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ABSTRACT

The estimation of the coordinates of nodes their proximity (or distance) measurements, is a principal
challenge in numerous fields. Conventionally, when localizing a static network of immobile nodes, non-
linear dimensionality reduction techniques are applied on the measured distances to obtain the relative
coordinates up to a rotation and translation. In this article, we consider an anchorless network of mo-
bile nodes, where the distance measurements between the mobile nodes are time-varying. In such an
anchorless framework, where the absolute knowledge of any node position, motion or reference frame is
absent, we aim to estimate the relative positions using the measured time-varying distances. To this end,
we derive a data model which relates the time-varying distances to the time-varying relative positions
of an anchorless network. Given this data model, we estimate the relative (position, velocity) and higher
order derivatives, which are collectively termed as the relative kinematics of the anchorless network. The
derived data model is inherently ill-posed, however under certain immobility constraints, we propose
closed-form solutions to recursively estimate the relative kinematics. For the sake of completeness, we
also estimate the absolute node kinematics, given reference anchors. Theoretical bounds are derived, and

simulations are conducted to benchmark the performance of proposed solutions.

© 2018 Published by Elsevier B.V.

1. Introduction

The estimation of the relative coordinates of N points (or
nodes) in a P-dimensional Euclidean space using proximity mea-
surements (or pairwise distances) is a fundamental problem span-
ning a broad range of applications. These applications include,
but are not limited to, psychometric analysis [2], perceptual map-
ping [3], range-based anchorless localization [4], combinatorial-
chemistry [5], polar-based navigation [6], sensor array calibration
[7] and in general exploratory data analysis [8]. In anchorless lo-
calization scenarios for instance, nodes heavily rely on co-operative
estimation of relative coordinates. Such anchorless networks nat-
urally arise when nodes are inaccessible or only intermittently
monitored, as is the case in space-based satellite arrays [9], un-
derwater networks [10] or indoor wireless sensor networks [11].
In such reference-free scenarios, the proximity information, often
measured as pairwise distances between the nodes, form a key in-
put in estimating the relative coordinates of nodes. These relative
coordinates are typically estimated using non-linear dimensional-
ity reduction algorithms (such as multidimensional scaling (MDS)),
which have been studied rigorously over the past decades [8,12].

* A part of this work is published in the doctoral dissertation [1].
* Corresponding author.
E-mail addresses: rtrajan@iece.org (RT. Rajan), gj.tleus@tudelft.nl (G. Leus),
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However, considerably less attention has been directed towards an-
chorless mobile scenarios.

Our primary focus in this article is on an anchorless network
of mobile nodes, where we use the term anchorless to indicate
no absolute knowledge of the node positions, motion or reference
frame. Furthermore, since the nodes are mobile, both the node
positions and the pairwise distance measurements between the
nodes are time-varying in nature. OQur motive is to relate the time-
varying pairwise distance measurements to time-derivatives of the
node coordinates. For an anchorless network, these include the rel-
ative position, relative velocity, relative acceleration and higher-
order derivatives which we cumulatively refer to as relative kine-
matics in this article. It is worth noting that the universally ac-
cepted definition of relative kinematics inherently relies on the in-
formation in the absolute reference frame. For example, the non-
relativistic relative velocity between two objects is rightly defined
as the difference between their respective absolute velocity vectors
[13]. In an anchorless framework however, a natural question arises
on whether the relative kinematics can be estimated, given only
time-varying distance measurements. Ergo, we wish to understand
the relationship between the time-varying distance measurements
and the relative kinematics of mobile nodes, which is the prime fo-
cus of this article. The estimated relative kinematics can be readily
used to find the time-varying relative positions of the nodes.
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1.1. Previous work

A key challenge in our pursuit is that both the time-varying
distance and the time-varying relative positions are non-linear in
nature. In particular, the Euclidean distance between a pair of mo-
bile nodes is almost always a non-linear function of time, even if
the nodes are in linear independent motion [14]. Therefore, it is
perhaps not surprising that traditional methods to solve such chal-
lenges have been to employ state-space based approaches, with
the assistance of known anchors [15]. The initial position of the
nodes is estimated using MDS-like algorithms, which use the Eu-
clidean distance matrix (EDM) at a single time instant to estimate
the relative node positions. Given this initial estimate, the relative
positions are tracked over a period of time with Doppler measure-
ments and known anchors [16], or via subspace tracking methods
[17]. Unfortunately, Doppler measurements and anchor information
are not always available. Secondly, subspace tracking is applicable
only for small perturbations in motion and therefore offers little
insight on the kinematics of the motion itself.

In our previous study, we proposed a two-step solution to es-
timate relative velocities of the nodes from time-varying distance
measurements [18]. Firstly, the derivatives of the time-varying
distances were estimated by solving a Vandermonde-like system
of linear equations. The estimated regression coefficients (called
range parameters) jointly yield the relative velocities and the rel-
ative positions, using MDS-like algorithms. However, the proposed
solution is valid only for linear motion, which is not always prac-
tical. Furthermore, the previously proposed MDS-based relative ve-
locity estimator heavily relies on the second-order time-derivative
of distance, and under Gaussian noise assumptions, it performs
worse than the relative position estimator. Thus, designing more
optimal estimators for the relative velocity is one of the key mo-
tivations for the pursuit of a generalized framework presented
in this article. Moreover, understanding the higher order relative
kinematics of motion in Euclidean space via time-varying distance
measurements is crucial for next-generation localization technolo-
gies.

1.2. Contributions

Our key contributions are summarized as follows.

1. We derive a generalized relative kinematics model for a net-
work of mobile nodes, relating the derivatives of the time-
varying distance measurements between the respective pairs of
mobile nodes to their individual relative kinematics. Unlike our
previous work [18], where we limited our study to relative po-
sition and relative velocity, the proposed model in this article is
more generally applicable for relative position, velocity, acceler-
ation and higher-order kinematics.

2. We propose algorithms to estimate the relative kinematics, un-
der relative immobility conditions of a few nodes. The proposed
algorithms are novel for relative acceleration estimation, and
simulations reveal that the proposed relative velocity estima-
tors outperform our previous MDS-like algorithm [18].

3. For the sake of completion, in the presence of anchor informa-
tion, we show that the absolute kinematics of the nodes can
also be estimated using the derived model.

4, Given the relative (and absolute) kinematic estimates up to the
desired order, we show that the time-varying relative (and ab-
solute positions) of the nodes can be subsequently obtained.
Simulations show that the proposed kinematics-based time-
varying position estimation, offers significant improvement in
position accuracy around the time-period of interest.

1.3. Overview

We present the data model in Section 2, which relates the time-
varying distances to the kinematics of the mobile nodes. More
concretely, this relationship is established via the derivatives of
the time-varying distance (called range parameters), which is es-
timated in Section 3 using dynamic ranging. In Section 4 we show
that the relationship between the range parameters and the rel-
ative kinematics takes the form of a Lyapunov-like set of equa-
tions, which is inherently ill-posed. In pursuit of unique solu-
tions, we propose least squares algorithms, which can be solved
under certain assumptions. In Section 5, we also propose similar
algorithms for estimating the absolute kinematics of the nodes,
given known reference parameters in the cluster. To benchmark the
performance of our estimators, we derive constrained Cramér-Rao
bounds (CRBs), under a Gaussian noise assumption on the data. An
optimal choice of the weighting matrix ensures the proposed es-
timator is the best linear unbiased estimator (BLUE) for the given
data model. In addition, unconstrained oracle bounds are also de-
rived in Section 6, as a benchmark for next generation estimators.
In Section 7, we conduct experiments to validate the performance
of the proposed estimators.

