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Abstract 
Automa'on in the form of swarm robots is an increasingly feasible opportunity for solving complex 
physical problems. However, how such a swarm is to be instructed and controlled is one of the many 
topics that requires further research. For this, we can look to nature for inspira'on, as there are 
many nest building swarms. Perhaps the most notable of which are the mound building termites. 
These termites build incredibly intricate mounds that contain a royal chamber, nurseries, fungal 
gardens, covered walkways, and even ven'la'on shaBs to thermoregulate the inside of the mound. 
There are some aCempts to capture this behaviour in custom simulators. The problem is that these 
simulators have limited capabili'es. That is why a new simulator specifically for termite-like builder 
robot swarms is required for further research in this field. In this project, the different requirements 
for such a simulator are iden'fied and used to develop an open-source state of the art simulator, 
TermiteSim. TermiteSim is designed for experimen'ng with different control strategies and tuning 
the simula'on parameters to recreate the desired behaviour. In other words: a tool for researchers 
to design desired behaviour of a builder robot swarm. In this thesis TermiteSim is used to simulate 
several termite-like building behaviours described in the literature and the resul'ng structures are 
compared to those of other simulators, which TermiteSim was successfully able to recreate. 

 
Figure 1. Preview of TermiteSim showing the creation of a royal chamber with entrances, and the 

pheromones that led to this construction.
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1. Introduction  
Despite the construc'on industry being a 10.7$ trillion global output industry (Oxford Economics, 
2021), it has yet to automate like other industries have. Most of the work in construc'on robo'cs 
focuses on 3D prin'ng with a robo'c arm that deposits concrete in layers on top of each other to 
create the desired structure. An alterna've approach is swarm robo'cs. Swarm robo'cs offers 
several advantages over tradi'onal approaches to robo'cs. For example, it allows for beCer 
scalability, as adding more robots to the swarm does not significantly increase the complexity of the 
system. Swarm robo'cs also provides robustness, as the absence of a central control unit makes the 
system less suscep'ble to failure. In addi'on, swarm robo'cs allows for greater adaptability, as the 
robots in the swarm can adapt to changes in the environment in a decentralized way. 

This thesis looks at mound building termites as inspira'on for robot swarms in construc'on. Mound 
building termites are social insects that live in highly organized colonies and are known for their 
remarkable ability to construct intricate mounds. One of the most interes'ng aspects of termite 
mounds is their architectural design. The interior of the mound is hollow, with mul'ple chambers 
that serve different purposes, such as the nursery galleries, the royal chamber, and fungal gardens. 
The construc'on of mounds by termites is an amazing feat of engineering, and scien'sts have been 
studying these insects for decades to understand the mechanisms behind their coordina'on. The 
current understanding of the underlying principles is s'll incomplete, and there being some 
disagreements about these mechanisms. The tradi'onal explana'on for the coordina'on observed 
in termites focuses on the idea of s'gmergy as first proposed by Grasse in his 1959 paper, which is a 
method of communica'on. Namely, indirect communica'on through changes in the environment. 
This can be topological heterogenei'es by placing or removing material as well as pheromone 
gradients through the sensing and secre'on of pheromones as described in Sec'on 1.4.2. These 
mechanisms alone lead to simple behaviour of termites following each other, making holes at 
excava'on sites and building piles of soil. But together, they lead to the complex emergent behaviour 
of mound building. A behaviour that no single rule can accomplish.  

To study the complex behaviour of termites and test our understanding of it, theore'cal and 
computa'onal models can be a powerful tools. These models simplify the context of termites and 
boil their behaviour down to a set of equa'ons or behavioral rules. Studying these models has 
provided valuable insight into the mechanisms behind swarm intelligence and collec've decision-
making and has helped us beCer understand how to apply the concept of swarm intelligence in 
swarm robo'cs. However, more research is needed as there are s'll many unknowns of the 
underlying mechanisms of their behaviour. Previous models and simula'ons led to new insights in 
termite building behaviour. But there is poten'al for a lot more to be discovered through the 
experimenta'on with simula'ons. Previous simula'ons show that we can recreate termite-like 
architecture with the emergent behavior of termite-like agents, but how can we leverage similar 
mechanisms to create something else? What if we want to build something that is not a termite 
mound? The outcome of emergent behaviour is by defini'on undefined, and the more complex the 
behavioral rules, the less predictable the result will be.  

To solve this we can once again draw inspira'on from nature, but this 'me in another form: 
evolu'on. Just like termites as a species went through thousands of years of trial and error to come 
to an emergent building behaviour that meets their needs, so can we iterate on behavioral rules that  
result in the structure we want to create. Preferably much faster then evolu'on. The problem is that, 
currently, there are no robot swarm simulators that are suitable for simula'ng termite like building. 
That is why a new simulator specifically for termite like builder robot swarms is required for further 
research in this field. This project aims to create an open-source simulator of a termite-like builder 
robot swarm for experimen'ng with different control strategies and adjus'ng them accordingly. 
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1.1. Robotic Construction 
Everyone can relate to the frustra'ons of a construc'on project in the neighborhood; blocked roads, 
loud noises, and they oBen take years before they are finished.  

The construc'on industry with a 10.7$ trillion global output is expected to grow even further by 42% 
to reach 15.2$ trillion by 2030 (Oxford Economics, 2021). Despite its size, the construc'on industry 
has yet to automate like other industries have. However, this trend is shiBing as robo'cs technology 
advances. Automa'ng construc'on makes it possible for robots to take over many of the dangerous, 
dirty and dull task that are required.  Most of the work in construc'on robo'cs focuses on 3D 
prin'ng with a robo'c arm that deposits concrete in layers on top of each other to create the desired 
structure. These robot arms are automated, following the predefined instruc'ons given to it. 
Allowing it to build a structure with minimal assistance. An example of this type of 3D printed 
construc'on is Von Perry, which aims to tackle the global housing shortage to efficiently build cost-
effec've houses. They used Cobod’s BOD2 3D printer to 3D print the first house to get the same 
cer'fica'on as regular houses require for living as seen in Figure 2. 

Such approaches are interes'ng but are also quite limited. One limita'on is the size of the prin'ng 
area. Which is limited to the reach of the robot arm or printer construc'on. Another limita'on is the 
shape of the structure which has to be designed as such that it can be 3D printed. 3D printers are 
limited in their ability to build horizontal structures without support material. Von Perry solves this 
problem by manually placing metal strips to bridge the gaps where needed. However, there are other 
approaches that don't u'lize a single sophis'cated robot as their main method for construc'on. 

1.2.  Swarm robotics 
Inspired by the behaviour and collec've intelligence of social animals such as ants, bees, and 
termites, swarm robo'cs refers to the use of this decentralized approach to control a group of 
robots. The robots in the swarm are designed to communicate with each other and coordinate their 
ac'ons to achieve a common goal. The coordina'on is achieved through simple rules and local 
interac'ons, without the need for a central control unit. These simple rules can cause the emergence 
of complex behaviour (J. F. Boudet, et al. 2021), which is the principle behind swarm intelligence. 

Swarm robo'cs offers several advantages over tradi'onal approaches to robo'cs. For example, it 
allows for beCer scalability, as adding more robots to the swarm does not significantly increase the 
complexity of the system. Swarm robo'cs also provides robustness, as the absence of a central 
control unit makes the system less suscep'ble to failure. In addi'on, swarm robo'cs allows for 
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Figure 2. Von Perry (2021). 3D printing a house. https://
automate.construction/2021/03/30/the-most-
innovative-3d-printed-house-in-the-world/

https://automate.construction/2021/03/30/the-most-innovative-3d-printed-house-in-the-world/
https://automate.construction/2021/03/30/the-most-innovative-3d-printed-house-in-the-world/
https://automate.construction/2021/03/30/the-most-innovative-3d-printed-house-in-the-world/
https://automate.construction/2021/03/30/the-most-innovative-3d-printed-house-in-the-world/


greater adaptability, as the robots in the swarm can adapt to changes in the environment in a 
decentralized way. 

There are two main types of swarm robo'cs: homogeneous and heterogeneous swarm robo'cs. 
Homogeneous swarm robo'cs involves many iden'cal robots that perform the same tasks. In this 
type of swarm, the robots work together to achieve the goal, relying on their collec've intelligence 
to solve problems and make decisions. One advantage of homogeneous swarm robo'cs is that they 
have built in redundancy, making them highly robust. Since all robots are iden'cal, it is easy to swap 
out robots that are damaged or malfunc'oning without affec'ng the overall performance of the 
swarm. An example of a homogenous swarm is the Kilobot swarm seen in Figure 3, a small 14$ open-
source robot. 

Heterogeneous swarm robo'cs involves a group of robots with different capabili'es and strengths. In 
this type of swarm, robots are assigned tasks based on their abili'es, allowing for a more efficient 
system. An example of a heterogenous swarm is the Swarmanoid project by Dorigo m., et al. 2012. In 
Figure 4 the Swarmanoid project can be seen where 3 foot-bots are carrying 1 hand-bot. 

     

1.3. Swarm robotics construction 
These ideas are now star'ng to be used in robo'c for construc'on. One such example is 
HyperTunnel. Tradi'onally, tunnels are created using the drill and blast method, which includes 
drilling and controlled explosives. Otherwise, large tunnel boring machines are used which oBen 
weight thousands of tonnes and use a giant cuing head to bore their way through the ground. 
HyperTunnel takes a new approach to tunnel construc'on which employs swarms of robots that 
build the walls of the tunnel first and then later excava'ng the material inside the tunnel. They do 
this by drilling holes in the target area which are filled with special bore pipes in which the robots are 
placed. Those robots then begin to construct the shell of the tunnel by drilling access points along 
the pipes and use those to carve chambers and inject a composite material into the earth around the 
pipe to create the tunnel walls. This process u'lizes the parallelism of swarm robo'cs which allows 
tunnels to be created up to 10 'mes faster and at half the cost of conven'onal methods. 

Figure 3. Asuscreative (2014). Kilobot robot swarm 
[photograph]. Wikipedia.  

https://commons.wikimedia.org/wiki/
File:Kilobot_robot_swarm.JPG

Figure 4.  Swarmanoid project (2012). 
Interaction between real foot-bots and one 

hand-bot [photograph]. Swarmanoid. 
https://www.swarmanoid.org/

swarmanoid_hardware.php.html
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However, this is s'll an early implementa'on of swarm robo'cs where s'll a lot of prepara'on has to 
be done, such as limi'ng the swarm to predefined paths by manually placing the pipes in which they 
move. Ideally, any prepara'on would not be needed or could also be done autonomously. 

This is what project such as the Termes project are focussing on. They build a mul'-robot 
autonomous system that can replicate a specified structure with specialized 'les. This is done by 
compiling the desired structure into a set of behavioral rules which the robots follow. This then leads 
the robots to build the desired structure. They demonstrate this process both in simula'on and with 
their own robots.  However, their approach is limited to building in a grid and relies on their 
specialized prebuilt 'les for building and naviga'on. Furthermore, it can not create any sort of 
overhang, as the 'les are simply stacked on top of each other and are not secured any further. That 
is s'll a long way off from how actual termites work. (Petersen K., el al. 2011.) 

1.4. Inspiration from nature: Termites 
Mound building termites are social insects that live in highly organized colonies and are known for 
their remarkable ability to construct intricate mounds. Mound building termites belong to the family 
Termi'dae and are found in various regions of the world, including Africa, Australia, and South 
America. Their termite colonies are made up of different castes, each with its own specific role. The 
queen and the king are responsible for reproduc'on, while the workers take care of foraging, food 
supply, and construc'on of the mound. Lastly, the soldiers are responsible for protec'on against 
predators. All members work together in a highly organized manner to ensure the survival of the 
colony. One of the most interes'ng aspects of termite mounds is their architectural design. Mounds 
are constructed in a way that provides protec'on and ven'la'on for the colony. The interior of the 
mound is hollow, with mul'ple chambers that serve different purposes, such as the nursery galleries, 
the royal chamber, and fungal gardens (Figure 5). These mounds can reach heights of up to 9 meters 
and can be several meters wide (Figure 6). The material used to construct the mound is primarily 
made up of soil, which the workers collect and transport to the construc'on site. The soil is mixed 
saliva, and excrement to create the paste that is used for building. 
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Figure 5. (n.d.). Termite mound 
[Render]. DKfindout. https://

www.dkfindout.com/us/animals-
and-nature/insects/insect-

colonies/

Figure 6. Brewbooks. (2009). Cathedral Termite 
Mound [Photograph]. Flickr. https://

www.flickr.com/photos/
93452909@N00/3491333666/



The construc'on of mounds by termites is an amazing feat of engineering, and scien'sts have been 
studying these insects for decades to understand the mechanisms behind their coordina'on. The 
current understanding of the underlying principles is s'll incomplete, and there being some 
disagreements about these mechanisms. What is known is that termites have the tendency to 
wander around, dig, form pellets from soil, and deposit those pellets. Sane S., Et al. 2020 describes 
such tendencies as ‘Fixed ac'on paCerns’ which are fixed innate behaviour triggered by certain 
s'muli that trigger these pre-programmed responses.  

1.4.1. Stigmergy 
The tradi'onal explana'on for the coordina'on observed in termites focuses on the idea of 
s'gmergy as first proposed by Grasse in his 1959 paper, which is a method of communica'on. 
Namely, indirect communica'on through changes in the environment. This can be topological 
heterogenei'es by placing or removing material as well as pheromone gradients through the sensing 
and secre'on of pheromones as described below. These changes act as s'muli to trigger the before 
men'oned ‘fixed ac'on paCerns’ (Perna A., Theraulaz G. 2017).  

1.4.2. Pheromones 
Pheromones are one of the major mechanisms that facilitate mound building behaviour. These 
pheromones are secreted by the termites and can s'mulate or inhibit certain behaviour. This has 
extensively been researched in Bruinsma’s 1979 thesis which contains a detailed descrip'on of 
termites behaviour in a mul'tude of scenarios. He argues that there are a three pheromones that 
play a significant role in construc'on: the queen pheromone, the cement pheromone, and the trail 
pheromone. Although the exact effects of all of these pheromones are not fully understood, some 
fixed ac'on paCerns are proven to be triggered by the presence of these pheromones. A summary of 
the observed effects of pheromones can be seen in Table 1. Here the observed distance that the 
termite is aCracted to move towards the pheromone, s'mulated to deposit, and s'mulated to pick 
up new material, is described. If no specific distance is observed, it will simply say yes, s'mulate or 
inhibit. If no observa'on regarding the effect was described, the space is leB empty. 

In Table 2 can be seen how these observa'ons were interpreted for the project. Here the aCrac'on 
is based on whether the termite is carrying a soil pellet, and where in the gradient it is s'mulated to 
deposit that soil pellet, and where in the gradient it is s'mulated to pick up new soil pellets. 

Attraction Deposit Pickup
Queen Yes 2 - 5 cm 0 - 0.5 cm
Cement 1.5 cm Stimulate Stimulate
Trail 0.5 - 0.8cm? Inhibit -

Table 1. Observations of the effects of pheromones

Attraction Deposit Pickup
Queen If holding 

material
At edge of 
gradient

At center of 
gradient
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Queen pheromone

In a termite mound, the royal chamber is a vault in the center of the mound that houses the king and 
queen. In order to research the emergence of the royal chamber, Bruinsma placed a queen on top of 
some soil in a petri dish with worker termites and described the following sequence of events in the 
behavior of the workers in his 1979 paper: 

1. “Grasping of soil pellets near the queen; 

2. Transport of the pellets to the site of deposi9on, a zone around the queen located approximately 2 
- 5 cm distance from her; 

3. Deposi9on and cemen9ng of the soil granules somewhere in that zone. AFer about 40-60 min of 
building ac9vity, workers start to concentrate their deposi9ons in one or more specific areas in the 
deposi9on zone. This leads to the construc9on of incipient pillars or columns, at 1.9 - 2.6 cm from 
the queen. These pillars are lengthened un9l they reach a certain height of 0.5 - 0.8 cm. Building 
workers then change the direc9on of building at the pillar apex in a lateral sense: the forma9on 
lamellae. The growing lamellae are extended and connected to one another, to form a roof over 
the queen, while pillars are connected to form a wall.” 

He proposes that this is behaviour is s'mulated by the queen pheromone that is excreted from the 
queens body. Further experiments that manipulate the distribu'on of the queens pheromone 
conform this hypothesis. However, whether the deposi'on of soil pellets is s'mulated within a range 
window of density of queen pheromone or aBer threshold density of queen pheromone is reached is 
s'll unclear. One experiment indicates that it is of probabilis'c nature, as seen in Figure 7, where the 
ra'o of grasping and deposi'ng of soil pellets is shown to be propor'onal to the distance from the 
queen. 

Cement If holding 
material

At center of 
gradient

-

Trail Yes At edge of 
gradient

-

Attraction Deposit Pickup

Table 2. Proposed effect of pheromones

	 10



 

Cement pheromone

When a termite picks up soil it will knead it with its mandibles and transform it into a paste by mixing  
it with its saliva which contains this cement pheromone. When the termite places the pellet, this 
cement pheromone will diffuse into the air around the pellet, aCract other termites within 2cm and 
s'mulates them to deposit their soil-pellets on top of it (Bruinsma, 1979), (Grasse, 1959). This causes 
a posi've feedback loop that results in what Bruinsma describes as ‘deposi'on zones’. These 
deposi'on zones, over 'me, turn into pillars that are connected by lamellae to form the walls of the 
mound. 

However, Green et al. 2017 casts doubt on this theory and proposes in his research that it is not the 
aggregated disposi'on of soil pellets, but rather that the termites themselves tend to aggregate to 
excava'on sites at the edge of which they deposit the material. Furthermore, Calovi D., et al.2019 
argues that it is instead the local surface curvature of the terrain that s'mulated the deposi'on of 
soil, which would also have a posi've feedback loop mechanism. 

