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This paper presents a new method for estimating the parameters of

multi-channel pilot models that is based on maximum likelihood estima-

tion. To cope with the inherent nonlinearity of this optimization problem,

the gradient-based Gauss-Newton algorithm commonly used to optimize

the likelihood function in terms of output error is complemented with a

genetic algorithm. This significantly increases the probability of finding

the global optimum of the optimization problem. The genetic maximum

likelihood method is successfully applied to data from a recent human-in-

the-loop experiment. Accurate estimates of the pilot model parameters and

the remnant characteristics were obtained. Multiple simulations with in-

creasing levels of pilot remnant were performed, using the set of parameters

found from the experimental data, to investigate how the accuracy of the

parameter estimate is affected by increasing remnant. It is shown that only

for very high levels of pilot remnant the bias in the parameter estimates
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is substantial. Some adjustments to the maximum likelihood method are

proposed to reduce this bias.

Nomenclature

A State matrix

Ad Disturbance sinusoid amplitude deg

At Target sinusoid amplitude deg

B Input matrix

C Output matrix

D Feedthrough matrix

e Tracking error signal deg

f Probability density function -

fd Disturbance forcing function deg

ft Target forcing function deg

H(s) Transfer function

H(jω) Frequency response function

Hn Remnant filter

Hnm Neuromuscular dynamics

Hpe Pilot visual response

Hpθ Pilot motion response

Hsc Semicircular canal dynamics

Hθ,δe
Controlled pitch dynamics

j Imaginary unit -

L Likelihood function -

Km Motion perception gain -

Kn Remnant filter intensity -

Kv Visual perception gain -

Kδe,u Pitch stick gain -

MΘΘ Fisher information matrix

m Number of samples -

N Remnant Fourier transform -

Ne Order of the error response state matrix -

n Pilot remnant signal deg

nd Disturbance frequency integer factor -

nt Target frequency integer factor -

S Spectrum
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s Laplace variable -

Tlead Visual lead time constant s

Tlag Visual lag time constant s

Tm Measurement time s

Tsc1, Tsc2 Semicircular canal time constants s

t Time s

u Pilot control signal deg

x̄ State vector

Symbols

α Line search parameter -

δe Elevator deflection deg

ǫ Prediction error deg

ζn Remnant filter damping -

ζnm Neuromuscular damping -

Θ Parameter vector

θ Pitch angle deg

θ̈ Pitch acceleration deg s−2

µ Mean

σ Standard deviation

τm Motion perception time delay s

τv Visual perception time delay s

φ Sinusoid phase shift rad

ω Frequency rad s−1

ωm Measurement base frequency rad s−1

ωn Remnant filter break frequency rad s−1

ωnm Neuromuscular frequency rad s−1

Subscripts

e pilot error response

d disturbance

t target

θ pilot pitch response
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I. Introduction

In manual control of aircraft, pilots combine information from cockpit instruments, their

view of the outside world and physical motion sensations to achieve a suitable control action.

Knowledge on how pilots use these different types of motion cues not only gives more insight

into human motion perception processes, but it is also crucial to the design of manual control

systems and the tuning of flight simulators.1,2

Many researchers applied multi-channel pilot models in their efforts to explain and quan-

tify the effects of different modalities on pilot control behavior.3–9 Human manual vehicle

control behavior is an inherently nonlinear and time-varying closed-loop process. For care-

fully designed control tasks, however, the control behavior of well-trained individuals can be

accurately described with quasi-linear pilot models.10 Such models consist of a linear part

that describes a pilot’s response to all perceived variables in terms of control-theoretical

elements, supplemented with a remnant signal that accounts for all nonlinear contributions

to the observed control behavior. For tasks where pilots perceive information from multiple

modalities – e.g., visual and motion – these linear pilot models generally have a multi-channel

structure, where the response to the different modalities is separated. The characteristics

of such linear pilot responses are defined by the model parameters, such as weighing gains

and time delays. Values for these parameters, which can be determined from experimental

data using mathematical identification techniques, help to explain the effects of different

perceptual modalities on pilots’ control behavior in control-theoretical terms.

Parameter estimation techniques currently employed to estimate the parameters of a

multi-channel pilot model use either Fourier transforms11 or linear time-invariant models8 to

obtain non-parametric pilot describing functions in the frequency domain. In a second step,

the parameters of a multi-channel pilot model are then optimized to yield an optimal fit to

these frequency responses. These methods have two main disadvantages. First, the accuracy

of the parameter estimate is affected by biases that originate from both identification steps.

In addition, for these identification methods to give accurate results, highly specific demands

on the design of the control task – and specifically the adopted forcing functions – need to

be met.8

An alternative to these frequency-domain parameter estimation methods are time-domain

identification procedures, which allow for estimation of model parameters from time-domain

data directly. For such time-domain identification techniques, the requirements to ensure

the identifiability of a model are significantly less stringent.12 Few studies are described

in the literature that investigate the application of time-domain identification techniques to

pilot modeling.13–18 These studies only considered very simple pilot models and provide little

detail of the identification procedure.
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Maximum likelihood estimation is an example of a statistical time-domain identifica-

tion method that, for instance, has been successfully applied to the identification of aircraft

stability and control derivatives from flight test data19–21 and of air- and spacecraft struc-

tural modes.22,23 This study focuses on the application of a maximum likelihood parameter

estimation algorithm to the problem of multi-channel pilot model identification. For the de-

velopment of this algorithm, an output-error structure is assumed for the quasi-linear pilot

model. Of particular interest are the steps that need to be taken to make the identification

technique suitable for coping with the inherent nonlinearity and many local minima of the

cost function. To cope with these nonlinearities and local minima, the maximum likelihood

method is enhanced with a genetic algorithm. Data from a recent human-in-the-loop ex-

periment,2 which was performed in the SIMONA Research Simulator at Delft University

of Technology, is used to test the genetic maximum likelihood algorithm. To evaluate the

performance of this parameter estimation method with increasing levels of pilot remnant,

the average bias and standard deviation of the parameter estimates are assessed using pilot

model simulations.

