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Preface

This thesis presents a novel methodology that combines real-world measurements with computational modeling to esti-
mate the stress states of steel bridges. Themethodwas tested through an experimental setupon a 3-meter-longpedestrian
bridge. By intelligently limiting the number of combinations, the methodology is made scalable to full-scale bridge ap-
plications. The primary goal of this approach is to predict the remaining fatigue life of a bridge using highly realistic load
data, ultimately enabling bridges to remain operational for many more years than is currently achievable.

I completed this thesis as part of my Master’s degree in Mechanical Engineering, specializing in Multi-Machine Engi-
neering. With a personal interest in analytical solutions and programming, I developed this project in collaboration
with Iv-Infra and their SBK department, which is responsible for the design and engineering of movable steel struc-
tures. The push for more accurate load information is critical in their work, ensuring the safe extension of the lifetime
of bridges.

Working on this project has been both challenging and incredibly rewarding. I have gained valuable insights into the
structural design of bridges and the associated engineering challenges. Developing a completely new methodology, ex-
ecuting the full functional pipeline, and testing its effectiveness has been a deeply gratifying experience. I am proud of
what I have accomplished and excited to see the future possibilities within this field.

I would like to express my sincere gratitude to my TU Delft supervisor, Wouter van den Bos, for his expert guidance,
continuous support, and constructive feedback. I greatly appreciated the creative freedom he provided, allowing me to
explore and develop the project in line with my own interests.

My thanks also go toGarryVandeberg and JeremyAugustijn of Iv-Infra for their enthusiasm and valuable input through-
out the project. Their expert opinions and guidance were essential in shaping the direction of the thesis, particularly in
setting up the experimental framework and securing the company’s interest in my research. In addition, I would like to
extend my thanks to all my colleagues at the SBK department for creating a fantastic working environment and for the
enjoyable moments shared over the past few months.

Lastly, I am immensely grateful to my family and friends for their unwavering support throughout my studies, and
especially during the writing of my master’s thesis. Their encouragement and genuine interest in my progress provided
me with great motivation to deliver the best possible results.

Hilte de Vries
Sliedrecht, January 2025
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Summary

This research presents a novel approach for real-time stress state estimation in steel bridges using Fiber Bragg Grating
(FBG) sensors and image recognition techniques. Themethodology involves creating a digital model of the bridge, com-
prising a global finite element model (FEM) and detailed sub-models of critical areas. A database of precomputed load
cases is generated, and real-time sensor data is matched to this database using the developed fingerprinting method. Im-
age recognition is employed to detect multiple load scenarios, enhancing the accuracy of stress estimations and ensuring
linear scalability for multi-load situations. The accuracy of the developedmodel was tested using a scaled setup using a 3
meter long aluminium bridge, proving its effectiveness in real-world conditions. The results demonstrate the feasibility
of this approach, with reasonable accuracy achieved in both single and multi-load scenarios. Future work should focus
on improving model accuracy, enhancing image recognition algorithms, and optimizing computational performance
for large-scale applications.
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Samenvatting

Dit onderzoek presenteert een nieuwe benadering voor het schatten van de spanningsstatus in stalen bruggen in real-
time, door gebruik te maken FBG sensoren en beeldherkenningstechnieken. De methodologie omvat het creëren van
een digitaal model van de brug, bestaande uit een FEM model en gedetailleerde submodellen van kritieke gebieden.
Een database van vooraf berekende belastingen wordt gegenereerd, en realtime sensordata wordt gekoppeld aan deze
databasemet behulp vande ontwikkelde fingerprintingmethode. Beeldherkenningwordt ingezet omhet aantal belastin-
gen te detecteren, waardoor de nauwkeurigheid van spanningsschattingen wordt verbeterd en lineaire schaalbaarheid
voor meervoudige belasting situaties wordt gegarandeerd. De nauwkeurigheid van het ontwikkelde model werd getest
met een proefopstelling met een 3 meter lange aluminium brug, waarmee de effectiviteit in realistische omstandighe-
den werd aangetoond. De resultaten tonen de haalbaarheid van deze benadering aan, met redelijke nauwkeurigheid
in zowel enkel- als meervoudige belasting scenario’s. Toekomstig onderzoek kan zich richten op het verbeteren van de
modelnauwkeurigheid, het verbeteren van beeldherkenning algoritmes en het optimaliseren van de rekensnelheid voor
grootschalige toepassingen.
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1
Introduction

One of the most prominent failure mechanisms for steel bridges is fatigue [37], [3]. Loads applied by for example vehi-
cles, trains, pedestrians, wind, and temperature are typically below the yield strength of thematerial. However, the cyclic
nature of the loads means that over time the structural integrity of the bridge decays, leading to fracture initiation, prop-
agation, and eventually structural failure. Fatigue-related damage can be repaired andmaintained by performing routine
maintenance, but this maintenance is costly and often unnecessary given the poor understanding of fatigue status [35].

