obtained from the steady flow field (see appendix A), they also depend on
the kind of linearization that is used. So, even if the same first-order force is predicted
by all three methods, this can still lead to differing predictions of the motions.

-

Figure 5.22 shows the predictions for the steady wave elevation on the strip of collocation
points that lies closest to the ship, for Foude number 0.2. Of course the predicted wave
elevation is zero if uniform flow is used. When double-body flow is used, no waves are
generated behind the ship, and the amplitudes of the bow wave and the stem wave are
greatly underestimated, compared to the non-linear and far more realistic case. Still, the
approximation is much better than in the uniform-flow case. An incoming wave reacts
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very differently when it propagates over the non-linear steady wave field and when it
propagates over the uniform-flow field. The double-body case will probably be somewhere
in between.
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Figure 5.23: Amplitudes and phase shifts of surge, heave and pitch motion in head waves
and for Fri = 0.2. Legend as in figure 5.22. The asterisks correspond to measurements.
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We compare the ship's motions and the added resistance in head waves when the ship
sails at Froude number 0.2. As shown in the previous section, our results were very good
in that case. Figure 5.23 shows the surge, heave and pitch motion if we use the non-linear
flow, the double-body flow and the uniform flow. In most cases, no large differences be-
tween the three predictions can be seen. The differing predictions of the restoring-force
coefficients only influence the low-frequency motions. Therefore, there are some differ-
ences between the three heave amplitudes, and between the three pitch amplitudes in long
waves. It seems that all three linearizations can predict the motion of the LNG carrier
in short waves quite accurately. However, the prediction that uses the non-linear steady
flow is the best.

Figure 5.24 shows the added resistance computed with the non-linear flow, the double-
body flow and the uniform flow. Although the predicted motions of the ship were not
that much different, we see large differences between the predicted added resistances. The
use of the double-body flow results in a large underestimation of the added resistance,
and the use of the uniform flow in a huge underestimation of the added resistance. These
underestimations cannot be caused by the small differences between the predicted motions.
Therefore, there must be another explanation. Since the differences between the predicted
added resistances do not seem to be caused by the first-order fluid quantities on the hull
of the ship (otherwise there would have been larger differences between the motions), nor
the motions, they must be caused by the predicted wave elevation on the steady waterline
of the ship.
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Figure 5.24: Added resistance in head waves and for Fn = 0.2. Legend as in figure 5.22.
The asterisks correspond to measurements.

To verify this statement, we calculated the amplitude of the diffracted and incoming
wave at the bow (coordinates (z, y) = (-i, 0)) and the amplitude of the diffracted and
incoming wave at the stern (coordinates (x, y) = (, 0)). The wave elevation at the bow
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Figure 5.25 shows the amplitude of the bow wave when we use the non-linear flow, the
double-body flow and the uniform flow. If the non-linear flow is used, then the amplitude
of the bow wave is about 40 to 50 percent higher than the amplitude of the incoming
wave. The double-body flow results in an increase of about 20 to 25 percent and uniform
flow in an increase of about 10 to 15 percent.
Figure 5.26 shows the amplitude of the stern wave if we use the non-linear flow, the
double-body flow and the uniform flow. The use of the double-body flow and the uniform
flow results in approximately the same predicted amplitude. The use of the non-linear
flow results in a much smaller amplitude.
The large differences between the predicted bow waves and stern waves strongly influence
the predicted added resistance. Apparently, our method, which uses the non-linear flow, is
the only method that predicts the bow and stern wave accurately. However, Iwashita {18],
who extended the frequency-domain method developed by Bertram, which also takes into
account the non-linear steady flow, found considerable differences between his predicted
wave pattern for the Series 60 model sailing at Fri = 0.2 in head waves, and measure-
ments of this wave pattern. Although Iwashita uses the same free-surface condition, his
numerical model is very different from.ours, so this does not imply that our results for
the LNG carrier should be questioned. We may conclude that, to calculate the motion of
the LNG carrier in waves with small and medium length, one can use the double-body
flow or even the uniform flow. If one wants to calculate the added resistance, however,
the non-linear steady flow has to be used because only this method predicts the unsteady
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and the stern largely influence the added resistance. The wave elevation at parts of the
waterline that are parallel to the z-axis (so almost the complete waterline except the
part near the stern and the bow, see figure 5.2) has no influence on the added resistance
since the normal vector on the ship has no component in the x-direction there.
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waves correctly.

