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Abstract

A wall resolved LES simulation of the Anti-Fairing wing/body junction introduced by Belligoli et al.
[6] to reduce interference drag is performed. The LES mesh is composed of 61.7 million cells with
a C-fitted grid around the wing . The simulation is performed using the pimple solver of Open-
Foam 4 with a time and space varying inlet boundary condition obtained thanks to a precursor.
This simulation will be used to assess the impact of the Anti-Fairing by comparing the result to the
wall resolved baseline case of Alberts [2] and to serve as a training data for data driven techniques
applied to junctions flows.
Using the wall resolved LES we apply the data driven algorithm method Sparse Regression of Tur-
bulent Stress Anisotropy (SpaRTA) developed by Schmelzer et al. [38] in the case of junction flows. It
is shown that the first step of the method, namely the k-corrective frozen RANS, is able to produce
corrective fields to the Reynolds tensor and the turbulent kinetic energy equations in this case. The
corrective fields once added in a k −ω SST simulation make it possible to obtain the exact location,
strength and shape of the main horseshoe vortex. The upstream boundary layer is also subject to
corrections indicating RANS-LES mismatch in the inflow. Mutual Information (MI) is calculated to
identify the relevant tensors, physical features and invariants that correlate with the junction flow
data. Finally, algebraic models for the corrective fields are obtained. They are compared to the true
values of these fields. It is possible to see that the performance of SpARTA models is good upstream
of the wing. However, models found and tested in the vicinity of the wing, where the separation
and horseshoe vortex are located, are not fully able to capture the relevant corrections. Additional
constraints or steps to the ones performed in the time of this study may be necessary in order to
use SpaRTA to generate models giving improved predictions compared to classic RANS turbulence
models.
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1
Introduction

Junction flows are encountered when a boundary layer developed on a surface meets an obstacle at-
tached to it (Simpson [41]). This specific configuration leads to the separation of the boundary layer
upstream of the obstacle. In addition, the flow generally presents a system of unsteady vortices and
a corner separation. The appearance and strength of these two characteristics depend, among other
factors, on the design of the junction (Fleming et al. [13],Belligoli et al. [6]), the thickness of the in-
coming boundary layer (Fleming et al. [14]) as well as the angle of attack and swept of the wing in
case of a body wing junction (Simpson [41]). Junction flows present some adverse effects such as
pressure and heat transfer fluctuations as well as interference drag. The solutions have generally
concentrated on reducing the size of the vortices by adding suction of the incoming boundary layer
or by adding a fillet at the leading edge or around the wing. Aerodynamic shape optimization has
been employed by Belligoli et al. [6] to reduce the interference drag, leading to a novel design of the
junction called the Anti-Fairing.

Direct Numerical Simulation (DNS) of the Navier-Stokes equations is not possible in most cases
due to the high computational cost of their resolution. Large Eddy Simulation (LES) constitutes the
second most accurate technique, modeling only the influence of the smallest scales of the flow on
the bigger scales. Ryu et al. [37] performed an LES simulation of the body wing junction, reach-
ing an excellent agreement with the previous experiments. However, these types of simulations
are also too expensive to be used in applications such as design. Reynolds Averaged Navier Stokes
(RANS), due to its low computational cost remains today the main tool for industry purposes. How-
ever, numerous studies ( Apsley and Leschziner [3], Lee et al. [24], Paciorri et al. [32] ,Gand et al.
[15]) demonstrated the lack of accuracy of RANS predictions for body wing junctions. The location,
strength, and size of the time-mean vortex are not properly captured. Unphysical behavior for the
turbulent kinetic energy is also predicted in some types of RANS models. The poor performance of
these affordable models makes it necessary to develop new methodologies with low computational
cost to improve the body wing junctions predictions.

In recent years, machine learning applied to fluid dynamics has gained interest, and data-driven
techniques have been tested on different types of flows (Duraisamy et al. [12]). In particular, the
Sparse Regression of Turbulent Stress Anisotropy (SpaRTA) approach developed by Schmelzer et al.
[38] has provided good results in the case of 2D flows, bluff bodies (Huijing et al. [17]) and wind
turbine wakes (Steiner et al. [44]). Yet, the SpaRTA has not been tested for the modeling of body
wing junctions. As a consequence, this project will aim at generating a wall resolved LES of the Anti-
Fairing body wing junction and at testing the capability of the SpaRTA methodology at generating
improved RANS models for this specific case.

1



2 1. Introduction

A literature review on junction flows and machine learning for augmentation of RANS models is per-
formed in section 2. Then Section 3 presents the methodology that will be followed for the project.
Section 4 contains the results of the LES of the Anti-Fairing body wing junction and its compari-
son with the baseline case. Section 5 shows the results of the SpaRTA methodology and Section 6
concludes and presents some recommendations for future works.



2
Literature study

In this chapter, the relevant background to the study is presented. First, the notion of junction flow
is presented. The characteristics that can be observed in these types of flow are detailed as well
as the parameters that can influence these characteristics. A sum-up of the numerical attempts to
model body wing junctions is also shown to understand how machine learning techniques can be
of interest in the modeling of such flows. The section on junction flows concludes with the detri-
mental effects caused by the junction and which techniques have been employed to mitigate them.
Of specific interest is the Anti-Fairing design of the junction as a wall resolved LES of it will be per-
formed by the author.
The presentation of previously used numerical modeling highlights the need for new techniques
to have an accurate representation of junction flows. In this work, the use of machine learning
techniques has been chosen. The second section of this introduction constitutes a presentation on
machine learning applied to fluid mechanics. The important steps in generating data-driven mod-
els are listed as well as the techniques used by various authors at each of these steps. Among these
techniques, the one retained in this work is the Sparse Regression of Turbulent Stress Anisotropy
(SparTA) technique, it will be discussed in more details in Section 3.2.

2.1. Junction flows
Junction flows appear when the boundary layer developed on a wall meets an obstacle connected
to this wall. They are encountered in many situations such as turbine blades, river bridges, or wing
body junctions in the case of an airplane.

2.1.1. Characteristic features of junction flows
Junction flows present two main types of features: the first one is a system of horseshoe vortices,
and the second is a corner separation at the trailing edge. The strength and appearance of these
two features are still subject to questions. Due to the streamwise adverse pressure gradient, the
boundary layer upstream of the obstacle separates and forms horseshoe vortices that wrap around
the obstacle. These horseshoe vortices being induced by the skewing of an incoming shear layer
are classified as a secondary flow of the first kind and happen in both laminar and turbulent cases.
In the case of a turbulent boundary layer, the system of vortices is unsteady. Time-averaged repre-
sentation of the body wing junction generally shows a primary vortex which vorticity is the same as
the incoming boundary layer as can be seen in Figure 2.1. Secondary vortices rotate in the opposite
direction.
Ölçmen and Simpson [49] performed an experimental simulation of a 3:2 elliptical-nose NACA
0020 wing/body junction. Time-averaged oil visualization (Figure 2.2) shows the line of separation

3



4 2. Literature study

Figure 2.1: Sketch of the time averaged main horseshoe vortex from Fleming et al. [14]

around the wing. A saddle point is present at the intersection of the symmetry plane and this sep-
aration line. In addition, a line of low shear stress between the separation line and the wing can be
observed. This line marks the limit between a region of low shear upstream of the line and a region
of high shear closer to the wing.

Figure 2.2: Oil visualization of the flow around a body-wing junction from Ölçmen and Simpson [49]

The horseshoe vortex system
In an extensive review study, Simpson [41] details the unsteady dynamics of the horseshoe vortices.
The system of vortices go through different steps detailed by Kim et al. [21]: a primary vortex (PV)
is formed upstream of the wing and stretched around it, then secondary vortexes (SV) are formed
between the saddle point and the primary vortex, the PV moves closer to the wing and the SV merge
with the PV. This causes an acceleration of the flow that stabilizes it. Finally, the flow becomes un-
stable and a new cycle restarts.
This behavior leads to one of the specificities of wing body junction ie the bimodal behavior de-
tailed by Devenport and Simpson [9]. Near the center of the time-averaged main horseshoe vortex,
the velocity switches aperiodically between a zero flow mode where the streamwise velocity is close
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to zero and a backflow mode where this velocity is negative as can be seen in Figure 2.3. Only the
streamwise (U) and normal to the wall velocities (V) are concerned. The bimodal behavior is a low
frequency phenomenon. According to Simpson [41], this behavior of the horseshoe vortex stops
after the point of maximum thickness and the time average primary vortex shape appears more cir-
cular.

Figure 2.3: Probability-density functions of the streamwise velocity fluctuations at the primary vortex location from
Devenport and Simpson [9]

Different factors influence the strength and mean location of the main horseshoe vortex. The shape
of the object in the junction is of major importance. To account for this effect, Fleming et al. [13]
introduced the bluntness factor BF :

BF = 1

2

R0

XT

(
T

ST
+ ST

XT

)
(2.1)

With T the maximum thickness of the wing, R0 the leading edge radius, XT the chordwise position of
the maximum thickness and ST the distance between the leading edge and the maximum thickness
taken along the surface of the wing. High bluntness factor values lead to strong horseshoe vortex
and bimodal behavior. The effect of the incoming boundary layer on the vortex system is taken into
account by Fleming et al. [14] thanks to the momentum deficit factor:

MDF = (ReT )2(θ/T ) (2.2)

With θ the boundary layer momentum thickness and Reθ its associated Reynolds number. For high
MDF, Fleming et al. [14] reported that the distance between the two legs of the vortex increases in the
wake, and the center of the primary vortex moves closer to the wall. The angle of attack and swept
of the wing have been observed to also play a role. Indeed, the bluntness of the wing increases with
the angle of attack. Shizawa et al. [40] studied experimentally the influence of the angle of attack for
a junction between a flat wing and a flat wing. On the suction side, they observed that the location
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of the vortex shifts further away from the wing to align with the freestream flow but that the distance
from the wall remains the same, the peak turbulent kinetic energy is larger than on the pressure side
but the size of the vortex is smaller. On the pressure side, the distance between the wing and the
vortex center remains the same while the distance from the wall increases with the angle of attack.
Ahmed and Khan [1] showed experimentally that a negative swept angle moves the separation line
and time mean vortex closer to the body when a positive one moves it away from the body.

Corner separation
Under certain conditions of inflow and geometry, a corner separation can be observed on the trail-
ing edge of the wing in junction flows. This behavior that has only been observed in turbulent cases
is categorized as a secondary flow of the first kind. The separation happens mostly on the wing and
does not seem to extend to the wall boundary layer as can be seen in the oil flow visualization Fig-
ure 2.4 of Kegerise et al. [20]. Barber [4] studied the link between boundary thickness and corner
separation. He observed that a thin wall boundary layer creating a small horseshoe vortex leads to
a large separation with an important dependence on the angle of attack. The situation is reversed
in the case of a thick boundary layer. By comparing existing literature, Gand et al. [15] also point
out that the bluntness of the object plays a role in the appearance of the corner separation. Sharp
objects are associated with large corner separation and small HV. Although the BF and MDF factors
effects have been verified in numerous experiments, there seem to be yet some other effects at play,
as Gand et al. [15] pointed it out when observing no corner separation in contradiction to what was
expected from the literature.

