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Abstract

Federated learning for time series forecasting enables clients with privacy-sensitive time series
data to collaboratively learn accurate forecasting models, e.g., in energy load prediction. Un-
fortunately, privacy risks in federated learning persist, as servers can potentially reconstruct
clients’ training data through gradient inversion attacks. While gradient inversion attacks
are demonstrated for image, text and tabular classification tasks, little is known for time
series regression tasks. In this paper, we first conduct an extensive empirical study on in-
verting time series data across 4 time series forecasting models and 4 datasets, identifying
the unique challenges of reconstructing both observations and targets of time series data. We
then propose TS-Inverse, a novel gradient inversion attack that improves the inversion of time
series data through (i) learning a gradient inversion model that outputs quantile predictions,
(ii) a unique loss function incorporating periodicity and trend regularization, and (iii) regu-
larization according to the quantile predictions. Our evaluations demonstrate a remarkable
performance of TS-Inverse, achieving at least 2x-10x improvement in terms of sMAPE metric
over existing gradient inversion attacks methods on time series data.
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Chapter 1

Problem Statement

The energy transition has highlighted the need for better grid optimization, particularly
at the household level [1, 2]. While high voltage grid optimization is already in practice,
improvements are needed for low voltage grids [3]. A key aspect of grid optimization is
forecasting energy demand, which can be approached as a time series forecasting problem,
using historical data to predict future consumption [4, 5, 6]. A specific use case, researched at
TNO, for load forecasts is predicting transformer overloads through the use of a grid simulator,
which allows system distribution operators to predict and optimize the low-voltage grid [7].

However, European laws (GDPR) restrict the collection of individual energy consumption
data, making it challenging to achieve accurate forecasts on low voltage grids [8, 9]. To address
this researchers, in general and at TNO, are exploring methods that allow load forecasting
without collecting personal data [3, 10, 11]. One promising solution is federated learning [10].

Federated learning is a training technique where data remains distributed, but a global model
is trained on each local dataset [12]. Instead of centrally collecting data to train a single
model, federated learning iteratively trains models locally and then collects and aggregates
these locally trained models centrally.

Despite its advantages, federated learning still poses challenges and privacy risks [13]. Trans-
ferring models instead of data can still reveal information about the local training data [14].
Most research on privacy breaches has been conducted in the domain of images or text [14].
Researchers are actively studying the extent of information leakage from these model updates
[14, 15].

In the context of low voltage load forecasting, it is most important to evaluate the possibilities
of exactly reconstructing the energy load data from the federated data [3]. In terms of pri-
vacy breaches in federated learning, the exact reconstruction of training data can be achieved
through gradient inversion attacks [16]. These attacks assume an "honest-but-curious" server
that follows the federated learning framework rules but analyzes updates to extract informa-
tion [16].

This thesis aims to investigate the privacy risks associated with federated time series fore-
casting, with load forecasting as the primary use case, from an attacker’s perspective. The
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primary objectives are to evaluate existing gradient inversion attacks on time series data and
forecasting models. Additionally, a novel attack, named TS-Inverse, is proposed as a gradient
inversion attack tailored specifically for time series forecasting. The forecasting models will
be evaluated based on their information leakage through federated model updates.

To achieve these objectives, the research will address the following questions:

• RQ1: How effective are existing gradient inversion attacks for federated time
series forecasting situations?

• RQ2: How can gradient inversion attacks be tailored to improve the recon-
struction of time series data?

• RQ3: How does the architecture of a forecasting model influence its vulner-
ability to gradient inversion attacks?

In the subsequent chapters our contributions are presented: In Chapter 2 the main con-
tribution is given in the form of a paper, Chapter Chapter 3 functions as supplementary
background information elaborating on topics discussed in the paper. Chapter 4 presents the
results of additional experiments conducted during the research, and finally Chapter 5 offers
the conclusion of the study.

Master of Science Thesis C. J. Meijer



Chapter 2

Research Paper

This chapter present the paper titled "TS-Inverse: A Gradient Inversion Attack Tailored for
Federated Time Series Forecasting Models" which has been submitted to the 24th International
Conference of Data Mining (ICDM 2024) in Abu Dhabi. The paper addresses the privacy
risks in federated learning for time series forecasting by proposing TS-Inverse, a novel gradient
inversion attack tailored for time series data.

Master of Science Thesis C. J. Meijer



TS-Inverse: A Gradient Inversion Attack tailored for
Federated Time Series Forecasting Models

Caspar Meijer∗†, Jiyue Huang∗, Shreshtha Sharma†, Elena Lazovik†, and Lydia Y. Chen∗
∗Delft University of Technology, Delft, The Netherlands

†ACE Department, TNO, The Hague/Groningen, The Netherlands

Abstract—Federated learning (FL) for time series forecasting
(TSF) enables clients with privacy-sensitive time series (TS) data
to collaboratively learn accurate forecasting models, e.g., in en-
ergy load prediction. Unfortunately, privacy risks in FL persist, as
servers can potentially reconstruct clients’ training data through
gradient inversion attacks (GIA). While GIA is demonstrated
for image classification tasks, little is known for time series
regression tasks. In this paper, we first conduct an extensive
empirical study on inverting TS data across 4 TSF models and 4
datasets, identifying the unique challenges of reconstructing both
observations and targets of TS data. We then propose TS-Inverse,
a novel GIA that improves the inversion of TS data through
(i) learning a gradient inversion model that outputs quantile
predictions, (ii) a unique loss function incorporating periodicity
and trend regularization, and (iii) regularization according to the
quantile predictions. Our evaluations demonstrate a remarkable
performance of TS-Inverse, achieving at least 2x-10x improve-
ment in terms of sMAPE metric over existing GIA methods on
TS data. Code repository: https://github.com/Capsar/ts-inverse

Index Terms—Federated learning, time series, forecasting,
gradient inversion attack

I. INTRODUCTION

Federated learning (FL), a distributed machine learning
framework where a server and multiple clients collaboratively
train a global model, is established as an effective method for
training deep neural networks without centrally storing client
training data. In this framework, clients independently train
the model on their local data, and then transmit these updates
to a central server. The server aggregates these updates and
dispatches the new global model back to the clients completing
the global training round [1]. This learning paradigm has wide
applications in industries that face privacy issues in collecting
raw data, such as the energy distribution industry [2].

FL for time series forecasting. The energy industry ac-
tively researches data-driven technologies for load forecasting,
a typical time series (TS) data challenge, where histori-
cal data is utilized to predict future load patterns [2], [3].
Specifically the forecasting of individual loads on low-voltage
(smart-)grids is a key subject of interest within the community
as it allows the Distribution System Operators to optimize
the grid on a local level [3], [4]. Local-level forecasting,
while beneficial, faces a legal challenge: The EU general
data protection regulation (GDPR) protects the privacy of
household and corporate energy data, preventing its central
aggregation for ML model training [5], [6]. This is where FL
comes into play, allowing the data to remain at its source.

...

Fig. 1: Federated time series forecasting: a use case in energy
demand forecasting with an honest-but-curious ”watching”
server. Each smart meter has a forecasting model and a
sequence of energy data. The server distributes the global
model parameters and retrieves the locally trained models.

Figure 1 illustrates an example scenario where households are
equipped with smart meters that record private energy data,
participating as clients in the FL system. The objective of
the FL system is to build a global forecasting model that
predicts future energy consumption according to the historical
observations of energy traces by all clients.

Nonetheless, FL is not without privacy risks, such as
membership inference, and property inference attacks [7], [8].
This paper specifically addresses gradient inversion attacks
(GIA), where attackers aim to reconstruct private training data
from client updates [9] by matching clients’ gradients with so-
called dummy gradients. Previous research has demonstrated
the feasibility of such attacks in image classification tasks,
using model parameter updates from FL training to recon-
struct training data [10]–[19]. Though such GIAs are also an
important topic for regression tasks such as load forecasting,
little is known about the risk of inverting TS data.

In this paper, we address this gap by focusing on GIAs
for federated time series forecasting (TSF) models. Inverting
TS poses unique challenges compared to inverting image
data with classification tasks. The training data of TS is
composed of a sequence of observations and target values,
whereas the existing GIA deals with input pairs of images
and labels. Reconstructing TS thus requires inverting gradients



into the sequences of observations and targets. The network
architecture for TSF includes components to capture time
dependency, e.g., Gated Recurrent Unit (GRU) [20] and 1-D
temporal convolution (TCN) [21]. These challenges increase
with the training batch size. To demystify the inversion risk for
TSF, we start with an empirical analysis by applying existing
GIAs on combinations of 4 TSF models and 4 datasets. Based
on the insights observed, we propose a novel and effective
inversion framework, TS-Inverse, which utilizes additional
knowledge and TS related characteristics for regularization.
We also derive the analytical inversion of target values for the
special case with a batch size of one. Extensive evaluation
results against existing GIAs and ablation studies show that
TS-Inverse is able to reconstruct both the observation
and target values of time series, achieving low reconstructing
errors.

Our contributions can be summarized as follows:
• We conduct the first empirical analysis of GIAs on feder-

ated TSF models, highlighting the challenges of inverting
both observation and target sequences with respect to
model architecture, gradient distance, and regularization.
(Section III)

• We design TS-Inverse, which includes two innova-
tive components: the gradient inversion model and TS-
regularized inversion optimization. The gradient inversion
model provides relevant quantile bounds by leveraging
auxiliary data. The gradient distance is the L1-Norm with
TS regularization incorporating periodicity, trend, and the
learned quantile bounds of the gradient inversion model.
Additionally, a one-shot analytical technique is used for
reconstructing targets. (Section IV)

• We extensively evaluate TS-Inverse on four datasets
and five forecasting architectures, demonstrating a 2x-10x
reduction in reconstruction error on the non-RNN-based
architectures. (Section V)

II. RELATED STUDIES

A. Federated Learning for Time series Forecasting

Most of the existing FL studies focus on image/text classifi-
cation tasks [8], with only a few addressing TS data [22], [23],

which mainly concerns the tasks of forecasting. Specifically,
TSF tasks predict future values based on historically time-
stamped data of continuous TS, e.g., Energy load forecast-
ing [22], [23]. Model architectures to study TSF include
standard statistical models, such as ARIMA [24], as well as
deep learning methods. Among the deep learning methods,
RNNs [25], including GRU [20] and Long Short-Term Mem-
ory (LSTM) [26] are commonly used on TSF task, [22], [27].
while recent studies also indicate the effectiveness of non-
recurrent models like TCN [21], [28].

Inherited from the nature of FL, learning TSF also in-
volves the non-identical and independently distributed client
data [22], [23], [29]. Taking energy load forecasting as an ex-
ample, each client, such as households and company buildings,
possesses a distinct load profile. Each client only contains its
own unique load data, different from cases where multiple
customers can reside in a single client data silo. Although the
non-iidness of load profiles and their accompanying conver-
gence issues are beyond the scope of this paper, it is crucial
to note that each client’s load profile is private and must be
protected against privacy leakage [30], [31]. Notably, these
works considering the privacy of load forecasting in FL merely
discusses differential privacy budgets and accuracy differences,
without evaluating any actual attacks [30], [31].

B. Privacy and Inversion Attacks on Federated Learning

Compared with adversarial attacks that aim to modify and
disrupt the learning tasks [8], privacy attacks in FL try to
infer private information from the system [8], e.g., membership
inference attacks [32] and property inference attacks [33].
Among these privacy attacks, data reconstruction attacks [10]–
[19] that aim to recover training samples from clients are most
harmful and is our focus of this paper. Such reconstruction
attacks leverage gradients collected from clients, hence known
as gradient inversion attacks. Besides, there are no existing
studies that address these inversion risks of TS data.

Existing work on inversion attacks can be categorized
into two types: pure optimization-based and informed
optimization-based as presented in Table I. Both categories
optimize dummy data such that their gradients match the

Approach Attack Name / Source Type of attack Space Gradient Distance Regularization FL Training Loss

Pure DLG [10] Optimization (x, y) L2 - Cross Entropy
SAPAG [11] Optimization (x, y) Weighted Gaussian Kernel - Cross Entropy
iDLG [12] Optimization (x) L2 - Cross Entropy
Inverting Gradients [13] Optimization (x) Cosine TV Cross Entropy
TAG [14] Optimization (x, y) L2 + α L1 - Causal (Cross Ent.)
General DL [17] Optimization (x) L2 TV, Clip, Scale Cross Entropy
DIA [18] Optimization (x) Cosine TV, Mask Cross Entropy

Informed GradInversion [15] (Latent) Optimization (z, x) L2 TV, BN & Group Cross Entropy
GIAS / GIML [16] (Latent) Optimization (z, Gθ) Cosine TV, L2 Cross Entropy
LTI [19] Learning (x) Permutation Invariant CE or L2 - -
TS-Inverse (this work) Learning & Optimization (x, y) L1 Periodicity, Trend & QB MSE

TABLE I: Comparison of related gradient inversion attacks and TS-Inverse. The space, indicates whether the attack optimizes
the inputs (x), outputs (y), latent (z), or generative model parameters (Gθ). The regularization terms mentioned are Total
Variation, Clipping, Scaling, Dropout Masks, Batch and Group Normalization, Periodicity, Trend and Quantile Bounds. The
FL Training Loss indicates with which loss the global model is trained.



observed gradients. The informed optimization-based attacks
further leverage external knowledge (e.g., generative models)
to assist the reconstruction process.

The pioneering work of pure optimization-based method,
Deep Leakage from Gradients (DLG) [10], formalizes the
problem by minimizing the L2-Norm between the original and
dummy gradients by optimizing both inputs and labels. Further
improvements over DLG involve modifying the loss function,
adding regularization terms, or increasing the information
used in the attack through priors or by gathering multiple
gradients. Wang et al. [11] tackle convergence issues in DLG
by using a weighted Gaussian kernel function, for normally
initialized model parameters. Alongside, iDLG [12] improves
reconstruction by analytically inferring sample labels, although
it is limited to a batch size of one. Similarly, Geng et al.
[17] addresses label recovery in realistic scenarios where
the batch size is greater than one and duplicate labels are
possible. With Inverting Gradients (InvG), Geiping et al. [13]
introduces the cosine similarity loss and a regularization term
to minimize total variation in neighboring pixels, enhancing
reconstruction for image data. For NLP models, [14] develops
gradient leakage attacks targeting transformer-based models
by optimizing embeddings and adding an L1 norm to the loss
function. Finally, Scheliga et al. [18] expand the optimization
space to include dropout masks, leading to the development of
the Dropout Inversion Attack (DIA), which enhances attacks
on networks with dropout layers.

Further advancements using additional models include
GradInv [15], which uses batch classification label restoration
with fidelity and group consistency regularization and it relies
on a pre-trained generative model. [16] also leverages a pre-
trained generative model, but goes further in showing it can
train such a model from gradients only. Learning to Invert
(LTI) [19] trains an inverting model that maps the gradient to
the training data according to an auxiliary dataset, focusing on
countering defenses.

Despite these advancements, which focus on image classi-
fication or text processing tasks, it remains unsure whether
TS data can be recovered according to the TS gradients.
Additionally, no current research addresses the inversion of
architectures specifically for TS data, such as TCNs or GRUs.

III. EMPIRICAL INVERSION ANALYSIS ON TIME SERIES
FORECASTING

In this section, we introduce and analyze the risk of invert-
ing clients’ private TS data in the context of federated fore-
casting by applying existing classification-based attacks. We
first define TSF and outline the assumptions made regarding
the FL setups and threat model. Afterward, we formally define
the gradient inversion attacks under our forecasting scenarios.
Finally, we analyze the feasibility and risks of existing image-
based inversion attacks on different time series models.