5.6 Summary and conclusions
We applied our model to an LNG carrier sailing at a moderate speed, corresponding to the
Froude numbers Fn = 0.14, Fri = 0.17 and Fn = 0.2. Head waves, bow-quartering waves
and beam waves were simulated. The non-linear steady flow was determined by RAPID,
and the resulting velocities were differentiated to obtain all the steady quantities that
we need in the free-surface condition (1.12). A convergence study was carried out that
showed that the transfer term close to the bow and the stern diverged in some collocation
points. Extrapolation is necessary here.
With this non-linear flow, we calculated the first-order motions of the ship and the
added resistance on the ship, and compared our predictions with measurements from
the MARIN. For the motions, we got excellent agreement between our predictions and
the measurements. Only the roll motion is wrongly predicted, and there are some de-
viations when the encounter frequency of the waves is low. The roll motion cannot be
predicted correctly because there is no viscosity in our model, and therefore no viscous
roll damping. For low frequencies, the waves are too long to fit on the computational
free surface, which grid size is determined by the length of the steady waves, which is
quite small for the mentioned Froude numbers. Therefore, the size of the computational
free surface and damping zone must be kept small to avoid a too large amount of panels.
Furthermore, for low frequencies, the restoring- force coefficients influence the motions
considerably. To determine these coefficients, the steady velocity on the hull has to be
differentiated, which is rather difficult, especially near the stagnation points at the bow
and the stern. Also, the absence of the rudder in our model influences the yaw motion in
long oblique waves.
The added resistance was predicted very well in head waves, especially at the highest
Froude number Fri = 0.2. For short waves, most linearized methods underpredict the
added resistance, but our model is able to get the prediction right. In bow-quartering
waves the results are less accurate, especially for long waves. The same holds for beam
waves. Again, there is the problem of a long wave on a too small free surface. Further-
more, the derivative of the first-order pressure in the direction of the motion has to be
determined, which can be inaccurate, and has the most influence for long waves.
To obtain better results for long waves, a larger computational free surface is needed with
a grid size that is related to the steady wavelength. This results in a large number of
panels, which can only be stored on a computer with much memory, like a CRAY. A
second-order panel method is needed to get more accurate fluid velocities and to describe
the curvature of the hull, so derivatives of velocities can more easily be determined. This
has to be implemented both in RAPID and in our code. The main problem that arises
is that both RAPID and our code use difference schemes on the free surface to stabilize
the methods. When velocity derivatives are obtained directly from the integral equation,
another way of damping the waves has to be found.



Discussion and conclusions

In this thesis, a method was presented that predicts the motions of and the forces on
a symmetrical ship sailing at moderate to high speed in incoming waves. There is a
strong interaction between the steady waves on the one hand and the unsteady waves,
the motions of the ship and the forces on the ship on the other hand. For moderate
and high speeds of the ship, non4inear phenomena in the steady wave become more and
more important, and it is no longer possible to use a model in which the steady flow is
approximated by the uniform flow or the double-body flow, like Prins [28] and Sierevogel
[31] did. Therefore, a linearization was carried out about the non-linear steady flow.