Figure 2.4: Oil-flow visualizations in the trailing-edge corner of the F6 wing from Kegerise et al. [20]

2.1.2. Numerical modeling of body wing junction
Numerous studies have modeled the body-junction flow. Apsley and Leschziner [3] provide one
of the most extensive studies on the predictive capability of RANS models by comparing 12 RANS
models to experimental data of a modified NACA0020. They compare linear eddy-viscosity, non-
linear eddy-viscosity formulations, and differential stress models. They conclude on the superior
accuracy of differential stress models compared to eddy viscosity models, both k − g and k −ω SST
models also providing good predictions for the mean quantities. However, the reverse flow pre-
dicted by these last two models is overestimated and the maximum of the turbulent kinetic energy
is underestimated as can be seen in Figure 2.5d for the k −ω SST model. Out of all models, the k −ε
based models, even the non-linear eddy viscosity ones give the worst results and present an abnor-
mal representation of the turbulent kinetic energy k in front of the wing.
Jones and Clarke [18] also compare several RANS models and confirm the good performance of the
k −ω SST model. They also recommend the Spalart-Allmaras model and the V2F model. Lee et al.
[24] compare a set of RANS models very similar to the ones of Jones and Clarke [18] and conclude
on a bad performance of k−εmodels compared to all the other ones. Paciorri et al. [32], comparing
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(a) Experimental results in Devenport and Simpson
[9] taken from Ryu et al. [37]

(b) DES results in Paik et al. [33] taken from Ryu et al.
[37]

(c) LES results from Ryu et al. [37] (d) RANS results from Ryu et al. [37]

Figure 2.5: Comparison of RANS, DES and LES with experimental results for t.k.e upstream of a Rood wing from Ryu
et al. [37]

a small number of RANS models, point out a relatively good performance of the Spalart-Allmaras
model.
Gand et al. [15] in a comparative experimental and numerical study highlight the poor performance
of all the RANS models studied (Spallart-Allmaras, Wilcox k −ω, Menter k −ω SST and Speziale
Reynolds Stress Model) as they all predict corner separation in complete contradiction to the exper-
iment.
None of the RANS models studied by these different authors is able to capture the C-shape of the
turbulent kinetic energy (t.k.e) in front of the wing.
Although a few RANS models seem to slightly outperform the others, all authors point out the limi-
tations of these models for predicting the junction flows.
Paik et al. [33] performed a Detached Eddy Simulation (DES) of the wing body junction which leads
to improved results compared to RANS and notably captures the bimodal behavior. However, mean
kinetic energy and vorticity plots show that the location of the vortex in the symmetry plane is in-
correctly predicted upstream of its location compared to the experiment (see Figure 2.5b). Two
hypotheses could explain that the vortex is incorrectly predicted upstream of its true location: the
RANS model used as a base for the DES (here Spallart Allmaras) or the input profile for the boundary
layer.
Ryu et al. [37] perform an LES simulation of the wing–body junction flow experimentally studied by
Devenport and Simpson [9] and demonstrate the superior performance of LES compared to RANS
and DES. The C-shape of the turbulent kinetic energy of the mean primary vortex, its maximum
strength and location are well captured as can be seen in Figure 2.5c. The corner vortex is also well
represented. The good agreement between the results and experiments makes it possible for wall
resolved LES to be used as ground truth data for data-driven techniques.

2.1.3. Adverse effects in junction flows
Junction flows can lead to several adverse effects. The unsteady behavior of the vortex system pro-
duces high variations of pressure and heat transfer. In the case of the bridge pier, the action of the
vortex will scour the river bed leading to a possible collapse of the bridge (Simpson [41]). In ad-
dition, the interaction of the two nearly perpendicular boundary layers: the one developed on the
wall and the one developed on the object, creates additional drag, namely interference drag. The
total drag in the junction flow is indeed superior to the sum of the drag produced by the wall and
body taken separately. Most systems previously studied focused on reducing or preventing the ap-
pearance of the horseshoe vortex.
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Simpson [41] cites fillets as one of the more common designs used in the aerospace industry. De-
venport et al. [8] reports that a fillet placed all around the wing does not seem to have a favorable
effect on the junction flow: separation and bimodal behavior are still observed. No measurement
is made on interference drag. However, Devenport et al. [10] concluded that a leading edge fillet
prevents separation and the appearance of the horseshoe vortex at zero angle of attack. At high in-
cidence, the favorable effect is reduced due to separation occurring on the pressure side. Without
reliable RANS models for the design of body/wing junction the addition and shape of the fairing
present on modern aircrafts also rely on the experimental knowledge of manufacturers.
Suction upstream of the wing, if rightfully placed, absorbs the incoming boundary layer, reducing
the incoming vorticity and the strength of the vortex. Philips et al. [35] confirmed experimentally
this effect at zero angle of attack and even found out that for a suction volumetric flow rate twice
the flow rate of the wall boundary layer the vortex had completely disappeared. Barberis et al. [5]
showed that the location of the suction influences a lot the efficiency of the device: suction of only
0.1U∞δ∗T (with T the wing thickness, U∞ the freestream velocity and δ∗ the displacement thick-
ness) was needed to remove the vortex if located between x/T =−0.33 to −0.10 , while if located at
x/T = −0.41 a suction of 1.05U∞δ∗T was needed. Both solutions are however likely to be depen-
dent on the angle of attack.
Belligoli et al. [6] took a different focus in their study and aimed only at reducing the interference
drag thanks to modifying the shape of the fuselage near the wing. The study introduced a different
design for the junction named the Anti Fairing design obtained by aerodynamic shape optimiza-
tion. In this design, the fuselage presents a dent around the protruding wing. Its maximum depth
is approximately the one of the incoming boundary layer. This geometry was proved to reduce the
drag better than the two fillets also tested by Belligoli et al. [6]. The action of the dent is different
from the one of the fillet as it gives additional space to the vortex rather than seeking to reduce its
size. As the vortex is still present in this case, the bimodal behavior is expected to also be present.

2.2. Machine Learning
Machine learning applied for fluid mechanics has gained interest in recent years thanks to the grow-
ing number of high fidelity data, both experimental and numerical as well as the improved perfor-
mance of computers. Machine learning techniques are generally divided into three categories: su-
pervised, unsupervised and semi-supervised learning. The distinction between the three categories
relies on the amount of information given to the learning algorithm about the data. Training data
are associated with a label for supervised learning when there is none in unsupervised learning. In
semi-supervised learning, limited information can be given for example thanks to the interaction
with the environment in reinforcement learning. In their review, Brunton et al. [7] cite dimension-
ality reduction methods such as Proper Orthogonal Decomposition (POD) as an unsupervised algo-
rithm employed in fluid mechanics. Dynamic Mode Decomposition (DMD) introduced by Schmid
[39] can also be categorized as unsupervised learning. Brunton et al. [7] point out that there is little
work on unsupervised learning algorithm applied to fluid mechanics, most research being focused
on supervised learning algorithms.

The main focus of this section will be restricted to supervised learning and the augmentation of
RANS models thanks to machine learning. Most of the discussion can be transposed to the augmen-
tation of LES models. This is because RANS is still widely used in industry due to its reasonable cost
compared to techniques that resolve part of the scales such as LES or all of them like DNS. Addition-
ally, numerous papers have been published regarding model augmentation via supervised learning
as pointed out by the review paper of Duraisamy [11].

In the framework of supervised learning for RANS augmentation, the ensemble of features is called
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η and the training data, which are spacial fields, β(x). The goal of the machine learning algorithm is
then to produce functional expressions β(η) that are close representations of the training data β(x).
The data-driven models are then tested on a validation database to verify their predictive power. It
has to be noticed that the function β is not necessarily deterministic nor explicit. Duraisamy et al.
[12] and Duraisamy [11] pointed out several major aspects of the machine learning process: the
form of the expression to be learned and the choice of features, the choice of the training data, the
possibility to add physics-based constraints to the learning algorithm. To these different aspects,
the learning algorithm itself can be added. In the following discussion, these aspects will be de-
tailed and examples of their use in previous literature will be given.

2.2.1. Features selection
The choice of features η is of utmost importance, as well as the chosen architecture for β if one is
selected. Duraisamy [11] advises that features should preferably be non-dimensional and respect
invariance present in the equations. Local variables are suitable for generalizability but non-local
variables have often proved to improve the solution. In the incompressible case, several studies
( Schmelzer et al. [38], Ling et al. [27] ,Weatheritt and Sandberg [46]) have chosen to express the
anisotropic part of the Reynolds tensor following Pope [36]’s tensors basis expression:

b∆ =
10∑

n=1
g n(λ1, ...,λ5)T n (2.3)

Where λ1...λ5 and T are functions of the mean strain rate S and rotation rate tensor R and can
be found in Pope [36]. This integrity basis ensures that b∆ is Galilean invariant and the Cayley-
Hamilton theorem states that only ten tensors are needed to represent an eddy viscosity model
that is a function of only S and R. Ling and Templeton [25] followed by Wang et al. [45] introduced
physics-based features such as Q criterion or wall-distance based Reynolds number. Wu et al. [47]
in order to have a more systematic approach compared to the previous work of Wang et al. [45] com-
pleted Pope’s tensor basis formulation to include pressure influence and non-equilibrium effects by
adding tensor and invariants based on ∇k and ∇P . Invariants were Galilean and rotational but not
reflectional invariant. Three easily interpretable physical features were also added. This approach
was later used in Kaandorp and Dwight [19] and Steiner et al. [44] adapting the additional physical
features to the problem at stake.
The process of features creation described previously can lead to an important size of the library
of features. Techniques can be performed to reduce the number of features in order to alleviate
the computational load of the machine learning algorithm and to avoid redundant features. For in-
stance, mutual information or cliqueing are some techniques used by Huijing et al. [17] and Steiner
et al. [44]. Mutual information is a measure of how much a variable informs on another variable.
Unlike a simple measure of correlation, this technique does not need a linear relationship but can
detect any type of link. For two continuous random variables X and Y , their mutual information is
expressed as :

M I (X ,Y ) =
∫

x

∫
y

p(x, y)log
p(x, y)

p(x)p(y)
d xd y (2.4)

MI can also be understood in terms of entropy which is a measure of the uncertainty of the random
variable:

M I (X ,Y ) = H(X )−H(X |Y ) (2.5)

MI is then a measure of the reduction of uncertainty on X when Y is known. In practice, the proba-
bility distributions are not known. Steiner et al. [44] used a kernel density estimator to obtain their
expressions. Cliqueing techniques are used to check if there are multiple colinearities between data.
In Steiner et al. [44] only the simplest function is then retained.
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2.2.2. Obtaining training data and features
The training data β(x) and the training features can be obtained from different sources. Some of the
choices made in literature are detailed here :

• DNS data or other high fidelity data. Using quantities directly obtained from high fidelity sim-
ulations has been a path taken by many authors. For instance, Ling et al. [26] and Weatheritt
and Sandberg [46] used the Reynolds stress fields and features obtained from DNS simula-
tions. This technique has the advantage to be easy to implement as the quantities are readily
available if high fidelity data are provided. However, in addition to requiring full-field data,
Duraisamy et al. [12] pointed out that the method is not model consistent as the features used
for the training come from high fidelity database while the features used for prediction come
from the RANS simulation.

• k-corrective frozen RANS by Schmelzer et al. [38]. Full-field data are also required. The anisotropic
part of the tensor ai j = −2νt Si j = 2kb0

i j is completed by a corrective term b∆i j such that

ai j = 2k(b0
i j + b∆i j ). The transport equations that allow to solve for the turbulent viscosity

νt are augmented with a corrective term for the production of turbulent kinetic energy (t.k.e)
and the k −ω SST transport equations are modified into :

Dk

Dt
= Pk +R −β∗ωk + ∂

∂x j

[
(ν+νt )

∂k

∂x j

]
(2.6)

Dω

Dt
= γ

νT
(Pk +R)−βω2k + ∂

∂x j

[
(ν+σωνt )

∂ω

∂x j

]
+C Dkω (2.7)

With Pk = mi n
(
−2k(b0

i j +b∆i j )∂ jUi ,10β∗ωk
)

the production of t.k.e, and ω the specific dissi-

pation rate. The other expressions and coefficients can be found in Menter [28]. To obtain the
two corrective terms b∆i j and R fields, the LES data is injected in the RANS equations. At each
step, the turbulent kinetic energy deficit R is computed and fed back into theω equation. The
frozen corrective fields can be added in the RANS equation to be propagated.

• Field inversion (FI). To enforce model consistency, Parish and Duraisamy [34] introduced the
Field Inversion approach. Having data points from high fidelity simulation Y i , field inversion
is performed to find models discrepancies βm(x) of the RANS equations and features that can
produce the best approximation of Y i . This problem can be expressed as an optimization of
a cost function under the constraint of the realization of a PDE Ra() = 0:

min
βi

L[Y i ,Y i
m(βi

m)], s.t Ra(qm , sm ,βm(ηm , w)) = 0 (2.8)

With qm and qm coarse grained quantities in the PDE and w are parameters. Full-field data
are not necessary as long as the data are sufficiently informative but the FI requires an adjoint-
based optimization that can be challenging and costly. The first test of the technique for pre-
dictive purposes was made by Parish and Duraisamy [34] on turbulent channel flow cases.
The model discrepancy β was introduced in the t.k.e equation of the k −ω model as a multi-
plicative term of the production of k. This technique was later extended to other turbulence
models and cases such as a correction to the Spalart-Allmaras model for prediction of separa-
tion on 2D airfoils in Singh et al. [42].