A. Problem Definition

1) Time-series Forecasting: TS data are generally repre-
sented through discrete time steps, determined by a chosen
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Fig. 2: Example of univariate time-series forecasting.

sampling frequency, though time is inherently continuous.
TSF is a regression task that predicts future values given
a historical segment. In this work, we focus on multi-step
TSF where the future segment consists of multiple timesteps.
Formally, the historical segment, comprising H steps, is de-
fined as a series of subsequent observation timesteps obs =
{t ∈ Z | −H < t ≤ 0}, whereas the future segment, spanning
F steps, is denoted as the targets tar = {t ∈ Z | 0 < t ≤ F}
as illustrated in Figure 2. We represent historical data of
the sequence S as Sobs ∈ RH×d, and the forecasting target
data as Star ∈ RF×d, where d indicates the number of
distinct features. A time series is univariate when d = 1, and
multivariate when d > 1. Furthermore, St ∈ Rd is used to
denote a value vector at timestep t. We focus on the univariate
case. For training the TSF task, we consider recent advanced
deep learning models. The training objective of those models
is to minimize the mean square errors (MSE) or mean absolute
errors (MAE).

2) FL for Time-series Forecasting: A federated forecasting
framework involves K clients, each having its own data silo
with sequence data Sk. Each client’s sequence Sk is split up in
multiple subsequent pairs of observation data S(i)

obs and target
data S(i)

tar, where i denotes the i’th sample from the sequence.
How these samples are gathered is explained in the experi-
mental setup in section V-A2. A client’s data silo contains a
dataset with sequence samples organized as {S(i)

obs,S(i)
tar}nk

i=1,
where nk denotes the number of local sequence pairs. The
clients jointly train a global forecasting model via a strategy
determined by the server, e.g., learning rate and batch sizes.

The server initializes a global model with parameters Wr
g ,

where g stands for the global model and r denotes the global
training round. The server distributes Wr

g to the clients, who
then follow federated stochastic gradient decent (FedSGD) [1]
to further train the model using their own data. Specifically,
the clients perform a single gradient update on a single batch,
resulting in gradients ∇Wr

k. These are sent back to the server,
which in turn, aggregates all model updates as Wr+1

g = Wr
g−

α
(

1
K

∑K
k=1 ∇Wr

k

)
, where α is the global learning rate.

B. Threat model

In line with the related studies, the threat model for our
gradient inversion on TSF models assumes an honest-but-
curious server. This means that while the server follows
protocol rules, it is interested in extracting training data client
information from the gradients data it receives. The attack
considered is a white-box attack, where the FL strategy, model
architecture, optimizer, loss function, observations, and target



size (Rd×H ,Rd×F ), learning rate (α), batch size (B), etc.
are all known to the adversary. The adversary has access
to the model weights (Wr

g) and aggregated gradients (∇Wr
k)

at communication time and aims to reconstruct each sample
from the batched data, including both observations and targets
(Sobs,Star). We also assume that the adversary has access to
an auxiliary dataset (Daux) with a distribution overlapping
with the client’s data. Furthermore, the adversary has the
computational capabilities to train models outside the FL
framework.

C. Attacking Time-series Forecasting

Inverting training data for TSF presents several new chal-
lenges compared to inverting training data for classification
tasks. The training objectives and inputs differ: for image
classification, the objective is cross-entropy loss with pairs
of images and their class labels, whereas for time series
forecasting, it is mean squared error (MSE) loss with pairs of
observation and target series. In image classification, due to the
cross-entropy loss, the labels can be analytically inferred from
the gradients, as demonstrated by Zhao et al. [12] and Geng et
al. [17]. Consequently, the inversion attack on a classification
model primarily involves reconstructing the training images.
However, inverting the training data for time series forecasting
requires reconstructing both the input observations and the
target values (Sobs and Star).

To recover the observation and target series data, the ad-
versary first initializes a dummy input (S̃obs) and target (S̃tar)
pair with the same dimensions as Sobs and Star, respectively,
and calculates the corresponding gradients:

∇W̃ =
∂L(f(S̃obs,W), S̃tar)

∂W
, (1)

where f is the global model and W are its parameters before
applying the gradient updates. f is a twice differentiable
neural network and L is the regression loss function used
in optimizing f . These dummy observations and targets are
optimized by minimizing a distance D between the dummy
gradients ∇W̃ from (1) and clients’ gradients ∇W:

(S̃⋆
obs, S̃

⋆
tar) = argmin

S̃obs,S̃tar

D(∇W̃,∇W). (2)

In this work, we define the optimization problem for re-
covering both the observations (Sobs) and the targets (Star).
Specifically, we use the gradient to recover data for both

observations and targets. Additionally, the TS data is often
pre-processed to be within the domain [0, 1], which helps to
bound the reconstructed data. DLG [10] and others [12], [14],
[15], [17] uses L2-Norm to match the gradients as:

D(∇W̃,∇W) =
∥∥∥∇W̃ −∇W

∥∥∥
2
. (3)

Inverting Gradients [13] and others [16], [18] use the Cosine
Similarity loss together with the image prior regularization,
total variation, RTV with hyperparameter λTV:

Dcosine(∇W̃,∇W) = 1− ∇W̃ · ∇W

∥∇W̃∥2∥∇W∥2
+ λTVRTV. (4)

D. Empirical Findings

We present our empirical findings from applying four exist-
ing attacks— (designed for classifiers) DLG [10], InvG [13],
DIA [18], and LTI [19]— on three models: CNN, FCN, and
TCN for inverting the TS data from FL gradients. These
attacks differ in their methodologies and gradient distance
functions. Specifically, we discuss the impact of model ar-
chitecture, loss function, and total variation for inversion
performance. The experimental setups are detailed in sec-
tion V-A. We use the Symmetrical Mean Absolute Percentage
Error (sMAPE↓) as the evaluation metric to compare all
baselines, presented in Table III. Specifically, to demonstrate
the impact of the total variation regularization (RTV) for InvG,
we report the sMAPE results in Table II. Additionally, we also
visualize the recovered observation and target data for easy
perceptual comparison, by a single TS example in Figure 3.
In-depth comparison is summarized in Table III and analyzed
in Section V.

Model Architectures The TCN architecture [21] includes
dropout layers, which make the optimization attack more
difficult, according to [34]. DIA [18] counters this dropout
defense by also optimizing the dropout masks that indicate
which neurons are dropped during the training round. This
is required in order to accurately reconstruct training data
from architectures with dropout layers. Moreover, GRUs are
designed to selectively remember and forget information, a
process controlled through nonlinear functions governed by
reset and update gates [20]. These gates determine the flow
and modification of information over time, inherently leading
to a loss of information and many-to-one mappings from input
sequences to hidden states. From a gradient perspective, while
gradients provide insights into how changes in inputs could
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Fig. 3: Baseline reconstruction results with FCN, CNN, GRU-2-FCN, and TCN model architectures on the Electricity 370
dataset with seeds (10). In each graph, the blue and green lines are the ground truth observations and targets respectively. The
orange and red lines are the respective reconstructed observations and targets.



affect the outputs, they only do so on average over the whole
input space and do not offer direct mappings to individual
inputs. This many-to-one relationship also applies to RNN
architectures.

Gradient Distance Function of Attacks The effects of the
gradient distance function are most clear for the CNN and FCN
architectures, according to Table III and Figure 3. The DLG
attack, which uses L2-Norm to align gradients, effectively
reconstructs the observations and targets. This is because L2-
Norm measures the squared differences between gradients,
inherently capturing both the magnitude and the direction of
the gradients. In contrast, the InvG and DIA attacks rely on
Cosine Similarity, which normalizes the gradients and focuses
only on the direction, disregarding their magnitude. This focus
on direction alone results in noisier targets, indicating that
the magnitude of gradients is essential for accurate target
reconstruction.

Total Variation The application of total variation, as pro-
posed by [13], is observed to have a counterproductive effect
on the reconstruction of TS data, as shown in Table II.
The regularization results in a higher sMAPE value when
applied to TS. We applied the total variation separately to the
observations and targets using hyperparameters λobs

TV and λtar
TV ,

respectively. When increasing λobs
TV while keeping λtar

TV = 0,
the sMAPE increased for the observations, while for the targets
it remained the same. In contrast, when increasing λtar

TV while
keeping λobs

TV = 0, the sMAPE for observations increased,
while it decreased for targets. The total variation reduces
noise in images, which helps improve the image reconstruction
quality. However, this does not translate well to TS data. This
is because TS data can be inherently noisier than images due
to large differences between subsequent timesteps.

Highlights

1. TCN and GRU architectures are more challenging to invert
compared to CNN and FCN due to their inherent design fea-
tures like dropout layers and gate mechanisms. 2. To correctly
recreate targets, the gradient distance has to take into account
the magnitudes of the gradient values. 3. Image regularization
priors are not effective for time series data, which tends to
be intrinsically noisier and exhibit larger differences between
subsequent timesteps.

IV. TS-INVERSE FRAMEWORK

Following the findings from the empirical study, we propose
a first-of-kind gradient inversion attack for federated TSF,
named TS-Inverse, which inverts a batch of observation
and target data of time series regression tasks from clients
gradients. We illustrate the framework of TS-Inverse in
Figure 4, consisting of three key steps. The first component
of TS-Inverse is to train a gradient inversion model, i.e.,
finv , using auxiliary data to map model gradients to sequences
of values that correspond to specific quantile ranges of the
observations and targets, as depicted in Figure 7. The quantile

Dataset Electricity 370 Proprietary Dataset

λobs
TV λtar

TV Observation Target Observation Target

0 0 0.0020.00 0.0940.06 0.0160.00 1.1430.23
0.001 0.1000.01 0.0420.04 0.7330.16 1.0400.25
0.01 0.7970.04 0.0090.00 1.5280.07 0.0360.02

0.001 0 0.0290.01 0.0940.06 0.1700.02 1.1440.23
0.001 0.0670.01 0.0420.04 0.4670.14 1.0420.25
0.01 0.5010.06 0.0090.00 1.3940.06 0.0280.01

0.01 0 0.0290.00 0.0940.06 0.1650.02 1.1450.23
0.001 0.0670.00 0.0420.04 0.4720.13 1.0420.25
0.01 0.5000.06 0.0090.00 1.3980.06 0.0280.01

TABLE II: Comparison of the effects of total variation using
the InvG attack measured with sMAPE ↓ with CNN architec-
ture and Batch size B = 1 and seeds (10, 43, and 28).

ranges divide the data into intervals with equal probabilities,
giving a representation of the observation and target distribu-
tion that belongs to the gradients. These sequences serve as
upper and lower bounds for the learned quantile regularization.
The second key feature is the inversion optimization, starting
from the dummy time series. Different from the convention of
minimizing L2-Norm and cosine distance in image inversion
attacks, we advocate using L1-Norm loss and combine it
with the proposed time series specific regularization terms,
namely periodicity, trend, and quantile bounds. Furthermore,
we provide an analytical one-shot inversion technique for the
target sequence, under the scenario where the batch size is 1.

A. Gradient Inversion Model

We assume the existence of an auxiliary dataset Daux by
the honest-but-curious server. This is ideally a subset of the
time series of the data silos that are being attacked, but it can
also be an out-of-distribution dataset [19]. The dataset is first
pre-processed such that the samples have the same sequence
length as the client’s data samples through interpolation.

We define a gradient inversion model finv : Rm →
(RH×d×Q,RF×d×Q), where m is the number of parameters
in the forecasting model f , and Q is the number of quantile
bounds. This model is designed to map gradients to quantile
bounds, which are sequences of values corresponding to
specific quantile levels of the TS observations and targets.
Quantile levels (τ ) are probability values between 0 and 1.
For example, between the bounds corresponding to quantile
levels 0.1 and 0.9 fall 80% of the sequences.

The model finv is trained on the gradients of the forecasting
model f derived from batches of samples from Daux. A
batch (SB

obs,S
B
tar) consists of observation and target pairs from

Daux, where B denotes the number of such pairs.
The model finv is optimized using the pinball loss with

respect to the batched samples. It produces the outputs
{Ŝτ1

obs, Ŝ
τ2
obs, . . . , Ŝ

τQ
obs} and {Ŝτ1

tar, Ŝ
τ2
tar, . . . , Ŝ

τQ
tar}, where each

τq represents a specific quantile level. These quantile pre-
dictions are repeated along the batch dimension to match
(SB

obs,S
B
tar). As a result the quantile predictions demonstrate

the variability of the batch. The pinball loss, which is used for
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optimization, is defined as follows:

Lτ
pinball(S, Ŝ) =

1

T

T∑

t=1

max
(
(τ − 1)(St − Ŝt), τ(St − Ŝt)

)
,

(5)
where t is a timestep and T is the total number of timesteps
in sequence S, and Ŝ represents the predicted quantile bound.
The total loss is to apply (5) for each quantile level over the
observations and targets as:

Linv =

Q∑

q=1

Lτq
pinball(S

B
obs, Ŝ

τq
obs) + Lτq

pinball(S
B
tar, Ŝ

τq
tar)

2
. (6)

By using the pinball loss function, the model finv is
effectively trained to provide quantile bounds for the entire
batch of TS data.

B. Gradient Matching Distance Function

The cosine similarity loss only matches the hyperplane
direction of the gradients, but does not take into account

the magnitudes of the values. Matching the magnitude of the
values is essential for gradient approximation. Otherwise, the
optimization will be dominated by the large values, resulting in
distortion of updating dummy data. One can add an additional
term to the cosine similarity loss that takes into account the
norm of the difference of the gradients [35], [36].

On the other hand, the L1 loss, i.e., the summed absolute
errors, is a single-term metric that is robust to outliers, which
is common in gradients. Additionally. it matches the magni-
tude of the gradient values and it is particularly compatible
with models that utilize weights initialized from a normal
distribution [14], such as the TCN architecture. Our choice
is backed by empirical findings that show that using the L1-
Norm leads to better reconstructions compared to the Cosine
with or without the L2-Norm. The distance function is thus
formulated as follows:

D(∇W̃,∇W) =
∥∥∥∇W̃ −∇W

∥∥∥
1
. (7)

Dataset Electricity 370 KDDCup London Smartmeter Proprietary Dataset

Model Attack Method Observation Target Observation Target Observation Target Observation Target

CNN DLG-LBFGS 0.6320.05 0.0010.00 1.4540.11 0.0300.03 1.4290.14 0.0230.01 1.2940.08 0.0110.00
DLG-Adam 0.0290.03 8.6e-050.00 1.3490.23 0.0290.03 0.9930.14 0.0060.00 1.0130.27 0.0050.00
InvG 0.0020.00 0.1890.13 0.0380.02 1.3060.30 0.0270.00 1.1360.26 0.0150.00 1.1600.19
DIA 0.0020.00 0.5420.11 0.0730.04 1.2930.11 0.0940.04 1.5010.05 0.0180.01 1.4840.08
LTI 0.1400.04 0.6850.07 0.8890.15 1.3990.28 0.7130.18 1.4690.06 0.4860.05 1.3050.09
TS-Inverse 0.0020.00 1.2e-050.00 0.0170.01 2.1e-040.00 8.1e-050.00 2.4e-050.00 0.0090.00 7.1e-050.00
TS-Inverseone-shot 0.0030.00 1.4e-070.00 0.0850.05 1.9e-060.00 0.0240.01 2.1e-060.00 0.0320.01 7.3e-070.00

FCN DLG-LBFGS 0.0250.01 2.0e-040.00 0.1680.05 0.0020.00 0.4980.17 0.0030.00 0.1810.07 0.0020.00
DLG-Adam 2.8e-060.00 1.2e-050.00 0.0020.00 4.1e-040.00 0.0040.00 2.9e-050.00 1.8e-050.00 3.5e-050.00
InvG 4.7e-060.00 0.2140.15 6.1e-050.00 1.2610.39 7.8e-050.00 1.3000.10 2.6e-050.00 1.1080.15
DIA 0.0040.00 0.5420.10 0.0270.02 1.3430.19 0.0680.05 1.5710.07 1.1e-040.00 1.5510.07
LTI 0.1330.03 0.6850.07 0.6040.17 1.3990.28 0.6730.07 1.4690.06 0.4980.03 1.3050.09
TS-Inverse 1.7e-060.00 8.4e-070.00 2.4e-060.00 1.1e-060.00 6.3e-060.00 2.5e-060.00 6.4e-060.00 4.4e-060.00
TS-Inverseone-shot 3.1e-070.00 8.3e-080.00 5.3e-060.00 1.5e-060.00 3.2e-050.00 1.4e-060.00 6.6e-060.00 8.1e-070.00

TCN DLG-LBFGS 0.6520.06 0.6890.04 1.4830.06 1.3740.28 1.4370.10 1.4290.09 1.3210.13 1.2430.09
DLG-Adam 0.7260.07 0.3620.11 1.3200.13 1.0720.41 1.1360.18 1.0790.19 1.1410.16 1.0280.09
InvG 0.7040.05 0.5530.20 1.3590.16 1.4450.19 1.1540.18 1.4930.11 1.1140.12 1.4240.11
DIA 1.0880.31 0.7190.20 0.7280.20 1.2290.07 1.0760.57 1.5760.01 1.2820.34 1.4730.05
LTI 0.1580.05 0.6280.06 0.8390.13 1.4370.30 0.7430.08 1.4020.06 0.5300.13 1.3260.09
TS-Inverse 0.0970.04 0.0070.01 0.5090.13 0.0420.05 0.1940.22 0.1060.19 0.1720.05 0.0210.02
TS-Inverseone-shot 0.0890.03 1.2e-070.00 0.5590.21 1.3e-060.00 0.1880.12 1.8e-060.00 0.2510.14 7.6e-070.00

TABLE III: Comparison of sMAPE ↓ with baseline attacks and TS-Inverse on multiple datasets and model architectures with
each 5000 attack steps. Batch size B = 1. The seeds used are: (10, 43, 28, 80 & 71)
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Fig. 5: TS-Inverse reconstruction results with FCN, CNN, and TCN model architectures on a sample from each dataset.