The structure of the paper is as follows. First, the parameter estimation problem for

multi-channel pilot models will be discussed. Then, the genetic maximum likelihood estima-

tion procedure will be explained in detail and parameter estimation results from experimental

data will be given. The paper ends with a discussion and conclusions.

II. The Parameter Estimation Problem

A manual vehicle control task that was investigated in a recent human-in-the-loop exper-

iment will be considered as an example of a typical multi-channel pilot model identification

problem in this paper. The objective of the experiment was to investigate the effects of ro-

tational and vertical motion during aircraft pitch attitude control in a disturbance-rejection

task.2 It was found that the presence of rotational pitch motion significantly affected pi-

lot control behavior, making aircraft pitch attitude control a clear example of a multi-loop

control task.

ft u
−

e

θ

n

Hpe

Hpθ

−

pilot

Kδe,u Hθ,δe

θ

fd

δe+ +
+

+
+

Figure 1. Multi-loop representation of a closed-loop aircraft pitch control task.
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II.A. The Multi-Loop Control Task

In Figure 1, a schematic representation of the pitch attitude control task that is studied in

this paper is depicted. As can be seen in this figure, the pilot acts as a feedback controller on

the pitch dynamics of an aircraft, Hθ,δe
. For this experiment, the controlled pitch dynamics

were those of a Cessna Citation II aircraft as given by:

Hθ,δe
(s) = −10.6189

s + 0.9906

s(s2 + 2.756s + 7.612)
. (1)

In addition to the tracking error e, which is the difference between the current and

the desired pitch attitude as perceived from the compensatory visual display, information

about the aircraft pitch attitude can be perceived via physical rotational motion. Hence,

the total pilot response consists of the contributions of two linear response functions, Hpe

and Hpθ. A remnant signal n is added to the linear model output representing the nonlinear

behavior. The gain Kδe,u in Figure 1 represents the scale factor between sidestick and

elevator deflection. Two forcing functions, a disturbance fd and target ft, are used to excite

the combined pilot-aircraft system. The target signal gives the desired pitch attitude; the

disturbance signal can be considered as turbulence acting on the aircraft, perturbing the

pitch angle.

II.B. The Multi-Channel Pilot Model

The linear response functions are parametrized by gains and time constants, the pilot equal-

ization; time delays and neuromuscular dynamics, the pilot limitations; and vestibular dy-

namics, the pilot sensor dynamics. Based on McRuer’s precision model10 and Van der Vaart’s

multi-channel pilot model,6 appropriate models for the linear response functions Hpe and Hpθ

for control of the pitch dynamics defined by Eq. (1) are given by:2

Hpe (jω) = Kv

(1 + jωTlead)
2

(1 + jωTlag)
e−jωτvHnm (jω) , (2)

and

Hpθ (jω) = (jω)2 Hsc (jω)Kme−jωτmHnm (jω) . (3)

In Eq. (2), which describes the response to visual motion cues, Kv is the visual perception

gain, Tlead the visual lead time constant, Tlag the visual lag time constant and τv the visual

perception time delay. Rotational pitch motion is mainly perceived with the semi-circular

canals of the vestibular system, which are sensitive to pitch acceleration.7 The model for

the pitch motion perception channel Hpθ (Eq. (3)) therefore includes the dynamics of the
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semi-circular canals Hsc, the motion perception gain Km and a motion perception time delay

τm.

As can be verified from the presence of Hnm in both Eq. (2) and Eq. (3), the total

linear pilot response is attenuated by the dynamics of the neuromuscular system. The

neuromuscular system is modeled as a second-order mass-spring-damper system, of which

the damping ζnm and natural frequency ωnm are parameters to be estimated:

Hnm (jω) =
ω2

nm

ω2
nm + 2ζnmωnmjω + (jω)2

. (4)

Finally, the dynamics of the semi-circular canals, which are part of the pitch motion

perception channel of the pilot model, are given by:

Hsc (jω) =
1 + jωTsc1

1 + jωTsc2

, (5)

with Tsc1 = 0.11 and Tsc2 = 5.9 seconds. These values are taken from previous research7 and

are assumed fixed when modeling pilot control behavior for the pitch control task defined in

Figure 1. The parameter vector Θ, with a total of eight parameters to be estimated, is given

by:

Θ = [Kv Tlead Tlag τv Km τm ζnm ωnm]T . (6)

II.C. Forcing Functions

For reliable identification of both the pilot visual and motion responses with previously used

parameter estimation methods, two independent forcing function signals are required. For

the control task described in Figure 1, both the target and disturbance forcing function sig-

nals (ft and fd) were defined as sums of ten sine waves with different frequencies, amplitudes

and phase shifts:

ft(t) =

10
∑

k=1

At(k) sin (ωt(k)t + φt(k)) , (7)

fd(t) =

10
∑

k=1

Ad(k) sin (ωd(k)t + φd(k)) . (8)

To allow for use of spectral methods in the analysis of the experimental data, the forcing

function sine wave frequencies were all defined as integer multiples of the experimental mea-

surement time base frequency, ωm = 2π/Tm with Tm = 81.92 seconds. The corresponding

integer factors nt and nd are listed in Table 1, together with the target and disturbance
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signal frequencies, amplitudes and phases.