Trail pheromone

(Mitaka Y., Akino T. 2021) The trail pheromones is a trail that is con'nuously excreted by worker 
termites and placed underneath them on top of the soil. The trail pheromone aCracts nearby 
termites to walk towards it resul'ng in a posi've feedback loop that causes the emergence of trails 
that act as paths for the termites to navigate between the mound, deposi'on zones and other points 
of interest. This serves as a means for direc'onal orienta'on.  

An increase in trail pheromone around the foot of a pillar increases the height of the pillar before it is 
laterally expanded with lamellae (Bruinsma, 1979), which indicates that the presence of trail 
pheromone also inhibits deposi'on. Which would logically also prevent them from blocking their 
tunnels. 

Figure 7. O. H. Bruinsma, (1979). The ratio between grasping (G) and 
deposition (D) behaviour with respect to metal spheres (diameter: 0.2) 
placed at defined distances from the queen. n: the number of workers 

displaying a building response. Data are based on a combination of two 
tests, each employing 160 major workers.
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1.4.3. Other Stimuli 
Bruinsma’s 1979 thesis also indicates that there are other s'muli that play a role in construc'on. He 
experimented with tac'le s'muli (small metal globes) and found that they s'mulated deposi'on. He 
also shows that the difference in air between the inside of the mound and outside of the mound is 
used for orienta'on. This is concluded from the way worker termites repair small holes in the outer 
lamellae walls of the mound. This indicates that there are other s'muli besides pheromones that 
influence termite building behaviour. Other studies have also shown that termites also respond to a 
range of cues in their environment (Bonabeau E., et al. 1998) including physical cues such as the 
curvature of the surface they are working on (Calovi D., et al. 2019), and environmental cues such as 
temperature and humidity (Ockoa S., et al. 2019). Khuong, A. Et al. (2016) has also shown that 
termites use body templa'ng, where the termite uses its own body size as a ‘ruler’ for determining 
at what height the transi'on of the walls to ceiling should occur. 

1.4.4. Emergent behaviour 
These mechanisms alone lead to simple behaviour of termites following each other, making holes at 
excava'on sites and building piles of soil. But together, they lead to the complex emergent behaviour 
of mound building. A behaviour that no single rule can accomplish. Emergent behaviour, however, 
does not necessarily lead to beneficial outcomes. 

The fact that this emergent behavior is posi've in the case of termites is a product of evolu'on 
rather than by defini'on. As a theore'cal example: if deposi'on would also be s'mulated by the trail 
pheromone, all the entrances and exits to the mound would likely be closed-off. Trapping a part of 
the termites inside and locking the other part out. This would be very detrimental for their survival. 
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1.4.5. Models 
To study the complex behaviour of termites and test our understanding of it, theore'cal and 
computa'onal models can be a powerful tools. These models simplify the context of termites and 
boil their behaviour down to a set of equa'ons or behavioral rules.  

Deneubourg, in his 1977 paper, was the first to create a mathema'cal model explaining the 
emergence of the regular spacing between pillar forma'on. He later wrote another paper in 1995 
outlining a set of differen'al equa'ons that model the size regula'on of the mound in response to 
changes in the termite popula'on. Bonabeau et al. built upon the pillar spacing paper of 
Deneubourg by crea'ng a model from par'al differen'al equa'ons (Figure 8), showing the effects of 
a worker popula'on on builder ac'vity in a 1D and 2D space (Bonabeau, 1998). One of Bonabeau’s 

findings was that a response-threshold func'on such as  can explain the sta's'cal 

rela'on between pheromone concentra'ons and ac'ons that the termites take. 

 

In 2005 Ladley took a computa'onal approach and built a simulator for a voxelized simula'on of 
termite building behavior. In his simula'on the terrain, pheromones and termites were all 
represented as cubes in a cubic laice. Ladley simulated three different pheromones following 
Bruinsma’s findings as described before. 

1. The queen pheromone that is con'nuously being secreted by the queen at a constant amount. 

2. A trail following pheromone, emiCed by a trail-following termite at each 'me step. 

p =
sn

sn + θn

Figure 8. E. Bonabeau (1998). (a) Simulated pheromonal template created by the queen T (b) Spatial distribution of 
a 2D system with added chemotactic motion toward the pheromonal template represented in a chamber forms 

around the simulated template. (c) Simulated pheromonal template of a displaced queen. (d) Same as b with 
chemotactic motion toward the pheromonal template represented in c.
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3. A cement pheromone that is emiCed by a newly cube of building material. This does not emit 
con'nuously, but rather, the cube contains a finite amount of pheromone of which a propor'on is 
emiCed with each 'me step. 

This simula'on also included the effects of diffusion and wind on those pheromones which also 
prevents pheromones from diffusing through solid blocks of material. The termites were also 
modeled as cubes, and on each 'me step they can move to an adjacent cube. But only if that cube is 
not occupied by building material, and neighbors another cube that is, which prevents termites from 
moving through the walls and prevents them from ‘flying’ respec'vely. When a termite leaves the 
laice they are removed and replaced within the laice. Lastly, termites are not prevented from 
entering a loca'on occupied by another termite. There are 3 different types of termites in the 
simula'ons: 

1. Builder termites move with a random chance to move into any legal direc'on, but the chance is 
propor'onal to the strength of the cement pheromone gradient strength. Meaning, termites tend 
to move towards the peak of pheromone gradients, and stronger gradients having more influence 
than weak ones. In his simula'on the termites move 5 'mes per 'me step. Placement of material 
is restricted to meet certain condi'ons to require support structures. Builder termites can deposit 
a block when the pheromone concentra'on of any pheromone at its loca'on is within a range of 
0.1 to 0.5. Builder termites spawn with a block to deposit, and are replaced with a new builder 
when that block is placed. 

2. Trail-following termites lay and follow trail pheromone and are not involved in building ac'vity. 
They are aCracted to trail pheromone similar to how builder termites are aCracted to cement 
pheromone. Trail-following termites enter and leave the laice at fixed entry points. 

3. Nursing termites which move back and forth to and from the queen. They also secrete and are 
aCracted to trail pheromone. 

Ladley’s simula'ons contained a fixed number of agents that were allocated one of these roles and 
did not dynamically change role. A queen termite was also present in some simula'ons, but was not 
modeled like one of the termites. It was represented by several blocks in the center of the simula'on 
which con'nuously secretes the queen pheromone. Ladley first recreated royal chamber 
construc'on as seen in Figure 9. And also did this under simulated windy condi'ons as seen in figure 
10 to recreates Bruinsma’s observa'ons. In these simula'ons a termite popula'on of 300 consis'ng 
of just builder termites was introduced with a queen in the center of the world. Ladley also 
simulated the construc'on of covered galleries over trails (Figure 11) and the effect of trails on royal 
chamber construc'on (Figure 12). With these simula'ons Ladley demonstrated that the logis'c 
constraints, that Bonabeau’s model did not include, don't prevent of the forma'on of termite-like 
structures in his simula'on. And that those constrains are important or even necessary to achieve 
efficient construc'on. In ladleys simula'on of covered galleries the trail is a result of the ac'vity of 
the trail termites. However, trail forming is heavily guided by spawning termites with at ground level 
on the center of one of the edges of the world aBer they reach the edge of the world. Whether or 
not the rota'on was also predefined is not clearly stated in the paper. Furthermore,  the simulated 
termites can sense pheromones all around them instead of just the antennae, which could have 
affected the behaviour of the termites. 
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Figure 9. D. Ladley (2005). Construction of royal chamber around a queen. Showing a spherical chamber.

Figure 10. D. Ladley (2005). Construction of royal chamber around a queen under windy conditions. Showing an 
elongated chamber.

Figure 11. D. Ladley (2005). Construction of a covered 
walkway. (Floor in heavy tone; trail pheromone in 
medium tone; building pheromone in light tone.)

Figure 12. D. Ladley (2005). Royal chamber 
construction in the presence of pheromone trails. 
Showing how several pheromone trails (medium 
tone) between the central queen and the lattice 

periphery cause the formation of entrances in the 
royal chamber made out of material (light tone). 
Number of trails reduces over the course of the 

simulation.
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In 2008 Feltell used a similar simula'on as Ladley but instead of limi'ng the deposi'on and grasping 
of blocks to within a range of pheromone concentra'on, he instead used the pheromone 
concentra'on to influence the chance of grasping and deposi'ng. One more limita'on that was 
introduced is that termites have to pick up a block before they can place it down. He then simulates 
the construc'on of the royal chamber under various condi'ons, the construc'on of covered 
galleries, and the combina'on of the two. This was done by implemen'ng the response-threshold 
func'on, proposed by Bonabeau as described above. This lead to the following equa'ons for the 
drop chance (P(drop)) and pickup chance (P(pickup)). 

Q = concentra'on of queen pheromone between 0 and 1. 

T = concentra'on of trail pheromone between 0 and 1. 

C = concentra'on of cement pheromone between 0 and 1. 

 

 

 

 

 

Through his simula'on (Figures 13 to 18) he shows that a simple response-threshold func'on with 
s'gmergic mechanisms can explain many of the poorly understood behavioral paCerns. And that 
randomness can par'ally account for some of the self-organiza'on within the building process. 
However, Feltell did men'ons the limita'ons of this simula'on, sta'ng the following: 

“This agent-based model allows for rapid experimenta9on and close study of individual behaviour 
and interac9ons, but the approach suffers from many inherent drawbacks. The discrete, simplified 
environment and 9ght spa9o-temporal coupling between con9nuous pheromone diffusion and the 
approximated physical material means that representa9ve scales are inherently inaccurate. As a 
result many parameters were arbitrarily chosen, which detracts somewhat from the realism and 
applicability.” (Felltel, 2008) 

Interes'ngly enough, neither Ladley nor Feltell noted the poten'al influence of limi'ng agent 
movement to the 27 cardinal direc'ons. Only Feltell stated that the use of this 3D grid lead to the 
inability to apply Bruinsma’s exact measurements. Instead of using this kind of discrete, voxelized 
terrain, it would be interes'ng to recreate their models in a con'nuous space simulator and compare 
the results. 

P(drop)Q = {1 − Tθ(Q + T ), if Q + T > 0
0.1, otherwise

P(drop)C = {1 − Tθ(C ), if C > 0
0.1, otherwise

P(drop)F = {1, if tactle s.mulus is present
0.1, otherwise

P(drop) = P(drop)Q + P(drop)C + P(drop)F

P(pick up) = {1 − Tθ(Q + T ), if Q + T > 0
0.1, otherwise
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Figure 13. D. Feltell (2008). (Left) Royal chamber under construction, showing queen object in centre; (right) 
completed royal chamber.

Figure 14. D. Feltell (2008). (Left) chamber under construction, under the influence of convection; (right) completed 
chamber.

Figure 15. D. Feltell (2008). (Left) Altered shape of queen object; (right) royal chamber created with altered queen 
configuration
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Figure 16. D. Feltell (2008). (Left) completed trail gallery; (right) view from inside gallery

Figure 17. D. Feltell (2008). Construction of covered galleries over a crossroad of trails.

Figure 18. D. Feltell (2008). Completed structure formed from combined royal chamber and trail gallery
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1.4.6. Conclusion 
In conclusion, mound building termites are truly remarkable creatures that have cap'vated the 
aCen'on of scien'sts and researchers for many years. The construc'on of their mounds is a 
testament to the remarkable organiza'on and coordina'on that is possible in nature. Studying these 
insects has provided valuable insight into the mechanisms behind swarm intelligence and collec've 
decision-making and has helped us beCer understand how to apply the concept of swarm 
intelligence in swarm robo'cs. However, more research is needed as there are s'll many unknowns 
of the underlying mechanisms of their behaviour. Previous models and simula'ons led to new 
insights in termite building behaviour. But there is poten'al for a lot more to be discovered through 
the experimenta'on with simula'ons.  
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1.5. Requirements 
Termites are a great example to how decentralized control systems can be used in robot swarms for 
construc'on. Previous simula'ons have excellently demonstrated the value of a simulator by using 
them to verify exis'ng theories on how termites work. But many ques'ons remain s'll, as 
simula'ons have yet to fully recreate a termite mound. Therefore, more research is needed to 
experiment with and evaluate different control strategies and tune the parameters of the simula'on 
in an aCempt to learn the inner workings of a termite mound construc'on. This can be done with a 
simulator, but for further research in termite-behavior, the simulator will need to at least be able to 
recreate previous simula'ons in order to build upon them. Consequently, the simulator requires at 
least the same func'onality as the previous simulators. Although, much research can be done with 
iden'cal simulators, there is an opportunity to address the limita'ons of those simulators and 
overcome them. Looking at previous simula'ons, they have the 4 following func'onality: 

1. A 3-Dimensional world: if the goal is to approximate building behaviour of termites, which build in 
3-dimensions, then the simulator should also be 3-dimensional to allow for similar structures to 
be built. 

1. The cause for many of the limita'ons of the simulators described in Sec'on 1.4.5 is that 
material, pheromones and termites are all blocks posi'oned in a grid. This limits the 
resolu'on at which agents can move, turn, deposit material, and pick up material. Thus, 
limi'ng the behaviour that can be simulated. Therefore, this simulator should be 
con'nuous space, rather than grid based, as is described in more depth in Sec'on 2.2.1. 

2. A Swarm: The intent of this tool is to experiment with the emergent behaviour of swarm 
intelligence, for which mul'ple agents are required to form a swarm. If the simulator supports 
simula'ng mul'ple agents, then its a maCer of performance to how many agents can be 
simulated. Previous simulators were able to creates swarms with a popula'on of at least 300 
agents. 

1. Agents need to have a posi'on and orienta'on. 

2. Agents need to be able to interact with the terrain, pheromones, and other agents. 

3. Agents need to be visible.  

3. Pheromones: pheromones are one of the key mechanisms with which termites communicate and 
plays a major role in how the termite mound comes to be shaped as described in Sec'on 1.4.2. If 
our goal is to draw inspira'on from them and use them as a reference to evaluate the tool, then 
pheromones are required feature. Diffusion is how the pheromone propagates through space. This 
is the cause of pheromone gradients which add a direc'onal component to the sensing of 
pheromones.  

1. Pheromones need to be able to be placed in the simula'on space. 

2. Pheromones need to be able to be sampled in the simula'on space. 

3. The pheromones should be able to diffuse and decay. 

4. Pheromones need to be visible 

4. Terrain: a detailed terrain is required to build the ramps, slopes and other such organic geometries 
required to navigate the structure itself during construc'on. But the simulator must also be able 
to generate and edit this terrain. 
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1. The terrain needs to support the agents. The agents need to be able to ‘stand’ on the 
terrain. 

2. The terrain needs to be visible. 

3. The terrain needs to be dynamic. In other words, be able to change shape during the 
simula'on. 

While it is not shown in the paper wriCen about the other simula'ons, another required 
func'onality is: 

5. Interface: for adjus'ng the parameters that control the behaviour of the swarm. This improves the 
usability of the simulator and consequently, the speed at which users are able to iterate on 
parameter seings. 

Besides the requirements, there are also some factors which should be op'mized where possible. 
These factors can be used as metrics for evalua'on if there are mul'ple op'ons where all the 
requirements are met. OBen 'mes, these metrics conflict with each other, and a balance between 
those metrics will need to be chosen. 

1. Configurability: the extend to which the simula'ons parameters can be changed. Allowing for 
more configurability will give more freedom to the user to change the behavior of the swarm. 

2. Ease of use: how easy or difficult it is to run a simula'on and adjust the parameters, reducing 'me 
spend configuring the parameters.  

3. Performance: the simula'on should be op'mized to perform simula'ons as fast as possible. This 
reduces the 'me each simula'on takes, thus increasing the speed at which the user can iterate. 

4. Realism: the simula'on should strive to be as realis'c as possible to decrease the discrepancy 
between the simula'on and termite swarms. A large discrepancy can lead to a simula'on 
exhibi'ng a completely different behavior than a robot swarm with the same control strategy and 
parameters. 
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1.6. Possible approaches 
If the goal is to create a simulator that does not have the same limita'ons as the custom simulators 
described in Sec'on 1.4.5, the first step is to analyze if there are simulators available that meet the 
requirements. There are a lot of established, open-source, and general purpose robo'cs simulators 
which poten'ally could be used to simulate the termite-like builders, which will be called agents 
from this point on. 

Each simulator is evaluated on whether they support the requirements, or if it is possible to modify 
the simulator to add the required func'onality. All the simulators have a method for adjus'ng the 
simula'on parameters, so that requirement will be leB out of the comparison. A color coded table is 
added to each simulator sec'on that indicates whether each func'on is supported (green), could 
poten'ally be modified to support (yellow), or does not support the func'onality (red). All 
simulators support some kind of interface, so that will be leB out of the comparison. 

1.6.1. Available simulators 

ARGoS

ARGoS is “a mul9-robot simulator. It can simulate large-scale swarms of robots of any kind efficiently. 
You can customize ARGoS with plugins.” It is designed around the idea of modularity with an ability 
to swap out modules for custom models to add or change func'onality where needed. Most of the 
development documenta'on is missing. (Even though the project started in 2016 and the last update 
was 2022) 

argos-sim.info 

CoppeliaSim

Formerly known as V-REP, Coppelia is mostly focussing on high detail simula'ons of a small number 
of robots. 

coppeliarobo1cs.com 

Gazebo

Gazebo is a plasorm allowing users to implement its libraries to build their own custom simula'on. 

gazebosim.org 

BurlapCraft

h4ps://h2r.cs.brown.edu/wp-content/uploads/2015/09/aluru15.pdf 

Multiple agents Pheromones Dynamic terrain 3D

Multiple agents Pheromones Dynamic terrain 3D

Multiple agents Pheromones Dynamic terrain 3D
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A mod for MinecraB which is created to enable the use of reinforcement learning and the planning 
library BURLAP (MacGlashan 2015) for simple and rapid prototyping and experimenta'on of task 
performing models. 