2.2.3. Machine learning algorithm
Different options have been used for the learning algorithm that maps β(x) into β(η). A selection of
the ones used in recent literature is recalled here:
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• Neural networks (NN): Neural Networks consist of layers of neurons which behavior is in-
spired by biological neurons. Given several inputs, the neuron will generate an output thanks
to nonlinear activation functions. Neural networks containing multiple layers are generally
called deep Neural Networks. The layers in-between the input and output layers are often
designated as hidden layers. One of the most common architectures, feed forward neural
networks, as represented in Figure 2.6, has multiple layers where weighted outputs from a
layer serve as inputs for the next one. Deep NNs allow to represent complex non-linear in-
teractions, sometimes at the cost of interpretability. Weights in NNs can be found thanks
to back-propagation techniques. Ling et al. [27] published a first proof of concept for using
deep neural networks to obtain improved RANS models. Numerous other publications such
as Singh et al. [42] employ deep NN.

Figure 2.6: Architecture of feedforward network taken from Ling et al. [27]

• Random Forests (RF): Random forests are made of an ensemble of decisions trees. Each tree is
trained with a randomly selected part of the training data and input features. The average or
median prediction of the ensemble constitutes the prediction of the random forest. Random
forests have the advantage of being relatively easy to implement, with only two parameters
namely the tree depth and the size of the ensemble. Ling et al. [26] compared the performance
of NN and RF and concluded that simpler algorithms like RF can give similar results than more
complex ones (NN) if physics-based constraints are enforced.

• Genetic expression programming (GEP). Weatheritt and Sandberg [46] developed a method
to obtain algebraic expression based on GEP. The algorithm starts with a random initial set of
candidates functions. Candidate functions are divided into a function based on tensor called
the chromosome and an optional scalar function called the plasmid. This allows to easily
multiply several tensor expressions by the same scalar without having to find it several times.
The plasmid and chromosome are coded as strings, each composed of a head of fixed length
and tail. The algorithm consists of several rounds: at each round several subsets of candidates
are selected. The fittest of each subset, as well as the global fittest, is retained. The retained
candidates are then passed through operators that leave them unchanged or modify them
with random mutations and combinations. The next round can then begin. The performance
of the algorithm was tested for Periodic Hills and Backward Facing Step cases. Although the
algorithm is non-deterministic, different runs of it have led to solutions with similar functions.
Zhao et al. [48] extended the method by choosing the fittest function after an integrated RANS
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run. Cost functions can thus be chosen to be any desired variable. The stability of the model
is enforced and this avoids the problem of inconsistencies pointed out by Duraisamy [11].

• Sparse regression. In the Sparse Regression of Turbulent Stress Anisotropy (SpaRTA) approach
by Schmelzer et al. [38], an elastic net regression is performed on the library of candidates in
order to choose the model functions while promoting the sparsity of the solution. The co-
efficients are then found with Ridge regression to favor small coefficients that generally tend
to provide more stable RANS models. The advantage of such a method compared to neural
networks, for example, is its interpretability and the possibility to obtain concise expressions
for the correction to the Reynolds stress and production of turbulent kinetic energy.

Several authors also attempt to improve the quality of their machine learning algorithm by em-
bedding physics constraints. This is the case of the various authors enforcing Galilean invariance
of the features as seen earlier. Ling et al. [27] also performed a selection among the data-driven
anisotropy based on the value of the components of the tensor and its eigenvalues.

A last note can be made on the universal nature of the data-driven models found by machine learn-
ing methods. Many authors such as Ling and Templeton [25],Weatheritt and Sandberg [46], Wang
et al. [45] noted that found models can lack predictive accuracy when confronted to flow regions
with different characteristics compared to the training data. The advice given for correcting this
problem generally involves providing a more diverse training data set, extending the features li-
brary, and infusing physics constraints in the process. Wu et al. [47] point out that universality is
only one possible goal as data-driven correction to classic turbulence models could be switched off
for regions of the flow where the correction is not relevant. In this case, the challenge would be to
determine a priori the area where the models can be used.

2.3. Research questions and objectives
2.3.1. Research Objective
The main research objective of this thesis deriving from the gaps identified in the literature study is:

To produce a wall resolved LES of the Anti-Fairing body wing junction and to enhance
the accuracy of RANS turbulence models in the case of body wing junction flows using
a data-driven turbulence modeling approach (namely SpaRTA)

The novelty of this research lays in the generation of a wall resolved LES of the Anti-Fairing case and
the application of the SpaRTA methodology on body/wing junction flows, a case that has not been
tested before.
First, a LES simulation of the Anti-Fairing wing body junction must be performed, analyzed, and
verified. The next sub-goal is to understand the SpaRTA methodology thanks to literature study
and tests on 2D test flows. The optimum baseline RANS simulation must then be selected. The
last sub-goal to achieve before the machine learning part is the obtention of the training data with
the k-corrective frozen approach. The next objective is to apply and modify if needed the SpaRTA
methodology to obtain data augmented RANS models. Provided that relevant data-driven models
are found they can be inserted in OpenFoam and their prediction compared to LES data.

2.3.2. Research Question(s)
From the main research objective, two main questions and their associated subquestions can be
derived.

• What is the impact of the Anti-Fairing on the junction flow?
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– Is the LES presenting the expected characteristics of a body wing junction?

– Is the LES of the Anti-Fairing design in agreement with experiments from Belligoli et al.
[6]?

– How does it compare to the wall resolved LES of the flat plate and Rood wing of Alberts
[2]?

– Does this new simulation provide additional insights into the working principle of the
Anti-Fairing design?

• Can the data-driven technique SpaRTA be applied to obtain enhanced RANS turbulence mod-
els for the body wing junction?

– What is the best RANS model to augment with corrective terms? What are the limitations
of these models to overcome with the data-driven models?

– Is the k-corrective frozen approach able to provide informative corrective terms for RANS
models?

– How to select the training data for SpaRTA? Should part of the high fidelity data be re-
moved for the machine learning part?

– What are the invariants and integrity basis tensors and physical features needed for the
library of the SpaRTA algorithm?

– Will the SparRTA methodology be able to find the relevant features to model wing/body
junction flows? Does the SpaRTA algorithm need to be modified for this specific case?

– How do the results of the data-driven RANS models compare to LES results?

– What does the algebraic expression for the correction to the Reynolds stress and turbu-
lence kinetic energy tell us about the physics of body wing junction?





3
Methodology

In this chapter, the different techniques and algorithms used are discussed. The first stage of the
work consists in generating a wall resolved LES of the AntiFairing body wing junctions. Alberts [2]
previously performed a wall resolved LES of the junction between a flat plate and the Rood wing.
The present LES will be used to compare the Anti-Fairing junction with the baseline case of Alberts
[2] and as part of a database of training data for machine learning approaches. The methodology
used in the LES simulation is detailed. The second stage of the work is to generate turbulent data-
driven models for body-wing junction flows. To this effect, the k-corrective frozen approach is used
to generate corrective fields to the RANS equations, then the SpARTA methodology is used to gen-
erate the models.

3.1. Large Eddy Simulation
In this section, the details of the LES are given. First, the governing equations of LES are recalled.
Then the geometrical set-up and boundary conditions are described. Finally, the mesh information
and the settings of the simulation are provided.

3.1.1. Governing Equations
In fluid dynamics, the Navier-Stokes equations are used to describe the motion of a flow. The equa-
tions for incompressible Newtonian fluids are:

∂Ui
∂xi

= 0
∂Ui
∂t + ∂Ui U j

∂x j
=− 1

ρ
∂P
∂xi

+ ∂
∂x j

[
ν

(
∂Ui
∂x j

)] (3.1)

With Ui is the i-th component of the velocity, P the pressure, and ν the viscosity. Direct Numerical
Simulation (DNS) of the Navier-Stokes equations is not possible in most cases due to the high com-
putational cost of their resolution. Indeed, it would require the cells to have a size that is close to the
smallest scale of turbulence ie Kolmogorov microscales where turbulent kinetic energy is dissipated.
Large Eddy Simulation (LES) constitutes the second most accurate technique as it resolves the largest
scales of turbulence and models only the influence of the non-resolved smallest scales on the larger
scales. The LES equations in Equation 3.2 are obtained by applying a filter to the Navier-Stokes ones,
each component of the velocity Ui is decomposed between the filtered Ui and the sub-grid u′′

i as

Ui =Ui +u′′
i . The same filtering is applied to the pressure.

∂U i
∂xi

= 0
∂U i
∂t + ∂U i U j

∂x j
+ 1
ρ
∂P
∂xi

−ν ∂2U i
∂x j∂x j

=−∂τi j

∂x j

τi j =UiU j −U iU j

(3.2)
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τi j is the sub-grid scale (SGS) tensor and needs to be modeled in order to close the system.
Filtering can be done in an explicit or implicit manner. In the implicit case , the observation is made
that the numerical scheme can be used to dissipate the energy in a similar way the smallest scales
would do. In the explicit case, the expression for the SGS model of τi j is computed. Here, an explicit
LES is chosen. One of the most common approach to model explicitly the SGS tensor is the eddy
viscosity approach where :

τi j = 1

3
τkk −2νt Si j (3.3)

Where Si j is the resolved rate-of-strain tensor and νt the turbulent viscosity.
Smagorinsky [43] introduced the first SGS model where νt = (CS∆)2|Si j |, with CS the Smagorinsky
constant and ∆ the filter width. This simple model needs some ad-hoc fix close to the walls such as
van Driest Damping functions.
In the current approach, following Alberts [2] the Wall-Adapting Local Eddy-viscosity (WALE) SGS
model proposed by Nicoud and Ducros [31] is chosen. The WALE modeled is an improved SGS
model compared to the Smagorinsky [43] one that succeeds in obtaining the correct asymptotic
behavior νt = O(y3) close to the wall. This property is highly desirable in the case of body-wing
junctions where the distinctive features of the flow appear in the boundary layer. The sub-grid scale
viscosity is then:

νt = (CS∆)2
(Sd

i j Sd
i j )3/2

( ¯Si j ¯Si j )5/2 + (Sd
i j Sd

i j )5/4
(3.4)

With Sd
i j = 1

2 (gi j
2 + g j i

2)− 1
3δi j gkk

2 being the traceless symmetric part of the square of the velocity

gradient tensor g j i .

3.1.2. Geometry and computational domain
Geometry
The geometry studied for the LES is the one of the AntiFairing introduced by Belligoli et al. [6]. More
precisely, it is composed of a Rood wing with 3:2 elliptical wing nose and a NACA0020-tail, attached
on a flat plate with a dent around the wing. The wing thickness is T = 0.0717 m and the chord
length is c = 4.254T . The streamwise direction is referred to as X , the vertical direction as Y and the
longitudinal direction as Z . The maximum depth of the concave dent is of 0.21T . It extends from
X /T = −3.5 to X /T = 7 with a half-width of 2.9T . The resulting body wing junction can be seen in
Figure 3.1a. The baseline geometry is composed of a Rood wing mounted on a flat plate and can be
seen in Figure 3.1b.

(a) Anti-fairing body wing junction (b) Baseline body wing junction

Figure 3.1: Baseline an Anti-Fairing body wing junction geometries
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Computational domain
The computational domain is composed of a rectangular box around the wing. The inlet is located
1.4c away from the leading edge. The outlet is 2.35c away from the trailing edge. The sides are
located at 1.5c of the symmetry plane where Z = 0. The bottom includes the Anti-Fairing region.
The top is located at 4T which should avoid any artificial effect of this boundary to influence the
region close to the junction. These dimensions are similar to the work of Alberts [2].

