
Multi Target XGBoost
Cash Flow Prediction

An Efficient Machine Learning Algorithm
For Future Liability Projections

by

Sebastiaan van Schagen
to obtain the degree of Master of Science at the Delft University of Technology, to be defended

publicly on Wednesday July 26, 2023 at 10:30 AM.

Supervisor (TUDelft): Dr. Ir. L.E. Meester
Supervisor (Triple A): M. Visser MSc actuaris AG
Chair of department: Prof. Dr. A. Papapantoleon
Thesis committee member: Dr. Ir. J. Bierkens
Faculty: EEMCS
Master programme: Applied Mathematics
Specialisation: Financial Engineering
Affiliation: Triple A Risk Finance

An electronic version of this thesis is available at https://repository.tudelft.nl.

https://www.tudelft.nl/en/eemcs
https://www.aaa-riskfinance.nl/
https://repository.tudelft.nl
https://www.aaa-riskfinance.nl/
https://www.tudelft.nl/

Abstract
Insurers are required to have buffers to be able to meet financial obligations that result from their
portfolios, which are determined using a cash flow model. The input of such a cash flow model
consists among of things, of two mortality tables and the portfolio of an insurer. Mortality rates
are simulated using the Lee-Carter model. These simulated rates are in turn used to simulate the
cash flow corresponding to a portfolio. This results in one possibility of incoming and outgoing
money over a period of time. Lots of simulations are required to get a reliable estimate for the
future cash flow which is (depending on the number of simulations) computationally heavy and
therefore time consuming. The calculation time is decreased by applying an extreme gradient
boosting (XGBoost) machine learning method in which cash flows are considered target variables
and the mortality tables are considered features of the model. The trained XGBoost model can
predict the cash flows based on the mortality tables. The standard XGBoost model is extended to
a multi-target regression model which is able to predict multiple target variables at once. This
XGBoost model reduces the computation time and ensures that 99.5% of the predictions deviates
within either 1% or 0.5% of the observed values. XGBoost gives a good method of determining a
reliable estimate of the future cash flow.

Keywords: Cash flow simulation, Lee-Carter model, Extreme Gradient Boosting, Multi-Target Regression,
Solvency II, Machine Learning

iii

Preface
The past year I have authored this thesis as a final assignment in obtaining my master’s degree in
applied mathematics at the Technical University of Delft. This thesis is written in collaboration
with Triple A - Risk Finance, for which I am grateful. A lot of people supported me during this
period. Firstly, I want to thank my daily supervisor Ludolf Meester for the guidance during this
project. The meetings helped me to get more insight in the general approach of a thesis project as
well as more subject oriented insights. Secondly, I want to thank Martĳn Visser for accompanying
me on this adventure. The meetings were always useful and gave me better understanding about
the problem and the general financial world as well as machine learning. I would like to thank
Antonis Papapantoleon and Joris Bierkens as well for taking part in my thesis committee.

I would like to thank colleagues at Triple A - Risk Finance as well for always being understanding
and helpful. Lastly, I want to thank my friends and family. They did motivate me during this
project, on top of that they proofread the thesis at multiple occasions and helped me to improve
the thesis. Even though some did not have any affinity with the financial world, machine learning
or mathematics.

Sebastiaan van Schagen
July 2023, Delft

v

Contents

1 Introduction 3

2 Cash Flow Model 6
2.1 Mortality Table . 6
2.2 Solvency II . 7
2.3 The Standard Formula . 7

2.3.1 Stress Tests . 7
2.3.2 Aggregation of SCRs . 8

3 Lee-Carter Forecasting 9
3.1 ARIMA Model . 12

3.1.1 Prediction Interval . 13
3.2 Uncertainties of k𝑡 . 14

3.2.1 Random Walk With Drift Uncertainties . 14
3.2.2 ARIMA Model Uncertainties . 15
3.2.3 Consequences of Uncertainties . 15

4 Machine Learning 17
4.1 Regression Trees . 17

4.1.1 Creating a Regression Tree . 17
4.2 Gradient Boosting . 19
4.3 Extreme Gradient Boosting . 21

4.3.1 Split Finding and Parallelisation . 23
4.4 Multi-Target Extreme Gradient Boosting . 24
4.5 Performance Metrics and Loss Function . 28

4.5.1 Multi Output Regression . 29

5 Results 30
5.1 Lee-Carter Forecasting . 30

5.1.1 Calibrating the Lee-Carter Model on the Dutch Population 30
5.1.2 Forecasting of Mortality Trends . 33

5.2 Extreme Gradient Boosting . 35
5.2.1 Performance Metrics and Loss Function . 35
5.2.2 Parameter Calibration of XGBoost . 36
5.2.3 Individual XGBoost Models . 37
5.2.4 Combined XGBoost Model . 42

5.3 Model Comparison . 46
5.4 Extending The Model . 46

5.4.1 Different Portfolios . 47
5.4.2 Larger Training Set . 48
5.4.3 GPU Calculations . 48

5.5 Performance on Optimal Size . 49

6 Discussion 51
6.1 Recommendations for future research . 52

References 54

A Code Appendices 56
A.1 R code generating mortality tables . 56

vii

Contents viii

A.2 Python Code Standard XGBoost . 59
A.3 Python code Multi Output . 61

B Data Appendices 65
B.1 Mortality data . 65

Symbols and Abbreviations

Table 1: Symbols, abbreviations, and definitions.

𝑋 Highest age taken into account in the projected mortality tables.
𝑇 Last year taken into account in calibrating the Lee-Carter model.
𝑀𝑥,𝑡 Mortality rate of a person of age 𝑥 in year 𝑡 who dies during that year.
M Mortality table of which 𝑀𝑥,𝑡 are the elements. This matrix consists of 𝑥max + 1

rows and 𝑡max − 𝑡min columns.
CF The difference between incoming and outgoing liquid assets of a company known

as the cash flow.
BEL Best estimate liability under Solvency II representing the expected discounted

cash flow with the risk-free interest rate.
SCR Solvency capital requirement under Solvency II representing the maximum

amount expected to be lost over a one-year time horizon with 99.5% accuracy.
Solvency II has defined SCRs for different kind of risks.

RM Risk margin under Solvency II representing the potential costs of transferring
insurance obligations to a third parties in case of default. The RM is calculated
using the SCR.

Corr𝑖 , 𝑗 Correlation between the SCRs of different subgroup 𝑖 and 𝑗.
BSCR Basic solvency capital requirement under Solvency II represents the aggregated

SCRs of all subgroups.
CoC Cost of capital gives the costs of funds of a company. The CoC is generally taken

as six percent.
𝑎𝑥 Average logarithmic mortality rate for age 𝑥 used in the Lee-Carter model.
a A vector of length 𝑥max + 1 consisting of average logarithmic mortality rates 𝑎𝑥 .
𝑏𝑥 Relative mortality at age 𝑥. This value influences the mortality trend (k) according

to whether change at a given age is faster or slower than the original mortality
trend.

b Vector of length 𝑥max + 1 consisting of the relative mortality 𝑏𝑥
𝑘𝑡 Mortality trend in year 𝑡 used in the Lee-Carter model. The mortality trends

reflect the changes in in morality rates over the years.
k Vector of length 𝑡max − 𝑡min with elements k𝑡 .
𝜖𝑥,𝑡 Error term of the Lee-Carter model with zero mean and finite variance for age 𝑥

and year 𝑡
U Matrix consisting of left eigenvectors of a matrix AA𝑇 obtained using a singular

value decomposition A = UΣV𝑇 .
U𝑖 The 𝑖-th left eigenvector given as the 𝑖-th column of U.

Symbol Description

Continued on next page

1

Contents 2

Table 1: Symbols, abbreviations, and definitions. (Continued)

Σ Diagonal matrix consisting of eigenvalues of of a matrix AA𝑇 obtained using a
singular value decomposition A = UΣV𝑇 .

𝜎𝑖 𝑖 singular value given by the 𝑖-th diagonal element of matrix Σ
V Matrix consisting of right eigenvectors of a matrix AA𝑇 obtained using a singular

value decomposition A = UΣV𝑇 .
V𝑖 The 𝑖-th right eigenvector given as the 𝑖-th column of V.
𝑋𝑡 Observation of a time series at time 𝑡.
𝑟𝑡 Residual of observation at time 𝑡
ℎ Sets the length of a time series forecast and is known as a lag of ℎ.
𝜀𝑡 Error term used in a time series model given as white noise.
𝑝 Order of auto-regressive terms in AR, ARMA and ARIMA models.
𝑑 Degree of differencing in ARIMA model.
𝑞 Order of moving average terms in MA, ARMA and ARIMA models.
𝜆 Regularisation parameter withing gradient boosting which reduces the predic-

tion’s sensitivity to individual observations.
𝛾 Leaves of a tree which have a gain smaller than this value are removed from a

tree. This parameter is known as the pruning parameter.
𝜂 Gives the importance of every tree for a given an additive model. Every tree is

multiplied with 𝜂 and added together to form one final model. This parameter is
known as the learning parameter.

�̂�𝑖 Prediction of target variable 𝑦𝑖 given by a machine learning method.
ŷ𝑖 Prediction of target vector y𝑖 given by a multi-target machine learning method.

Symbol Description

1
Introduction

Most people are insured for several reasons, some insurances are required by law, while others are
on a voluntary basis. The insured person is known as the policy holder. An example of such an
insurance is a live insurance in which the insurer pays a predefined amount to relatives of the
policy holder when the policy holder dies within a certain period. A different kind of insurance can
have opposite working. For example, a policy holder only gets money if they survive past a certain
age. In both examples pay policy holders a premium for this service. The determination of this
premium can however be difficult as one works with future events which are not known at current
time like the death of the policy holder. Insurers are required to have sufficient buffers to be able to
meet financial obligations that result from their portfolios. To fulfil all future capital requirements,
measures of the future financial situation need to be made. One of the measures consists of
the discounted incoming cash flow over a given time horizon in comparison to the outstanding
liabilities over the same period of time, known as the liability cash flow. The calculation of the cash
flow is changed since the introduction of Solvency II in 2016 (DNB, 2022). Solvency II regulations
offer two options to determine the cash flow. The first option is prescribed by Solvency II and is
denoted as the standard formula. As an alternative, insurers are allowed to use a self-created
internal model. All internal models need to be approved by the regulating party and need to fulfil
requirements given by the Solvency II regulations. Both modelling approaches estimate the same
risk measures. The first measure is given as the expected discounted cash flow and is known as
the best estimate liability (BEL). The second measure of risk is taken as the maximum amount
expected to be lost over a one-year time horizon with 99.5% accuracy, known as the 99.5% one-year
value at risk (VaR). This measure of risk is under Solvency II known as the risk margin.

All important data of policy holders is combined into one or multiple portfolio’s. A stan-
dard portfolio consists of characteristics such as age, gender, premium, payments, sum assured
and more. All of these influence the cash flow in a way. The portfolio’s can be created specifically
for one type of insurance or they can consist of several types of insurances. Independent of the
choice of model, one needs a portfolio as well as the mortality rates to determine the cash flow.
A portfolio is only known up till the present day. Most portfolio’s do not change that much in
a small time period and can be taken as time independent for a small horizon. Similarly, the
mortality tables are not known for the future and need to be simulated in order to get a mortality
rates corresponding to a future time. Mortality rates corresponding to different ages and years are
combined into gender specific mortality tables. A simulated male and female mortality table in
combination with the current portfolio can be used to determine one possible future liability cash
flow. Instead of only using one simulation, multiple simulations can be used to get more insight
in the possible situations and thus in the possible future cash flows. This way results in more
information about the volatility of the future cash flow. To get a reliable estimate of the future cash
flow, a lot of simulated mortality tables are needed.

3

4

Lee and Carter have created a forecasting model applicable for mortality rates which is mostly
used in the financial world (Lee & Carter, 1992). It is an easy to understand model consisting of
only three vectors. The Lee-Carter model is calibrated on historical data and uses an autoregressive
integrated moving average (ARIMA) model to forecast the mortality trend. Based on this forecast
trend, mortality tables for future time periods can be simulated. These simulated tables can in
turn be used to determine possible future cash flows. Doing this consecutively results in lots of
possible cash flows and a reliable estimate of the cash flow. On top of this, a confidence interval
for the estimate can be determined. Although the Lee-Carter model is often used in mortality
table simulation, it does have some shortcomings. For example, it assumes a fixed mortality trend,
while in some cases a variable mortality trend is preferred.

A second method of forecasting is using a model which assumes a stochastic mortality trend.
Börger created such a model based on the Lee-Carter model (Börger, 2010). The main advantage
of this method is that it incorporates dependencies between different age groups. It is however
more complicated to interpret and to forecast.

Independent of the forecasting method, it is a computationally heavy process to determine
the cash flow for all simulated tables. Determining only one possible cash flow using two tables is
already computationally heavy. As an example, for a decently sized portfolio consisting of one
hundred thousand policy holders it could take tens of minutes to determine the future cash flow.
Doing this for all simulated tables, one could end up with days of calculations. By considering less
simulated tables, the calculation time is reduced, while the accuracy of the estimate decreases.
This approach is nowadays used by some insurers, in which sometimes only one mortality table
is considered. This does however not give a good estimate of the real future liability cash flow.
Other insurers do, however, consider a large set of simulated mortality tables. Insurers have to
deal with this complexity–accuracy trade-off.

Another option, which is not as active in the market, is applying machine learning. Instead
of calculating the cash flow of all the simulations, only a smaller set of simulated tables needs to
be used as input for the cash flow model. These simulated tables and their corresponding cash
flow values can in turn be used as a training set for a machine learning algorithm. The trained
machine learning model gives predictions for the remaining forecast mortality tables. Although
this method is not used as often in the financial world, it might result in a less time-consuming
calculation. Recently, there has been some research on this modeling method. Castellani et al.
discuss the use of machine learning for Solvency II (Castellani et al., 2018). Fiore et al. focus only
on the tuning of a neural network to determine the cash flows (Fiore et al., 2018). Both articles
show the possibilities of machine learning in decreasing the calculation time while keeping a
decent accuracy.

There are a lot of possible machine learning algorithms to consider. A neural neural network
as used by Fiore et al. is difficult to understand, while a simple algorithm might result in worse
performance. A regression tree is an example of such a simple algorithm and is known as a weak
learner. The performance of a regression tree is not sufficient for most cases. Multiple weak
learners can be combined into one model which is known as ensemble learning. Extreme gradient
boosting (XGBoost) is such a ensemble learning model which combines multiple regression trees
to one well performing model. On top of this, XGBoost is optimised for large data sets with a lot
of characteristics. Besides, XGBoost uses a lot of parallel calculations in comparison to standard
gradient boosting, further decreasing the computation time. Since the mortality tables consist of
lots of data, XGBoost is a good candidate to predict the future cash flow.

Performance of a machine learning method is normally determined using a metric such as
the root mean squared error (RMSE) or just by looking at the residuals. The correctness of this
model is tested using prescribed requirements. By decreasing the computation time significantly,
the machine learning prediction is allowed to deviate a small percentage in comparison to the real
value. The usage of the machine learning approximation is roughly divided into two parts. On the
one hand, it is used as a management tool to get a value of the business performance. Based on this

5

value can insurers make changes in business operations. As this is mainly used for quick changes,
it is not that strict. It is required that the prediction deviates within 1% or less of the real value in
99.5% of the cases. On the other hand, the XGBoost approach can used as reporting tool. Every
insurer has to keep an overview of their future stability including the cash flows. As this is an official
report, the prediction must be more accurate than in the management case. For reporting purposes,
it is required that in 99.5% of the cases, the prediction deviates within 0.5% of the real value. Even
though it is only a difference of 0.5%, one should not neglect the impact as will be observed. It is
required that in both cases the computation time is reduced by at least a factor of two. The most
time is lost in creating the training data as determining the cash flow for a lot of mortality tables is
time consuming. Hence, by minimizing the training set, while still satisfying the requirements,
a new method of estimating the future liability cash flow is defined. To model and test this is a
standard portfolio consisting of one hundred thousand Dutch policyholder used. This portfolio
consists of different kind of life insurance products such as endowment, term life and whole life
insurance. Ages of policy holders range between 0 and 110. The man to woman ratio is almost 1 to 1.

The possibilities of using XGBoost as a method to determine the future liability cash flow
are investigated in this research. First, a short introduction of the cash flow model is given, as
well as mortality tables, in Chapter 2. Second, the Lee-Carter forecasting model is investigated in
Chapter 3. In which the design of the model as well as the uncertainties concerning the model are
discussed. This is followed by multiple machine learning algorithms in Chapter 4. In this chapter
is a new XGBoost method defined which allows one XGBoost model to predict multiple values at
once. Based on the Lee-Carter model and the XGBoost model, results are generated in Chapter 5.
At last, a conclusion as well as recommendations for future research are given in Chapter 6.

2
Cash Flow Model

Cash flow models are used to forecast future cash positions, which is done by comparing expected
future incoming and outgoing cash. It creates a measure of the solvency of the business. By
estimating the future cash flow, business can change business plans to optimize solvency of the
business. If there is any uncertainty or risk involved in the incoming and outgoing cash, one needs
to consider multiple scenario’s to ensure a reliable estimate of the future cash position.

2.1. Mortality Table
Insurers deal with multiple uncertainties while valuing life insurances. One of these uncertainties
is the probability of death of the policyholder. The probability of death, known as the mortality
rate, of past years can be estimated using population data. The ratio between past population
deaths and population size for a specific age 𝑥 and a given year 𝑡 is known as the observed
mortality rate. These mortality rates are denoted by 𝑞𝑥,𝑡 . Doing so for every combination of age
and year, one obtains a mortality table. An example of such a morality table is given in Table 2.1.
In the mortality table, the probability of death of a policyholder of age 30 in year 2000 is given by:

𝑀30,2000 = P(𝑥 : 𝑥 is of age 30 in year 2000 and dies during that year) = 𝑞30,2000.

Both male and female have their own corresponding mortality table.

Year
1900 1901 . . . 2018 2019

A
ge

0 𝑀0,1900 𝑀0,1901 . . . 𝑀0,2018 𝑀0,2019
1 𝑀1,1900 𝑀1,1901 . . . 𝑀1,2018 𝑀1,2019
...

...
...

. . .
...

...
119 𝑀119,1900 𝑀119,1901 . . . 𝑀119,2018 𝑀119,2019
120 𝑀120,1900 𝑀120,1901 . . . 𝑀120,2018 𝑀120,2019

Table 2.1: An overview of a mortality table with ages varying from 0 to 120 and years varying between 1900 and 2019.
𝑀𝑥,𝑡 denotes the mortality rate of someone at age 𝑥 in year 𝑡.

Future population deaths and population size are unknown and need to be approximated or
simulated. The mortality rates are forecast using a forecasting method which simulates possible
mortality rates. The Lee-Carter method is such a forecasting method which is often used in the
insurance world. Forecasting with use of the Lee-Carter model is shown in Chapter 3.

6

2.2. Solvency II 7

2.2. Solvency II
All insurers have exposure to risk based on their policyholders. Life insurers have to deal with
deaths of the policyholders. A death results in a change of the cash flow, which in turn has a
(slight) impact on the financial situation of the insurer. Death of the policyholder in a life product
results in a negative cash flow, while the same death in a pension results in a positive cash flow.
Insurers are required to have sufficient buffers to be able to meet financial obligations that result
from their policy holders.

The insurers are required to have enough capital to ensure the payments to the policyholder. To
protect the insurers, regulatory parties have introduced a supervisory framework for the insurers.
The aim of this framework is to create a uniform way of classifying and quantifying risk across
all insurers of the European Union. In January 2016, the European Commission improved this
framework to the now used Solvency II framework (DNB, 2022).

One of the main parts of Solvency II is the capital requirement which give estimates of the
financial situation of an insurer. The first risk qualifying estimate under Solvency II is the expected
discounted cash flow, denoted as the best estimate liability (BEL). On top of this, insurers need to
have a buffer to overcome (extreme) losses. Solvency II requires the 99.5% confidence interval to
survive these losses over a one-year horizon, which is given as the 99.5% one-year value at risk
(VaR). This measure is denoted as the solvency capital requirement (SCR). In case of default, an
insurer should transfer the insurance obligations to third parties. The cost required to do so is
denoted as the risk margin (RM). Calculation of the RM is mostly based on aggregating multiple
SCRs.

Solvency II guidelines describe a method to determine the SCR called the standard formula.
Usage of the standard formula is not obligatory; insurers are free to create their own internal model.
Every internal model should be approved by the regulating authorities. The input of both kind of
models consists of data of all policyholders. This data is combined into a portfolio and consist
among others of age, gender, premium, and payment schedule. On top of this, future mortality
rates are needed. The mortality rates are given in the form of a male and female mortality table in
the format described in 2.1.

2.3. The Standard Formula
At the introduction of Solvency II, the European Commission created a standard method for
determining risk estimates. This method is known as the standard formula and determines the
SCR, and RM. The BEL can be calculated for a given combination of male and female mortality
table and portfolio. The SCR is on the other hand more complicated. One way of determining the
SCR is by simulating different scenarios. However, this becomes time consuming. To overcome
this and to simplify the estimation, the standard formula uses estimates of the 99.5% VaR. These
estimates are described as stress tests.

2.3.1. Stress Tests
The calculation of the SCR is divided into sub-groups. For every sub-group is a stress test defined
which can be used to get an estimation of the SCR. These stress tests correspond to the 99.5%
VaR if one uses simulations and are calibrated by the European Commission. The stress tests are
sensitive to changes and are updated from time to time (EIOPA, 2021).

The stress test is applied to the cash flow model and the stressed BEL is determined. The
calculation of the SCR is determined by taking the difference between the BEL of the unstressed
situation and the BEL of the stressed situations.

SCR𝑘 = BEL𝑘,Stressed − BEL𝑘,Unstressed (2.1)

Mortality tables play an important role in the sub-groups mortality, longevity, and catastrophe.
These SCR are most relevant for this report. The stress test for mortality reflects uncertainties in
deaths of the policy holders. It captures the risk more policyholders die during the projection than
expected. The European Insurance and Occupational Pensions Authority (EIOPA) has calibrated

2.3. The Standard Formula 8

this stress test as a permanent increase of mortality rates of ten percent (CEIOPS, 2009).

𝑞′𝑥 = 1.1 · 𝑞𝑥

Similarly, the stress test for sub-group longevity reflects uncertainties in mortality rates as well.
It captures the risk of more policyholders living longer than expected (CEIOPS, 2009). EIOPA has
calibrated this stress test as a permanent decrease of mortality rates with twenty percent.

𝑞′𝑥 = 0.8 · 𝑞𝑥

Lastly, the catastrophe risk is the risk of extreme death events which are not captured by the
mortality sub-group (CEIOPS, 2009). EIOPA has estimated the catastrophe stress test as in addition
of 0.0015 to the mortality rates, for the next twelve months.

𝑞′𝑥 = 𝑞𝑥 + 0.0015

2.3.2. Aggregation of SCRs
The individual determined SCRs are aggregated into one SCR of the parent group as given in
Equation 2.2. The aggregation is based on correlations between the sub-groups. Corr𝑘,𝑙 is given
as an advice of the Committee of European Insurance and Occupational Pensions Supervisors
(CEIOPS, 2010).