NetLogo

NetLogo is a 2D web based agent-based modeling environment aimed at educa'on. It is a very easy 
to use program that allows users to program the desired agent behaviour in one file. 

h4ps://ccl.northwestern.edu/netlogo/bind/ 

Player/Stage

Stage is a simula'on backend designed for simula'ng a popula'on of mobile robots in a 2 
dimensional bitmapped environment. It’s preset comes with a standard Player interface which 
provides control to robots over a network connec'on. 

playerproject.github.io 

TeamBots

TeamBots is a java based collec'on of programs and packages for mul'-agent robo'cs research. 

h4ps://www.cs.cmu.edu/~trb/TeamBots/ 

MORSE

MORSE is a simulator by openrobots that is able to run up to a few dozen robots. 

h4ps://www.openrobots.org/morse/doc/stable/morse.html 

IsaacSim

Developted by Nvidea, IsaacSim is a powerful simulator focussed on genera'ng data to train AI for 
robo'c applica'ons. 

h4ps://developer.nvidia.com/isaac-sim 

Multiple agents Pheromones Dynamic terrain 3D

Multiple agents Pheromones Dynamic terrain 3D

Multiple agents Pheromones Dynamic terrain 3D

Multiple agents Pheromones Dynamic terrain 3D

Multiple agents Pheromones Dynamic terrain 3D

Multiple agents Pheromones Dynamic terrain 3D
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1.6.2. Simulators vs requirements 
The evalua'on of the requirements can be seen in Table 3. 

Unfortunately, there is no simulator currently available that provides all the required features. But 
there are some that could poten'ally be modified to support all the required features such as 
ARGoS, Gazebo, MORSE, and IsaacSim. 

These simulators offer advanced capabili'es for complex robots. However, this is overkill for the 
func'onality required to simulate simple termite-like agents. And for the func'onality that s'll has to 
be added or modified, it will have to fit into the framework of what is already there. All of the cri'cal 
things that those simulators offer can be recreated in unity, while Unity gives more freedom. 

1.6.3. Creating a simulator  
Automa'on in the form of swarm robots is an increasingly feasible opportunity for solving complex 
physical problems. However, how such a swarm is to be instructed and controlled is one of the many 
topics that requires further research. The problem is that, currently, there are no robot swarm 
simulators that are suitable for simula'ng termite like building. That is why a new simulator 
specifically for termite like builder robot swarms is required for further research in this field. This 
project aims to create an open-source simulator of a termite-like builder robot swarm for 
experimen'ng with different control strategies and adjus'ng them accordingly. In other words: a tool 
for researchers to design desired behaviour of a builder robot swarm. 

This will include the development of the virtual agents, pheromones, the terrain, and their 
interac'on with an appropriate level of realism. The crea'on of a physics engine is outside of the 
scope and instead one that is readily available will be used. Several control strategies from literature 
will be implemented and their performance evaluated and compared to each other. Furthermore, a 
user interface to adjust the control strategy and environmental seings and review relevant 
performance data of the swarm will be created and tested. 

Name Multiple agents Pheromones Dynamic terrain 3 Dimensional

ARGoS

V-REP

Gazebo

BurlapCraft

NetLogo

Stage

TeamBots

MORSE

IsaacSim

Table 3. Simulator evaluations. (Green is supported, Yellow is potential to be added, Red is not supported without 
potential to be added). There is no simulator that meets all the requirements.
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2. Developing the simulator 
As described in the previous chapter, a simulator for simula'ng termite-like construc'on can further 
the field of swarm robo'cs if the simulator has the required func'onality. In this chapter these 
func'onality will be developed into a new simulator: TermiteSim. TermiteSim is the simulator build 
for this project and is built with the Unity game engine (Unity, 2023) available on unity.com. 
Although a game and a simulator are two different interac've experiences, they both u'lize many of 
the same func'onality which unity provides. Such as the rendering of objects to the screen, 
managing memory, and handling physics interac'ons with the Nvidia PhysX engine for simula'ng 
collisions. Unity also provides templates for 2D, 3D, Virtual Reality and Augmented Reality games and 
cross-plasorm build expor'ng which further saves on 'me. Lastly, Unity provides excellent 
documenta'on and many content creators offer detailed guides on how to achieve certain 
func'onality. 

The development of the simulator is divided into 5 parts: 

1.  The founda'on of the simulator: seing it up in Unity as a 3D environment. 

2. The terrain which the agents will interact with. 

3. The swarm of termite-like builder agents. 

4. The pheromones which are a key mechanism in the s'gmergic communica'on of termites. 

5. The interface that is used to set up the simula'ons and adjust their parameters. 

 

Each of the sec'ons below describes one of these parts which is to meet one of the key 
requirements. These sec'ons will briefly go into the considered op'ons with their pros and cons, and 
go into more detail about the implementa'on that was ul'mately chosen. 

Figure 19. Simulator overview of the 5 key elements.
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2.1. Design requirements  
As described above; the 5 key requirements for a simulator are that the simula'on is 3D, it is able to 
simulate mul'ple agents, that the terrain is dynamic, that there is some sort of pheromone support 
and an interface to adjust the parameters of the simula'on. 

These requirements are high level, and there are many layers to what each requirement entails. To 
priori'ze features and define the scope of the project, a MoSCoW chart was created. This stands for 
Must have, Should have, Could have, and Wont have. Features that were discussed at the start of the 
project were categorized based on their necessity and importance. Seen in Figure 20 is the MoSCoW 
chart, colour coded aBer comple'on of the simulator to reflect what was and was not achieved. 

 

Figure 20. Color coded MoSCoW chart of project objectives. Showing what was not included because a 
better version was achieved (Purple), what was achieved (Green), what was out of scope (Grey), and what 

was not achieved (Red)
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2.2. A 3-dimensional world 
One of the key requirements as described above is that the simula'on has to be 3 dimensional. 
Luckily, Unity provides a template which includes everything that is needed to make a 3D game. In 
large this already meets the requirement. But, there is one choice that dictates the direc'on of the 
project going forward: whether to divide that 3D space in discrete steps or con'nuous space. This is 
a choice that is very much a weigh off between to performance, simplicity and realism. 

2.2.1. Options  

Cell based

The simplest op'on is to divide the space into discrete chunks or cells and then group everything 
within that space as having the same posi'on, such as in many tabletop board games who do this on 
a 2D board. One example of this is chess, there each piece can occupy one of the 'les and can move 
to other 'mes. Chess divides the space in to squares, which would be similar to a cubic laice 
structure in 3D. But there are other op'ons for cell shapes to form a laice, such as the octahedron, 
triangular prism, hexagonal prism and the rhombic dodecahedron. In principle any cell shape that is  
fits the criteria of a plesiohedron. However, cubic is the most straight forward and will be used as an 
example from here on out. 

Pros: 

• This laice structure could then be used to contain all of the key elements within the simulator: 
the agents, the terrain, and the pheromones which can al be represented as cells. This would 
greatly reduce the complexity of managing these different func'onali'es and dras'cally reduce 
development 'me. 

• Another benefit is that this indexing can be used for managing interac'on. Meaning that instead of 
using a physics engine to check for collisions, only the neighboring cells can be checked. This 
greatly simplifies many aspect of 3D space naviga'on and interac'on, and promises beCer 
performance and reduced system complexity in comparison to con'nuous space simula'ons.  

• The balance between detail and performance can be changed by a single variable; cell density. 
Increasing the density of cells increases the amount of detail to beCer facilitate an approxima'on 
of the organic shapes of termite-like mound building. Much like increasing the pixel density 
(resolu'on) of an image defines the balance between detail and file size. However, this comes at 
the cost of performance. Where there will be more steps needed for the agent to travel the same 
distance. 

Cons: 

• A major caveat is the limita'on of direc'ons the agent can move in. The exact limita'ons are of 
course dependent on the laice structure, but for a cubic laice structure agents would be limited 
to moving along the axis or diagonally. The inability to support gradual turning and the resolu'on 
of movement being limited to the resolu'on of the grid strongly limits the range of real behaviors 
that can be replicated. 

• There are other models that have used similar approaches with success to model termite-like 
building behaviour. Feltell and Ladley have created models that use a cubic laice structure as such 
a cell based system as seen in Figures 9 to 18. However, they do discuss in their paper the 
limita'on of this approach, being inaccuracies in agent to mound propor'ons, and arbitrarily 
chosen parameters. 
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Continuous space

Instead of dividing the space into 'les, a con'nuous non-discrete space is the more standard op'on. 
con'nuous space posi'oning is free from any restric'ons which offers much more realism, but also 
the complexity that comes with it. 

Pros: 

• Complete freedom of naviga'on. Agents can move in any direc'on by any amount, liBing 
restric'ons that previous models had. To be more concrete: gradual turning that happens over 
several simula'on steps, with the rate at which agents turn being variable and configurable. And 
the movement speed of the agents being configurable.  

Cons: 

• The largest problem with this approach is the significant increase in complexity. Instead of using a 
Cell grid that encompasses all key elements, the agents, terrain, and pheromones will al need their 
own implementa'on and have their own methods of managing their interac'ons. This will greatly 
increase the development 'me required to come to an minimal viable product of the simulator. 

2.2.2. Implementation 
As described in Sec'on 1.6 others have already created cell based simulators. Therefore, the choice 
was made to go with the more complex con'nuous space approach. This decision will lay the 
founda'on for the rest of the project. For each of the key elements the implementa'on can now be 
chosen independently. As this is quite an abstract decision, much of the consequences are specific to 
the chosen implementa'on in the following sec'ons, and thus can not be described in isola'on. 

	 28



2.3. The Terrain 
The terrain is the first part that needs to be solved. As stated in the key requirements, the terrain will 
need to be dynamic so it can be changed (by the agents) while the simula'on is running. The choice 
between different types of terrain implementa'on can greatly limit the shape of the structures that 
the agents will be able to build. There are also two unique factors that should be considered for this 
choice. Firstly, the limita'ons in what kind of geometry can be achieved, with the aim of closely 
resembling the organic shapes of termite mounds. Second, the realism of how the excava'on and 
deposi'ng process is represented. 

2.3.1. Options  

Cubic cells

Though a cell based structure was not chosen as a founda'on for the project, individually, the terrain 
could s'll be implemented this way for good reason. An example of this type of terrain in a video 
game is MinecraB where only the terrain is fixed to a cubic grid, as seen in Figure 21. 

Addi'onally to determining whether a is solid or not, it could have an internal value of how much 
material is present, essen'ally just making it a 3D scalar field. For example, each block, solid or not, 
has a hidden value that is between 0 and 1. When material is added to the block it increases this 
value, but it will only appear as a solid block once the value is above 0.5. This makes that not every 
deposi'on equals to one cube and that an agent can also spread its material deposi'on over several 
cubes. So this method does s'll allow for a certain granularity in the interac'on between agent and 
terrain. 

Pros: 
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Figure 21. Hurricane Beryl. The terrain from Minecraft illustrating the possible approach of cubic cells. https://
minecraft.fandom.com/wiki/Plains

https://minecraft.fandom.com/wiki/Plains
https://minecraft.fandom.com/wiki/Plains


• Reducing the terrain to individual cubes offers an easy implementa'on and segmenta'on of 
terrain. Much like termites handle soil pellets, each individual cube could be seen as a soil pellet. 
This simplifies interac'on with the terrain and other elements of the simula'on. 

Cons: 

• Having the terrain build out of cubes means that all the angles in the terrain will be orthogonal. Of 
course, termite mounds have organic shapes and no orthogonal edges. To approximate such 
shapes, the density of cubes would have to be reasonably high. Even then all the faces of the 
surface will be orthogonal, so agents will have to average mul'ple faces to calculate the curvature. 
This further reduces the computa'onal advantage of this approach. 

• There is no op'on to par'ally fill a cube in terms of its collision. It is either permeable or solid, no 
in between. This is highly unrealis'c and will likely lead to unexpected emergent behavior. 

Height map

A height map is a single 2D surface which is subdivided (Figure 22). Each point on the surface has a 
single value that represents the height of that point. This technique is oBen used in games to 
generate large scale world and is much more scalable than other methods because it reduces the 
problem to a 2D datatype. 

 

Pros: 

• Unrivaled in term of resolu'on to performance ra'o. 

Cons: 

• Does not allow overhang. Which makes it impossible for agents to dig tunnels or build roofs. this is 
extremely limi'ng for the func'onality of the simulator. 

Figure 22. SideXF. Height map terrain, showing a high amount of detail, but no possibility of 
overhang. https://www.sidefx.com/docs/unity/_terrain.html
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Marching cubes

Marching cubes is an algorithm oBen used in computer graphics to visualize medical images. It takes 
an 3D scalar field as input and produces a surfaces mesh as seen in Figure 23. For a more detailed 
explana'on, see Sec'on 2.3.2. 

 

Pros: 

• The underlying data structure which produces the mesh through the algorithm is the same as the 
cubic cell approach makes dynamically genera'ng and edi'ng it just as easy. 

• With the extra transla'on step of the marching cubes algorithm, the terrain is not limited to 
orthogonal edges and can much more closely approximate organic shapes at lower resolu'ons. 

• It allows these grid points to be par'ally filled, which is required for more organically shaped 
terrain. 

Cons: 

• The algorithm itself is quite complex and will be difficult to recreate. 

• For any physics interac'on, a collision mesh is needed. This collision mesh will need to be 
recalculated every 'me the mesh is changed. This is a poten'ally significant hit to the performance 
of the simula'on. 

Figure 23. Sebastian Lague (2021). Marching cubes terrain giving both a high degree of detail and allowing for any 
kind of shape. https://www.youtube.com/watch?v=vTMEdHcKgM4
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Unstructured mesh

These previous examples generate a mesh based on an underlying 2D or 3D grid. Although this 
simplifies many interac'ons, it is not required per se. There is a possibility of having the terrain be 
represented as an unstructured mesh, where vertexes can be added or removed where needed to 
manage detail. 

Pros: 

• Amount of detail not limited by resolu'on. As more ‘resolu'on’ can be added locally in areas 
where it is needed in the form or extra ver'ces. 

• Free from any restric'ons, theore'cally allowing for any shape imaginable. 

Cons: 

• Because of its unstructured nature, working with such a mesh is extremely complex. Especially 
when dynamically changing it as agents will require to excavate and deposit material. 
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Figure 24. Michael Fogleman (2019). Unstructured Mesh demonstrating limitless detail. https://
www.michaelfogleman.com/projects/hmm/

https://www.michaelfogleman.com/projects/hmm/
https://www.michaelfogleman.com/projects/hmm/


2.3.2. Implementation 
For the terrain, the highest level of detail, which the unstructured mesh approach offers, is 
preferable. However, the complexity around implemen'ng it as a dynamically editable terrain is too 
large of an uncertainty. The marching cubes method s'll has a far greater amount of detail than 
other simulators and offers a much less complex implementa'on than the unstructured mesh 
method. It was therefore chosen as the implementa'on for the terrain. 

Perlin noise

To generate an ini'al terrain, one can simply generate a flat 
surface. But an interes'ng func'onality would be to generate 
randomized terrain geometry. This can be done by using a noise 
genera'on func'on retrieve a randomized value from and use 
that to determine its shape (Figure 25). 

In the case of TermiteSim, this randomness is generated with 
Perlin noise. Perlin noise is a method for genera'ng 
mul'dimensional gradient noise. A co-ordinate can be passed to 
the Perlin noise func'on, together with several parameter 
defining the characteris'cs of the desired noise. It then returns a 
scalar value represen'ng the noise in that coordinate. Perlin 
noise specifically is oBen used for terrain genera'on because of 
its produced noise resembling topological features. 

Cube marching algorithm

As briefly described before, the cube marching algorithm is a technique used in computer graphics to 
generate 3D shapes by marching through a grid of cubes or voxels. This technique is oBen used in 
medical imaging, but also in conjunc'on with procedural genera'on of 3D models, like this project.  

One of the cons of marching cubes is that is is quite complex and difficult to recreate. Luckily, there 
was already an open-source project available that implemented the marching cubes algorithm in a 
terraforming game in Unity. This is the Terraforming project by Sebas'an Lague who shared the 
project under an MIT license. His Terraform project was used as the star'ng point for TermiteSim. 
And many of the features of the terrain are from his project. These include the perlin noise sampling, 
the implementa'on of the marching cubes algorithm, the ability to dynamically edit the terrain, and 
the adjustability of the parameters that influences the ini'ally generated terrain characteris'cs. 

The marching cubes algorithm can be divided into 4 steps which are illustrated with examples taken 
from Sebas'an Lague’s video. 

1. First a 3D scalar field is required, which is generated from the perlin noise func'on described 
above. (Figure 26) 

2. Then an isovalue is defined, which is a value that defines the boundary between terrain and non-
terrain. Referred to in Figure 27 as rock and air respec'vely. 
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Figure 25. Lord Belbury (2022). 
Two-dimensional slice through 3D 

Perlin noise at z=0. https://
en.wikipedia.org/wiki/Perlin_noise#/

media/
File:Perlin_noise_example.png

https://en.wikipedia.org/wiki/Perlin_noise#/media/File:Perlin_noise_example.png
https://en.wikipedia.org/wiki/Perlin_noise#/media/File:Perlin_noise_example.png
https://en.wikipedia.org/wiki/Perlin_noise#/media/File:Perlin_noise_example.png
https://en.wikipedia.org/wiki/Perlin_noise#/media/File:Perlin_noise_example.png


3. For each line that connects a terrain and a non-terrain point, a vertex is generated on that line. 
These vertexes are connected to for the trianges that make up the terrain mesh. This surface mesh 
is also known as a isosurface. (Figure 28) 

4. This process is repeated for every cube in the structure, and the triangles are s'tched together to 
form one mesh. (Figure 29) 

  

 

Sebastian Lague (2021). Visualisation of cube marching. https://youtu.be/vTMEdHcKgM4?t=79 

Code Structure

All the func'onality of the terrain in TermiteSim is implemented in the GeneratedTerrain class and 
the compute shaders it refers to. Below is a simple flowchart of how changes to the terrain are 
managed.  