C. Regularizations: Periodicity, Trend and Quantile Bounds

In time series, there are data-specific characteristics that can
be leveraged to regularize the reconstruction: periodicity and
trend. The former refers to the repeating patterns or cycles in
the data over a specific period, whereas the trend represents the
long-term progression or direction in the data. Furthermore,
the learned quantile ranges, outputted by finv , are used as
soft bounds for the reconstructed data. We weight and combine
those patterns into one regularization term, RTS :

RTS = λPLp
periodicity + λTLtrend + λobs

Q Lobs
bounds + λtar

Q Ltar
bounds,

(8)

where λperiodicity, λtrend, λobs
Q , and λtar

Q are hyperparameters
controlling the importance of periodicity, trend and learned
quantile bounds regularizations, respectively.

1) Periodicity Regularization: Understanding the specific
periodic nature of the data is crucial and the periodicity must
be present in the combined observation and target sequence. To
capture periodicity, we minimize the absolute error between
each point and its corresponding point one period p apart.
Here, p represents the number of timesteps for one full period
or cycle. This regularization ensures that reconstructed data
maintains the inherent cyclical patterns. Periodicity can vary
widely depending on the dataset, exhibiting daily, weekly, or
even yearly patterns. The regularization is defined as the mean
absolute error between the periodic points:

Lp
periodicity(S) =

1

T − p

T−p∑

t=1

|St − St+p| , (9)

where p denotes the period length and T is the total number
of timesteps in the sequence S.

2) Trend Regularization: To enforce trend consistency, we
fit a linear trend to the sequence and minimize the deviation
of the actual sequence from this trend. This approach ensures
that the trend is regularized over both the observations and
targets combined, capturing the underlying trend dynamics in
the data. The regularization is defined as the MAE between
the sequence and the trend of the sequence, as such:

Ltrend(S) = ∥S− Strend∥1 , (10)

where the Strend is calculated using linear regression over S
as such: Strend = β (s− s̄) + S̄. Here, s represents the time
indices of the sequence, s̄ is the mean of these time indices,
S̄ is the mean of the sequence S, and the slope β of the linear

trend is given by: β =
∑

(s−s̄)·(S−S̄)∑
(s−s̄)2

.

3) Quantile Bounds Regularization: The predictions made
by the gradient inversion model are designed to function as
soft bounds for the dummy data as illustrated in Figure 7. The
bounds are defined as quantile pairs that are symmetrically
spaced around the median. Within these bounds, no regular-
ization is applied. However, if the dummy data falls outside
this range, an absolute error is calculated for regularization.
This approach intuitively ensures that the dummy data is
encouraged to stay within realistic and statistically consistent
bounds.

For a sequence S and bounds Slower and Supper, the regular-
ization loss is defined as:

Lbounds =

Q∑

q=1

∥max(0,S − Supper) + max(0,Slower − S)∥
1
,

(11)
where q indexes over the quantiles with Slower = Sτq and
Supper = Sτ(Q−q) , respectively.

Putting Eq. (9) (10), and (11) into (8) and combining it
with (7), TS-Inverse employs the following loss function
to invert a batch of time series of observation and target from
the client’s gradients:

Ltotal = D(∇W̃,∇W) +RTS .

D. One-shot Target Reconstruction for B = 1

In this section, we demonstrate how to reconstruct the
target predictions of a fully connected layer fFC , which in
practice is the last layer of the forecasting model f . Given
a fully connected layer fFC with weights W and biases
b, and knowing the gradients ∇W and ∇b obtained with
training inputs x and outputs y, we assume the objective
function is the MSE LMSE = ∥ŷ − y∥2, where ŷ are the
layer’s predictions. It is possible to reconstruct y one-shot
for B = 1 if ∇b is invertible. The MSE loss is defined
as: LMSE = 1

N

∑N
i=1(ŷi − yi)

2, where N is the number of
elements. We can express the predicted output as ŷ = Wx+b.
The gradient with respect to the bias b and weights W are:

∇b =
2

N
(Wx+ b − y) (12)

∇W =
2

N
(Wx+ b − y)xT . (13)

Equation (12) can be rearranged to solve for y:

y = Wx+ b −∇b · N
2
. (14)



Dataset FREQ. H F W Sattack Saux

Electricity 370 15 MIN 96 96 192 96 4
London SmartMeter 30 MIN 48 48 96 48 2
Proprietary 15 MIN 96 96 192 96 4
KDDCup 2018 HOUR 120 48 168 24 1

TABLE IV: Dataset descriptions: sample frequency (FREQ.),
observation length (O), future length (F ), window size (W ),
and step size for attacked samples (Sattack) and for the
auxilary samples (Saux).

Dataset Electricity 370 London Smartmeter

Model Grad. Distance D Input Target Input Target

1 Cosine + L1 0.0830.01 9.3e-080.00 0.2120.03 2.3e-060.00
Cosine + L2 0.2900.17 9.3e-080.00 0.4810.30 2.3e-060.00
Cosine 0.3770.19 9.3e-080.00 0.8600.56 2.3e-060.00
L2 0.2360.05 9.3e-080.00 0.7830.49 2.3e-060.00
L1 0.0810.03 9.3e-080.00 0.2080.14 2.3e-060.00

2 Cosine + L1 0.3620.14 0.0530.04 0.3010.20 0.2610.29
Cosine + L2 0.6280.24 0.1190.03 0.8160.36 0.6020.46
Cosine 0.6190.18 0.6300.40 1.0490.25 0.9200.33
L2 0.6290.32 0.6130.40 0.8690.43 0.8600.36
L1 0.4710.08 0.0950.06 0.2780.20 0.2440.27

TABLE V: TS-Inverse without regularization for TCN
model architecture results measured with sMAPE ↓. Grad. dis-
tance functions are: ”Cosine + L1”, ”Cosine + L2”, ”Cosine”,
”L2”, and ”L1”, for B ∈ [1, 2] and seeds (10, 43, & 28).

Here, x is unknown, but it can be reconstructed by substituting
y from (14) into (13), we get:

∇W =
2

N

(
Wx+ b −

(
Wx+ b −∇b · N

2

))
xT

= ∇b · xT .

If ∇b is invertible, such that (∇b)−1 exists, then xT =
(∇b)−1∇W. Finally, substituting x back into equation (14),
we obtain:

y = W(∇b)−1∇W + b −∇b · N
2
. (15)

This demonstrates that the target y can be reconstructed in one
shot for B = 1, provided that ∇b is invertible.

V. EVALUATION

We first detail the experimental setup, followed by the attack
accuracy of TS-Inverse, and an ablation study.

A. Experimental setup

1) Dataset: Four datasets are the Electricity (370)1, KDD-
Cup 2018 (Air Quality)2, London Smartmeter3, and a propri-
etary energy dataset. The energy datasets are sampled with 1
observation day and 1 future day to forecast. The KDDCup
dataset has 5 observation days and 2 future days. The sample
description of the datasets is summarized in Table IV. All
datasets are normalized using the min-max method bounding
it between 0 and 1.

1https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
2https://zenodo.org/records/4656756
3https://zenodo.org/records/4656091
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Fig. 6: TS-Inverse, reconstruction comparison on the TCN
model architecture with different gradient distance functions
and without regularization.

2) Data Pre-processing: We employ the rolling window
method to preprocess the data, i.e., moving a window of
fixed-width steps through the dataset, advancing by steps with
each iteration. The data within this window is divided into
observation and target segments Sobs and Star according to
an observation length H and future length F . The result
of the rolling window process is a dataset sample pairs
of observations Sobs and targets Star. The dataset-specific
settings are described in Table IV. The datasets are divided into
training, validation, and test sets with ratios of 64%, 16%, and
20%, respectively, by recursively applying a 20% split ratio.
For the auxiliary dataset Daux, the validation set is used.

3) Baselines: The baselines that have been evaluated are the
DLG-LBFGS [10], DLG-Adam [10], (InvG) [13], (DIA) [18],
and (LTI) [19]. The implementation and configuration details
are consistent with their open-sourced repositories. Where LTI
is 250 epochs and others 5000 iterations.

4) Network Architectures: The FCN model has 3 FC layers
with sigmoid acivation functions, the CNN model is based
on LeNet with 1D Conv layers. The TCN architecture has
a kernel size of 6, dilation factor of 2 and the number of
levels is adjusted such that the receptive field is encompassing
the observation sequence. The GRU-2-FCN and GRU-2-GRU
both have the standard GRU implementation. All models apart
from the GRU-2-GRU have a FC head that is outputting the
final values. All hidden sizes of the architectures are 64.

The gradient inversion model finv has two modules for
outputting observations and targets, each containing two resid-
ual blocks with hidden sizes of 768 and 512, respectively.
It is trained for 75 epochs and the quantile levels are
{0.1, 0.3, 0.7, 0.9}.

5) Evaluation Metrics: To measure the reconstruction qual-
ity the Symmetrical Mean Absolute Percentage Error (sMAPE
↓) is used, which is bounded between 0.0 and 2.0, and allows
for better comparisons between datasets. When using other
metrics, such as MSE and MAE, the ranks do not change.

B. Results overview for TS-Inverse

The comparison in Table III demonstrates that
TS-Inverse outperforms other methods in time-series
reconstruction across multiple datasets and architectures.
Specifically, TS-Inverse achieves the lowest sMAPE
values for both observation and target sequences. This
is visually supported by Figure 5, which showcases
individual reconstructions on various datasets, highlighting
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Fig. 7: TS-Inverse, Learned quantiles that function as prior
in the learned regularization on Electricity 370 dataset for the
CNN and TCN model architecture and B = 4.

λobs
Q 0 0.1 0.5 1

λtar
Q Input Target Input Target Input Target Input Target

0 0.5150.11 0.0680.05 0.5040.12 0.1850.11 0.2070.08 0.0610.06 0.2030.05 0.0600.03
0.1 0.5670.17 0.0480.01 0.4490.14 0.1050.05 0.2840.02 0.2370.11 0.1440.03 0.0240.02
0.5 0.5680.18 0.0670.02 0.3680.21 0.0260.02 0.2590.08 0.1120.08 0.2070.04 0.1310.06
1 0.5140.07 0.0530.03 0.5220.22 0.3420.26 0.2260.12 0.0400.03 0.1960.04 0.0770.03

TABLE VI: Results of different hyperparameters for quantile
bounds regularization on observations (λobs

Q ) and targets (λtar
Q )

for the Electricity dataset with 370 seeds (10 and 43).

the effectiveness of TS-Inverse compared to baseline
reconstructions in Figure 3. Additionally, the learned quantiles,
depicted in Figure 7, highlight the method’s capability to
effectively capture and reconstruct quantile bounds for the
FCN, CNN and TCN architectures with a batch size of 1 on
the Electricity 370 dataset.

Effectiveness of the Proposed Gradient Distance Function

Table V presents the sMAPE results for different gradient
distance functions without additional regularization, focusing
on capturing the effects of the gradient distances alone.
The gradient distance functions tested include Cosine + L1-
Norm, Cosine + L2-Norm, Cosine, L2, and L1. The results
indicate that distance functions incorporating the L1-Norm
perform better with lower sMAPE results compared to other
functions. This trend is consistent across various datasets and
is particularly evident in the TCN architecture, as shown in
Figure 6, which displays individual reconstructions for B = 1.
For the baseline architectures (FCN and CNN), the differences
in sMAPE results among the distance functions are minimal.

Effectiveness of Regularization for Batch Reconstruction

The effects of the hyperparameters for the quantile bounds
regularization are shown in Table VI. The hyperparameters for
the quantile bounds regularization are optimized through a grid
search over the values {0, 0.1, 0.5, 1} for both the observation
and target sequences as can be seen in Table VI. The results
indicate that increasing the regularization term for observations
leads to a decrease in the sMAPE metric, whereas the effect
is less apparent for target sequences. From these results the
optimal terms are found to be λobs

Q = 1 and λtar
Q = 0.1 for the

Electricity 370 dataset. Subsequently, the effects of periodicity
and trend regularization hyperparameters (λP and λT ) are
investigated, as detailed in Table VII. The values tested for
both terms are {0.1, 0.5, 1}. The reconstructions incorporating
all regularizations (periodicity, trend, and quantile bounds) for

λP 0.5 1 2

λT Regularization Input Target Input Target Input Target

0.5 RP +RT 0.1540.03 0.1180.10 0.1550.05 0.0860.06 0.3500.14 0.3020.18
RP +RT +RQ 0.2730.12 0.2870.19 0.1240.00 0.0390.03 0.1740.02 0.1990.01

1 RP +RT 0.1970.04 0.0750.02 0.3500.20 0.3300.29 0.1620.01 0.0810.01
RP +RT +RQ 0.1610.01 0.0590.02 0.1410.01 0.0800.05 0.1580.01 0.0980.03

2 RP +RT 0.2170.02 0.0580.01 0.1840.02 0.1020.01 0.3140.15 0.2540.21
RP +RT +RQ 0.1840.02 0.0820.02 0.1320.02 0.0510.04 0.1240.03 0.1140.09

TABLE VII: The results of using the periodicity and trend
regularization together, with or without including the the
quantile bounds regularization technique. Dataset Electricity
370 with seeds (10 and 43)
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Fig. 8: TS-Inverse, reconstructions with all regularization
applied for the TCN model architecture and B = 4.

the TCN model with a batch size of 4 are illustrated in Figure
8. We note that bigger the batch sizes are, more challenging
the inversion is.