SCR =

√∑
𝑘,𝑙

Corr𝑘,𝑙 · SCR𝑘 · SCR𝑙 (2.2)

The SCRs of all risk groups are again aggregated to one value. This value is the Basis Solvency
Capital Requirement (BSCR). A prescribed correlation matrix is given by Solvency II, see Table 2.2.

i,j Market Default Life Health Non-life
Market 1 0,25 0,25 0,25 0,25
Default 0,25 1 0,25 0,25 0,5
Life 0,25 0,25 1 0,25 0
Health 0,25 0,25 0,25 1 0
Non-life 0,25 0,5 0 0 1

Table 2.2: Correlation coefficients of risk groups.

In the standard formula the BSCR is determined using Equation 2.2. In this equation, 𝑘 and 𝑙
represent the different risk group and is Corr𝑘,𝑙 given in Table 2.2. Besides the BSCR, insurers need
to determine the risk of loss originating from failed internal processes, personnel or from external
events. This risk is denoted as the operational risk. On top of this, the compensation of unexpected
losses as well as deferred taxes is required, in Solvency II known as the adjustment risk. (EIOPA,
2009). The sum of the BSCR, operational risk and adjustments forms the final SCR (Equation 2.3).

SCR = BSCR + Operational Risk + Adjustments (2.3)

The one-year RM is determined from the BSCR, as in Equation 2.4. It is defined as the product
of the discounted BSCR (by risk free interest rate 𝑟) and the cost of capital (CoC). The CoC is
generally taken as six percent.

RM = CoC · BSCR
1 + 𝑟 (2.4)

In most instances, a larger time horizon is desirable. The BSCR can be determined for a larger time
horizon (𝑡) BSCR(𝑡). Doing so and altering Equation 2.4, the multiple year RM can be determined.

3
Lee-Carter Forecasting

Forecasting of mortality tables can be done in multiple ways. One option is using the Lee-Carter
model introduced in 1992 (Lee & Carter, 1992). This model is mostly used in forecasting mortality
tables due to its simplicity of calibrating and choice model parameters. Over the years, multiple
extensions for this model have been created such as the Börger model (Börger, 2010).

The Lee-Carter model determines the mortality rate (M𝑥,𝑡) of age 𝑥 in year 𝑡 with use of
Equation 3.1. Age 𝑥 ranges from zero to some predefined 𝑋, similar, year 𝑡 ranges from one to
some predefined 𝑇. Lee and Carter define an error term 𝜖𝑥,𝑡 with zero expectation and variance
𝜎2. All error terms are independent identical normally distributed 𝜖𝑥,𝑡

𝑖𝑖𝑑∼ 𝒩(0, 𝜎2)

ln(𝑀𝑥,𝑡) = 𝑎𝑥 + 𝑏𝑥 𝑘𝑡 + 𝜖𝑥,𝑡 𝑥 ∈ [0, 𝑋] and 𝑡 ∈ [1, 𝑇] (3.1)

Suppose a solution to Equation 3.1 is given by the combination of vectors a, b, and k. As one
observes, for any scalar 𝑐, the combination a, 𝑐 ·b and 1

𝑐k forms a solution as well. Similarly, a− 𝑐 ·b,
b and k + 𝑐 forms a solution as well. Hence, to ensure uniqueness of the solution, Constraints 3.2a
and 3.2b are introduced (Lee & Carter, 1992).

𝑋∑
𝑥=0

𝑏𝑥 = 1 (3.2a)

𝑇∑
𝑡=1

𝑘𝑡 = 0 (3.2b)

These constraints make sure that the model has unique solutions. Let both combinations a1 , b1 and
k1 as well as a2 , b2 and k2 be solutions to the model. Then, one can show, that a1 = a2, b1 = b2 and
k1 = k2. The combination of the model function and constraints can be used to create equations for
a, b, and k. These equations are calibrated on historical data. First, a is determined by summing
Equation 3.1 over 𝑡 and using Constraint 3.2b. Doings so results in a function for a.

𝑇∑
𝑡=1

ln(𝑀𝑥,𝑡) =
𝑇∑
𝑡=1

(𝑎𝑥 + 𝑏𝑥 𝑘𝑡 + 𝜖𝑥,𝑡)

= 𝑇𝑎𝑥 + 𝑏𝑥
𝑇∑
𝑡=1

𝑘𝑡

3.2𝑏
= 𝑇𝑎𝑥

9

10

Hence 𝑎𝑥 is taken as the average of ln(𝑀𝑥,𝑡) over time. These values can be determined directly
and are not dependent on uncertainties besides the standard inaccuracies of the historical data.

𝑎𝑥 =

∑𝑇
𝑡=1 ln (𝑀𝑥,𝑡)

𝑇
(3.3)

By subtracting every column of matrix M with vector a, a new matrix A is obtained as given in
Equation 3.4. This matrix can in turn be used to determine both b and k.

A =
©«

ln(M0,1) − a0 . . . ln(M0,𝑇) − a0
...

. . .
...

ln(M𝑋,1) − a𝑋 . . . ln(M𝑋,𝑇) − a𝑋

ª®®¬ (3.4)

By applying singular value decomposition (SVD) on real matrix A, matrix A can be written as
UΣV𝑇 . U is an (𝑋 + 1) × (𝑋 + 1) orthogonal matrix, V is an 𝑇 × 𝑇 orthogonal matrix and Σ is an
(𝑋 + 1) × 𝑇 diagonal matrix.

A =
(
u1 . . . u𝑋+1

) ©«
𝜎1 0 . . . 0

0 𝜎2
. . .

...
...

. . .
. . .

...

ª®®®¬
(
v1 . . . v𝑇

)𝑇
The Lee-Carter estimation of vectors k and b can be defined to be a least squares method. Eckart
and Young introduced a theorem of determining the best approximation, with a specific rank, of a
given matrix (Eckart & Young, 1936). This theorem states that the best approximation of rank 𝑝 is
given as the first 𝑝 components of the singular value decomposition. They proved that this method
works for the Frobenium norm. Mirsky later extended the theorem to the Eckart-Young-Mirsky
Theorem which is applicable for multiple norms (Mirsky, 1960). For this report, the spectral norm
is used. The definition of the spectral norm is given in Definition 1.

Definition 1 (Spectral Norm)
The spectral norm | | · | |2 of a real matrix A is given as the largest eigenvalue of A𝑇 × A or

| |A| |2 = 𝜎max(𝐴)

| |A| |2 = max |Ax|2
|x|2

The proof of Eckart-Young-Mirsky using the spectral norm is given in Theorem 1.

Theorem 1 (Eckart-Young-Mirsky (Mirsky, 1960))
Given real matrix A ∈ R𝑚×𝑛 with 𝑚 ≤ 𝑛 of rank 𝑟 with singular value decomposition

A = UΣV𝑇 =

𝑟∑
𝑖=1

u𝑖𝜎𝑖v𝑇𝑖 ,

the best rank 𝑝 approximation of 𝐴 in the spectral norm, | | · | |2 is given by

A𝑝 =

𝑝∑
𝑖=1

u𝑖𝜎𝑖v𝑇𝑖

11

Proof: Let A𝑝 be as given above and one can determine the spectral norm of the difference between the
real matrix and the rank 𝑝 approximation.

| |A − A𝑝 | |2 =

�����
����� 𝑟∑
𝑖=1

u𝑖𝜎𝑖v𝑇𝑖 −
𝑝∑
𝑖=1

u𝑖𝜎𝑖v𝑇𝑖

�����
�����
2

=

������
������ 𝑟∑
𝑖=𝑝+1

u𝑖𝜎𝑖v𝑇𝑖

������
������
2

=

������
������ 𝑟∑
𝑖=𝑝+1

U diag(0, . . . , 0, 𝜎𝑝+1 , . . . 𝜎𝑟) V𝑇

������
������
2

= 𝜎𝑝+1

All left to prove is the fact that matrix A𝑝 is the best approximation of rank 𝑝. To this end, let matrix
B ∈ R𝑚×𝑛 be a matrix of rank 𝑝. Let w be a vector of length one such that Bw = 0 and w ∈
span(v1 , . . . , v𝑝+1), then

| |A − B| |22 ≥ ||(A − B)w| |22
= | |Aw| |22
= (𝑤1𝜎1)2 + · · · + (𝑤𝑝+1𝜎𝑝+1)2

≥ 𝜎2
𝑝+1

Taking the square root at both sides implies | |A − B| |2 ≥ 𝜎𝑝+1. The lower limit is attained at matrix
A𝑝 , hence, one can conclude that matrix A𝑝 is the best rank 𝑝 matrix approximation of matrix A. □

The Lee-Carter model uses a rank one approximation of matrix A. Hence, by Eckart-Young-Mirsky
Theorem, the least square estimate for matrix A of rank one is given by

Â = u1𝜎1v𝑇1 . (3.5)

The vectors u1 and v1 are the first left and first right eigenvectors given by the first column of matrix
U and V, respectively. 𝜎1 is the largest singular value given by the first diagonal element in 𝜎.
Combining this with Equation 3.1, one can let b = 1∑𝑋

𝑥=0 𝑢1,𝑥
u1 and k =

∑𝑋
𝑥=0 (𝑢1,𝑥) 𝜎1v1. Constraint

3.2a is satisfied since the values are divided by the sum of the vector elements of U1. Similarly,
Constraint 3.2b is satisfied as well as is shown in Observation 1. With use of a forecasting method,
future values of k𝑡 will be determined.

Observation 1 (Elements of k sum to zero)
If k =

∑𝑋
𝑥=0 (𝑢1,𝑥) 𝜎1v1, then

∑𝑇
𝑡=1 𝑘𝑡 = 0. Both u1 and v1 are obtained from the SVD on matrix A.

Proof: Given matrix A as in Equation 3.4 whose rows sum up to one ∀𝑥 ∈ {1, . . . , 𝑋}∑𝑇
𝑡=1 𝐴𝑥,𝑡 = 0.

The SVD determines the right eigenvectors of A𝑇A. The (𝑖 , 𝑗)-th element of A𝑇A can be written as∑𝑋
𝑥=0 𝐴𝑥,𝑖𝐴𝑥,𝑗 . Then by summing over 𝑡, one obtains the column sum of A𝑇A as

𝑇∑
𝑡=1

𝑋∑
𝑥=0

𝐴𝑥,𝑖𝐴𝑥,𝑗 =

𝑇∑
𝑡=1

𝐴𝑥,𝑖

𝑋∑
𝑥=0

𝐴𝑥,𝑗 = 0.

3.1. ARIMA Model 12

Let v ∈ R𝑇 be an arbitrary vector and for readability set B = A𝑇A, then one obtains

𝑇∑
𝑡=1

𝑇∑
𝑠=1

𝐵𝑡 ,𝑠𝑣𝑠 =

𝑇∑
𝑠=1

𝑣𝑠

𝑇∑
𝑡=1

𝐵𝑡 ,𝑠 = 0.

Recall that an eigenvector is determined using Bv = 𝜆v. Summing over the elements of both sides, one
obtains

𝑇∑
𝑡=1

𝑇∑
𝑠=1

𝐵𝑡 ,𝑠𝑣𝑠 =

𝑇∑
𝑡=1

𝜆𝑣𝑡 .

The first term is equal to zero and 𝜆 is unequal to zero, hence
∑𝑇
𝑡=1 v𝑡 must be equal to zero. This

implies that
∑𝑇
𝑡=1 𝑘𝑡 = 0 for this choice of k. □

3.1. ARIMA Model
Future values of k𝑡 can be forecast using different forecasting techniques, which predict future
instances based on past observations. Let 𝑋𝑡−1 denote the observation of a time series at time 𝑡 − 1.
Based on past observations 𝑋0 , . . . , 𝑋𝑡−1 the value at time 𝑡, given by 𝑋𝑡 is estimated.

One of the most straightforward forecasting technique is assuming a random step from the
previous value. These steps are independent and identically distributed. This method is known as
a random walk, in which the mean of all predictions is equal to the last observation. A drift term,
which represents the average increase between time steps, can be introduced as an extension of
this model.

This model can be extended by considering more past observations. An autoregressive (AR)
model does this exactly. By defining a weight, 𝜙 for past observations and summing over these,
one obtains an estimate for the future value. An AR model incorporates a stochastic term, 𝜖𝑡 ,
representing the error between the estimate and the correct value at time 𝑡. The sequence of error
term has mean zero and has an autocorrelation of zero. It can be seen as a sequence of random
numbers which cannot be predicted. Such processes are called white noise. Combining everything,
Equation 3.6 is obtained, which is the general AR model of order 𝑝.

𝑋𝑡 =

𝑝∑
𝑖=1

𝜙𝑖𝑋𝑡−𝑖 + 𝜖𝑡 (3.6)

Instead of summing over some of the past observations, one could sum over the white noise
error terms as well. By multiplying the error terms with a weight, 𝜃 and combining these, an
estimate for the future error is determined. Based on the mean, 𝜇, of the past observations and the
future error estimate, predictions can be made, this model is known as the moving average model.
The general MA model of order 𝑞 is shown in Equation 3.7.

𝑋𝑡 = 𝜇 +
𝑞∑
𝑖=1

𝜃𝑖𝜖𝑡−1 + 𝜖𝑡 (3.7)

The AR and MA models can be combined into one model which incorporates both the weights
for the observations as well as for the error terms. This model is known as the autoregressive
moving average (ARMA) model. The general equation is obtained by summing over the weighted
past observations and summing over the error terms. The stochastic term at time 𝑡 is still present.
The general ARMA model can be found in Equation 3.8 in which 𝑝 denotes the order of the AR

3.1. ARIMA Model 13

part and 𝑞 the order of the MA part.

𝑋𝑡 =

𝑝∑
𝑖=1

𝜙𝑖𝑋𝑡−𝑖 +
𝑞∑
𝑖=1

𝜃𝑖𝜖𝑡−1 + 𝜖𝑡 (3.8)

All of the above methods work best with stationary data observations. This is however not
always realisable. To obtain a more reliable model, the difference between the observations can
be taken as input observations. This differencing can happen over multiple time steps at once.
This generalization of the ARMA model is given as the autoregressive integrated moving average
(ARIMA) model. Based on data observations 𝑋0 , . . . , 𝑋𝑡−2 , 𝑋𝑡−1, the ARIMA consists of three
parameters 𝑝,𝑑, and 𝑞. 𝑝 represents the order of the auto-regressive model. 𝑞 represents the order
of the moving average model. 𝑑 represents the degree of the difference. If 𝑑 equals zero, the
ARIMA model becomes an ARMA model. The standard form of an ARIMA(p,d,q) model can be
found in Equation 3.9.

𝑋𝑡 − 𝑋𝑡−𝑑 −
𝑝∑
𝑖=1

(
𝜙𝑖(𝑋𝑡−𝑖 + 𝑋𝑡−𝑖−𝑑)

)
= 𝜖𝑡 +

𝑞∑
𝑖=1

𝜃𝑖𝜖𝑡−𝑖 (3.9)

Equation 3.9 can be rewritten to Equation 3.10. Only the left side is dependent on the most recent
value 𝑋𝑡 , since every term on the right side has at least one backward operation. Note 𝜖𝑡 is still on
the right side.

𝑋𝑡 = 𝑋𝑡−𝑑 +
𝑝∑
𝑖=1

(
𝜙𝑖(𝑋𝑡−𝑖 + 𝑋𝑡−𝑖−𝑑)

)
+ 𝜖𝑡 +

𝑞∑
𝑖=1

𝜃𝑖𝜖𝑡−𝑖 (3.10)

If one increments the time with value one, an estimate for the future value can be determined.
Every observation up till time 𝑡 is known, as well as the residuals. 𝜖𝑡+1 is unknown and set equal
to zero. All other values of 𝜖𝑡 are set equal to the corresponding residuals (𝑒𝑡). Consecutive
increments result in a forecast over ℎ lags.

3.1.1. Prediction Interval
The prediction interval of the ARIMA model can be determined as well. In order to do so, one
needs the forecast errors given by the difference between the real value and the predicted value

𝑒𝑡 = 𝑋𝑡 − �̂�𝑡 . (3.11)

By increasing the time with one time step, Equation 3.11 can be rewritten to:

𝑋𝑡+1 = �̂�𝑡+1 + 𝑒𝑡+1. (3.12)

�̂�𝑡+1 is the forecast and 𝑒𝑡+1 is the unknown future error. By assuming future errors are similar
to past errors, one can replace 𝑒𝑡+1 with one of the past residuals. Depending on the number of
past observations, a lot of choices for the current residual can be made. The new simulated data
point can be used to repeat the procedure for 𝑒𝑡+2. Doing this for ℎ lags into to future results in a
ℎ-lag forecast. All ℎ lags have an residual term equal to a past observation. Doing this for multiple
combinations of past residual gives a collection of possible future values. Taking the quantile of
the collection results in the prediction interval. The obtained interval is denoted as a bootstrapped
prediction interval.

If one however assumes that the errors are normally distributed, one could more easily de-
termine the prediction interval. In such a case are the error terms over a ℎ-lag forecast distributed
as 𝒩(0, �̂�2

ℎ
) and is the prediction interval given by

�̂�𝑡+ℎ ± 𝑐�̂�ℎ . (3.13)

𝑐 is a scalar which influence the prediction interval. Setting 𝑐 = 1.96 the 95% confidence interval is
obtained. Similar, setting 𝑐 = 2.58 gives the 99% confidence interval.

3.2. Uncertainties of k𝑡 14

3.2. Uncertainties of k𝑡
The Lee-Carter model has to deal with multiple uncertainties. One of the uncertainties is the way
how 𝑘𝑡 is forecast. The uncertainty of 𝑘𝑡 might impact the complete accuracy of the Lee-Carter
model. Lee and Carter describe the Lee-Carter model first with forecast using a random walk
instead of an ARIMA model (Lee & Carter, 1992). Both the uncertainties of Lee-Carter with a
random walk as well as ARIMA model will be discussed. Kleinow and Richards describe both
methods (Kleinow & Richards, 2017).

3.2.1. Random Walk With Drift Uncertainties
By applying a random walk with drift (δ, value unknown), one can write 𝑘𝑡 as:

𝑘𝑡+1 = δ + 𝑘𝑡 + ε𝑡+1 , (3.14)

in which ε𝑡+1 ∼ 𝑁(0, 𝜎2), 𝜎2 is constant finite variance. Extending the random walk to a larger
horizon, an ℎ lag forecast can be obtained. By setting ε equal to zero, the central forecast is obtained.
This central forecast is used in the remainder of this section. The central forecast is obtained by
setting ε equal to zero

𝑘𝑡(ℎ) = ℎδ + 𝑘𝑡 (3.15)
The drift is still unknown, hence an estimate is needed. The drift is estimated by the average of the
differences:

δ̂ =
1

𝑇 − 1

𝑇∑
𝑖=2

(𝑘𝑖 − 𝑘𝑖−1) =
𝑘𝑇 − 𝑘1
𝑇 − 1 (3.16)

This estimator can be used in an estimator of ℎ lags in the future for the central forecast, which can
be written as

𝑘𝑡(ℎ) = ℎδ̂ + 𝑘𝑡 . (3.17)
Now, the mean squared predicted error can be calculated as done by Kleinow and Richards. They
show that the mean squared predicted error can be divided into parameter uncertainty as well as
volatility (Kleinow & Richards, 2017).

E[(𝑘𝑡(ℎ) − 𝑘𝑡+ℎ)2] = E[(𝑘𝑡(ℎ) − 𝑘𝑡(ℎ) + 𝑘𝑡(ℎ) − 𝑘𝑡+ℎ)2]
= E[(𝑘𝑡(ℎ) − 𝑘𝑡(ℎ))2] + E[(𝑘𝑡(ℎ) − 𝑘𝑡+ℎ)2] + 2E[𝑘𝑡(ℎ) − 𝑘𝑡(ℎ)]E[𝑘𝑡(ℎ) − 𝑘𝑡+ℎ]

= E[(𝑘𝑡(ℎ) − 𝑘𝑡(ℎ))2] + E[(𝑘𝑡(ℎ) − 𝑘𝑡+ℎ)2] + 2E[𝑘𝑡(ℎ) − 𝑘𝑡(ℎ)]E
[
−

ℎ∑
𝑖=1

𝜀𝑡+𝑖

]
= E[(𝑘𝑡(ℎ) − 𝑘𝑡(ℎ))2] + E[(𝑘𝑡(ℎ) − 𝑘𝑡+ℎ)2]

= Var(𝑘𝑡(ℎ)) + E

(
ℎ∑
𝑖=1

𝜀𝑡+𝑖

)2
= ℎ2Var(𝑘𝑡(ℎ)) + ℎ𝜎2

= ℎ2 𝜎2

𝑡 − 1 + ℎ𝜎2

=
ℎ

𝑡 − 1 ℎ𝜎
2 + ℎ𝜎2 (3.18)

The first part, ℎ2𝜎2

𝑡−1 , is denoted as the parameter uncertainty. The second part, ℎ𝜎2, is denoted as
the volatility (Kleinow & Richards, 2017). Hence, taking a smaller historical time horizon 𝑇 while
the projection horizon is larger results in a dominating parameter uncertainty. On the other hand,
taking a larger historical time horizon while the projection horizon is small results in a dominating
volatility.

3.2. Uncertainties of k𝑡 15

3.2.2. ARIMA Model Uncertainties
Similar to the random walk with drift, parameter uncertainty of the ARIMA model can be estimated.
Kleinow and Richards describe that ARIMA models with differencing parameters 𝑑 = 1 are only
relevant for mortality forecasting. Hence, only ARIMA model with a differencing order of one
is considered (Kleinow & Richards, 2017). This suggest that the first difference can be seen as a
stationary process. An ARIMA(𝑝, 1, 𝑞) model with mean δ can be written as:

𝑘𝑡 = 𝑘𝑡−1 +
𝑝∑
𝑖=1

(
𝜙𝑖(𝑘𝑡−𝑖 + 𝑘𝑡−𝑖−1)

)
+ 𝜖𝑡 +

𝑞∑
𝑖=1

𝜃𝑖𝜖𝑡−𝑖 + δ (3.19)

This gives a method of forecasting the future values. Continuous applying this results in a forecast
over ℎ lags.

𝑘𝑡+ℎ = 𝑘𝑡+ℎ−1 +
𝑝∑
𝑖=1

(
𝜙𝑖(𝑘𝑡+ℎ−𝑖 + 𝑘𝑡+ℎ−𝑖−1)

)
+ 𝜖𝑡+ℎ +

𝑞∑
𝑖=1

𝜃𝑖𝜖𝑡+ℎ−𝑖 + δ

= 𝑘𝑡 +
ℎ∑
𝑗=1

(
𝑝∑
𝑖=1

(
𝜙𝑖(𝑘𝑡+𝑗−𝑖 + 𝑘𝑡+𝑗−𝑖−1)

)
+ 𝜖𝑡+𝑗 +

𝑞∑
𝑖=1

𝜃𝑖𝜖𝑡+𝑗−𝑖

)
+ ℎδ (3.20)

An estimate of the mean is determined as the average of the observations:

δ̂ =
1
𝑇

𝑇∑
𝑖=1

𝑘𝑖 (3.21)

Similar as with the random walk, a forecast for a model can be defined as given in Equation 3.22.
The coefficients of the ARIMA model first need to be fitted on past observations.