There are 4 dis'nct elements that are part of this process as seen in Figure 30. 

Figure 26. Determining the density value at each 
grid point

Figure 27. Determining whether each grid point is inside 
or outside the terrain

Figure 28. Placing new vertexes between the inside and 
outside of the terrain and connecting them

Figure 29. Connecting all the separate sections 
into one mesh.
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1. Terrain: This is the terrain mesh on which the agents move and is visually represented. Whenever 
the mesh is edited a new collision mesh also needs to be generated to facilitate the physics 
collision with the agents. This is a computa'onally expensive process. Therefore, the terrain only 
recalculates its collision mesh when once per simula'on step. Furthermore, the mesh is separated 
into chunks to only recalculate that specific chunk when it is changed as seen below in Figure 31. 

2. The density map is the underlying data structure that is used to generate the terrain mesh. More 
specifically, it is the 3D scalar field that is passed to the marching cubes algorithm to generate the 
terrain mesh. This density map can be edited to ‘excavate’ or ‘deposit’ material. This will update 
the terrain mesh to represent that change.  

3. The terrain seings: These are the parameters that are passed to the perlin noise func'on that 
ul'mately influences the characteris'cs of the ini'ally generated terrain. The parameters are 
described in further detail in the Interface sec'on. These parameters are passed to a compute 
shader which samples the perlin noise func'on and returns the density map. This process is only 
done once at the ini'al genera'on of the terrain. 

4. The agents are use a separate func'on to edit the terrain. This func'on only takes the parameters 
the amount of material being excavated up or deposited, and at which loca'on to do so. 

The interac'ons between the elements of this system are done with compute shaders, which take 
advantage of the parallel processing capabili'es of the GPU which significantly speeds up these 
processes. However, when dispatching a compute shader to complete a certain computa'on, the 
CPU must send the required data over to the GPU using a buffer. In this case, that process becomes a 
boCle neck that dras'cally reduces performance because of the large number of agents that change 
the terrain using this method. To circumvent this boCleneck, the density map is stored as a 3D 
render texture, which is a Unity specific data type. This render texture is the specific datatype that is 
used to represent the scalar field that the marching cubes algorithm requires. A render texture does 
not need to be passed in a buffer, as it is permanently stored on the GPU, which negates the need for 
the CPU to process it as a buffer. 

Figure 30. Data flow chart of the terrain implementation. Showing the main components of the 
terrain implementation.
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Figure 31. Terrain chunks. Showing the changed terrain that is updated this simulation step (Red outline) and the 

terrain that did not change in this simulation step (Blue outline).

	 36



2.4. The Swarm 
How the swarm is represented is once again a decision between an appropriate yet feasible level of 
realism.  

2.4.1. Options  

Unity GameObjects

Within Unity, a GameObject is the base class for all en''es represented within the game. A 
GameObject can easily be instan'ated from within a Unity Script. It is possible to create a default 
agent prefab, which is a template from which mul'ple instances can be instan'ated within the 
simula'on. This prefab can contain the scripts that describe the behavioral rules and components 
that are required to perform the required interac'ons. This is the standard method of crea'ng 
characters in Unity.  

Pros: 

• Allows for agents to have collision meshes, which facilitate realis'c physics collisions with other 
agents and the terrain. 

• It is a proven method, used in most cases for crea'ng characters in unity. 

Cons: 

• Opera'ons performed on GameObjects are computa'onally expensive. 

DOTS

DOTS is shorthand for ‘Data Oriented Technology Stack’ which refers to a combina'on of 
technologies that implement a data-oriented design approach to en'ty management. Specifically, 
the En'ty Component System, or ‘ECS’ is useful in the context of a swarm, and can be used to 
translate a swarm of GameObjects to en''es. DOTS has only par'ally been released, and ECS has leB 
the early-access state in December 2022 for Unity 2022.2 and later. 

Pros: 

• Same func'onal as GameObjects 

• Significantly improved performance compared to standard GameObjects. 

Cons: 

• Fairly new technology that s'll has bugs, liCle to no documenta'on for implementa'on. 

Complete Abstraction

Another method is to not instan'ate the agents as unity objects, but instead as a custom class that 
does not contain a mesh to visualize the agent or a collision mesh to simulate collisions with. Those 
func'onali'es would need to be handled externally, outside of the defini'on of the agent. 

Pros: 

• Offers poten'ally the greatest performance. 

• Abstrac'on can be done where needed throughout the project 
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Cons: 

• Requires basic func'onality to be manually handled externally. 

2.4.2. Implementation 
Unity en''es are great for many unique objects in the scene, but for the purpose of termite 
simula'on, that is not needed. A termite swarm of workers can be created where all of the agents in 
the swarm are the exact same, with no necessary op'on to further add capabili'es during run 'me. 
Therefore, the complete abstrac'on approach is chosen. 

Agents are presented in the simulator as very simplified representa'on version of termites to 
improve the performance of the simulator with a large-scale swarm. Agents Occupy space as a single 
point. This means that the agents have no shape or size, and that collisions and visualiza'on of the 
agents have to be handled separately. 

Visualization

Visualiza'on is done by a separate script called the ‘AgentVisualizer’. This script takes the posi'ons 
and orienta'ons of all agents. It then draws a predefined mesh at those loca'ons using GPU 
instancing. GPU instancing is a very efficient way of drawing many instances of the same mesh, 
allowing tens-of-thousands of the same mesh to be drawn without any significant performance loss 
as demonstrated in Figure 32. 

 Figure 32. 2000 Agents exploring the terrain. Demonstrating a the capabilities of simulating large swarms.
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Interaction with terrain

The agents interact with the terrain through raycasts, which draw a ray from the agent’s loca'on into 
a specified direc'on un'l a predefined distance. This ray collides with the terrain and measures the 
agents' distance to the terrain.  

This is for instance used to check if the agent it on the ground as illustrated in Figure 33. A raycast is 
done from the agent posi'on towards its feet. If the ray hits the terrain, then the agent is on the 
ground. If this is not the case, the agent will start falling. Falling moves the agent downwards at a 
constant speed. Falling does not happen oBen. It only occurs when another agent picks up too much 
material below that agent.  

Another problem occurs when another agent places too much material on top of that agent. The 
agent falls through the terrain because the terrain is just a surface mesh. To fix this issue, there is an 
addi'onal check to see if the agent is inside the terrain illustrated in Figure 34. This is done by taking 
an arbitrary point outside the boundary of the terrain, and then drawing a line from the agent to that 
point and count how many 'mes this line hits the surface. If this number is even, the agent is outside 
the terrain. If it is uneven, the agent is inside the terrain. 

	 39

Figure 33. Grounded agent on the left and falling agent on the right. (Red line is the ground, green lines are the 
raycast that check if the agents are on the ground.)



 

To prevent the agents from falling off the terrain, when an agent reaches the edge of the terrain they 
are oriented back to the center of the terrain. The choice of having them re-orient themselves to the 
center was made to minimize the chances of agents geing stuck, as bouncing them off the edge or 
telepor'ng them to the opposite side would result in agents geing stuck at the edges of the terrain. 

This was previously done with a distance from the center rather than a distance from the edge, 
which would cause the agents to stay within a certain radius of the center as seen in Figure 35. 
However, this caused agents to have a tendency to circle around this edge, impac'ng their behavior. 
It also prevented them from u'lizing the full size of the terrain. 

 

Figure 34. Agent inside terrain. (Red line is the terrain surface, Blue dot is the arbitrary point outside of the terrain, 
Green lines are the raycasts that count the number of times the surface was hit.)

Figure 35. Agents not leaving the ‘homesick’ 
radius
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Collision

Because the agents don't have any shape or size, raycasts can not be used to check for collisions with 
other agents. Instead, this is done by the ‘AgentManager’ class. This collision check simply checks if 
the distance from any other agent is within a predefined ‘collision distance’. If that is the case, then 
the agents collide, which is currently implemented as bouncing off each other in opposite direc'ons. 
There is also an ‘avoid distance’ which is larger than the collision distance and causes the agents to 
turn in order to avoid collisions with the other agents. In larger swarms, checking for all the other 
agents becomes increasingly inefficient, as the 'me complexity of every agent checking every other 
agent is O(N^2) where N is the amount of agents. Meaning computa'on 'me increases quadra'cally 
with the size of the swarm as visualized in Figure 36. To reduce this effect, the agents are first sorted 
into a grid. This grid is a cube structure, where the size of the cube is larger than the ‘avoid distance’ 
and ‘collision distance’. By doing so, the other agents only have to check the agents in their own grid 
cube and the ones in adjacent cubes (Figure 37), instead of all the agents. 

 

Code structure

The agents are specialized realiza'ons of the abstract class ‘Agent’. The Agent class provides 
func'ons such as StepForward, DigAt, SecretePheromone, and GetPheroneAt for the realiza'on to 
choose from and decide when to use them. An example Agent realiza'on is the PillarBuilder class 
which is described in further detail in Sec'on 3.4.  This is illustrated in Figure 38. To customize the 
behaviour of the swarm more than just changing the variables, one can create their own class that 
realizes the ‘Agent’ class.  

Figure 36. Visualization of proximity checks performed 
by every simulation step if the agents are not sorted 

beforehand. 100 agents, each green line is a 
proximity check. This shows that 10.000 proximity 

checks are made to check for collisions. 

Figure 37. Visualization of proximity checks performed 
every simulation step if the agents are sorted 

beforehand. 100 agents, each green line is a proximity 
check. This shows a greatly reduced number of checks 

is necessary to check for collisions.
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PillarBuilder
- state: enum State

Agent
<<Abstract>>

+ position: Vector3
+ Rotation: Quaternion
+ gridIndex: Vector3Int
# isHoldingMaterial: bool

# StepForward()
# Turn(float)
# IsGrounded()
# Fall()
# DigUpwards()
# IsInsideTerrain(): bool
# PickUpMaterialAt(Vector3)
# PlaceMaterialAt(Vector3)
# SecretePheromone()
# TurnTowards(Vector3)
#TurnAwayFrom(Vector3)

+ OnStart()
+ OnUpdate()
- TurnTowardsPhero(int)
- TurnAwayFromPhero(int)
- BuildOnPhero(int)
- PickupOffPhero(int)

Agents UMLFigure 38. Class diagram of the 
PillarBuilder class 
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2.5. Pheromones 
Pheromones are a key mechanism in the s'gmergic communica'on between termites. Every termite 
will dispense pheromones many 'mes during a simula'on. Therefore, it is impera've that the 
performance of the chosen implementa'on is good. 

2.5.1. Options  

Terrain texture

One op'on is to implement the pheromones as colors on top of the terrain mesh. This simply paints 
the color on the texture of the terrain aBer which termites can measure the RGB values in front of 
them to sense the pheromones. 

Pros:  

• Good representa'on of the liquid stage of pheromones. 

• Unlimited detail, as pheromones can be added in con'nuous space. 

Cons: 

• Does not allow it to travel through air, which greatly influences the pheromones dynamics. 

Individual objects

U'lizing the same sor'ng grid that agents use to check for collisions, the pheromones can be objects 
that are placed in the scene, and sensed by checking their distance.  

Pros: 

• Easy to implement, just instan'a'ng new objects and checking the distance to those objects is 
already achieved in previous code.  

• Would allow objects to be placed anywhere. 

• Unlimited detail, as pheromones can be added in con'nuous space. 

Cons: 

• The number of objects could increase to such an extend that it hinders performance, assuming 
that every agent releases pheromones mul'ple 'mes in the simula'on. 

3D grid

Much like the density map of the terrain, each pheromone could have their own density map.  

Pros: 

• Allows pheromones to be added anywhere. 

• The performance of a 3D grid implementa'on is constant. 

• Resembles the gas state of pheromones, and allows gas physics to be implemented. 
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Cons: 

• Detail is limited to the resolu'on of the grid. 

2.5.2. Implementation 
The 3D grid method is the only one that can accurately simulate the gas state of pheromones which 
is the most important aspect of this choice. The implementa'on is similar to how the terrain is 
implemented and also contains 4 elements as can be seen in Figure 39.

 

1. Pheromone grid: This is the density map with which the agents interact. Like the terrains density 
map, it is also a 3D scalar field, but its datatype is a 3D float array, unlike the  terrains density map 
which is a RenderTexture. The use of a render texture was not possible for this implementa'on 
because the agents need to be able to both read and write individual points to the pheromone 
density map. A render texture only allows to be wriCen to it. Each pheromone has its own 
pheromone density map that can be sampled independently.  

2. Pheromone render texture: The density map by itself is visible to the agents because of their 
sampling func'on, but it is not visible to the user. To make the pheromones visible to the user, the 
informa'on of the pheromone density maps is combined and translated into a RenderTexture. The  
RenderTexture is then sampled by a raymarching shader that samples the render texture and 
draws it to a 2D texture which is displayed on the users screen. The choice to first translate the 
pheromone density maps to a RenderTexture was for performance: the RenderTexture is stored on 
the GPU which makes sampling it with shaders, which do the calcula'ons on the GPU, much 
faster. 

Figure 39. Pheromone flowchart. Showing the main parts of the pheromone implementation.
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3. Pheromone seings: These are the seings which determine the characteris'cs pf the 
pheromones, including decay rate, diffusion rate, and if they are effected by wind. These op'ons 
are described in further detail below. These seings are used to run the pheromone gas 
simula'ons once every few simula'on steps.  

4. Agents: The agents simply read and write to the pheromone density map. They can add any 
amount of pheromone to any point in the grid, and can sample any posi'on which will return the 
value of the closest pheromone grid point. 

Pheromone physics

The gas physics are computed on each point on the pheromone density map grid separately, using a 
compute shader. As this process is also quite computa'onally expensive, there is an op'on to only 
do these computa'ons once every N  amount of simula'on steps, with N being a variable in the 
op'miza'on seings called ‘phero update delay’. By using this, the effect of the pheromone gas 
simula'on is increased so its dynamics will s'll be similar over a larger 'me frame. Increasing the 
‘phero update delay’ improves performance, but will result in agents working with slightly outdated 
pheromone data.  

The gas physics include: 

• Decay, which decreases the pheromone concentra'on by a constant amount each execu'on. 
Useful to prevent pheromone build-up where the ambient pheromones keep increasing because 
more pheromones are added than removed. It also prevents old pheromone trails from staying 
around forever. 

• Diffusion, which propor'onally diffuses pheromones, causing a gradient of pheromones. Useful for 
guiding agents to the centre of a pheromone source. 

• Wind: which diffuses pheromones into a cardinal direc'on also including up or down. The updraB 
in the termite mound caused by the ven'la'on is likely to impact the mounds architecture. This is 
made to simulate that. 

In the current version the pheromones permeate terrain. This allows pheromones to move through 
the walls of the royal chamber or covered galleries, which is not realis'c. Therefore it is not an 
accurate gas physics simula'on. This is further described in Sec'on 4.1. 

Interpolation

Although the pheromones are in a grid, interpola'on can be used to get more detail from this grid. 
When placing pheromones at a certain loca'on, the easiest method is to take the nearest grid point 
and add the pheromones to that point. Another approach is to calculate the distance between the 
point of placement and the nearest grid points and distribute the pheromones over those grid points 
as a func'on of how close the placement loca'on is to the grid points. This difference can be seen in 
Figures 40 and 41. 
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Whether or not pheromones are placed into the grid also changes affects the resul'ng behaviour of 
the agents. In Figures 42 and 43, 100 trail laying agents move around. These agents con'nuously 
secrete the trail pheromone, and also turn towards that trail pheromone if it is in front of them. This 
causes a posi've feedback-loop from which trails emerge. This behaviour is based on the findings in 
Bruinsma’s thesis as described in Sec'on 1.4.2. 

When agents don’t use interpola'on to place the pheromones, the trails that are formed have a 
tendency to follow the cardinal direc'ons of the grid. This is mi'gated by using interpola'on, but 
trails created with interpolated pheromone placing are much wider as a result of the agents placing 
the pheromones over a larger area. Because the laCer is an unintended side effect, placement 
interpola'on can be turned of in the seings menu which is described in more detail in Sec'on 2.6. 

Figure 40. A single pheromone trail (green) 
without pheromone interpolation. The trail clearly 
shows the discrete steps of the pheromone grid. 

 

Figure 41. A single pheromone trail (green) with 
placement interpolation. The trail is much 

smoother and the steps of the grid are much less 
pronounced.
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Besides using interpola'on to place pheromones, it can also be used to sample pheromones at a 
loca'on, instead of returning the pheromone concentra'on of the nearest grid point. The process of 
this is the reverse of placement interpola'on. For sampling interpola'on, the pheromone 
concentra'on of the nearest grid points are sampled, weighted based on distance and then 
combined to a single value that more accurately represent the pheromones in the loca'on of 
sampling. The effect of this is also that the trails that emerge have a lower tendency to follow the 
cardinal direc'ons of the grid as seen in Figures 44 and 45. 

 

Figure 42. A swarm of 100 trail placing agents 
(red) creating a trail (green) without pheromone 

placement interpolation. The trails have a 
tendency to follow the cardinal directions of the 

cubic pheromone grid.

Figure 43. A swarm of 100 trail placing agents 
(red) creating a trail (green) with pheromone 

placement interpolation. The tendency to of the 
trails to follow the cardinal directions of the 

pheromone grid is much lower.

Figure 44. A swarm of 300 trail placing agents 
creating a trail without pheromone sensing 

interpolation. The trails have a tendency to follow 
the cardinal directions of the cubic grid in which 

they are placed. 