The use of the non-linear steady flow in the linearization leads to a linear free-surface
condition in which not only the steady velocities are needed, but also several derivatives
of these steady velocities, including a second derivative which we called the transfer term.
Because these velocities are determined with a first-order panel method, and are therefore
of first-order accuracy, their second derivative may diverge. For the cases that we studied;
the test ship and the LNG carrier, it turned out that near the bow and the stern, the
transfer term indeed diverges in some collocation points. In those points the transfer
term has to be extrapolated from the transfer term in points further away from the ship
where it does convergence. The transfer term cannot be neglected because it significantly
influences the wave elevation, and therefore the added resistance as well.

Because of the accuracy of the steady velocities and its effect on the unsteady velocities, it
is useless to use a panel method of second order or higher to determine the time-dependent
flow, and therefore, a first-order panel method is used. The velocity potential is repre--

sented by pulsating sources on the hull of the ship, and on a surface at a short distance
above the free surface. The hull and this raised surface are divided into panels on which
the source strength is assumed to be constant. The time derivatives in the linearized
free-surface condition are discretized with difference schemes in which a constant time
step is used. This leads to a simulation in the time domain which has the advantage that
it can be applied to a broad scope of problems. In this thesis, however, only calculations
have been carried out which could have been carried out in the frequency domain as well.
The tangential space derivatives in the linearized free-surface condition are discretized
with upwind difference schemes. In such schemes, only collocation points are used that
are upstream of the position at which the derivative is required. In our stability analysis,
we showed that for moderate and high speeds, such schemes have to be used to guarantee
a stable numerical scheme. Only for low speeds it is safe to use the more accurate central
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difference schemes.

In the time domain, incoming waves can be modeled by using wave makers, or by sep-
arating the incoming wave and the diffracted wave, and only calculate the latter. Both
methods were implemented and gave satisfactory results for the test ship. We prefer the
separation method, because it takes less simulation time and requires less panels, and
because there is only damping and dispersion in the diffracted wave.

The model was applied to an LNG carrier, sailing at three moderate speeds, corresponding
to the Froude numbers Fm = 0.14, Fm = 0.17 and Fn = 0.2. The predicted motions and
added resistances were compared with measurements from the MARIN. In head waves,
we got excellent agreement between the predictions and the measurements. Only for long
waves some deviations were observed. The main problem for long waves is that the grid
size is related to the length of the steady waves, whereas the size of the computational free
surface and the damping zone is related to the longest waves that must be represented.
In case of a long unsteady wave that propagates over a short steady wave, a enormous
number of panels is required to have an appropriate grid size and an appropriate size of
the free surface. Unfortunately, the computers we did our calculations on had not enough
memory to store this amount of panels. Therefore, for the long waves, we had to use a
very unsatisfactory grid size and free-surface size.
In oblique waves, the encounter frequency of the waves is even lower than that of a head
wave with the same length. Therefore, in oblique waves, the grid problems were even
more evident than in head waves. For short waves however, the predictions are again
very good. Only the roll motion cannot be predicted by our method because we have no
viscous roll damping.
For the highest Froude number, we repeated the calculations for head waves with two
simpler models. Instead of the non-linear flow, we first used the uniform flow and then
the double-body flow to model the steady flow around the ship. It turns out that with
these simplified models it is possible to determine the motions of the LNG carrier, but
that they both give a large underprediction for the added resistance. This is due to the
predicted amplitude of the unsteady waves at the waterline of the ship. Only if the non-
linear steady flow is used, the waves are predicted correctly.

For future research, the following recommendations are made:

The computer code must be implemented on a faster computer with more memory.
This gives the opportunity to model long waves as well.

A higher-order panel method must be used, both in RAPID and in our own code,
to determine derivatives of velocities more accurately.

A frequency-domain version of the code must be written to solve the harmonic
solutions more efficiently.

The code must be validated with some more ships, and extended to be able to
simulate, for example, ships with transom sterns, and catamarans.



Appendix A

Restoring-force coefficients

In this appendix, formulas are derived for the restoring-force coefficients. These coeffi-
cients relate the restoring forces to the motion of the ship. They differ from the ones listed
by Prins [8J because we make no low-speed approximation.