1.4. Notation:

The element-wise matrix Hadamard product is denoted by ©
and (-)®N denotes element-wise matrix exponent. The Kronecker
product is indicated by ®, the transpose operator by (-)T and
(7) denotes an estimated value. A vector of ones is denoted by
1y e RN*1 Iy is an N x N identity matrix, 0y y is an M x N matrix
of zeros and | - || is the Euclidean norm. For any vector a, diag(a)
is a diagonal matrix containing the elements of a along the diag-
onal. The block diagonal matrix A = bdiag(A;, Ay, ..., Ay) consists
of matrices Aq, A,, ..., Ay along the diagonal and zeros elsewhere.
The first and second derivatives are indicated by ) and (O respec-
tively, and more generally the mth order derivative is represented
by (- )™, Unless otherwise noted, (-) is used to indicate param-
eters of the relative kinematic model. For matrices of compatible
dimensions, we will frequently use the following properties

vec(ABC) = (CT @ A)vec(B), (1)

vec(A) = Jvec(AT), (2)

where J is an orthogonal permutation matrix. We define an N di-
mensional centering matrix as P = Iy — N*llNIL. For a set of n el-
ements, the number of k-combinations is given by the binomial
coefficient, which is defined as

n nn-1)---(n—-k+1)
<k> - k(k—1)---1 ' 3)

A list of frequently used notations is given in Table 1.

2. Time-varying distances and node kinematics

We begin by modeling the relationship between the time-
varying distances, the time-varying positions and the node kine-
matics. In Section 2.1, we expand the time-varying position using
a Taylor series, the coefficients of which yield the absolute node
kinematics. As an extension, we present a novel relative kinemat-
ics model in Section 2.2. In Sections 2.3 and 2.4, the relationship
between the time-varying distances and the node kinematics is de-
rived. Using these definitions, we formalize the problem statement
in Section 2.5.
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Table 1
Notations.
Notation Description
P Number of dimensions
N Number of nodes (N > P)
D(t) € RN<N Euclidean distance matrix at time t
S(t) e RPN Absolute positions at time t
S(t) e RPN Relative positions at time t
X e RPXN Absolute instantaneous positions at time t,
X e RPN Relative instantaneous positions at time tg
Y, € RPN mth order absolute kinematics at t,
Y,, € RPN mth order relative kinematics at t,
H,, € RP*P Rotation matrix of the mth order kinematics
h,, € RP¥1 Translational vector of the mth order kinematics

2.1. Absolute kinematics

Consider a cluster of N mobile nodes in a P-dimensional Eu-
clidean space (N > P), whose positions at time ¢ are given by S(t) €
RPN, For a small time interval At =t —t around ty, we assume
that the time-varying position is continuously differentiable and
that the derivative exists in the interior of this interval. Therefore,
the time-dependent position vectors of the respective nodes can
be expanded using a Taylor series,

S(t) =S(t)|t=t, + S(E) |r=t, (t — to) + 0.58(t) |r—r, (t —t0)*> +... (4)

where (S(t),S(t),S(¢t), ...) are the derivatives of the time-varying
position vectors. Now let X £ S(t)[;—¢, be a P x N matrix containing
the initial coordinates of the mobile nodes at time t = t,. Further-
more, let the instantaneous velocities of the nodes i.e., the first-
order derivatives of the position vectors S(t)|t:t0 be denoted by
Y; € RP*N and in general the higher-order derivatives as Y,V m >
1. Then, the above equation simplifies to

St) =X+ i(m!)”Y,ﬂ(t*to)’". (5)

m=1
2.2. Relative kinematics

The absolute instantaneous positions at t =ty are an affine
transformation of the relative positions, i.e.,

X = HoX + ho1}, (6)

where X € RPN is the relative position matrix up to a rotation and
translation, Hy € RP*P is the unknown rotation and hy € RP*1 is
the unknown translation of the network [8]. Now, we extend this
well-known relative position definition to the higher-order deriva-
tives. For instance, the velocity of the nodes can be written as

Y; = HiY, + hy1f, (7)

where Y, represents the instantaneous relative velocities of the
network at t = ty. The translational vector h; is the group veloc-
ity and H; is the unique rotation matrix of the relative velocities
[18]. More generally, the mth order derivative is an affine model
defined as

Yn = HnY,, + hnlf. (8)

We now define the relative time-varying position as S(t) =
HSS(t)P, and substituting the affine expressions (6) and (8) in
(5) we have

o0
S(t) = H{XP + > " (m!) "H{H,Y,,P(t — to)", 9)
m=1
where we exploit the property P1y = Oy to eliminate the transla-
tion vectors, and enforce the orthonormality of the rotation matrix

i.e., HgHO = Iy. Observe that the translation vector hy does not af-
fect the above equation. Secondly, for a meaningful interpretation
of the relative time-varying position, a reference coordinate system
must be chosen e.g., Hy = Ip. In summary, without loss of general-
ity, we assume

Hy =1Ip and ho = Op. (10)

and subsequently (9) simplifies to

S(t) =X+ Y _ (mD'Y,,(t —to)™, (11)
m=1

where Yy, is the relative kinematics matrix of the mth order de-
fined up to a rotation. In deriving (11), we use the following prop-
erties

X = XP = XP, (12a)
Y, = Hn¥,, = YuP. (12b)
S(t) =S(t)P. (12¢)

Note that (11) represents the relative counterpart of the ab-
solute Taylor expansion (5), where the (X Y;,Y,,...) denote
the relative kinematics of the corresponding absolute kinematics
(X,Y1,Ys,...). Our quest in this article is to estimate the relative
and absolute kinematic matrices, given time-varying pairwise dis-
tance measurements between the nodes. Consequently, the abso-
lute position S(t) and relative position S(t) can then be estimated
using (5) and (11) respectively.

2.3. Time-varying distances

Similar to the node positions, the pairwise distances are also
time-varying which we denote by the time-varying Euclidean dis-
tance matrix (EDM) D(t) £ [d;;(t)] € RN*N where d;(t) is the pair-
wise Euclidean distance between the node pair (i, j) at time instant
t. More explicitly

(D()®* = (O 1} + g (1) = 28T ()S(), (13)

where ¢(t) = diag(ST (t)S(t)). Observe that D(t) is a non-linear
function of time t, even when the nodes are in independent lin-
ear motion and hence D(t) is a continuously differentiable function
in time. Now, based on the time-varying EDM D(t), we define the
double centered matrix B(t)

B(t) 2 —0.5P(D(t))®2P, (14a)
and the time derivatives of the double centered matrix as,

B(r) 2 —P(D(t) ® D(t))P, (14b)
B(t) 2 —P(D(t) o D) + (D(r))@Z)p, (14¢)

where (D(t), D(t), ...) are the derivatives of the time-varying EDM,
which indicate the radial velocity and other higher-order deriva-
tives. Now, let the EDM and the corresponding derivatives at t = £
be denoted by D(t)|e=t, 2 R = [1;j], D(t) =, £ R =[], D(t) 1=, £
R= [#3;]. ¥V {i, j} < N, then with an abuse of notation (14) becomes

B® 2 B(t)|;—;, = —0.5PR®?P, (15a)
0

BV £ B(t)|iy, = _p[R@R]p, (15b)

B® 2 B(t)|, = -P|ROR+R?|P, (15¢)
0
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and higher-order derivatives can be defined along similar lines.
In general, given the distance derivatives at ty, i.e., the range pa-
rameters (R,R,R,...), the double centered matrix B(®) and the
corresponding higher-order derivatives (B, B, ...) can be con-
structed. In a mobile network, the range parameters may not be
available, however given all the nodes are capable of two-way
ranging, the range parameters can be estimated using dynamic
ranging [14].