Boundary conditions
The choice of the boundary conditions is made following Alberts [2] and is illustrated in Figure 3.2.
The sides and top part surfaces have a symmetry condition. The wing and bottom including the
anti-fairing dent have a no-slip condition. The outlet has a zero pressure condition. The INLET
TOP, located above the input boundary layer has a uniform free stream velocity of U = 27 m/s.
Finally, the INLET BOT is a time-wise and spatially varying boundary condition obtained thanks
to a precursor. The thickness of this boundary layer is δi nlet = 0.0316m. The precursor data were
generated by Alberts [2] by sampling the inlet of a turbulent channel flow (TCF). The dimensions of
the TCF are a height of hp = 2δi nlet , a width of bp = 3c equals to the one of the main simulation, and
a length of lp = 8δi nlet . The inlet and outlet of this turbulent channel flow are coupled. The velocity
flow is controlled in OpenFoam by the meanVelocityForce controller which imposes a bulk velocity
Ub calculated according to :

Ub = 1

hp

∫ hp

0
< u(y) > d y (3.5)

Where < u(y) > is the time-averaged streamwise component of the velocity. An interpolation with
the nearest neighbor technique step is performed between the inlet of the TCF and the precursor of
the main simulation because the mesh of the inlet of the TCF is different from the one of the inlet
of the Anti-Fairing simulation . This is done thanks to the tool eddylicious suggested by Mukha and
Liefvendahl [30] and also used by Alberts [2].

OUTLET : Pressure 
equals zero

TOP : symmetry

SIDE L : symmetry

SIDE R : symmetry

WING : no-slip

INLET TOP : 
U= 27 m/s

INLET BOT : 
precursor

BOTTOM : 
no-slip

Figure 3.2: Computational domain and boundary conditions

3.1.3. Mesh
The structured mesh is generated with ANCYS ICEM. One of the main interests of this LES is to
perform a wall resolved simulation of the anti-fairing wing body junction as the work of Kumar [23]
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proved the limitation of using wall modeled LES for junction flows. The domain is separated into
120 blocks in order to control the cell size more accurately.
The total number of cells is 61.7 million. To resolve the flow up to the walls, the first cell is located
at y ≈ 1e −5 so that y+< 1 on the wing and bottom wall. The cell size progressively increases as the
distance from the wing and bottom wall also increases. The resulting mesh is shown in Figure 3.3
and Figure 3.4. It is very similar to the one of Alberts [2].

Figure 3.3: Top view of the mesh for the Antifairing case

Figure 3.4: Cross section of the mesh in the symmetry plane before the wing

3.1.4. Solver details
The solver used for this study is the PIMPLE solver of OpenFoam 4. It is a solver for transient incom-
pressible flow. The pressure equation is solved with the Preconditioned Conjugate Gradient (PCG)
solver with a Diagonal Incomplete-Cholesky (DIC) preconditioner. The other equations are solved
using the smoothSolver of OpenFoam with the GaussSeidel smoother. The velocity and pressure
equations are solved two times within one timestep and the final tolerance is set to 1e −6 and 1e −8
for the velocity.
For the numerical schemes of each term, the following settings are taken. The discretization scheme
for the time derivative is second order implicit. The gradients are computed using the Gauss linear
method. The convective terms use the Gauss LUST g r ad(U ) for U . The laplacian uses the Gauss
linear corrected method.
The time-step for the simulation is taken to be ∆t = 1.85e − 6 s to ensure that the CFL condition
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remains below 1 during the full simulation. The CFL is defined as :

C F L = U∆t

∆x
(3.6)

With U the cell-wise velocity at a given time step, and ∆x the cell size. The convergence of the
solution is monitored thanks to probes located at several points in the domain. The result for two
probes in the symmetry plane is shown in Figure 3.5 and Figure 3.6. The first probe is located at
X /T =−1.3947 and Y /T = 0.0697 and the second probe is located closer to the wing but further to
the wall at X /T =−0.1395 and Y /T = 0.3487. Because the second probe is located closer to the wing,
it is possible to observe that the mean pressure is larger than the one of the first probe. A transient
is present in the first 0.2s of the simulation. It can also be observed that low levels of turbulence
are observed during 0.02s around 1.015. This is likely to be caused by an incorrect reading of the
precursor by OpenFoam when adding time folders in the precursor folder. The simulation recovers
then almost immediately. Results shown in Chapter 4 should not be impacted by this error in the
simulation as they are taken from t = 1.08s.

Figure 3.5: Instantaneous fields X /T =−1.3947 and Y /T = 0.0697

Figure 3.6: Instantaneous fields X /T =−0.1395 and Y /T = 0.3487

3.2. Data driven models
In this section, the methodology to obtain data-driven models is described. The first step consists
in obtaining training data in the form of corrective terms for the RANS equations. This method is
called the k-corrective frozen approach. The training data are then selected. The library of functions
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that will be used to model the corrective terms is generated. Additional steps to limit the size of
the library and select relevant components are performed. The fifth step consists in generating the
appropriate models following the SpaRTA method. If informative models are found, a final step (not
performed here) consists in testing the performance of the obtained models by implementing them
in OpenFoam.

3.2.1. k-corrective frozen RANS
The present work and the one of Alberts [2] provide two wall resolved simulations of the body wing
junction with different geometries. This set of data can be used as ground truth for data driven ap-
proach.
The RANS equations do not predict accurately the features of the body-wing junction. The discrep-
ancy between LES and RANS can be overcome by adding two corrective terms to the k −ω SST
RANS model: one added to the turbulent kinetic energy equation , and an other one added to the
Reynolds stress. The first step consists of generating the training fields namely R and b∆i j thanks to
the k-corrective frozen method developed by Schmelzer et al. [38].
The continuity and momentum equations for RANS in the incompressible case are :

∇.U = 0 (3.7)

U j∂ jUi = ∂ j
[−1/ρP +ν∂ jUi −τi j

]
(3.8)

ρ, U , P and ν are the density, average velocity, generalized pressure and molecular viscosity.
The Reynolds stress τi j = u′

i u′
j is a function of the fluctuations of the velocity. The task of all RANS

models is to propose a model for this tensor to close the equations. In the case of eddy viscosity
models such as Menter k −ω SST , the Reynolds stress is expressed as τi j = 2k(−νt

k Si j + 1
3δi j ) with

Si j the mean strain rate tensor, and k the turbulent kinetic energy. The k −ω SST model is a two
equation model: a turbulent kinetic energy (t.k.e) equation and a specific dissipation rate equation
close the model and allow to compute νt .
In the k-corrective frozen RANS approach, the anisotropic part of the Reynolds stress tensor a0

i j =
−2νt Si j = 2kb0

i j is completed by a corrective term b∆i j such that:

ai j = 2k(b0
i j +b∆i j ) (3.9)

In addition, the transport equations are augmented with a corrective term R . Equation 3.10 and
Equation 3.11 show the original k−ω SST transport equations (in black) with their modifications (in
red).

Dk

Dt
= Pk +R −β∗ωk + ∂

∂x j

[
(ν+νt )

∂k

∂x j

]
(3.10)

Dω

Dt
= γ

νT
(Pk +R)−βω2k + ∂

∂x j

[
(ν+σωνt )

∂ω

∂x j

]
+C Dkω (3.11)

Pk = mi n
(
−2k(b0

i j +b∆i j )∂ jUi ,10β∗ωk
)

(3.12)

Pk = P 0
k +P∆k is the production of t.k.e, and ω the specific dissipation rate. The other expressions

and coefficients can be found in Menter [28].
To obtain the b∆i j and R fields, the LES fields U , k and τi j are injected in the RANS equations. At
each step, the turbulent kinetic energy deficit R is computed and fed back into the ω equation.
This method was first implemented by Schmelzer et al. [38] for OpenFoam 2.4.0 and actualized for
OpenFoam 4 in this work.
One important detail must be noted as this step: in the initial work of Schmelzer et al. [38], no
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constraint was added to the RANS equations and the approach was taken on the same domain and
mesh as the LES. However, in this work, a minimum on ω was imposed to avoid unphysical high
oscillations of ω that impact the calculation of the deficit in t.k.e. This minimum was chosen to be
the value of the frozenω in the freestream region at the inlet. Additionally, unphysical values close to
the inlet artificially raise the value of the frozenωwhen the method is applied to the full LES domain.
To avoid this effect the frozen approach was performed on a smaller domain where the region with
X < 0.4m is removed. With these modifications, it was made possible to use the k-corrective frozen
approach successfully. Because of these modifications, any values for R and b∆i j that are close to the
regions where the limiter on ω is activated cannot be used in the following steps. It was observed
that these regions are not occurring in the boundary layer. As the current study is mostly interested
in capturing the behavior of the characteristics of junctions flows that appear close to the wall such
as separation and horseshoe vortices, this limitation is not perceived as an obstacle to obtaining
informative data-driven models. The training data will only be used for the boundary layer region.

3.2.2. Selection of training dataset
The training of the data-driven models is done with the data of the baseline case. The Anti-Fairing
configuration can be used in further research on data-driven modeling of junction flows. The train-
ing fields b∆i j and R obtained thanks to the present k-corrective frozen RANS on the smaller mesh
contains about 60 million cell values. As mentioned earlier the region outside the boundary layer
is of little interest and contains small zones of unphysical values, discarding these regions allows to
reduce the size of the two training fields. However, this reduction is not sufficient to have reasonably
small fields. The boundary layer was thus divided into several regions of interest where the charac-
teristics of the flow are different.
The first one is a rectangular region located at −0.35 < X <−0.05 and −T < Z < T before any sepa-
ration or vortex creation. It has been noted that the boundary layer arriving on the wing is already
different between the RANS and LES simulations. Additionally, a second region around the vortex
and before the maximum thickness of the wing can be selected. Figure 3.7a and Figure 3.7b shows
the selected points (in red) and the vortex (in blue) for this second region.

(a) XY view of the second region of training (b) XY view of the second region of training

Figure 3.7: Second region of training

The regions past the maximum thickness are of lesser interest as they do not see the creation of
the typical features of the body wing junctions. Corrections learned upstream of the maximum
thickness should be sufficient to capture the appropriate characteristics .

3.2.3. Library of candidate functions
Once the training data has been generated and selected, the next step of data driven approach con-
sists in defining the way the models that approximate these data will be constructed.
In the effective viscosity hypothesis, the Reynolds stress is a function of the rate of strain and scalar
quantities only. Pope [36] determined that the Reynolds stress can be expressed as a polynomial of
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Notation Description Raw feature Normalization
qQ Q criterion 0.5(||Ω||2 −||S||2) ||S||2
qT I Turbulence intensity k 0.5U 2

i

qd Wall distance based Reynolds number
p

kd
50ν −

qd p/d s Pressure gradient along streamlines Uk
∂P
∂xk

√
∂P
∂x j

∂P
∂x j

UiUi

qT Ratio of mean turbulent to mean straintime scale 1
ω ||S||

qν Viscosity ratio νt 100ν

qV Vortex stretching

√
ω j

∂Ui
∂x j

ωk
∂Ui
∂xk

||S||2

qP Ratio of pressure normal stresses to shear stresses

√
∂P
∂xi

∂P
∂xi∣∣∣ρUi
∂Ui
∂xi

∣∣∣ −

q⊥ Nonorthogonality between velocity and its gradient |UiU j |∂Ui
∂x j

√
U 2

nUi
∂Ui
∂x j

Um
∂Um
∂x j

qγ Shear parameter
∥∥∥∂Ui
∂x j

∥∥∥ ω

Table 3.1: Additional physical features

ten tensors which coefficients depend on five invariants. Following this approach, Schmelzer et al.
[38] expressed the corrective term to the Reynolds stress b∆i j as :

b∆i j =
N=10∑
n=1

T (n)
i j α(λ1, ...,λ5) (3.13)

T (n)
i j are Pope [36] ’s tensor basis based on the normalized mean strain rate S̃i j = Si j /ω and normal-

ized rotation rate tensor Ω̃i j =Ωi j /ω and are defined as :