C. Defenses

We investigate a defense strategy using GRU in the forecast-
ing model to counter TS-Inverse. GRU-based forecasting
models are more robust against attacks due to the many-to-one
mapping caused by the recurrent design. We attack the GRU-
2-FCN and GRU-2-GRU models, with reconstruction results
shown in Figure 9. The results show that the targets associated
with the FCN part remain vulnerable. We hypothesize that
regularization causes the values to transfer to the observations,
as the observations of the GRU-2-FCN architecture closely
resemble the targets. This is backed by the results of em-
ploying a GRU-2-GRU architecture, which prevents detailed
reconstruction of the observations and targets. However, the
attack does seem to be able to extract the trend from the
gradients. Overall, we the GRU-based architectures enhance
the robustness against privacy attacks because of the many-to-
one mapping design.

VI. CONCLUSION

This study presents the first empirical analysis and effec-
tive algorithm, TS-Inverse, of reconstructing TS data for
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Fig. 9: TS-Inverse reconstructions on Electricity 370 and
London Smartmeter datasets for the GRU-2-FCN and GRU-
2-GRU architectures B = 1.



federated TSF models. Our empirical analysis demonstrates
that existing inversion methods, developed for image and text
classification, are less effective for TSF due to the mismatch
between gradient distance and the gradient magnitudes and
TS-specific model architecture, e.g., TCN & GRU. To address
these challenges, we propose TS-Inverse, which leverages
a gradient inversion model and TS-specific characteristics as
regularization during reconstruction. Specifically, the proposed
TS-regularization include periodicity and trend. Furthermore,
the gradient inversion model is trained with an auxiliary
dataset to map gradients to quantile bounds of observations
and targets. These bounds are also used to regularize the
reconstruction. We extensively evaluate TS-Inverse on four
data sets against five baselines, showing a 2x-10x improvement
in reconstruction sMAPE and indicating the potential of GRU-
based architecture in defending against inversion attacks.
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Chapter 3

Background

This chapter provides additional background information for concepts used in the paper, such
as federated learning, time series, time series forecasting, privacy risks in federated learning,
and gradient inversion attacks.

If at any point in the paper you find yourself wondering about any of these topics, this chapter
will provide additional information and insights. This chapter also offers more detail on
closely related topics. Furthermore, it provides formalizations that can help you understand
the concepts in a more structured way.

In Section 3-1, we describe the two concepts of horizontal and vertical federated learning
and which is used in the paper and use case. Furthermore, the paper provides a minimal
formalization of federated learning for its methodology. Here we provide a more detailed
formalization and more detail on the FedSGD strategy and an alternative (FedAvg) strategy,
highlighting their differences and similarities.

If you are not familiar with time series and time series forecasting, Section 3-2 will go into
more detail and discuss characteristics that can be present in time series, two of which are
used in the paper. Furthermore, a more general formalization of time series forecasting is
given: We describe the differences between single-step and multi-step forecasting and between
univariate and multivariate time series. We also provide insights into additional data used
in practical time series forecasting scenarios. This section ends by explaining how these time
series concepts relate to load forecasting and their related work.

In Section 3-3, we examine the intersection of federated learning and time series forecasting,
mainly its challenge with regard to non-independent and identically distributed data, which
is also a challenge in load forecasting. This concept is explained as it is a widely researched
topic in load forecasting.

In Section 3-4, we provide background information about the various types of privacy risks
associated with federated learning. We introduce the European General Data Protection Reg-
ulation (GDPR) law as a motivator for researching privacy risks in this context. Additionally,
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3-1 Federated Learning 15

we assume an "honest-but-curious" server-side attack in our paper and discuss alternative sce-
narios. We explain why we chose the "honest-but-curious" server-side attack assumption for
the load forecasting use case.

Lastly, in Section 3-5, we provide more details about the related gradient inversion attacks
mentioned in the paper.

3-1 Federated Learning

Federated Learning is a distributed machine learning approach that enables multiple clients
(e.g., mobile devices, organizations, households) to collaboratively train a model while keeping
their data localized [12]. The model is trained under the coordination of a central server.
Within Federated Learning a distinction is made between Horizontal Federated Learning and
Vertical Federated Learning, which will be differentiated in the first section. Hereafter in the
thesis we will focus only on Horizontal Federated Learning, and will be referred to as Federated
learning. In the subsequent section the formalization of Federated learning is given, and the
two strategies that were first proposed by [12] are elaborated.

3-1-1 Horizontal vs Vertical Federated Learning

Horizontal federated learning and vertical federated learning differ primarily in the distribu-
tion of data across participating clients [17]. In horizontal federated learning, also known as
sample-based federated learning, each entity has data that includes the same features but
different samples. This is typical when organizations operating in the same domain, like
hospitals, collaborate without sharing patient data. On the other hand, vertical federated
learning, or feature-based federated learning, involves clients that share data on the same
samples but with different features. This scenario is common when clients such as a bank
and an insurance company, which serve the same customers, collaborate without exposing
sensitive data. These distinctions allow federated learning to be applied flexibly depending
on data distribution and privacy requirements. Hereafter, federated learning is revering to
the case of horizontal federated learning.

In the context of of low voltage load forecasting, where each client, such as households or
businesses, possesses only their own private energy consumption data. In this scenario, while
the domain remains consistent—energy consumption—the data distributions can vary signif-
icantly from client to client due to differing usage patterns, making it a unique horizontal
federated learning challenge.

3-1-2 Formalization of Federated Learning

A federated learning framework involves K clients, denoted as {C1, C2, . . . , CK}. In this frame-
work, data is divided among these clients, leading to the creation of data silos {D1, D2, . . . , DK}.
Each data silo Dk contains pairs of input and output data

{
x(i),y(i)

}nk

i=1
, where k represents

the specific client and for simplicity, k ranges from 1 to K. The variable nk denotes the
number of data points in Dk.
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The clients jointly train a global model via a strategy determined by the server. The two
typical strategies introduced are Federated Averaging (FedAvg) and Federated Stochastic
Gradient Descent (FedSGD) [12].

Both strategies can be expressed in a generalized way where each client receives the global
model Wr

g from the server where g indicates its the global model, and r the global training
round. Each client Ck train the model locally using Dk resulting in a new model Wr+1

k . The
locally trained models Wr+1

k can be viewed as a function of the global model Wr
g and the

local data.

Both FedAvg and FedSGD strategies can be generalized to express the update as:

Wr+1
k = Wr

g − ηk∇L(Wr
g,Bk), (3-1)

where ηk is a learning rate that encapsulates the difference in the amount of local training
between FedAvg and FedSGD, and ∇L(Wr

g,Bk) is the gradient of the loss function L with
respect to the model parameters using the local data Bk. The learning rate ηk and local data
Bk varies depending on the strategy used:

Federated Averaging (FedAvg): Each client performs multiple local updates over E
epochs. The local data Bk is in this case the dataset Dk. Within each epoch, there are
multiple gradient steps. Let G denote the number of gradient steps per epoch, which is a
function of the batch size and nk:

G =
⌈

nk

batch size

⌉
(3-2)

The effective learning rate ηk in this case is:

ηk ≈ EGα, (3-3)

where E is the number of local epochs, G is the number of gradient steps per epoch, and α is
the local learning rate. This approximation assumes that the local model parameters do not
change to much during the each local training step.

Federated Stochastic Gradient Descent (FedSGD): Each client performs a single local
update on a mini-batch Bk ∈ Dk and immediately sends the updated parameters back to the
server. The effective learning rate ηk in this case is simply the local learning rate α:

ηk = α. (3-4)

The updated model Wr+1
k is sent back to the server which aggregates it together with the

other clients’ updates according to each clients’ amount of data resulting in Wr+1
g . This

updated global model Wr+1
g is computed as follows:

Wr+1
g =

K∑
k=1

nk

n
Wr+1

k , (3-5)

where nk is the number of data points in client k’s data Dk, and n =
∑K

k=1 nk is the total
number of data samples across all clients.
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3-2 Time Series and Time Series Forecasting

Time series forecasting involves predicting future values based on previously observed values.
A time series is a sequence of data points collected or recorded at regular time intervals. Time
series data captures the dynamics and temporal dependencies inherent in the data [18]. Time
series forecasting is critical in numerous applications, such as finance, weather prediction, and
load forecasting [19]. First we will describe time series and its characteristics and then we
will describe the process of forecasting time series and which methods are used for this.

Observation (sobs) Target (star)

−H 0 F

t

s

Figure 3-1: Example of univariate time-series forecasting situation.

Time Series Data

Time series data is characterized by its sequential nature, with observations indexed by time.
Each data point in a time series can be represented as st, where t denotes the time index.
Key characteristics of time series include trend, periodicity, cyclic patterns, and irregular
fluctuations [18]. Trends indicate long-term progression, such as the upward trend in global
temperatures over decades. Periodicity refers to regular repeating patterns, such as daily
cycles (e.g., day and night) and weekly cycles (e.g., increased restaurant visits on weekends).
Seasonality, a specific type of periodicity, refers to patterns tied to the calendar, such as annual
cycles (e.g., increased retail sales in December) and monthly cycles (e.g., higher electricity
consumption in summer and winter). Cyclic variations represent patterns that occur at
irregular, long-term intervals, such as economic cycles of recession and expansion. Irregular
components reflect random noise. Understanding these components is essential for accurate
modeling and forecasting, as they provide insight into the underlying processes driving the
observed data.

Formalization of Time Series Forecasting

We begin with a simple scenario of time series forecasting and gradually introduce more
complex concepts. We start with single step forecasting, then introduce multi-step forecasting,
followed by introducing univariate vs. multivariate time series, and at last the incorporation
of second hand predictions into the conditions to forecast.

Observations and Targets: The observations are synonyms for the model inputs (x) and
targets for ground-truth outputs (y). Consider a historical time range, consisting of H steps,
as the set of observations obs = {t ∈ Z | −H < t ≤ 0}. Now consider a historical time series
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sobs = {s−H+1, s−H+2, . . . , s0} which is used to predict the next value st+1. This is known
as single-step forecasting, where only the immediate next value is predicted. In many prac-
tical applications, we need to predict multiple future values at once, this leads to multi-step
forecasting. Now, given the observation time series sobs, the objective is to forecast a future
range of F steps into the future, a set of targets star = {t ∈ Z | 0 < t ≤ F} The goal is to
forecast the future values star = {s1, s2, . . . , sF } as illustrated in Figure 3-1.

Univariate vs. Multivariate Time Series: Now consider an additional dimension in
the time series observations which can be represented as Sobs ∈ RH×d, where d denotes the
number of distinct features or dimensions in the dataset. Similarly, the target forecast data
can be represented as Star ∈ RF ×d. A time series is categorized as univariate when d = 1,
as depicted in Figure 3-1, and as multivariate when d > 1. In a univariate time series, each
time step t is associated with a single value st. In contrast, in a multivariate time series, each
time step t is associated with a vector of values st = {st,1, . . . , st,d}, where d is the number of
features.

External Forecasts and Static Covariates: In more advanced forecasting scenarios, ex-
ternal forecasts can serve as additional inputs, improving the accuracy of the predictions [20].
For example, using detailed weather forecasts for the next day can significantly enhance the
accuracy of energy load predictions for that day. Additionally, static covariates, such as lo-
cation or demographic information, can also be used to further refine the forecasting models.
Although this approach is beyond the scope of this research, it is important to acknowledge
its potential benefits for forecasting.

3-2-1 Forecasting Models

Traditional statistical methods, such as Autoregressive Integrated Moving Average (ARIMA)
[18], leverage linear relationships in the data to make predictions. However, these methods
often fall short in capturing complex nonlinear patterns.

Deep learning approaches, particularly Recurrent Neural Networks (RNNs) [21] and their vari-
ants like Long Short-Term Memory (LSTM) [22] networks and Gated Recurrent Units(GRUs) [23],
have demonstrated superior performance in time series forecasting. These models can capture
intricate temporal dependencies and long-term relationships within the data. LSTMs address
the vanishing gradient problem in standard RNNs by incorporating memory cells that retain
information over long periods, while GRUs simplify the LSTM architecture by combining the
cell state and hidden state.

Another powerful deep learning architecture is the Temporal Convolutional Network (TCN) [24],
which leverages causal convolutions and dilation to model temporal dependencies. TCNs have
shown increased performance over RNN-based models due to their ability to parallelize train-
ing and handle long sequences effectively [24].

3-2-2 Low Voltage Load Data and Forecasting

Low voltage load forecasting is the process of predicting future electricity demand at the
lower end of the voltage spectrum, typically associated with residential or small commercial
consumers [3, 7]. This type of forecasting plays a critical role in smart grids by ensuring a
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balance between energy demand and supply [2]. Accurately predicting low voltage load is
essential for optimizing energy usage, integrating renewable energy sources, and managing
grid stability, particularly with the increasing adoption of decentralized energy systems and
smart grids [25].

Time Series Characteristics of Low Voltage Load Data

Low voltage load data, which captures the electricity consumption of residential or small
commercial consumers, exhibits distinct time series characteristics that are critical for effective
grid management [26].
Trend: Household load data may display a trend reflecting long-term changes in electricity
usage. This could be influenced by factors such the number of household members, changes
in household appliances, or shifts towards energy-efficient technologies. Identifying the trend
component Strend in load data is crucial for understanding the general direction of electricity
consumption over time.
Periodicity: Periodicity in low voltage load data is evident through periodic fluctuations
corresponding to regular intervals such as daily or weekly cycles. For instance:

• Daily Periodicity: Consumption patterns typically show higher usage during evening
hours when residents are home and lower usage during the night and early morning
hours.

• Weekly Periodicity: Weekends often exhibit different consumption patterns com-
pared to weekdays, often with higher usage on weekends due to more people being at
home.

• Annual Periodicity: Electricity usage can also vary across seasons, with higher con-
sumption in the winter (due to heating), and some households or regions in the summer
(due to cooling).

The periodic component captures these regular patterns and is crucial for accurate load
forecasting. These periodic patterns are formalized with a period p, which indicates the
number of time steps (such as hours, days, or weeks) after which the cyclic behavior repeats
itself. Assuming an hourly sample rate, for example, if p = 24, the pattern repeats every 24
hours, indicating daily periodicity. Similarly, if p = 168, the pattern repeats every 168 hours
(7 days), indicating weekly periodicity.
Cyclic Patterns: Unlike seasonality, cyclic patterns in household load data occur at irregular
intervals and can be associated with broader economic or social cycles. For example, economic
downturns or periods of increased remote work (e.g., during a pandemic) can lead to shifts
in typical electricity consumption patterns. The cyclic component helps to identify these
non-regular fluctuations. To formalize the cyclic pattern occurring at irregular intervals, one
approach is to introduce an additional indicator in the form of a second time series that
correlates with the pattern, increasing d, such as an economic wellbeing indicator.
Irregular Fluctuations: Household load data also contains irregular or random compo-
nents, representing short-term anomalies or noise that cannot be attributed to trend, season-
ality, or cyclic patterns. These could be due to unexpected events such as power outages,
extreme weather conditions, or atypical usage patterns on specific days.
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Deep Learning Load Forecasting

The proliferation of smart meters has enabled the collection of high-resolution consumption
data, paving the way for data-driven models. Among these, deep learning models, such as
LSTM, GRU, CNN and TCN based architectures, have shown significant promise, [6, 4, 27,
28, 5, 29]. These models can learn complex patterns from historical data without needing
explicit physical information.

Training Objectives in Load Forecasting

In load forecasting, standard loss functions such as Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are widely used. MSE is known to converge to the mean load, making
it effective for capturing average load patterns. On the other hand, MAE converges to the
median load, which can be more robust to outliers. However, these loss functions do not
specifically target the accurate prediction of load peaks, which are critical for efficient grid
management and optimization.