Table 1. Multi-sine forcing function properties.

disturbance, fd target, ft

k, – nd, – ωd, rad s−1 Ad, deg φd, rad nt, – ωt, rad s−1 At, deg φt, rad

1 5 0.383 0.344 -0.269 6 0.460 0.698 1.288

2 11 0.844 0.452 4.016 13 0.997 0.488 6.089

3 23 1.764 0.275 -0.806 27 2.071 0.220 5.507

4 37 2.838 0.180 4.938 41 3.145 0.119 1.734

5 51 3.912 0.190 5.442 53 4.065 0.080 2.019

6 71 5.446 0.235 2.274 73 5.599 0.049 0.441

7 101 7.747 0.315 1.636 103 7.900 0.031 5.175

8 137 10.508 0.432 2.973 139 10.661 0.023 3.415

9 171 13.116 0.568 3.429 194 14.880 0.018 1.066

10 226 17.334 0.848 3.486 229 17.564 0.016 3.479

The target signal was defined to have only a quarter of the power of the disturbance

signal to make the task primarily a disturbance-rejection task.2

II.D. Parameter Estimation Methods

Estimation of multi-channel pilot model parameters from measurement data is a highly

nonlinear optimization problem. First of all, a linear model is fit on data that is inherently

nonlinear. The fact that the models are nonlinear in their parameters further increases the

nonlinearity of the optimization problem. Due to these nonlinearities, the resulting cost

function contains many local minima in addition to the global minimum.

In addition, it is apparent from the model structure given in Eq. (2) and Eq. (3) that

the lead term in the visual perception channel and the lead resulting from the integrating

action of the semicircular-canal dynamics in the vestibular channel are more or less inter-

changeable. If multiple terms in a model can cause the same overall response, the model is

overdetermined, which adds to the number of local minima. It is found in previous research

that the occurrence of these local minima is highly dependent on the controlled dynamics,

the type of forcing function and even the subject who performed the experiment.24

Many different techniques can be applied to estimate the parameters of a multi-channel

pilot model from measurement data. Figure 2 illustrates that two groups can be distin-

guished, parameter estimation in the frequency domain and parameter estimation in the

time domain.

II.D.1. Frequency-Domain Techniques

Parameter estimation in the frequency domain requires an additional step, to transform

the measured time-domain data to the frequency domain, as illustrated in Figure 2. In

this additional step, Fourier coefficients (FC) or linear time-invariant (LTI) models (e.g.,
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autoregressive exogeneous (ARX) models) are used to estimate non-parametric frequency

response functions.8,11 These non-parametric frequency responses are then used in a second

step, in which a multi-channel pilot model is fit by adjusting its parameters. For estimating

the pilot model parameters a frequency-domain criterion is used, which results in a nonlinear

optimization problem.8,9, 25
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Figure 2. Comparison of pilot model parameter estimation methods.

With some exceptions, in the field of human operator modeling, parameter estimation

has mainly been performed in the frequency domain.3,4, 6–9, 11, 25, 26 An advantage of this

technique is that the first step serves as a data reduction step, which makes the parameter

optimization efficient in terms of computational power. Another advantage of this method

is that the non-parametric frequency response functions provide an indication of the pilot

model structure required for describing the pilot dynamics.

One of the disadvantages of using two steps to estimate the pilot model parameters is that

the bias and variance of the non-parametric frequency responses can cause increased bias

and variance in the obtained parameter estimates. A second disadvantage is that in order to

estimate multiple frequency response functions in the first step, an equal number of forcing

functions needs to be inserted into the closed-loop system to assure that the inputs to the

pilot model are uncorrelated (see Figure 1).8,11 Inserting multiple forcing functions may yield

an unrealistic piloting task as compared to real flight and makes the data less comparable to

classical single forcing function target-following and disturbance-rejection tasks used in many

experiments described in literature.6,7, 10, 26 When using Fourier coefficients or LTI models

for estimating the frequency response functions, the forcing functions need to be carefully

designed keeping in mind the requirements for identifiability of the frequency responses and

the pilot limitations.8
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II.D.2. Time-Domain Techniques

Time-domain parameter estimation techniques, such as the least-squares method and max-

imum likelihood estimation,27 directly fit a parameter model on the time-domain data (see

Figure 2). As time-domain signals generally have significantly more data points than the

frequency response functions used in the frequency-domain methods, fitting the parameter

model on the time-domain data requires more computational power. Another disadvantage

is that it is difficult to determine the correct model structure beforehand and an incorrect

model structure can not be easily detected by comparing the model output with the measured

pilot output.

One of the advantages of a time-domain method is that the parameter model is directly fit

using only one step, reducing the bias and variance of the estimated parameters compared to

the frequency-domain methods. Also, there are fewer constraints when designing the forcing

functions, as the frequency content of the signals has less influence on the identifiability of

the parameters. There is also no explicit requirement for uncorrelated input signals of the

pilot model as is the case using the frequency-domain methods.

In experiments, the differences in pilot control behavior for different experimental condi-

tions are often small in magnitude. The increased accuracy of the estimated parameters for

time-domain techniques could increase the significance of the results in these experiments.