The first-order forces and moments have been derived in chapter 1. They consist of a
hydrodynamic part that depends on the first-order potential, and a restoring part that
depends directly on the motion of the ship. The restoring part is given by

(1)

= ff (p(1) X + (p1) + X (2, - 'Ps) dS

= ff (i + (1) x - p, (i - x fidS

The restoring-force matrix C, containing the restoring-force coefficients Cjj, with
i,j = 1. . .6, follows from

(1)) = C}

By letting all entries of the motion vector ', but one, be zero, the coefficients can be
found. If we do this we find coefficients C,1 and C2,2 which are non-zero. These coefficients
correspond to the restoring forces and moments caused by a small deviation of the ship's
mean position in surge and sway direction. In a realistic fluid the steady flow field around
the vessel adapts to the new position of the ship immediately, leading to zero surge and
sway restoring forces and moments. Due to the linearization around the mean position of
the ship, this fact is not accounted for by our model, so we have to set these coefficients
zero ourselves. The remaining non-zero coefficients are
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Appendix B

Derivation of the discrete dispersion
relation

In this appendix the continuous Fourier transform of the Green function and its vertical
derivative are derived. They are used to derive the discrete dispersion relation with help
of the aliasing and convolution theorem.

B.1 The continuous Fourier transform of the Green
function

To obtain the discrete dispersion relation, we need the continuous spatial Fourier trans-
forms of the Green function, G, and its vertical derivative, 9, as we shall see later. The
Green function we use is a Rankine source, given by

1
G (, 47r/(x_e)2+(y_?7)2+(z_()2

We will assume from now on, that the field point f is on the free surface z = 0 and the
source point is on the raised surface z = z18. The continuous spatial Fourier transform
of the Green function is then defined as follows

00 00
_e2ck2*tfiYdxdy

47rJ(x - + (y + z.

In order to determine this integral, we change to polar coordinates according to

x - = rcos y - = rsinç5

The transform (B.2) now becomes

f_f 4ir/r2+z500

(B.1)

(B.2)
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Using the properties of the sine and cosine functions, it can be shown that this integral
can be simplified into

o = eie+i j
rdr

J cos (r cos () a2 + $2) d (B.5)
27riJr2+z

o

The integral to can be evaluated by using the following expression for the zeroth-order
Bessel function, see Abramowitz and Stegun [1]

Jo(z) !fcos(zcos)d (B.6)

The remaining integral to r then contains a Bessel function and can be evaluated using
the modified Bessel function, see again Abramowitz and Stegun [1]

K! (az) = =
2 V2az

((a, /3)
= f f

[rJo(ar)dr
2zJ /r2+z2

0

- -

A change to polar coordinates and integration with respect to the polar angle leaves us
again with an integral containing a Bessel function of order zero. This time we can solve
this integral using the modified Bessel function K_ , see again Abrarnowitz and Stegun
[1J

K (az) = e_(z = / [rJo(ar)dr
V2az V2aJ (r2+z2)

0

-z13e'dxdy
4ir ((x + (y )2 +

It can be shown that the continuous Fourier transform Q becomes

ei+f =G/a2+/92
2

a>O (z) >0 (B.7)

(B.9)

a> 0 (z) > 0 (B.10)

(B.11)

Using this formula, it can be shown that the continuous spatial Fourier transform of G
becomes

-.

2Ia2+fi2 (B.8)

The same method can be applied to obtain the continuous spatial Fourier transform of
, Q. According to the definition, this transform is
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B.2 The discrete dispersion relation
The discrete dispersion relation can be found after applying the discrete Fourier transform
(3.13) to equations (3.9), (3.10), (3.11) and (3.12). Before we do this, we introduce two
theorems that we need in the derivation.