T (1)
i j = S̃i j T (2)

i j = S̃i j Ω̃i j − Ω̃i j S̃i j

T (3)
i j = S̃i j

2 − 1

3
δi j {S̃i j

2
} T (4)

i j = Ω̃i j
2 − 1

3
δi j {Ω̃i j

2
}

T (5)
i j = Ω̃i j S̃i j

2 − S̃i j
2
Ω̃i j T (6)

i j = Ω̃i j
2

S̃i j + S̃i j Ω̃i j
2 − 2

3
δi j {S̃i j Ω̃i j

2
}

T (7)
i j = Ω̃i j S̃i j Ω̃i j

2 − Ω̃i j
2

S̃i j Ω̃i j T (8)
i j = S̃i j Ω̃i j S̃i j

2 − S̃i j
2
Ω̃i j S̃i j

T (9)
i j = Ω̃i j

2
S̃i j

2 + S̃i j
2
Ω̃i j

2 − 2

3
δi j {S̃i j

2
Ω̃i j

2
} T (10)

i j = Ω̃i j S̃i j
2
Ω̃i j

2 − Ω̃i j
2

S̃i j
2
Ω̃i j

(3.14)

The brace indicates the trace of the vector. α(λ1, ...,λ5) is a scalar function of the five invariants
depending also on S andΩ.They are defined as:

λ1 = {S̃i j
2

} λ2 = {Ω̃i j
2

} λ3 = {S̃i j
3

} λ4 = {Ω̃i j
2

S̃i j } λ5 = {Ω̃i j
2

S̃i j
2

} (3.15)

Previous studies show that using only these five invariants does not provide sufficiently good models
in practice. Ling and Templeton [25], Wang et al. [45] and Steiner et al. [44] listed additional physical
features that are of interest for turbulence modeling. They are listed in Table 3.1.
Most of the features in Table 3.1 are frequently used in fluid mechanics. For instance, the Q cri-
terion qQ is a metric that compares the vorticity magnitude to the magnitude of the rate of strain.
It is especially useful in characterizing the vortex structures of the flow. The wall distance based
Reynolds number indicates the difference between boundary layers and shear flows. The selection
of the relevant features for the present case is described in subsection 3.2.4.
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The turbulent kinetic energy deficit R can be seen as a term of production of energy in the k equation
and be written is the same form as Pk , so

R = 2kbR
i j∂ jUi (3.16)

With bR
i j =

∑N
n=1 T (n)

i j α
R (q1, ..., qF ) and qn an ensemble of features.

Expressing the deficit of turbulent kinetic energy as a production of energy was not sufficient to
create informative models in the present case. Thus, it was decided to use a more general form as in
the work of Steiner et al. [44] . The turbulent kinetic energy deficit R is then written:

R = 2k
N∑

n=1
T (n)

i j α
R (q1, ..., qF )∂ jUi +ωkβR (q1, ..., qF ) (3.17)

Expressed in this way, R cannot be seen anymore as a correction to the production of t.k.e. As a
consequence, Equation 3.11 should be modified so that γ

νt
does not multiply R. In this work, to

avoid recomputing two times the k-corrective-frozen approach, this argument was ignored in the
following.
As difficulties were encountered to find models for b∆i j , only its impact on the transport equations is

modeled and only models for P∆k =−2k(b∆i j )∂ jUi are investigated .

A library of candidates functions B for α, αR and βR is generated by combining the invariants and
physical features together according to the following process:

• Exponentiation step: In the temporary library B1, each invariant and physical feature is raised
to the power of n, with n in [0.5,1,2]

• First combination : In B2, each item of B1 is multiplied by the items of B1 following it in the
list.

• Second combination : In B3, each item of B2 is multiplied by each item of B1.

• Concatenation: Finally B is made of B1, B2 and B3 and is cleaned so that redundant functions
are removed.

A library C for the terms of R and P∆k is built by multiplying each term of B by 2kT (n)
i j ∂ jUi or ωk.

3.2.4. Feature reduction
The previous approach leads to an important number of candidate functions. Three steps are per-
formed to reduce the library . First, mutual Information introduced by Steiner et al. [44] was used to
determine the importance of the different features. Mutual information is a measure of the amount
of information one variable X gives about another variable Y and is formally expressed as :

M I (X ,Y ) =
∫

x

∫
y

p(x, y)log
p(x, y)

p(x)p(y)
d xd y (3.18)

= H(X )+H(Y )−H(X ,Y ) (3.19)

With H the entropy of the variable. For variables that are completely independent, MI is zero. Fea-
tures that have a high mutual information with the training data will be selected for the rest of the
study. In this work, following Goderie [16], the probability densities are evaluated thanks to the k-
nearest neighbor method by Kraskov et al. [22]. For the variables X and Y , the mutual information
can be obtained from the N samples of each variable. For a given k, Kraskov et al. [22] take the
distance from a given point zi = (xi , yi ) to its k neighbor z ′

i = (x ′
i , y ′

i ) as :

ε(i )/2 = max(||xi −x ′
i ||, ||yi − y ′

i ||). (3.20)
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nx (i ) is the number of points satisfying ||x−xi || < ε(i )/2 and ny (i ) is number of points satisfying the
same condition on y . Kraskov et al. [22] show that using the approximation that p(x) is constant
over the ball of radius ε(i )/2 and centerxi , the mutual information can be expressed as :

M I (X ,Y ) =ψ(k)− 1

N

N∑
i
ψ(nx (i )+1)+ψ(ny (i )+1)+ψ(N ) (3.21)

With ψ the digamma function. k is set to 3, as in Goderie [16] because Kraskov et al. [22] advise to
choose k between 2 and 4. The MI is finally normalized by the target self MI. Self MI being different
from ∞ due to the limited number of samples N and the assumption on p(x) over the ε(i ) ball.

Secondly, a limitation is imposed on the order of the library functions. The maximum order of each
polynomial in B is chosen by the author to be lesser than 3.
Finally, once the library is built using only the features, invariants and tensors which have the most
important MI with the target data, the number of functions in the library is significantly reduced
by using cliqueing. Cliqueing was introduced by Steiner et al. [44] and Huijing et al. [17] to elimi-
nate functions with important correlation to other functions of the library. In the present case, the
cliqueing technique was able to reduce the library by a factor of 4 to 6. In graph theory, a clique is
a complete subgraph of correlated functions. The threshold for correlation is set to 0.99 here. Only
the function with the lowest complexity is selected in each clique.

3.2.5. Sparse Regression of Turbulent Stress Anisotropy
The process of creating the models is separated into a model discovery phase where the relevant
candidate functions of each model are selected and a model inference step where the coefficients
of the models are obtained.

Model Discovery
Once the corrective fields R and b∆i j are obtained and the library of available functions has been
defined, the learning process can start. The technique here is the Sparse Regression of Turbulent
stress anisotropy (SpaRTA) first introduced by Schmelzer et al. [38]. In order for the models to be
interpretable and stable when implemented into the CFD solver and to avoid over fitting, it is de-
sirable to find a solution with only a few terms and with small coefficients. These properties are
satisfied by searching the space of solution thanks to an elastic net as:

Θ= argmin
Θ

||CΘ−∆||22 +λρ||Θ||1 +0.5λ(1−ρ)||Θ||22 (3.22)

With∆ the target (either R or P∆k ), C the library functions andΘ the coefficients, ρ the mixing param-
eter andλ the regularization weight. Here, the candidates and targets are standardized . The l1 norm
in the second term favors sparse models and lets only a few non-zero coefficients when the l2 one
in the third term favors small coefficients in the solution. The balance between the terms is made
by adjusting the mixing parameter and regularization weight. The data are separated randomly into
a training and a testing set. The solutions found by applying the elastic net on the training set are
only kept if they show good performance on the testing set. The mixing parameter is set to :

ρ = [0.01,0.1,0.2,0.5,0.7,0.9,0.95,0.99,1.0] (3.23)

The regularization weight is chosen in a vector of 100 entries spaced in a logarithmic way be-
tween 10−3λmax and λmax with λmax = max(|C T

∆∆|)/(Kρ) and K is the number of points.
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Model Inference
The model discovery step used standardized functions. In order to find the correct coefficients for
the models a model inference step is performed on real value functions. Non-relevant functions
have already been eliminated by setting their coefficient to zero in the previous step. It is thus not
necessary to promote sparsity at this step and only a l2 is used to promote small coefficients. The
model coefficients are thus found following:

Θ= argmin
Θ

||CΘ−∆||22 +λr ||Θ||22 (3.24)

With λr the Tikhonov-regularisation parameter. This parameter is set to 0.01, 0.05 and 0.1 in this
study.

3.2.6. Error metrics
The evaluation of the error introduced by the models is done by comparing the true value of R or P∆k
with the one given by the models. Due to the high values of these target data in the boundary layer
where models are discovered, the error metric is chosen to be the normalized root mean square
expressed as:

e =
1/N

√
N∑

(∆−∆model )2

max(∆)
(3.25)

Some profiles at relevant points of interest in the region before the wing, the separation region, the
vortex system and the wake are exhibited for visualization and a more precise analysis of the errors.





4
LES Results

In this chapter, the results of the wall-resolved LES are analyzed. The LES approach taken here has
been validated by Alberts [2] by comparing the baseline case to the experimental results of Deven-
port and Simpson [9] and Ölçmen and Simpson [49]. Thus, the main focus will be on providing a
comparison between the LES of the baseline case of the body wing junction and the Anti-Fairing
case.

4.1. Boundary layer profiles
In Figure 4.1, a comparison is made between the streamwise velocity profile in the symmetry plane
(Z = 0) for the baseline and Anti-Fairing case.

Figure 4.1: Streamwise velocity profile in the boundary layer at Z = 0

The y-axis corresponds to the distance to the bottom wall in order to also compare the two cases
in the region of dent and is normalized by the wing thickness T . The velocity is normalized by the
freestream value Ur e f . In both cases, the streamwise velocity U is decreasing in the boundary layer
due to the adverse pressure gradient until separation. Before separation, the profiles of the two
cases are very similar although the velocity in the top part of the boundary layer is lower in the case
of the Anti-Fairing. The separation region is less important for the Anti-Fairing case.

27
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Figure 4.1: Streamwise velocity profile in the boundary layer at Z = 0 (cont.)

4.2. Surface quantities
4.2.1. Mean pressure coefficient on the bottom wall
The pressure coefficient Cp is expressed as :

Cp = P −P∞
0.5ρU 2

r e f

(4.1)

Figure 4.2: Pressure coefficient on the wall surface for the AntiFairing case

Figure 4.3: Pressure coefficient on the wall surface for the baseline case from Alberts [2]

Visualizations of the pressure coefficients are shown in Figure 4.2 and Figure 4.3. In the baseline
and Anti-Fairing cases, the pressure increases as the flow upstream of the wing gets closer to the
obstacle. The pressure raises to higher values at the nose of the wing in the case of the Anti-Fairing.
This is confirmed by Figure 4.4 where it is possible to see that the region where Cp > 0.2 starts at
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X /T = −1.3 compared to X /T = −1.1 in baseline case. A similar observation was made by Kumar
[23] in his wall-modeled LES simulation of the same configurations.

(a) AntiFairing case (b) Baseline case from Alberts [2]

Figure 4.4: Pressure coefficient on the wall surface near the wing

Figure 4.5: Pressure coefficient Cp at Z /T =−0.6

As can be seen in Figure 4.2 , the dent of the Anti-Fairing junction greatly affects the pressure field.
This effect is illustrated more precisely in Figure 4.5 where the wall pressure coefficient is plotted
along a line located at Z /T =−0.6.
Upstream of the Anti-Fairing dent, the pressure is constant while it raises slowly in the baseline case.
At the dent, around X /T = −2.1, the pressure coefficient becomes negative before experiencing a
fast increase and becoming higher than the one of the baseline case. This is due to the conjugate
effects of the obstacle and the concavity of the bottom wall.
A similar pattern is observed at the trailing edge of the wing. In the baseline case, the pressure
recovers smoothly, while in the Anti-fairing case it plateaus before dropping at X /T = 7.5 where the
dent ends and finally recovering.
Along the wing, the flow is accelerated up to the point of maximum thickness and is slowed down
afterwards. This translates into a fast decrease and then an increase of the pressure coefficient.
Figure 4.5 shows a minimum pressure coefficient of Cp =−0.72 for the Anti-Fairing and Cp =−0.84
for the baseline case, both values are lower than the one predicted in the previous study of Kumar
[23] respectively Cp =−0.65 and Cp =−0.62.
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4.2.2. Streamlines on the bottom wall
Figure 4.6a shows the streamlines on the bottom wall for the baseline and Anti-Fairing configura-
tions. The top plot corresponds to the baseline and the bottom one to the Anti-Fairing case. Two
separation lines are present. The first separation line starts upstream of the wing at the point of
separation located around X /T = −0.5 and continues around both sides of the wing. The second
line of separation starts around X /T = −0.025. A third separation line, very close to the wing, is
also present although less visible here. The locations of the first separation point are different in
the baseline and Anti-fairing case: the separation line is located closer to the wing in the case of the
Anti-Fairing. This is in agreement with the observation made by Belligoli et al. [6] when using the
Spalart– Allmaras (S-A) RANS turbulence model, reproduced in Figure 4.6b. The y−axi s in Belligoli
et al. [6] corresponds to the present z −axi s.