Also, as time-domain methods allow for more design freedom of the forcing functions, tasks

which are more comparable to real piloting tasks can be used in experiments. This will

increase the insight into multimodal perception and control for such tasks.

III. Genetic Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a time-domain parameter estimation technique

that has many applications.19–23,28 One of the main reasons for this is that maximum likeli-

hood estimates have some attractive statistical properties. They are consistent and efficient,

which means that the parameter estimate converges to the true parameter set and that the

variance reduces to the Cramér-Rao lower bound as the sample size increases.29 Furthermore,

the errors in the resulting parameter estimates have an unbiased Gaussian distribution.

In this section a procedure for estimating the parameters of multi-channel pilot models

that is based on the principle of maximum likelihood will be described. The structure of

such pilot models warrants the use of an output-error model structure, which results in a

simplification of the full maximum likelihood estimation problem. To increase the probability

of finding the global minimum of this nonlinear optimization problem, a genetic algorithm

is used to determine the initial parameter estimates for a classical gradient-based parameter

estimation procedure.
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III.A. The Maximum Likelihood Method

The pilot model considered in this paper incorporates separate pilot visual and motion

responses, as depicted in Figure 1. The pilot’s control output u is considered to be the sum

of a response to visual and motion cues (e and θ, respectively) and a remnant signal n.

Maximum likelihood estimation procedures generally require models that are written in

state-space form. For the multi-channel pilot model of Figure 1, a discrete time state-space

representation can be given by:

˙̄x(k + 1) =





Ae(Θ) 0

0 Aθ(Θ)



 x̄(k) +





Be(Θ) 0

0 Bθ(Θ)









e(k)

θ(k)





(9)

u(k) =
[

Ce(Θ) −Cθ(Θ)
]

x̄s(k) +
[

De(Θ) −Dθ(Θ)
]





e(k)

θ(k)



 + n(k).

In Eq. (9), Θ represents the vector of unknown pilot model parameters as defined by

Eq. (6). The subscripts e and θ divide the total state-space system into the state-space

models of the error response function Hpe and the pitch response function Hpθ, respectively.

These state-space representations are easily obtained by converting the transfer function

models defined in Equations (2) and (3) using the controller canonical form, as illustrated

for Ae(Θ) by:

Ae(Θ) =





















0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0

0 0 · · · 0 1

Ae(Ne, 1) Ae(Ne, 2) · · · Ae(Ne, Ne − 1) Ae(Ne, Ne)





















, (10)

where Ne is the order of Ae(Θ). For the conversion to a state-space representation, the pilot

model time delays are approximated by using Padé approximations of typically fifth order,

to ensure accurate description of the high-frequency phase roll-off. Especially due to these

Padé approximations, the matrices of the state-space model as defined by Eq. (9) contain

coefficients that are a highly nonlinear function of the pilot model parameters. For example,

Equations (11) and (12) give the first and last coefficients in the final row of Ae(Θ) for a

fifth order Padé approximation of the visual time delay τv.
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Ae(Ne, 1) =
−30240ω2

nm

Tlagτ 5
v

(11)

Ae(Ne, Ne) =
−2Tlagτ

5
v ζnmωnm − 30Tlagτ

4
v − τ 5

v

Tlagτ 5
v

(12)

The state-space pilot model given in Eq. (9) only has an additive noise term in the output

equation, i.e., no process noise is assumed. This output-error structure significantly reduces

the complexity of the MLE procedure. The pilot remnant n, which is accounted for by

the measurement noise in the chosen model structure, is modeled as an additive zero-mean

Gaussian white noise signal, whose properties are defined as:

E {n(k)} = 0; E
{

n(k) nT (k)
}

= σ2
n. (13)

Maximum likelihood estimation techniques attempt to find an estimate Θ̂ of the pa-

rameter vector Θ that maximizes the likelihood function. The likelihood function L (Θ) is

defined as the joint conditional probability density function of the prediction error for m

measurements of u(k):

L (Θ) = f(ǫ(1), ǫ(2), . . . , ǫ(k), . . . , ǫ(m)|Θ). (14)

The prediction error, indicated as ǫ(k) in Eq. (14), is defined as the difference between

the measured pilot control signal u(k) and the modeled pilot control signal û(k) at dis-

crete instants. Given the properties of the remnant as defined in Eq. (13), the conditional

probability density function for one measurement of ǫ(k) is given by:

f(ǫ(k)|Θ) =
1

√

2πσ2
n

e
− ǫ2(k)

2σ2
n . (15)

The set of parameters that maximizes the likelihood function is the maximum likelihood

estimate of the parameter vector Θ. For the MLE method it is common practice to minimize

the negative natural logarithm of the likelihood function instead of maximizing L (Θ), as

this results in a more straightforward optimization problem. When a global minimum of the

negative log-likelihood is attained, the resulting parameter vector is the maximum likelihood

estimate, indicated with Θ̂ML. By combining Eq. (14) and Eq. (15) and considering the fact

that the pilot model contains a single output, the following expression for this maximum

likelihood estimate can be obtained:
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Θ̂ML = arg min
Θ

−ln L (Θ) = arg min
Θ

[

m

2
ln σ2

n +
1

2σ2
n

m
∑

k=1

ǫ2(k)

]

. (16)

Eq. (16) summarizes the parameter estimation problem that is investigated for the estima-

tion of multi-channel pilot model parameters in this paper. Similar to the frequency-domain

methods, this is a highly nonlinear optimization problem, as described in Section II.D. To

cope with this problem, a strategy is chosen here that uses a genetic algorithm to identify a

solution close to the global minimum.