To address this, alternative loss functions like Dynamic Time Warping (DTW) [30, 31] and its
differentiable variant, soft-DTW [32], have been explored [33]. DTW focuses on the similarity
of time series shapes, offering potential improvements in aligning predicted and actual load
curves. Soft-DTW extends this by providing a smooth and differentiable approximation,
making it suitable for training with gradient descent. These methods emphasize the overall
shape similarity, which can lead to better peak load forecasting performance, enhancing grid
reliability and efficiency [33]. While peak load prediction is of significant interest for load
forecasting and grid optimization [7], it is not investigated further in this thesis because it is
outside the scope.

3-3 Federated Time Series Forecasting

In the context of federated learning, time series forecasting can be formalized such that
each client’s Ck data silo Dk contains at least one time series Sk. These time series across
clients represent the same feature. Without federated learning, each client can only train a
forecasting model on its own data, limiting the model’s generalizability due to the restricted
amount of data [34, 35].

Federated learning alleviates this by assuming that the data distributions among clients are
diverse [36, 37]. This diversity ensures the global model captures a wide range of patterns
and anomalies present in different time series, leading to better performance on new, unseen
data [36, 37]. This makes federated learning a powerful approach for time series forecasting
across various domains.

3-3-1 Non-Independent and Identically Distributed Data

However, too much diversity can have negative effects on the convergence of a federated
forecasting model [38]. If the diversity of the data is too high among clients, it is formally
termed non-Independent and Identically Distributed (non-IID) data. This refers to data
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where individual samples are correlated with each other and are not drawn from the same
probability distribution. Correlation is detrimental because the model may overfit to the
patterns and noise specific to those correlations, failing to capture the true underlying data
distribution. Data not originating from the same distribution is problematic because it can
become too complex for the model to properly learn a unified representation. The diverse
patterns can be too conflicting, leading to insufficient generalization.

3-3-2 Non-IIDness in Federated Load forecasting

In the context of federated low voltage load forecasting, non-IIDness arises due to correlations
and differences in data distributions across various clients [38, 39, 40, 41, 42].
The different data distributions stem from the fact that each client’s data represents unique
load consumption patterns influenced by lifestyle choices, number of household members, or
for an an industrial or business related building, the opening hours or types of services all
uniquely influence the load patterns. The data correlations can for instance be caused by
regional factors such as all being of similar socioeconomic status or dealing with the same
temperature and weather patterns. These factors create correlations within the data of each
client, as the consumption patterns are not random but are driven by region-specific behaviors
[41, 42]. For instance, a model trained predominantly on industrial load patterns may not
perform well on residential data, and vice versa.
To address these issues, strategies such as personalized federated learning can be employed,
allowing each client to maintain a model that is fine-tuned to its local data while still benefiting
from the global model [34, 40, 43, 44]. Clustered federated learning can also be useful,
grouping clients with similar distributions to group the diversity into seperate models [45, 46,
39, 41]. These approaches help mitigate the impact of non-IIDness, leading to more accurate
and robust load forecasting models. Even though the convergence issues that arise from
the non-IID data among the federated clients is outside the scope of rest of the thesis, it is
important to note that each individual load profile is private and contains unique information.

3-4 Privacy Risks for Federated Learning

In the context of federated learning, a "privacy risk" refers to the potential threats and vul-
nerabilities that can lead to the exposure of sensitive information during the collaborative
training process [14]. Privacy risks in federated learning arise when an adversary, either
within or outside the system, is able to infer sensitive data from the clients’ updates or model
parameters exchanged during the training process [14]. These risks are primarily due to the
shared nature of federated learning, where the shared gradients or model updates can leak
private information about the training data of individual clients. Understanding these pri-
vacy risks is crucial, especially when considering the stringent data protection requirements
imposed by regulations such as the General Data Protection Regulation (GDPR) [47].

3-4-1 GDPR and Federated Learning

The General Data Protection Regulation (GDPR) [47] is a comprehensive data protection
law that came into effect in the European Union in 2018, designed to safeguard personal

Master of Science Thesis C. J. Meijer



3-4 Privacy Risks for Federated Learning 22

data and ensure privacy rights for individuals. It mandates strict data privacy and security
measures, significantly impacting technologies like federated learning, which is particularly
suitable for keeping training data local and private [8]. By decentralizing data processing,
federated learning aligns well with GDPR’s principles of data privacy and security, as it avoids
central data storage risks [8].

However, despite federated learning’s alignment with GDPR principles by keeping data local
and reducing central data storage risks, significant privacy challenges remain [14]. Adversaries
may exploit the shared updates to infer private data with inference and reconstruction attacks
[8]. Investigating these attacks from an attacker’s perspective will enhance our understanding
of their implications and help develop more effective countermeasures.

3-4-2 Client or Server-side Attacks

In federated learning, privacy risks can manifest through attacks either on the client-side or
the server-side, each presenting unique challenges and vulnerabilities. The main difference
lies in the amount of information that is available to the adversary. Client-side attacks have
knowledge of the aggregated global model sent by the server, the locally trained model, and
its own private dataset [15]. The server on the other hand has access to the aggregated model,
the trained models or their gradients sent back by the clients, the identifiers of the clients,
the size of their dataset [15]. There is also the outsider-side, which only has access to the
outputs of the trained global model [15], however, together with the client-side adversaries,
these are outside the scope of this thesis.

3-4-3 Honest-but-curious vs. Malicious Attacks

In federated learning, attacks can also be categorized into honest-but-curious and malicious,
or in other words active and passive [15]. Active attackers interfere with the training process,
by sharing modified model updates or gradients. For instance, they actively modify the model
in such a way that they can train it to output a specific value given a specific input, also
called a backdoor attack. A passive, attacker adheres to the federated protocols and shares
the honest model updates. Their goal is mostly to obtain private information about other
clients. In this thesis, we focus on the honest-but-curious type.

3-4-4 Types of Privacy Attacks

In this section we will briefly introduce the different types of privacy attacks from a server-side
perspective. The common types of attacks are membership inference, property inference, and
data reconstruction.

Membership Inference: Membership inference attacks in federated learning determine
whether a specific data point was used in the training set [48, 49]. This type of attack
is particularly applicable in classification tasks where the adversary aims to identify the
presence of sensitive data, such as medical records or personal profiles, within the training
dataset. The primary assumption is that the attacker has some auxiliary knowledge about
the data distribution or access to similar data points used during training [14, 48]. Through

Master of Science Thesis C. J. Meijer



3-4 Privacy Risks for Federated Learning 23

the observation of model updates or gradients, the adversary can infer the membership status
of data points.

Property Inference: Property inference attacks in federated learning target the extraction
of specific attributes from clients’ training data that are not directly related to the primary
learning task [50, 51, 52]. These attacks are applicable to deep learning tasks such as image
classification. The key assumption is that the adversary has access to auxiliary training data
correctly labeled with the target property and can observe the gradients. These attacks can
leak sensitive information such as the presence of certain features or attributes in the training
data, potentially revealing private aspects of the data, like the presence of a specific object
in images or particular words in text data [14].

Data Reconstruction: These are the core types of attacks experimented with on time
series data in this thesis. All of the existing literature either evaluates these attacks on
images [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], text [64], or tabular [65] data and none on
time series. We will briefly introduce the concept here, but also have a separate section going
deeper into the related works. Data reconstruction attacks in federated learning involve an
adversary extracting original training data and their associated labels from shared gradients.
The attacks leverage the fact that gradients are derived from specific data points, and by
analysing these gradients, an attacker can reconstruct the original inputs and labels. The key
assumption is that the attacker has access to the model parameters and its gradients shared
during the training process [53].

3-4-5 Privacy Risks for Federated Load Forecasting

In this section we will discuss the implications of the different attacks and assumptions in the
context of load forecasting. The paper and research was focused on server-side honest-but-
curious data recreation attacks.

Server-side Attack: We will discuss third-party adversaries, which are not directly involved
in the federated system, adversarial clients that attempt to steal private information from
other clients, or adversarial servers that steal information about its connected clients.

The fair assumption can be made that third-party adversaries do not have direct access to
the federated learning system unless they hack into the smart meters or the server. If the
adversary is able to compromise the smart meter, they might as well steal the private data
directly, bypassing the federated learning process entirely. In this case it is more practical
to enhance the security of the smart meters rather than modifying the fundamentals of the
federated learning process itself. On the other hand, if they hack the server, attackers would
still need to exploit server-side attacks in order to retrieve private information.

Adversarial clients attempting to infer private information about other clients in the federated
system present a different challenge. These types of privacy attacks are not yet fully developed,
and client-side attacks are often malicious in an attempt to modify the global model in a
particular way [15]. Overall, from the perspective of understanding privacy risks within the
federated learning setup, server-side attacks are of most interest and pose the biggest risk
as they have direct access to the learning process and have more knowledge of the federated
process as had been described in Subsection 3-4-2.
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Honest-but-curious Server: We focus on the honest-but-curious case because, as we focus
on server-side attacks, and if these servers would be malicious and tamper with the training
protocols, they would risk repercussions or fines through the GDPR law. So it is reasonable
to assume the servers would not act maliciously. We are interested in amount of training data
that is actually present in the shared model updates.
Type of privacy attack: We will discuss the types of attacks that were mentioned in ??.
With membership inference attacks an adversarial server can attempt to determine whether
a specific time series sequence was used in the training set. However, for load forecasting, this
information is less critical compared to other domains for a couple of reasons. In image or
text domain, the adversary can check for known samples, such as faces, or specific personal
information. In load forecasting, each client only contains its own data, not that of multiple
individuals. In this situation, checking for membership makes less sense as it would translate
more to a data recreation attack.
Furthermore, property inference attacks, attempt to infer properties or patterns that is not
directly related to the task. For example, identifying whether a household is unoccupied.
However, such inferences may be gathered through other means more effectively.
Form the GDPR mandated guidelines, it is most important that the training data cannot
be revealed during the training process [8]. From this perspective, the most severe privacy
threat is data reconstruction. Gradient inversion attacks can allow the server to reconstruct
the original time series data, thereby breaching the privacy that federated learning aims to
protect [15].

3-5 Related Studies: Gradient Inversion Attacks

In this section we will go into depth of the related studies of gradient inversion attacks, as
described in Section 3-5. In the following section we assume that the gradients stem from
the Federated Stochastic Gradient Decent strategy as described in Section 3-1. Some related
work also perform gradient inversion attacks on models trained with the Federated Averaging
strategy which will be highlighted.
Each of the attacks attempt to reconstruct the exact training input and label for a given
gradient using gradient decent. The modalities that are being attacked are images, text and
tabular data during classification tasks.
It is important to know that gradients are aggregated over all of the samples. So, while recon-
structing gradients of a single sample, or batch size of 1, is straight forward, the reconstruction
of multiple samples or larger batches is more challenging.
A large portion of the attacks work by optimizing randomly initialized dummy inputs and
labels. They are optimized by minimizing the distance between these dummy gradients, which
are calculated using the dummy inputs, labels and model parameters, and the gradients that
are "leaked" during the federated learning process.
More formally, the local training data Bk from Section 3-1 consists of training inputs (x) and
labels (y), and the gradients ∇L(Wr

g,Bk) are derived as:

∇L(Wr
g,Bk) = ∂L(F (x,W),y)

∂W (3-6)
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and we hereby simplify ∇L(Wr
g,Bk) as ∇W.

The dummy inputs (x̃) and labels (ỹ) are often sampled from a Normal or Uniform distribution
denote as N (0, 1) or U(0, 1) respectively. The dummy gradients ∇W̃ are derived similarly as
Equation 3-6 by:

∇W̃ = ∂L(F (x̃,W), ỹ)
∂W (3-7)

The optimization is performed by minimizing a distance D between ∇W and ∇W̃ as:

(x̃⋆, ỹ⋆) = arg min
x̃,ỹ

D(∇W̃,∇W). (3-8)

Now that the basis of the gradient inversion attack is explained, we will go over the related
studies of gradient inversion attacks.

3-5-1 Deep Leakage from Gradients (2019)

The foundational work for gradient inversion attacks "Deep Leakage from Gradients" (DLG) [53]
DLG is formalized as optimizing the dummy data by minimizing the Euclidean distance be-
tween the original and dummy gradients as such:

D(∇W̃,∇W) =
∥∥∥∇W̃ − ∇W

∥∥∥2
(3-9)

3-5-2 Improved Deep Leakage from Gradients (2020)

Soon after an improvement was made extending DLG (iDLG) [54] by leveraging the clas-
sification task and corresponding cross entropy loss to analytically reconstruct the training
label y. In a classification task the label y = [y1,y2, . . . ] is one-hot encoded, meaning that
only the ground-truth label yc for class c is 1 and the rest of the labels are 0. Furthermore,
for a classification task the cross-entropy loss function is used to train the model. This loss
function measures how well the model’s predicted probabilities match the one-hot encoded
ground-truth labels. The gradients of the loss with respect to each output yi help us identify
the ground-truth label. The gradient gi of the loss with respect to yi is:

gi =


−1 + exp yi∑

j
exp yj

if i = c

exp yi∑
j

exp yj
if i ̸= c

(3-10)

These gradients gi provide valuable insight because gi is negative when i = c (the true
class) and positive otherwise. This way it is possible to reconstruct the ground-truth labels
analytically by taking the signs of the gradients. This technique is however limited to a batch
size of one.
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3-5-3 Inverting Gradients (2020)

The authors of inverting gradients (InvG) [55] introduce the cosine similarity loss as the
distance function for the gradients, as intuitively the dummy data has to move the model
parameters in the same hyper-direction as the original data would. Additional to the cosine
distance they also include a regularization term which minimizes the total variation for neigh-
bouring pixels [66]. Furthermore, they constrain the search space to images within [0, 1] from
prior knowledge about the image modality. The new distance function can be expressed as:

D(∇W′,∇W) = 1 − ∇W̃ · ∇W∥∥∥∇W̃
∥∥∥ ∥∇W∥

+ λTVRTV(x̃) (3-11)

where λTV is the regularization strength hyperparameter and RTV the total variation regu-
larization term:

RTV(x̃) =
∑
i,j

(∥x̃i+1,j − x̃i,j∥ + ∥x̃i,j+1 − x̃i,j∥) . (3-12)

where i indicates the row pixel and j the column pixel.

3-5-4 Self-Adaptive Privacy Attack from Gradients (2020)

An issue with DLG arises when the weights of the network are initialized from a normal dis-
tribution instead of a uniform distribution, which causes the attack to not converge properly.
To overcome this issue, they propose a weighted Gaussian kernel based function instead of
using the Euclidean distance between gradients [56]. The weighted Gaussian kernel based
function is defined as:

D(∇W′,∇W) = Q ·
(

1 − exp
(

− ∥∇W′ − ∇W∥2

σ2

))
(3-13)

Where Q is a factor for each layer of gradients, weighting layers closer to the input training
data more heavily and σ2 = V ar(∇W).

3-5-5 Recursive Gradient Attack on Privacy (2021)

The Recursive Gradient Attack on Privacy (R-GAP) [57] method is not optimization based,
but reconstructs the training data by recursively solving systems of linear equations layer by
layer. Unlike optimization-based attacks, R-GAP provides a closed-form solution, making it
faster and deterministic, meaning it always produces the same result given the same input.
However, it is limited to a batch size of 1, where with larger batch sizes it produces linear
combinations of inputs.