(a) Streamlines on the bottom wall upstream of the
wing - Wall-resolved LES

(b) Streamlines on the bottom wall upstream of the
wing from S-A RANS from Belligoli et al. [6]

Figure 4.6: Streamlines on the bottom wall

4.3. Symmetry plane
In this section, the variables of interest for the two simulations are compared at the plane of sym-
metry (Z = 0) in the vicinity of the leading edge of the wing.

(a) Anti-Fairing - Present study (b) Baseline case from Alberts [2]

Figure 4.7: Vorticity in the symmetry plane

The spanwise time-averaged vorticity Ωz is represented in Figure 4.7. It is normalized by the wing
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thickness and the reference velocity. Both cases show an elliptic lump of negative vorticity raising
above a region of positive vorticity located close to the wall. In addition, a tong of negative vorticity
attached to the wall starting from upstream is present. Junctions flows are characterized by an ape-
riodic shift between a backflow mode with negative velocity and a zero flow mode. The interaction
between the backflow mode and the zero flow creates the ejection of the flow in the upstream di-
rection which explains why the negative vorticity is slightly lifted. In the case of the Anti-Fairing the
positive vorticity is considerably smaller than in the baseline case and the two regions of negative
vorticity appear to be closer in the mean visualization. In addition, the vortex is closer to the bottom
wall.

In the corner, a secondary vortex of positive vorticity can be observed in both cases. It is the result
of the flow encountering the wing and going downwards. This secondary vortex has a reduced size
in the Anti-Fairing case compared to the baseline case.

(a) Anti-Fairing - Present study (b) Baseline case from Alberts [2]

(c) Anti-Fairing - from Kumar [23] (d) Baseline case from Kumar [23]

Figure 4.8: Turbulent kinetic energy in the symmetry plane

Figure 4.8 shows contours for the normalized turbulent kinetic energy in the plane of symmetry.
Both the Anti-Fairing and the baseline cases present a region of high time-averaged t.k.e having a
C shape made of two peaks. The first peak is located near the wall and the second peak is located
approximately at the location of the time-averaged main vortex. The C shape is a characteristic
feature of body-junction flows reported in the experiment of Devenport and Simpson [9] and in the
DES of Paik et al. [33] and the LES of Ryu et al. [37]. In both cases, a secondary peak of t.k.e associated
with the corner vortex is present. Its intensity is slightly lower than the one of the main vortex.
In the case of the Anti-Fairing, the size of the pocket of high t.k.e is smaller compared to the baseline
case and the vortex is located closer to the wall. The maximum t.k.e in the Anti-Fairing case is about
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33% lower than the one in the baseline case equal to k/U 2
r e f = 0.064 . This is close to the 40% found

by Kumar [23] in his wall modeled LES reproduced in Figure 4.8c and Figure 4.8d. It is to be noted
though that the wall modeled LES fails at representing the correct shape for the turbulent kinetic
energy in the Anti-Fairing case. In Figure 4.8, it is difficult to assess a difference in the distance to
the wing between the Anti-Fairing and the baseline case, despite the fact that separation occurs later
in the Anti-Fairing case.
The decrease in turbulent kinetic energy in the Anti-Fairing case can be linked to the convex surface
of the dent. Indeed, authors such as Muck et al. [29] point out the stabilization nature of convex
walls which tend to decrease the turbulence in the boundary layer. In order to see the impact of
the Anti-Fairing on the turbulent kinetic energy more precisely, some profiles are reproduced in
Figure 4.9. Downstream of the start of the dent and upstream of separation, the turbulent kinetic
energy profiles already differ between the two cases. The peak of the maximum kinetic energy of
the upstream boundary layer in the Anti-Fairing case is lower. In the vortex region, this translates in
a double peak of energy with a lower maximum value and with a smaller extent as could be seen in
the contour plots.

Figure 4.9: Comparison of turbulent kinetic energy in the symmetry plane

4.4. Bimodal behavior
The shift between the backflow mode and the zero flow mode can be further investigated by plotting
the probability density function (PDF) of the stream wise component of the velocity.

(a) AntiFairing case (b) Baseline case from Alberts [2]

Figure 4.10: PDF of the velocity for baseline and AntiFairing case

Figure 4.10 shows the PDF of U for the baseline and Anti-Fairing case at X /T =−0.14, and Z /T = 0
for four locations upstream of the wall. The signal is taken at the same distance from the wall in both
cases. The Anti-Fairing case presents two peaks in the vortex region in the first two stations close



4.5. Flow quantities around the wing and in the wake 33

(c) AntiFairing case (d) Baseline case from Alberts [2]

Figure 4.10: PDF of the velocity for baseline and AntiFairing case (cont.)

to the wall. The first peak happens at negative velocity and corresponds to the backflow mode and
the second peak happens at a velocity close to zero and corresponds to the zero flow mode. This is
an indication that the Anti-Fairing does not alter the bimodal behavior of the vortex. Contrary to
the baseline case where the third location shows the mark of the zero flow mode, the Anti-Fairing
presents a single peak of negative velocity. This is consistent with the reduced size of the vortex
shown in Figure 4.7a.

4.5. Flow quantities around the wing and in the wake
In this section, the velocity and streamwise vorticity around the wing and in the wake are compared
between the Anti-fairing and the baseline case. The planes located at the beginning of the wing
X /T = 0 and the end of the wing X /T = 4.2 and two additional planes in-between at X /T = 1.4 and
X /T = 2.8 are selected. In the wake, a plane at X /T = 5.33 and X /T = 10 are selected.

(a) Anti-Fairing at X /T = 0 - Present study (b) Baseline case at X /T = 0 from Alberts [2]

(c) Anti-Fairing at X /T = 1.4 - Present study (d) Baseline case at X /T = 1.4 from Alberts [2]

Figure 4.11: Streamwise vorticity at X /T = 0 and X /T = 1.4

Figure 4.11 and Figure 4.12 display the streamwise vorticity along the wing. For both cases, the main
horseshoe vortex and the corner vortex are clearly visible. The main horseshoe vortex is initially
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elliptic with a shape very similar to the one in the symmetry plane. When traveling along the wing,
its shape becomes rounder and raises above the surface. Its strength also decreases in both cases.
Finally, at X /T = 4.2, the vortex shape is a lot more diffuse.

(a) Anti-Fairing at X /T = 2.8 - Present study (b) Baseline case at X /T = 2.8 from Alberts [2]

(c) Anti-Fairing at X /T = 4.2 - Present study (d) Baseline case at X /T = 4.2 from Alberts [2]

Figure 4.12: Streamwise vorticity X /T = 2.8 and X /T = 4.2

In the Anti-Fairing case, the vortex seems to be located slightly further from the wing than in the
baseline case. For example at X /T = 2.8 the vortex is located at Z /T =−0.76 in the Anti-Fairing case
and Z /T = −0.72 in the baseline case. This effect is less visible than in the results of Kumar [23].
Vorticity in the wake will be plotted to see if the trend is similar past the wing.
When comparing Figure 4.11d and Figure 4.12b to the wall modeled LES of Kumar [23] shown in
Figure 4.13a and Figure 4.13b, it is possible to see that the predicted locations of the main vortex
follow different trends. Wall modeled LES predicts the location of the main vortex to be Z /T = 1.15
at X /T = 1.4 and Z /T = 1.3 at X /T = 2.8 while wall resolved LES predicts it to be respectively at
Z /T = 0.8 and Z /T = 0.72. Both the distance from the wing in a given plane and the evolution of
the vortex when moving downstream along the wing are different: Kumar [23] predicts a vortex far
from the wing that is pushed further when convected when Alberts [2] and the present study show
vortices close to the wall and which locations follow more the curve of the wing.

(a) Baseline case at X /T = 1.4 from Kumar [23] (b) Baseline case at X /T = 2.8 from Kumar [23]

Figure 4.13: Streamwise vorticity in baseline case from Kumar [23]



4.5. Flow quantities around the wing and in the wake 35

The velocity is also plotted at the X /T = 1.4 and X /T = 4.2 in Figure 4.14 to see the influence of the
vortex on the mean velocity.

(a) Anti-Fairing at X /T = 1.4- Present study (b) Baseline case at X /T = 1.4 from Alberts [2]

(c) Anti-Fairing at X /T = 4.2 - Present study (d) Baseline case at X /T = 4.2 from Alberts [2]

Figure 4.14: Streamwise velocity at X /T = 1.4 and X /T = 4.2

The velocity plots exhibit a bump located close to the location of the vortex. In Figure 4.14d and
Figure 4.14c, it is possible to see that the size of the bump at X /T = 4.2 is more important in the Anti-
Fairing case than in the baseline case. The velocity in the other two planes as well as the turbulent
kinetic energy can be seen in Appendix A.
In the wake, the vorticity is represented in Figure 4.15. The trend is similar to the one observed
close to the wing trailing edge. The vorticity has a diffuse pattern that flattens when being con-
vected downstream. The impact on the velocity is represented in Figure 4.16. It can be seen that
from the station located at X /T = 5.33 and the one located at X /T = 10 the increase in velocity has
been pushed away from the symmetry plane. Similarly to the experiment of Belligoli et al. [6], at
X /T = 5.33 the velocity shows that the vortex is further away from the wing in the Anti-Fairing case
compared to the baseline case. The effect is even more visible at X /T = 10.

In the Anti-Fairing case, from the velocity, vorticity and turbulent kinetic energy plots, it was
observed that in the symmetry plane the separation is weaker and happening later , that the main
horseshoe vortex core is closer to the bottom wall, and that the distance between the legs of the
vortices is increased. In Belligoli et al. [6] it was observed experimentally that in the case of the Anti-
Fairing, the distance between the two legs of the horseshoe vortex is increased. In addition, using
Spalart-Allmaras model delayed separation was observed for the Anti-Fairing. Fleming et al. [14]
introduced the momentum deficit factor (MDF) to quantify the impact of the incoming boundary
layer on the horseshoe vortex. High MDF has been linked to increased distance between the leg of
the vortex, a vortex closer to the wall and closer to the wing. This wall-resolved LES confirms the
hypothesis of Belligoli et al. [6] and Kumar [23] about the role of the high MDF in the case of the
Anti-Fairing configuration.
As for the decreased turbulence intensity, it can be attributed to the convex nature of the dent.
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(a) Anti-Fairing at X /T = 5.33 - Present study (b) Baseline case at X /T = 5.33 from Alberts [2]

(c) Anti-Fairing at X /T = 10 - Present study (d) Baseline case at X /T = 1.4 from Alberts [2]

Figure 4.15: Streamwise vorticity in the wake

(a) Anti-Fairing at X /T = 5.33- Present study (b) Baseline case at X /T = 5.33 from Alberts [2]

(c) Anti-Fairing at X /T = 10 - Present study (d) Baseline case at X /T = 10 from Alberts [2]

Figure 4.16: Streamwise velocity in the wake



5
Data driven turbulence modeling

In this chapter, the results at the different steps of the SpaRTA methodology are presented. The
first step constitutes the k-corrective frozen approach. It is followed by the results of the Mutual
Information calculation and the determination of the relevant functions for the library. Then the
outputs of the SpaRTA algorithm itself are presented.