The discrete convolution theorem

Similar to the continuous case, a convolution theorem holds in the discrete case, saying
that

00

If am bjCm_j, then ã(a) =

Of course this theorem holds for the discrete Fourier transforms in all spatial directions
and in time, so

ã(fi) = (9)(3) and a(w) =

The aliasing theorem

If a function is known only in a countable number of discrete points, the discrete Fourier
transform may be taken. If we also know the function itself or another function taking on
the same values in the discrete points, and the corresponding continuous Fourier trans-
form, the discrete Fourier transform can be found from the knowledge of the continuous
transform. This follows from the aliasing theorem which states

f (a) OO()
which can easily be derived from the definitions of the continuoUs and discrete transforms.
Of course this theorem holds for the transforms in all spatial directions and in time.

With these two theorems, the discrete dispersion relation can be derived. First we will
determine the spatial discrete Fourier transform of the potential , induced by the source
distribution on the raised surface

(çm,yn) = cii,jGm.,i;n...j

This equation is in a double convolution hape, so we can use the convolution theorem
twice to obtain the discrete Fourier transform. If we call the discrete transform of the
source strength & we find

(B.12)
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C is the discrete transform of the integrated Green function Gm,n where

x y

dxody0
= f 1 4(mx - x0)2 + (nay - +-x y

so G is defined as

= Lxy L7m,n (B.13)
m=-00 n=oo

If we change the order of integration and summation in (B.13) we obtain

LX tLXY( 00 00

a f f _eamfiY

- m=-00n=-00 4(mx - x0)2 + (nay - Yo)2 + } dxodyo

Notice that in brackets is exactly the discrete Fourier Transform of the Green function
G. Using the aliasing theorem we can relate it to its continuous Fourier transform G in
equation (B.8), that we derived in the previous section, so

00 00 _e2amfiY
Lx4y : i 41riJ(mIx - x0)2 + (nLy - Yo)2 + z -

00 00 (27rm 2irn 00 00

m=-00n=oo
---,fl+

=

emx0+20_zf8
m=-00 fl=-00

where am = a + and = fi + . Because this series converges uniformly, it was
allowed to exchange the order of summation and integration. When this expression is
substituted in (B. 14) and we change back the order of integration and summation, the
integration can be carried out which finally leaves us with

00 00 e_zf8a =
2ammn,./a +

(em - em) (e'' - (B.16)
m=oo 7L-00

A similar procedure can be followed to obtain the discrete Fourier transform of the vertical
fluid velocity on the free surface, . This velocity is induced by a dipole distribution on
the raised surface panels

(Xm, Yn)
=

100J00i,jQm,nj

2/a+8
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The convolution theorem can again be used, leading to

ô 1 -

Q follows from the definition of the discrete Fourier transform and (3.12)

y

Q = e'' f f z15dxodyo

4ir ((mAx - x0)2 + (nAy - Yo)2 + z5)

By changing the order of integration and summation we can relate this expression to
the continuous Fourier transform Q (B. 11) with the aliasing theorem. When the order
of integration and summation is changed back again, the integration can be carried out,
after which the following expression is found

m=oo n=oo

e_zf+ - eian.) (e'" - (B.17)
2cm/3n

Now, we will focus our attention on the discrete Fourier transforms of the individual terms
that occur in the Kelvin condition (1.13). The first term is the second derivative in time
of the potential which we obtain by means of a difference scheme

o2 1
- (t,) = ()2 dttçb (t_3)

In general most of the coefficients dr will be zero. This formulation is used to obtain a
general expression. A convolution shape is again recognized so that

1

2 (At)3 (At)3 AxAy

where

2ut (tn, Xm) =

= Atdtt)e_2w2

A similar approach can be followed to obtain the discrete Fourier transform of the second
term in the Kelvin condition, which is also discretized by using difference schemes