Figure 45. A swarm of 300 trail placing agents 
creating a trail with pheromone sensing 

interpolation. 
The tendency to of the trails to follow the cardinal 

directions of the grid is much lower. 
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Lastly, both placement interpola'on and sampling interpola'on can be used to completely mi'gate 
the trails tendency to follow the cardinal direc'ons of the pheromone grid. Thereby, crea'ng a much 
more organic looking trail, which is likely a beCer approxima'on of real termite trail forming (Figure 
46). The interpola'on of placing and sampling is slightly more computa'onally expensive, but it s'll 
constant 'me (now O(8) with interpola'on instead of O(1) without interpola'on) and does not 
significantly impact performance. 

 

Figure 46. A swarm of 300 trail placing agents creating a trail with both pheromone sensing and 
placement interpolation. The tendency of the trails to follow the cardinal directions of the grid is 

completely mitigated.
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2.6. Interface 
The interface is the link between how users interact with the system. It is used to create or load a 
simula'on, and adjust the parameters of the simula'on as seen in Figure 47. The interface consists 
of two parts: the header which is used to control the simula'on, and the the seings menu which is 
used to tune the parameters of the simula'on.

 

2.6.1. Implementation 

Settings menu

The seings are lists of variables/parameters that other scripts refer too. The seings menu is 
automa'cally generated based on the references the seings manager holds and the variable fields 
that those references classes have. This allows future development to simply add a variable to any of 
the seings, for which corresponding value selector will then be automa'cally generated in the 
seings menu during run 'me. These seings are stored in ScriptableObjects which are a specialized 
Unity datatype that is persistent outside of running simula'ons. Meaning that changes made to the 
seings are saved and not reset upon the start of a new simula'on. The seings menu can be 
collapsed by pressing the arrow buCon on the leB side of the menu. 

The seings are separated based on the four dis'nct types of seings: 

• The terrain seings: These are the parameters that are passed to the perlin noise func'on that 
ul'mately influences the characteris'cs of the ini'ally generated terrain.  

• Pheromone seings for each of the pheromones: the rate at which pheromones diffuse, decay, and 
move with the wind. 

Figure 47. Interface with the header on top and the settings menu opened on the side.
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• Agent seings: which include the behavioral as well as the hardware seings such as movement 
speed and pheromone sense distance. Tweaking these seings can result in different behaviour 
within the same control strategy. 

• Op'miza'on seings: changes that can affect performance. Such as in how many chunks the 
terrain is divided. 

In the code, seings are referenced through the seings manager which is a mediator design paCern 
which holds references to all the different seings. This allows the seings to be easily swapped out 
both outside and during run 'me.  

Header

At the top of the screen is the header as seen in Figure 48. The header holds the op'on that control 
the simula'on.  

• The play buCon is used to start, pause, and unpause the simula'on. 

• The reset buCon resets the simula'on to its star'ng point. This clears any changes made to the 
terrain, removes all pheromones, and places all the agents back to where they started. 

• The speed slider is used to slow the simula'on down. This allows the user to look at each step 
individually in case the simula'on is too fast. If the simula'on speed slider is completely to the 
right, the simula'on will run as fast as the host computer allows it. 

• The step 'me indicator simply states how long each simula'on step takes to compute.  

• The step counter indicates on which 'me step of the simula'on it is currently on. 

• The step limit is used to automa'cally pause the simulator aBer the step limit is reached. This is 
especially useful for changing seings during the simula'on. For instance, if the queen pheromone 
needs to diffuse before the agents are allowed to build, the user can set the step limit to 1000 and 
change the seings when the simulator is automa'cally paused.  

• The simulator has a camera which can automa'cally take pictures of the simula'on. The capture 
delay sets the interval on which the camera takes pictures. These pictures are saved in assets/
Captures 

 
Figure 48. The header while running a simulation showing that the interface looks like with the settings menu 

collapsed.
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2.6.2. User tests 
In this sec'on feedback was gathered to suggest improvements for the interface. A good descrip'on 
of what is required of the usability is described in a quote from Dorigo m., et al. 2021 from the 
literature review ‘Swarm Robo'cs: Past, Present, and Future’: “Simula9ons should be highly 
configurable to respond to the needs of a diverse research community. At the same 9me, se]ng up a 
new simula9on configura9on should not require expert knowledge of the inner working of the 
soFware.”  

There are two facets on which the simula'on can be configured:  

1. The rela'on of what input causes what output, which is the control strategy. In TermiteSim the 
control strategy is defined in code, which gives it the freedom for any type of behaviour to be 
created. However, this code has to be compiled for it to work in the simulator. This is not possible 
within TermiteSim itself and requires Unity to compile the code and rebuild the project. An 
example of a research ques'on that can be answered with this func'onality is: Can Greens theory 
of termite aggrega'on at excava'on sites also cause the emergence of pillars? 

2. The parameters that describe the extend to which those rela'ons occur. These parameters are 
adjustable in the seings menu from within TermiteSim. An example of a research ques'on that 
can be answered with this func'onality is: Does a slower pheromone decay rate increase the 
height of the pillars formed from aggregated deposi'on? 

Method

To evaluate this a user test will be conducted with a researcher outside of the project. The success of 
the evalua'on will be concluded from the 'me it takes for them to perform a number of tasks and 
the number of 'mes they require assistance outside of the ini'al explana'on.  

The par'cipant was given the following descrip'on: 

Termites use pheromones to communicate. One of those is the cement pheromone which causes 
aggregated deposi9on. When a termite places a soil pellet, that soil pellet is infused with the 
‘cement’ pheromone. When other pellet carrying termites are in the presence of the cement 
pheromone, it causes them to place that soil pellet, which also contains cement pheromone. This 
causes a posi9ve feedback loop. Over 9me equally spaced deposi9on zones emerge which, over 9me, 
turn into pillars. That later form the walls of the termite mound. 

TermiteSim is a simulator that can simulate termite-like building behaviour. It does this by simula9ng 
a swarm of termite-like builders, which are called agents. These agents can move around, pickup and 
place material, and secrete pheromones. In this simula9on the agents run a simplified version of the 
aggregated deposi9on behaviour. It causes them to move around in an area, pick up material and 
place it down with ‘cement’ pheromone. Placing down a soil pellet happens randomly, but the chance 
to place a soil pellet is greatly increased in the presence of the cement pheromone. 

The par'cipant was then presented with TermiteSim and was asked to try to replicate pillar 
forma'on from aggregated deposi'on in 3 steps: 

1. Your goal is to try to get those deposi9on zones to appear by changing the parameters of the 
simula9on. 

2. Now try to get pillars to form from those deposi9on zones. 
3. Try to increase the height of the pillars. 

To complete these steps the par8cipant will need to perform the following ac8ons: 
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1. Iden8fy the seSngs menu 
2. Scroll the seSng menu  
3. Find the 4 relevant parameters for this task 
4. Change the parameters where necessary 
5. Iden8fy the start buVon to start the simula8on 
6. Use the camera controls to inspect the structure 
7. Interpret whether the change led to the desired result. 
8. Iden8fy the reset buVon to reset the simula8on 
9. Iterate on tuning the behaviour 

Result

The par8cipant took 15 minutes to complete the 3 tasks and asked 8 ques8ons during the task. 
AYerwards they spend another 25 minutes on trying to implement their own ideas with the 
simulator.  
During the test, the par8cipant made the following sugges8ons: 
1. Many of the parameters in the seSngs menu relate to each other. Perhaps nes8ng the parameters 

in sub sec8ons makes this rela8on implicit. 
2. The seSngs menu contains many parameters, of which not all are equally relevant. I suggest that 

you make a dis8nc8on between the commonly used parameters, and advanced parameters, and 
then hide the advanced op8on by default. If a user wants to use the advanced seSngs, there 
should be an op8on to show advanced seSngs to unhide them. 

3. Some of the names of the parameters are not self explanatory. I suggest you add tool8ps to the 
parameters with a descrip8on of their func8on. 

4. In order to evaluate the resul8ng structure, it would be useful to be able to export the terrain. 

Discussion

During the test, 6 out of the 8 ques'ons that were asked were on the meaning or effect of individual 
parameters. Once the par'cipant became familiar with the relevant parameters for the comple'on 
of the tasks, the par'cipant was able to autonomously complete the tasks. The effect of the 
parameters does not necessarily need to be explained, as it can be understood through changing the 
values and seeing the results. That, with the naming of the parameters should allow users to gain an 
understanding if the effect of the parameters without being explicitly told. 

It is interes'ng that the par'cipant kept using the simulator for 25 minutes of their own voli'on aBer 
the test had concluded. The par'cipant was told mul'ple 'mes that the test had ended, yet kept 
changing the parameters and seeing if the behaviour improved. This indicated a willingness to use 
the simulator more. The par'cipant also made a remark on the pheromones not disappearing on the 
reset of the simula'on, but only aBer star'ng the simula'on aBer a reset. This was a bug and has 
since been fixed. Lastly, the par'cipant was surprised that the simulator did not stop by itself. This 
resulted in the addi'on of the step limit to the header, as described in Sec'on 2.6.1. 

Conclusion

The sugges'ons made by the par'cipant would be great addi'ons to the simulator. The current state 
of the interface offers func'onality, but could improve in usability. The par'cipant asked 8 ques'ons 
for the 9 ac'ons that needed to be performed. However, 6 of these ques'on were about only 1 of 
the ac'on. The ac'on in ques'on was finding the relevant parameters. The other ac'ons were 
performed with liCle to no help required. The interface is sufficiently usable given that the user is 
familiar with the parameters. 
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2.7. Program structure 
A simplified UML class diagram can be seen in Figure 49. Both the GeneratedTerrain and 
AgentManager class inherit from Unity's MonoBehaviour class. Meaning these classes will be 
aCached to a Unity GameObject in the scene and their Start and Update func'ons will be called on 
the Start of the program and on every Update/frame, respec'vely. The GeneratedTerrain class 
generates the terrain based on the seings it receives from the SeingsManager. It also holds the 
reference to the mesh as a private variable and any changes made to the terrain will be handled by 
the GeneratedTerrain class. Similarly for the pheromones, who also can only be accessed through 
here. 

The AgentManager class instan'ates the PillarBuilder class and manages interac'on between the 
members and thus has a dependency rela'on with the PillarBuilder class. It follows the Manager 
deign paCern. 

The PillarBuilder class is the implementa'on of the abstract Agent class. The PillarBuilder class is just 
an example implementa'on of the abstract Agent class. Other implementa'ons that don't exhibit 
termite-like behavior could also be created by crea'ng a new realiza'on of the Agent class. 
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AgentManager
+ agents: List<PillarBuilder>
+ grid: List<int>[ , , ]

- InstantiateAgents()
- InitialiseGrid()
- ClearGrid()
- GetGridIndexAt(Vector3): int
- CheckGridCollision(int)

MonoBehaviour
- Start()
- Update()

ScriptableObject

PillarBuilder
- state: enum State

Agent
<<Abstract>>

+ position: Vector3
+ Rotation: Quaternion
+ gridIndex: Vector3Int
# isHoldingMaterial: bool

# StepForward()
# Turn(float)
# IsGrounded()
# Fall()
# DigUpwards()
# IsInsideTerrain(): bool
# PickUpMaterialAt(Vector3)
# PlaceMaterialAt(Vector3)
# SecretePheromone()
# TurnTowards(Vector3)
#TurnAwayFrom(Vector3)

GeneratedTerrain
- Chunks: Chunk[]
- meshCompute: ComputeShader
- densityCompute: ComputeShader
- blurCompute: ComputeShader
- editCompute: ComputeShader
- editPheromone: ComputeShader
- visualisePhero: ComputeShader
- pheroPhysics: ComputeShader
- triangleBuffer: ComputeBuffer
- triCountBuffer: ComputeBuffer
- pheroGridBuffer: ComputeBuffer
- densityTexture: RenderTexture
- pheromoneGrid: float[][]

- GenerateChunk()
- ComputeDensity()
- InitTextures()
+ Terraform()
+ Pheroform()
+ GetPheromonesAtPoint()
- UpdatePheromones()

+ OnStart()
+ OnUpdate()
- TurnTowardsPhero(int)
- TurnAwayFromPhero(int)
- BuildOnPhero(int)
- PickupOffPhero(int)

+ agentSettings: AgentSettings
+ terrainSettings: TerrainSettings
+ pheromoneSettings: PheromoneSettings
+ optimisationSettings: OptimisationSettings

SettingsManager

Figure X. Simplified UML Class diagram of TermiteSim
Simplified UML Class diagram of TermiteSimFigure 49. Simplified Class diagram of TermiteSim 



The Abstract Agent class is the founda'on of any Agent realiza'on and provides its realiza'on with 
the ability to move and interact with the terrain and pheromones. 

The SeingsManager is holds sta'c references to the different types of seings that are used to fine 
tune the behaviour. Using the mediator design paCern, it reduces chao'c dependencies and allows 
the seings to be saved and swapped more easily. This class also inherits from Unity’s 
ScriptableObject class which gives it persistence, allowing its values to be saved. 

2.8. Conclusion  
TermiteSim now has a 3D environment with a terrain that is able to replicate the organic shapes of 
termite-like building, simulate a swarm of hundreds of agents that can perform the tasks as 
described by Bruinsma, simulate a mul'ple pheromones, and finally, an interface to easily change 
the behavioral parameters. Now that all these func'onal requirements have been met, TermiteSim 
can now be used to test whether this func'onality does indeed give it the capability to simulate 
termite-like building behaviour. 
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3. Evaluation 
Now that the simulator as described in Chapter 2 meets the requirements stated in Sec'on 1.6, it 
can now be used to replicate the observed termite building behavior as described in the literature 
(Sec'on 1.4). To do so, TermiteSim will be used to recreate trail forming behaviour (Sec'on 3.1), 
Royal chamber construc'on, (Sec'on 3.2), Covered gallery construc'on (Sec'on 3.3), and Pillar 
construc'on (Sec'on 3.4). Then dynamically formed trails are used to create entrances in the royal 
chamber construc'on in Sec'on 3.5. Lastly, a simple simula'on of a cleaning robot swarm will be 
done in Sec'on 3.6 to demonstrate that TermiteSim can poten'ally also simulate outside the scope 
of termite-like behaviour.  

To evaluate if the required func'onality does indeed give the simulator the capability to reproduce 
termite-like building behavior, the resul'ng structures of Sec'ons 3.2 and 3.3 will be compared in 
their respec've sec'ons to the resul'ng structured produced by similar simula'ons of Ladley and 
Feltell as described in Sec'on 1.5.  
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3.1. Trail forming 
As described in Sec'on 1.4.2, one of the pheromones that termites use is the trail pheromone. This 
pheromone is used in crea'ng trails which aCract other termites to follow those trails, thus crea'ng 
a posi've feedback loop of trail forming.  

TermiteSim includes a control strategy that models this behaviour by having the agents follow 3 rules 
that they execute every step: 

1. Agents move forward. 

2. Agents turn towards the highest pheromone concentra'on they sense with their antennae. 

3. Agents place trail pheromone at their loca'on. 

Through itera'on a set of parameters is found that consistently produces the desired behaviour of 
trail forming. The set of parameters for this simula'on can be seen in Table 4. 

The progression of trail forming with these parameters can be seen in Figures 50 to 58. Trails start 
out as separate low concentra'on trails leB by individual agents, but they gradually merge together 
to form strong, high concentra'on trails. 

Number of agents 300
Inter-agent collisions Off
Decay 0.001
Diffusion 0.005
Deposit amount 0.02
Attractivity 20
Antennae length 2

Table 4. Relevant parameters used for the 
simulation of dynamic trail forming.
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Figure 50. T = 50. The agents 
randomly move around. 

Figure 51. T = 100. Some areas 
with slightly higher pheromone 

concentrations appear.

Figure 52. T = 150. The first 
indications of trails start to appear. 

Figure 53. T = 200. Trails become 
more defined. 

Figure 54. T = 300. The initial trails 
reach the maximum concentration 

in some areas.

Figure 55. T = 400. The trails 
strengthen and become wider. 

Figure 56. T = 800. The main trails 
are now clearly defined. 

Figure 57. T = 1600. The number 
smaller trails reduce, while the 

main trails become more 
pronounced.

Figure 58. T = 2400. The trails 
have reached a stable state. Most 

of the agents travel within the 
trails.
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3.1.1. Parameter influences on trail forming 
TermiteSim allows the tuning of parameters through the seings menu. These parameters affect the 
behaviour of the agents, and pheromones. In this sec'on, several parameters are individually 
changed and the resul'ng pheromone trails are compared to the baseline trail that was generated in 
the sec'on above using the parameters in Table 4. 

Antennae length in trail forming

Agents turn towards pheromones they are aCracted to, and turn away from pheromones they are 
repelled by. They do this by sampling the pheromone concentra'ons at the ends of their antennae. 
The antennae length determines the distance from which the agent will be able to sense 
pheromones. The larger the antennae length, the further away from their posi'on pheromones will 
be sampled. In the base seings the antennae length is set to 2. To see the effect increased antennae 
length has on trail forming, the antenna length was changed to 10 and the simula'on was done 
again. As can be seen in Figure 59, the trail that is formed is much smoother and rounder. One 
explana'on of this is that when agents approach a sharp corner in the trail, the agents start turning 
earlier because of the increased antennae length. This causes them to stray of the trail and ‘cut 
corners’ and create a new trail which is less sharp as is illustrated in Figure 60. 

 
Figure 59. Comparing increased antennae length (Right) to the base settings (Left) at T = 2400. 

Smoother and rounder trail forming.
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Attractivity in trail forming

When an agent senses a pheromone, how much it turns towards that pheromone is determined by 
the aCrac'vity. The higher the aCrac'vity, the sharper the turn towards the pheromone. A nega've 
aCrac'vity value will result in the agent being deterred by the pheromone. 

The effect of aCrac'vity on trail forming can be seen in Figure 61. With decreased aCrac'vity, the 
agents don’t follow the trails, and the the resul'ng trails are poorly defined. An increase in 
aCrac'vity leads to less agents straying from the trail, and trails being beCer defined. 