5.1. k-corrective frozen RANS
In the k-corrective frozen RANS step, two corrective terms for the RANS equations are obtained.
First, selected profiles and contours plots showing these two terms are displayed. These plots will
be the base for a discussion on the selection of the training data and also provide additional infor-
mation on where the RANS models fail to represent accurately the body-wing junction. Secondly,
the result of the addition of these terms in a RANS simulation is shown in order to verify the per-
formance of these target data. The results obtained at this step are expected to be the maximum
performance that can later reach the SpaRTA models.

Figure 5.1: Overview of the turbulent kinetic energy deficit R

Figure 5.1 shows an overview of the deficit in turbulent kinetic energy in the domain. Two planes

37
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are represented : the symmetry plane at Z = 0 and a plane along the wing located at X /T = 2.8. As
expected, the deficit is concentrated in the boundary layer around the wing and the flat plate. The
noisy deficit downstream of the wing at Z = 0 is disappearing when looking away from the symme-
try plane. These observations confirm that the training data can be taken in the boundary layer only.

Figure 5.2a displays a closer view of R in the symmetry plane in the boundary layer, upstream of the
wing. The corrective action of R is apparent here: a strong positive deficit is located at the location
of the C shape vortex while strong negative values are surrounding it. A similar phenomenon can be
seen in the corner vortex region. The turbulent kinetic energy deficit is forcing the RANS simulation
to adopt the right shape for the two vortices.
Also apparent in Figure 5.2a is a correction in the near-wall boundary layer. This correction is also
present in the boundary layer around the wing as can be seen in Figure 5.4b. The RANS simulations
seem to have an incorrect boundary layer profile at small y+. Figure 5.5 is shown to quantify further
this effect.

(a) Turbulent kinetic energy deficit R at Z = 0 (b) P∆k at Z = 0

Figure 5.2: Corrective fields in the symmetry plane

Figure 5.2b displays P∆k = −2kb∆i j
∂Ui
∂U j

. The strongest corrections introduced by P∆k are also in the

vortex region and the inner part of the incoming boundary layer. Both the positive and negative
lumps in the vortex area are aligned with the direction of the base of the C-Shape vortex.
In the inner part of the upstream boundary layer, the values are negative which is in opposition to
what was observed for R.
To see the complete impact of the two corrections to the production of turbulent kinetic energy, the
sum of R and P∆k is shown in Figure 5.3 .

Figure 5.3: P∆k +R at Z = 0

The strong variations of the turbulent kinetic energy are dampened when looking downstream along
the wing as can be seen by comparing the turbulent kinetic energy deficit at X = 0 in Figure 5.4a and
at X /T = 1.4 in Figure 5.4b. This is coherent with the decreasing strength of the turbulent kinetic
energy downstream.
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(a) Turbulent kinetic energy deficit R at X = 0 (b) Turbulent kinetic energy deficit R at X = 1.4

Figure 5.4: Corrective fields along the wing
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Figure 5.5: Turbulent kinetic energy deficit R, P∆k and Boussinesq production of energy profiles at Z /T = 0

In Figure 5.5 the turbulent kinetic energy deficit profiles at different locations upstream of the wing
are plotted to better understand the correction shown in Figure 5.2a. In the near wall boundary
layer R is composed of two peaks: one below y+ ≈ 12 and one above it. The second peak location
corresponds roughly to the one of the peak in the Boussinesq production of turbulent kinetic en-
ergy. Their magnitudes are similar. The first one doesn’t have any equivalent. In the following, it is
decided that the data below y+≈ 14 will not be kept for the training. Indeed, our features being nor-
malized by ω, reaching the first peak would likely require large coefficients for the models without
important gains in the predicted fields.
Figure 5.5 also reveals that P∆k has a shape very similar to the Boussinesq production of energy al-
though its magnitude and sign are different. This behavior is not occurring in the vicinity of the
vortex where the Boussinesq production and P∆k are very different as can be seen in Figure 5.6.
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Figure 5.6: Turbulent kinetic energy deficit R, P∆k and Boussinesq production of energy profiles at Z /T = 0 close to the
vortex

To validate the k-corrective frozen approach, the corrective fields R and b∆i j are added to a k−ω SST
model and a propagation step is performed. The results on the turbulent kinetic energy are shown
in Figure 5.7 and compared to the LES results. Overall there is an excellent agreement between the

(a) Propagation of corrective fields -
Plane of symmetry view

(b) Propagation of corrective fields -
Side view at X = 0

(c) LES - Plane of symmetry view (d) LES - Side view at X = 0

Figure 5.7: Turbulent kinetic energy obtained from propagation of the frozen fields

turbulent kinetic energy obtained by propagating the frozen fields and the LES results. The location,
magnitude and size of the main horseshoe vortex are well captured. The corner vortex shape is
slightly mispredicted. In the training data, the region located at a distance below 0.65 from the wing
will not be used.
As models were difficult to find for b∆i j , it is interesting to look at the result of propagating only P∆k
and R. Figure 5.8 shows a real lack of accuracy when the correction to the Reynolds stress tensor is
not implemented. The turbulent kinetic energy is indeed raised inside the vortex but is now over-
predicted compared to the LES. The C-shape of the vortex is only roughly captured and the corner
vortex appears to be deformed too. The location of the vortex is improved compared to RANS mod-
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els but is not as accurate as when both R and b∆i j are propagated.

Figure 5.8: Propagation of P∆k +R at Z = 0

5.2. Feature selections
The invariants, tensors and physical features used to build the library can be selected among the
lists in Equation 3.15, Equation 3.14 and Table 3.1. Creating the library using all of these features
and following the method described in subsection 3.2.3 would result in a very high number of mod-
els in the library. The results from the calculation of Mutual Information are shown and the relevant
features are selected based on it. The mutual information in two regions of the flow described in
Section 3.2.2 are compared. For simplicity, the first region including part of the incoming flow be-
fore any separation of creation of vortices is called the upstream region in this section, and the
second region surrounding the beginning of the vortex is called the vortex region. As explained in
the previous section, values having y+< 14, being outside of the boundary layer and being too close
to the wing are also excluded in these regions.

5.2.1. Tensors
Mutual information is first employed to determined the dependency of R and P∆k on the tensors.
The resulting histograms are shown in Figure 5.9b for R, Figure 5.10b for b∆i j and Figure 5.11 for P∆k .

The mutual information for R and P∆k is actually taken between the corrective term and the inner

product of the tensor with the gradient of the velocity T (n)
i j

∂Ui
∂x j

.

(a) Upstream Region (b) Vortex Region

Figure 5.9: Mutual information between the t.k.e deficit and the basis tensors

As can be seen in Figure 5.9a, in the upstream region, mutual information is the highest between
the second invariants of T (1) and T (6) basis tensors with MI>0.06. T (3), T (4) T (5),T (9), T (10) seem to
have a weak but non negligible correlation. The author chose not to select T (9) and T (10) to keep the
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order of the models below 3. Finally T (2) does not seem to inform on R and is not selected.
In the region around the vortex, the mutual information between the tensors and R is different. The
first thing that can be noted is that the mutual information is lower for all tensors. This is consistent
with the fact that no informative model was found when using R = 2kbR

i j∂ jUi . T (3) and T (4) are

the tensors with the highest mutual information this time. It is followed by T (9) , T (1) and T (6) with
MI>0.015. Again T (9) is not selected to keep a model with a low order.
For b∆i j , the mutual information between each components of the two tensors is plotted. The result-

ing mutual information can be seen in Figure 5.13. In the shear region, all tensors except for T (10)

have a mutual information with b∆11 and b∆22 above 0.06. T (1) and T (6) have a medium to high mutual
information with all components except for b∆13. In the region close to the vortex, T (1) is the tensor
whose components have the highest mutual information with the components of b∆i j .

(a) Upstream Region (b) Vortex Region

Figure 5.10: Mutual information between the b∆i j and the basis tensors

The mutual information varies a lot depending on the components of b∆i j . To choose the appropriate

tensors, it was decided to also look at the mutual information between the tensors and P∆k . In the
upstream region, T (1) and T (6) have the highest mutual information and in the region where the
vortex is present, they also show to be correlated with the data. T (3) and T (4) can also be considered
to be important in this later region.

(a) Upstream Region (b) Vortex Region

Figure 5.11: Mutual information between the P∆k and the basis tensors
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5.2.2. Invariants
The MI information between the invariants and the R and P∆k is shown in Figure 5.12 and Fig-
ure 5.13. In the shear region, the mutual information between R and each invariant is almost the
same. It is close to 0.06 and all invariants are kept as a consequence. In the vortex region, λ1 domi-
nates with a mutual information of 0.06.

(a) Upstream Region (b) Vortex Region

Figure 5.12: Mutual information between the t.k.e deficit and the invariants

The mutual information between the invariants and P∆k varies a lot depending on the region. This
was expected as the vortex induces very different corrective fields compared to the upstream region.
While all invariants seem to inform on P∆k in the upstream region, in the vortex region λ5 mutual
information is reduced to 0.01.

(a) Upstream Region (b) Vortex Region

Figure 5.13: Mutual information between the b∆i j and the invariants

5.2.3. Physical features
The mutual information between the physical features and R and P∆k is now studied. For R, the
dominating features are the same in the two regions even if the mutual information is lesser in the
vortex region. The Q criterion, turbulence intensity, wall distance based Reynolds number, viscos-
ity ratio, vortex stretching and shear parameter have the highest mutual information. In addition,
mutual information between the physical features and invariants was performed. The turbulence
to mean strain time ratio is removed from the set due to its high mutual information with λ1 in both
the upstream region and the one close to the vortex. The self mutual information between features
and invariants is shown in Appendix B.

Figure 5.15 shows the mutual information between the physical features and P∆k . In the first region,
the same physical features that had a high mutual information with R have a high mutual infor-
mation with P∆k . A notable addition is the ratio of pressure normal stresses to shear stresses. In
the region close to the vortex , the Q criterion, the viscosity ratio and the ratio of pressure normal
stresses to shear stresses have a mutual information above 0.06 and are being selected to be part of
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(a) Upstream Region (b) Vortex Region

(c) Upstream Region (d) Vortex Region

Figure 5.14: Mutual information between the t.k.e deficit and the physical features

the library. The vortex stretching and shear parameter are also retained due to their performance in
the first region.

(a) Upstream Region (b) Vortex Region

(c) UpstreamRegion (d) Vortex Region

Figure 5.15: Mutual information between the P∆k and the physical features

In conclusion, the library can be build using the tensors and invariants specified in Table 5.1 for R
and Table 5.2 for P∆k . A function is retained if it has high mutual information with the target data in
one of the two regions studied. The turbulence intensity qT I has a high mutual information with R,
but the author found unphysical spikes of R when using this feature and looking at profiles in the
separation region before the vortex. This is due to the fact that the velocity is very close to zero while
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Type Description
Tensors T (1),T (6),T (3), T (4)

Invariants λ1,λ2,λ3,λ4,λ5

Physical features B R
1 qQ , qd , qν, qV and qγ

Table 5.1: Features Invariants and tensors for R selected from mutual information

the turbulent kinetic energy is non-zero in the boundary layer. Thus, the library retained for R does
not include the turbulence intensity. For P∆k , the turbulence intensity is also not retained because a
similar behavior is expected.

Type Description
Tensors T (1),T (6),T (3), T (4)

Invariants λ1,λ2,λ3,λ4,λ5

Physical features B
P∆k
1 qQ , qP , qd , qν, qV and qγ

Table 5.2: Features Invariants and tensors for P∆k selected from mutual information

5.3. Model form for R and P∆
k

In order to validate the models obtained thanks to SpaRTA, the normalized error e is displayed and
the models for R and P∆k are compared to the true values of the corrective fields along different
profiles. These profiles are located at different positions before the wing , in the main horseshoe
vortex and on the side of the wing. Models found in the upstream region and the vortex region are
evaluated on all profiles. As expected models trained upstream of the wing were not able to provide
good models in the vortex region and only the models trained on the vortex region are shown here.