III.B. Genetic Likelihood Optimization

Genetic algorithms are commonly used to find approximate solutions to nonlinear optimiza-

tion problems, and have been successful in many applications.18,30 The problem solving

capabilities of genetic algorithms are based on the principle of “survival of the fittest” as

considered in evolutionary biology. In such an algorithm, a population of candidate solu-

tions to the optimization problem is subjected to random genetic functions such as selection,

mating, crossover and mutation. These functions cause the population to evolve toward in-

creasingly better, i.e., more fit, solutions. The inherent randomness of genetic algorithms and

the fact that a large number of different solutions are evaluated results in a high probability

of finding the global minimum of an optimization problem.

Zaychik and Cardullo18 used a genetic algorithm as the principal estimation procedure

for identifying the parameters of the Hess operator model5 from simulation data. However,

in this research, maximum likelihood estimation was not used for the formulation of the

optimization problem. Abutaleb30 describes an application of a genetic algorithm to a max-

imum likelihood estimation problem. The negative logarithm of the likelihood function is

used as the fitness criterion and the parameter sets that produce the lowest log-likelihood

are defined to be the fittest members of the population.

In the maximum likelihood estimation method developed in this paper, a genetic algo-

rithm is used to find sets of pilot model parameters that minimize the likelihood function

defined by Eq. (14). At the start of a genetic optimization process a random population of

parameter sets is generated within a lower and upper bound for all parameters. The fitness

of all the members of the population is calculated. Next, iterations are performed with the

following steps:

1. First, a random selection of members within the population is made. The members

with the highest fitness will have the highest probability of being selected. The selected

members will be used for mating.

2. The parameters of each member are coded into genes given their lower and upper
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bound. A gene is a binary representation of the parameter value. For example, if

the current value of a parameter is 1.6 and the lower bound and upper bound are

respectively 0 and 2, a binary representation using 8 bits will be 11001100. The lower

and upper bound will be 00000000 and 11111111, respectively. The higher the amount

of bits used for the binary presentation, the higher the resolution of possible parameter

values between the lower and upper bound.

3. For each parameter set two solutions are picked at random from the pool created in

step 1. These two solutions will mate and produce offspring.

4. During the mating process, crossover between the genes will occur with a certain

probability, usually set to 0.7. The crossover location is chosen randomly. For example,

if we have two genes, 11001100 and 10101010, and a crossover location of 3, the two

offspring will have genes given by 11001010 and 10101100.

5. Next, every bit in the genes of the offspring will mutate with a certain mutation

probability. If a bit mutates, it changes from 0 to 1 or from 1 to 0. The mutation

probability is typically very low, e.g., 0.01.

6. The offspring is decoded from binary codes into real values and their corresponding

fitness is calculated.

7. A new population is chosen based on the fitness of the offspring and the original

population.

The genetic optimization is terminated when a specified number of iterations of steps 1

to 7 has been performed.

Due to the limited gene size that is commonly selected for encoding of parameters in

genetic algorithms to reduce the computational burden, the resulting parameter estimates

tend to be relatively inaccurate. In addition, genetic algorithms are not deterministic and

will give different results every time they are run. Therefore, a genetic algorithm is believed

to be less suitable to be used as the sole estimation method for estimating pilot model

parameters from measurement data.

III.C. Unconstrained Gauss-Newton Optimization

The parameter sets that are obtained from the genetic likelihood optimization have a high

probability of being close to the global optimum of the optimization problem. To further

refine these parameter estimates, the solutions of the genetic algorithm are used as the initial

parameter estimates for an unconstrained Gauss-Newton optimization. This gradient-based
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optimization method is the classical approach to solving maximum likelihood estimation

problems.23,29 The iterative parameter update equation for the Gauss-Newton optimization

is given by:

Θ̂ (i + 1) = Θ̂ (i) − α (i) M−1
ΘΘ(Θ̂ (i))

∂L(Θ̂ (i))

∂Θ
. (17)

The gradients of the likelihood function with respect to all parameters, ∂L/∂Θ, can be

evaluated using the Jacobians of all state-space matrices with respect to the parameter vector

Θ. The Fisher information matrix, indicated with the symbol MΘΘ in Eq. (17), is given by:

MΘΘ =
1

σ2
n

m
∑

k=1

(

∂ǫ(k)

∂Θ

)2

. (18)

The Fisher information matrix is symmetrical and should be positive definite, i.e., full

rank, as it needs to be inverted for the parameter update (Eq. (17)). The inverse of the

Fisher information matrix yields the Cramér-Rao lower bound (CRLB), i.e., the minimum

achievable variance of the parameter estimate. Both the Fisher information matrix and the

first-order gradient of the likelihood function vary with the magnitude of the estimation error

ǫ, yielding parameter update steps of larger magnitude if estimation errors are larger. In

some instances, this causes the Gauss-Newton optimization to become unstable if initial pa-

rameter errors are large: in that case the first parameter update may force the unconstrained

algorithm to a region of meaningless and inaccurate solutions from which it cannot recover.

Using the solution of a genetic algorithm as proposed here as the initial parameter es-

timate for the Gauss-Newton optimization reduces the occurrence of such undesired effects

significantly. A second measure that can be taken to avoid this behavior is by considering

the line-search parameter α in Eq. (17). This parameter, which typically varies between 0

and 1, is determined at each iteration before the actual parameter update to ensure optimal

(i.e., most rapid) minimization of the likelihood function. This is illustrated in Figure 3,

where a typical variation of the likelihood L is depicted as a function of α. For the example

shown in Figure 3 it is clear that α = 0.8 yields a superior parameter set after the update

step than would be obtained for α = 1.