A large part of bridges in theNetherlands were built right afterWW II, andwith a designed lifetime of around 100 years,
they are nearing their design limit. Iv [11] is an engineering firm in TheNetherlands. They receivemany projects for the
possible extension of a bridge’s theoratical lifetime. To safely extend the usage of the bridge, knowledge is required of the
fatigue load throughout the bridge’s operation to estimate the current fatigue state and predict the remaining lifetime.
An example of a steel traffic bridge nearing the end of its lifetime is the Merwedebrug, shown in Figure 1.1 a). The
bridge opened in 1961 [16] and has recently been closed for heavy traffic due to the discovery of small crack formation
[16]. After repairs in 2016, as seen in Figure 1.1 b), the bridge opened again for all traffic. The closure of the bridge had
a large effect on logistics and a total of 33 million euros was claimed in damages [26], in addition to the value lost from
the large amounts of traffic jams caused by the closure. This calls for a smarter system to track loads and predict fatigue
life to predict and/or prevent these costly closures.

Figure 1.1: a) Side view of the Merwedebrug, b) Bottom view of the Merwedebrug during repair work.

Determining the fatigue damage and remaining fatigue life is an active field of research. A review by X. W. Ye et al.
[37] lists all of the used techniques to analyze the fatigue damage and remaining fatigue life. The classic analysis is split
into fatigue life prediction and fracture mechanics. The fatigue life prediction of bridges is traditionally done using the
stress life method, applicable for HCF (high-cycle fatigue). For this method an accurate prediction must be made of
the relevant loads and can thus be combined with measured data to provide a more accurate prediction. Because the
material characteristics, stress history and environment conditions are all uncertain in nature, the result of this analysis is
always probabilistic, magnifying the need for SHM (structural health monitoring), even before reaching the theoretical
stress life limit. When a crack has initiated in a detail the structural quality deteriorates, causing a reduction in the fatigue
life. To account for this, fracture mechanics should be implemented. Fracture mechanics is a method of analyzing crack
growth after initiation, by predicting and monitoring crack propagation. This is also a probabilistic analysis depending
on the load conditions and material quality.

1



2

Ideally bridge management is a continuous process in the form of a digital model, where sensor data is used to estimate
stress state and predict remaining fatigue life, while updating the digital model continuously to account for crack for-
mation or other effects that influence the structural integrity over time. As suggested by Mousavi et al. [18], the main
focus points of current research into digital models for bridge management are:

• Monitoring: Keeping track of the current conditions of the bridge [36]
• Prediction: Predicting current or future load cases based on data [5]
• Simulation: Simulating situations that may or may not occur in the future to analyze what were to happen in
these scenarios [1]

• Lifecycle management: Assessing current fatigue state of the bridge using data collection [17]
• Decision Support System (DSS): Using data to make the digital model decide on required maintenance [14]

Current research is often focused on one or a couple of these focus points such as crack detection [9], crack propagation
[12] and structural fatigue damage [25]. While ideal workflows have been designed for a functional model of a steel
bridge encompassing all of the relevant points [12], achieving the required data and knowledge on the asset is often too
idealized. Different methods have been used to estimate the loads, such as data driven models [5], weight class distribu-
tions [29] or strainmeasurements at critical locations [25]. However, there aremany critical details for which the fatigue
life should be managed, which cannot all be measured. To limit the data flow, one should aim for accurate load estima-
tions in real time with a minimum number of sensors. As discovered throughout this research, a key part of the fatigue
life prediction is the estimation of loads from sensor data. The scalability of different load combinations is especially
challenging to predict. This research focuses on developing amethodology for real-time stress state estimation in critical
details using measurement data. The method is tested through a pipeline implemented in Python code. The resulting
load estimations and the stress state of the bridge throughout its lifetime have various applications. In this study, the
emphasis is placed on predicting the fatigue life of the structure.

To achieve real-time knowledge of the bridge’s stress state the research will deal with the following research question:
How can real-time stress states of bridge structures be derived using a combination of sensor data and computa-
tional modeling?

In addition to the main research question, several sub questions will be explored:

• What are the relevant methods for fatigue analysis?
• How can we measure loads on a bridge?
• What would a sensor and computational modeling setup look like?
• How canwe optimize the number of sensors and the size of initial FEM computations to achieve an ideal balance
between estimation accuracy and computational efficiency?

• How can the real-time stress state be used to predict fatigue life?

Chapter 2 outlines the background of fatigue analysis. Chapter 3 provides a detailed description of the situation of loads
and fatigue checks of steel bridges. Following this in Chapter 4 the designed methodology will be presented that is used
to estimate loads using the concept of “fingerprinting”. Next inChapter 7 themeasurement setupwill be shown and the
captured data will be described. Chapter 8 will present the results from the analysis. Finally in Chapter 9 the research
question will be answered and suggestions will be given on future research fields.