2U

AxAt
d d(tn_j,Xm_i)

j=c,o i=oo

This expression contains a double convolution, so applying the convolution theorem twice
results in

a2 2U 2U 1
2U

= (AxAt)2 - (AxAt)2 AxAy
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where

d(t) = tdt)e_tw3t and d(x) =

Finally, the discrete Fourier transform of U2 is

TT21 1U2 = = --d() a
Ox2 x2 x %x2 x LxLy

where
00

d(x) = 1x dre'
j=-o0

We already derived the discrete Fourier transform of , so now we can collect all the
terms and write down the complete transform of equation (3.1)

= +

U2 -'
=PHS

(Lx)2 dr)e+gQ)
a

j=-00 Lthy

To get back the potential itself, we apply the inverse discrete Fourier transform (3.14) to
(B.12) and find

1
(tn, xrn, ) = f f f RHS C eit_Th0_Y$)dwdodfi

(2ir) J,, Ax/yW

Using the aliasing theorem and the fact that W is periodic, we can rewrile this into

(tp, Xm, Y

= 5_L_L_L
This expression can be compared with the similar expression for the continuous case (3.7).
The discrete dispersion relation follows from setting the denominator of the integrand in
(B.2) zero, because this gives us the poles that contribute to the wave-like behaviour of
the potential, so

+ +
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Summary

A ship sailing at sea experiences a resistance due to its forward speed and incoming waves,
which must be balanced by the propulsive power of the ship. To save fuel, this resistance
is desired to be as small as possible, and a lot of expensive model tests in seakeeping
basins are carried out to minimize the resistance. It is important to have a tool that
can predict the forces on a ship sailing in waves and asist these model tests or partially
replace them. Mathematics and computer simulations give us such a tool.

The non-viscous part of the resistance of a ship has two major contributions. First, there
is the resistance that a ship experiences when it sails at a constant speed in a calm sea,
without incoming waves. This is called the wave resistance, and it can reasonably well
be predicted by the method RAPID, developed at the MARIN, which calculates the non-
linear steady flow around a ship. Second, there is an extra resistance when a ship sails in
incoming waves. Although harmonic incoming waves have a mean value which is zero, the
forces due to these incoming waves can have a mean value which is non-zero. It is as if the
waves want to push the ship ahead of them. This phenomenon is called drifting and is re-
sponsible for a resistance increase and can, in oblique waves, result in a change of a ship's
course. The increase of the resistance is also known as the added resistance. This added
resistance strongly depends on the forward speed of a ship. Prins {28] developed a method
that can determine the drift forces for low speeds of a ship. In this thesis we presented a
method that can determine the drift forces for moderate and high speeds of a ship as well.

When the speed of a ship increases, the interaction between the steady waves on the one
hand and the unsteady waves, the ship motions and the added resistance on the other
hand becomes more and more important. Therefore, for moderate and high speeds of a
ship, the non-linear steady flow has to be taken into account. We have modeled what
happens to a ship when an incoming wave propagates over this non-linear steady wave,
reaches the ship, and diffracts. We did this by assuming that the steepness of the incom-
ing waves and the amplitude of the motions of the ship are small. This allowed us to
linearize the condition that holds on the free surface, which describes the propagation of
the waves, and the condition that holds on the hull of the ship, which relates the water
flow and the motions of the ship. Due to the linearization, not only the steady fluid
velocities are required, but also first and even second derivatives of these velocities. This
sometimes gives problems due to inaccuracies in the steady velocities.

This linear model was solved with a boundary-element method. The free surface and the
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hull of the ship were divided in small areas, called panels, and on each of these panels a
pulsating source was placed with a constant strength. This way it is made sure that the
Laplace equation inside the fluid is fulfilled. The strength of these sources was found by
applying the boundary conditions in (or below) the centre of these panels. Furthermore,
the boundary condition on the free surface was discretized by using difference schemes
for the time derivatives and the space derivatives. For the space derivatives, upwind
difference schemes were used. With a stability analysis we showed that the use of the
more accurate central difference schemes easily leads to instabilities. By using upwind
difference schemes, the occurrence of instabilities can be avoided.