𝑘𝑡+ℎ = 𝑘𝑡 +
ℎ∑
𝑗=1

(
𝑝∑
𝑖=1

(
𝜙𝑖(𝑘𝑡+𝑗−𝑖 + 𝑘𝑡+𝑗−𝑖−1)

)
+ 𝜖𝑡+𝑗 +

𝑞∑
𝑖=1

𝜃𝑖𝜖𝑡+𝑗−𝑖

)
+ ℎδ̂ (3.22)

Kleinow and Richards show with a simulations study that the ARIMA model has better
performance than the random walk. They observe how δ̂ can dominate the prediction of 𝑘𝑡+ℎ .
The closer the coefficient of the ARIMA model are to zero, the quicker δ̂ dominates the forecast
(Kleinow & Richards, 2017). Kleinow and Richards conclude that the uncertainty of the ARIMA
model for the mortality rates is dominated by uncertainty of the drift and mean.

3.2.3. Consequences of Uncertainties
The uncertainty around 𝑘𝑡 is highly dependent on the uncertainty of the drift and mean. Hence, one
needs to be careful by estimating the correct ARIMA model. There are however more uncertainties
concerning the Lee-Carter model.

Even when the perfect ARIMA model is found, there is still uncertainty in the data used
to calibrate this model. Both b and k are the results of a low rank approximation. This
complexity–accuracy trade-off can result in bad approximations and should be kept in mind for
this research. The Lee-Carter model could be extended to incorporate more singular values. An
example of this is given by Equation 3.23 in which the first 𝑠 singular values are used and in which
b𝑖 and k𝑖 represent the 𝑖-th SVD terms.

ln(𝑀𝑥,𝑡) = 𝑎𝑥 + 𝑏1,𝑥 𝑘1,𝑡 + 𝑏2,𝑥 𝑘2,𝑡 + · · · + 𝑏𝑠,𝑥 𝑘𝑠,𝑡 (3.23)

All remaining SVD components are relegated to the error term. By taking all components of the
SVD, a perfect estimate is obtained. This results in another complexity-accuracy trade-off. The
first term of the SVD is dominant for the low rank approximation. The importance of the SVD

3.2. Uncertainties of k𝑡 16

term decreases, the later the term is present in the SVD. Because of this, only taking the first SVD
term already gives a decent estimate. Because of this, Lee and Carter use a order one low rank
approximation, resulting in some uncertainty. The performance of the low rank approximation
can however be improved by taking more SVD terms, which slightly complicates the model. Apart
from these shortcomings, the structure of Lee-Carter is convenient as input for machine learning
as will be discussed in Chapter 5.

4
Machine Learning

Machine learning is a branch of artificial intelligence which tries to train a model based on input
data. A trained model in turn tries to predict target variables of an object based on characteristics
or features of that same object. Machine learning is often applied to approximate a costly function.
A trained model is fast in creating predictions, training the model can however take some time.
The data used to train a model is known as the training data and consists of the features as well
as observations of the target variables. Performance of a model is determined using test and
validation data in which predictions are compared to the observed target values. In this chapter,
multiple machine learning methods are described which build upon each other. First, regression
trees are introduced which in turn can be used as building blocks for gradient boosting and
extreme gradient boosting. Without loss of continuity, one can immediately continue to extreme
gradient boosting in Section 4.3 or the multi target variant in Section 4.4.

4.1. Regression Trees
One of the most known machine learning model is a regression tree. Regression trees are mappings
of binary decisions which lead to predictions of objects (Hastie et al., 2009). These binary decisions
represent a separation in feature values. Regression trees are graphically represented as tree
structures in which one branches off a starting node, the root. All internal nodes represent at
least one feature, this choice of feature is not unique and the same feature can be relevant for
multiple nodes. Every branch, connected to such a node, represents the feature outcome of a
binary split. Lastly, terminal nodes (excluding the root) represent target values of the final decision.
An example of a regression tree can be found in Figure 4.1. Regression trees are widely used in
machine learning. They can be used independent but are however mostly used in combination
with other methods as they are known as weak learners, meaning that they not always give a
reliable prediction. Combining multiple trees will however gives more reliable method.

4.1.1. Creating a Regression Tree
The input of a regression tree consist of two parts. First, the feature vector x𝑖 gives characteristics of
an object and is used for decision making within the tree. Second, the target variable 𝑦𝑖 represents
the the variable to predict. For a given data set {(x𝑖 , 𝑦𝑖) : 𝑖 = 1, . . . , 𝑛, x𝑖 ∈ R𝑘} a regression tree
can be made. The features used to create a regression tree are generally continuous values. This
results in binary splits of the form 𝑥1,1 ≤ 10 and 𝑥1,1 > 10. Creating a regression tree is a top-down
method as it starts at the root. At every branch the best performing split for that moment is
determined, this is known as a greedy machine learning approach. For feature 𝑗 given by 𝑥𝑖 , 𝑗 is a
split parameter 𝑠 defined which splits the values of the features into two regions:

𝑅1(𝑗 , 𝑠) = {x𝑖 |𝑥𝑖 , 𝑗 < 𝑠}
𝑅2(𝑗 , 𝑠) = {x𝑖 |𝑥𝑖 , 𝑗 ≥ 𝑠}

17

4.1. Regression Trees 18

𝑥2

𝑥1 𝑥3

𝑥3

𝑌2 𝑌3𝑌1

𝑥1

𝑌4 𝑌1 𝑌5

𝑥2 ≤ 10 𝑥2 > 10

𝑥1 > 4𝑥1 ≤ 4

𝑥3 ≤ 15 𝑥3 > 15

𝑥3 ≤ 1 𝑥3 > 1

𝑥1 < 8 𝑥1 ≥ 8

Figure 4.1: A regression tree with three features and multiple possible output values.

The mean target value of region 𝑅1 is denoted by �̂�𝑅1 , likewise �̂�𝑅2 corresponds to region 𝑅2. The
best performing split is, for example, determined by minimising the function of squared residuals
given in Equation 4.1. Continuing this procedure by creating new regions based on the current
regions results in a regression tree.∑

𝑗:x𝑗∈𝑅1

(𝑦 𝑗 − �̂�𝑅1)2 +
∑
𝑗:x𝑗∈𝑅2

(𝑦 𝑗 − �̂�𝑅2)2 (4.1)

Completing this process for the complete set of features might result in a model too specific for the
test data, which does not perform well on other data. This is known as overfitting and should be
prevented. One possibility to overcome overfitting is stopping when the difference in residual
sum of squares (RSS) at each split does not exceed some threshold. This is however not reliable as
an extremely good split could have followed up on a bad split. This bad split might not exceed the
threshold resulting in the extremely good split never happening. Another method is by building
the larger tree (𝑇0) and then prune to a subtree (𝑇). The performance on a test or validation set can
be determined for all subtrees and the one resulting in the lowest errors is chosen. This is however
computationally heavy for larger trees as there are a lot of subtrees to consider. Hence, a smaller
set of subtrees to consider is needed.

One way to tackle this is by introducing a penalty as a function of the number of leaves (|𝑇 |). A
sequence of indexed trees by penalty parameter 𝛼 can be obtained. For every value of 𝛼 there is a
tree 𝑇 ⊂ 𝑇0 such that Equation 4.2 is minimal. This method is known as cost complexity pruning.
All 𝑅𝑛 ’s in Equation 4.2 correspond only to terminal nodes. Setting 𝛼 equal to zero results in the
original tree (𝑇) while increasing 𝛼 results in fewer leaves until only the root note is left.

|𝑇 |∑
𝑛=1

∑
𝑖:𝑥𝑖∈𝑅𝑛

(𝑦𝑖 − 𝑦𝑅𝑛)2 + 𝛼 |𝑇 | (4.2)

The value of 𝛼 can be chosen by the user, there is however a more reliable method. To determine
the optimal value of 𝛼, cross validation is used. The data is divided into 𝐾 subsets or folds. Using
𝐾 − 1 folds a new regression tree is created on which cost complexity pruning is applied. The
mean squared prediction error for the remaining fold can be determined and written as a function
of 𝛼. Doing so 𝐾 times, in which each fold is used as the individual fold once, and taking the
mean results in the average mean squared prediction error for a 𝛼. The value of 𝛼 which results
in the minimal error is chosen as the value of 𝛼 for the original tree. This 𝛼 determines the final
regression tree. The complete algorithm can be found in Algorithm 1. Setting 𝛼 equal to zero, a
complete tree is obtained with as much leaves as possible.

4.2. Gradient Boosting 19

Algorithm 1 Creating a Regression Tree (source: (James et al., 2013))

1. Use recursive binary splitting to grow a large tree on the training data, stopping only when
each terminal node has fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree to obtain a sequence of best subtrees, as a
function of 𝛼.

3. Use 𝐾-fold cross-validation to choose 𝛼. That is, divide the training observations into 𝐾
folds. For each 𝑘 = 1, . . . , 𝐾:
(a) Repeat steps 1 and 2 on all but the 𝑘-th fold of the training data.
(b) Evaluate the mean squared prediction error on the data in the left-out 𝑘-th fold, as a

function of 𝛼.

Average the results for each value of 𝛼 and pick 𝛼 to minimise the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of 𝛼.

4.2. Gradient Boosting
After building one regression tree model, there could still be residuals which can be used as input
for a second regression tree model. Applying this repeatedly results in a function approximation
by summing over of all the individual tree models. Boosting algorithms follow this principle
and combine weak learners to a strong learner which better performance (Hastie et al., 2009).
Gradient boosting optimises the overall error at every iteration. The error function used to
determine the performance at every iteration is denoted as the loss function 𝐿. For a given data set
{(x𝑖 , 𝑦𝑖) : 𝑖 = 1, . . . , 𝑁 , x𝑖 ∈ R𝑘}, gradient boosting aims to find 𝑓 such that a given loss function
𝐿(𝑓) is minimised. It does so by relying on previous fitted functions in combination with the
gradient of the loss function, following gradient descent techniques. At each iteration does the
approximation move in the direction of the negative gradient. In this way a local minimum is
reached. To ensure approximation of the global minimum, the loss function should be convex.
The loss function has to be at least first order differentiable. Some examples of loss functions are
given as below, as the sum of squared residuals and the mean squared error, respectively.

𝐿(𝑓) =
𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓 (xi))2

𝐿(𝑓) = 1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓 (xi))2

The loss function is however defined at object level as well. For example, loss function at object
level of the above equations are given by

𝐿(𝑦𝑖 , 𝑓 (x𝑖)) = (𝑦𝑖 − 𝑓 (xi))2

𝐿(𝑦𝑖 𝑓 (x𝑖)) =
𝑦𝑖 − 𝑓 (xi))2

𝑁
.

To stay true to the literature (and their notation), function representations of regressions trees are
used. Let ℎ𝑚 denote the output function of a regression tree with 𝑇𝑚 leaves. The output space
of tree ℎ𝑚 is partitioned into 𝑇𝑚 disjoint regions 𝑅1 . . . 𝑅𝑇𝑚 , which correspond to the leaves of the
regression tree. The output function of a tree can be written as

ℎ𝑚(x𝑖) =
𝑇𝑚∑
𝑗=1

𝑓𝑚(x𝑖)1𝑅 𝑗 . (4.3)

4.2. Gradient Boosting 20

Gradient boosting creates an additive approximation 𝑓 (x) as the sum of different functions of trees.
Or generally, the next best approximation is the current tree added to the previous approximation.
In The current tree is fitted on another data set than the previous regression trees, for example on
the residuals of the previous approximations.

𝑓𝑚 = 𝑓𝑚−1 + ℎ𝑚 (4.4)

This approximation is an iterative process based on loss function 𝐿(𝑓). Like every iterative process,
a starting point needs to be defined. In some cases is this starting point randomly chosen, for
example by setting it equal to a constant function. To start with a better initial guess, it is possible
to determine the starting point by minimizing the loss function over different regression trees.

𝑓0 = arg min
ℎ

𝑛∑
𝑖=1

𝐿(𝑦𝑖 , ℎ(x𝑖)) (4.5)

Again, one tries to minimise the loss function with respect to the current regression tree. The so
far best approximation is known and is used to determine the regression tree minimizing the loss
function given at a second stage by solving Equation 4.6.

ℎ𝑚 = arg min
ℎ

𝑛∑
𝑖=1

𝐿(𝑦𝑖 , 𝑓𝑚−1(x𝑖) + ℎ(x𝑖)) (4.6)

Minimising the loss function over all possible regression trees can be a difficult activity. To ease
the minimisation one can approximate the loss function with the first order Taylor expansion of
the loss function. The Taylor expansion is taken around point 𝑓𝑚−1(x𝑖).

𝐿(𝑓𝑚) = 𝐿(𝑓𝑚−1 + ℎ𝑚) ≈
𝑁∑
𝑖=1

©«𝐿(𝑦𝑖 , 𝑓𝑚−1(x𝑖)) +
[
𝜕𝐿(𝑦𝑖 , 𝑓 (x𝑖)

𝜕 𝑓 (x𝑖)

]
𝑓 (x𝑖)= 𝑓𝑚−1(x𝑖)

ℎ𝑚(x𝑖)ª®¬ (4.7)

Minimizing the Taylor expansion with respect to ℎ𝑚 one observes that the best regression tree is
given by the negative gradient for each object. This regression tree is multiplied by the learning
rate parameter, 𝜂. This parameter defines the step size in the direction of the negative gradient.
The negative gradient for one feature vector is given in Equation 4.8.

ℎ𝑚(x𝑖) = −𝜂
[
𝜕𝐿(𝑦𝑖 , 𝑓 (x𝑖)

𝜕 𝑓 (x𝑖)

]
𝑓 (x𝑖)= 𝑓𝑚−1(x𝑖)

(4.8)

The value of 𝜂 should be chosen carefully. A small value results in a lot of steps to reach the
minimum. While a too large value results in large updates which in turn could result in divergent
behaviour and the minimum value is never attained. Taking ℎ𝑚(x𝑖) as given in Equation 4.8 gives
indeed an decreasing value for the loss function. For every iteration, one observes that the value of
the loss function is smaller than in the previous iteration.

𝐿(𝑦𝑖 , 𝑓𝑚(x𝑖)) = 𝐿(𝑦𝑖 , 𝑓𝑚−1(x𝑖)) − 𝜂
©«
[
𝜕𝐿(𝑦𝑖 , 𝑓 (x𝑖)

𝜕 𝑓 (x𝑖)

]
𝑓 (x𝑖)= 𝑓𝑚−1(x𝑖)

ª®¬
2

< 𝐿(𝑦𝑖 , 𝑓𝑚−1(x𝑖)) (4.9)

Every ℎ𝑚 can be seen as a step of the optimisation of approximation 𝑓 (x). For every object in the
training data, the so-called pseudo-residuals given by Equation 4.8 are determined. This results
in a new data set {(x𝑖 , 𝑟𝑚,𝑖), 𝑖 = 1, . . . , 𝑛}. A weak learner can be applied to this new data set,
resulting in a new regression tree. Again, the pseudo-residuals can be determined which implies a
new data set. Repeating this process 𝑀 times results in a final approximation 𝑓𝑀 . The complete

4.3. Extreme Gradient Boosting 21

algorithm can be found in Algorithm 2. The pseudo-residuals differ from the standard residuals
and are dependent on the loss function. By taking a standard loss function such as the squared
error

𝐿(𝑓𝑚) =
1
2

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓𝑚(x𝑖))2

it becomes clear that the residuals and pseudo-residuals are equal in specific cases.

Algorithm 2 Gradient Boosting for Regression Trees (source: (Bentéjac et al., 2021)

1. Set 𝑓0(x) = arg min
ℎ

∑𝑛
𝑖=1 𝐿(𝑦𝑖 , ℎ)

2. For 𝑚 = 1, . . . , 𝑀:

(a) Compute the pseudo-residuals 𝑟𝑚,𝑖 = −
[
𝜕𝐿(𝑦𝑖 , 𝑓 (x𝑖)

𝜕 𝑓 (x𝑖)

]
𝑓 (x𝑖)= 𝑓𝑚−1(x𝑖)

(b) Fit a regression tree on new data set {(x𝑖 , 𝑟𝑚,𝑖), 𝑖 = 1, . . . , 𝑛}
(c) Determine ℎ𝑚 = arg min

ℎ

∑𝑛
𝑖=1 𝐿(𝑦𝑖 , 𝑓𝑚−1(x𝑖) + ℎ)

(d) Update the function 𝑓𝑚 = 𝑓𝑚−1 + ℎ𝑚

3. Return approximation 𝑓𝑀

4.3. Extreme Gradient Boosting
Extreme gradient boosting (XGBoost) is, like gradient boosting, a strong learner based on weak
learners (Chen & Guestrin, 2016). It is designed to perform efficient on large data sets. The
final approximation is based on an addition of weak learners obtained by minimising a loss
function. XGBoost works with the same data set as given for gradient boosting given by
{(x𝑖 , 𝑦𝑖) : 𝑖 = 1, . . . , 𝑁 , x𝑖 ∈ R𝑘}. The loss function for extreme gradient boosting is similar to the
loss function of gradient boosting in the following way at iteration 𝑚

𝐿𝑥𝑔𝑏(𝑓𝑚) =
𝑁∑
𝑖=1

𝐿(𝑦𝑖 , 𝑓𝑚(x𝑖)) (4.10)

𝑓𝑚(x𝑖) represent the prediction of object 𝑖 at iteration 𝑚. The loss function given in Equation 4.10
has the observed values as well as the predictions as parameters. The training is an iterative
process, in which the previous steps are fixed, and a new regression tree is added to improve the
performance of the model. One can rewrite the loss function at iteration 𝑚 to Equation 4.11 in
which the fixed data is combined into one constant.

𝐿𝑥𝑔𝑏(𝑓𝑚) =
𝑁∑
𝑖=1

(
𝐿(𝑦𝑖 , 𝑓𝑚−1(x𝑖) + ℎ𝑚(x𝑖))

)
(4.11)

Just like standard gradient boosting, XGBoost uses a Taylor expansion of the loss function around
𝑓𝑚(x). XGBoost does consider a second order Taylor polynomial to eventually approximate the
minimum.

𝐿𝑥𝑔𝑏(𝑓𝑚) ≈
𝑁∑
𝑖=1

(
𝐿(𝑦𝑖 , 𝑓𝑚−1(x𝑖)) + 𝐺𝑚(x𝑖) · ℎ𝑚(x𝑖) +

1
2𝐻𝑚(x𝑖) · ℎ2

𝑚(x𝑖)
)

(4.12)

The first en second derivatives are scalars as given in Equations 4.13 and 4.14, respectively. In
XGBoost are all first derivatives of the objects combined into one vector, similarly all second

4.3. Extreme Gradient Boosting 22

derivatives are combined into one vector.

𝐺𝑚(x𝑖) =
[
𝜕𝐿(𝑦𝑖 , 𝑓 (x𝑖))

𝜕 𝑓 (x𝑖)

]
𝑓 (x𝑖)= 𝑓𝑚−1(x𝑖)

(4.13)

𝐻𝑚(x𝑖) =
[
𝜕2𝐿(𝑦𝑖 , 𝑓 (x𝑖))

𝜕 𝑓 (x𝑖)2

]
𝑓 (x𝑖)= 𝑓𝑚−1(x𝑖)

(4.14)

Since the constants do not influence the argument corresponding the minimum, one can remove
all constants. The loss function after removing all constants results in iteration 𝑚 is considered.

𝐿𝑥𝑔𝑏(𝑓𝑚) =
𝑁∑
𝑖=1

(
𝐺𝑚(x𝑖) · ℎ𝑚(x𝑖) +

1
2𝐻𝑚(x𝑖) · ℎ2

𝑚(x𝑖)
)

(4.15)

Recall the definition of tree structure ℎ𝑚(xi) as explained in Section 4.2. Every object has a
prediction corresponding to exactly one leaf and multiple objects can correspond to the same leaf.
The function defining this behaviour is given by 𝑞(x𝑖). Every leaf has one value (or prediction),
this value is given by in vector 𝑤. Combining 𝑞(x𝑖) and 𝑤, one can write (XGBoost, 2022)

ℎ𝑚(xi) = 𝑤𝑞(x𝑖) , 𝑤 ∈ R𝑀 , 𝑞 : R𝑑 → 1, 2, . . . , 𝑇𝑚 . (4.16)

Using this observation, one can rewrite the loss function even further by removing all constants.
XGBoost introduces a regularisation term as given in Equation 4.17. This regularisation term
implies a penalty for larger tree with lots of leaves.

Ω(ℎ𝑚) = 𝛾𝑇𝑚 + 1
2𝜆

𝑇𝑚∑
𝑗=1

𝑤2
𝑗 (4.17)

In which 𝛾 gives the minimum loss required to create a new split. Higher values of 𝛾 results in
simpler trees with less leaves. 𝜆 gives the L2 regularisation on the scores. Higher values of 𝜆 result
again in simpler trees. By defining sets 𝐼 𝑗 = {𝑖 |𝑞(x𝑖 = 𝑗} as the set of instances assigned to leaf 𝑗,
the loss function becomes

𝐿𝑥𝑔𝑏(𝑓𝑚) =
𝑁∑
𝑖=1

(
𝐺𝑚(x𝑖) · 𝑤𝑞(x𝑖) +

1
2𝐻𝑚(x𝑖) · 𝑤2

𝑞(x𝑖)

)
+ 𝛾𝑇𝑚 + 1

2𝜆
𝑇𝑚∑
𝑗=1

𝑤2
𝑗 (4.18)

=

𝑇𝑚∑
𝑗=1

©«
∑
𝑖∈𝐼𝑗

𝐺𝑚(x𝑖)ª®¬ · 𝑤 𝑗 +
1
2
©«
∑
𝑖∈𝐼𝑗

𝐻𝑚(x𝑖) + 𝜆
ª®¬𝑤2

𝑗

 + 𝛾𝑇𝑚 (4.19)

(4.20)

Optimising the final equation, one obtains

�̂� 𝑗 = −
∑
𝑖∈𝐼𝑗 𝐺𝑚(x𝑖)∑

𝑖∈𝐼𝑗 𝐻𝑚(x𝑖) + 𝜆
(4.21)

�̂�𝑥𝑔𝑏(𝑓𝑚) = −1
2

𝑇𝑚∑
𝑗=1

(∑
𝑖∈𝐼𝑙 𝐺𝑚(x𝑖)

)2∑
𝑖∈𝐼𝑗 𝐻𝑚(x𝑖) + 𝜆

+ 𝛾𝑇𝑚 (4.22)

The last equation is used as a scoring function to measure how good tree structure ℎ𝑚 is at iteration
𝑚. Based on this scoring function, one can determine the best tree, it is, however, computationally
heavy to measure all possible tree structures. An alternative method is introduced as a greedy
algorithm which starts from a root and add branches the tree which have most gain (Chen &

4.3. Extreme Gradient Boosting 23

Guestrin, 2016). Let 𝐼𝑙 denoted the instance going to the left at a split and 𝐼𝑟 the instances going to
the right at the same split. The union of the both sets is given as 𝐼 = 𝐼𝑙 ∪ 𝐼𝑟 . These settings can
be used to determine the gain in performance for each split. Applying Equation 4.22 on 𝐼𝑙 , one
obtains a score for the left leaf of a split as given in Equation 4.23.(∑

𝑖∈𝐼𝑙 𝐺(x𝑖)
)2∑

𝑖∈𝐼𝑙 𝐻(x𝑖) + 𝜆
(4.23)

Similar scoring functions can be made for the right leaf as well as the only node to which both the
leaves are connected to. This way, a gain per split is defined. As a split results in one more leaf an
the loss function is dependent on the number of leaves, the total gain in performance is obtained
by subtracting complexity parameter 𝛾. Note, this is a variant of pruning which already happens
as initialization time of the tree. The complete gain of a split can be combined into one complete
scoring gain function as given in Equation 4.24.