2.4. Model

To understand the relationship between the time-varying dis-
tances and the relative kinematics of the nodes, we substitute the
definition of the EDM from (13) in (14a) and differentiate recur-
sively to obtain

B(t) = ST ()S(t), (16a)
B(t) = ' (OS(t) +ST(OS(1), (16b)
B(0) = ST(08(0) + 8 (0)s(0) + 28" (O$(0), (16¢)

where we use the definition (12¢) and introduce (S(t),$(¢t),...) as
the derivatives of S(t). Now, rearranging the terms and substituting
the definition of §(t) at t =ty from (11), we have

By 2B =X'X, (17a)
B, 2B =X"Y, +Y[X, (17b)
B, 2B® - 2Y1Y, =X"Y, + Y7 X, (17¢)

where we introduce the matrices (By, By, B,). The joint left and
right centering using the centering matrix P in (14) ensures that
the phase center of the relative kinematic matrices (Y;, Y,) is at
0p, similar to the definition of the relative position X.

2.4.1. Relative kinematics
Now, combining (15a) and (17a), we have

By, = X'X = —0.5PR®2P, (18)

and more generally for a given M > 1, (17) can be generalized to

M-1 M 1
M - T
By 2B™ - 3" ( m )Y,V,mYm (19a)
m=1
= X"Yy + YyX, (19b)

where BM) is the Mth derivative of the double centered matrix at
top, which is given by (15) and Y, is the Mth order relative kine-
matic matrix.

Remark 1. (Measurement matrix By): We make two critical ob-
servations on By, in (19a).

o Firstly, note that By, is dependent on the range parameters
(R,R,R, ...) via the definition of BM (15),

« Secondly, Bp2B©® and B;2B() can be constructed only based
on the range parameters (see (17)). However for M > 2, By, not
only depends on BM), but also additionally relies on the relative
kinematic matrices of order less than M. Hence, if the lower
order kinematics Y,V2 <m <M are known, then the measure-
ment matrix By, can be reconstructed.

2.4.2. Absolute kinematics

In addition to the relative kinematics, (19b) can also be refor-
mulated to estimate the absolute kinematics Yy, of the network.
Recall from (12b), that the relative kinematics of the Mth order is
Y;; = YyP under the assumption (10). Substituting this expression
in (19b), we have

By = X'YyP + PYL X, (20)
M

which is the absolute kinematic model.

2.4.3. Model summary

In summary, if the range parameters (R, R, R, ...) are available,
B™) can be constructed from (15). Given B(®), we aim to solve for
the relative position X using the Eq. (18), which we use to estimate
the higher order kinematics. For M >1, the measurement matrix
By can be constructed using BM) and by substituting the lower
order relative kinematic matrices Y,V 2 <m < M in (19a). Finally,
given the measurement matrix, By; and an estimate of X, our goal
is to estimate the Mth order relative kinematics Y,; and the ab-
solute kinematics Yy for M > 1, using (19b) and (20), respectively.
We now formulate the problem more concretely in the following
section.

2.5. Problem statement

Problem statement: Given the time-varying pairwise distances
D(t) between the N nodes in a P dimensional Euclidean space, es-
timate the relative kinematics (X,Y;,Y,...) and absolute kinemat-
ics (Y1, Y, ...) of the mobile network. These estimates subsequently
yield the relative (and absolute) time-varying positions.

Solution: We propose a two-step solution to the above estima-
tion problem.

S1) Dynamic ranging and relative position: Given the time-varying
distance measurements D(t), we employ dynamic ranging to
obtain the range parameters (R, R, R, ...) in Section 3, under
the assumption that all the nodes are capable of communi-
cating with each other. Secondly, we also estimate the initial
relative position X using (18).

S2) Kinematics: The measurement matrix By, can be constructed
using the estimated range parameters, and lower order kine-
matics (19a). Given the relative position X and By, estimates,
we solve for the relative kinematics Y); (in Section 4), and
the absolute kinematics Yy, (in Section 5), using (19b) and
(20) respectively.

Finally, given the initial relative position and the node kinemat-
ics, the time-varying absolute and relative positions {S(t), S(t)} can
be estimated using (5) and (11) respectively.

3. Dynamic ranging and relative position

In this section, we aim to estimate the range parameters
(R, R R, ..), given two-way communication between the nodes
in the mobile network. In Section 3.1, we relate the time-varying
propagation delay between the nodes and the range parameters.
Given this relationship, we present a dynamic ranging model in
Section 3.2, and subsequently present a closed form algorithm to
estimate the range parameters in Section 3.3. Finally, we apply the
MDS algorithm to find the initial relative position of the nodes in
Section 3.4.

3.1. Time-varying propagation delay

Consider a pair of mobile nodes capable of communicating with
each other. Let 7;;(to) £ 7j(ty) = c‘1dij (to) be the propagation de-
lay of this communication between the node pair (i, j) at time in-
stant tp, where djj(tp) is the corresponding pairwise distance and
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Distance d;;(t) —

Time t —

Fig. 1. Dynamic ranging: A generalized two-way ranging (GTWR) scenario between
a pair of mobile nodes, where the nodes exchange K time stamps asymmetrically
with each other [14]. The curved lines symbolize the non-linear motion of the mo-
bile nodes with time. Unlike our previous models [18,19] which considered only
linear motion of the nodes, in this article we consider non-linear motion of the
nodes.

c is the speed of the electromagnetic wave in the medium. Now,
for a small interval At =t —ty, we assume the relative distance to
be a smoothly varying polynomial of time which enables us to de-
scribe the propagation delay 7;(t) at t as an infinite Taylor series
in the neighborhood of t;

Ty (t) = ¢ 'd;j(t) =17 + T3 (t — to) +F5(t —to)* + ... (21)

where the Taylor coefficients are defined as
- T . _ - T
[[ij? Iij» js ] = diag(y) 1[rij,r,~j,rij, ] , (22)

and y =[0!,1!,21,...]7. Here, (rij, fj, fj, . ..) are the derivatives
of the time-varying pairwise distance d;(t) esimtated at t =to,
which are the elements of the matrices (R, R R,...), presented
earlier in Section 2.3. The physical significance of these coefficients
is as follows. The pairwise distance at ty is ry, which is convention-
ally obtained from time of arrival measurements. 7;; is the radial
velocity, typically observed from Doppler shifts, and the second-
order range parameter fj; is the rate of radial velocity between the
node pair at t. We will now use this relation in a scenario where
mobile nodes are capable of two-way communication.