We applied this model to a test ship, and investigated the grid dependence of the steady
waves and the derivatives of the steady velocities, which are required to determine the
unsteady waves. Then we investigated the dependence of the unsteady waves on the grid
size and the time step and the dependence of the predicted forces on the panel density
on the hull. In all cases a good convergence was obtained, except for the transfer term, a
second derivative of steady velocities, which diverges near the ship, and which has to be
obtained by means of extrapolation from the transfer term further away from the ship.
To model incoming waves we implemented two methods: a method in which the incoming
waves are generated by a wavemaker, and a method in which we separate the incoming
waves from the diffracted waves and only calculate the latter. Although both methods
gave satisfactory results, we prefer to separate the waves.

After checking the numerical convergence of the model, we validated the model by com-
paring the predicted motions and added resistance of an LNG carrier with measurements
from the MARIN. A comparison was made for three moderate Froude numbers of the
carrier, namely Fn = 0.14, Fn = 0.17 and Fm = 0.2. With the separation method,
incoming head waves, bow-quartering waves and beam waves were simulated. For short
waves, a very good agreement between the predicted and the measured motions and added
resistance was found. For long waves there were some deviations, amongst others due to
an insufficient size of the free surface. For all wavelengths, the roll motion could not be
predicted because we neglect viscosity in our model. Finally, we compared our predic-
tions with the predictions obtained by using the uniform flow and the double-body flow.
It turned out that only by using the non-linear steady flow, an accurate prediction of the
added resistance can be obtained.



Samenvatting

Een schip dat vaart op zee ondervindt een weerstand door zijn voorwaartse snelheid en
door inkomende golven, die moet worden tegengewerkt door de kracht die de schroef van
het schip levert. Om brandstof te bespareri moet deze weerstand zo klein mogelijk worden
gehouden. Er worden daarom een heleboel dure proeven uitgevoerd om de weerstand te
minimaliseren. Het is belangrijk om een hulpmiddel te hebben dat de krachten op een
schip dat in golven vaart kan voorspellen, en de modelproeven kan assisteren of gedeel-
telijk vervangen. Dit hulpmiddel kan worden gevonden in de wiskunde en de computer
simulaties.

Het niet-viskeuse gedeelte van de weerstand van een schip kan worden opgedeeld in twee
belangrijke stukken. Ten eersté is er de weerstand die een schip ondervindt wanneer het
met een constante snelheid in viak water vaart. Dit wordt de golfweerstand genoemd.
De golfweerstand kan worden voorspeld met de methode RAPID, die ontwikkeld is op
het MARIN, en die de niet-lineaire stationaire golven rondom een varend schip bepaalt.
Ten tweede ondervindt een schip een extra weerstand als het in golven vaart. Aihoewel
harmonische inkomende golven een gemiddelde amplitude hebben die nul is, kunnen de
krachten die door deze golven op een schip werken een gemiddelde waarde hebben die
ongelijk aan nul is. Het is net alsof de golven het schip voor zich uit willen duwen. Dit
verschijnsel wordt driften genoemd en kan een toename van de weerstand veroorzaken en
kan in schuine golven ertoe leiden dat het schip van koers verandert. De toename van
de weerstand wordt ook wel de toegevoegde weerstand genoemd. Prins [28] heeft een
methode ontwikkeld die de driftkrachten voor lage sneiheden van een schip kan bepalen.
In dit proefschrift hebben we een methode gepresenteerd die de driftkrachten ook voor
middelmatige en hoge sneiheden van een schip kan bepalen.