This scoring function is applied for every split and the best performing one is chosen, resulting
in a regression tree. In the perfect world, one would consider every split at every branching step of
a tree, resulting in the best tree possible.

Gain =
1
2

[(∑
𝑖∈𝐼𝑙 𝐺(x𝑖)

)2∑
𝑖∈𝐼𝑙 𝐻(x𝑖) + 𝜆

+
(∑

𝑖∈𝐼𝑟 𝐺(x𝑖)
)2∑

𝑖∈𝐼𝑟 𝐻(x𝑖) + 𝜆
− (∑𝑖∈𝐼 𝐺(x𝑖))2∑

𝑖∈𝐼 𝐻(x𝑖) + 𝜆

]
− 𝛾 (4.24)

In a next iteration, one defines a new data set
{(

x𝑖 ,−
∑
𝑖∈𝐼𝑗 𝐺𝑚 (x𝑖)∑

𝑖∈𝐼𝑗 𝐻𝑚 (x𝑖)+𝜆

)
: 𝑖 = 1, . . . , 𝑁

}
and the process

is repeated. On top of this, a learning rate 𝜂 is chosen. The addition of the weak learners is given
as the sum of regression trees multiplied by the learning rate, 𝜂.

𝑓𝑚 = 𝑓𝑚−1 + 𝜂ℎ𝑚 (4.25)

The complete process can be found in Algorithm 3.

4.3.1. Split Finding and Parallelisation
Determining the best possible split is, depending on the data, a computationally heavy procedure.
XGBoost has the possibility to approximate the best split by creating a histogram of the feature
values. Instead of calculating with all the continuous values of the features, XGBoost creates
intervals, the bins of the histogram. Split performance is only determined for the bins and not the
individual observations. On top of this, there is the possibility to create a new histogram in every
iteration or just create only one histogram at the start of the training.

Taking every individual observation into account, results in the best estimates. This takes
however a lot of time on larger data sets. The histogram approximation given by XGBoost implies a
significant decrease in computation time as a lot of steps can be neglected. Creating a histogram at
every split requires more time than using a predefined histogram. One should however consider
the loss in performance by using an approximation method.

Moreover, XGBoost has a special implementation which enables a better processing efficiency.
‘Normal’ machine learning methods relies on a small set of calculators, denoted as cores, able to
make challenging equations. The cores are all delegated by the Central Processing Unit (CPU)
of a device. A standard device has between eight to thirty-two cores. The CPU can handle a
number of tasks equal to the number of cores at the same time. The remaining tasks are queued up
and will be awaiting execution. XGBoost has the possibility to use the Graphics Processing Unit
(GPU) of the device. The GPU consist of hundred to thousands of cores and can make way more
calculations simultaneously. It does, however, have some limits. The calculations done on cores
of the GPU are required to be independent and of a simple nature (e.g. the trivial mathematics
operations). Determining the scoring for a split is an equation capable to be completed on a GPU
core. This fastens the process significantly, while not loosing any accuracy. As of now, the GPU
support is only available for the histogram methods.

4.4. Multi-Target Extreme Gradient Boosting 24

Algorithm 3 Extreme Gradient Boosting of Regression Trees (Based on: (Chen & Guestrin, 2016))

1. Set 𝑓0(x) = arg min
𝛽

∑𝑛
𝑖=1 𝐿(𝑦𝑖 , 𝛽)

2. For 𝑚 = 1, . . . , 𝑀:
(a) Compute first and second order derivatives:

𝐺𝑚(x𝑖) =
[
𝜕𝐿(𝑦𝑖 , 𝑓 (x𝑖))

𝜕 𝑓 (x𝑖)

]
𝑓 (x𝑖)= 𝑓𝑚−1(x𝑖)

𝐻𝑚(x𝑖) =
[
𝜕2𝐿(𝑦𝑖 , 𝑓 (x𝑖))

𝜕 𝑓 (x𝑖)2

]
𝑓 (x𝑖)= 𝑓𝑚−1(x𝑖)

(b) Fit a regression tree ℎ𝑚 on new data set
{(

x𝑖 ,−
∑
𝑖∈𝐼𝑗 𝐺𝑚 (x𝑖)∑

𝑖∈𝐼𝑗 𝐻𝑚 (x𝑖)+𝜆

)
: 𝑖 = 1, . . . , 𝑛

}
i. Start with a root node

ii. For 𝑗 = 1, . . .Number of leaves:
A. Determine best performing split:

Gain = 1
2

[(∑
𝑖∈𝐼𝑙 𝐺(x𝑖)

)2∑
𝑖∈𝐼𝑙 𝐻(x𝑖)+𝜆 + (∑𝑖∈𝐼𝑟 𝐺(x𝑖))2∑

𝑖∈𝐼𝑟 𝐻(x𝑖)+𝜆 − (∑𝑖∈𝐼 𝐺(x𝑖))2∑
𝑖∈𝐼 𝐻(x𝑖)+𝜆

]
− 𝛾

B. Add split to regression tree

(c) Update the function 𝑓𝑚 = 𝑓𝑚−1 + 𝜂ℎ𝑚

3. Return approximation 𝑓𝑀

4.4. Multi-Target Extreme Gradient Boosting
Standard XGBoost only predicts one target variable, while this research focuses on multiple
targets. There are two methods which incorporate multiple target variables. The first method is by
fitting an individual model on every target, this does however not take dependency between the
target variables into account. The second method is using a combined model which trains on all
target variables at the same time. In this case one tries to approximate a multi variable function
𝑓 : R𝑣 → R𝑢 . The leaves of the regression trees used to train this model represent vectors of length
𝑢 instead of scalars.

Similarly, the loss function is required to have a different structure as well. There are two
general ideas on the potential loss function. As a first method, one can define the loss function as
𝐿 : R𝑢 → R𝑢 in which every function has their own individual loss function. As a second method,
one can take a loss function with output in one dimension, 𝐿 : R𝑢 → R. To determine behaviour of
both methods at the same time, the general loss function is used, 𝐿 : R𝑢 → R𝑢 .

In standard XGBoost, one uses Taylor expansion the approximate the correct leaf scores used
to define the data set for the next regression tree. As this problem works with a multi variable
function, there is no simple Taylor expansion. Before extending the Taylor expansion for functions
from one Euclidean space to another, some notation and new subjects are introduced. To start,
every scalar, vector, matrix and any product of higher order can be described using directions. A
scalar is just a number and requires zero other information to be described besides its value. A
vector on the other hand requires multiple values, say 𝑢 values are needed. Similarly a matrix in
R𝑢×𝑢 requires 𝑢2 values or 𝑢 vectors of length 𝑢. One can extend this to a object in R𝑢×𝑢×𝑢 , which
can be represented as a vector of matrices. One can extend this indefinitely and describe higher
dimensional objects. The objects obtained this way are known as tensors as given in Definition 2.
The rank of a tensor is defined as the number of vectors (or arrays) required to describe the object.
Hence scalars, vectors and matrices are tensors of rank zero, one and two, respectively. There
exists different definitions of tensors, depending on the background of the subject. In machine
learning one has the definition as given in Definition 2.

4.4. Multi-Target Extreme Gradient Boosting 25

Definition 2 (Tensor (Guo, 2021))
A tensor is a multidimensional array (or matrix).
The rank of a tensor is given by the number of indices required to get one value in the tensor.

Based on the definition of a tensor, a multiplication between two tensors can be defined. This
multiplication is known as the tensor product (⊗) and is given as in Definition 3. This is an abstract
definition, a more direct example for a vector and a matrix is given in Equation 4.26.

Definition 3 (Tensor product (Guo, 2021))
Let𝑈,𝑉 and𝑊 be vector spaces with

dim(𝑊) = dim(𝑈) · dim(𝑉)

And let ⊗ : 𝑈 ×𝑉 →𝑊 be a mapping. This mapping is known as the tensor product.

(
𝑎1
𝑎2

)
⊗

(
𝑏1,1 𝑏1,2
𝑏2,1 𝑏2,2

)
=

©«
𝑎1

(
𝑏1,1 𝑏1,2
𝑏2,1 𝑏2,2

)
𝑎2

(
𝑏1,1 𝑏1,2
𝑏2,1 𝑏2,2

)ª®®®¬ =

©«
𝑎1𝑏1,1 𝑎1𝑏1,2
𝑎1𝑏2,1 𝑎1𝑏2,2
𝑎2𝑏1,1 𝑎2𝑏1,2
𝑎2𝑏2,1 𝑎2𝑏2,2

ª®®®¬ (4.26)

With the above definitions, the Taylor expansion can be extended to be applicable for multi variable
functions. For a given loss function can the Taylor expansion around vector x0 be written to
Equation 4.27 in which 𝐷𝑘𝐿 represents differentiation of order 𝑘 on function 𝐿 and 𝑅(x0) the
remainder.

𝑓 (x) = 𝑓 (x0) + (𝐷 𝑓 (x0))(x − x0) + · · · +
𝐷𝑘 𝑓 (x0)

𝑘! (x − x0)⊗𝑘 + 𝑅(x0) (4.27)

Only considering the first 𝑘 terms of the Taylor polynomial and neglecting the remainder, one
obtains the so-called 𝑘-jet as given in Definition 4. As with standard XGBoost, only the terms up to
the second order are used, hence a 2-jet is used in the remainder of this research.

Definition 4 (Jet)
The 2-jet of a loss function 𝐿 is given as the first 2 terms of the Taylor polynomial:

𝐿(f̂𝑚−1) + h𝑚 · 𝐷𝐿(f̂𝑚−1) +
1
2h⊗2

𝑚 · 𝐷2𝐿(f̂𝑚−1)

One still has the general additive approach of a gradient boosting, given by f̂𝑚 = f𝑚−1+h𝑚 in which
h𝑚 is the tree with vector values on the leaves. From now on is f̂𝑚(x𝑖) written as ŷ𝑖𝑚 to improve
readability. Similarly (ŷ𝑖𝑚)𝑗 is used to indicate the 𝑗-th element of vector ŷ𝑖𝑚 . The loss function
can be interpreted as multiple individual functions combined into one vector. The individual
functions are given as 𝐿1 . . . 𝐿𝑢 . The first derivative of one instance is simply the Jacobian matrix
and is given as in Equation 4.28. Taking the Jacobian matrix for all 𝑛 instances, one obtains a tensor

4.4. Multi-Target Extreme Gradient Boosting 26

of rank 3. One can visualize this as a vector with matrix elements. 𝐷𝐿(ŷ) is a matrix whose rows
can be seen as the gradients of the components of vector function 𝐿(ŷ).

𝐷𝐿(ŷ) =
©«

𝜕𝐿1
𝜕(ŷ)1 (ŷ) . . . 𝜕𝐿1

𝜕(ŷ)𝑢 (ŷ)
...

. . .
...

𝜕𝐿𝑢
𝜕(ŷ)1 (ŷ) . . . 𝜕𝐿𝑢

𝜕(ŷ)𝑢 (ŷ)

ª®®®¬ (4.28)

The second derivative is more challenging as 𝐷2𝐿(y, ŷ) : R𝑢 → (Ru , (Ru ,Ru)) is a function whose
codomain consists of vectors of matrices. The second order derivative for only one instance of the
data set is given as tensor or rank 3 as given in Equation 4.29. By combining all 𝑁 data points, the
problem becomes even more difficult and turns into a 4-tensor. This 4-tensor can be visualized
as a matrix in which the elements itself are given by matrices. This significantly complicated the
problem.

𝐷2𝐿(ŷ) =
©«
©«

𝜕2𝐿1
𝜕(ŷ)21

(ŷ) . . . 𝜕2𝐿1
𝜕(ŷ)1𝜕(ŷ)𝑢 (ŷ)

...
. . .

...
𝜕2𝐿1

𝜕(ŷ)𝑢𝜕(ŷ)1 (ŷ) . . . 𝜕2𝐿1
𝜕(ŷ)2𝑢

(ŷ)

ª®®®®¬
, . . . ,

©«
𝜕2𝐿𝑢
𝜕(ŷ)21

(ŷ) . . . 𝜕2𝐿𝑢
𝜕(ŷ)1𝜕(ŷ)𝑢 (ŷ)

...
. . .

...
𝜕2𝐿𝑢

𝜕(ŷ)𝑢𝜕(ŷ)1 (ŷ) . . . 𝜕2𝐿𝑢
𝜕(ŷ)2𝑢

(ŷ)

ª®®®®¬
ª®®®®¬

(4.29)

Determining this tensor is computationally heavy and should be prevented. Hence, using a multi
output loss function is not desirable. A single output loss function, however, simplifies the problem
significantly. The gradient of one instance is no longer a matrix, but a vector as shown in Equation
4.30. Similarly, the second derivative of the loss function of one instance forms a matrix instead
of a 3-tensor. The second order derivative, 𝐷2𝐿(ŷ), is given as matrix H in Equation 4.31. By
considering all 𝑁 point in the data set, the first order derivative transforms into a matrix, while the
second order derivative transforms into a tensor or rank 3. At this moment is the focus only on one
feature vector as well as one target vector of the data set, later the complete data set is discussed.

G(ŷ) =
(

𝜕𝐿

𝜕(ŷ)1
(ŷ), . . . , 𝜕𝐿

𝜕(ŷ)𝑢
(ŷ)

)
(4.30)

H(ŷ) =
©«

𝜕2𝐿
𝜕(ŷ)21

(ŷ) . . . 𝜕2𝐿
𝜕(ŷ)1𝜕(ŷ)𝑢 (ŷ)

...
. . .

...
𝜕2𝐿

𝜕(ŷ)𝑢𝜕(ŷ)1 (ŷ) . . . 𝜕2𝐿
𝜕(ŷ)2𝑢

(ŷ)

ª®®®¬ (4.31)

For readability, some notation is introduced. G𝑖
𝑚 corresponds to the gradient vector with respect

to approximation ŷ𝑖𝑚 , given as G𝑖
𝑚 = G(ŷ𝑖𝑚). Similarly, H𝑖

𝑚 corresponds to the matrix given in
Equation 4.31 as H(ŷ𝑖𝑚). At the same time is a new tree structure defined based on Equation 4.16:

hm(x𝑖) = w𝑞(x𝑖), 𝑞 : R𝑀 → 1, 2, . . . , 𝑇𝑚 ,w ∈ R𝑇𝑚×𝑢 (4.32)

There is still regularization required for this multi output model. The same regularization term
as in standard XGBoost can be used, since the complexity of the model is still dependent on the
number of leaves. By introduction this regularization term, one can write an approximation of the
loss function for the entire data set as in Equation 4.33.

𝐿(ŷ𝑚) =
𝑁∑
𝑖=1

(
𝐿(y, ŷ𝑖𝑚−1) + G𝑖

𝑚w + 1
2w𝑇H𝑖

𝑚w
)
+ 𝛾𝑇𝑚 + 1

2𝜆| |w| |22 (4.33)

This function can in turn be optimized to determine the global minimum. The loss function is
differentiated with respect to w and set equal to zero, resulting in an optimal leaf and corresponding

4.4. Multi-Target Extreme Gradient Boosting 27

loss function value as given in Equations 4.34 and 4.35, respectively.

ŵ𝑚 = −
(∑

𝑖

H𝑖
𝑚 + 𝜆𝐼

)−1 (∑
𝑖

G𝑖
𝑚

)
(4.34)

�̂�(ŷ𝑚) = −1
2

(∑
𝑖

G𝑖
𝑚

)𝑇
·
(∑

𝑖

H𝑖
𝑚 + 𝜆𝐼

)−1

·
(∑

𝑖

G𝑖
𝑚

)
+ 𝛾𝑇𝑚 (4.35)

A similar split finding algorithm can be created shown in 4.24. This results in a cumbersome
algorithm as for every split, the inverse of a 𝑢 × 𝑢 matrix needs to be determined. This problem
solves itself when matrix H(ŷ) is a diagonal matrix, let Ĥ(ŷ) be the diagonal of the matrix. In this
case one can write the 𝑖-th element of leaf ŵ𝑚 .

ŵ𝑖
𝑚 = −

∑
𝑗(G𝑖

𝑚)𝑗∑
𝑗(Ĥ𝑖

𝑚)𝑗 + 𝜆
(4.36)

The final loss function can be found by summing over all dimensions of the leaves.

�̂�(ŷ𝑚) = −1
2

𝑢∑
𝑖=1

©«
∑
𝑗

(
(G𝑖

𝑚)𝑗
)2∑

𝑗

(
(Ĥ𝑖

𝑚)𝑗
)
+ 𝜆

ª®®¬ + 𝛾𝑇𝑚 (4.37)

Hence, the functions obtained for the multi-dimensional with diagonal matrix behaves similar to
standard XGBoost. This does however not hold for the general case, as given in Equations 4.34 and
4.35. Chen et al. show that a diagonal approximation can be used as an upper bound for the first
and order derivatives (Chen et al., 2015). This simplifies the problem as for all matrices only the
diagonal elements needs to be considered, which results in Equation 4.36. As stated, by taking the
complete data set, is the second order derivative on the complete data set given as an tensor of
rank 3. This tensor can however be simplified to a matrix by taking the diagonal elements of the
matrices as the rows of a new matrix. As for the implementation, one can find how this matrix is
defined in an XGBoost application A.3. The first order derivative is left as a matrix in order to
incorporate all information of this derivative.

The system is defined and only creation of the tree is still required. The procedure is simi-
lar to the standard XGBoost tree creation with the main difference in the vector leaves. An optimal
split is searched in every tree branching step. This is, like the standard cases, done by defining
scoring for every leaf obtained afters branching. Let 𝐼𝑙 denote the instances going to the left at the
split, 𝐼𝑟 the instances going tot the right and 𝐼 the union of both. 𝐼 is the only node to which both
the leaves are connected to. Using Equation 4.37, one can describe the scoring of the left instances
as in Equation 4.38.

𝑢∑
𝑖=1

©«
∑
𝑗∈𝐼𝑙

(
(G𝑖

𝑚)𝑗
)2∑

𝑗∈𝐼𝑙

(
(Ĥ𝑖

𝑚)𝑗
)
+ 𝜆

ª®®¬ (4.38)

The gain of a split can be defined as the sum of the scores on 𝐼𝑟 and 𝐼𝑟 , subtracted by 𝐼 and
complexity parameter 𝑦. This results in the gain function as given in Equation 4.39. This a more
complicated function than in standard XGBoost. It is however still easy enough to be done in
parallel on a GPU, resulting in a faster calculation than only working with the CPU. Besides, the
histogram methods, as described in Section 4.3, can be applied in this situation as well, resulting in
less splits to consider. This in turn results in less computation time. Combining both the histogram

4.5. Performance Metrics and Loss Function 28

method and the GPU usage a significant decrease in computation time is possible.

Gain =
1
2

𝑢∑
𝑖=1

©«
∑
𝑗∈𝐼𝑙

(
(G𝑖

𝑚)𝑗
)2∑

𝑗∈𝐼𝑙

(
(Ĥ𝑖

𝑚)𝑗
)
+ 𝜆

ª®®¬ +
𝑢∑
𝑖=1

©«
∑
𝑗∈𝐼𝑟

(
(G𝑖

𝑚)𝑗
)2∑

𝑗∈𝐼𝑟

(
(Ĥ𝑖

𝑚)𝑗
)
+ 𝜆

ª®®¬ −
𝑢∑
𝑖=1

©«
∑
𝑗∈𝐼

(
(G𝑖

𝑚)𝑗
)2∑

𝑗∈𝐼

(
(Ĥ𝑖

𝑚)𝑗
)
+ 𝜆

ª®®¬
 − 𝛾

(4.39)
The algorithm is similar to the standard case with some alterations, the complete algorithm can be
found in Algorithm 4.

Algorithm 4 Extreme Gradient Boosting of Multi Output Regression Trees

1. Set 𝑓0(x) = arg min
𝛽

∑𝑛
𝑖=1 𝐿(𝑦𝑖 , 𝛽)

2. For 𝑚 = 1, . . . , 𝑀:
(a) Compute Gradients and Hessian’s for every instance of the data set:

G(ŷ) =
(

𝜕𝐿
𝜕(ŷ)1 (ŷ), . . . ,

𝜕𝐿
𝜕(ŷ)𝑢 (ŷ)

)
H(ŷ) =

©«
𝜕2𝐿
𝜕(ŷ)21

(ŷ) . . . 𝜕2𝐿
𝜕(ŷ)1𝜕(ŷ)𝑢 (ŷ)

...
. . .

...
𝜕2𝐿

𝜕(ŷ)𝑢𝜕(ŷ)1 (ŷ) . . . 𝜕2𝐿
𝜕(ŷ)2𝑢

(ŷ)

ª®®®¬
(b) Fit a regression tree ℎ𝑚 on new data set

{(
x𝑖 ,−

∑
𝑗 (G𝑖

𝑚)𝑗∑
𝑗 (Ĥ𝑖

𝑚)𝑗+𝜆

)
: 𝑖 = 1, . . . , 𝑛

}
i. Start with a root node

ii. For 𝑗 = 1, . . .Number of leaves:
A. Determine best performing split:

Gain = 1
2

[∑𝑢
𝑖=1

(∑
𝑗∈𝐼𝑙 ((G𝑖

𝑚)𝑗)2∑
𝑗∈𝐼𝑙 ((Ĥ𝑖

𝑚)𝑗)+𝜆

)
+∑𝑢

𝑖=1

(∑
𝑗∈𝐼𝑟 ((G𝑖

𝑚)𝑗)2∑
𝑗∈𝐼𝑟 ((Ĥ𝑖

𝑚)𝑗)+𝜆

)
−∑𝑢

𝑖=1

(∑
𝑗∈𝐼((G𝑖

𝑚)𝑗)2∑
𝑗∈𝐼((Ĥ𝑖

𝑚)𝑗)+𝜆

)]
− 𝛾

B. Add split to regression tree

(c) Update the function 𝑓𝑚 = 𝑓𝑚−1 + 𝜂ℎ𝑚

3. Return approximation 𝑓𝑀

4.5. Performance Metrics and Loss Function
In Chapter 1 requirements of the approximation are given. These requirements state that 99.5% of
the predictions should deviate within at most 1% or 0.5% for management and reporting purposes,
respectively. A metric to check this can be defined. This metric determines the relative error of a
prediction and if the prediction deviates within the allowed interval, a value of zero is given. If
the prediction deviates more than allowed, value one is given. The sum over all prediction is taken
and the mean is taken, resulting in Equation 4.40 for management requirements. This metric gives
an estimate of the probability of prediction deviating more than allowed, and is thus required
to be smaller than 0.05. Hence, this metric should be minimized. This function is however not
(twice) differentiable and thus cannot be used as the loss function in extreme gradient boosting.
Moreover, even if this metric was differentiable, it would not be the wanted loss function. The
training of an algorithm would stop when every prediction deviates within the allowed intervals.
This does however not mean that the best predictions are obtained. In the worst situation every
prediction could deviate exactly below 1% while better predictions are within reach. This metric is

4.5. Performance Metrics and Loss Function 29

still used to determine whether the requirements are satisfied.