 

Figure 60. Illustration of corner cutting due to increased 
antennae length. (Red is an agent, Yellow is the antennae 
sample points, Green is the existing trail, blue is the path 

the agent will follow.

Figure 61. Comparing decreased attractivity (Left) and increased attractivity (Right) to the base settings 
(Centre) at T = 2400. Decreased attractivity leads to less agents staying on the trail and a fuzzier, less 
defined trail. Increased attractivity leads to more agents staying on the trail and a more defined trail.
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Pheromone diffusion in trail forming

Once pheromone is placed, it diffuses through the space. How much the pheromone diffuses 
influences how long trails will persist aBer placement, and how large the gradient at the edges of the 
trail will be.  

As can be seen in Figure 62, decreased diffusion leads to more trails, which are thin but well defined. 
There is also a tendency for the trails to follow the cardinal direc'ons. This is likely due to the fact 
that the pheromone is placed into a cubic grid. Increasing the diffusion causes the trail to become 
less defined, and only one trail was formed during the simula'on. This is because most trails 
disappear before they become strong enough to aCract enough agents to maintain the trail. 

 

Pheromone decay in trail forming

Pheromones decay at a constant rate. This makes that pheromones fade over 'me and eventually 
disappear. Without decay, pheromone trails will persist forever and with new pheromone being 
added, the amount of pheromone in the simula'on will only increase un'l the simula'on space is 
completely filled with pheromone. Decreasing pheromone decay leads to more and wider trails 
being constructed, where more agents s'ck to the trails, as seen in Figure 63. Increasing pheromone 
decay leads to fewer and thinner trails being created with fewer agents on the trail. 

Figure 62. Comparing no diffusion (Left) and increased diffusion (Right) to the base settings (Centre) at T = 
2400. Decreased diffusion leads to many more trails with a higher tendency to follow the cardinal directions 

of the grid. The trail that emerges with increased diffusion is less defined and does not reach far from the 
center.
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Moving trails

During these tests, one unintended behavior was observed. The trails, once solidified, don’t remain 
in place. They shiB, and change shape over the course of a few thousand simula'on steps, as can be 
seen in Figures 64 to 72. The cause of this, and its implica'ons are further described in Sec'on 4.1. 

Pheromone trails showing the 
effect of decreased decay with 

300 trail following agents at 
T=2400. More and wider trails 

emerge. Most agents stay on the 
trail.

Pheromone trails with the base 
settings with 300 trail following 

agents at T=2400. The 
emergence of a strong, clearly 

defined trail. 

Pheromone trails showing the 
effect of increased decay with 300 
trail following agents at T=2400. 
Fewer and thinner trails emerge.  

Figure 63. Comparing decreased decay (Left) and increased decay (Right) to the base settings (Centre) at T 
= 2400. Decreased decay causes to more and wider trails emerge. Most agents stay on the trail. Increased 

decay leads to fewer and thinner trails with less agents on them.
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Figure 64. Shifting trails at T = 
2000.

Figure 65. Shifting trails at T = 
4000.

Figure 66. Shifting trails at T = 
6000.

Figure 67. Shifting trails at T = 
8000.

Figure 68. Shifting trails at T = 
10000

Figure 69. Shifting trails at T = 
12000

Figure 70. Shifting trails at T = 
15000

Figure 71. Shifting trails at T = 
18000

Figure 72. Shifting trails at T = 
20000
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3.2. Royale chamber construction 
As described in Sec'on 1.4, observa'on in bruinsma’s thesis indicates the presence of a queen 
pheromone that s'mulates termites to deposit material around the queen. The proposed 
mechanism is that the queen constantly emits the queen pheromone which triggers agents to build 
within a certain range of pheromone concentra'on. This was replicated in simula'ons by Ladley and 
Feltell was the emergence of the royal chamber as seen in Figures 9 and 13. 

To replicate this in TermiteSim, agents have 2 states. Each state behaves differently. The first state is 
the gathering state. Here they look for material to pick up, and do so by execu'ng these rules every 
simula'on step: 

1. The agents move forward. 

2. The agent moves away from the queen pheromone, dependent on the queen 
pheromone’s aCrac'vity. 

3. If the pheromone concentra'on is within the pickup range, then it will have a chance of 
picking up material, and going into the building state. 

The second state is the building state, in which the agent searches for a spot to place material it 
picked up. The rules it executes each simula'on step are: 

1. The agents move forward. 

2. The agent moves towards the queen pheromone, dependent on the queen pheromone’s 
aCrac'vity. 

3. If the pheromone concentra'on is within the deposit range, then it will have a chance of 
deposi'ng material underneath it, and going back into the gathering state. 

This simula'on was done using the parameters seen in Table 5. The progression of this simula'on 
can be seen in Figure 73 to 81. Notable is that for this simula'on the aCrac'vity was set to 0, so the 
queen pheromone did not affect the movement of the agents. Effec'vely removing rule number 2 
for both states. 

Decay 0.000001
Diffusion 0.1
Deposit Amount 5
Attractivity 0
Antennae length 2
Minimum Deposit Threshold 0.05
Maximum Deposit Threshold 0.1
Minimum Pickup Threshold 0
Maximum Pickup Threshold 0.01
Deposit Chance 0.01
Pickup Chance 0.01

Table 5. Relevant parameters used for the simulation of 
royal chamber construction.
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Another simula'on was done with aCrac'vity to the queen pheromone. This increased building 
efficiency and halved the number of simula'on steps required to form a complete royal chamber. 
The result can be seen in Figure 82. 

Figure 73. Royal chamber 
formation at T = 0. The queen 

pheromone has spread out to a 
smooth gradient. Construction 

has not yet started.

Figure 74. Royal chamber 
formation at T = 100. The initial 

construction of the royal chamber 
begins in the shape of a ring 

around the queen.

Figure 75. Royal chamber 
formation at T = 200. The ring 

increases in height. 

Figure 76. Royal chamber 
formation at T = 400. A clear, flat 
area around the ring shows the 
area where the agents neither 
deposit not pick up material.

Figure 77. Royal chamber 
formation at T = 600. The ring 

starts to be built inwards to close 
the opening in the top. 

Figure 78. Royal chamber 
formation at T = 800. Building 

progress slows down as the area 
for deposit has decreased in size, 
and less agents stumble across it.

Figure 79. Royal chamber 
formation at T = 1000. 
Minor building progress 

 

Figure 80. Royal chamber 
formation at T = 1200. 

The hole is almost sealed. 

Figure 81. Royal chamber 
formation at T = 1500. The hole at 
the top has been sealed and the 

royal chamber is complete.
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Laminar air flow

To make a case for the theory that pheromones were the main mechanism behind the construc'on 
of the royal chamber, Bruinsma introduced a laminar air flow to disrupt the pheromones during 
construc'on. This caused the royal chambers shape to be elongated with the flow of air, proving that 
pheromones played a part in the construc'on. Ladley and Feltell also recreated this experiment in his 
simula'on, the results of which can be seen in Figures 10 and 14. TermiteSim also supports the 
introduc'on of airflow, to affect the pheromones. This allows that experiment to also be recreated in 
TermiteSim. The result of that simula'on can be seen in Figure 83, and a sec'on view of the royal 
chamber can be seen in Figure 84. This same experiment was recreated with an upwards draB. This 
led to a ver'cally lengthened royal chamber, which can be seen in Figures 85 and 86. 

 

Figure 82. A completed royal chamber at T=800. 
Construction of the royal chamber with 

attractivity to the queen pheromone decreases 
the time it takes to construct a completed royal 

chamber.

Figure 83. Royal chamber construction under the 
influence of lateral airflow. (Red are agents, purple is the 

queen pheromone)

Figure 84. A view inside the royal chamber 
constructed under the influence of lateral airflow. 

(Yellow is queen, red are agents)
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Following queen shape

Another observa'on Bruinsma made was that the construc'on of the royal chamber closely followed 
the shape of the queens body. Feltell was able to reproduce this in his paper as seen in Figure 15. 
This was also replicated in TermiteSim by placing mul'ple queens in an L shape and reducing their 
pheromone deposi'on, so that the total remains equal. Then 300 templa'ng agents were added to 
the scene and build a royal chamber around the L-shaped queen as can be seen in Figures 87 to 89. 
As seen in Figure 90, the shape of the royal chamber does not follow the shape of the queens body 
closely. But it is affected by the queens shape, resul'ng in a somewhat triangular chamber. The 
shape of the resul'ng chamber can likely be adjusted by tuning the used parameters. 

 

Figure 85. Royal chamber construction under the 
influence of an updraft. (Red are agents, purple is the 

queen pheromone)

Figure 86. A view inside the royal chamber 
constructed under the influence of an updraft. (Yellow 

is queen, red are agents)

Figure 87. T = 1000. Showing the 
pheromone gradient, before the 

agents start building.

Figure 88. T = 1500. The agents 
deposit material around the 
queen, following her shape.

Figure 89. T = 2500. Completed 
royal chamber around an L-

shaped queen.
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Figure 90. Inside the triangular royal chamber 
around the L-shaped queen. Showing that the 

royal chamber does not follow the queens shape 
closely, but is influenced by the queens shape.
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3.3. Covered galleries construction 
3.3.1. Covered galleries around a trail template 
Another behaviour that was observed is the deposi'on of material at the edges of strong trails, 
which over 'me leads to the crea'on of covered galleries. Ladley simulated this by introducing a set 
of trail agents that create a single trail from one side of the simula'on to the other and added 
builder termites that build along the edges of the trail seen in Figure 11 and 16 for Feltells recrea'on. 
Feltell then did another simula'on with two crossing trails as seen in Figure 17. These simula'ons 
are described in more detail in Sec'on 1.4.5. These simula'ons were also recreated in TermiteSim. 
However, currently, TermiteSim only supports one type of agent. Therefore, the trail in the following 
simula'ons is placed as a template, instead of dynamically placed by moving agents. To place this 
template trail, the sta'onary queens from royal chamber construc'on are placed in the shape of the 
trail and repurposed to con'nuously place trail pheromone instead of queen pheromone. The agents 
in the simula'ons adhere to the following rules: 

1. Agents move forward. 

2. Agents turn towards the highest trail pheromone concentra'on they sense with their antennae. 

3a. If the agent is in the gathering state: If the pheromone concentra'on is within the pickup range, 
then it will have a chance of picking up material, and going into the building state. 

3b. If the agent is in the building state: If the pheromone concentra'on is within the deposit range, 
then it will have a chance to deposit material, and going into the gathering state. 

Using the parameters in Table 6, the first simula'on can be seen in Figures 91 to 93. For the first 
1000 simula'on steps, the agents aren't allowed to build to allow the pheromone gradient to reach a 
stable state. The construc'on progresses faster in the centre of the covered gallery, as the density of 
agents is higher there due to the agents returning to the centre aBer reaching the edge of the 
terrain. ABer 10000 steps, the construc'on of the covered gallery is completed.  

Decay 0.0001
Diffusion 0.2
Deposit Amount 0.1
Attractivity 150
Antennae length 2
Minimum Deposit Threshold 0.05
Maximum Deposit Threshold 0.15
Minimum Pickup Threshold 0
Maximum Pickup Threshold 0.04
Deposit Chance 0.01
Pickup Chance 0.01

Table 6. Relevant parameters used for the simulation of 
covered galleries construction around a template trail.
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Using the same parameters, another trail was added perpendicular to the first trail. The simula'on 
can be seen in Figures 94 to 96. The construc'on progresses significantly slower. This is likely 
because the area where agents can pick op material has reduced, and more material is needed as 
there are more walls to build. However, even aBer 100000 steps the construc'on is not finished. 
There is a small chance that agents get stuck at the edge of the terrain. Usually this is is insignificant, 
but for extremely long simula'ons, such as this one, it can cause many agent to get stuck over 'me. 
In this simula'on, at T = 100000, 95% of the agents got stuck, which caused building progress to 
almost completely stop.  

 

Another simula'on was done, where the parameters 
were adjusted to those in Table 7. This was done to 
decrease the amount of material required to build the 
covered galleries, by decreasing the width of the trails 
and decreasing the amount of material agents pick up 
and place as can be seen in Figures 97 to 99. However, 
due to the decreased size of the galleries, the agents get 
stuck inside the narrow ends of the tunnels before 
construc'on could be completed. 

Figure 91. Covered gallery at T = 
1000. First allowing the 

pheromones to reach a stable 
state before allowing the agents to 

build.

Figure 92. Covered gallery at T = 
5000. The agents are constructing 

covered gallery. The centre is 
more developed as the density of 

agents there is higher.

Figure 93. Covered gallery at T = 
10000. The finished covered 

gallery. 

Figure 94. Covered gallery 
intersection at T = 1000. Showing 
the pheromone gradient, before 

the agents start building. 

Figure 95. Covered gallery 
intersection at T = 45000. Building 
slows down as agents start to get 

stuck and cant find material to 
pick up.

Figure 96. Covered gallery 
intersection at T = 100000. 

Building has almost completely 
come to a halt as many agents 

are stuck.
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Decay 0.0003
Deposit Chance 0.1
Deposit radius 2
Deposit weight 5

Table 7. Relevant parameters changed 
for the simulation of covered galleries 

construction around two crossing 
template trails.



 

The parameters were adjusted once more to the values 
in Table 8, to make the galleries wider, while 
maintaining thin walls. This 'me the construc'on of 
the covered galleries around the intersec'ng trails was 
successful as seen in Figures 100 to 102.  

 

Figure 97. Covered gallery 
intersection at T = 1000. Showing 
the pheromone gradient, before 

the agents start building. 

Figure 98. Covered gallery 
intersection at T = 8000. Showing 
thinner and slimmer walls forming 

around the trail. 

Figure 99. Covered gallery 
intersection at T = 20000. The 

construction comes to a halt, as 
agents get stuck inside the narrow 

tunnel.

Figure 100. Covered gallery 
intersection at T = 1000. Showing 
the pheromone gradient, before 

the agents start building. 

Figure 101. Covered gallery 
intersection at T = 10000. The 

galleries walls are thinner, but the 
width is similar to the single trail 

simulation.

Figure 102. Covered gallery 
intersection at T = 45000. The 

completed intersecting galleries. 
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Decay 0.0003
Diffusion 0.3
Deposit Amount 0.2
Attractivity 50

Table 8. Relevant parameters changed for 
the simulation of covered galleries 

construction around a template trail.



3.3.2. Covered galleries around dynamic trails 
As demonstrated in Sec8on 3.1, agents are able to dynamically form trails. By combining the trial 
forming control strategy with the template builder control strategy, a new type of agent is created 
that both lays trails and and build ad the edges of those trails. This agent is called the Gallery builder 
agent. The rules it follows are: 

1. Agents move forward. 

2. Agents turn towards the highest trail pheromone concentra'on they sense with their antennae. 

3. Agents place trail pheromone at their loca'on. 

4a. If the agent is in the gathering state: If the pheromone concentra'on is within the pickup range, 
then it will have a chance of picking up material, and going into the building state. 

4b. If the agent is in the building state: If the pheromone concentra'on is within the deposit range, 
then it will have a chance to deposit material, and going into the gathering state. 

The following simula'on was done with the parameters seen in Table 9, and a swam of 300 gallery 
builder agents.  

The desired behaviour is for agents to only pick up material once the a trail has consolidated. Then to 
pick up material if the trail pheromone concentra'on is high, and place it at the edge of the trail. This 
should cause some trails to be established before construc'on begins. During the simula'on seen in 
Figures 102 to 105, trails are are formed but as soon as those trails start to consolidate they are 
blocked of by material being placed on them. This prevents the trail from being followed, and causes 
it to become neglected aBer which it decays and disappears.  

One explana'on of the trail blocking behaviour is that it occurs because as trails consolidate, their 
pheromone concentra'on increases. And as it increases, it has to first pass through the 
concentra'on range which s'mulates deposi'on, which causes the agents that were traveling the 
trail to deposit on top of it. This kills the trail before it can surpass the pheromone concentra'on 
range that s'mulates deposi'on. 

Decay 0.001
Diffusion 0.005
Deposit Amount 0.02
Attractivity 20
Antennae length 2
Minimum Deposit Threshold 0.1
Maximum Deposit Threshold 0.5
Minimum Pickup Threshold 0.5
Maximum Pickup Threshold 10
Deposit Chance 0.01
Pickup Chance 0.01

Table 9. Relevant parameters used for the simulation of 
covered galleries construction around dynamic trails.
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Mul'ple changes to the parameters were made in an aCempt to get covered galleries, but none 
were successful. Some of these aCempts can be seen in Figures 106 to 108. Perhaps there is a set of 
parameters that results in the desired behaviour, but could not be found at this 'me. One factor that 
might poten'ally play a role in thee inability to construct covered galleries around dynamic trails is 
the tendency of trails to change over 'me, first described in Sec'on 3.1, later elaborated in Sec'on 
4.1. As the trails change shape, the construc'on around the trails doesn’t which causes 
misalignment. This can be compared to construc'on following a blueprint, and then subtly changing 
the measurements on the blueprint. 

 

Figure 103. Covered gallery around 
dynamic trails at T = 1000. Formed 

trails are being blocked off. Only 
the centre trail is constant. 

Figure 104. Covered gallery around 
dynamic trails at T = 1500. Blocked 

off trails, are neglected and 
disappear. 

Figure 105. Covered gallery around 
dynamic trails at T = 5000. No 
progress in building covered 

galleries, only a crater around the 
centre.

Figure 106. Covered gallery around 
dynamic trails at T = 5000, diffusion 
= 0.01. Increasing the diffusion in an 

attempt to create less, but wider 
and stronger trails. 

 

Figure 107. Covered gallery around 
dynamic trails at T= 5000. deposit 
chance = 0.001. Decreasing the 

deposit chance to reduce the 
chance of a trail being blocked 

before consolidation.