The resolution that is considered for α during the optimization – indicated with circles

in Figure 3 – can be selected freely and is highly dependent on the application. For the pilot

model estimation problem considered here, it was found that for the first iterations a rather

coarse spacing of α, i.e. 0.1, already yielded enough added stability to the optimization

algorithm. When parameter estimates came closer to their optimal values, it was found that

small improvements could still be made for very small values of α. Therefore, a finer spacing

of α, i.e. 0.01, was considered below 0.2 (see Figure 3).
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IV. Results

In this section, the genetic maximum likelihood method will be evaluated using experi-

mental data. In addition, the parameter estimation results from the experimental data will

be used in multiple pilot model simulations with increasing remnant levels to investigate the

robustness of the method to increasing pilot remnant (measurement noise).

IV.A. Application to Experiment Data

The experiment was performed in the SIMONA Research Simulator of the Delft University

of Technology, Faculty of Aerospace Engineering. The objective of the experiment was to

investigate the effects of pitch rotational motion and heave motion on multimodal pilot

control behavior in an aircraft pitch control task. The experiment had a full factorial design

with eight conditions with varying motion cues. In every condition, pitch rotational motion

and two distinct components of heave motion could be either on or off.

The genetic maximum likelihood method was used to estimate the parameters of the

pilot model using the experimental data. In this section, the performance results of the

genetic MLE method will be given for data of one subject for one of the experimental

conditions. In this condition, rotational pitch motion was available in addition to the cues

from a compensatory display. The subject for which the performance data is shown was

chosen randomly.

IV.A.1. Experimental Measurements

Seven subjects participated in the experiment. All had experience with similar manual

control tasks from previous human-in-the-loop experiments. Two subjects have additional

experience as aircraft pilots. The subjects ages ranged from 25 to 46 years old. Before

starting the experiment, the subjects received an extensive briefing on the scope and objective
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of the experiment. The main instruction they received before the experiment was to attempt

to minimize the pitch tracking error, i.e., the signal that was presented on the visual display,

as best as possible.

The experiment started with a considerable number of training runs. The training phase

ended when a constant level of performance was achieved. After the training phase, 5

repetitions of every condition were performed in a random order, of which the data was used

in the final results. Each individual experiment run lasted 110 seconds, of which the last

81.92 seconds were used as the measurement data. Participants generally need some time

to stabilize the disturbed aircraft model after the start of a run, therefore the data from the

first 28.08 seconds of each run were discarded. Data was logged at a frequency of 100 Hz.

Further details of the experiment setup can be found in Reference 2.

Time traces of all signals depicted in Figure 1 were recorded during the experiment. To

reduce the noise content in the signals and improve pilot model parameter estimates, the time

traces of the five repetitions performed by each subject were averaged for the identification

procedure.8 Examples of averaged time traces of the error signal e, the control signal u, the

pitch attitude θ and pitch acceleration θ̈ are depicted in Figure 4. The time trace of the

pitch target signal ft is shown alongside that of the pitch attitude for reference.

Note from Figure 4 that the subjects successfully made the aircraft pitch attitude follow

the target signal ft. Most of the additional oscillations in pitch attitude can be attributed

to the presence of the disturbance signal.

The power spectral densities of the time traces given in Figure 4 are given in Figure 5.

The input frequencies of the forcing functions, as given in Table 1, are indicated with circles

and triangles for fd and ft, respectively. The signal-to-noise ratio at the input frequencies is

high for all the signals in the control loop.

IV.A.2. Algorithm Performance

The error, pitch acceleration and control signals given in Figure 4 are used to estimate the

pilot model parameters with the genetic maximum likelihood method. Before the Gauss-

Newton optimization, 100 iterations with the genetic algorithm are performed. The parame-

ter lower bounds were set to zero and the upper bounds were taken positive and large enough

to account for all relevant solutions of the estimation problem (see Table 2). For the param-

eter conversion to binary strings, 20 bits are used. Values for the crossover and mutation

probabilities were set to 0.7 and 0.01, respectively. The solution of the Genetic algorithm

is used as the initial parameter set for the Gauss-Newton optimization. The Gauss-Newton

optimization is terminated if the derivative of the parameters with respect to the search

vector is smaller than 10−6.

Typically, 100 repetitions of the algorithm are performed on a single data set, of which
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Table 2. Lower and upper parameter bounds used in the genetic algorithm.

Kv Tlead Tlag Km τv τm ωnm ζnm

- s s - s s rad s−1 -

lower bound 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0

upper bound 5.0 10.0 10.0 10.0 1.0 1.0 20.0 1.0

iteration #
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Figure 6. Changes in negative logarithm of the likelihood during optimization (10 repetitions,
subject 1).

the ten with the lowest likelihood are further evaluated using Gauss-Newton optimization.

The negative logarithm of the likelihood for these ten repetitions is given in Figure 6. It is

clear from Figure 6b that the solution of the genetic algorithm is different for all repetitions.

After refinement by the Gauss-Newton algorithm, two different sets of parameters are found.

The solution with the lowest negative logarithm of the likelihood is found nine times. In

one instance, the optimization ends up in a different (local) minimum, which clearly has a

higher likelihood.