3.2. Data model

Consider a generalized two-way ranging scenario between a
pair of mobile nodes (Fig. 1), where the nodes communicate asym-
metrically with each other, and record K timestamps on each node.
The timestamps recorded at the kth time instant (k <K) at node i
and node j are given by Tj; ; and Tj; , respectively. The nodes are
mobile during these timestamp exchanges, and therefore the prop-
agation delay between the nodes is unique at every time instant.
With an abuse of notation, let ;; ; and d;;  be the propagation
delay and the distance between the node pair (i, j) at the kth time
instant. Then assuming the distance is (approx) constant during the
propagation time of the message, the non-relativistic propagation
delay is 7 = c*ldij_k = |Tijk — Tjirl- Now, observe that the pair-
wise propagation delay for GTWR can also be written as (21), by
replacing t with Ty, (or Tj; ). More concretely, the propagation
delay 7 is given as
Tijk = | Tiju — Tiigel = 1ij + 4j (T — to) + Fij(Tjx — to)* + ..., (23)
where the range parameters where
T k<to<Tj .

Aggregating all the K timestamps for each node pair (i, j), and
populating all measurements from N £ 0.5N(N — 1) unique pair-

are estimated at ¢p

wise links for a network of N nodes, we have

0
—~ =
v r
I
el T T2 . ]|i|=1 (24)

where for an Lth order polynomial approximation, @ e RNLx1
is a vector of unknown coefficients. The N dimensional vec-
tor r = [r;], ¥V 1<i<N, j<i contains all the pairwise dis-
tances at ty, and vectors containing the higher-order derivatives
(f,£,...) are similarly defined. The matrix V is a Vandermonde-
like matrix defined as V=[Ilg®1x T T2 ..]eRNKN,
where T= bdiag(tu, ti3,... 4N U3, .. )€ RNKxN and t,'j =
[TU1 — to, T;]Z —to, ..., Tl]K - tO]T e RK*1 contain all the time
stamps. All the unique pairwise propagation delays are collected
in =[], 7, .. .7l 7l . T e RVEXT where 7;5 = |t;; — t;5].
Our goal in the following section, is to estimate the values

[rij. £j. By - -] from (24), which will help us construct the range

matrices (R, R, R, .. ).
3.3. Dynamic ranging algorithm

In reality, the propagation delay is erroneous and hence, more
practically (24) is

$=V0+1, (25)

where 7 is the noisy propagation delay, and the noise param-
eters plaguing the data model are populated in 3= [n{z,n%,
iy Mg IT e RNKXY where my; = [351, Mij2. - mijk] s the
error unique to the node pair (i, j). In practice, the noise is on the
time markers Tj , and subsequently on the Vandermonde matrix,
which has been simplified under nominal assumptions to arrive
at the model (25). The approximations involved are discussed in
Appendix-A.

Now, suppose the covariance of the noise on the normal equa-
tions

T 2 E{g'}, (26)
is known and invertible, then the weighted least squares solution

0 is obtained by minimizing the following I, norm,

argmin || Z7"2(V0 — 1) |)?
0

~

0

= (V' lv)- Ve g, (27)
which is a feasible solution, if K>L for each of the N pairwise
links. More generally, when L is unknown, an order recursive least
squares can be employed to obtain the range coefﬁ;ients [18].
Given 0, estimates of the range parameter matrices (R, R, R, ...) can
be constructed using (22) and subsequently, from (15) we have the
following estimates

8% = _0.5PRO2P, (28a)
~(1) PO

3" = —P[R@R]P, (28b)
A(Z) N Y <~®2

B” — _P[RoR+R?|Pp. (28¢)

3.4. Relative position

Give the initial pairwise distances at tj i.e., R, the initial relative
positions X can be determined via MDS. Given R, let By be an es-
timate of By2B(®), obtained using (28a). A spectral decomposition
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of this matrix yields ﬁo = VXAXVI, where Ay is an N dimensional
diagonal matrix containing the eigenvalues of the By and Vy the
corresponding eigenvectors. An estimate of the relative position es-
timate using MDS is then given by

X = argmin ||By — X" X|[s.t. rank(X) = P
X

=AYV (29)

where Ay contains the first P nonzero eigenvalues from Ay and Vy
is a subset of Vy containing the corresponding eigenvectors [8].

4. Relative kinematics

In the previous section, we estimated the range parameters
given time-varying distance measurements D(t), which was the
first step (S1) in our problem statement described in Section 2.5.
Using these range parameters, we constructed the double centered
matrices B, 8", 8%, ...) (28) and estimated the relative po-
sition X using MDS (29). Given these estimates, we now aim to
solve the unknown relative kinematic matrices Yy, using (19), as
proposed in (S2) of Section 2.5.

4.1. Linearized multidimensional scaling (LMDS)

Prior to investigating the general kinematic model (19), we re-
visit a special case when the nodes are mobile under linear inde-
pendent motion [18]. In such a scenario, the acceleration and other
higher order derivatives are absent i.e., Y, = 0, Vm > 2. Therefore,
under a constant velocity assumption, (17b) and (17c¢) simplify to

BV = X"Y, +Y!X, (30a)

B =2v7Y,, (30b)
and for m>3 {Bn, B™} defined in (19) does not exist [18, Ap-

pendix B|. Now substituting the definition of relative velocity from
(12b) and exploiting the property H{Hl =1, we have

BY = X'HY, + V{HIX, (31a)

~T ~
B? =2Y,Y,. (31b)

The LMDS algorithm to estimate the relative velocity (up to a
translation) is then a two step method as decribed below.

4.1.1. MDS-Based relative velocity estimator
Firstly, the relative velocity up to a rotation and translation is

. R . . . ~(2
obtained by minimizing the strain function using (31b). Let B( ) be
an estimate of B from (28c), with an eigenvalue decomposition

£ (2 . . . L
E( )2 VyAyV}f, then the relative velocity estimate is given by

i1 = argmin ||B(2) - ZﬂZ ||s.t. rank(Y,) = P
Y,

A 12yT
= APV, (32)

where A, and V, contain the first P nonzero eigenvalues and cor-
responding eigenvectors of Ay and V), respectively.

4.1.2. Estimating the unknown rotation

The MDS-based solution (32) yields the relative velocity up to a
rotation and translation, which is not sufficient to reconstruct the
time-varying relative position using (9). To estimate the unique ro-
tation matrix, we vectorize (31a), apply the transformation (1), and
solve the following constrained cost function

argmin ||<i>vec(H1)—vec(B(1))||2 st HIH; =1p, (33)

H;

where & = (I +J) (Y] ®XT), {X.Y,} are estimates obtained from
(29) and (32) respectively and, J is a permutation matrix such that
(2) holds.

Thus, under a linear motion assumption, the relative velocity
Y, =H;¥, up to a translation can be reconstructed for a general
P-dimensional scenario using the estimators (32) and (33). It is
worth noting that the LMDS solution is feasible, only under the
constant velocity assumption. In general, the assumption on linear
motion is not always valid and hence we address the more general
kinematic motion in the following sections.