Figure 108. Covered gallery around 
dynamic trails at T=10000. Adjusted 

pickup and deposit thresholds. 
Lowered the deposit range to 0.001 
- 0.1, and lifted pickup restrictions. 
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3.4. Pillar building 
One of the first behavior described by Bruinsma is aggregated deposi'on by the cement pheromone 
as described in Sec'on 1.4.2. At its core it just causes the agents to deposit material on top of the 
cement pheromone, which is secreted when they deposit material, causing a posi've feedback loop 
of them piling soil pellets on top of soil pellets. In the Bruinsma’s observa'on he describes a 
emergence of equally spaced pillars. There are no other simula'ons that reproduce this behavior. 

In order to reproduce this behaviour, the pillar builder agent type is created. Pillar builders have 2 
states. The first state is the gathering state. Here they look for material to pick up, and do so by 
execu'ng these rules every simula'on step: 

1. The agents move forward. 

2. The agent moves away from the cement pheromone, dependent on the cement 
pheromone’s aCrac'vity. 

3. If the cement pheromone concentra'on is within the pickup range, then it will have a 
chance of picking up material, and going into the building state. 

The second state is the building state, in which the agent searches for a spot to place material it 
picked up. The rules it executes each simula'on step are: 

1. The agents move forward. 

2. The agent moves towards the cement pheromone, dependent on the cement 
pheromone’s aCrac'vity. 

3. If the cement pheromone concentra'on is within the deposit range, then it will have a 
chance of deposi'ng material underneath it, and going back into the gathering state. 

4. If there is no cement pheromone at the agents loca'on, it has a small chance to deposit 
material, crea'ng a new deposi'on zone. 

The idea is to have a deposi'on zone with a large pheromone gradient around it. This large 
pheromone gradient has 2 func'ons, aCrac'ng agents from a large distance, and preven'ng the 
crea'ng of new deposi'on zones within the gradient. Mul'ple simula'ons where done to aCempt to 
create equally spaced pillars. However, none where successful. In order to get a large pheromone 
gradient, the diffusion rate has to be high. But a high diffusion rate would also cause the 
pheromones of a deposi'on to dissipate before it could turn into a deposi'on zone. Reducing the 
pheromone diffusion resulted in some pillars being formed, but those merged together over 'me as 
seen in Figures 109 to 111. A poten'al cause is that as the pheromone concentra'on increases, the 
area of the deposi'on zone that has the minimum required concentra'on for deposi'on becomes 
larger, thus expanding the deposi'on zone. This causes agents to also deposit at the edge of that 
zone, further increasing its size. If this is true, then lowering the deposi'on chance should cause 
deposi'on zones to merge sooner, and lowering the deposit chance should cause deposi'on zones 
to become pillars. The result of those changes lead to the simula'ons seen in Figure 112 and 113. 
Although Figure 113 does show a pillar, it is only one, and not mul'ple equally spaced pillars. It 
would be interes'ng to see what would happen if those seings were used on a larger world size. 
Perhaps mul'ple of those pillars would arise. 
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There might be a set of parameters for this control strategy that results in the desired behaviour of 
pillar building, but it was not found. However, as described in Sec'on 1.4.2, trail pheromone may 
inhibit deposi'on. Perhaps what supports the emergence of equally spaced pillars is not a large 
gradient of cement pheromone, but the trails between the deposi'on zones that prevent the 
deposi'on zones from expanding ver'cally. Therefore, a new control strategy is created that causes 
agents to also lay trail pheromone, which inhibits deposi'on. Mul'ple varia'ons on parameters were 
run with this control strategy of which one result can be seen in Figure 114. Although the trails 
reduced the merging of deposi'on zones, it does not prevent it and over 'me, the formed pillars s'll 
merge. 

Figure 109. Attempt at pillar 
formation at T = 400. Initial 
deposition zones appear. 

Figure 110. Attempt at pillar 
formation at T = 800. Separate 

pillars form. 

Figure 111. Attempt at pillar 
formation at T = 2400. All pillars 

have merged together. 

Figure 112. Simgular pillar formation at T = 25000. 
Decreased deposition chance leads a singular pillar 

in the centre of the world.

Figure 113. Increased deposition pillar formation at T 
= 1000. Increased deposition chance leads to rapid 

expansion of deposition zones.
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Figure 114. Attempt at pillar formation with dynamic trails at T = 3000. Pillar building with trail pheromone 

that inhibits deposition. Does not completely prevent merging of pillars, but does reduce it.
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3.5. Mound Building 
The last behaviour that was replicated from previous simula'ons is the construc'on of the royal in 
the presence of trail pheromones as seen in Figures 12 and 18. This was done by using the Mound 
builder control strategy in TermiteSim. This control strategy is made to experiment with the 
behaviour that occurs when combining all previous control strategies. Agents following this control 
strategy will be affected by the queen, cement and trail pheromone. The effects can be configured to 
alter the deposit and pickup chances, and can also limit the agents to only perform those ac'ons in a 
certain range of pheromone concentra'on. These affects can be configured individually for each 
pheromone type. For these simula'ons the pickup and deposit chances were 0.01 and 1 respec'vely 
and not affected by pheromones. This means that the builders have a 1% chance to pick up new 
material and a 100% to place it down if the condi'ons allow so. By seing the minimum and 
maximum thresholds to 0 and 10 respec'vely, there will be no restric'ons on that behaviour. 

First a simula'on was done that combines dynamic trail forming with royal chamber construc'on 
with the parameters set as shown in Table 10. Here the trail inhibits deposi'on by only allowing 
agents to deposit material if the trail pheromone concentra'on is between 0 and 0.01. The results of 
this simula'on can be seen in Figures 115 to 118, and a closer look at the final structure can be seen 
in Figure 118. In the first 1000 simula'on steps, agents are prevented from picking up material to 
allow the pheromone trails and the queen pheromone template to reach a stable state. In Figure 116 
can be seen that equally spaced pillars appear that are increased in height and connected in Figure 
117.  

Pheromone Queen Trail
Decay 1E-5 0.002
Diffusion 1 0
Deposit Amount 5 0.02
Attractivity 50 20
Minimum Deposit Threshold 0.08 0
Maximum Deposit Threshold 0.1 0.01
Minimum Pickup Threshold 0 0
Maximum Pickup Threshold 10 10

Table 10. Relevant parameters used for the simulation of royal chamber construction in the presence of 
dynamic trails.
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Note that the royal chambers roof remained unfinished. This is likely due to the fact that most agents 
stay close to the trails, which were not formed on top of the chamber. This lead to very few agents 
reaching the top of the roof, lowering the frequency of construc'on on the roof. 

In an aCempt to increase building efficiency, the cement pheromone was added with the parameters 
presented in Table 11. The effect of the cement pheromone was only to aCract agents that carry 
material to place, by increasing its aCrac'vity. The cement pheromone did not influence the chance 
for deposi'on as this change was already 100% as stated above. This lead to the simula'on seen in 
Figures 119 to 122. The resul'ng structure showed that only 1 individual pillar emerged, and instead 

Figure 115. Royal chamber with 
trails at T = 1000. Showing the 

pheromone gradients, before the 
agents start building.

Figure 116. Royal chamber with 
trails at T = 4000. Showing the 
construction of equally spaced 

pillars around the queen.

Figure 117. Royal chamber with 
trails at T = 15000. Showing the 

complete royal chamber with 
entrances at ground level.

Figure 118. Construction of the royal chamber in the presence of trail pheromone. Showing the creation of 
entrances at the location of where trails intersect with the royal chamber.
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walls were constructed. In Figure 122 can be seen that these walls were later turned into pillars by 
the agents removing material aBer the walls reached a certain height. These pillars were thinner 
than the resul'ng structure from the simula'on without cement pheromone. 

Pheromone Cement
Decay 1E-5
Diffusion 0.01
Deposit Amount 1
Attractivity 100
Minimum Deposit Threshold 0
Maximum Deposit Threshold 10
Minimum Pickup Threshold 0
Maximum Pickup Threshold 10

Table 11. Relevant parameters of cement pheromone used for the simulation of royal chamber construction 
around dynamic trails and cement pheromone.
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Figure 119. Royal chamber with 
trails and cement pheromone at T 
= 1000. Showing the pheromone 
gradients, before the agents start 

building.

Figure 120. Royal chamber with 
trails and cement pheromone at T 
= 1600. Showing the creation of a 
large wall and 1 pillar around the 

queen.

Figure 121. Royal chamber with 
trails and cement pheromone at T 
= 10000. Showing the completed 
royal chamber with entrances at 

ground level.

Figure 122. Construction of the royal chamber in the presence of trail pheromone and cement pheromone. 
Showing the side from which walls were initially constructed that now have been turned into pillars with 

wide gaps for trails.
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3.6. Non termite behaviour 
As a proof of concept, a simple example of non-termite behaviour is also replicated in TermiteSim. 
This is a simula'on of 20 cleaner bots spreading a cleaning substance over a flat area. To model this 
cleaning substance, trail pheromone with no decay nor diffusion is used. The relevant parameters 
used for this simula'on can be seen in Table 12. The cleaner bot agents follow 3 rules: 

1. Agents move forward. 

2. Agents turn away from the cleaning substance. 

3. Agents place cleaning substance at their loca'on. 

As can be seen in Figures 123 to 125, the bots first move straight forward, causing the area to be 
sec'oned into blocks. They then start filling these areas un'l they are surrounded by cleaning 
substance, at which point they cross over to a new sec'on. This repeats un'l the en're area is filled. 

 

Another simula'on was done where the agents move randomly, without being affected by the 
cleaning substance, to compare the efficiency for covering the area which can be seen in figures 126 
to 128. 

 

Figure 123. Cleaner bots at T = 
150. Cleaner bots section the 

area.

Figure 124. Cleaner bots at T = 
450. The sections are filled. 

Figure 125. Cleaner bots at T = 
1500. The entire area is covered 

equally.

Figure 126. Random bots at T = 
150. Agents moving randomly. 

 

Figure 127. Random bots at T = 
450. Some areas are frequented, 
while many remain untouched. 

Figure 128. Random bots at T = 
1500. Many areas are not yet 

cleaned.
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Decay 0
Diffusion 0
Deposit Amount 0.2
Attractivity -500
Number of agents 20

Table 12. Relevant parameters for the 
simulation of cleaner robots.



3.7. Conclusion 
As demonstrated in this chapter, TermiteSim is able to replicate similar construc'ons as shown in 
previous simula'ons. This proves that the required capabili'es for further research of termite-like 
building behaviour through simula'ons have been met as described in Sec'on 1.6. TermiteSim also 
demonstrates it can simulate the forma'on of trails and change the characteris'cs of those trails by 
tuning the parameters of the simula'on. Lastly, TermitesSim creates a simple proof of concept for 
simula'ng non-termite-like behaviour within TermiteSim. Demonstra'ng that TermiteSim can be 
used outside the scope of termite research, in order to design the behaviour of robot swarms. 

	 81



4. Discussion 
We looked at the poten'al of swarm robo'cs in the construc'on industry, and iden'fied that more 
research needs to be done (Chapter 1). For this research a simulator was needed, and a list of 
requirements for such a simulator was determined (Sec'on 1.6). This was list compared to currently 
available simulators, but it was found that none of them suffice (Sec'on 1.7). Therefore, this project 
created a new simulator, named TermiteSim, following the requirements (Chapter 2). This 
func'onality is then demonstrated by using TermiteSim to recreate the observed behaviours 
described in the literature in Sec'on 1.4.  

As shown in sec'on 3.3.1, small changes to the parameters can dras'cally change the resul'ng 
behaviour. In this these, most of the simula'on presented were the ones that succeeded in 
demonstra'ng coherent behaviour. But many of the parameter seings tried during the project did 
not result in the desired behaviour. For instance, the balance between decay and pheromone 
deposi'on is very fine. To liCle decay and the en're terrain gets covered, too much decay and 
pheromones disappear before they can affect the swarms behaviour. However, the fine balance 
between parameters might also be due to the control strategy that u'lizes those parameters. It 
would be interes'ng to compare the robustness of range threshold based control strategies as 
implemented in Chapter 3, to response-threshold func'on based control strategies. 

Interes'ng to note is the explana'on for smoother trail forming due to increased antennae length, as 
illustrated in Figure 60. This proposes that due to the antennae implementa'on, agents will always 
cut corners when they are aCracted to a pheromone. If that is indeed the case, then this might be an 
explana'on for the shiBing trails described in sec'on 3.1.1 and shown in Figures 64 to 72. As stated 
before, these shiBing trails might have a large impact on emergent behaviour, and be the reason that 
no covered galleries could be constructed around the dynamically formed trails as described in 
Sec'on 3.3.2. This might also influence agent behaviour in other was that are not yet observed.   

The second behaviour that was demonstrated is the construc'on of the royal chamber (Sec'on 3.2). 
This behaviour was successfully replicated the structures from previous simula'ons (Sec'on 1.4.5).  

As described in Sec'on 1.4.2, the queen pheromone also s'mulates the agents to pick up material. 
This was not included in the simula'ons presented in Chapter 3, but was briefly experimented with. 
Bruinsma (1979) describes that the queen is slowly lowered due to this effect, but in the simula'ons 
this lead to a rapid descent that created a large hole. In one case this would even lead to the queen 
not descending because the pickup chance was so high that agents would pick up material just 
within the walls of the royal chamber. This resulted in a sort of island in the centre of the royal 
chamber on which the queen was seated. This could also be described as a throne or a pedestal. This 
is also one of the behaviours that would be interes'ng to research further. 

The third behaviour was the construc'on of covered galleries (Sec'on 3.3). In the first set of 
simula'ons the construc'on was created around a sta'onary pheromone trail. The balance of the 
parameters for this simula'on much less forgiving as a small change could prevent the structure 
from being completed. The larges cause of this was agents geing stuck in various geometries of the 
terrain. This highlighted some limita'ons of the simulator as a result of bugs. If these bugs are fixed, 
then the simula'on could affec'vely run much longer, allowing for much larger structures to be built. 
Then simula'ons were done in an aCempt to recreate those same covered galleries construc'on 
around dynamic trails placed by agents. This proved to be more difficult than recrea'ng the previous 
behaviours. This could be due to the fragile balance between the parameters, or the shiBing trails 
discussed above. It would be interes'ng to further aCempt to replicate covered galleries around 
dynamic trails, as this would poten'ally allow the mound created in Sec'on 3.5 to extend past just 
the royal chamber, which in turn could lead to new emergent structures. 
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In Sec'on 3.6 A very simple proof of concept of a cleaner robot swarm is simulated in order to 
demonstrate that TermiteSim can simulate outside the scope of just termite behaviour. However, 
these simula'ons are done on a flat surface, where a the dynamic approach that is simulated is not 
op'mal. Where the value of this dynamic approach really lies is in uneven geometries. It would be 
interes'ng to perform that simula'on again on uneven terrain. This should be possible by simply 
adjus'ng the terrain seings and running the vacuum bot control strategy. 

In the simula'on that were done, all of them stayed rela'vely close to the surface of the terrain. 
There is some literature described in Sec'on 1.4 that suggest the possibility of termites crea'ng 
excava'on sites. It would be very interes'ng for a whole new control strategy to be created that 
causes these excava'on sites to emerge, and see what emergent behaviours these cause. Both 
isolated and in combina'on with other pheromones as this could lead to the emergence of 
underground structures. 

To conclude, these simula'ons show that there are many different balances of parameters and 
control strategies that can lead to termite mound-like structures. And that there is a balance in the 
parameters that must be found through itera'on. Though this balance can be found if given enough 
'me to iterate. It is difficult to conclude wether a control strategy does not follow the behaviour of 
termites, or that the balance of parameters is very delicate for it to succeed. And that even if a 
desired behaviour is observed, the control strategy does not necessarily reflect the underlying 
mechanisms that termites use. That being said, it is incredibly interes'ng to experiment with the 
emergent behaviour and structures by just changing the parameters. Although many hours of 
simula'ons have been simulated using TermiteSim there is a sense that it has been only the surface 
of what could be done with it. 

4.1. Limitations of the evaluation 
Despite offering the required func'onality, there are s'll several limita'ons to TermiteSim. 

Feltell demonstrated the use of a response-threshold func'on instead of the window range method 
applied by Ladley as described in Sec'on 1.4.5. The control strategies demonstrated in TermiteSim in 
Sec'on 3.2 Royal chamber construc'on and 3.3 Covered galleries construc'on use a window range, 
and Sec'on 3.4 Mound construc'on uses a linear rela'on between drop chance and pheromone 
concentra'on. Which is a different rela'on between pheromone concentra'on and pickup and 
deposit chances than the literature suggests. This possibly lead to different results as the parameters 
for pheromone diffusion could not be compared to those of Feltell. 

One decision that was made was to have agents turn back towards the centre when they reach the 
edge of the terrain as described in Sec'on 2.4.2. This was done to prevent agents from geing stuck 
near the edges. However, in Sec'on 3.3.1 this s'll lead to agents geing stuck near the edge and 
preven'ng the simula'on from comple'ng the structure. This chance is very small, but when 
running long simula'ons (e.g. 100.000 simula'on steps) a termite swarm of 300 can have 250 agents 
geing stuck, reducing construc'on efficiency at the later stages of the simula'on. Thus effec'vely 
limi'ng maximum dura'on of a simula'on done in TermiteSim. Besides this, this implementa'on 
also causes the density of agents to be ar'ficially inflated in the centre of the terrain if there is a lack 
of aCrac've pheromones. Although this is a limita'on, it was used in Sec'on 3.5 to get the trails to 
form around the queen. By increasing the trail pheromone’s aCrac'vity, the trails would not intersect 
with the construc'on of the royal chamber, and thus not leading to the spaced pillars, nor the 
entrances to the royal chamber. Without u'lizing the high density of agents in the centre due to the 
terrain edge implementa'on, none of the aCempts to create entrances to the royal gallery were 
successful. This could be an indica'on that the balance for this behaviour was to intricate to find, and 
could mean that the control strategy that was used not representa've of the process termites use to  
create and maintain entrances to the royal chamber. 
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Besides pheromones the tac'le feedback of spacial heterogeneity and air humidity are also likely a 
s'mulus for deposi'on as described in Sec'on 1.4.3 Other S'muli. Such s'muli are currently not 
included in TermiteSim. The implementa'on of these s'muli in the simula'ons could have a major 
impact on the emergent behaviour. 