5.3.1. Model form for R
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(b) Magnitude of the largest coefficient compared to the
complexity of the model for R

Figure 5.16: Evolution of the error and coefficients with regards to complexity

In the vortex region, Figure 5.16a displays the evolution of the normalized root mean square
error as defined in subsection 3.2.6 with the complexity of the model. It can be seen that the error
decreases quickly up to a complexity of about 6. In this plot, the gain brought by more complex
models does not seem to be significant. However, because R takes a broad range of values and in
particular goes to extreme values in the region close to the wall, some further analysis is necessary
to understand where each model is showing a good prediction of the true value of R .
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Figure 5.16b displays the maximum value of the coefficients of a given model. Three categories of
models can be distinguished here, models with very small coefficients that exist up until a complex-
ity of 8, models with a maximum coefficient that is around 1 and then at higher complexity models
with a largest coefficient above 3. Models with the smallest coefficients are likely to produce more
stable simulations. In the following, models with coefficients below 1 are studied to evaluate if they
provide a good representation of R.

Figure 5.17 displays some profiles of interest, all located in the second training region.
Profiles in Figure 5.17a are located upstream of the vortex in the symmetry plane. It can be seen
that all models represented capture well the increase of R close to the wall. Small variations are
smoothed out. At X /T =−0.2092, the models fail to predict the negative values around Y /T = 0.01
and most models remain positive on the full profile. Profiles in Figure 5.17b are located inside the
vortex in the symmetry plane. Models 1577,1580−1584 seem to reproduce correctly the pattern of
R, the increase of R is correctly located although a bit small at X /T =−0.1301. In the full region, the
error e is roughly the same for models 1580−1584 and is higher for model 1577.
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(a) Profiles in the separation region before the vortex
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(b) Profiles in the vortex

Figure 5.17: Predictions of R versus the true values with training in the second region

In Figure 5.17 , the performance of the models was tested in the region of their training. However,
in the absence of a classifier for different regions, the models will be applied to the full domain. The
predictive power of the models upstream of the wing, outside of their training region is shown in
Figure 5.18. Overall, all models predict correctly the increase in R around Y /T = 4.10−3 but they fail
to return to lower values before re-increasing closer to the wall as was shown in Figure 5.5 . This is
maybe due to the limit imposed on y+ that prevents the models to learn the proper behavior for
y+< 10.

Based on the previous discussion, five models are selected to represent best the turbulent kinetic
energy deficit. They can be separated into two groups: one with complexity 5 and one with com-
plexity 6.
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Figure 5.18: Comparison of models trained in the vortex region on profiles upstream of it

The models with complexity 5 are:

M (1577)
R = 2k∂ jUi T (1)(−0.9571qν)+ωk(0.0947+0.0627qQ q0.5

ν −0.0017q0.5
γ −0.0462q1.5

ν ) (5.1)

M (1580)
R = 2k∂ jUi T (1)(−0.3860q0.5

ν )+ωk(0.09945+0.0992qQ q0.5
d λ0.5

1 −0.0815qν+0.0287q1.5
V ) (5.2)

And the models with complexity 6 are:

M (1581)
R = 2k∂ jUi T (1)(−0.2910q0.5

ν )+ωk(0.0979+0.1070qQ q0.5
d λ0.5

1 +−0.0861qν+0.0357qV −0.0077q1.5
V )

(5.3)

M (1582)
R = 2k∂ jUi T (1)(−0.2503q0.5

ν )+ωk(0.0995+0.1510qQ q0.5
d λ0.5

1 −0.03417qQ q0.5
ν −0.0892qν+0.0371q1.5

V )
(5.4)

M (1584)
R = 2k∂ jUi T (1)(0.5840qν−0.9214q0.5

ν )+ωk(0.1001+0.1278qQ q0.5
d λ0.5

1 −0.01417qQ q0.5
ν −0.0771qν)

(5.5)

By comparing these five models to the non-selected ones, one can make the following remarks:

• ωk ∗ 0.09, which is the model of complexity 1, is used by most models to reproduce the in-
crease of R close to the wall.

• The introduction of the normalized Q criterion in the selected models improves the behavior
close to the vortex compared to the models with lower complexity. However, models with
higher complexity do not necessarily use this feature but also use the vortex stretching feature.

• The models selected here, based on their reasonable complexity, are very similar showing
some combinations of the Q criterion, the viscosity ratio and the wall distance based Reynolds
number.

• Additional terms are based on the shear parameter and the vortex stretching.

5.3.2. Model form for P∆k
Due to the difficulty of finding models for b∆i j , it was decided to find models for P∆k . Although no

good models were found for P∆k , the comparison between the true values and the models is dis-
played for a few profiles in Figure 5.19 to understand in which way the modeling fails. The previous
constraints on complexity and magnitude of the maximum coefficient are relaxed and the maxi-
mum complexity displayed is chosen to be 10 with coefficients lesser than 5. It can be seen in Fig-
ure 5.19a that the performance of the found models, initially good upstream of the wing is getting
worst when approaching the vortex. This is coherent with the observation that the shape of P∆k is
very simple upstream. The prediction and true values are almost in opposition at X /T = −0.2092.
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The profiles in the vortex shown in Figure 5.19b are slightly better as they capture the negative peak
at Y /T = 0.04 . However, the positive production of turbulent kinetic energy closer to the wall is
completely mispredicted by all models. In conclusion, the two positive and negative lumps that are
lifted when going upstream are not being captured by SpaRTA.
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Figure 5.19: Predictions of P∆k versus the true values in the vortex region

Out of the models displayed in Figure 5.19, the models with the lowest error e are:

M 1349
P∆k

=−2k∂ jUi (0.7202T (1) −4.5743q0.5
ν T (1)) (5.6)

M 1352
P∆k

=−2k∂ jUi (0.7294T (1) −4.2071T (4) −3.4781q0.5
ν T (1)) (5.7)

M 1356
P∆k

=−2k∂ jUi (−1.91778q0.5
d T (1) +0.2258qd T (1) +0.7062T (1) +0.8253T (6) +0.2687λ0.5

1 T (1))

(5.8)

The expressions of the models reveal that all of them rely on T (1) . This is probably because out-
side of the area in the immediate vicinity with the vortices, the Boussinesq approximation remains
valid and it can also be linked to the shape of P∆k in Figure 5.5 . The other tensors used are T (4) and
T (6). The models within the range of coefficients and complexity chosen only use qν and qd for the
physical features. This is surprising as other physical features had comparable mutual information
with P∆k but are not used in the models.
Given the inability of the models found in this study to reproduce the key characteristics of P∆k in
the vortex region, it was decided by the author not to implement these models in OpenFoam.
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Conclusions and Recommendations

Junction flows are encountered in hydrodynamics, aerospace and many other industrial domains.
The adverse pressure gradient caused by the presence of the obstacle in the flow leads to the sepa-
ration of the boundary layer and to a system of unsteady horseshoe vortices in turbulent flows. In
aerospace, the body wing junction flow is increasing the total drag of the airplane due to the pres-
ence of interference drag. Aerodynamic shape optimization has been used to find a new design for
the junction that aims at reducing its drag. Previous studies of this Anti-Fairing design used RANS
simulations or wall-modeled LES due to their reduced computational cost. However, these meth-
ods have proved to be inaccurate in predicting some major features of junction flows such as the
location, strength and shape of the main horseshoe vortex. Based on the gaps found in the existing
literature the objective of this study was :

To produce a wall resolved LES of the Anti-Fairing body wing junction and to enhance the ac-
curacy of RANS turbulence models in the case of body wing junction flows using a data-driven
turbulence modeling approach (namely SpaRTA)

The conclusions and recommendations for future work are presented in this chapter.

6.1. Conclusions
A wall resolved LES for the Anti-Fairing design was performed in this study. This specific configu-
ration also leads to the creation of a system of unsteady vortices. The bimodal behavior that char-
acterizes the switching between a zero flow mode and a backflow mode was observed as well as the
specific C-shape of the time-averaged main horseshoe vortex. The comparison was made with the
wall resolved LES of Alberts [2]. The presence of the Anti-Fairing results in different modifications
of the flow compared to the baseline case. Streamlines on the bottom wall upstream of the wing
reveal that separation is delayed in the case of the Anti-Fairing and profiles of velocity show that the
size of the separation is smaller than the one of the baseline case. The visualizations of the vorticity
in the vicinity of the wing show that the Anti-Fairing causes the vortex to be located closer to the
wall but does not change significantly the distance to the wing. The turbulent kinetic energy in the
symmetry plane is reduced compared to the baseline case which could be explained by the convex
nature of the dent. Along the wing, the vortex is mostly following the shape of the wing. In the
case of the Anti-Fairing the distance between the two legs of the vortex is more important than in
the baseline case, this is especially visible in the wake of the wing for the velocity plots. This is in
agreement with the experiment of Belligoli et al. [6]. The location of the vortex closer to the wall, the
weaker separation and the distance between the legs of the main horseshoe vortex are in agreement
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with the hypothesis of Belligoli et al. [6] of the higher Momentum Deficit Factor in the case of the
Anti-Fairing.

Using the wall resolved data, the data-driven algorithm SpARTA was used to generate algebraic
models for correction to the RANS turbulence models. The RANS model to be corrected is the k −ω
SST model. The k-corrective frozen approach was successfully used to generate two correction
fields: one being a turbulent kinetic energy deficit and the other a correction to the Reynolds stress
anisotropy. The analysis of these two fields reveals two main regions of corrections : one in the up-
stream boundary layer and the other in the vicinity of the vortices. The corrections in the vortex
regions have very big variations in a small area. Looking downstream the correction magnitude de-
creases. When adding the frozen corrections to the turbulent kinetic energy and the Reynolds stress
in a k −ω SST simulation, one can see the very good match between the corrected RANS fields and
the LES. The shape, magnitude and location of the main horseshoe vortex are properly captured.
Adding only the corrections to the turbulent kinetic energy and the producing term resulting from
the correction to the anisotropy results in a small improvement over the baseline RANS model. Mu-
tual information was then used to determine relevant tensors, features and invariants to use in the
models for the two corrective terms. Finally, models for the turbulent kinetic energy and the P∆k
were obtained with the SpaRTA algorithm. The found models have a good performance outside the
vortex region but some important discrepancies can be observed between the true fields and their
models in the vortex region. For the turbulent kinetic energy, the negative values are often not prop-
erly captured and for P∆k , the models are really failing to capture the positive/negative shift of the
correction in this region.
Using the SpaRTA methodology to obtain good models for body wing junction is likely to require
more steps and constraints than the ones used in the time of this study.

6.2. Recommendations
Following the work done during this thesis, some recommendations can be made for future re-
search:

• Using the two wall resolved LES, the drag could be investigated to provide a definite answer
on the capacity of the Anti-Fairing to reduce drag in the junction.

• Additional constraints, features or invariants could be investigated to enhance the perfor-
mance of SpaRTA for body wing junction flows.

• Alternatively, other data-driven techniques could be tested on this case.

• As the mean features of junction flows are the results of the dynamics of the horseshoe system,
it would be interesting to test data driven-techniques for unsteady but low-cost simulations
such as URANS simulations.



A
Appendix A

(a) Anti-Fairing at X /T = 0 - Present study (b) Baseline case at X /T = 0 from Alberts [2]

(c) Anti-Fairing at X /T = 2.8 - Present study (d) Baseline case at X /T = 2.8 from Alberts [2]

Figure A.1: Streamwise velocity
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(a) Anti-Fairing at X /T = 0 - Present study (b) Baseline case at X /T = 0 from Alberts [2]

(c) Anti-Fairing at X /T = 1.4 - Present study (d) Baseline case at X /T = 1.4 from Alberts [2]

Figure A.2: Turbulent kinetic energy

(a) Anti-Fairing at X /T = 2.8 - Present study (b) Baseline case at X /T = 2.8 from Alberts [2]

(c) Anti-Fairing at X /T = 4.2 - Present study (d) Baseline case at X /T = 4.2 from Alberts [2]

Figure A.3: Turbulent kinetic energy
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Appendix B

Figure B.1: Self mutual information between invariants and physical features in the vortex region
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