3-5-6 See through Gradients (2021)

This method extensively improves the reconstruction capabilities by introducing auxiliary
regularization terms and providing a limited method for reconstructing batched labels y. The
regularization terms are tailored to images which ensure they are realistic and consistent.
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They use the Euclidean distance as in Equation 3-9 and the optimization task is defined as:

x̃⋆ = arg min
x̃

D(∇W̃,∇W) + Raux(x̃). (3-14)

The labels y are The batch-wise label restoration only works when each of the ground-truth
labels are unqiue. The process starts with batch-wise label restoration, where the algorithm
deduces ground truth labels from the signs of gradients at the final classification layer. This
helps in initializing the optimization correctly.
For realism, the fidelity regularization term penalizes unrealistic images by using priors such
as total variance and ℓ2 norm penalties, and ensures valid intermediate distributions through
batch normalization statistics:

Rfidelity(x̃) = λTVRTV(x̃) + λℓ2Rℓ2(x̃) + λBNRBN(x̃). (3-15)

To address spatial variance and ensure consistency, group consistency regularization is applied.
This works by optimizing multiple versions of the input x̃, each initialized with different
random seeds. During optimization, it calculates the mean of these multiple versions and
penalizes the divergence of each version from this mean, ensuring they converge to a similar
solution. The regularization term is:

Rgroup(x̃, x̃g∈G) = λgroup |x̃ − E[x̃g∈G ]|2 . (3-16)

where G is the group of randomly initialized inputs and g an individual sample from this
group.

3-5-7 Gradient Inversion with Generative Image Prior (2021)

The authors propose a gradient inversion attack using a generative model. The attack recon-
structs the input data by navigating through two distinct spaces: the latent space and the
parameter space of the generative model. They denote the generative model byGθ : Rk → Rm,
where w represents the parameters of the model, z ∈ Rk is a latent code, and x ∈ Rm is the
generated data.
Latent space search: The latent space Rk is typically much smaller and more manageable
than the full input space Rm. The objective is to find a latent code z̃ such that the generated
data Gθ(z̃) closely approximates x. This is done by substituting x̃ in Equation 3-7 with Gθ(z̃)
and optimizing z̃ by matching the gradients:

z̃⋆ = arg min
z̃

D(∇W̃Gθ (̃z),∇W). (3-17)

Parameter space search: However, since the generative model Gθ may not be perfect, there
might still be some error in the reconstruction. After obtaining a good latent representation
z̃, they propose to fine-tune the model parameters θ in order to better match the gradients:

θ⋆ = arg min
θ

D(∇W̃Gθ (̃z⋆),∇W). (3-18)
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3-5-8 Gradient Attack on Transformer-based Language Models (2021)

The gradient inversion attack tailored to transformer-based language models (TAG) focuses
specifically Natural Language Processing (NLP) models and on binary classification tasks.
NLP task input data involves tokens represented with discrete values. Reconstructing these
discrete values requires the attack to optimize in the continuous embedding space and then
output the nearest token. The dummy data consists of sequences of dummy input token
embeddings x and dummy labels y.

TAG employs a combination of the Euclidean and Manhattan (L1) distances as its distance
function:

D(∇W̃,∇W) = ∥∇W̃ − ∇W∥2 + λlayer(∇W)∥∇W̃ − ∇W∥1 (3-19)

where λlayer(∇W) is a coefficient parameter based on the layer’s proximity to the input data,
thereby putting more weight on the differences in gradients of earlier layers. This parameter
places more weight on the differences in gradients of earlier layers.

When the dummy embeddings and labels are optimized, the closest discreet token is taken and
is mapped with the vocabulary. The attack assumes this vocabulary is also leaked together
with the language model or is already known.

3-5-9 Approximate Gradient Inversion Attack (2022)

The Approximate Gradient Inversion Attack (AGIC) [60], specifically targets the Federated
Averaging (FedAvg) strategy where multiple local model updates are performed using mul-
tiple mini-batches as explained in Section 3-1. The attack implements a efficient one-batch
approximation technique, which allows to approximate multiple gradient updates as a single
update avoiding costly simulation procedures. This approximation assumes a small (<1e-2)
local learning rate and assumes that the aggregated gradient steps caused by the multiple
mini-batches can be approximated as a single large batch with gradients:

∇W ≈
Wr

g − Wr+1
k

−α
(3-20)

Furthermore, it employs the same distance function and regularization as Inverting Gradients
in Equation 3-11, but it assigns different weights to gradients from different layers to capture
their unequal impact on the model’s performance, considering factors such as gradient magni-
tude, layer-specific characteristics, and activation functions like ReLU. The attack also takes
advantage of the fact that the same training samples are used across multiple global rounds.
By matching updates that contain overlapping samples, AGIC can jointly optimize these
updates to enhance the reconstruction quality. This step involves pre-reconstructing images
from updates, matching them based on similarity, and then performing joint reconstruction
on the matched pairs.

3-5-10 Dropout Inversion Attack (2022)

Dropout is a technique where nodes in a neural network are randomly set to zero during
training, preventing overfitting by ensuring that the model does not become overly reliant
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on specific nodes. [67] proposed utilizing dropout as a defense mechanism against federated
learning attacks. This defense leverages the random nature of dropout to obscure the gradient
information, making it more challenging for an attacker to reconstruct the original data.

The Dropout Inversion Attack (DIA) [61] extends the optimization space to account for the
probabilistic nature of dropout layers. The attack begins by initializing a dropout mask ψ
for each layer l from a Bernoulli distribution given the dropout value p:

Ψ =
{
ψ(1), . . . , ψ(l)

}
∼ Bernoulli(p) (3-21)

These dropout masks are used as deterministic optimizable replacements for the original prob-
abilistic layers. In addition to optimizing dummy inputs and targets, the dropout inversion
attack also optimizes the dropout masks of the dropout layers:

(x̃⋆, ỹ⋆,Ψ⋆) = arg min
x̃,ỹ,Ψ

D(∇W̃,∇W) (3-22)

The objective is to find the combination of input data, labels, and dropout masks that mini-
mize the difference between the gradients of the dummy data and the actual model gradients.
This process effectively neutralizes the protective effect of dropout, allowing the attacker to
recover the original training data despite the applied dropout defense.

3-5-11 Improved Gradient Inversion Attacks and Defenses (2023)

The authors present an enhanced framework for gradient inversion attacks that addresses both
FedSGD and FedAVG strategies [68, 62]. The key components of their approach include zero-
shot batch label inference, auxiliary regularizations, multiple updates, and approximation of
gradients. The zero-shot batch label inference method is an improvement over those proposed
in iDLG [54] or "See through Gradients" [58] because it allows it to handle batches with
duplicate labels. Furthermore, to ensure realistic image restoration, the authors introduce
auxiliary regularization terms. The auxiliary regularization for fidelity is defined as:

Raux(x̃) = λTVRTV(x̃) + λcRclip(x̃) + λsRscale(x̃) (3-23)

where total variation is set in Equation 3-12, clipping ensures pixel values stay within valid
ranges [0, 1], and scaling normalizes pixel values:

Rclip(x̃) = ∥x̃ − min(max(x̃, 0), 1)∥2 Rscale(x̃) =
∥∥∥∥x̃ − x̃ − minv

maxv − minv

∥∥∥∥
2
.

These regularization terms keep the images more bounded between 0 and 1. Furthermore,
the authors propose to improve reconstruction quality by leveraging multiple model updates.
They make the assumption that the attacker can gather multiple gradient updates caused
by the same mini-batch and use these multiple gradients for more detailed and accurate
reconstructions. For FedAvg, they make the approximation, similar to AGIC [60],

∇W ≈ W0 −WE

−Eη
(3-24)

with E local training steps and local learning rate η.
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3-5-12 Learning to Invert (2023)

The "Learning to Invert" (LTI) [63] method presents a novel approach to gradient inversion
attacks by leveraging a model trained on an auxiliary dataset to recover client samples from
gradients. This method circumvents traditional defenses, such as differential privacy and
gradient compression, which were previously effective against optimization-based attacks.

The LTI method operates under the assumption that the attacker has access to an auxiliary
dataset that shares a similar distribution with the private data. The auxiliary dataset is used
to train a gradient inversion model gθ that predicts the batch of data points Bk from the
gradient ∇W. The training objective is to minimize the reconstruction error on the auxiliary
dataset:

min
θ

EBk∼DauxLattack(gθ(∇W),Bk) (3-25)

Here, Lattack is the loss function designed to be permutation invariant with respect to the
batch Bk because different permutations of samples can result in the same gradients. This is
achieved by defining Lattack as [69]:

Lattack(gθ(∇W),Bk) = min
π

B∑
i=1

Lsingle
attack(∇Wi, (xaux

π(i),y
aux
π(i))) (3-26)

where π is a permutation of the batch elements, and Lsingle
attack is the loss used to train the

federated global model and (xaux
π(i),y

aux
π(i)) are input and output pairs from the auxilary dataset.

LTI is different from optimization-based methods by not explicitly incorporating data priors
into the objective function. Instead, it learns the data properties from the auxiliary dataset.
This allows LTI to adapt to different defense mechanisms without the need for carefully
designed objective functions tailored to each defense.

3-5-13 Tabular Data Leakage (2023)

The TabLeak [65] method addresses the unique challenges of reconstructing tabular data
in federated learning, which involves both discrete and continuous features. For discrete
features, typically one-hot encoded, TabLeak employs a softmax relaxation to transform the
optimization problem into a continuous one. Specifically, for a discrete feature vector z with
k categories, the softmax function, denoted by σ, ensures the outputs are within [0, 1] and
sum to one, maintaining the one-hot encoding constraint:

σ(z)[j] = exp(z[j])∑k
i=1 exp(z[i])

∀j ∈ {1, . . . , k} (3-27)

This approach allows gradient-based optimization methods like Adam to handle discrete data
by working in the continuous domain, while still approximating the discrete structures.

To enhance the robustness of the reconstructions, TabLeak uses pooled ensembling. This
involves running multiple independent optimization processes with different initializations
and then aggregating the results by taking the median values of the reconstructed features.
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This method effectively reduces variance and improves the accuracy of the final reconstruction
by leveraging the consistency across multiple reconstructions.

Finally, to quantify the reliability of the reconstructed features, TabLeak introduces ensemble
confidence. By measuring the agreement among the multiple reconstructions, features with
low variance (high agreement) are considered more reliable. This systematic evaluation pro-
vides a confidence score for each feature, crucial for assessing the quality of reconstructions
in the tabular domain where direct human inspection is challenging.

3-5-14 Discussion

The exploration of gradient inversion attacks reveals a rich and evolving landscape of tech-
niques aimed at reconstructing training data from gradients. The foundational work "Deep
Leakage from Gradients" (DLG) [53] set the stage by demonstrating the feasibility of these at-
tacks using Euclidean distance minimization. The subsequent enhancement, "Improved Deep
Leakage from Gradients" (iDLG) [54], advanced this by analytically reconstructing training
labels, though it remained limited to a batch size of one.

"Inverting Gradients" (InvG) [55] introduced cosine similarity and total variation regulariza-
tion, improving the attack’s robustness, particularly for image data. The "Self-Adaptive Pri-
vacy Attack from Gradients" (SAPAG) [56] tackled convergence issues arising from different
weight initializations, further refining the optimization process with a Gaussian kernel-based
distance function.

The "Recursive Gradient Attack on Privacy" (R-GAP) [57] deviated from optimization-based
methods, offering a faster, deterministic solution by recursively solving linear equations, albeit
limited to single-sample batches. "See through Gradients" [58] and "Gradient Inversion with
Generative Image Prior" [59] provided significant advancements in reconstruction quality and
scalability to larger batches, leveraging auxiliary regularizations and generative models.

The "Gradient Attack on Transformer-based Language Models" (TAG) [64] addressed the
unique challenges of NLP models, using combined Euclidean and Manhattan distances for
gradient comparison. The "Approximate Gradient Inversion Attack" (AGIC) [60] efficiently
approximated multiple gradient updates in federated averaging, enhancing practicality for
real-world federated learning setups.

The "Dropout Inversion Attack" (DIA) [61] extended the attack surface by accounting for
dropout layers, effectively neutralizing this common defense mechanism. "Improved Gradient
Inversion Attacks and Defenses" [62] proposed a comprehensive framework addressing both
FedSGD and FedAvg strategies, introducing zero-shot batch label inference and auxiliary
regularizations for realistic image restoration.

"Learning to Invert" (LTI) [63] presented a paradigm shift by using a model trained on an
auxiliary dataset to predict client samples from gradients, overcoming traditional defenses like
differential privacy. "Tabular Data Leakage" (TabLeak) [65] innovatively tackled the complex-
ities of reconstructing tabular data, employing softmax relaxation and pooled ensembling for
improved accuracy and reliability.

Master of Science Thesis C. J. Meijer



3-5 Related Studies: Gradient Inversion Attacks 32

3-5-15 Research Gap

Despite the significant advancements in gradient inversion attacks, several gaps remain. No-
tably, none of the existing studies address time series forecasting tasks. Time series forecast-
ing is a regression task optimized with loss functions such as Mean Squared Error (MSE),
whereas existing studies focus on classification tasks using cross-entropy loss. The analytical
reconstruction of labels, feasible with cross-entropy loss in classification tasks, has not been
explored for regression tasks trained with MSE. Furthermore, forecasting targets are often
continuous values, contrasting with the discrete, one-hot encoded labels in classification.

Additionally, none of the attacks investigate model architectures specifically designed for
temporal data, such as Temporal Convolutional Networks or Gated Recurrent Units. Given
the increasing literature on federated learning for load forecasting, this gap highlights a critical
area for further research. Our study aims to bridge this gap by extending gradient inversion
attacks to time series forecasting tasks, exploring the unique challenges and implications for
federated learning in this domain. This research will contribute to a deeper understanding of
gradient inversion attacks and inform the development of more robust security and privacy
measures for federated learning applications involving temporal data.
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Chapter 4

Additional Experiments

This chapter provides more details about the experimental setup in Section 4-1. We describe
the datasets used in the paper and the experiments in Section 4-2. Afterwards, in Section 4-
3, we present additional baseline attack experiments and results. Finally, in Section 4-4, we
present additional experiments and results regarding the different gradient distance functions,
the gradient inversion model quantile predictions, and regularization techniques.

4-1 Experimental Setup Details

In this section we go over the datasets and how they are gathered, the data normalization
technique used to bound all data between 0 and 1. Furthermore, we give a in depth de-
scription of the models used in the paper, and the gradient inversion model architecture and
hyperparameters. Moreover, we explain the used evaluation metric.

4-1-1 Datasets

Each dataset contains columns and rows, where the columns represent a time series and a row
a timestamp. For the proprietary, london smartmeter, and KDDCup 2018 we pick the first
column as the time series to be attacked. For Electricity 370 we picked the fourth column,
because the first three had large changes in their characteristics throughout the sequence
which would have required more pre-processing. Each of these time series are explore in
Section 4-2.
Proprietary Dataset: The dataset contains active power (kW) data of 37 households rang-
ing from 2021-01-01 to 2023-01-01 sampled every 15 minutes.
London Smartmeter Dataset: The dataset contains power consumption of 5560 house-
holds ranging from November 2011 to February 2014 sampled every 30 minutes. The time
series represent the energy consumption in kilowatt hour (kWh).1 In the experiments we take
the 1-st column as data silo sequence.

1https://zenodo.org/records/4656091
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Electricity 370 Dataset: The Dataset contains kW measured every 15 minutes of 370
’clients’. The data was gathered between 2011 and 2014, however, not all clients’ measure-
ments start at 2011, some clients were introduced after.2 In the experiments we take the 4-th
column as data silo sequence.

KDDCup 2018 (Air Quality) Dataset: The dataset contain hourly sampled time series
which represents the air quality levels in 59 locations in 2 cities. 35 stations in Beijing and
24 stations in London.3 In the experiments we take the 1-st column as data silo sequence.

4-1-2 Data Normalization

In the paper we normalize all of the time series using the min-max normalization technique. It
scales the values of a dataset to a specific range, in our case [0, 1], which helps in improving the
performance and convergence of deep learning algorithms. This scaling method is beneficial
because it ensures that all features contribute more equally to the result and prevents features
with larger ranges from dominating the learning process.

The formula for min-max normalization for a given data point st in a time series is:

s′
t = st − min(s)

max(s) − min(s) (4-1)

where st is the original value at time t, s′
t is the normalized value at time t, min(s) is the

minimum value in the time series and max(s) is the maximum value in the time series.