Als de sneiheid van een schip toeneemt, wordt de interactie tussen de stationaire golven
enerzijds en de instationaire golven, de scheepsbewegingen en toegevoegde weerstand an-
derzijds, steeds groter. Daarom moet voor middelmatige en hoge sneiheden van een schip
de niet-lineaire stationaire stroming in rekening worden gebracht. We hebben gemodel-
leerd wat er gebeurt met een schip als een inkomende golf over de niet-lineaire stationaire
golf voortbeweegt, bet schip bereikt en diffracteert. We hebben dit gedaan door te veron-
derstellen dat de steilheid van de inkomende golven en de amplitude van de bewegingen
van bet schip klein zijn. Door dit te doen konden we de de conditie op het wateropperviak,
die de voortbeweging van de golven beschrijft, en de conditie op de scheepsromp, die de
interactie tussen het water en de scheepsbewegingen beschrijft, lineairiseren. Door deze
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lineairisatie hebben we niet alleen de stationaire sneiheden van de waterdeeltjes nodig,
maar ook diverse afgeleiden hiervan. Door onnauwkeurigheden in de stationaire sneiheden
is het soms lastig om bepaalde afgeleiden uit te rekenen.

Dit lineaire model hebben we opgelost met een randintegraal methode. Het wateropper-
viak en de scheepsromp hebben we opgedeeld in kleine gebiedjes die panelen heten, en
op elk van deze panelen hebben we een bron gezet met een constante bronsterkte. Dit
zorgt ervoor dat aan de Laplace vergelijking is voldaan. De bronsterkte is gevonden door
de randcondities toe te passen in (of onder) het midden van de panelen. Ook hebben
we de conditie op het wateropperviak gediscretiseerd door gebruik te maken van upwind
differentieschema's. Met een stabiliteitsanalyse hebben we aangetoond dat het gebruik
van de nauwkeurigere centrale differentieschema's al snel tot instabiliteiten leidt. Door
upwind differentieschema's te gebruiken kan dit worden voorkomen.

Dit model hebben we toegepast op een testschip en we hebben onderzocht in welke mate
de stationaire golven en de afgeleiden van de stationaire snelheden van de paneelgrootte
op het wateroppervlak aThangen. Daarna hebben we onderzocht hoe de instationaire gol-
yen afhangen van de paneelgrootte en de tijdstap en hebben we bekeken of de krachten
op bet schip afhangen van de paneelgrootte op de romp. In alle gevallen vonden we een
goede convergentie, behalve bij het uitrekenen van de transfer term, een tweede afgeleide
van de stationaire sneiheden, die vlakbij het schip divergeert en daar door middel van
extrapolatie moet worden verkregen. Om de inkomende golven te modelleren hebben
we twee rnethoden geImplementeerd: een methode waarin de inkomende golven worden
gegenereerd door golfopwekkers, en een methode waarin we de inkomende golf van de
totale golf afsplitsen en dus alleen de gediffracteerde golf uitrekenen. Aihoewel beide
methodes goede resultaten gaven, geven we de voorkeur aan de tweede methode.

Nadat we de numerieke convergentie hadden gecontroleerd hebben we het model geva-
lideerd door de voorspelde bewegingen en toegevoegde weerstand van een gastanker te
vergelijken met metingen van het MARIN. De berekeningen zijn gedaan voor drie mid-
delmatige Froude getallen, namelijk Fn = 0.14, Fn = 0.17 en Fri = 0.2. Kopgolven,
schuin van voren inkomende golven en dwarsgolven zijn gesimuleerd. Voor korte golven
kwamen de voorspelde bewegingen en toegevoegde weerstand goed overeen met de me
tingen. In lange golven waren er wat afwijkingen, mede doordat we een te klein waterop-
perviak hebben gebruikt. Voor alle golflengtes werd het slingeren niet goed voorspeld.
Dit komt doordat er geen viscositeit is in ons model. Tenslotte hebben we onze voor-
spellingen vergeleken met voorspellingen die verkregen zijn met gebruikmaking van de
uniforme stroming en de double-body stroming. Het blijkt dat alleen door de niet-lineaire
stationaire stroming te gebruilcen er een nauwkeurige voorspelling van de toegevoegde
weerstand kan worden verkregen.
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