4.2. Lyapunov-like equations

More generally, when the nodes are in non-linear motion, the
kinematics Yp;, Vm>1 exist and must be estimated. To solve for
the relative kinematics in this scenario, we refer back to our rela-
tive kinematic model (19). For any M > 1, the model (19b)

By = X"Y,, + Yy X, (34)

is the relative Lyapunov-like equation [20,21], where By, is the
N—dimensional measurement matrix and Y, is the Mth order
kinematics to be estimated. As pointed out in Remark 1 in
Section 2.4, By can be constructed by B and lower order rel-
ative kinematics {Ym}’n"{;}. The above equation is very similar, but
not the same as the following equations,

A"Y + YA = B,
AY+YA =0,
AY + YC = E,

which are the (continuous) Lyapunov equation, commutativity equa-
tion [22, chapter 4] and Sylvester equation [23,24] respectively,
where the unknown matrix Y has to be estimated, given A, B, C,
E. The solutions to these equations exist and dummyTXdummy-
are extensively investigated in control theory literature [25]. How-
ever the Lyapunov-like Eq. (34) has received relatively less atten-
tion. The Lyapunov-like equation has a straight forward solution
for P = 1. But, for P> 2, although a general solution was proposed
by Braden [26], a unique solution to (34) does not exist which we
discuss in Appendix-B.
Now, vectorizing (34) and using (1), we aim to solve

¥y, = argxr;in Iy +1) Iy ® X")y,, — bu I
= argymin | Ay,, — bull?, (35)
Y
where
A=y +)IyoX) e RV, (36a)
y, = vec(Yy) e RN, (36b)
by = vec(By) € RN, (36¢)

and J is an orthogonal permutation matrix (2). The matrix (Iy ®
X") e RN**NP s full column rank, since X is typically non-singular.
However, the sum of permutation matrices (Iyz +]J) € RV xN? s al-
ways rank deficient by at least (g’) Hence, the matrix primary ob-
jective function A is not full column rank, but is rank deficient by
at least P £ 0.5P(P — 1), which is discussed in Appendix B. In (34),
since the translational vectors of both X and Yy, are projected out
using the centering matrix P, the P dependent columns in A in-
dicate the rotational degrees of freedom in a P-dimensional Eu-
clidean space.
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4.3. Lyapunov-like least squares (LLS)

A unique solution to the Lyapunov-like equation is not feasible
without sufficient constraints on the linear system (35). Let A be
an estimate of A, obtained by substituting the estimated relative
position X (29). Similarly, let I3M be an estimate of by obtained
by substituting the range parameters and appropriate relative kine-
matic matrices up to order M — 1. Then the constrained Lyapunov-
like least squares (LLS) solution to estimate the relative kinematic
matrices is given by minimizing the cost function
Vs = ar%,min |Ay,, —bul* st Cy, =d, (37)

M
where C is a set of non-redundant constraints. The above optimiza-
tion problem has a closed-form solution, given by solving the KKT
equations [27, Section 10.1.1].

4.4. Weighted lyapunov-like LS (WLLS)

In reality, both A and b are plagued with errors and hence the
solution to the cost function (37) is sub-optimal. Let W be an ap-
propriate weighting matrix on the Lyapunov-like equation, then
the weighted Lyapunov-like least squares (WLLS) solution is ob-
tained by minimizing the cost function
By = ArgMIn W, Ay, —by)|? st Cy,, =d. (38)

M
which, similar to (37), can be solved using the constrained KKT so-
lutions [27, Section 10.1.1]. An appropriate choice of the weighting
matrix W), will be discussed in Section 6.4.

4.5. Choice of constraints: Relative immobility

In the absence of absolute location information, a unique solu-
tion is feasible if the relative motion of at least P nodes or features
are invariant (or known) over a small time duration At. In an an-
chorless framework, a set of given nodes would have equivalent
relative kinematics, if they are identical in motion up to a transla-
tion or if they are immobile for the small measurement time At.
Such situations could arise, for example, in underwater localiza-
tion, when a few immobile nodes could be fixed with unknown
absolute locations, which in turn could assist the relative localiza-
tion of the other nodes. For P = 2, if the first P nodes are relatively
immobile for the small measurement time, a valid constraint for
(37) and (38) is

G=[L -L 0] d=0 (39)

which can be extended for P> 2 and if required, for a larger num-
ber of immobile nodes. In essence, the relative immobility con-
straint reduces the parameter space in pursuit of a unique solution
for the ill-posed Lyapunov-like equation.

4.6. Time-varying relative position

In this section, we solved for the relative kinematics of motion,
using the range parameters and relative position estimates. When
the nodes are in linear motion, the first-order relative kinematics
can be estimated using the LMDS algorithm (32,33). More gener-
ally, for estimating the relative kinematics in a non-linear scenario,
we solve the Lyapunov-like Eq. (34) using constrained least squares
(37,38). Substituting these estimates in (11), an estimate of the rel-
ative time-varying position is
S(t) = X+Y,(t —tg) +0.5Y,(t —tg) + ... (40)
where X is a relative position estimate from (29) and {¥;.Y5....}
are the estimates from (37) or (38). In the following section, we

aim to estimate the absolute kinematics of the nodes and subse-
quently the time-varying absolute position.

5. Absolute kinematics

In this section, we solve for the absolute kinematics Yy, given
By and the relative position X. We have from (20),
X"YyP + PY,,X = By. (41)

The above equation is similar, but not the same, to the generalized
(continuous-time) Lyapunov equation

ATYC + C'YA =B,

where A, B, C are known square matrices [28]. We now vectorize
(41) and aim to minimize the following cost function

v = argy:ﬂnin || Aym — b |1, (42)
where

A= (w+))PeX") e RVXNP, (43a)
yu = vec(Yy) € RMNPx1, (43b)

and by, is given by (36¢). In comparison to (35), the matrix (Iy®X")
is replaced with (P®XT) in (43a). The rank of the centering ma-
trix P is N—1 and since X is typically full row rank, the Kro-
necker product is utmost of rank NP — P. This rank-deficiency of
P is also reflected in the matrix A. Unlike A which has P depen-
dent colomns, A is rank-deficient by (°3') =P+ P. The additional
P dependent columns are perhaps not surprising, as they indicate
the lack of information on the translational vector, i.e., the group
center of the Mth order kinematic matrix.

5.1. Generalized lyapunov-like least squares (GLLS)

In pursuit of a unique solution to the rank-deficient system
(42), we propose a constrained generalized Lyapunov-like least
squares (GLLS) to estimate the absolute kinematic matrices which
is obtained by minimizing the cost function

Jugis = argmin [Ayy —by* st Cyw = d. (44)
M
where A and BM are estimates of A and by, respectively. The matrix

C is a set of non-redundant constraints, which will be discussed in
Section 5.3.

5.2. Weighted generalized lyapunov-like LS (WGLLS)

The performance of the estimator can be improved by weight-
ing the cost function (44), i.e.,

I wglls = argymin W1/ (Ayy — by)||? st Cym =d, (45)
M

which yields the weighted generalized Lyapunov-like least squares
(WGLLS) solution [27, Section 10.1.1], where W), is an appropriate
weighting matrix (see Section 6.4).

5.3. Choice of constraints: Anchor-aware network

For an anchored scenario, if the Mth order absolute kinematics
of a few nodes are known, then the absolute velocity, acceleration
and higher-order derivatives can be estimated. A straightforward
minimal constraint for the feasible solution is then

G =z, 0] (46)

where without loss of generality, we assume the first P + P param-
eters are known.
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5.4. Time-varying absolute position

In (44,45), we solved for the absolute kinematics given the
measurement matrix By and the relative position, using con-
strained least squares estimators. Given these estimates, we have
from (5)

S(t) =X+ Y1(t—to) +0.5Y5(t —tg)% + ..., (47)

where $(t) is an estimate of the time-varying absolute position, X
is an estimate of the relative position (29), and {Y1,Y>, ...} are the
absolute kinematic estimates obtained by solving (44) or (45).