This formula linearly transforms the original data into a scaled version where the minimum
value of the original data maps to 0 and the maximum value maps to 1. This transformation
preserves the relationships between the original data points while constraining them to a
common range. This facilitates a more uniform input to various algorithms, particularly
those sensitive to the scale of input data, like neural networks.

4-1-3 Model Architectures

This section describes the model architectures that are attacked and evaluated in the experi-
ments. For each predictor, the input is the observation sequence Sobs ∈ RH×d, as described in
Section 3-2. The predictions are ŝtar ∈ RF ×1, where F is the desired output sequence length.

FCN Predictor: The model is a fully connected neural network where the input is flat-
tened into a vector and passed through two linear hidden layers with size h. Each hidden
layer is followed by a sigmoid activation function. The final linear layer maps the hidden
representation to the output sequence

CNN Predictor: This model architecture is based on that of the LeNet architecture pro-
posed in "Improved Deep Leakage of Gradients" [54]. The model is a convolutional neural
network and the input is passed through three convolutional layers, each applying a 1D con-
volution followed by a sigmoid activation function. The sequence of convolutions is defined
as follows:

2https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
3https://zenodo.org/records/4656756
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The first convolutional layer has d input channels, hidden size h output channels, a kernel
size of 5, padding of 2, and a stride of 2. The second convolutional layer has hidden size h
input channels, h output channels, a kernel size of 5, padding of 2, and a stride of 2. The
third convolutional layer has hidden size h input channels, h output channels, a kernel size of
5, padding of 2, and a stride of 1.

After the convolutional layers, the output is flattened into a one-dimensional vector. This
flattened vector is then passed through a fully connected layer that outputs the prediction.

TCN Predictor: The model contains a temporal convolutional network (TCN), as imple-
mented by [24], where the input is processed through several levels of causal convolutional
layers, calculated to encapsulate the entire input sequence length, with each layer using a ker-
nel size of 6 and a dilation factor of 2. Dropout is applied with a probability of 0.1, and the
activation function used is ReLU. Weight normalization is also enabled to improve training
stability. After passing through the TCN layers, the last hidden state is mapped to the final
prediction by a fully connected layer.

GRU-2-FCN Predictor: The model is a gated recurrent unit (GRU) network where the
input is processed through a encoder GRU with a hidden size of h, capturing the temporal
dependencies in the sequence. The GRU layer outputs a hidden state at each time step,
and the final hidden state is passed through a fully connected layer that maps the hidden
representation to the predictions.

GRU-2-GRU Predictor: This model architecture is based on the Sequence-2-Sequence
model [70]. The input is processed similarly to the GRU-2-FCN architecture, however, the
final hidden state of the encoder GRU is used as the initial hidden state for the decoder.

The decoder is another GRU layer that takes the final hidden state from the encoder and
processes it to generate the output sequence. The decoder GRU outputs the hidden state
at each time step, which is passed through a fully connected layer that maps the hidden
representation to an output value per timestep.

4-1-4 Gradient Inversion Model

Model Architecture: The gradient inversion model is a custom architecture with two mod-
ules, one for outputting quantiles for observations and one for targets given gradients ∇W.
Each module contains two residual blocks with hidden sizes of 768 and 512, respectively. Each
residual block consists of fully connected layers, ReLU activations, batch normalization, and
dropout for regularization, with an optional adaptation layer ensuring matching dimensions
for identity mapping. Additionally, each module includes a fully connected layer that outputs
the quantiles for its observation or target reconstruction.

Training Hyperparameters: The gradient inversion model predicting quantiles is trained
for 75 epochs with a learning rate of 1e-3 and a batch size of 32. The hidden sizes of the residual
layers are 768 and 512 respectively. The set quantiles are [0.1, 0.3, 0.7, 0.9] and is optimized
with the AdamW optimizer. There is a learning rate scheduler based on the gradient matching
loss, that reduces the learning rate 10x, when it does not decrease for at least 500 steps.

Master of Science Thesis C. J. Meijer



4-1 Experimental Setup Details 36

4-1-5 Evaluation Metric

All of the numeric results in the paper and here in this section are calculated using the
Symmetric Mean Absolute Percentage Error (sMAPE) [71]. It is a normalized error metric
that ranges between 0 and 2, allowing for easy comparison between different datasets. This
normalization is achieved by scaling the absolute difference between the actual values (S) and
the predicted values (Ŝ) by the sum of their absolute values. The formula for sMAPE is given
by:

sMAPE = 1
N

N∑
i=1

2
∣∣∣Si − Ŝi

∣∣∣
|Si| +

∣∣∣Ŝi

∣∣∣ (4-2)

where N are the number of elements in sequence S, and | · | is the absolute value function.

This normalization ensures that the error measure is bounded, facilitating straightforward
comparison across datasets with different scales and units. The closer the sMAPE value is to
0, the better, as it indicates higher similarity between the actual and predicted data.
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4-2 Dataset Exploration

In this section, we explore the datasets used in our analysis, examining different resolution
levels to uncover their time series characteristics as explained in Section 3-2. The exploration
includes entire sequences, a single month, weekly profiles, and an individual sample, providing
a detailed view of the data. These visualizations help identify seasonal trends, cycles, and
other possible characteristics or insights. We analyze four datasets: Electricity 370, KDD
Cup 2018, London Smartmeter, and a Proprietary dataset. Each dataset is presented through
figures of resolutions and if they are a electricity dataset, the weekly profiles are also shown.

4-2-1 Electricity 370

Figure 4-1 encapsulates nearly two years of data, revealing a clear seasonal trend. The load
fluctuates significantly over the year, with higher consumption during winter months and a
noticeable dip in summer. This seasonality likely indicates a higher demand for heating in
colder months, which is a reasonable assumption for many regions.

Figure 4-2 zooms into a single month timeframe, displaying daily patterns. The electricity
usage exhibits a pronounced diurnal cycle with peaks during the day and dips at night. This
daily periodicity aligns with human activity patterns, where daytime usage is higher due to
work and household activities, and nighttime usage drops as people sleep.

Figure 4-3 and Figure 4-4 further dissect the data by days of the week. Both profiles show
consistent peaks and dips across the week, but with some variations. Mondays exhibit a
high load, likely due to the resumption of activities after the weekend, while weekends show
relatively lower and more consistent usage patterns. The median load profile tends to smooth
out extreme values, providing a clearer view of typical daily consumption without the influence
of outliers.

Finally, Figure 4-5 presents a single sample as an example, with one day of observations and
one day as the target to be forecasted.

Figure 4-1: Electricity 370: Whole Sequence of Column 5
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Figure 4-2: Electricity 370: First Month of column 5 Sequence

Figure 4-3: Electricity 370: Column 5 Average Load Profile

Figure 4-4: Electricity 370: Column 5 Median Load Profile

Figure 4-5: Electricity 370: The First Sample of Column 5
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4-2-2 KDDCup 2018

PM2.5 refers to particulate matter with a diameter of less than 2.5 micrometers, which can
penetrate the lungs and enter the bloodstream, making it a significant health concern. The
figures provided show the PM2.5 time series data from the KDD Cup 2018 dataset, focusing
on air quality in Beijing. Figure 4-6 displays the entire sequence from January 7, 2017, to
October 18, 2017. While there are no clear seasonal patterns, the PM2.5 levels tend to be
lower during the summer months of June and July. Throughout the year, there are several
sudden increases and decreases, indicating occasional pollution events that could be due to
various environmental or human activities.

Looking closer, Figure 4-7 shows the first month of data, revealing a weekly pattern, although
the intervals are not regular. Significant spikes, especially towards the end of January, suggest
short-term pollution episodes. Figure 4-8 provides a sample of five days of observations
followed by a one-day target period, highlighting the variability in PM2.5 levels over a short
time. This sample shows the unpredictable nature of air quality, emphasizing the challenges in
forecasting. Together, these figures offer a detailed view of Beijing’s PM2.5 levels, highlighting
both long-term trends and short-term changes.

Figure 4-6: KDD Cup: Whole Sequence of Column 1

Figure 4-7: KDD Cup: First Month of Column 1 Sequence
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Figure 4-8: KDD Cup: The First Sample of Column 1

4-2-3 London Smartmeter

Figure 4-9 encapsulates nearly a year of data, revealing various trends and anomalies in the
household’s electricity consumption. Notably, there is a significant increase in consumption
towards the end of February and throughout March. While there isn’t a clear distinction
between colder and warmer months in terms of overall load, there are several sudden drops
in energy usage. However, these drops do not reach zero, indicating some minimal level of
consumption, possibly due to idling devices, remains constant.

Figure 4-10 zooms into a single month’s timeframe, showcasing clear daily cycles of day
and night. The electricity usage exhibits pronounced diurnal patterns, with distinct peaks
during the day and troughs at night, aligning with typical household activities. Figure 4-11
and Figure 4-12 further analyses the data, highlighting consistent daily cycles but showing
no significant differences between weekends and workdays. Both profiles emphasize regular
peaks during active hours and troughs during idle periods.

Finally, Figure 4-13 presents a single sample as an example, displaying one day of observations
and one day as the target for forecasting. This figure highlights abrupt spikes in energy
consumption, reflecting short-term fluctuations that pose a challenge for accurate prediction.
These spikes suggest sporadic high-energy activities, adding complexity to modeling and
forecasting future consumption patterns based on past data.

Figure 4-9: London Smartmeter: Whole Sequence of Column 1
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Figure 4-10: London Smartmeter: First Month of Column 1 Sequence

Figure 4-11: London Smartmeter: Column 1 Average Load Profile

Figure 4-12: London Smartmeter: Column 1 Median Load Profile

Figure 4-13: London Smartmeter: The First Sample of Column 1
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4-2-4 Proprietary Data

Examining the entire sequence of electricity consumption over 464 days, as depicted in Fig-
ure 4-14, does not reveal clear seasonal fluctuations. There is no distinct difference between
summer and winter months. However, a noticeable sudden drop in December where the val-
ues drop to 0.0 indicates a possible outage of the sensor. Focusing on the first month of the
sequence in Figure 4-15 provides a more granular view, where the periodicity of daily patterns
becomes evident. Notable peaks correspond to higher usage during waking hours and reduced
consumption during nighttime, emphasizing the regular day-night cycle.

The average load profile in Figure 4-16 and the median load profile in Figure 4-17 illustrate
typical daily consumption patterns over the entire dataset. Both figures indicate an increase
in energy use during weekends, likely due to the activities of a working household. During
weekdays, consumption peaks in the morning and evening hours, reflecting common household
activities. Additionally, Figure 4-18 presents a specific observation and target day, highlight-
ing consistent energy usage with sudden increases and decreases, which reflect the variability
of household activities.

Figure 4-14: Proprietary: Whole Sequence of Column 1

Figure 4-15: Proprietary: First Month of Column 1 Sequence
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Figure 4-16: Proprietary: Column 1 Average Load Profile

Figure 4-17: Proprietary: Column 1 Median Load Profile

Figure 4-18: Proprietary: The First Sample of Column 1
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4-3 Baseline Attacks

As described in the paper, we evaluate the Deep Leakage of Gradients (DLG) [53] with the
LBFGS and Adam optimizers, Inverting Gradients (InvG) [55], Dropout Inversion Attack
(DIA) [61] and Learning To Invert (LTI) [63] baselines. Their methodologies are further
explained in Section 3-5. Their configurations are taken from their open-sourced repositories:
DLG-LBFGS4, DLG-Adam5, DIA6, and LTI7. The repository of LTI had no implementation
for reconstructing both the observations and targets.

4-3-1 Baseline Reconstructions on Datasets

Figure 3 in the paper only shows the reconstructions on a single dataset. In Figure 4-19 these
results are also shown for the other 3 datasets.

DLG-LBFGS: Although this attack converged quickly it is rather limited in its ability
to reconstruct the time series data. It is only able to reconstruct the observations for the
FCN architecture. It is able to reconstruct the targets for most datasets and architectures.
However, the TCN architecture is too difficult because of the dropout layers.

DLG-Adam: The more sophisticated optimizer improves its ability to reconstruct both
observations and targets. It is even better at reconstructing targets than the Cosine Similarity
based attacks InvG and DIA. Also, it is able to reconstruct pats of the observations and targets
for the TCN, although they are noisy.

InvG: These reconstructions back up the claim in the paper that the Cosine Similarity loss
is unable to reconstruct the targets completely. In the Electricity 370 dataset, some targets
seem to have the same shape, but are offset down a bit, indicating that this last bit is due to
some lacking detail in the gradient matching.

DIA: Even though this attack also optimizes the dropout masks, to counter its defensive
properties as seen in the reconstructions of previous attacks, it is unable to properly recon-
struct the whole observation or target sequence for the TCN architecture.

LTI: This attack achieves less fine grained reconstructions and in some cases is unable to
reconstruct the fine details of the time series.

4https://github.com/mit-han-lab/dlg
5https://github.com/JonasGeiping/breaching
6https://github.com/dAI-SY-Group/DropoutInversionAttack
7https://github.com/wrh14/Learning_to_Invert
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Figure 4-19: Grid reconstructions for all baselines with attack method X on dataset X using
models FCN, CNN, GRU, and TCN.

Master of Science Thesis C. J. Meijer



4-3 Baseline Attacks 46

4-3-2 Baseline Attacks on GRU-based Architectures

As described in the paper, GRUs selectively remember and forget information through their
reset and update gates [23]. Furthermore, the gradients of the GRU do not directly relate to
individual inputs, instead they are averaged over all inputs because of the sequential nature of
Recurrent Neural Networks. This many-to-one mapping makes it challenging to reconstruct
the inputs. For this we have conducted additional experiments with the baselines. In Figure 4-
20 the results are shown of using different baselines attacking the GRU-based architectures.
These hypotheses are supported by the results of the optimization-based baselines (DLG-
Adam and InvG). The DLG-Adam attack, using the Euclidean distance, is able to reconstruct
the targets, but the observations also lack detail. The InvG attack, using the Cosine Similarity
loss is actually optimizing the inputs outside of the domain [0, 1]. Especially the Learning
to Invert (LTI) [63] seemed promising because it learns the relation between gradients and
inputs, potentially learning this non-linear relation. Showing some similarity in both the
GRU-2-FCN and GRU-2-GRU architectures. However, this seems to be the case only for the
Electricity 370 dataset. For the Proprietary dataset none of the details remain.
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Figure 4-20: Grid reconstructions for attacking Seq2Seq model on 24-05-2024.
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4-3-3 Total Variation Effects on Reconstruction

The authors of Inverting Gradients [55] propose the additional regularization of total variation
in Equation 3-12 which reduces the difference between neighbouring pixels. This technique
can also be applied on time series, to reduce the difference between neighbouring values. How-
ever, as described in the paper this has a negative effect on the reconstruction accuracy. In
the paper we present a table that illustrates this reduce in performance. Here in this section
we present the corresponding reconstruction plots in Figure 4-21. The observation recon-
structions decrease in accuracy when the λtar

TV increases. Furthermore, the when increasing
the regularization term for the observation λobs

TV, it can be seen that it decreases the fine detail
present in the Proprietary dataset.
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Figure 4-21: Reconstructions of Inverting Gradients with different hyperparameters for total
variation on the observation sequence λobs

TV (rows) and the target sequence λtar
TV (columns). The

reconstructions are of the Electricity 370 (370 in the figure) and Proprietary (Prop. in figure)
datasets.
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4-4 TS-Inverse Experiments

4-4-1 Gradient Distance Functions

In the paper the gradient distances are only evaluated against the TCN architecture, be-
cause as the following results show, for the CNN and FCN models there is no consistent
improvements among the distance functions.