1
𝑁

𝑁∑
𝑖

1 |𝑦𝑖−�̂�𝑖 |
𝑦𝑖

>1 (4.40)

To get more insight in the performance of the machine learning method another metric needs
to be defined. One of the most used metrics is the root mean squared error (RMSE). The RMSE,
as given in Equation 4.41, gives a measure of the absolute error. The RMSE gets large for large
differences between prediction �̂� and 𝑦. This function is twice differentiable and forms a possible
loss function for extreme gradient boosting. Opposite to Equation 4.40, the RMSE does aim to
obtain the best approximations. Even if the approximations are close to their corresponding real
values, the RMSE is unequal to zero and the training can continue to even further improve the
model. This is however more susceptible for overfitting, as stricter predictions are required.√√√

1
𝑁

𝑁∑
𝑖=1

(�̂�𝑖 − 𝑦𝑖)2 (4.41)

A more general loss function as given in Equation 4.42 is however more convenient. Both the first
and second order derivatives of this loss function have a simple form. As well as a loss function
which always tries to improve the results, similar to the RMSE. This loss function is used in Chapter
5 for an one dimensional extreme gradient boosting model.

1
2

𝑁∑
𝑖=1

(�̂�𝑖 − 𝑦𝑖)2 (4.42)

4.5.1. Multi Output Regression
In this research are multiple target variable defined, which means that all metrics and the loss
function need to be extended to be applicable to vectors. Equation 4.40 can be extended such that
the highest difference between two corresponding vector elements is bigger than allowed. This
way, all target variables of one prediction are required to satisfy the requirements on all variables
at the same time. One obtains the metric as given in Equation 4.43 in which | |x| |∞ represents the
∞-norm of vector x given as the largest absolute element of 𝑥 and element wise division is applied.

1
𝑁

𝑁∑
𝑖

1
������ y𝑖−ŷ𝑖

y𝑖

������
∞
>1

(4.43)

The RMSE can be extended to a vector function as well. One needs to subtract the observation
from the approximation and take the 2-norm over the obtained vector. Taking the mean of all the
results, one obtains the RMSE for a vector problem. This metric can be found in Equation 4.44

1
𝑁

𝑛∑
𝑖=1

| |ŷ𝑖 − y𝑖 | |2 (4.44)

In a similar fashion one can extend the loss function to be capable of vector calculations. Again,
taking the 2-norm over the difference results in the desired results as given in Equation 4.45. This
results in convenient first and second order derivatives. This vector loss function is used in Chapter
5 for a multi target XGBoost model.

1
2

𝑛∑
𝑖=1

| |ŷ𝑖 − y𝑖 | |22 (4.45)

5
Results

With a calibrated Lee-Carter model, one can simulate future mortality tables and in turn simulate
the future liability cash flow. This cash flow is constructed out of roughly two parts, the best
estimate liability (BEL) and the solvency capital requirements (SCRs). The SCRs are again divided
into different parts as discussed in Chapter 2. For this research, only three SCRs are considered,
given as mortality, longevity and catastrophe. Based on these values in combination with the
forecast mortality table from the Lee-Carter, input data for extreme gradient boosting (XGBoost) is
obtained. Two different XGBoost approaches are trained on this data set, in order to determine the
approach with the better performance. The first approach trains a model for every target variable
individually. The second approach makes use of a vector target which trains the model for all
target variables at once. Since the main time is spent in creating a training set, the size of such a
training set is minimized.

5.1. Lee-Carter Forecasting
As described in Chapter 3, the Lee-Carter model is calibrated on historical data. Only the Dutch
historical data is relevant for this research as the portfolio consist of products on the Dutch market.
Historical mortality data is publicly available in the Human Mortality Database (HMD) (Human
Mortality Database et al., 2022). HMD is a collaboration between various agencies that collect
mortality data around the world. Not all data, given by this database, is correctly available. Higher
age groups imply debatable values or no values at all, which is a consequence of a small sample
size. For example, observations concerning ages above a hundred years old do not give a realistic
view of the real mortality rates as the group size is relatively small. In most practises are these
undefined rates set equal to one. In this research, this is applied for all ages 110 and above as these
are absent in the HMD. The HMD has collected data of the Dutch population varying from ages 0
to 110 starting from year 1850 up till 2019. To incorporate the correct behaviour of the mortality
rates, this complete data set is taken as input data.

5.1.1. Calibrating the Lee-Carter Model on the Dutch Population
Based on the structure of the data from the HMD, the program in Appendix A.1 is created, which
imports and alters the data as described. There are already (outdated) packages created which
apply Lee-Carter calibrations, the backlog information is however unclear or they apply some
illogical assumptions. Because of this are these packages not used. A simple implementation of
the Lee-Carter model is given in A.1. As given in Chapter 3, the Lee-Carter model is given by:

ln(M𝑥,𝑡) = a𝑥 + b𝑥k𝑡 + 𝜖𝑥,𝑡 𝑥 ∈ [0, 120] and 𝑡 ∈ [1850, 2019] (5.1)

The individual components of Equation 5.1 are calibrated on the data. The derivation of the
individual components is described in Chapter 3.

30

5.1. Lee-Carter Forecasting 31

Mean Logarithmic Mortality Rates
First, vector a of Equation 5.1 is determined. As given in Equation 3.3, vector a is given as the
average of the logarithmic mortality rates. The most natural deaths happen at higher ages, hence
higher ages are expected to have a higher mortality rate than lower ages. Setting age against the
mean logarithmic mortality rate, an increasing line is expected. This is exactly as observed in
Figure 5.1 in which the every point corresponds the mean logarithmic mortality rate for that age.
One can observe the decrease of the logarithmic mortality rates for ages until sixteen. After the age
of sixteen an increase of the logarithmic values is observed, which is as expected. For ages above
one hundred strange behaviour is observed. This is a direct consequence of the data at the HMD
which is unreliable for higher ages. As one observes, male mortality rates are in general higher
than female mortality rates. The values visualised in this figure form vector a of the Lee-Carter
model calibration.

Figure 5.1: The mean logarithmic mortality rates based on the Dutch population. Every point corresponds to the average
mortality rate over the years at that age. The inconsistency around age one hundred follows from insufficient data. A

overall increasing series is observed which is a direct result of improvements in the medical world.

Relative Mortality
Second, vector b of Equation 5.1 is determined. As discussed in Chapter 3 is vector b determined
as the result of using the singular value decomposition as a low rank approximation. It follows
that b is part of an approximation of the original mortality matrix. This implies some uncertainties
in the use of vector b. Elements of vector b describe the impulse of mortality at that age when
the general level of mortality k changes, known as the relative mortality. Hence, it influences
the mortality trend (k) according to whether change at a given age is faster or slower than the
original mortality trend. For a large time horizon, it is expected that all elements are positive due
to medical improvements. Similar as with a can the age be set against the value relative mortality
of that age. The relative mortality for lower ages is expected to be higher than the relative mortality
for higher ages. This is a result from the mortality rates changing less fiercely for higher ages. The
obtained values of b are visualised in Figure 5.2, in which one indeed observes a decreasing series.
Again, inconsistency is observed for ten ages starting at age one hundred. This is a consequence of
the fiercely changing mortality rates at these ages given in the data from the HMD.

5.1. Lee-Carter Forecasting 32

Figure 5.2: Values of relative mortality calibrated on Dutch population data. Every point corresponds to the relative
mortality at that age for both males and females. The values are almost all positive, meaning that the mortality trend

underestimates the real mortality and is corrected by these values. The values for both male and female sum op to one.

Mortality Trend
Lastly, vector k of Equation 5.1 is determined. Similar to vector b, vector k is the results of the
singular value decomposition in combination with a rank one approximation. k has to deal with
the same uncertainties a b. Unlike a and b is k dependent on the year instead of an age. Vector k
represents the mortality trend over the past years. As the medical world has been improved over
the past years, a decreasing mortality trend is expected. A visualisation of the mortality trend is
shown in Figure 5.3, which confirms the expectation. Multiple spikes can be observed. The fist
spike is observed around 1890 in which only the male mortality trend shows a spike. Around 1920
and 1942, one observes spikes in both the male and female mortality trend. These spikes are direct
results of the first and second world war, respectively.

The obtained mortality trends form the basis of the forecast of the mortality rates. The trends
are fitted as ARIMA models using R-package Forecast. Forecast has a method, auto.arima which
aims to find the best fitted ARIMA model for a given time series. This method is used to determine
the best ARIMA model fits for both the male and female mortality trend. Male mortality trend is
given by an ARIMA(0,1,1) model, while the female mortality trend is given by an ARIMA(1,1,1)
model, both have a drift term. The coefficients of the fitted ARIMA models can be found in Table
5.1. As discussed in Chapter 3, the parameter uncertainty of the ARIMA model approximation
for the mortality trend is dominated by the drift. The drift can be interpreted as the slope of the
time series. A larger time horizon results in a more reliable estimate of the drift. A decently large
time horizon is taken as part of the calibration, hence the obtained drift is assumed to be a reliable
estimate.

Ar1 Ma1 Drift
Male -0.4788 -1.1346
Female 0.4342 -0.8532 -1.4856

Table 5.1: ARIMA coefficients for the male and female mortality trend. Both are given as ARIMA(1,1,1) which is as
explained in Chapter 3.

5.1. Lee-Carter Forecasting 33

Figure 5.3: The mortality trend over a period from 1850 until 2019. Both male and female mortality trend are given as a
decreasing series since the medical world has improved over the years. Negatively oriented spikes result from mass deaths
while positively oriented spikes result from developments in medical world. The values of both male and female sum op to

zero.

5.1.2. Forecasting of Mortality Trends
The fitted ARIMA models are used to forecast the mortality trends. First some confidence intervals
of the simulations are determined. The confidence intervals are determined using the bootstrap-
ping method described in Section 3.1. The obtained confidence intervals are shown in Figure
5.4, in which both the eighty and ninety percent confidence interval are shown. The confidence
interval of the forecast female mortality trend is small resulting in more accurate predictions. This
follows from a more stable decrease in mortality trend over the latest years. Because of this, the
trend is more easily predictable.

Based on the forecast mortality trend, the relative mortality and the mean mortality rate a
forecast mortality table can be determined. For every forecast mortality table, the value of the
relative mortality as well as the mean mortality rates stays the same. Hence only the forecast
mortality trend results in differences in the mortality tables. Because of this will only vector k,
the mortality trend, be used as input data in the XGBoost models. A total of 1400 simulations are
created in which 1000 are used to train the algorithm, 200 serve as a testing set and 200 serve as a
validation set. The simulation forecast till year 2191, which gives a reasonable estimate for the
future. A sample of the forecast male mortality trends is shown in Figure 5.5. The further the
prediction horizon increases, the more diverse the predictions become.

5.1. Lee-Carter Forecasting 34

Figure 5.4: Confidence intervals of the forecast of mortality trend k. The left shows the male forecast, and the right shows
the female forecast. Dark blue denotes the 80% confidence interval and light blue gives the 90% confidence interval.

Figure 5.5: Fifty simulations of the male mortality trend. The dispersion becomes more apparent at larger horizons. Most
simulations are decreasing which is a result of the decrease in mortality trend for past years.

5.2. Extreme Gradient Boosting 35

5.2. Extreme Gradient Boosting
The Lee-Carter model is calibrated and simulations can be made based upon the ARIMA model.
The simulations can be again be used to determine one realisation of the BEL and SCRs. These
objects combined form the input for a machine learning method. XGBoost is the machine learning
method used in this report and the working of it can be found in Chapter 4. The features used in
the model consists of a simulation of the male and female mortality trend over a horizon of 172
years. An example of simulations for the male mortality trend is given in Figure 5.5. Based on this
features, one aims to find approximations of the BEL and The SCRs, the target variables. Instead
of predicting the SCRs, the BEL of the stressed situation is predicted. The standard portfolio used
in this research consists of hundred thousand Dutch policy holders of a life insurance. The male to
female ratio is almost one to one with ages varying between 0 and 110. All target variables are
of the same order, namely 107. This observations holds for almost all combinations of mortality
tables used in this research. This plays an important role in the loss function. If the target variables
would be of different order, the target variables with the highest order would be considered first as
the gain is generally bigger for these variables. This could result in good prediction for these target
variables, while the smaller target variables have bad predictions. Since all the target variables are
of the same order, they all have a similar gain and good predictions for all variables are expected.
Since multiple target variables are defined this problem is defined as a multi-output regression
problem.

The standard implementation of XGBoost can, however, only predict one target variable. There
are different modifications of XGBoost possible such that multiple target values can be predicted.
The most straightforward method is by building an XGBoost model for every target variable
individually. Doing so results in loss of coherent characteristics of the target variables. It does,
however, imply a simple approach to solve the problem. Creating a model for every target variable
can however become quite cumbersome. As an alternative to incorporate some of the coherency, a
hierarchy can be defined. Based on this hierarchy, the individual models can be trained in order in
which one includes aspects of the past target variable models. This could result in a more accurate
prediction, especially for the target variables later in the hierarchy. This way, more coherent aspects
are kept to train the model. As performance of this approach is highly dependent on the order of
training, it is not used in this report.

To incorporate all dependency between target variables, independent of order, one can de-
cide to use a multi-target regression tree. This model is discussed in depth in Section 4.4. As
the name suggest, a multi-target regression tree has leaves which represent multiple values at
once, represented as a vector. This does, however, complicates the machine learning. A standard
objective function is not realisable anymore as more dimensions are introduced. Creating a higher
dimensional objective function implies possibilities. In turn, both the gradient and hessian used in
XGBoost change as well. Instead of working with a gradient vector in XGBoost one uses a matrix
in which every column consists of one gradient vector for that target value. Similarly, the hessian
becomes a matrix in which every column consists to the diagonal of the hessian matrix of a target
variable. First, the performance metrics as well as the chosen loss function are discussed. Followed
by the method of parameter estimation for XGBoost. Next, both the individual model approach as
well as the multi-target approach are discussed.

5.2.1. Performance Metrics and Loss Function
Determining the performance of a machine learning method is done by a metric. At least one
metric is required to determine the performance. In this research, there are two metrics defined.
The first metrics determines the percentage of predictions with an error greater than a given
allowed deviation. This is based upon two separate requirements: the management and report-
ing requirement, as introduced in Chapter 1. In order for a model to satisfy the management
requirement, the predictions must in 99.5% of the cases deviate within 1%. Similar, to satisfy
the reporting requirement, the predictions must in 99.5% of the cases deviate within 0.5%. As

5.2. Extreme Gradient Boosting 36

discussed in Section 4.5, this metric cannot be used as loss function since it is not differentiable.
Besides, it will stop minimizing when the requirements are satisfied, while even better predictions
might be within reach. This metric is only determined for a already trained model to determine
fulfillment of the requirements.

Another metric which monitors the performance after every regression tree step needs to be
defined. This method shows the improvements made by adding more regression trees. The
standard root mean squared error (RMSE) is used for this purpose. The RMSE implies more
specific information than the requirement metric as it is only equal to zero if the predictions are
equal to the observations. Hence, the full performance increase can be observed by this metric.
The RMSE is twice differentiable and can thus be used a the loss function. There is however a more
convenient choice. As discussed in Section 4.5, the squared error (SE) multiplied with a constant
has clever first and second order derivatives.

It is possible that only one of the target variables has decent performance, while the others
have worse of even bad performance. To observe such behaviour there is a distinction made
between individual performance and combined performance. The metrics are applied to the
individual target variables predictions as well as the combined predictions. For the management
and reporting requirements this means that all target variable must deviate within the allowed
interval all at the same time for one prediction. The value of the requirement metric on the
combined prediction is always of worse or equal accuracy compared to the individual target
variables. Combining all the metrics allows the performance of the XGBoost models to be evaluated
as well as determining the fulfillment of the requirements.

5.2.2. Parameter Calibration of XGBoost
The performance of a machine learning is highly dependent on the the choice of parameters.
A standard regression tree has multiple parameters such as the maximum depth of the three,
maximum number of leaves etc. XGBoost adds a choice of three other parameters 𝜆, 𝜂 and 𝛾 . 𝜆 is
the regularisation term on weights and is generally taken equal to one. 𝜆 adds a penalty the the
loss function which helps to reduce overfitting. 𝜂 is the learning parameter, which determines how
much every tree weights in the final approximation. Default value of 𝜂 is 0.3 and is in most cases
sufficient. A larger eta implies faster and less accurate improvements while smaller eta implies
slower and more accurate improvements. 𝛾 determines the shallowness of all regression trees in
which higher values result in shallower trees. 𝛾 is used in the split finding to find the best split
which has a least an improvement greater than 𝛾, see Section 4.3. 𝛾 has a default value of zero,
resulting in a regression trees as large as possible. 𝛾 is connected to both maximum depth and
maximum number of leaves as they all regulate the number of splits.

On top of this, one need to specify the maximum number of trees to train. These regression
trees are combined, using 𝜂, into one predictive model. A small 𝜂 is generally accompanied with a
large number of trees and vice-versa. Besides, XGBoost has multi process capabilities. This value
gives the number of CPU cores available for the training. This value is always set equal to number
maximum available cores on the device.

To determine the optimal combination between all parameters, GridSearchCV is used (Pedregosa
et al., 2011). GridSearchCV applies cross validation to the input data, while trying different
combinations of parameters. The options for the parameters are user input and can be defined by
some interval. This method of parameter calibration is used to determine the correct combination
of parameters for an XGBoost model. GridSearchCV is, however, a computationally heavy method,
depending on the number of times cross validation is applied as well as the number of parameter
combinations. The calculation time increases as the number of folds increases. Instead of applying
𝑘-fold cross validation parallel with GridSearchCV, it is possible to do delay the cross validation.
First, the optimal parameter combination on the complete training set is determined using the
different combinations considering only a 2-fold cross validation. Second, the optimal parameter

5.2. Extreme Gradient Boosting 37

combination is in turn used for 𝑘-fold cross validation to determine the performance on unseen
data. This method requires a lot less computation time, while not altering the outputs significantly.

When determining the optimal combination of parameters for the multi-target regression
approach, one needs a similar structure. Parameter calibration of the multi-target approach can
be found in Algorithm 5. As this is a self created implementation, cross validation is completely
separated and not applied within the parameter calibration. First the best performing parameter
combination is determined. 𝑘-fold cross validation is in turn applied on the machine leaning
model with this parameter combination.

Algorithm 5 Parameter Calibration for Multi-Target XGBoost (Based on GridSearchCV: (Pedregosa
et al., 2011))

1 Define possible values for 𝜆, 𝛾, 𝜂 and number of trees given in arrays Λ, Γ,Ω and 𝑁 ,
respectively.

2 For 𝜆 ∈ Λ:
a For 𝛾 ∈ Γ:

For 𝜂 ∈ Ω:
For 𝑛 ∈ 𝑁 :
i Train Multi-Target XGBoost model on data set

ii Determine performance:
(1) RMSE
(2) Management requirement
(3) Reporting requirement

3 Return best performing parameter combination

5.2.3. Individual XGBoost Models
The first prediction approach is by defining individual models for every target variable. As stated,
this does not take the dependency between target variables into account. Four independent models
need to be trained, one for the BEL and three for the stressed BEL corresponding to the three
different SCRs. Every model needs at least one metric as well as one loss function. As discussed in
Section 4.5, the standard squared error of the residuals is a convenient loss functions. Furthermore,
this function is a build-in loss function in the XGBoost package. The loss function is chosen
independent of the target variable and can thus be applied to every individual model.

𝐿 : 1
2

𝑛∑
𝑖=1

(�̂�𝑖 − 𝑦𝑖)2

Both the first derivative and the diagonal of second derivative matrix are easily determinable and
have a convenient form. The loss function is convex and can thus be minimized to approach the
global minimum.

𝜕𝐿

𝜕�̂�𝑖
= �̂�𝑖 − 𝑦𝑖

𝜕2𝐿

𝜕�̂�2
𝑖

= 1

As stated in 4.5 is the RMSE a good choice for the metric and will therefore be used for every
model. The reporting and management metrics are in turn only used to determine the satisfaction
of the requirements.

Parameter Choice
Every model needs to be individually treated for parameter calibration. GridSearchCV is applied
on every target variable in combination with all training features. The possible values for the

5.2. Extreme Gradient Boosting 38

parameters are given in Table 5.2, in which the best performing parameter combination is given as
well. Every individual model turns out to have the same parameter combination as given in Table
5.2. This combination of parameters is used to train the individual models. The value of 𝛾 is not
of significant size for the starting situations as the starting data set consists of target variables of
order 107. Hence in the starting phase, every tree is not limited by 𝛾. Later on in the process, the
improvements become smaller and 𝛾 start to play a more important role in creating the tree. The
max depth of the tree turns out the be relative small. The possibility of overfitting is decreased
in this way as the threes do not have that many leaves. Since the maximal depth of the trees is
relative small, more threes are required to get a decent prediction, which is exactly as observed in
Table 5.2. This does however influence the optimal choice op 𝜂. As there are many small threes to
train on, the learning parameter needs to be smaller than the standard case, resulting in a more
conservative approach. The value of 𝜆 is taken as the standard value given by XGBoost. On top
of this parameter combination, an early stopping criterion is added. After 25 iterations without
improvements, training is terminated and the so far calibrated model is returned. Besides, split
finding takes place using the histogram method described in Chapter 4.

Parameter Parameter Options Value
𝛾 25, 50, 100, 500 50
𝜆 0.5, 1 1
𝜂 0.01, 0.02, 0.03, 0.3 0.02
Max depth 2, 3, 4, 5, 6 4
Number of trees 800, 900, 1000, 1100 900

Table 5.2: Best performing parameters for all individual trained models. These values are obtained using GridSearchCV
where all parameter options are as given.

Prediction
As stated in Chapter 1, obtaining the input data for machine learning is a computationally heavy
and above all time consuming process. Hence to get the best time improvements, one needs
to know the minimal size of the training set required to satisfy the management and reporting
requirements as given in Chapter 1. To get an estimate of a decent size of the training set, the
training size is taken as a variable. For every training size all individual models are trained and
the performance is determined. The RMSE estimated on the training set of different training
sizes is shown in Figure 5.6 for all target variables. The training RMSE is an increasing series,
which is a direct result of overfitting at the smaller training sizes. If the size of the training set is
small, the performance on the training set is biases as it can simply ‘remember’ the data set. This
does however changes around 650, in which the RMSE stagnates. Increasing the size does not
significantly change the performance. As there is still some randomness within XGBoost, there is a
lot of fluctuation visible in Figure 5.6. Repeating this setup multiple times and taking the average
implies more stable lines with smaller variance.