This illustrates the nonlinearity of the optimization problem. For data from other sub-

jects, none to up to three of the obtained parameter sets were found to represent local minima.

Note that a local minimum was never attained more often than the global minimum.

To illustrate the significance of this result, pilot model parameters were also estimated by

using only the Gauss-Newton maximum likelihood algorithm. To illustrate the large influence

of the initial parameter estimate on the results of this gradient-based optimization, a large

number of initial conditions were evaluated. For all parameters, a number of different values

were selected between the upper and lower bounds defined for the genetic algorithm. The

full factorial of all these initial parameter values yielded 40000 different initial parameter

sets. Figure 7 depicts the likelihood of the final parameter estimates obtained with the

Gauss-Newton algorithm for all these different initial estimates, in ascending order.

The leftmost shaded area in Figure 7 indicates the set of initial conditions for which the
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Figure 7. Negative log-likelihood of Gauss-Newton parameter estimates for 7000 different
initial parameter sets, sorted in ascending order (subject 1).

Gauss-Newton algorithm attained parameter estimate 1, as depicted in Figure 6; the second

shaded area, which corresponds to a solution with a higher likelihood, are the occurrences

for which parameter set 2 was found. All parameter sets that are outside either of the shaded

areas in Figure 7 represent initial estimates for which the algorithm was unable to converge.

Note that the Gauss-Newton algorithm only converged to the global minimum (parameter set

1) for around 20% of all tested initial conditions. For all other initial conditions, the Gauss-

Newton parameter estimation procedure would either converge to an incorrect minimum,

or fail to converge to a stable solution. As illustrated by Figure 6, the addition of the

genetic algorithm ensures reliable estimation of the parameter set that represents the global

minimum.

IV.A.3. Pilot Describing Functions

Figure 8 gives the linear pilot response functions Hpe and Hpθ for the two different solutions

found by the algorithm depicted in Figure 6b. The Fourier coefficients, which can be analyt-

ically calculated from the measured time-domain data, coincide with parameter set 1. This

is a further indication that parameter set 1 represents the correct solution of the parameter

estimation problem. The parameter values and the square root of the diagonal of the CRLB

resulting from the Gauss-Newton optimization are given in Table 3. Note that the CRLB is

found to be higher for nearly all parameter estimates of parameter set 2. From the param-

eter values, it can be seen that the gain for the vestibular channel Km is much higher for

parameter set 1. In parameter set 2 the lower gain for the vestibular channel is compensated

for by the higher values for the lead and lag time constants. The vestibular time delay is

higher than the visual time delay for parameter set 2, which disagrees with findings from

previous research.2,6, 7 Finally, the neuromuscular frequency found for parameter set 1 is
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higher than that obtained for parameter set 2.
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Figure 8. Bode plot of the pilot visual and motion response for parameter sets 1 and 2 (subject
1).

Table 3. Values and standard deviation for parameter sets 1 and 2 (subject 1).

parameter
parameter set 1 parameter set 2

Θ̂
√

CRLB(Θ̂) Θ̂
√

CRLB(Θ̂)

Kv, - 0.938 6.77·10−3 0.932 8.91·10−3

Tlead, s 0.278 6.47·10−3 0.337 9.21·10−3

Tlag, s 0.502 1.92·10−2 0.774 3.08·10−2

Km, - 0.692 1.29·10−2 0.147 1.11·10−2

τv , s 0.268 2.79·10−3 0.134 2.41·10−3

τm, s 0.175 1.94·10−3 0.679 1.29·10−2

ωnm, rad s−1 11.560 6.41·10−2 9.775 7.15·10−2

ζnm, - 0.175 4.60·10−3 0.168 9.56·10−3

The measured pilot control signal is compared with the model output for the two param-

eter solutions in Figure 9. It can be seen that the difference between both solutions in the

time domain is only very small. The variance accounted for (VAF), which is a measure of

the correlation of two time-domain signals,8 is only marginally higher for parameter set 1.

Figure 10 gives the pilot frequency response functions corresponding to the optimal pa-

rameter estimate for all subjects for the experimental condition used in this paper. From
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this figure it can be seen that all subjects give consistent results. The response functions

vary slightly between subjects as every individual has a different control strategy, which is

commonly seen in this type of experiments.

IV.A.4. Pilot Remnant

The pilot remnant is determined by the difference between the model output of the linear

pilot model and the measured pilot control signal, as depicted in Figure 9. A time trace of

the pilot remnant for the model with parameter set 1 is given in Figure 11a. The power

spectrum of this signal is given in Figure 11b. It can be seen that the spectrum has the

approximate characteristics of a third-order low-pass filter with a damping coefficient:

Hn(jω) =
Kn ω3

n

((jω)2 + 2ζnωnjω + ω2
n) (jω + ωn)

, (19)

with Kn = 2.6 the remnant intensity and ζn = 0.26 and ωn = 12.7 rad/s the remnant

filter damping factor and break frequency, respectively. Similar characteristics are found in

previous research.8

The probability density function of the pilot remnant is given in Figure 12. This figure

clearly shows that the remnant signal has a distribution that is almost perfectly Gaussian

with a zero mean, as is assumed in Eq. (13). The low-pass remnant spectrum has no effect

on the normality of the signal. The fact that the remnant is distinctly non-white, as shown

in Figure 11b, may cause extra bias in the pilot model parameter estimates, which has been

further investigated using off-line simulations.