In Table 4-1 and Table 4-2, the Cosine, Cosine + L1-Norm, Cosine + L2-Norm, L2-Norm, and
L1-Norm gradient distance functions are evaluated on the FCN, CNN, and TCN architectures.

For the CNN architecture, it is evident that for batch sizes 2 and 4 in the Electricity 370
dataset (Table 4-1), none of the loss functions show consistent improvements in reconstructing
the observations or targets. In the London Smartmeter dataset (Table 4-2), there are larger
improvements, but not consistently with a single distance function.

For the FCN architecture on the Electricity 370 dataset (Table 4-1), with batch sizes 2 and
4, the Cosine + L2-Norm performs best for reconstructing both the observations and targets.
On the London Smartmeter dataset (Table 4-2), there are no significant improvements either.

For the TCN architecture, as presented in the paper, the distance functions involving the
L1-Norm consistently achieve the best results.

Model CNN FCN TCN

Batch Size Gradient Loss Observation Target Observation Target Observation Target

1 Cosine + L1-Norm 0.0020.00 1.4e-070.00 3.3e-070.00 7.4e-080.00 0.0830.01 9.3e-080.00
Cosine + L2-Norm 8.9e-040.00 1.4e-070.00 2.8e-070.00 7.4e-080.00 0.2900.17 9.3e-080.00
Cosine 0.0050.00 1.4e-070.00 0.0040.00 7.4e-080.00 0.3770.19 9.3e-080.00
Euclidean 0.0020.00 1.4e-070.00 7.7e-070.00 7.4e-080.00 0.2360.05 9.3e-080.00
L1 0.0020.00 1.4e-070.00 2.0e-070.00 7.4e-080.00 0.0810.03 9.3e-080.00

2 Cosine + L1-Norm 0.1670.09 0.4640.10 0.1500.06 0.4330.08 0.3620.14 0.0530.04
Cosine + L2-Norm 0.1700.09 0.4640.10 0.1360.04 0.3680.02 0.6280.24 0.1190.03
Cosine 0.1700.09 0.4550.09 0.1670.08 0.4620.11 0.6190.18 0.6300.40
Euclidean 0.1690.09 0.4670.10 0.1600.08 0.4840.09 0.6290.32 0.6130.40
L1 0.1670.09 0.4640.10 0.1510.06 0.4360.09 0.4710.08 0.0950.06

4 Cosine + L1-Norm 0.2060.06 0.5950.10 0.2660.10 0.5570.08 0.6470.11 0.2610.17
Cosine + L2-Norm 0.2070.06 0.5930.10 0.2330.11 0.5150.07 0.7150.16 0.9010.20
Cosine 0.2070.06 0.5530.06 0.2710.12 0.5800.04 0.7380.18 0.8180.33
Euclidean 0.2050.06 0.5980.10 0.2530.09 0.5770.09 0.7420.16 0.8110.31
L1 0.2060.06 0.5940.10 0.2640.10 0.5570.08 0.5540.11 0.1310.10

Table 4-1: Gradient distance function comparison on Electricity 370 (seeds 10, 43, 28)

Model CNN FCN TCN

Batch Size Gradient Loss Observation Target Observation Target Observation Target

1 Cosine + L1-Norm 0.0290.01 2.3e-060.00 1.3e-050.00 1.6e-060.00 0.2120.03 2.3e-060.00
Cosine + L2-Norm 0.0050.00 2.3e-060.00 2.1e-050.00 1.6e-060.00 0.4810.30 2.3e-060.00
Cosine 0.1020.04 2.3e-060.00 0.0830.02 1.6e-060.00 0.8600.56 2.3e-060.00
Euclidean 0.0640.02 2.3e-060.00 3.8e-050.00 1.6e-060.00 0.7830.49 2.3e-060.00
L1 0.0280.01 2.3e-060.00 1.3e-050.00 1.6e-060.00 0.2080.14 2.3e-060.00

2 Cosine + L1-Norm 0.3580.07 0.6730.04 0.2480.10 0.6680.07 0.3010.20 0.2610.29
Cosine + L2-Norm 0.3580.07 0.7510.04 0.2340.13 0.7060.13 0.8160.36 0.6020.46
Cosine 0.3280.06 0.9570.10 0.3010.10 0.9500.04 1.0490.25 0.9200.33
Euclidean 0.3520.06 1.0980.06 0.3010.08 1.0880.04 0.8690.43 0.8600.36
L1 0.3560.07 0.6730.04 0.2650.11 0.6360.05 0.2780.20 0.2440.27

4 Cosine + L1-Norm 0.5570.06 1.0290.06 0.4270.09 1.0190.05 0.8250.35 0.5160.40
Cosine + L2-Norm 0.5760.06 1.0950.04 0.5210.07 1.0790.07 1.2310.12 0.8810.25
Cosine 0.5950.01 1.1840.01 0.4610.09 1.0930.10 1.1320.34 0.9330.43
Euclidean 0.5480.06 1.4270.07 0.4960.05 1.2730.07 1.2640.16 1.0400.26
L1 0.5650.05 1.0320.05 0.4280.09 1.0140.05 0.7770.34 0.5390.45

Table 4-2: Gradient distance function comparison on London Smartmeter for different batch
sizes and model architectures (seeds 10, 43, 28)
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4-4-2 Quantile Predictions for Batch Size of 1

In the paper, the quantiles in Figure 7 are predicted based on a batch of 4 samples. In the
following experiment, we train the gradient inversion model to predict the quantiles of a single
batched sample for different model architectures.

In Figure 4-22, the quantiles are plotted, and we can clearly see whether the inversion model
can capture the relationship between gradients and observations or targets. For all models
with an FCN head, the model is able to predict the quantiles with relatively high detail for
the target. However, the model is unable to capture this for the GRU-2-GRU architecture on
the London Smartmeter and Proprietary datasets, indicating that the loss of information or
many-to-one mapping is not learnable here. However, it can learn a rough idea of what the
targets look like for the Electricity 370 dataset. Furthermore, the observation quantiles for
all but the FCN architecture do not encapsulate the sequence completely, indicating that the
relationship of gradients to observations is more difficult to learn for these architectures.
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Figure 4-22: Gradient Inversion Model Quantile Predictions for B = 1. Datasets: Electricity
370, London Smartmeter, and Proprietary, (seed 10)
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4-4-3 Pinball or Quantile Bounds Regularization

The quantile predictions can be used in at least 2 ways, of which 1 we present in the paper
as the Quantile Bounds Regularization (Lbounds). Another method is by using the Pinball
loss as regularization (Lpinball). In Table 4-3 the results of both regularization techniques are
presented. The columns represent the regularization strength on the observations (λobs), and
the columns present the regularization strength on the targets (λtar). The Loss represents
either using Equation 5 or Equation 11 in the paper, respectively as Pinball loss or Quantile
Bounds Loss. The results here for the Quantile Bounds are the same as in the paper and the
best are λobs = 1 and λtar = 0.1.

λobs 0 0.1 0.5 1

λtar Loss Observation Target Observation Target Observation Target Observation Target

0 Lpinball 0.5150.11 0.0680.05 0.5290.11 0.1050.05 0.2400.06 0.0330.00 0.2070.08 0.0630.06
Lbounds 0.5150.11 0.0680.05 0.5040.12 0.1850.11 0.2070.08 0.0610.06 0.2030.05 0.0600.03

0.1 Lpinball 0.4700.23 0.0170.01 0.5530.09 0.1960.11 0.3470.08 0.0540.02 0.2580.10 0.0470.00
Lbounds 0.5670.17 0.0480.01 0.4490.14 0.1050.05 0.2840.02 0.2370.11 0.1440.03 0.0240.02

0.5 Lpinball 0.4680.18 0.0230.00 0.5470.15 0.0650.02 0.2770.17 0.0910.08 0.2240.06 0.0470.01
Lbounds 0.5680.18 0.0670.02 0.3680.21 0.0260.02 0.2590.08 0.1120.08 0.2070.04 0.1310.06

1 Lpinball 0.5980.13 0.1180.06 0.4650.09 0.0700.05 0.3310.13 0.0530.02 0.2450.05 0.0710.04
Lbounds 0.5140.07 0.0530.03 0.5220.22 0.3420.26 0.2260.12 0.0400.03 0.1960.04 0.0770.03

Table 4-3: TS-Inverse: Comparison of Experiment between Quantile bounds vs Pinball Loss as
regularization mechanism. Grid search for the hyperparameter values. Model: TCN, Dataset:
Electricity 370, Batch size B = 4, (seeds 10 and 43)
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4-4-4 Pure Periodicity Regularization

In the paper, we evaluate the combined effects of the regularization techniques on the TCN
architecture. In the following experiments, we present the results of only using the periodicity
regularization for the TCN. Furthermore, periodicity as a regularization technique requires
fine-tuning the hyperparameter. Table Table 4-4 contains the sMAPE results for the L1-Norm
version with different λP hyperparameter values, and in Figure 4-23, the reconstructions of
the best values are presented. For completeness, Figure 4-24 shows all of the reconstruction
results. This figure is quite large but contains the differences between L1 and L2 based
reconstructions. The L1 version looked visually better able to regularize the data as it is
deemed more robust to outliers, which is possible in this periodicity regularization, as the
observations and targets can have different energy load peaks.

Electricity 370 (43)
Sample 0

Sample 1

Sample 2

Sample 3

0

Sample 0

Sample 1

Sample 2

Sample 3

2

London Smartmeter (10)
Sample 0

Sample 1

Sample 2

Sample 3

0

Sample 0

Sample 1

Sample 2

Sample 3

0.
5

Figure 4-23: TS-Inverse: The best periodicity regularization λP compared to no regularization.
Rows are λP and Columns the dataset. Model: TCN, Datasets: Electricity 370, London Smart-
meter, Batch size B = 4, (seeds 10 and 43).

Dataset Elec. 370 London Smart. Proprietary

λP Observation Target Observation Target Observation Target

0 0.5150.11 0.0680.05 0.6030.29 0.2500.22 0.9560.12 0.1970.03
0.1 0.4000.04 0.1460.12 0.8380.19 0.6200.22 0.6700.02 0.3690.07
0.5 0.3060.16 0.2190.18 0.4670.18 0.2500.21 0.3960.02 0.2140.03
1 0.3550.16 0.3750.13 0.7140.24 0.5380.43 0.3720.01 0.1670.07
2 0.1630.05 0.0630.05 0.6580.06 0.2890.14 0.4520.02 0.1930.01

Table 4-4: TS-Inverse: Comparing λP for periodicity regularization. Model: TCN, Datasets:
Electricity 370, London Smartmeter, and Proprietary, Batch size B = 4, (seeds 10 and 43)
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Figure 4-24: TS-Inverse: Reconstructions with Periodicity Regularization. The columns repre-
sent different λperiodicity hyperparameter values and the rows represent the loss (L1 or L2). Model:
TCN, Datasets: Electricity 370, London Smartmeter, and Proprietary, Batch size B = 4, (seeds
10 and 43)
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4-4-5 Pure Trend Regularization

We also evaluated the pure trend regularization technique on the TCN architecture. The
trend regularization also requires finetuning the hyperparameter values (λT ). Table Table 4-5
presents the sMAPE results with different hyperparameter values. The case of λT =0 is the
same as λP = 0 in Figure 4-23. In Figure 4-25 are the best settings presented for the Electricity
370 and London Smartmeter datasets. For the Electricity 370 dataset we choose λT = 2
because it had the lowest Observation metric, and the targets seemed to be reconstructed
reasonably well visually. However, as one can spot in Figure 4-25, the regularization is so
strong that the reconstruction converges to a straightly in the Observations. All of the trend
regularized reconstructions are presented in Figure 4-26.

Electricity 370 (43)
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2

London Smartmeter (10)
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Sample 3

0.
5

Figure 4-25: TS-Inverse: the best trend regularization λT . Model: TCN, Datasets: Electricity
370, London Smartmeter, and Proprietary, Batch size B = 4, (seeds 10 and 43)

Dataset Elec. 370 London Smart. Proprietary

λT Observation Target Observation Target Observation Target

0 0.5150.11 0.0680.05 0.6030.29 0.2500.22 0.9560.12 0.1970.03
0.1 0.5050.15 0.0540.02 0.8530.08 0.4160.06 0.9550.02 0.4430.27
0.5 0.3920.08 0.1520.12 0.4950.21 0.2470.23 0.7360.10 0.4820.30
1 0.4190.17 0.3240.21 0.6850.04 0.5680.14 0.4750.12 0.1450.02
2 0.2810.05 0.1240.06 0.6330.01 0.2500.21 0.5150.06 0.2420.07

Table 4-5: TS-Inverse: Comparing λT for trend regularization. Model: TCN, Datasets: Elec-
tricity 370, London Smartmeter, and Proprietary, Batch size B = 4, (seeds 10 and 43)
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Figure 4-26: TS-Inverse: Reconstructions with Trend Regularization. The columns represent
different λtrend hyperparameter values and the rows represent the loss (L1 or L2). Model: TCN,
Datasets: Electricity 370, London Smartmeter, and Proprietary, Batch size B = 4, (seeds 10 and
43)
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Chapter 5

Conclusion

This thesis investigates the privacy risks associated with federated learning for time series fore-
casting models, focusing specifically on gradient inversion attacks. The study evaluates the
effectiveness of existing gradient on time series forecasting models, proposes tailored improve-
ments for these attacks, and examines the vulnerability of forecasting model architectures on
these attacks.

RQ1: How effective are existing gradient inversion attacks for federated time se-
ries forecasting situations: The empirical analysis reveals that current gradient inversion
attacks, primarily designed for image and text classification, struggle with time series fore-
casting. The difficulties stem from several factors: forecasting uses regression losses like mean
squared error instead of cross-entropy loss. Consequently, existing methods to analytically
reconstruct targets fail in time series scenarios. Additionally, time series forecasting attackers
aim to reconstruct both observations and targets, unlike in classification tasks where only
inputs are private. The analysis has shown that gradient inversion attacks using Cosine Simi-
larity loss as a gradient distance function cannot accurately reconstruct targets. Furthermore,
different model architectures in time series forecasting reduce the effectiveness of gradient in-
version attacks, as elaborated in RQ3. All in all, these key factors make it more difficult for
the existing gradient inversion attacks to reconstruct the private time series data.

RQ2: How can gradient inversion attacks be tailored to improve the reconstruc-
tion of time series data: To address the challenges in federated time series forecasting
from an attacker’s perspective, we introduce TS-Inverse, a novel gradient inversion attack for
time series forecasting. TS-Inverse features three components: a gradient inversion model
mapping gradients to time series quantiles, a loss function combining the L1 norm with pe-
riodicity and trend regularization, and the use of quantiles as additional bounds during the
inversion optimization.

Additionally, a one-shot analytical technique is proposed for reconstructing targets in regres-
sion tasks optimized with the Mean Squared Error loss for a batch size of one. Evaluation
results show that TS-Inverse achieves a 2x-10x reduction in reconstruction error compared to
existing methods.
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RQ3: How does the architecture of a forecasting model influence its vulnerability
to gradient inversion attacks: The research examines how different time series forecast-
ing model architectures, such as Gated Recurrent Units (GRU) and Temporal Convolutional
Networks (TCN), affect vulnerability to gradient inversion attacks. Findings indicate that
recurrent models like GRUs are more privacy-preserving than non-recurrent models due to
their design, which selectively forgets and remembers information. Furthermore, the many-
to-one mapping from inputs to gradients means each gradient reflects the combined influence
of multiple past inputs, complicating the tracing of gradients back to specific inputs, partic-
ularly in the GRU-2-GRU architecture. The introduction of dropout mechanisms in TCNs
also challenges gradient inversion due to the probabilistic loss of information. However, incor-
porating this probabilistic nature into the optimization process can effectively mitigate this
issue.
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