6. Cramér-Rao bounds

The Cramér-Rao lower bound (CRB) sets a lower bound on the
minimum achievable variance of any unbiased estimator. In this
section, we derive the CRBs for the estimated parameters based on
the presented data models. In the following section, we will use
these bounds to benchmark the performance of the proposed esti-
mators.

6.1. Range parameters

We begin by stating the lower bounds for the range parameters
based on (25). Let ¥ = [rT,#T,§T,...]7, then the covariance of the

range parameters ¥ and the corresponding estimate fh e, Xy e

E{ @ - - W)T}, is bounded by

X * * *
; *  Xp ok *
T, 2TV 'V IT=| 4+ &« % «| (48)

* * *

where X is the covariance of the noise on the timestamps de-
fined in (26). Here, the covariance matrices {X,, X;, X3, ...} are
the lowest achievable bounds for the corresponding range param-
eters {r,t, ¥, ...}. The entries not of interest are denoted by * and
I' = diag(y) ® I is a transformation matrix, where y is given by
(22). It is worth noting that our proposed solution (27) achieves
this lower bound for an appropriate L.

6.2. Relative position

The CRB on the relative positions yg2vec(X) is given by the in-
verse of the Fisher Information Matrix (FIM) i.e.,

T 2 E{Fo—¥0)Fo —¥0)"} = EL, (49)

where ¥y is an estimate of the unknown relative position yg, Xy is
the covariance of §, [18] and the FIM F, € RNPXNP jg

Fo=J% ) (50)

where X, 2 bdiag(Z;, X;), Jx is the Jacobian [18, Appendix C] and
¥, is obtained from (48). In the absence of known anchors in the
network, the FIM is inherently nonlinear and hence we employ the
Moore-Penrose pseudoinverse in (49).

6.3. Kinematics

We now derive the lower bounds on the variance of the esti-
mates of the relative kinematics V= vec(Y),) and absolute kine-
matics yy = vec(Yy). The Gaussian noise vectors plaguing the cost
functions (35) and (42) are modeled as

P, ~ N By, —by. X, ), (51)

Py ~ N(Ay,, —by, Xp M), (52)

where py, py are N?> dimensional noise vectors, and the corre-
sponding covariance matrices are of the form

Z,m 2 E{p, o1} ~ Ay Ay y + o, (53a)
Tom 2 E{oy o) = AymZAL ), + Ty, (53b)
where

Ay =Up+DUve Y] € RV NP, (54a)
Ay = (e +)) (P @ Y] € RN P, (54b)

and an expression for X,y is derived in Appendix C.

6.3.1. Unconstrained CRBs
The lowest achievable variance by an unbiased estimator is
given by

Zow 2 E{ @, ~ Y Gy — ¥} = Fle (55a)
Tym 2 E{Gv —ym)Gu—yn)"} = B . (55b)
where the corresponding FIMs are given by

Fy=A2 A (56a)
F,u=A"Z! A (56b)

It is worth noting that the Moore-Penrose pseudoinverse is em-
ployed since the FIM is rank-deficient, and consequently the de-
rived bounds (55) are oracle-bounds.

6.3.2. Constrained CRBs

When the FIM is rank-deficient, a constrained CRB can be de-
rived given differentiable and deterministic constraints on the pa-
rameters [29]. Let U, U be an orthonormal basis for the null space
of the constraint matrices C,C, then the constrained Cramér-Rao
bound (CCRB) on the Mth order kinematics are given by

EJC/-M = E{ @M - XM)(QM - XM)T}

> U(U"F,,,0)~'07, (57a)
o 2 E{(Fm — ) v — ym)"}
> UUF, ,U)"UT, (57b)

where the FIMs are given by (56).

6.4. Choice of weighting matrices Wy, Wy

To admit a BLUE solution, we use the inverse of the covariance
matrices X, m, X, m as weights to solve the regression problems
(38) and (45), i.e.,

- A A~ 2 AT A

WM = zp,M = (Ayzxéy + 2:I;LM)Tv (583)
~7F PO~ NN A

Wy 23,y = ATA] + 2y, (58b)

where the estimates Ay,f\y are obtained by substituting YM from

LLS [(37) and (44)], in (54), Ty is an estimate of (49) and £,
is derived in Appendix C from appropriate range parameter esti-
mates.
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7. Simulations

In this section, we conduct experiments to validate the pro-
posed data model, and the solutions against their respective de-
rived lower bounds. A network of N =10 nodes is considered in
P = 2 dimensional space, with instantaneous position, velocity and
acceleration values arbitrarily chosen as in (59), such that the con-
straint (39) holds. All the nodes communicate with each other
within a small time-interval of AT = [T, Tji ] = [-1, 1] seconds,
wherein the transmit time markers are chosen to be linearly
spaced without loss of generality, we are interested in the instan-
taneous kinematics of the nodes at time instant ty = 0.

We assume that all the pairwise communications are indepen-
dent of each other, i.e., X = aleK. The metric used to evaluate the
performance of the range parameters is the root mean square error
(RMSE), given by

Nexp

RMSE(z) :Nz_l\/Nex}JZ 12() —z||2, (60)
n=1

where Z(i) is the estimate of the unknown vector z € RN*1 re-
lated to the ith run of Nexp =500 Monte Carlo runs. To evaluate
the estimates of the relative and absolute kinematic matrices, we
use z = vec(U), where U is the matrix under evaluation. To qualify
these estimates, the square root of the Cramér-Rao bound (RCRB)
is plotted along with the respective RMSE. It is worth noting that
the theoretical lower bounds for the range parameters (48), and
subsequently the bounds for relative position (50) and node kine-
matics (55,57) are dependent on the covariance of the noise on the
markers i.e., X.

For all the proposed estimators in Sections 7 A-C, we conduct
two types of experiments. Firstly, for (a) varying number of pair-
wise communications K from 0 to 100, with constant noise of
o = 0.1m, and secondly for (b) varying SNR from [—-10, 10] dB me-
ter with a fixed K = 10 time-stamp exchanges. The noise consid-
ered on the time-markers is typical of TWR based fixed localiza-
tion experiments [30]. It is worth noting that the chosen number
of time-markers K = 10 is conservative, in comparison to our pre-
vious simulation setup where we used K = 500 [18]. Along similar
lines, other parameters such as N and AT are also selected mod-
erately. Therefore, the results from our current simulation, partic-
ularly for dynamic ranging, could be different in contrast to our
previous work [18].

7.1. Range parameters

We employ the dynamic ranging algorithm (27) for L = 3, to es-
timate the desired range coefficients from the time-varying propa-
gation delays. In comparison to our previous experiments [14,18],
we additionally consider acceleration in the current simulation.
Fig. 2 shows the RMSE and RCRB of the first 3 range coefficients,
for both varying K and varying SNR, where we observe that the
RMSEs achieve the corresponding derived RCRBs asymptotically.
Observe that in the Monte Carlo experiments, we consider the

—-792 -554 -965 -985 —-49 -503 m
—858 419

(59a)

(59b)

-0.72 -049 -0.34 ms-2
-043 -0.14 056 0091

(59¢)

noise on the time makers, whereas the lower bounds are derived
on the data model with approximated noise (25). Hence, the RM-
SEs achieving the correponding RCRBs validates our noise approxi-
mation discussed in Appendix A for the given experimental setup.
For the linear model (25), the proposed solution is the minimum
variance unbiased estimator under Gaussian noise assumption. In
this simulation, without loss of generality, we assume that the or-
der of approximation L is known. Alternatively, iterative solutions
such as iMGLS [14] can be employed to estimate L. For a detailed
discussion on the effect of L on the distance estimation, particu-
larly for an asynchronous network, see [14].

