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Summary & Conclusions - Risk analysis is discussed within 
a Bayes framework. Traditionally, Bayes parameter estimation is 
based on a quadratic loss-function. This paper introduces an alter- 
native asymmetric precautionary loss-function, derives its main 
features, and presents a general class of precautionary loss- 
functions with the quadratic loss-function as a special case. These 
loss functions approach infinity near the origin to prevent 
underestimates and thus give conservative estimates, especially 
when, for example, low failure rates are being estimated. The con- 
servative estimates make these loss functions useful when the con- 
sequences are major and under-estimation is serious. They are in- 
tuitively appealing and easy to calculate. 

1. INTRODUCTION 

Risk analysis is used in several industrial disciplines, eg, 
chemical-process industry and offshore industry. In risk 
analysis, both the potentiality of an undesired event and its con- 
sequences are investigated. This potentiality is usually measured 
by either a probability or a failure rate. The Bayes approach 
is widely applied to estimate this probability (failure rate). Some 
examples on the Bayes approach are in [l]. 

When dealing with disastrous consequences, it can be 
worse to underestimate the potentiality of an event than to 
overestimate it. This is important when risk-level is the basis 
of a risk-reducing initiative, either by reducing the potentiality 
or the consequences. An erroneously low estimated risk-level 
can lead to the absence of necessary initiative to reduce the risk 
level. It is unreasonable to use a loss function that allows one 
to estimate a failure probability of zero. A positive loss func- 
tion at the origin allows estimating zero, and in a risk analysis, 
estimating zero failure probability simply means that no risk 
is anticipated. Hence, a precautionary loss function is defined, 
a specific class of loss functions that are precautionary is 
developed. Some examples are given. The uses of Bayes models 
are described in [ 2 ,  3, 5 ,  61. 
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Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

2. LOSS FUNCTION 

Optimal policy selection has traditionally been discussed 
in relation to symmetric (and often quadratic) loss functions. 
By using non-symmetric loss functions one is able to deal with 
cases where it is more damaging to miss the target on one side 
than the other. According to [3], should Z(I9,a) be continuous, 
quasi-convex’ and attain the lowest value at a = 19. This implies 
that the loss function increases as a moves away from 0. 

A loss function is (for any E > 0): 

* downside damaging if l ( a - ~ , a )  2 Z ( a + ~ , a ) ,  
* upside damaging if Z ( a - ~ , a )  5 Z(a+c,a), 
* symmetric if the loss function is both downside and upside 

damaging. 
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Figure 1. Functional Form of an Asymmetric Downside- 
Damaging Loss Function ( D )  vs a Quadratic Loss 
Function (Q) 

Figure 1 is an example of a downside-damaging loss func- 
tion compared with a quadratic loss function. The downside- 

’ A real function h(x) is quasi-convex if, for any given real number 
r,  the set of all n such that h(x) 5 r is convex. Any convex function 
is quasi-convex, but the converse is not necessarily true. 
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damaging loss function gives higher costs for an underestimate 
compared to the quadratic loss function. 

2.1 Precautionary Loss Functions 

The Z(0,a) is a precautionary loss function iff 

1 .  Z(0,a) is downside damaging, and 
2. for each fixed 6, Z(6,a) - 03 when a - 0. 

Figure 2 shows some typical precautionary loss functions for 
k > 0. 

2.2 Class of Precautionary Loss Functions 

A literature search for precautionary loss functions gave 
some variants of, 

which is mentioned in [6]. The Bayes’ estimate for ( 1 )  is usual- 
ly difficult to calculate. The problem is to come up with a loss 
function which gives both simple calculations and is intuitively 
appealing, eg , 

This satisfies the criterion of being precautionary. The Bayes’ 
estimate for (2) is obtained from theorem 1 .  

Theorem 1 .  Let Z( 6,a) be defined by (2). The Bayes’ estimate is: 

Theorem 1 is proved in [4]. There it is also shown that 
the s-expected squared estimation error is less than twice the 
posterior variance. The Bayes’ estimate in (3) is a geometric 
mean; in (4) it is given as a function of the posterior 
s-expectation and the posterior variance. The f represents the 
state of being precautionary, and f becomes important if the 
s-expectation is close to zero or when the variance is large. It 
means that the Bayes’ estimate is sensitive to the choice of the 
loss function when very uncertain conditions occur or when 
estimating low probabilities. 