IV.B. Off-line Simulations

To investigate the robustness of the genetic MLE method to increasing levels of pilot remnant,

parameter set 1 is used to perform multiple simulations of the closed-loop control task with
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increasing levels of remnant. The remnant filter break frequency ωn and damping factor ζn

are kept constant and the remnant intensity Kn is gradually increased to achieve the desired

ratio between control signal power and remnant power. The ratio is increased from 0 to 0.5,

while the value found for the averaged experimental data is approximately 0.15 for parameter

set 1. For each remnant level, eighty simulations are performed, each with a different noise

realization.

Figure 13 shows the average parameter bias found by applying the genetic MLE procedure

to the data of each simulation. Also, the 99% confidence interval for each parameter is

indicated in this figure. It can be seen that for increasing levels of pilot remnant, the average

bias of the parameter estimates increases. For all parameters, the average bias remains

within the 99% confidence interval, which indicates that the bias is not significant. At a

remnant-control signal power ratio of 0.15, found experimentally, the bias is relatively small

for all parameters.

V. Discussion

This paper presents a new strategy for the estimation of multi-channel pilot model pa-

rameters from time-domain data based on maximum likelihood estimation. The classical

MLE method, with only a gradient-based algorithm to estimate the parameters, is very

dependent on the initial parameter guess. This is highly undesirable given the fact that

the cost function is highly nonlinear and contains many local minima. For this reason, a

genetic algorithm was used in combination with the gradient-based Gauss-Newton optimiza-

tion procedure. The genetic algorithm does not require an initial parameter guess and is far

less sensitive to local minima, as a population of possible solutions is kept until the algo-

rithm terminates. The subsequent use of a Gauss-Newton algorithm increases the accuracy

of the parameter estimate, as gradient information is included. The method was successfully
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applied to data from an experiment investigating the influence of pitch and heave motion

cues on pilot control behavior.

Applying the genetic maximum likelihood algorithm to the experiment data multiple

times for all subjects resulted in the occurrence of solutions other than the global optimum.

These occurrences were infrequent, however, and the corresponding solutions always have a

higher likelihood than the global minimum. Hence, the optimization should be performed

several times for each condition from an experiment to ensure that the global optimum

solution is found. The often subtle differences between the parameter sets of a local or

a global optimum, and the equivalence of the resulting time-domain fits make it difficult

to distinguish between these solutions based on this information alone. Although, Fourier

coefficients can provide an indication of the frequency response of the global optimum, these

can only be computed when multi-sine signals are used as forcing functions.

Simulations have been performed to investigate the robustness of the MLE method to

increasing levels of remnant. It was found that the average bias of the parameters increases

for increasing levels of remnant power. The bias remained within the 99% confidence in-

terval of the parameter estimate, which indicates that the bias is not significant. For the

parameter estimation on averaged time-domain data of five runs (σ2
n/σ2

u ≈ 0.15) the bias of

the parameter estimates is relatively small. When individual runs (σ2
n/σ2

u ≈ 0.30) are used

in the parameter estimation procedure, the bias becomes more substantial, however.

As maximum likelihood estimates have the property to be unbiased for infinite mea-

surement times, the increase in bias for higher levels of remnant is an unexpected result.

Although this bias is partly caused by the finite measurement times, the fact that the rem-

nant is colored rather than purely Gaussian white noise may cause an additional bias. Also,

because of a correlation between the pilot model input and output in the closed loop – the

remnant, which is part of the output of the pilot model, travels around and is also present

in the input of the pilot model – an additional bias may be present. A solution for both

problems would involve inclusion of process noise into the state-space representation of the

pilot model, which requires a prediction-error algorithm to be added to the MLE method.

This allows for the properties of the remnant filter to be estimated, and could reduce the bias

in the parameter estimates at higher levels of remnant. The Kalman filter that is needed

to solve this problem, however, will increase the complexity of the parameter estimation

procedure and will significantly increase the computational burden.

In this paper, the genetic MLE method is evaluated with data from an experiment where

multi-sine signals were used as forcing functions. Parameter estimation in the time domain

also allows the use of novel types of input signals, however, such as ramp or step signals that

are often considered in other system identification problems. These signals can be used as

target signal and may yield a control task that is much more similar to real piloting tasks. An
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investigation on the use of these signals is already performed,24 but more research is needed to

evaluate the performance of the MLE method with these signals. The maximum likelihood

parameter estimation algorithm can also be used to identify multi-channel pilot models

when only one forcing function is present, as long as all the inputs to the pilot model are

sufficiently excited. The method has already been successfully applied to measurement data

from human-in-the-loop experiments where pure target-following tasks were considered.31,32

Finally, the use of a genetic algorithm allows for the introduction of nonlinear elements

into the pilot model, as no gradient information is required. An example can be the addition

of motion perception thresholds. This will also be a subject of future research.

VI. Conclusions

A pilot model parameter estimation technique, based on the maximum likelihood method,

was introduced and enhanced with a genetic algorithm to considerably improve performance.

The new method was successfully applied to data from an experiment investigating the role

of pitch and heave motion during pitch control of an aircraft. The parameters of the multi-

channel pilot model and the properties of the remnant could be accurately estimated from

the time-domain signals. Using multiple iterations of the algorithm on a single data set,

the global optimum solution was found for 90% of the cases. Using multiple simulations

with different levels of pilot remnant, it was shown that there is no significant bias in the

parameters for lower remnant levels. For high levels of pilot remnant bias is more substantial,

caused by the fact that remnant tends to be colored rather than purely white noise.
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