5.2. Extreme Gradient Boosting 39

Figure 5.6: The RMSE of training data plotted versus training set size (multiples of 10 only) in which every target variable
has an individual model. For the BEL and all three SCRs one observes an increase up till a size of 650. After 650 stagnates

the RMSE for all target variables.

The real performance should, however, be estimated on the test set instead of the training set. This
test set is taken equal for every model and is independent on the size of the training set. The test
set consists of 200 observations which are never used in the training phase. Because of this, it is
expected that the RMSE on the test set is higher than the RMSE on the training set. Besides, it is to
expect that the performance on the test set increases as the size of the training data set increases.
One should however be careful not to underfit, it the data becomes too diverse, XGBoost is not
able to create a generic approximation. Instead it will give a general value such as the mean. In
Figure 5.7, one observes indeed a decreasing RMSE as the size of the training set increases. The
same stagnation is observed starting from 650.

5.2. Extreme Gradient Boosting 40

Figure 5.7: The RMSE of test data plotted versus training set size (multiples of 10 only) in which every target variable has
an individual model. For the BEL and all three SCRs one observes an decreasing series up till a size of 650.

Both the management and reporting requirements needs to be checked to accept or decline the
model. The deviation of every data point in the test data set is determined. As it is required that
all predicted target variables of once instance should satisfy the requirements at the same time, the
maximum of the individual deviations is taken. The percentage of errors deviating more than the
allowed inaccuracy is shown in Figure 5.8. The management requirements (1%) are satisfied at a
training set of size 650, which is where the RMSE stagnates. The reporting requirements (0.5%) do
however not reach the desired error of half percent. Instead, it converges to two and a half percent
and no further improvement in observed. One could increase the training set to observe possible
further improvements. As the improvements are not that big anymore after a size of 650, there is
no direct need to do so.

Cross Validation
Cross validation is applied in order to test the ability of XGBoost to predict unseen data. A 𝑘-fold
cross validation is used. In general, 𝑘 is chosen between 5 and 10. As lower value have higher
bias, a 10-fold cross validation is applied. For every training size, 10 times a training set is defined
consisting of 9 folds, while the performance is determine on the remaining fold. The performances
of the individual folds are shown in Figure 5.9a, in which similar behaviour is observed for every
fold. Moreover, in terms of the RMSE, the individual folds exhibits behavior similar to the entire
training set, whose RMSE is plotted in Figure 5.7 Hence, according to the RMSE, the model
performance is independent of the choice of train and test data. Figure 5.9a only shows the RMSE
of the BEL, the other target variable imply similar figures and are therefore omitted. A similar
test can be constructed for the management and reporting metric as shown in Figure 5.9b for
the management metric. It shows that the percentage of of predictions deviating more than one
percent behave similar for every fold. Hence, based on these metrics one can confirm that the
model performance is independent of the unseen data. Moreover, the performance is equally as
good for all of the 𝑘 folds.

5.2. Extreme Gradient Boosting 41

Figure 5.8: Percentage of test set predictions deviating more than 5%, 2%, 1% and 0.5%, respectively. For every target
variable is one model trained and these are combined to one final predictor. Two black dotted lines are shown, one

corresponding to 5% and the other to 0.5%. When the lines stay below the black line at 5%, 95% of the predictions varies
within either 5%, 2%, 1% and 0.5%.

(a) RMSE metric on target variable BEL (b) Reporting metric on all target variables combined

Figure 5.9: 10-fold cross validation of the individual trained model. Similar behaviour is observed for every of the fold.
Only BEL is shown as the other target variables imply similar results.

5.2. Extreme Gradient Boosting 42

5.2.4. Combined XGBoost Model
As a second modelling approach, a combined model is defined. This model tries to predicts all
target variables at the same time while only training the model once. This method does take
possible dependencies between target values into account. XGBoost does not have a standard
implementation for multi-target regression, hence a completely new design is created in Section
4.4. It turns out that, in order to be solvable, the loss function must have a one-dimensional
codomain. Since, the leaves of a tree are vectors, a multi-dimension loss function is needed to
optimize as well as a multi-dimensional metric. The loss function is taken as a generalization of
the one-dimensional standard squared of residuals. This loss function is minimized to train the
model.

𝐿 : 1
2

𝑛∑
𝑖=1

| |ŷ𝑖 − y𝑖 | |22

As discussed in Section 4.4 the second order derivative has an upper boundary defined by the
diagonal of the matrices. Hence only the diagonal elements are considered. Just like standard
gradient boosting, the first and second order derivative are convenient. Note, both the first and
second derivative are vectors in this case.

𝜕𝐿

𝜕ŷ𝑖
= ŷ𝑖 − y𝑖

𝜕2𝐿

𝜕ŷ2
𝑖

= 1

On top of the higher dimensional loss function, higher dimensional metrics are required. As
discussed in Section 4.5 the RMSE can easily be extended to a multi-dimensional variant. Similarly,
for the management and reporting requirements, the vector leaves are considered as input instead
of the individual target variables. It is expected that the combined model has lower RMSE and a
better performance according to the management and reporting metrics.

Parameter Choice
Similar to the individual models are the XGBoost parameters determined by testing different
combinations, following Algorithm 5. The options for the parameters are the taken the same
in the individual model case, as can be seen in Table 5.3. The optimal performing combination
of parameters is almost identical to the individual models in which only the number of trees
for the combined model is larger than in the individual models. This increase implies a slower
convergence than the individual models. Thus the combined model needs more iterations to
approach the global minimum in comparison to the individual models. It is observed, later in
this chapter, that the later trees do not add that much information to the approximation. Because
of this, the same early stopping criterion in introduced as used in the individual models. If the
performance does not improve in 25 consecutive trees, training is terminated, and the current best
iteration is returned. Besides, split finding takes place using the histogram method described in
Chapter 4.

Parameter Parameter Options Value
𝛾 25, 50, 100, 500 50
𝜆 0.5, 1 1
𝜂 0.01, 0.02, 0.03, 0.3 0.02
Max depth 2, 3, 4, 5, 6 4
Number of trees 800, 900, 1000, 1100 1000

Table 5.3: Best performing parameters for all individual trained models. These values are obtained using Algorithm 5
where all parameter options are as given.

5.2. Extreme Gradient Boosting 43

Prediction
Just as with the individual model is one interested in the minimal training size which satisfies the
requirements. To do so, the influence of the training size on the performance is determined. For
every size of the training set, ranging from 100 to 1000, is the RMSE on the training set determined.
In contrast to the individual model approach, only one RMSE value is determine for every training
size as the vector output is taken as one prediction, see Section 4.5. The results are visualized in
Figure 5.10, in which similar value are observed as with the individual models. Again, overfitting
is visible for too small training sets. The process stagnates around 700, which is later than the
observed in the individual models. The fluctuations are again the result of randomness of XGBoost
and can be eliminated by repeating this procedure and taking the average value for every training
set size.

Figure 5.10: The RMSE of training data plotted versus training set size (multiples of 10 only) in which all target variable are
considered at once. For the BEL and all three SCRs one observes an increase up till a size of 650. After 650 stagnates the

RMSE for all target variables.

The performance on unseen data gives, however, more insight in the performance of the model.
An independent test set is defined, consisting of 200 observations. This test set consist of the same
observations used for the individual models. The RMSE values of this test set are determined for
all training sizes and are shown in Figure 5.11. In this figure is a decreasing series observed, which
stagnates around 650. The values of the combined model are, in most cases, smaller than the RMSE
of the individual models. This is consequence of the dependence between the target variables. The
target variables are highly correlated as they are all calculated in a similar manner with the same
input. For example, the stressed BEL corresponding to the mortality SCR is determined using the
same mortality table multiplied with a constant, see Chapter 2. Hence, one can conclude that the
RMSE performance of the combined model is better than the the performance of the individual
models on the unseen data.

5.2. Extreme Gradient Boosting 44

Figure 5.11: The RMSE of test data plotted versus training set size (multiples of 10 only) in which all target variable are
considered at once. An decreasing series up till a size of 650 is observed. After 650 stagnates the RMSE.

While the RMSE metric shows promising results, the requirement metrics show otherwise. The
management requirements are already satisfied for a training size of 450, which is an improvements
on the individual models. The reporting requirement are, however, never satisfied as seen in
Figure 5.12. Starting from a training size of 600 does 95% of the test set vary within 0.5%. Similar
to the individual models do the reporting metric converge to an error of 2.5%. At this point, 97.5%
of the test set varies within 0.5%, which is not accurate enough. The convergence to this point is
faster than with the individual model approach. Later on, the size of the training set is increased
further to observed possible fulfillment of the reporting requirements. The combined model has a
better performance for a smaller training set in contrast to the individual trained models. As the
training size increases, the difference are no significant anymore. One can, however, observe a
slightly better performance of the combined model.

5.2. Extreme Gradient Boosting 45

Figure 5.12: Percentage of test set prediction deviating more than 5%, 2%, 1% and 0.5%, respectively. All target variables
are trained in one model. Two black dotted lines are shown, one corresponding to 5% and the other to 0.5%. When the

lines stay below the black line at 5%, 95% of the predictions varies within either 5%, 2%, 1% and 0.5%.

A 10-fold cross validation is applied to ensure correctness of the model. For every fold is the
performance on the test set shown in Figure 5.13. Only the RMSE of the stressed BEL corresponding
to catastrophe SCR is shown as the other target variables show similar results. It can be seen that
behaviour is independent of the fold. The reporting requirement shown in Figure 5.13b have even
better performance. Taking the average of all the folds, one even fulfils the reporting requirement.
Based on these metrics one can confirm that this model performance is independent of the unseen
data.

(a) RMSE metric on SCR catastrophe (b) Reporting metric on all target variables combined

Figure 5.13: 10-fold cross validation of the combined model. Similar behaviour is observed for every of the fold. Only SCR
catastrophe is shown as the other target variables imply similar results.

5.3. Model Comparison 46

5.3. Model Comparison
Both modelling approaches are analysed and based on the performances a better approach can be
determined. Even though the errors are of equal order does the combined model have a better
performance for smaller training sets and a slightly better performance overall. Hence, this model
is so far preferred over training an individual model for every target variable. The main purpose
of machine learning is a decrease in calculation time, hence calculation time is another import
aspect. Creating the complete training set, for a portfolio consisting of roughly hundred thousand
objects, took about fifteen minutes per calculation. A total time of ten days are required to create
the train and test data. Hence, if one needs even more calculations, it becomes even more time
consuming. By considering only 650 tables, only halve the initial time is required, already resulting
in a decrease by a factor two. Training all the individual models to create Figure 5.7 took well
above one hour, in which the management requirement are satisfied around a training set of size
650. The partition of time over the individual models can be found in Table 5.4. Besides this time
estimate, it might be more important to get the duration of only one time training on a complete
training set. For this purpose, a training size of 650 is chosen, as it is observed that management
requirements are satisfied from this point. Hence, training the model on a set of 650 observations
has a total duration of five days, this includes the time to obtain the data.

Model Complete Process Duration in Seconds Duration With Training Size 650
BEL 1138 11.0
SCR Mortality 1123 11.0
SCR Longevity 1032 9.8
SCR Catastrophe 1010 10.0
Total 4301 41.7
Average 1075 10.4

Table 5.4: Duration of every model used in the individual model approach. The values are rounded to nearest second or
tenth of a second to ensure a good signal to noise ratio.

A similar time observation can be formed for the the combined model. Creating Figure 5.11 took a
little less than an hour, which is already an improvement. The total duration as well as a duration
for only one training set is can be found in Table 5.5. Again, training the model on a set of 650
objects, has a total duration of five days, including the time to obtain the data. There is a reduction
of fifteen minutes, which is a significant different on one hour, but not on five days. Based on this
observation and the slightly better performance, the combined model is the preferred modelling
approach. This model is highly dependent on the portfolio used to determine the input BEL and
SCRs. To determine whether the reporting requirements are satisfied at any training size, the size
of training size needs to be extended. On top of this, to get insight in the performance on other
portfolio’s, the model should be applied to other portfolio’s as well.

Complete Process Duration in Seconds Duration With Training Size 650
3384 30.1

Table 5.5: Duration of the combined model approach. The values are rounded to nearest second or tenth of a second to
ensure a good signal to noise ratio.

5.4. Extending The Model
The model can be extended in multiple ways. One of the extensions is by using different portfolios,
this is however difficult as the model is trained on the BEL and the stressed BELs, corresponding
to SCRs, specific to one portfolio. Another way is testing the model with a larger training set. In
this way, the performance on the reporting requirements can be determined. The calculation time
can be further reduced by using the GPU of a device in the machine leaning step. This is nice to
see, it is, however not relevant on a total time of five days.

5.4. Extending The Model 47

5.4.1. Different Portfolios
The discussed models are optimized for a specific portfolio and can therefore not one to one be
applied on other portfolios. This portfolio results in values of the BEL and SCRs, which in turn are
used as training material for XGBoost, hence the dependence on the portfolio. Portfolios consisting
of similar products and quantities, do however behave well with a predictive model trained on
each other. There is a thin line between similar portfolios as there are a lot of things to consider. If
two portfolio consists of the same products, while the characteristics of the policy holders differ a
lot, the model does not perform well on the new portfolio. If the characteristics however have a lot
of overlap, the model performances with a similar accuracy on both portfolios.

Over a small time interval there a not that many changes in a portfolio. The main changes
consists of some introductions of new policyholder and some terminations of contracts. Depending
on the kinds of products present in the portfolio, this is more realisable than others. Hence, a
portfolio of only one insurer can be used while only training the model once. An example of
three different portfolios can be found in Figure 5.14. One of the lines represents the standard
portfolio, while the other two have an increase or decrease of two percent of the policy holders.
The removed policy holders from the smaller portfolio are randomly chosen. Similarly, to create
the bigger portfolio, a random sample is taken and some randomness is added to the characteristics
of the policy holder. These ‘new’ policy holder are added to the standard portfolio to create the
bigger portfolio. It is observed that in this case, the performance is similar and the management
requirements are always satisfied for training set of size 800 and larger. The standard portfolio
as well as the smaller portfolio satisfy the management requirements from 600. The reporting
metrics behave similar for all three portfolio’s.

Figure 5.14: Management and reporting requirements on three different portfolios. The model is trained only on the
standard portfolio (green), while the other two portfolios differ from the standard portfolio by 2%. The dashed lined give

the management requirements and the full lines give the reporting requirements.

If one has large differences in portfolios, this becomes more complicated. A model, calibrated on
largely different portfolio, cannot be used to make decent predictions. A completely independent
and different portfolio is used to show this. This different portfolio consists of the same kind of
insurance products, the premium holder characteristics are however changed drastically as well
the occurrences of some products. For an example of bad performance on a different portfolio,
one can consider Figure 5.15 in which performance is assessed on a completely different portfolio

5.4. Extending The Model 48

than the portfolio used to train the model. If one needs to calculate with a different, independent
portfolio, one needs to fit a new model based on that portfolio. On top of that, it might be beneficial
to re-estimate the parameters of XGBoost to obtain a more accurate fit. A new training set needs to
be defined, consisting of some observation of the BEL and SCRs. Although, creating new training
data is time consuming, it is less time consuming than determining the BEL and SCR for an even
bigger set. Creating a more generic model would make the training more intensive as there are
more features to work with. On top of this, to create a decent performing model, a larger training
size is needed.

Figure 5.15: Performance of trained model on an different portfolio. While the management of the standard portfolio are
satisfied at some time, does other portfolio never fulfill the management requirements. Even worse performance is

observed for the reporting requirements.

5.4.2. Larger Training Set
The reporting requirement states that in 99.5% of the cases, the prediction should deviate within
0.5% of the observed value. As observed is this requirements not satisfied for training size smaller
or equal than one thousand. To check if the reporting requirements are ever satisfied, a larger
training set is needed. Determining more BEL and SCRs is computationally heavy but should be
considered. To this end, a smaller portfolio is defined, consisting of half of the original portfolio.
Determining the BEL and SCRs for this smaller portfolio takes about halve as long and the time
required for creating a larger training set is therefore greatly reduced. By creating the new training
set with size three thousand and only considering the reporting requirements, one obtains Figure
5.16. It can be seen that the reporting requirement is satisfied starting with a training size of 1750.
This is almost three times as much as for the management requirements.

A similar study is applied on the individually trained models. Separately, the satisfy the
reporting requirements around 1750 as well. Combining the individual models to one predictor
implies however way less accurate predictions. Just a the training size reaches size 3000 are the
reporting requirements satisfied. Considering this, one observes the real power of the combined
model.

5.4.3. GPU Calculations
The calculation time of XGBoost can be further reduced by using the GPU of a device. As stated in
Chapter 4, XGBoost has a built in method which allows use of the GPU. The GPU is used in split

5.5. Performance on Optimal Size 49

Figure 5.16: Combined model trained on different training sizes versus the reporting performances. At a training size of
1750 are the reporting requirements always satisfied.

finding for the regression tree as this consists of simple operations. Using a NVDIA GEFORCE RTX
3080, the calculation time is reduced by a factor ten, which is a decent improvement. Increasing the
number of trees, while simultaneously decreasing learning rate 𝜂 results in a more conservative
approach. This in turn requires more split findings and the GPU could have even more impact.
For this research, the GPU is not used as training the model and predicting with this model takes
less than a minute, which is already a huge improvement. Besides, the XGBoost GPU usage is
only allowed for NVDIA GPU’s as the code is written in CUDA, which only communicates with
NVDIA GPU’s.

5.5. Performance on Optimal Size
As discussed in Section 5.3, the better performing model is chosen as the model which predicts
every target variable at once. It is seen in Figure 5.12 that starting from a training set of size 600,
the management requirements are satisfied. To ensure correctness, a larger training set of size
650 is taken as the correct size for management purposes. Similar, one observes in Figure 5.16
that a training size of 2000 is large enough for reporting requirements. From now on, the focus is
on management requirements. Reporting requirements can be discussed in similar fashion, it is
however more computationally heavy.

There is already a model trained with a training size of 650, as can be seen in Section 5.2.4.
Here are different training sizes compared based on their performance. The parameters used in
Section 5.2.4 are however biased as they are determined using the complete training set of 1000
observations. If an insurer only creates a training size of 650, one can observe different parameters
used in XGBoost. Based on the training set, correct parameters can be determined which are not
biased. For the main portfolio used in this research, there is a slight difference in the best XGBoost
parameters. The best performing parameters combination is given as in Table 5.6. The number of
trees is decreased, which is a direct result of the smaller training set. As there are less observations
to train on, a smaller error is more easily obtained. Since the smaller error does not improve much
anymore after some time, a smaller number of trees is allowed.

5.5. Performance on Optimal Size 50

Parameter Value
𝛾 50
𝜆 1
𝜂 0.02
Max depth 4
Number of trees 800

Table 5.6: Best performing parameters for a training size of 650. These values are obtained using Algorithm 5.

Based on this parameter choice, the model can be trained. It turns out that after 717 iterations,
the error does not decrease significantly any further and the model terminates. All the remaining
observations are combined into one test set of which a scatter plot is shown in Figure 5.17. This
figure only shows the performance of the BEL as the other target variables have similar behaviour.
Of the 550 test sample are there 549 within the management requirements, resulting in a correctness
of 99.8% which is as allowed. The reporting requirements are, however, only satisfied by 539 of
predictions, which is a correctness of 98%. Hence, as expected are the management requirements
perfectly satisfied at a training size of 650 while the reporting requirement are not satisfied.
Training this model and prediction the complete test data took in total around 30 seconds.

A similar test can be applied to a training set of size 1750. The optimal XGBoost parameters
differ in this case only in the number of trees. The number of trees increases to 1250, while the
other parameters stay the same. The management requirements give in this case a more narrow
scatter plot. The reporting requirement are satisfied as well at this training size and a similar
scatter plot as in Figure 5.17 can be created.

Figure 5.17: Scatter plot of the BEL predictions of the model trained on a training set of size 650. The management and
reporting requirements are depicted as red and green lines, respectively. Every point corresponds to a predicted BEL as
well as the observed BEL. Almost all point are within the management and reporting requirements. Similar plots can be

made for SCR mortality, longevity and catastrophe.

6
Discussion

Insurers are required to have sufficient buffers to be able to meet financial obligations that result
from their portfolios. The minimal value of these buffers can be determined using one of two
methods. Insurers can use the standard model and one is allowed to create an internal model as
discussed in Chapter 2. An internal model can be made more specific for the current situation
of the insurer. Creating an internal model is, however, difficult due to all the regulations of
the European Insurance and Occupational Pensions Authority (EIOPA). Hence, applying the
prescribed standard model is a choice often made by insurers. The standard model becomes
computationally heavy as a portfolio increases in size, resulting in a calculation time om tens of
minutes. The standard model calculates with only two mortality tables, one for the male policy
holders and one for the female policy holders. Hence, for every combination of forecast mortality
tables is only one possible future cash flow obtained. More combinations of mortality tables are
required get a reliable estimate of the future cash flow and a corresponding variance. Computing
the cash flow for multiple combination of tables results in a even more computationally heavy and
above all computationally time consuming process. Computing the standard model for thousand
different combination of mortality tables on a portfolio of size one hundred thousand takes roughly
five whole days.

In this report, the possibility to use XGBoost as an alternative to determining all cash flows
is explored. Instead of considering a complete cash flow, only the parts dependent on a mortality
table are considered, given as the best estimate liability (BEL) and the solvency capital requirements
(SCR) for mortality, longevity and catastrophe risk. Forecast mortality tables are needed to deter-
mine future values of the BEL and SCRs. Mortality rates are forecast using the Lee-Carter model
calibrated on historical mortality data. The forecast mortality tables are used to determine the corre-
sponding BEL and SCR. The combination of this data is in turn used as input of an XGBoost model.
Two different modelling approaches of XGBoost are compared. First an individual model is trained
on each target variable. Secondly, a combined model is trained, which trains on all target variables
at the same time. This second approach takes possible dependence between target variables into
account. The main reason to consider machine learning is the reduction of computation time. As
the most time is lost by creating a training set, one tries to minimize the number of training samples.

In Chapter 5 the size of the training set is taken as a variable and for each size is the root
mean squared error (RMSE) determined. The increase in performance of the individual models
stagnates around a training size of 650. Similar behaviour of the combined model is observed,
in which again around 650 the performance increase stagnates. The combined model approach,
however, attains a better performance. This is especially the case for smaller training sizes. Hence,
the combined approach is taken as the better performing model. If one is, however, only interested
in only one target variable at a time, creating one individual model is faster. The performance of

51

6.1. Recommendations for future research 52

one such an individual model is almost identical to the combined model for only one target.

Multiple requirements need to be satisfied in order to call the XGBoost model application a
success. First, the management requirement state that in 99.5% of the cases, the prediction should
be within 1% of the real value. Similar, the reporting requirements state that in 99.5% of the
cases, the prediction should deviate within 0.5% of the real value. The management requirements
are already satisfied for a training set of size 650 as seen in Chapter 5. This model takes only 30
seconds in which the model is trained as well as the predictions on the remaining data are made.
Hence, with a training size of only 650 observations, thousands of cash flows can be predicted.
By training of 650 observations and predicting 650 instances, the calculation time is decreased
by roughly 50%, as (only) 650 cash flows are determined. Insurers could extend the instances to
predict even further to for example 6500, in which the training set still consists of 650 observations.
In this case a time reduction of 90% is achieved while still satisfying the management requirements.
Hence, by introducing more instances to predict, a higher time reduction is achieved. This is a
huge decrease and is worth considering for insurers.