The loss function in (2) can be generalized to 

w (6) is an arbitrary weight function. The k 5 2 ensures that 
the cost increases as the difference a -6 grows. k is a precau- 
tionary index since it regulates how downside damaging the loss 
hnction is. The loss function in (5 )  covers a spectrum of precau- 
tionary loss functions. Figure 2 plots (5 )  for various k .  

0 1 2  3 4 5 6 7 8 9 10 

a 

Figure 2. The Loss Function (5) vs k 

In the limit, k=O, the loss function is the familiar quadratic 
loss function, and when k = 2  it approaches w( 0)  as a- 03. Thus, 
the loss function becomes more precautionary as k increases. 

select two values ofa ,  O - - E ,  and Ofce-E, where c>  1, which 

solve Z(6, 6--E) = Z(0, 6+c.-E) with respect to k. 

Let E = O/c; the problem simplifies to: 

A way to determine k is to: 

have equal loss for the decision maker, 

solving this with respect to k gives: 

k = 2 a ln(c)/ln[2c/ (c - l)]. 

Two special values of c are: 

c=2 gives k = l  as in (2), 
c=3 gives k = 2 .  

Theorem 2. Let the loss function be defined by (5). Then the 
Bayes’ estimate is: 

The proof is obtained by differentiating the posterior s-expected 
loss and equating it to zero; then solving this for a to find the 
critical points. Since a > 0, the sign in front of the square root 
is positive. Since a is the action with minimum loss and therefore 
is the Bayes’ estimate, it is denoted gP and the theorem is 
proved. 
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Theorem 1 follows from theorem 2 for k = 1 and w (19) 
17- 

= 1. 

L- Example 1 alpha=O 45 1 

15 ’ .  

3. EXAMPLES~ 
E 1 4  - 

Two examples apply the precautionary loss function. Ex- 1 3 -  

ample 1 gives a theoretical illustration while example 2 is a 

Notation Figure 3. How f-1 as s Increases 

h 

3.1 Example 1: Poisson 

unknown failure rate, to be estimated. 
3.2 Example 2 

Some offshore reliability data are used to illustrate the ef- 
fect of the precautionary loss function. When a prior data-set 
is available, empirical Bayes is used to model the failure fre- 
quency of a pump. This has resulted in a posterior gamma 
distribution with: 

The Poisson sampling model of s failures in t time is: 

f ( s l X ; t )  = poim(s; h.t) 

1 2 -  numerical case. The estimates are compared with those obtain- 

sample model and use only the precautionary loss function with 
ed from the quadratic loss function. We consider the Poisson 1 1 -  

The conjugate prior in this case is the gamma pdf 
s+a = 1.31, 

r(X; a,P) = P-gamd(P.h; a). 

Bayes’ theorem gives the posterior gamma pdf 
in (9). These values give the posterior mean and variance: 

r (h l s ; t ,  a , p )  = ( t + P )  .gamd((t+p).h; s+a),  (9) X q  = 51.7.10-6/hour, 

Var = 20.5. 10-10/hour2 given that s failures in time t are observed (here A = 19). The 
posterior s-expectation & variance are: 

The Bayes estimate for the quadratic loss function is: 

and the Bayes estimate from theorem 1 is, from (10): 

xp = f X q  = 1.33 .51.7. 10-6/hour 
The quadratic loss function gives the iq as the Bayes’ estimate. 
This is compared with the Bayes’ estimate obtained by using 
the precautionary loss function with k=  1: 

( s + a ) *  ( s + a + l )  

t+p 
h, = 

= X q f ,  

= 68.7. 10-6/hour = 0.60lyear. (13) 

This means that the Bayes estimate increases by 33 % when the 
precautionary loss function is used instead of the quadratic loss 

(10) function. 

f =  1 + -  1 .  tl s + a ’  
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f - 1 as s increases - as shown in figure 3. 

’The number of significant figures is not intended to imply any ac- 
curacy in the estimates, but to illustrate the arithmetic. 