7.2. Relative kinematics

The estimated relative range parameters yield the desired rel-
ative kinematics matrices. Fig. 3 shows the RMSEs (and RCRBs) of
all the relative kinematic estimates. The MDS-based relative posi-
tion estimates presented in Fig. 3(a) and Fig. 3(d), perform well
against the derived oracle-bound, which was also observed in [14].
In case of the relative velocity and acceleration, we assume the
minimal constraint C; for analysis. Note that the unconstrained or-
acle bounds are lower as compared to the CCRB, for a fixed SNR
and increasing K. The WLLS solution outperforms the LLS solutions
for both velocity and acceleration estimation, and asymptotically
achieve the derived respective CCRBs.

To compare the performance of the proposed relative velocity
estimator against the MDS-based relative velocity estimation (32),
we perform another experiment. The MDS-based algorithm for rel-
ative velocity estimation assumes the nodes are in linear motion.
Hence, we set Y, =0py in (59) and re-implement the dynamic
ranging algorithm for L = 2 and plot the standard deviation of the
estimates in Fig. 4. Under the constant velocity assumption, the
CCRB is comparable to the oracle bound. The proposed WLLS so-
lution outperforms the MDS-based estimator, especially for higher
SNR and lower number of pair-wise communications. This is per-
haps not surprising, since the MDS-based estimator relies on all
the R,R,R where the noise variance on these regression coeffi-
cients typically increases with the range order for a Taylor basis
(see Fig. 2). In comparison, the WLLS solution is dependent only
on the range R and range rates R.

7.3. Absolute kinematics

Fig. 5 shows the RMSEs and the corresponding RCRBs of the
absolute velocity Y; and acceleration Y,. We assume constraint
(46) to solve the proposed GLLS (44) and WGLLS (45) algorithms.
The proposed estimators are seen to converge asymptotically to the
derived CCRBs, while the CCRB itself is an order higher than the
theoretical oracle-bound. The performance of the absolute kine-
matics is very similar to that of the relative kinematics (see Fig. 3),
which is due to the fact that the FIMs in both scenarios are domi-
nated by the singular values of the relative position matrix.
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Fig. 2. Range parameters: Varying K : RMSEs (and RCRBs) of relative range parameters (r, t, ) for varying number of communications (K) between the N = 10 mobile nodes

for 0 = 0.1 meters. Varying o: RMSEs (and RCRBs) of relative range parameters (r, I, ) for a network of N = 10 nodes exchanging K = 10 timestamps, where the noise on
the time markers (o) is varied. Unlike our previous experiments [14,18], we consider acceleration in the current setup.
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Fig. 3. Relative kinematics: Varying K: RMSEs (and RCRBs) of (a) Relative position (X), (b) Relative velocity (Y;) and (c) Relative acceleration (Y) for varying number of
communications (K) between the N = 10 mobile nodes for o = 0.1 meters. Varying o: RMSEs (and RCRBs) of (d) Relative position (X), (e) Relative velocity (Y;) and (f)
Relative acceleration (Yu,), for a network of N = 10 exchanging K = 10 timestamps, where the Noise on the time markers (o) is varied.

0 10°
10° | 10’

m m

P %& Bl |

= D =

& |

| ~LMDS 1 10°F . 1mps 1
+WLLS -+ WLLS
-©RCRB-Constrained ©RCRB-Constrained
3 +=RCRB-Unconstrained - +=RCRB-Unconstrained
10 10 13 16 20 25 32 40 50 63 79 100 10 -10 -8 6 4-2 0 2 4 6 8 10

No. of Two-way comms. (K) —101log; (o) [dB meters]

Fig. 4. Comparison of relative velocity estimators: RMSEs (and RCRBs) of relative range parameters Y; for varying number of communications (K) for o = 0.1 meters (top)
and varying o (bottom) between the N = 10 mobile nodes.



276 RT Rajan, G. Leus and A.-]. van der Veen/Signal Processing 157 (2019) 266-279

%a) Absolute velocity: Y [ms™1]
10 .
. M)

-+GLLS

-+ WGLLS

©-RCRB:Anchored
RCRB:Anchor-Free

10 13 16 20 25 32 40 50 63 79 100
No. of Two-way comms. (K)

(g) Absolute velocity: Y [ms™!]
0

100t

OX1

-+GLLS

-+WGLLS

©-RCRB:Anchored
RCRB:Anchor-Free

102
-10 -8 6 4 -2 0 2 4 6 8 10
—10log, (o) [dB meters]

(b? Absolute acceleration Yo [ms™?]
10 e

-+GLLS

-+ WGLLS

©-RCRB:Anchored
RCRB::Anchor-Free

10 13 16 20 25 32 40 50 63 79 100
No. of Two-way comms. (K)

(d) Absolute acceleration Yo [ms™?]

102}

1007 E

-+GLLS

-+ WGLLS

©-RCRB:Anchored
RCRB:Anchor-Free

102
-10 -8 6 4 -2 0 2 4 6 8 10
—101log,, (o) [dB meters]
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7.4. Relative and absolute time-varying positions

The estimation of the node kinematics enable us to reconstruct
the time-varying relative positions S(t) and time-varying absolute
positions S(t), from (40) and (47) respectively. We conduct ex-
periments to study the effect of the proposed estimators on the
time-varying positions. The RMSE plot for the absolute and rela-
tive time-varying positions around the region of interest at ty =0
are shown in Fig. 6, where the number of communications are var-
ied as K =[50, 100, 500] with a Gaussian noise on the distance of
o =1 meter. For K =500, the RMSE estimate of both the relative
and absolute position around ty shows an improvement by an or-
der of magnitude in comparison to the noise on the distance mea-
surement, for the given experimental setup. This gain is primarily

contributed during dynamic ranging, where K data points are av-
eraged using the Taylor basis which yields a factor +/K improve-
ment on the estimate of the range parameters. Secondly, the per-
formance deteriorates as we move away from t,, which is a typi-
cal characteristic of the Taylor approximation. However, if Doppler
measurements are available for radial velocities and other higher-
order derivatives, then the standard deviation of the estimators can
be further reduced.

7.5. Choice of constraints

In the previous sections, we evaluated the proposed algorithms
under minimal constraints. Now, we perform experiments to un-
derstand the effect of incorporating additional constraints (or ref-
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erences) on the performance of the proposed estimators. These ad-
ditional constraints implicitly reduce the parameter subspace, and
consequently affect the overall RMSE of the proposed estimators.
In order to understand this variation, we set N, =1 in our per-
formance metric (60) for the following simulations. To estimate
the relative kinematics in a 2-dimensional scenario, a unique so-
lution is feasible if at least 2 nodes are relatively immobile (see
Appendix B). If more nodes are immobile, then the constraints in
(39) can be extended to incorporate this supplementary informa-
tion. Similarly, in case of absolute velocity and acceleration esti-
mation, a minimum of at least 2 node kinematics must be known.
Therefore, in the following experiments we vary the number of
known kinematics (or immobile nodes) from 2 to 6, for a fixed
number of two-way communications K = 100 with o = 0.1 meters.
Fig. 7 shows the results of the GLLS and WGLLS algorithms for esti-
mating the absolute and relative kinematics, along with the respec-
tive CCRBs. Not surprisingly, we observe an improvement in the
performance of the algorithms with the additional constraints. In
addition, unlike the GLLS estimator, the WGLLS estimator asymp-
totically achieves the respective CCRBs.