In order to satisfy the reporting requirements for the combined model, one has to use a training
set of at least size 1750 as seen in Chapter 5. This is almost three times a large as for management
requirements which means creating the training set takes three times as long. This still results in a
huge decrease in computation time for a large number of instances to predict. Determining the
cash flow for reporting purposes is happening at lower frequencies than management purposes, for
example yearly against monthly. Because of this, the higher number of standard model calculations
is partly justified and acceptable.

To conclude, one can conclude that XGBoost in combination with Lee-Carter simulations re-
sults in good approximations of the cash flows while greatly reducing the computation time. Based
on the higher number of predictions obtained this way, a better estimate of the future cash flow
can be formed.

6.1. Recommendations for future research
In order to be usable for reporting of insurers, this model has to be approved by the regulatory
authorities. The regulatory authorities are, however, sceptical of randomness within machine
learning. To be used as an alternative to the standard model, one does need more and extensive
testing. This research is trained on only one portfolio of a decent size. It is however unclear what
would happen if the portfolio becomes twice as big or even bigger. This makes a nice follow up
research. One could for example in which one could consider different kinds of machine learning
such as a neural network as well.

The data used in this research only considers Dutch population data. In real life applications, one
might want to consider immigration and emigration as well as mortality data of neighbouring coun-
tries. Based on this data a more reliable mortality table can be created resulting in better estimates.
Besides, event such as World War I, World War II and corona should be researched to get an even
better mortality trend. Considering all these aspects, the mortality tables created are closer to reality.

Creating a more generic model which works for multiple portfolios would be another nice
follow up research. A portfolio can be characterize based on the characteristics of the policy
holders. For example, one could create groups based on gender, age, premium, frequency etc.
These characteristics can be added as features in the training data. This way a generic model is
created, which can predict for all portfolios. This is however an extremely computationally heavy
problem as characterizing a portfolio in small enough parts will result in lots of features. Besides,
way more training data needs to be available to get a well performing model.

In this research are only the BEL and three SCRs considered, there are however more SCRs
defined by the standard model. The models can be extended in such a way that more SCRs

6.1. Recommendations for future research 53

are considered as target variables. This does however require more features, such as equity
information. This complicates the model further but also creates more possibilities for research.

The GPU capabilities of XGBoost are only available on histogram feature selection as discussed in
Chapter 4. The histogram method is an approximation method introduced to be time efficient,
while the exact method is time inefficient but creates a better model. The GPU capabilities of
XGBoost can be extended to use for the exact method, which is a research subject on its own.

References
Bentéjac, C., Csörgő, A., & Martınez-Muñoz, G. (2021). A comparative analysis of gradient boosting

algorithms. Artificial Intelligence Review, 54, 1937–1967.
Börger, M. (2010). Deterministic shock vs. stochastic value-at-risk an analysis of the solvency

II standard model approach to longevity risk. Blätter der DGVFM, 31, 225–259. https:
//doi.org/10.1007/s11857-010-0125-z

Castellani, G., Fiore, U., Marino, Z., Passalacqua, L., Perla, F., Scognamiglio, S., & Zanetti, P. (2018).
An investigation of machine learning approaches in the solvency II valuation framework.
Available at SSRN 3303296.

CEIOPS. (2009). CEIOPS’ advice for level 2 implementing measures on solvency II: Standard formula
SCR - article 109 c life underwriting risk. https://register.eiopa.europa.eu/CEIOPS-
Archive/Documents/Advices/CEIOPS-L2-Final-Advice-on-Standard-Formula-Life-
underwriting-risk.pdf

CEIOPS. (2010). CEIOPS’ advice for level 2 implementing measures on solvency II: SCR standard
formula article 111(d) correlations. CEIOPS, 1–57. https://register.eiopa.europa.eu/
CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Advice-Correlation-Parameters.
pdf

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
https://doi.org/10.1145/2939672.2939785

Chen, T., Singh, S., Taskar, B., & Guestrin, C. (2015). Efficient Second-Order Gradient Boosting for
Conditional Random Fields. In G. Lebanon & S. V. N. Vishwanathan (Eds.), Proceedings
of the eighteenth international conference on artificial intelligence and statistics (pp. 147–155).
PMLR.

DNB. (2022). Solvency II: General notes. Retrieved April 22, 2022, from https://www.dnb.nl
Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank.

Psychometrika, 1(3), 211–218.
EIOPA. (2009). Directive 138/2009/ec (solvency II directive) [https://www.eiopa.europa.eu/rulebook-

categories/directive-1382009ec-solvency-ii-directive_en].
EIOPA. (2021). Insurance stress test 2021 technical specifications. EIOPA, 1–39. https://www.eiopa.

europa.eu/system/files/2021-05/2021-stress-test-technical-specifications-v1.1.pdf
Fiore, U., Marino, Z., Passalacqua, L., Perla, F., Scognamiglio, S., & Zanetti, P. (2018). Tuning a deep

learning network for solvency II: Preliminary results. Mathematical and Statistical Methods
for Actuarial Sciences and Finance: MAF 2018, 351–355.

Guo, H. (2021). What are tensors exactly? World Scientific.
Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning:

Data mining, inference, and prediction (Vol. 2). Springer.
Human Mortality Database, Max Planck Institute for Demographic Research (Germany), University

of California Berkeley (USA), & French Institute for Demographic Studies (France). (2022).
Retrieved June 8, 2022, from https://www.mortality.org

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With
applications in R. Springer.

Kleinow, T., & Richards, S. J. (2017). Parameter risk in time-series mortality forecasts. Scandinavian
Actuarial Journal, 2017(9), 804–828. https://doi.org/10.1080/03461238.2016.1255655

Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting us mortality. Journal of the American
statistical association, 87(419), 659–671.

Mirsky, L. (1960). Symmetric gauge functions and unitarily invariant norms. The quarterly journal of
mathematics, 11(1), 50–59.

54

https://doi.org/10.1007/s11857-010-0125-z
https://doi.org/10.1007/s11857-010-0125-z
https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Final-Advice-on-Standard-Formula-Life-underwriting-risk.pdf
https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Final-Advice-on-Standard-Formula-Life-underwriting-risk.pdf
https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Final-Advice-on-Standard-Formula-Life-underwriting-risk.pdf
https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Advice-Correlation-Parameters.pdf
https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Advice-Correlation-Parameters.pdf
https://register.eiopa.europa.eu/CEIOPS-Archive/Documents/Advices/CEIOPS-L2-Advice-Correlation-Parameters.pdf
https://doi.org/10.1145/2939672.2939785
https://www.dnb.nl
https://www.eiopa.europa.eu/system/files/2021-05/2021-stress-test-technical-specifications-v1.1.pdf
https://www.eiopa.europa.eu/system/files/2021-05/2021-stress-test-technical-specifications-v1.1.pdf
https://www.mortality.org
https://doi.org/10.1080/03461238.2016.1255655

References 55

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830.

XGBoost. (2022). DMLC XGBoost documentation. Retrieved May 30, 2023, from https://xgboost.
readthedocs.io/en/stable/index.html

https://xgboost.readthedocs.io/en/stable/index.html
https://xgboost.readthedocs.io/en/stable/index.html

A
Code Appendices

A.1. R code generating mortality tables
1 ‘‘‘{r Packages}
2 library(readr)
3 library(forecast)
4 library(openxlsx)
5 ‘‘‘
6

7 ‘‘‘{r Functions R file source}
8 ApplyLeeCarter <- function(dataFrame){
9 logDataFrame <- log(t(dataFrame))

10 a <- apply(logDataFrame , 2, mean)
11 dfMinusMean <- sweep(logDataFrame , 2, a)
12 USV = svd(dfMinusMean)
13 sumv <- sum(USV$v[,1])
14 b <- USV$v[,1]/sumv
15 k <- USV$d[1] * USV$u[,1] * sumv
16 return(list(a = a, b = b, k = k))
17 }
18

19 KToArimaModel <- function(k, startYear , plotTitle){
20 timeSeries <- ts(k, start = startYear)
21 par(mfrow=c(1,2))
22 plot(timeSeries , xlab = "Year", ylab ="Mortality␣Trend␣k", main = plotTitle)
23 plot(diff(timeSeries), xlab="Year", ylab=’Differenced␣Logarithmic␣Mortality␣Trend’,

main = plotTitle)
24 par(mfrow=c(1,1))
25 arimaFit <- auto.arima(timeSeries)
26 return(arimaFit)
27 }
28

29 ArimaToMortalityTable <- function(a, b, k){
30 return(exp(sweep(outer(k,b), 2, a, "+")))
31 }
32

33 GenerateTables <- function(dataFrame , numberOfSimulations , numberOfYearsForecast , folder
){

34 LeeCarter <- ApplyLeeCarter(dataFrame)
35

36 #Writing the fit to Excel
37 wbFit = createWorkbook()
38 addWorksheet(wbFit, "a")
39 writeData(wbFit, "a", LeeCarter$a)
40 addWorksheet(wbFit, "b")
41 writeData(wbFit, "b", LeeCarter$b)
42 addWorksheet(wbFit, "k")

56

A.1. R code generating mortality tables 57

43 writeData(wbFit, "k", LeeCarter$k)
44 saveWorkbook(wbFit, paste(folder, "LeeCarterFit.xlsx", sep = "/"),overwrite = TRUE)
45

46 startYear <- min(colnames(dataFrame))
47 endYear <- max(colnames(dataFrame))
48 ArimaModel <- KToArimaModel(LeeCarter$k, startYear , endYear)
49 Simulations <- replicate(numberOfSimulations , simulate(ArimaModel ,

numberOfYearsForecast))
50 for(i in 1:numberOfSimulations){
51 ForeCastMortalityTable <- data.frame(t(ArimaToMortalityTable(LeeCarter$a, LeeCarter$

b, Simulations[,i])))
52 colnames(ForeCastMortalityTable) <- seq(as.numeric(endYear)+1, as.numeric(endYear)+

numberOfYearsForecast)
53 rownames(ForeCastMortalityTable) <- rownames(dataFrame)
54

55 #Write table to Excel
56 wbTable = createWorkbook()
57 addWorksheet(wbTable, "MortalityTable")
58 writeDataTable(wbTable, "MortalityTable", ForeCastMortalityTable , rowNames = TRUE)
59 addWorksheet(wbTable, "Vector_k")
60 writeData(wbTable, "Vector_k", Simulations[,i])
61 saveWorkbook(wbTable, paste(folder, paste(toString(i), ... = "ForeCastMortalityTable

.xlsx", sep = "_"), sep = "/"), overwrite = TRUE)
62 }
63 }
64

65 GenerateTablesCombined <- function(dataFrameMale , dataFrameFemale , numberOfSimulations ,
numberOfYearsForecast , folder){

66 LeeCarterMale <- ApplyLeeCarter(dataFrameMale)
67 LeeCarterFemale <- ApplyLeeCarter(dataFrameFemale)
68

69 #Writing the fit to Excel
70 wbFit = createWorkbook()
71

72 #Male fit
73 addWorksheet(wbFit, "aMale")
74 writeData(wbFit, "aMale", LeeCarterMale$a)
75 addWorksheet(wbFit, "bMale")
76 writeData(wbFit, "bMale", LeeCarterMale$b)
77 addWorksheet(wbFit, "kMale")
78 writeData(wbFit, "kMale", LeeCarterMale$k)
79

80 #Female fit
81 addWorksheet(wbFit, "aFemale")
82 writeData(wbFit, "aFemale", LeeCarterFemale$a)
83 addWorksheet(wbFit, "bFemale")
84 writeData(wbFit, "bFemale", LeeCarterFemale$b)
85 addWorksheet(wbFit, "kFemale")
86 writeData(wbFit, "kFemale", LeeCarterFemale$k)
87

88 #Save workbook
89 saveWorkbook(wbFit, paste(folder, "LeeCarterFit.xlsx", sep = "/"),overwrite = TRUE)
90

91 startYear <- min(colnames(dataFrameMale))
92 endYear <- max(colnames(dataFrameMale))
93

94 #Fitting ARIMA model
95 ArimaModelMale <- KToArimaModel(LeeCarterMale$k, startYear , "Male␣mortality")
96 ArimaModelFemale <- KToArimaModel(LeeCarterFemale$k, startYear , "Female␣mortality")
97

98 #Simulating
99 SimulationsMale <- replicate(numberOfSimulations , simulate(ArimaModelMale ,

numberOfYearsForecast))
100 SimulationsFemale <- replicate(numberOfSimulations , simulate(ArimaModelFemale ,

numberOfYearsForecast))
101

102 #Create mortality tables

A.1. R code generating mortality tables 58

103 for(i in 1:numberOfSimulations){
104 ForeCastMortalityTableMale <- data.frame(t(ArimaToMortalityTable(LeeCarterMale$a,

LeeCarterMale$b, SimulationsMale[,i])))
105 ForeCastMortalityTableFemale <- data.frame(t(ArimaToMortalityTable(LeeCarterFemale$a

, LeeCarterFemale$b, SimulationsFemale[,i])))
106 colnames(ForeCastMortalityTableMale) <- seq(as.numeric(endYear)+1, as.numeric(

endYear)+numberOfYearsForecast)
107 colnames(ForeCastMortalityTableFemale) <- seq(as.numeric(endYear)+1, as.numeric(

endYear)+numberOfYearsForecast)
108 rownames(ForeCastMortalityTableMale) <- rownames(dataFrameMale)
109 rownames(ForeCastMortalityTableFemale) <- rownames(dataFrameFemale)
110

111 #Write table and k to Excel
112 wbTable = createWorkbook()
113 addWorksheet(wbTable, "MortalityTableMale")
114 writeDataTable(wbTable, "MortalityTableMale", ForeCastMortalityTableMale , rowNames =

TRUE)
115 addWorksheet(wbTable, "MortalityTableFemale")
116 writeDataTable(wbTable, "MortalityTableFemale", ForeCastMortalityTableFemale ,

rowNames = TRUE)
117 addWorksheet(wbTable, "Vector_k_Male")
118 writeData(wbTable, "Vector_k_Male", SimulationsMale[,i])
119 addWorksheet(wbTable, "Vector_k_Female")
120 writeData(wbTable, "Vector_k_Female", SimulationsFemale[,i])
121

122 #Save workbook
123 saveWorkbook(wbTable, paste(folder, paste(toString(i), ... = "ForeCastMortalityTable

.xlsx", sep = "_"), sep = "/"), overwrite = TRUE)
124 }
125 }
126 ‘‘‘
127

128 ‘‘‘{r Importing data}
129 X210722_DeathRatesNL <- read_table("210722_DeathRatesNL.txt", skip = 2)
130 X210722_DeathRatesNL[X210722_DeathRatesNL == "110+"] <- "110" #Set equal to one for age

over 100
131 X210722_DeathRatesNL[X210722_DeathRatesNL == "."] <- "1" #Some data is undefined and is

set equal to one
132 X210722_DeathRatesNL[X210722_DeathRatesNL == "0.000000"] <- "0.000001" #Some data is

undefined and is set equal to one
133

134 ReadDeathRates <- function(txtData){
135 years <- max(txtData$Year) - min(txtData$Year) + 1
136 ages <- 120
137 dfMale <- data.frame(matrix(ncol = years, nrow = ages + 1))
138 dfFemale <- data.frame(matrix(ncol = years, nrow = ages + 1))
139 columnNames <- unique(txtData$Year)
140 colnames(dfMale) <- columnNames
141 colnames(dfFemale) <- columnNames
142 rowNames <- 0:ages
143 rownames(dfMale) <- rowNames
144 rownames(dfFemale) <- rowNames
145 for(i in 1:nrow(txtData)){
146 rowData <- txtData[i,]
147 dfMale[toString(rowData$Age), toString(rowData$Year)] = as.numeric(rowData$Male)
148 dfFemale[toString(rowData$Age), toString(rowData$Year)] = as.numeric(rowData$

Female)
149 }
150

151 #Adding data for ages above 110 equal to rate at age 110
152 dfMale[is.na(dfMale)] <- 1
153 dfFemale[is.na(dfFemale)] <- 1
154

155 return(list(Male = dfMale, Female = dfFemale))
156 }
157

158 DeathRatesNL <- ReadDeathRates(X210722_DeathRatesNL)

A.2. Python Code Standard XGBoost 59

159 DeathRatesMale <- DeathRatesNL$Male
160 DeathRatesFemale <- DeathRatesNL$Female
161 ‘‘‘
162

163 ‘‘‘{r Generate Tables}
164 set.seed(468)
165

166 GenerateTablesCombined(DeathRatesMale , DeathRatesFemale , 1000, 172, "
ForecastMortalityTables")

167 ‘‘‘

A.2. Python Code Standard XGBoost
1 import pandas as pd
2 import xgboost as xgb
3 import matplotlib.pyplot as plt
4 import numpy as np
5 from typing import Dict, Tuple, List
6 from sklearn.model_selection import GridSearchCV
7 import time
8

9 np.random.seed(4679)
10 dfData = pd.read_excel(dataFileName)
11

12 def StandardModel(feature, value, featureValidation , valueValidation):
13 X, y = feature, value
14 Xval, yval = featureValidation , valueValidation
15 params = {
16 "tree_method": "hist",
17 "num_target": y.shape[1],
18 "gamma": "50",
19 "max_depth": "4",
20 "lambda":"1",
21 "eta":"0.02",
22 "nthread":"-1"
23 }
24 reg = xgb.XGBRegressor(tree_method="hist", n_estimators=900, early_stopping_rounds =

25, gamma= 50, eta = 0.02, max_depth = 4, reg_lambda = 1, verbosity=0)
25 reg.fit(X, y, eval_set=[(Xval, yval)])
26 return reg
27

28 def RMSE(observed, predicted):
29 return np.sqrt(np.sum(np.power((observed - predicted),2)))
30

31 def RequirementCheck(observed, predicted , requirement):
32 accuracy = np.divide(abs((observed - predicted)), observed)
33 return len([i for i in accuracy if i <= requirement])/len(observed)
34

35 def DeviateCheck(observed, predicted):
36 accuracy = np.divide((observed - predicted), observed)
37 return accuracy
38

39 def HowManyWithinRequirement(observed , predicted , requirement):
40 accuracy = np.divide(abs((observed - predicted)), observed)
41 return len([i for i in accuracy if i <= requirement])
42

43 def RequirementCheckCombined(observed , predicted , requirement):
44 accuracy = np.zeros((4,len(observed)))
45 for i in range(4):
46 accuracy[i] = np.divide(abs((observed.iloc[:,i] - predicted[:,i])), observed.

iloc[:,i])
47 combinedAccuracy = np.max(accuracy, axis = 0)
48 return len([i for i in combinedAccuracy if i <= requirement])/len(observed)
49

50 def TrainPerModelAllTestSizes(stepsize: int, totalTrainIndices: list, testIndices: list,
valdiationIndices: list, printPlots: bool):

A.2. Python Code Standard XGBoost 60

51 numberOfTargetVariables = 4
52 numberOfTrain = len(totalTrainIndices)
53 numberOfTest = len(testIndices)
54 length = int(np.floor(numberOfTrain/stepsize))
55 rmse = np.empty(shape = (numberOfTargetVariables ,length))
56 managementrequirement = np.empty(shape = (numberOfTargetVariables ,length))
57 managementrequirementCombined = np.empty(length)
58 reportingrequirement = np.empty(shape = (numberOfTargetVariables ,length))
59 reportingrequirementCombined = np.empty(length)
60 requirement5 = np.empty(shape = (numberOfTargetVariables ,length))
61 requirementCombined5 = np.empty(length)
62 requirement2 = np.empty(shape = (numberOfTargetVariables ,length))
63 requirementCombined2 = np.empty(length)
64 requirement01 = np.empty(shape = (numberOfTargetVariables ,length))
65 requirementCombined01 = np.empty(length)
66 trainRMSE = np.empty(shape = (numberOfTargetVariables ,length))
67 testRMSE = np.empty(shape = (numberOfTargetVariables ,length))
68 prediction = np.empty(shape = (numberOfTargetVariables ,numberOfTest))
69 deviations = np.empty(shape = (numberOfTargetVariables , length, numberOfTest))
70 startTime = time.time()
71 j=0
72 for i in range(stepsize,numberOfTrain + 1,stepsize):
73 j+=1
74 trainIndices = totalTrainIndices[0:i]
75 train = dfData.iloc[trainIndices]
76 test = dfData.iloc[testIndices]
77 validation = dfData.iloc[validationIndices]
78 print("Starting␣iteration␣with␣training␣size␣" + str(len(train)))
79 partFeaturesTrain = train.iloc[:,:-4]
80 partFeaturesTest = test.iloc[:,:-4]
81 partFeaturesValidation = validation.iloc[:,:-4]
82 partValuesTestCombinded = test.iloc[:,-4:]
83 for index in range(4):
84 partValuesTrain = train.iloc[:,-4 + index]
85 partValuesTest = test.iloc[:,-4 + index]
86 partValuesValidation = test.iloc[:,-4 + index]
87 model, results = custom_model(partFeaturesTrain , partValuesTrain ,

partFeaturesValidation , partValuesValidation)
88 prediction[index] = model.predict(partFeaturesTest)
89 rmse[index][j-1] = RMSE(partValuesTest , prediction[index])
90 trainRMSE[index][j-1] = results["Train"]["rmse"][-1]
91 testRMSE[index][j-1] = results["Test"]["rmse"][-1]
92 managementrequirement[index][j-1] = RequirementCheck(partValuesTest ,

prediction[index], 0.01)
93 reportingrequirement[index][j-1] = RequirementCheck(partValuesTest ,

prediction[index], 0.005)
94 requirement5[index][j-1] = RequirementCheck(partValuesTest , prediction[index

], 0.05)
95 requirement2[index][j-1] = RequirementCheck(partValuesTest , prediction[index

], 0.02)
96 requirement01[index][j-1] = RequirementCheck(partValuesTest , prediction[

index], 0.001)
97 deviations[index][j-1] = DeviateCheck(partValuesTest , prediction[index])
98 reportingrequirementCombined[j-1] = RequirementCheckCombined(

partValuesTestCombinded , prediction.T, 0.005)
99 managementrequirementCombined[j-1] = RequirementCheckCombined(

partValuesTestCombinded , prediction.T, 0.01)
100 requirementCombined5[j-1] = RequirementCheckCombined(partValuesTestCombinded ,

prediction.T, 0.05)
101 requirementCombined2[j-1] = RequirementCheckCombined(partValuesTestCombinded ,

prediction.T, 0.02)
102 requirementCombined01[j-1] = RequirementCheckCombined(partValuesTestCombinded ,

prediction.T, 0.001)
103 duration = time.time() - startTime
104 if(printPlots):
105 # Code to generate the plots
106 print(duration)

A.3. Python code Multi Output 61

107 return rmse, managementrequirementCombined , reportingrequirementCombined , trainRMSE ,
testRMSE , requirementCombined5 , requirementCombined2 , requirementCombined01 ,

reportingrequirement , managementrequirement , requirement5 , requirement2 ,
requirement01 , deviations