In the simula'on in Chapter 3, the swarms consist of only one type of agent. Other simulators use 
separate termite types such as: Foraging termites, nursing termites, and builder termites which all 
have their own behaviour. Instead, TermiteSim’s agents have mul'ple states they can change 
between. The composi'on of the swarm, with different types of agents might result in the 
emergence of different structures. For instance, in Sec'on 3.5, the cement pheromone was added 
which aCracted the agents that were carrying material to place. The goal of this was to guide agents 
to the deposi'on areas to increase building efficiency. However, these agents also lay trails. This 
meant that the larger influx of agents would cause more deposi'on inhibi'ng trails to be placed on 
the deposi'on zone. This in turn stoped any agent from reposi'oning there. This caused the opposite 
of the intended effect, completely preven'ng construc'on. 

Contrary to real world observa'on, pheromones in TermiteSim only have a gas state. For instance, 
the cement pheromone of actual termites is mixed with the soil as a liquid. This liquid pheromone 
than evaporates over 'me. This causes pheromones to persist for longer dura'ons of 'me, despite a 
high diffusion rate. In TermiteSim’s pheromone implementa'on, either the diffusion rate is high to 
increase the pheromone gradient to aCract more workers to the deposi'on site, or the diffusion the 
is lowered to extend the 'me it takes before a deposi'on site is abandoned. But a trade of between 
pheromone gradient size and life'me is s'll present. Preferably, both would be independent of each 
other, as the current balance for pillar building is too fine where no effec've set of parameters has 
been found yet. Pheromones lacking a liquid state poten'ally also affects trail forming, as emergent 
trails are shown to not maintain sta'onary over longer simula'ons. This in turn is detrimental for the 
construc'on of covered galleries around those emergent trails as shown in Sec'on 3.3.2. 

Lastly, despite the increase in realism compared to previous simula'ons with the space being 
con'nuous and the terrain allowing for the construc'on of organic shapes. The simula'on is s'll a 
simplifica'on of real termites and the control strategies have yet to be tested on a physical robot 
swarm. 

4.2. Further development 
All of the limita'ons named in the previous sec'on can be overcome with further development of 
the simula'on. However, there are also alterna've design decisions which were not limi'ng to the 
scope of the project, but could add value for future work in simula'ons. 

Gravity in terrain

Currently, material can only be placed on the surface of the terrain. This prevents placing material in 
midair. Similarly removing material can also only be done at the surface of the terrain. However, 
there is no check for wether removing material results in parts of the terrain being unsupported. 
Thus leading to floa'ng chunks of terrain in some cases. Although rare, this is an unrealis'c 
occurrence that should preferably be prevented. 
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Halting

Studies have shown that overcrowded areas result in hal'ng, where termites slow down, like in a 
traffic jam. Currently, collisions are prevented by the agents turning away from each other, while 
maintaining a constant movement speed. This results in more turning in case of overcrowding. An 
op'on could be added to implement hal'ng instead of turning to avoid collisions. 

Drunkards walk

Research shows that termites tend to do a drunkard walk as described in Chapter 1. In termite sim, 
all the turning is a result of pheromones, the terrains geometry, and agents reaching the edge of the 
terrain. There is no random turning performed in any of the simula'ons in Chapter 3. A variable 
could be added that adds this drunkard walk behavior to the current behavior of the control 
strategies. 

DOTS

An alterna've implementa'on of the agent representa'on would be to use Unity’s Data Oriented 
Technology Stack (DOTS). This allows a large number of Unity GameObjects to be converted into 
En''es as referred to in DOTS. This would allow each agent to s'll make use of colliders. Allowing for 
a physics-based collision system. During the project, there was an aCempt to implement DOTS, but 
the conclusion was that there were too many reasons to not implement it: 

1. Much of the work done on the project would have to be scrapped and re-done. 

2. There was no guarantee that it would work as it was s'll quite new and deemed experimental at 
the 'me of the project. There were no projects that had aCempted something similar to this one 
using DOTS and I there would be a high chance of it becoming a 'me sink to even just get the same 
results as what the project had reached at that 'me. 

3. The added func'onality is op'onal: For self-assimila'ng emergent behaviour, inter-agent collision 
would be crucial. But for terrain forming builder robots, collisions would make some interac'on 
more realis'c, but are not necessary for emergent behaviour research. 

4. It would not improve performance, as the current implementa'on is already very performant. 

Evaluation functions

Currently, TermiteSim supports the experimenta'on of crea'ng and running a simula'on but is not 
able to evaluate the swarm's performance. It would be a great addi'on to the project to include 
several built-in fitness func'ons that would give the user some metrics to evaluate performance. For 
example, a fitness func'on that rates how well a shelter crea'ng agent is at staying in the shade. To 
have a high fitness it would be able to quickly create suitable shelter. 

Multiple agent types

As described above, TermiteSim is currently limited by its inability to simulate mul'ple types of 
agents in the same simula'on. Steps have been taken to support this but it is not implemented in the 
interface, and is thus inaccessible within the simulator. 
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Separate variable settings for each agent type

There is a balance between usability, configurability and ease of implementa'on as described in 
Sec'on 1.6. The choice was made to separate the parameters of the different pheromones to allow 
agents to interact with each one differently purely through parameter configura'on. However, 
agents can have mul'ple states, and these different states require different interac'on with the 
parameters. This is also true for different agent types. A beCer balance for the interface could be 
designed and implemented that would offer this func'onality. 

Functionality to user interface

TermiteSim has been designed to be configurable. However, the method to configure all the op'ons 
have not all been implemented into the interface. Thus, limi'ng the func'onality of TermiteSim. 
These op'ons can be accessed by downloading and installing the open source Unity project. A few 
examples of these op'ons are: Changing the colours of the pheromones, Adding more pheromone 
types, Changing the rules in the control strategies (requires coding), Crea'ng new control strategies 
(requires coding), Loading and saving presets of parameters, Changing the look of the agents and the 
terrain (can be seen in Appendix Sec'on 6.2). 

4.3. Reflection on project approach 
At the start of this project it was decided to spend one week performing a project sprint, which is to 
aCempt quickly perform a watered down version of all the facets of the project. This lead to a very 
poorly op'mized simulator, but served as a learning experience which has helped me gauge the 
difficulty of certain aspects of the simulator and forced me to define the interface between the 
different parts of the simulator. But most of all, it was helpful in igni'ng a mindset of working 
towards and minimal viable product, without geing stuck on the details. This has been especially 
useful for dealing with perfec'onism helped plan out the rest of the project. However, doing a sprint 
at the start of a project is perhaps most useful in projects where a sprint MVP can be reached within 
a small frac'on of the total project 'me. The insights gained from the sprint also lead to the decision 
to itera'vely work on the separate parts, instead of fully finishing one with all the func'onality 
described in Sec'on 2.1. This approach was highly effec've in geing a complete working simulator 
early on in the project. The sprint didn’t help with planning the evalua'on, in neither the method of 
evalua'on and the planning for it. In hindsight there are many more things that would have been 
incredibly interes'ng to simulate, but they did not fit in the planning. 

4.4. Conclusion 
TermiteSim is a state of the art simulator that goes beyond the capabili'es of previous simulators in 
regards to the resolu'on of the simula'on, accessibility of star'ng new studies through a simple user 
interface, and adaptability to allow for more freedom in designing the swarms behavior. It is able to 
replicate previous simula'ons as shown in Chapter 3, with room for further research to be done 
using TermiteSim. Its func'onality is verified by successfully replica'ng termite-like building 
behaviour in Sec'ons 3.2, 3.4 and 3.5, but is not limited to it. TermiteSim can also be used to 
simulate a broader range of robot swarms as shown in Sec'on 3.5 with the recrea'on of a swam or 
vacuum robots. This allows the findings of termite-like building behaviour to be implemented in 
more prac'cal applica'ons, and poten'ally disrupt the field of swam robo'cs in general. This 
increases the relevancy of swarm robo'cs as a method for automated construc'on and improves the 
rate at which swarm robo'cs can become a viable solu'on in real world applica'ons. In Sec'on 2.6.2 
TermiteSim is also proven to be at least usable by users who have liCle to no knowledge of termites, 
and no knowledge of the inner workings of TermiteSim. Lastly, there is a large range of poten'al 
research to be done using TermiteSim as discussed in Chapter 4. 
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Please state the title of your graduation project (above) and the start date and end date (below). Keep the title compact and simple.  
Do not use abbreviations. The remainder of this document allows you to define and clarify your graduation project. 

project title

INTRODUCTION **
Please describe, the context of your project, and address the main stakeholders (interests) within this context in a concise yet 
complete manner. Who are involved, what do they value and how do they currently operate within the given context? What are the 
main opportunities and limitations you are currently aware of (cultural- and social norms, resources (time, money,...), technology, ...). 

space available for images / figures on next page

start date - - end date- -

An accessible simulation of termite-like builder robot control strategies

18 10 2022 20 03 2023

By themselves, termites are simple creatures that make seemingly straightforward decisions based on their immediate 
surrounding. However, termites do not work alone. They are part of a decentralised swarm that works together to 
survive. To do that the termites, specifically Macrotermitinae, build a mound that includes a royal chamber, fungal 
gardens, nursery galleries, cellars and ventilation shafts as seen in image 1. Somehow these simple creatures cooperate 
to create this remarkably complex structure. There is no architect or manager termite that has the grand plan of this 
mound and directs the others, so how do they achieve this? Through emergent behaviour. Emergence is the side 
effect of bringing together a combination of capabilities. Which, in this case, leads to a complex structure. 
 
Inspired by their biological counterparts, swarms of termite-like builder robots could one day be used to additively 
manufacture large-scale structures on construction sites, in disaster areas, or even on Mars. But first we must learn how 
to influence, design and exploit emergent behaviour in autonomous multi-agent systems.  
 
There are many strategies for controlling the individual and emergent behaviour. A control strategy based on 
stigmergy can be simple at first, but as rules are added the resulting behaviour becomes exponentially more 
complicated. Therefore, experimentation is required to adjust the control strategy until the outcome is desirable. This is 
best done through simulation in order to get the roughly the right outcome before physical testing.  
 
However, current robot simulators are not build for the type of building termites do, where they source material locally 
and use that to additively manufacture a structure. For this a smooth terrain is required to build the ramps, slopes and 
other geometries required to navigate the structure itself during construction. In currently available simulators this 
could be achieved by building the world out such a large number of cubes that it would drastically impact 
performance to the point that simulating a swarm of a thousand agents would be infeasible. Instead of a discrete 
terrain made out of cubes, a non-discrete terrain, represented as a surface mesh, would allow for highly detailed terrain 
geometry while being much less computationally expensive. That is why a new simulator specifically for termite like 
builder robot swarms is required for further research in this field. 
 
This project aims to create an open-source simulation platform of a termite-like builder robot swarm for experimenting 
with different control strategies and adjusting them accordingly. In other words: a tool for researchers to design 
desired behaviour of a builder robot swarm. An illustration of such a simulation can be seen in image 2. 
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introduction (continued): space for images

image / figure 2:

image / figure 1: Cross section of a termite mound. Earthlymissions. https://earthlymission.com

Interface draft of termite-like builder robot simulation.
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Initials & Name Student number

IDE TU Delft - E&SA Department /// Graduation project brief  & study overview /// 2018-01 v30 Page 5 of 7

PROBLEM DEFINITION  **
Limit and define the scope and solution space of your project to one that is manageable within one Master Graduation Project of 30 
EC (= 20 full time weeks or 100 working days) and clearly indicate what issue(s) should be addressed in this project.

ASSIGNMENT **
State in 2 or 3 sentences what you are going to research, design, create and / or generate, that will solve (part of) the issue(s) pointed 
out in “problem definition”. Then illustrate this assignment by indicating what kind of solution you expect and / or aim to deliver, for 
instance: a product, a product-service combination, a strategy illustrated through product or product-service combination ideas, ... . In 
case of a Specialisation and/or Annotation, make sure the assignment reflects this/these.

Automation in the form of swarm robots is an increasingly feasible opportunity for solving complex physical problems. 
However, how such a swarm is to be instructed and controlled is one of the many topics that requires further research. 
The problem is that, currently, there are no robot swarm simulators that are suitable for simulating termite like 
building.  
 
This graduation project aims to provide a tool in the form of an open-source simulator to improve our understanding 
of emergent behaviour in termite-like multi-agent systems under distributed control, and allow researchers to evaluate 
different approaches that instruct the desired behaviour into such systems.  
 
This will include the development of the virtual agents, the terrain and their interaction with an appropriate level of 
realism. The creation of a physics engine is outside of the scope and instead one that is readily available will be used. 
Several control strategies from literature will be implemented and their performance evaluated and compared to each 
other. Furthermore, a user interface to adjust the control strategy and environmental settings and review relevant 
performance data of the swarm will be created and tested. 
 
Optionally the program could be hosted on a webserver and accessible via a web browser in order to negate the need 
to download the simulator and store it locally. Possible experimentation could be done with deep neural networks 
controlling the individual agents and/or using an evolutionary algorithm to optimise control strategy settings. 
Furthermore, a way to export the built structure is also a possibility. 
 
The use or creation of a physical robot is outside the scope of the project because of the time investment. A visual 
interface for creating new control strategies is also outside of the scope.

In this project I will make and test an open-source termite-like builder robot swarm simulator as a tool for researchers to 
and designers to experiment with control strategies, environmental factors and hardware limitations.

The simulator is a digital product which I plan to build in Unity, utilising the Nvidia PhyX engine for physics 
interactions. The service of hosting the simulator on a server to allow for persistent multi-user simulations is optional 
and secondary to the goal of this project. Tests will be conducted with users where they use the system and evaluate 
the interface and generate sets of control settings. I also intend to get a conference/journal paper submission about 
this project.
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PLANNING AND APPROACH **
Include a Gantt Chart (replace the example below - more examples can be found in Manual 2) that shows the different phases of your 
project, deliverables you have in mind, meetings, and how you plan to spend your time. Please note that all activities should fit within 
the given net time of 30 EC = 20 full time weeks or 100 working days, and your planning should include a kick-off meeting, mid-term 
meeting, green light meeting and graduation ceremony. Illustrate your Gantt Chart by, for instance, explaining your approach, and 
please indicate periods of part-time activities and/or periods of not spending time on your graduation project, if any, for instance 
because of holidays or parallel activities. 

start date - - end date- -18 10 2022 20 3 2023

The simulation can be divided into different sections that need to work independently. Therefore, I have my divided 
my planning into these segments after the initial sprint. 

Full cycle sprint: In the first week, directly after the kick-off I will build a MVP demo by hacking together different parts 
of the project from (online) resources. This is meant to give me an idea of how the different parts will interface and 
where there will be friction. 
Re-evaluate planning: Based on the knowledge and experience gained in the Full cycle sprint, I will re-evaluate my 
planning and adjust it here necessary. I will also redefine, add or remove features based on that my learnings. 
Terrain: the first mayor part of the simulation I plan to tackle is the terrain, the world in which the agents will be able to 
move, pick up and place material. 
Agents: In week 5 I plan to work on the agents, and give them the features required to sense and manipulate the 
world through simulated sensors and actuators. 
Control Strategy: Starting week 8, the agents will become autonomous through the implementation of control 
strategies from literature. These can then be configured using their settings. These control strategies will then be 
evaluated in the simulation as seen in Control strategy testing. 
Machine learning: After the control strategy is completed an evolutionary algorithm can be used to optimise the 
settings for the given context. The performance of the control strategies with these settings will then be compared to 
the performance of the settings used in the previous section. 
User Interface: For the simulation to be accessible the control strategy settings will need to be easily accessible and 
changeable. For this the user interface will be developed and tested in User Testing. 
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MOTIVATION AND PERSONAL AMBITIONS
Explain why you set up this project, what competences you want to prove and learn. For example: acquired competences from your 
MSc programme, the elective semester, extra-curricular activities (etc.) and point out the competences you have yet developed. 
Optionally, describe which personal learning ambitions you explicitly want to address in this project, on top of the learning objectives 
of the Graduation Project, such as: in depth knowledge a on specific subject, broadening your competences or experimenting with a 
specific tool and/or methodology, ... . Stick to no more than five ambitions.

FINAL COMMENTS
In case your project brief needs final comments, please add any information you think is relevant. 

This project interests me. The aspect of autonomy combined with inspiration from nature is right up my alley. For this 
project a lot of coding is required, which I enjoy doing. This interest started when I was introduced to Arduino, and 
throughout my study I have taken every opportunity to do more programming. If it was helping other students with 
their projects, doing my own ardruino projects, learning new coding languages and taking all the courses that 
required coding (minor Robotics Bsc electives: Mechatronics, Software, Msc electives: Digital Materials, cognitive 
ergonomics for complex systems 1 and 2, Experimental formgiving of visual information). This has left me with skills in 
several coding languages, but I feel that the coding aspect of my designs is never evaluated properly and am therefore 
unsure of its quality compared to professional programmers. This is the direct reason I set up this project to be as it is.  
 
1. The main motivation I had for setting up this project is that I want to be able to program on a professional level and 
prove that I can do so. 
2. I want to be able to use the tools used in software development such as Visual Studio and Git. 
3. I want to be able to present this project to anyone without losing them. And for that I will need to be able to boil 
down complicated topics and ideas into layman’s terms and describe them in an engaging way (I want to be better at 
presentations, a good presentation regardless of topic). 
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6.2. Additional visualization options

These op'ons are only accessible in the open-source Unity project of TermiteSim 

Figure A1. TermiteSim with different terrain color, agent color and agent shape.

Figure A2. TermiteSim with different terrain color, agent color and agent shape.
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