2
Fatigue Calculation Methods

During the design of steel bridges multiple failure mechanisms have to be taken into account. One of these is fatigue,
which is due to the accumulated effect of many load cycles below the yield strength of the material. Ultimately, repeated
smaller loads can cause failure. Under cyclic loading the material will ultimately initiate cracks, which will continue to
growuntil failure, unless the bridge structure is repaired. This chapter outlines the fatigue calculationmethods employed
in the research and explains the rationale for emphasizing real-time stress state estimation.

2.1. Stress-Life
The earliest stage of fatigue is classically described by the stress-life model. This describes high-cycle fatigue (HCF), that
is fatigue accumulated by over 10,000 cycles of a process. It is mostly used for long fatigue life prediction with elastic
stresses and strains [37]. No distinction is made between crack initiation and propagation in this method. Instead, the
entire process deals with the total estimated life until failure.

As described by the standards, the coupling between maximum cycles and stress ranges is done using S-N curves, influ-
enced by the detail category [22]. An S-N curve is determined by doing a series of cyclic load tests on a test piece. For
different stress loads this piece will be cyclically loaded until failure occurs. This process is repeated for different stress
ranges. The results are plotted to form the S-N curve for a specific material and detail category. An example of such a
S-N curve is shown in Figure 2.1 for structural steel.

To determine the fatigue, the stress cycles are split into different discrete categories. Reading the maximum amount of
cycles for that specific category Nx and comparing it to the applied cycles nx,s in detail s, provides a damage factor.
Doing this procedure across the entire load spectrum gives a the total damage in a certain detail. This process is known
as the Palmgren-Miner Rule. Here the total damageDs of detail s

Ds =
∑
x

nx,s

Nx
(2.1)

is determined by summing damage factors over all relevant stress ranges x.

Often the most critical points in a steel structure are the welded details, where sharp angles occur. The sharp angles lead
to singularities and with that unreasonably high stress values computationally. To obtain the stress cycles required to
determine total stress-life fatigue damageusing thePalmgren-MinerRule, certain strategies have to be applied. Following
the standard for steel bridge structures, the hot-spot stress method is used. This method approximates stresses at toe
welds by applying a relationship from just outside of the weld towards the weld toe. Depending on the FEMmodel and
type of hot-spot, different approximations of hot-spot stresses apply [21]. The application of this strategywill be further
explained in Chapter 4.1.2.
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Figure 2.1: S-N curve of structural steel showing the load cycles until failure for different stress ranges [22].

2.2. Rainflow Counting
A widely used approach for determining the number of cycles nx,s of stress range x that have occurred in a specific
detail s based on measurement data is rainflow counting. Rainflow counting, introduced by Tatsuo Endo in 1967, is a
systematic method for evaluating fatigue damage from a load-time history. This chapter outlines the steps involved in
implementing the rainflow counting method.

2.2.1. Hysteresis Filtering
The first step within rainflow counting is hysteresis filtering. This process functions to clean up the signal by filtering
out extremely small fluctuations in the stress level. This reduces the number of iterations required in further steps of
the rainflow counting. The process of hysteresis filtering starts by defining the gate, which is the minimum change in
stress value that we want to consider in the further analysis. Depending on the material and process, this gate may take
a different size. The gate should be chosen such that stress cycles that would contribute to fatigue damage are retained.
For this reason a hysteresis filter matching the cut-off value for stress ranges is a suitable gate size.

When the gate size is determined, we can apply the hysteresis filtering process. The signal in Figure 2.2 a shows a stress
profile which we want to filter. The hysteresis gate is placed on each measurement point to check if the next value falls
within the hysteresis gate or not. Both positive and negative differences in stress are tested in this process. The hysteresis
gates for which the next data point falls within the gate are marked in yellow (Figure 2.2 b). If this is not the case, the
hysteresis gate is green. Then all of the points that fall within the hysteresis gate from the previous point are filtered out,
resulting in the filtered stress profile seen in Figure 2.2 c.
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Figure 2.2: Process of hysteresis filtering. a) The original stress profile before hysteresis filtering is applied. b) The original stress profile with the
hysteresis gate overlaid on each data point. c) The stress profile after hysteresis filtering has been applied.

2.2.2. Peak-Valley Filtering
The second step of rainflow counting is peak-valley filtering. The relevant aspects of a stress profile for fatigue are the
local maxima and minima, rather than the path between them. This step filters out all of the stress values for which the
neighboring points are either both lower or higher. The resulting stress profile from the last step will be used again here,
seen in Figure 2.3 a. After identifying all of the peaks and valleys the points are marked to be deleted as seen in Figure
2.3 b. These points are removed and the remaining stress profile is connected again (Figure 2.3 c).