108

109 numberOfTrain = 1000
110 numberOfTest = 200
111 numberOfValidation = 200
112 stepsize = 10
113 trainIndices = list(range(numberOfTrain))
114 testIndices = list(range(numberOfTrain , numberOfTrain + numberOfTest))
115 valiationIndices = list(range(numberofTrain + numberOfTest , numberofTrain + numberOfTest

+ numberOfValidation))
116

117 rmse, managementrequirementCombined , reportingrequirementCombined , trainRMSE , testRMSE ,
requirementCombined5 , requirementCombined2 , requirementCombined01 ,
managementrequirement , reportingrequirement , requirement5 , requirement2 ,
requirement01 , deviations \

118 =TrainPerModelAllTestSizes(stepsize=stepsize, totalTrainIndices=trainIndices ,
testIndices=testIndices , validationIndices=validationIndices , printPlots=True)

A.3. Python code Multi Output
1 import pandas as pd
2 import xgboost as xgb
3 import matplotlib.pyplot as plt
4 import numpy as np
5 from typing import Dict, Tuple, List
6 import time
7

8 np.random.seed(467)
9 dfData = pd.read_excel(dataFileName)

10

11 def multi_model(feature, value, featureValidation , valueValidation):
12 def rmse(prediction: np.ndarray, observed: xgb.DMatrix):
13 y = observed.get_label().reshape(prediction.shape)
14 return np.sqrt(np.mean(np.power(prediction - y,2)))
15

16 def gradient(prediction: np.ndarray, observed: xgb.DMatrix):
17 """Gradient squared error in multiple dimensions"""
18 y = observed.get_label().reshape(prediction.shape)
19 g = (prediction - y).reshape(prediction.size)
20 return g
21

22 def hessian(prediction: np.ndarray, observed: xgb.DMatrix):
23 """Hessian squared error in multiple dimensions"""
24 h = np.ones(prediction.shape).reshape(prediction.size)
25 return h
26

27 def se_total(predt: np.ndarray, dtrain: xgb.DMatrix):
28 grad = gradient(predt, dtrain)
29 hess = hessian(predt, dtrain)
30 return grad, hess
31

32 def rmse_output(prediction: np.ndarray, observed: xgb.DMatrix):
33 v = rmse(prediction , observed)
34 return "rmse", v
35

36 X, y = feature, value
37 Xy = xgb.DMatrix(X, y)
38 XyTest = xgb.DMatrix(featureValidation , valueValidation)
39 results: Dict[str, Dict[str, List[float]]] = {}
40 reg = xgb.train(
41 {
42 "tree_method": "hist",
43 "num_target": y.shape[1],

A.3. Python code Multi Output 62

44 "gamma": "50",
45 "max_depth": "4",
46 "lambda":"1",
47 "eta":"0.02",
48 "nthread":"-1"
49 },
50 early_stopping_rounds = 25,
51 dtrain=Xy,
52 num_boost_round=1000,
53 obj=se_total,
54 evals=[(Xy, "Train"),(XyTest, "Test")],
55 evals_result=results,
56 custom_metric=rmse_output ,
57 verbose_eval=False,
58 multi_strategy = "multi_output_tree",
59)
60 return reg, results
61

62 def RMSE(observed, predicted):
63 return np.sqrt(np.sum(np.power((observed - predicted),2)))
64

65 def RequirementCheck(observed, predicted , requirement):
66 accuracy = np.divide(abs((observed - predicted)), observed)
67 return len([i for i in accuracy if i <= requirement])/len(observed)
68

69 def DeviateCheck(observed, predicted):
70 accuracy = np.divide((observed - predicted), observed)
71 return accuracy
72

73 def HowManyWithinRequirement(observed , predicted , requirement):
74 accuracy = np.divide(abs((observed - predicted)), observed)
75 return len([i for i in accuracy if i <= requirement])
76

77 def RequirementCheckCombined(observed , predicted , requirement):
78 accuracy = np.zeros((4,len(observed)))
79 for i in range(4):
80 accuracy[i] = np.divide(abs((observed.iloc[:,i] - predicted[:,i])), observed.

iloc[:,i])
81 combinedAccuracy = np.max(accuracy, axis = 0)
82 return len([i for i in combinedAccuracy if i <= requirement])/len(observed)
83

84 def RunAllTestSizes(stepsize: int, totalTrainIndices: list, testIndices: list,
validationIndices:list, printPlots: bool):

85 numberOfTargetVariables = 4
86 numberOfTest = len(testIndices)
87 numberOfTrain = len(totalTrainIndices)
88 numberOfValdiation = len(validationIndices)
89 length = int(np.floor(numberOfTrain/stepsize))
90 rmseBEL = np.empty(length)
91 rmseMort = np.empty(length)
92 rmseLong = np.empty(length)
93 rmseCat = np.empty(length)
94 managementrequirement = np.empty(shape = (numberOfTargetVariables ,length))
95 managementrequirementCombined = np.empty(length)
96 reportingrequirement = np.empty(shape = (numberOfTargetVariables ,length))
97 reportingrequirementCombined = np.empty(length)
98 requirement5 = np.empty(shape = (numberOfTargetVariables ,length))
99 requirementCombined5 = np.empty(length)

100 requirement2 = np.empty(shape = (numberOfTargetVariables ,length))
101 requirementCombined2 = np.empty(length)
102 requirement01 = np.empty(shape = (numberOfTargetVariables ,length))
103 requirementCombined01 = np.empty(length)
104 numManagementrequirementBEL = np.empty(length)
105 numManagementrequirementMort = np.empty(length)
106 numManagementrequirementLong = np.empty(length)
107 numManagementrequirementCat = np.empty(length)
108 numReportingrequirementBEL = np.empty(length)

A.3. Python code Multi Output 63

109 numReportingrequirementMort = np.empty(length)
110 numReportingrequirementLong = np.empty(length)
111 numReportingrequirementCat = np.empty(length)
112 trainRMSE = np.empty(length)
113 testRMSE = np.empty(length)
114 deviations = np.empty(shape = (numberOfTargetVariables , length, numberOfTest))
115 startTime = time.time()
116 j=0
117 test = dfData.iloc[testIndices]
118 validation = dfData.iloc[validationIndices]
119 partFeaturesTest = test.iloc[:,:-4]
120 partValuesTest = test.iloc[:,-4:]
121 partFeaturesValidation = valdiation.iloc[:,:-4]
122 partValuesValidation = validation.iloc[:,-4:]
123 for i in range(stepsize,numberOfTrain + 1,stepsize):
124 j+=1
125 trainIndices = totalTrainIndices[0:i]
126 train = dfData.iloc[trainIndices]
127 print("Starting␣iteration␣with␣training␣size␣" + str(len(train)))
128 partFeaturesTrain = train.iloc[:,:-4]
129 partValuesTrain = train.iloc[:,-4:]
130 model,results = custom_model(partFeaturesTrain , partValuesTrain ,

partFeaturesTest , partValuesTest)
131 prediction = model.inplace_predict(partFeaturesTest)
132 rmseBEL[j-1] = RMSE(partValuesTest.iloc[:,0], prediction[:,0])
133 rmseMort[j-1] = RMSE(partValuesTest.iloc[:,1], prediction[:,1])
134 rmseLong[j-1] = RMSE(partValuesTest.iloc[:,2], prediction[:,2])
135 rmseCat[j-1] = RMSE(partValuesTest.iloc[:,3], prediction[:,3])
136 trainRMSE[j-1] = results["Train"]["rmse"][-1]
137 testRMSE[j-1] = results["Test"]["rmse"][-1]
138 managementrequirement[0][j-1] = RequirementCheck(partValuesTest.iloc[:,0],

prediction[:,0], 0.01)
139 managementrequirement[1][j-1] = RequirementCheck(partValuesTest.iloc[:,1],

prediction[:,1], 0.01)
140 managementrequirement[2][j-1] = RequirementCheck(partValuesTest.iloc[:,2],

prediction[:,2], 0.01)
141 managementrequirement[3][j-1] = RequirementCheck(partValuesTest.iloc[:,3],

prediction[:,3], 0.01)
142 managementrequirementCombined[j-1] = RequirementCheckCombined(partValuesTest ,

prediction , 0.01)
143 reportingrequirement[0][j-1] = RequirementCheck(partValuesTest.iloc[:,0],

prediction[:,0], 0.005)
144 reportingrequirement[1][j-1] = RequirementCheck(partValuesTest.iloc[:,1],

prediction[:,1], 0.005)
145 reportingrequirement[2][j-1] = RequirementCheck(partValuesTest.iloc[:,2],

prediction[:,2], 0.005)
146 reportingrequirement[3][j-1] = RequirementCheck(partValuesTest.iloc[:,3],

prediction[:,3], 0.005)
147 reportingrequirementCombined[j-1] = RequirementCheckCombined(partValuesTest ,

prediction , 0.005)
148 requirement5[0][j-1] = RequirementCheck(partValuesTest.iloc[:,0], prediction

[:,0], 0.05)
149 requirement5[1][j-1] = RequirementCheck(partValuesTest.iloc[:,1], prediction

[:,1], 0.05)
150 requirement5[2][j-1] = RequirementCheck(partValuesTest.iloc[:,2], prediction

[:,2], 0.05)
151 requirement5[3][j-1] = RequirementCheck(partValuesTest.iloc[:,3], prediction

[:,3], 0.05)
152 requirementCombined5[j-1] = RequirementCheckCombined(partValuesTest , prediction ,

0.05)
153 requirement2[0][j-1] = RequirementCheck(partValuesTest.iloc[:,0], prediction

[:,0], 0.02)
154 requirement2[1][j-1] = RequirementCheck(partValuesTest.iloc[:,1], prediction

[:,1], 0.02)
155 requirement2[2][j-1] = RequirementCheck(partValuesTest.iloc[:,2], prediction

[:,2], 0.02)
156 requirement2[3][j-1] = RequirementCheck(partValuesTest.iloc[:,3], prediction

A.3. Python code Multi Output 64

[:,3], 0.02)
157 requirementCombined2[j-1] = RequirementCheckCombined(partValuesTest , prediction ,

0.02)
158 requirement01[0][j-1] = RequirementCheck(partValuesTest.iloc[:,0], prediction

[:,0], 0.001)
159 requirement01[1][j-1] = RequirementCheck(partValuesTest.iloc[:,1], prediction

[:,1], 0.001)
160 requirement01[2][j-1] = RequirementCheck(partValuesTest.iloc[:,2], prediction

[:,2], 0.001)
161 requirement01[3][j-1] = RequirementCheck(partValuesTest.iloc[:,3], prediction

[:,3], 0.001)
162 requirementCombined01[j-1] = RequirementCheckCombined(partValuesTest , prediction

, 0.001)
163 deviations[0][j-1] = DeviateCheck(partValuesTest.iloc[:,0], prediction[:,0])
164 deviations[1][j-1] = DeviateCheck(partValuesTest.iloc[:,1], prediction[:,1])
165 deviations[2][j-1] = DeviateCheck(partValuesTest.iloc[:,2], prediction[:,2])
166 deviations[3][j-1] = DeviateCheck(partValuesTest.iloc[:,3], prediction[:,3])
167 numManagementrequirementBEL[j-1] = HowManyWithinRequirement(partValuesTest.iloc

[:,0], prediction[:,0], 0.01)
168 numManagementrequirementMort[j-1] = HowManyWithinRequirement(partValuesTest.iloc

[:,1], prediction[:,1], 0.01)
169 numManagementrequirementLong[j-1] = HowManyWithinRequirement(partValuesTest.iloc

[:,2], prediction[:,2], 0.01)
170 numManagementrequirementCat[j-1] = HowManyWithinRequirement(partValuesTest.iloc

[:,3], prediction[:,3], 0.01)
171 numReportingrequirementBEL[j-1] = HowManyWithinRequirement(partValuesTest.iloc

[:,0], prediction[:,0], 0.005)
172 numReportingrequirementMort[j-1] = HowManyWithinRequirement(partValuesTest.iloc

[:,1], prediction[:,1], 0.005)
173 numReportingrequirementLong[j-1] = HowManyWithinRequirement(partValuesTest.iloc

[:,2], prediction[:,2], 0.005)
174 numReportingrequirementCat[j-1] = HowManyWithinRequirement(partValuesTest.iloc

[:,3], prediction[:,3], 0.005)
175 duration = time.time()-startTime
176 if(printPlots):
177 # Code to generate the plots
178 print(duration)
179 return rmseBEL, rmseMort, rmseLong, rmseCat, managementrequirementCombined ,

reportingrequirementCombined , trainRMSE , testRMSE , requirementCombined5 ,
requirementCombined2 , requirementCombined01 , managementrequirement ,
reportingrequirement , requirement5 , requirement2 , requirement01 , deviations

180

181 numberOfTrain = 1000
182 numberOfTest = 200
183 numberOfValidation = 200
184 stepsize = 10
185 trainIndices = list(range(numberOfTrain))
186 testIndices = list(range(numberOfTrain , numberOfTrain + numberOfTest))
187 valiationIndices = list(range(numberofTrain + numberOfTest , numberofTrain + numberOfTest

+ numberOfValidation))
188

189 rmse, managementrequirementCombined , reportingrequirementCombined , trainRMSE , testRMSE ,
requirementCombined5 , requirementCombined2 , requirementCombined01 ,
managementrequirement , reportingrequirement , requirement5 , requirement2 ,
requirement01 , deviations

190 =RunAllTestSizes(stepsize=stepsize, totalTrainIndices=trainIndices , testIndices=
testIndices , validationIndices=validationIndices , printPlots=True)

B
Data Appendices

B.1. Mortality data
The following data is retrieved from the human mortality database July 21, 2022 and consists of
the mortality rates 𝑀𝑥,𝑡(Human Mortality Database et al., 2022). The data for higher ages is not
always accurate and/or available as can be seen in the bottom of Table B.1. These values are set
equal to one in the calibration of the Lee-Carter model.

Year Age Female Male Year Age Female Male
1850 0 0.203847 0.243150 2019 0 0.003335 0.003956
1850 1 0.064087 0.067497 2019 1 0.000300 0.000286
1850 2 0.032135 0.033367 2019 2 0.000107 0.000090
1850 3 0.019046 0.020285 2019 3 0.000059 0.000145
1850 4 0.013872 0.015508 2019 4 0.000058 0.000089
1850 5 0.011730 0.011918 2019 5 0.000058 0.000099
1850 6 0.009213 0.009483 2019 6 0.000035 0.000066
1850 7 0.007921 0.008106 2019 7 0.000068 0.000053
1850 8 0.007204 0.007176 2019 8 0.000044 0.000021
1850 9 0.006389 0.006047 2019 9 0.000065 0.000031
1850 10 0.005727 0.005357 2019 10 0.000054 0.000061
1850 11 0.005209 0.004770 2019 11 0.000033 0.000073
1850 12 0.004603 0.004166 2019 12 0.000065 0.000083
1850 13 0.004506 0.003670 2019 13 0.000097 0.000072
1850 14 0.005514 0.004189 2019 14 0.000052 0.000100
1850 15 0.005784 0.004149 2019 15 0.000112 0.000195
1850 16 0.005162 0.003975 2019 16 0.000139 0.000104
1850 17 0.006000 0.005253 2019 17 0.000198 0.000245
1850 18 0.006605 0.007206 2019 18 0.000171 0.000282
1850 19 0.006643 0.007521 2019 19 0.000194 0.000390
1850 20 0.007028 0.008264 2019 20 0.000138 0.000427
1850 21 0.006626 0.009019 2019 21 0.000178 0.000375
1850 22 0.008292 0.009530 2019 22 0.000244 0.000465
1850 23 0.007697 0.009175 2019 23 0.000257 0.000377
1850 24 0.007348 0.008191 2019 24 0.000204 0.000350
1850 25 0.008861 0.009223 2019 25 0.000136 0.000370
1850 26 0.008866 0.008935 2019 26 0.000227 0.000405
1850 27 0.009828 0.009374 2019 27 0.000268 0.000441
1850 28 0.011152 0.009039 2019 28 0.000301 0.000429

65

B.1. Mortality data 66

1850 29 0.011208 0.009223 2019 29 0.000296 0.000384
1850 30 0.010112 0.008878 2019 30 0.000284 0.000405
1850 31 0.010737 0.008227 2019 31 0.000258 0.000512
1850 32 0.012897 0.009910 2019 32 0.000360 0.000506
1850 33 0.012623 0.010496 2019 33 0.000389 0.000521
1850 34 0.012617 0.009647 2019 34 0.000419 0.000627
1850 35 0.011591 0.009782 2019 35 0.000444 0.000714
1850 36 0.011902 0.010171 2019 36 0.000374 0.000739
1850 37 0.012864 0.010108 2019 37 0.000368 0.000607
1850 38 0.014377 0.011823 2019 38 0.000520 0.000850
1850 39 0.013879 0.012175 2019 39 0.000512 0.000850
1850 40 0.013901 0.011914 2019 40 0.000725 0.000875
1850 41 0.013732 0.013014 2019 41 0.000635 0.001134
1850 42 0.014632 0.014421 2019 42 0.000761 0.001142
1850 43 0.013325 0.013737 2019 43 0.000807 0.001238
1850 44 0.011980 0.013943 2019 44 0.000879 0.001283
1850 45 0.013888 0.015531 2019 45 0.001035 0.001406
1850 46 0.013476 0.015329 2019 46 0.001222 0.001450
1850 47 0.013500 0.015137 2019 47 0.001261 0.001706
1850 48 0.014054 0.017326 2019 48 0.001178 0.001772
1850 49 0.013730 0.015625 2019 49 0.001568 0.002160
1850 50 0.013711 0.018107 2019 50 0.001628 0.002329
1850 51 0.015389 0.019265 2019 51 0.001981 0.002636
1850 52 0.017882 0.023255 2019 52 0.002319 0.002743
1850 53 0.017307 0.020869 2019 53 0.002405 0.003175
1850 54 0.017747 0.023529 2019 54 0.002540 0.003287
1850 55 0.018074 0.023407 2019 55 0.002973 0.003896
1850 56 0.021458 0.024708 2019 56 0.003261 0.004249
1850 57 0.021944 0.025659 2019 57 0.003407 0.004998
1850 58 0.022429 0.029368 2019 58 0.004084 0.005290
1850 59 0.023779 0.029192 2019 59 0.004434 0.006059
1850 60 0.026211 0.033625 2019 60 0.004842 0.006607
1850 61 0.026767 0.035299 2019 61 0.005491 0.007072
1850 62 0.031705 0.035348 2019 62 0.006056 0.007876
1850 63 0.034722 0.037977 2019 63 0.006507 0.008543
1850 64 0.039809 0.042448 2019 64 0.007179 0.010070
1850 65 0.041059 0.049604 2019 65 0.007835 0.011093
1850 66 0.045389 0.051472 2019 66 0.008180 0.011870
1850 67 0.044407 0.049359 2019 67 0.009150 0.012803
1850 68 0.056751 0.055334 2019 68 0.010470 0.014287
1850 69 0.057481 0.060647 2019 69 0.010899 0.016233
1850 70 0.059301 0.060814 2019 70 0.012372 0.017541
1850 71 0.068057 0.066501 2019 71 0.013135 0.018771
1850 72 0.084577 0.075505 2019 72 0.014506 0.021363
1850 73 0.078684 0.088735 2019 73 0.016362 0.023904
1850 74 0.092105 0.096549 2019 74 0.017944 0.026768
1850 75 0.098805 0.103775 2019 75 0.021112 0.031212
1850 76 0.105420 0.107384 2019 76 0.022464 0.033719
1850 77 0.110821 0.117041 2019 77 0.024737 0.037069
1850 78 0.125451 0.126288 2019 78 0.028776 0.041538
1850 79 0.129575 0.137091 2019 79 0.032407 0.048624
1850 80 0.137721 0.164324 2019 80 0.036057 0.056085
1850 81 0.136639 0.159163 2019 81 0.041843 0.060627
1850 82 0.163119 0.178506 2019 82 0.048704 0.069988

B.1. Mortality data 67

1850 83 0.198675 0.189053 2019 83 0.055684 0.079678
1850 84 0.209581 0.205209 2019 84 0.064955 0.091254
1850 85 0.230187 0.220946 2019 85 0.071934 0.106815
1850 86 0.242329 0.245658 2019 86 0.086783 0.117019
1850 87 0.250703 0.271114 2019 87 0.098011 0.139010
1850 88 0.282353 0.254464 2019 88 0.115408 0.156985
1850 89 0.247423 0.314312 2019 89 0.131933 0.174437
1850 90 0.280734 0.264352 2019 90 0.157984 0.197304
1850 91 0.346154 0.196721 2019 91 0.174325 0.221977
1850 92 0.342145 0.412607 2019 92 0.202296 0.242956
1850 93 0.318584 0.526074 2019 93 0.227886 0.285989
1850 94 0.552037 0.434211 2019 94 0.245357 0.300283
1850 95 0.335852 0.366844 2019 95 0.270890 0.322701
1850 96 0.475128 0.461538 2019 96 0.316842 0.378495
1850 97 0.317965 0.382979 2019 97 0.354615 0.379677
1850 98 0.430828 0.461538 2019 98 0.354124 0.435297
1850 99 0.545455 2.000.000 2019 99 0.404258 0.479533
1850 100 1.114.120 0.000000 2019 100 0.472270 0.533858
1850 101 2.445.141 . 2019 101 0.502967 0.580333
1850 102 4.178.571 . 2019 102 0.548145 0.641386
1850 103 . . 2019 103 0.584441 0.699850
1850 104 . . 2019 104 0.617820 0.772336
1850 105 . . 2019 105 0.660964 0.911892
1850 106 . . 2019 106 0.708861 1.385.705
1850 107 . . 2019 107 0.779246 2.717.839
1850 108 . . 2019 108 0.901401 5.768.455
1850 109 . . 2019 109 1.347.922 .
1850 110+ . . 2019 110+ 5.814.632 .

Table B.1: Mortality data obtained from the HMD for year 1850 and 2019

	Introduction
	Cash Flow Model
	Mortality Table
	Solvency II
	The Standard Formula
	Stress Tests
	Aggregation of SCRs

	Lee-Carter Forecasting
	ARIMA Model
	Prediction Interval

	Uncertainties of kt
	Random Walk With Drift Uncertainties
	ARIMA Model Uncertainties
	Consequences of Uncertainties

	Machine Learning
	Regression Trees
	Creating a Regression Tree

	Gradient Boosting
	Extreme Gradient Boosting
	Split Finding and Parallelisation

	Multi-Target Extreme Gradient Boosting
	Performance Metrics and Loss Function
	Multi Output Regression

	Results
	Lee-Carter Forecasting
	Calibrating the Lee-Carter Model on the Dutch Population
	Forecasting of Mortality Trends

	Extreme Gradient Boosting
	Performance Metrics and Loss Function
	Parameter Calibration of XGBoost
	Individual XGBoost Models
	Combined XGBoost Model

	Model Comparison
	Extending The Model
	Different Portfolios
	Larger Training Set
	GPU Calculations

	Performance on Optimal Size

	Discussion
	Recommendations for future research

	References
	Code Appendices
	R code generating mortality tables
	Python Code Standard XGBoost
	Python code Multi Output

	Data Appendices
	Mortality data