NORSTROM: THE USE O F  PRECAUTIONARY LOSS-FUNCTIONS IN RISK ANALYSIS 403 

AUTHOR REFERENCES 

t41 

[51 

t61 

G. Apostolakis, “Data specialization for plant specific risk studies”, 
Nuclear Engineering and Design, vol 56, 1980, pp 321-329. 
J.O. Berger, Statistical Decision Theory and Bayesian Analysis, 1988; 
Springer. 
Y. Hosomatsu, “Concepts, theory, and techniques. Asymmetric loss func- 
tion and optimal policy under uncertainty: A simple proof”, Manage- 
ment Science, vol 26, 1980 May, pp 577-585. 
J.G. Norstr6m, “‘Bayesian analysis & decision theory in reliability and 
risk analysis”, Diploma Thesis, 1994 Feb, pp 33-43; The Norwegian 
University of Science and Technology. 
H.F. Martz, R.A. Waller, Bayesian Reliability Analysis, 1982; John Wiley 
& Sons. 
F.A. Tillman, W. Kuo, C.L. Hwang, L.G. Doris, “Bayesian reliability 
& availability % A review”, IEEE Trans. Reliability, vol R-31, 1982 
Oct, pp 362-372. 

Jan G. Norstrbm; Dept. of Statistics, Probability, and Operations Research; 
Delft University of Technology; Mekelweg 4; 2628 CD Delft, The 
NETHERLANDS. 
Internet (e-mail) : j . g .norstrom@twi . tudelft .nl 

Jan G. Norstrdm holds an MSc from The Norwegian University of 
Science and Technology (NTNU) in Trondheim. After graduating from NTNU 
in 1994 he joined the young graduate training program of the European Space 
Agency @SA) and spent one year in the Reliability, Availability, Maintainability 
& Safety Section at the Research and Technical Centre of ESA where he worked 
with development of sneakpath analysis for computer-controlled systems. Since 
1996 January he has been a PhD candidate at the Delft University of Technology. 
His research interests are applications of decision analysis within the area of 
risk & reliability analysis. 

Manuscript received 1996 May 20 

Publisher Item Identifier S 001 8-9529(96)07358-7 4 T R  b 

INVITATION To MEMBERSHIP INVITATION To MEMBERSHIP INVITATION 10 MEMBERSHIP INVITATION To MEMBERSHIP 

Invitation to Membership in the Reliability Society 
There is no better time than now to join the IEEE Active local Reliability Society Chapters are in many 

Reliability Society. Membership gives you ready access to locations in the USA and in Canada (Montreal, Ottawa), 
meetings and conferences in your area of interest, and to Japan (Tokyo), and Rep. of Singapore. The chapters 
the prime movers in engineering, science, and business. offer opportunities for your personal participation and 

As an IEEE member, your can choose from a wide growth. Association with other Reliability Society 
offering of standards, products, and services (books, members helps you to exchange information & 
conference records, employment surveys, short courses, experience on current technical & management problems 
and other helpful aids) - all at reduced member rates. and to learn how others are handling them. 
Your membership entitles you to reduced registration Don’t wait. If you are already an IEEE member, just 
fees for most activities sponsored or cosponsored by the send in your Reliability Society fee to the IEEE. If you 
IEEE and/or Reliability Society. This could easily save are not an IEEE member, then write or call IEEE for an 
you more than the cost of annual membership. IEEE membership application. 

There are 2 areas in the IEEE Reliability Society; you can join either one or both. The fee for either is $20/year; 
the fee for both is $30/year. Everyone gets the Society Newsletter. The other publication benefits are: 

Area System Reliability Parts, Physics of Failure 
007/ 109 1 007/1451 IEEE Identification 

Annual Proceedings 
IEEE Transactions on Reliability Semiconductor Manufacturing 

Ann. Reliability & Maintainability Symp. Int’l Reliability Physics Symp. 

IEEE Service Ctr; POBox 1331; Piscataway, NJ 08855 USA. phone: [ l ]  908-981-1393, or 800-678-IEEE (USA only) 
If you are a Reliability Society member, show this invitation to a colleague - sign up another member. 4 T R t  