8. Conclusions

Understanding the relative kinematics of an anchorless network
of mobile nodes is paramount for reference-free localization tech-
nologies of the future. We presented a novel data model which
relates the time-varying distance measurements to the Mth order
relative kinematics for an anchorless network of mobile nodes. The
derived data model takes the form of a Lyapunov-like equation,
which under certain constraints, can be recursively solved for esti-
mating the relative velocity, acceleration and higher-order deriva-
tives. Closed form constrained estimators, such as the LS and WLS
are proposed, which are also the BLUE for the given data model.
Cramér-Rao lower bounds are derived for the new data model
and the performance of the proposed algorithms is validated using

simulations. Although our focus is on relative localization, the pro-
posed model and solutions can be broadly applied to understand
feature variations in Euclidean space, with applications in general
exploratory data analysis.

In our future work, we are keen in addressing two research
challenges. Firstly, our focus in this article has been on finding
unique solutions to time-derivatives of the relative position matrix.
To this end, unbiased constrained estimators are proposed to solve
the under-determined Lyapunov-like equation. However, more gen-
erally, regularized algorithms can be employed, such as Ridge re-
gression [31], subset selection [32] or Lasso [33], without the need
for equality constraints on the cost function. The estimates of such
unconstrained algorithms can be corroborated against the uncon-
strained Cramér-Rao bound derived in this article. Furthermore,
the algorithms are inherently centralized in nature, which could
be distributed for resource constrained implementation. Finally, the
proposed framework is particularly helpful for cold-start scenarios
when there is no apriori information on the position or higher-
order kinematics. In practice, given the cold-start solution on rela-
tive velocity and higher-order kinematics, a state-space model nat-
urally emerges for dynamic tracking of the relative positions over
time, which can be solved using adaptive filters.

Appendix A. Approximate noise model

To estimate the range parameters from time-varying propaga-
tion delays, we presented the dynamic ranging model in (25), with
additive Gaussian noise i.e.,

VO =1+1, (61)

where V is the Vandermonde-like matrix, # contains the un-
known range coefficients, T contains all the propagation delays and
n is the noise vector plauging the propagation delays. In prac-
tise, the noise is on the time markers and subsequently on the
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Vandermonde matrix. However, under certain nominal assump-
tions, the above model is valid, which we discuss in this section.

We begin with the noiseless pairwise time-varying dynamic
ranging model, which we recollect from (23) as below

L+ E AT+ P AT + = [Ty — Tkl = Tk (62)

where we introduce ATy = (T —to) for notational simplicity. In
reality, there is noise plaguing the time markers and hence we
have,

13+ B (AT + i) + By (AT + 0i0)* + ... = Tije + Nijes (63)

where {n; i, 1, } are the noise terms on the time markers at node
i and node j respectively, and 7;; = 1; x — 17 iS the pairwise noise
error of the node pair (i, j). Expanding the polynomial and rear-
ranging the terms, we have

L+ T AT + T ATE + .+ ik = Tiji + Nijke (64)

Here 7); ; is the cumulative noise error from the Taylor approxima-
tion, which is expressed as

Mik = Nik (L‘j,k + 273 AT + ... ) + 107 (fij,k +.. ) +...~0,
(65)

and approximated to 0. This approximation is valid under two as-
sumptions. Firstly, we assume that the time stamps are measured
with high SNR, i.e., we consider standard deviations of < 10~7 sec-
onds on the time stamps, which is necessary to achieve meter
level accuracies is conventional two-way ranging based localization
solutions [34,35]. As a consequence, we ignore the second order
noise term ’71'2,1« and other higher order noise terms in (65). Sec-
ondly, observe from definition (22) that the coefficients {r,7,...}
are scaled by ¢!, where ¢ =3 x 108 m/s for free space. Therefore,
the Taylor coefficients are significantly small and subsequently, the
term (fyj + 27 AT +...) is negligible for a measurement pe-
riod of up to a few seconds. This is a pragmatic assumption, since
we are only interested in the instantaneous relative kinematics of
the nodes around a small time interval. In summary, for small
measurement periods in high SNR scenarios, the noise parameter
ik ~ 0, and under these assumptions (25) holds.

Appendix B. Underdetermined Lyapunov-like equation

Theorem 1 (Underdetermined Lyapunov-like equation). Given X e
RPN and B € RN*N for N> P, the Lyapunov-like equation

X'Y+Y'X=B, (66)
is rank-deficient by at least P = (g)

Proof. Let the singular value decomposition of X be

X=U Ay O]V, (67)

where Ay € RP*P is a diagonal matrix containing the singular val-
ues and Uy € RP*P andV, € RN*N are the corresponding singular
vectors. Then, (66) is

[A« O]'Y+Y'[A, 0]=B. (68)

where

B— [gy '512] — VBV, (69)
12 22

Y=V, Y2 ] = UiYV,, (70)

where Y; e RP*P| ¥, e RP*N-P and B,, = 0 for the equation to be
consistent. A solution to the system (66) is obtained by solving for
Y the set of equations,

AY + YA, =By, (71)
ALY, = Bp,. (72)
An estimate for Y, is straightforward and is given by \:(2 =

A, 'By,. Let Ay, ¥; and By; be partitioned into

op 0 yu Vi by by
o |y Y| |bun b | 73
|: 0 Ax.]] |:YZ1 Y1,1i| |:b¥2 B11,1] (73)

then (71) is equivalent to solving

yu = bn /201, (74)
01912 +3751Ax,1 = I2’12, (75)
Ax,l?l,l +?1T,1Ax,1 = ﬁll,l- (76)

Note that the solution to yq; in (74) is straightforward, however
the solution to off-diagonal terms ¥, ¥»7 is underdetermined. Fur-
thermore, since (76) is in form similar to the (71), ?1,1 can be es-
timated recursively [36]. Thus, the diagonal terms of the P dimen-

sional matrix ?1,1 can be estimated, however to resolve the am-

biguity of the off-diagonal terms at least P = (5) constraints are

required. O
Appendix C. Expression for X, y

We present an explicit expression for the covariance matrix
X m» Which is obtained by ignoring higher order noise terms
i.e,, for sufficiently large SNR. For M =1, i.e., relative velocity, we
have

Tor ~ ﬁ(wrif\yr + nlrfir\l:f)f), (77)
and for M =2, i.e,, relative acceleration, we have
Ts ﬁ(wrif\m L WE; 4\1@)’;914—)13

+4W, 30, (78)

where we P2P®P, W, 2 diag(vec(R)), ¥; £ diag(vec(R)) and
W¥; £ diag(vec(R)). The matrix Wy, = A, ; for absolute kinematics
and ¥y = A ; for relative kinematics. Observe that the diagonal el-
ements of the range parameters R, R, R, ... contain zeros and con-
sequentially the matrices W, ¥;, W;, ... are singular. Hence the co-
variance matrix X,  is in general rank deficient. Furthermore, Ay
in (54b) is rank deficient by definition and subsequently X, (53) is
ill-conditioned and therefore, we use the Moore-Penrose pseudo-
inverse in (56) and (58). An expression for higher-order M > 2 can
be similarly derived.
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