2.2.3. Binning
The stress values of the profile are currently continuous. The Palgrem-Miner rule as seen in Equation 2.1 requires cate-
gorization of the stress ranges in the profile. For this reason, binning has to be applied as a method of discretization.

We choose the number of bins sufficiently high to avoid large rounding inaccuracies. The binning process starts with the
continuous stress values in Figure 2.4 a. For each stress value we determine the bin index. In Figure 2.4 b the binning
process is applied and the used bins visualized in green. The stress values now obtain the characteristic value of their
respective bin, which is the average value of the bin boundaries.

2.2.4. Four-Point Cycle Counting
The last stepwithin the rainflowcountingmethod is to count the stress ranges. For this, the four-point countingmethod
is used. This method iteratively goes through four-point combinations to determine if a full stress cycle has occurred
within these points. If a full stress cycle occurred, the two center points are removed from the profile and the next
iteration step starts. This method identifies all full cycles in the profile.
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Figure 2.3: Process of peak-valley filtering. a) The original stress profile before peak-valley filtering is applied. b) The original stress profile with the
peaks and valleys marked with green dots. The points to be filtered out are marked with red dots. c) The stress profile after hysteresis filtering has

been applied.

Figure 2.4: Process of stress discretization through binning. a) The original stress profile before binning is applied. b) The stress profile after
binning is applied, with the used bins marked in green.
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The four points that are used for the four-point counting are named A, B, C and D respectively. Figure 2.5 outlines the
process on a stress profile:

• In step 2.5 a, the first four points are analyzed. Point B has a lower stress value than point D, and point C has
a higher stress value than point A. This means that a full stress cycle has occurred between A and D. The stress
range of this cycle is the stress difference between B and C, as marked in green. This stress-range value is stored
and the points B and C are removed from the profile.

• In step 2.5 b, four new points A, B, C, andD are considered. This time point B has a higher stress value than point
D, and point C has a higher stress value than point A. This means that no full stress cycle has occurred between
points A and D.

• Because no stress cycle was previously found, step 2.5 c identifies the next combination of four points. This time
point B has a lower stress value than point D, and point C has a lower stress value than point A. This means that
no full stress cycle has occurred between points A and D.

• Step 2.5 d again identifies the next combination of four points. This time point B has a lower stress value than
point D, and point C has a higher stress value than point A. This means that a full stress cycle has occurred with
a stress range equal to the stress difference between B and C, as marked in green. Points B and C are removed.

• In step 2.5 e, four new points are considered. This time point B has a higher stress value than point D, and point
C has a higher stress value than point A. This means that no full stress cycle has occurred.

• In step 2.5 f , new points are defined. This time point B has a higher stress value than point D, and point C has a
lower stress value than pointA.Thismeans that a full stress cycle has occurred between points A andD, asmarked
in green.

• In step 2.5 g, there are not enough data points remaining to execute the four-step counting method. These re-
maining values will be counted as half cycles instead of full cycles.

Figure 2.5: The four-point counting strategy as part of the rainflow counting method. The different figures show steps within the algorithm. If a
full stress cycle is found between the stress values, the stress range is marked in green (a, d, f ). If no full stress cycle is found it is marked in red

instead (b, c, e). The remainder from this operation are counted as half cycles (g).
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2.3. Obtaining Required Information for Fatigue Analysis
Themethod proposed in this research will determine real-time stress states in all researched details, necessary for fatigue
analysis using rainflow counting and the stress-life approach. InChapter 4 this methodology will be presented, focusing
on real-time load and stress estimation.

Fatigue can occur inmany parts of the structure, so the analysismust cover all critical points. However, placing sensors at
every possible critical point is not practical, especially sincemany of these areas are hard to access. This means alternative
methods are needed to ensure the fatigue analysis is accurate and complete.

Toovercome this challenge, an alternative approach is employed: a limitednumber of strategically placed sensors are used
to capture the relevant data. This data is then integrated with computational modeling techniques to derive loading
present on the bridge. These loads can then be used to estimate stress values across the entire bridge structure. The
critical element in determining accurate stress states is a precise understanding of the loads applied to the bridge. By
knowing the number, location, and weight of the vehicles traveling on the bridge, it becomes possible to estimate the
stress distribution throughout the structure using a FEMmodel and, from this, calculate the resulting fatigue damage.
Consequently, the research strategy focuses on accurately identifying the load conditions affecting the bridge, which is
vital for conducting precise and reliable fatigue analysis. A methodology for determining both the loads and the stress
state of the bridge is thus developed.



3
Situation Description

To determine the stress state across a bridge, it is essential to first understand the load state of the structure. This chapter
will outline the various types of loads that act on bridges and identify which of these will be analyzed in this research. It
will also review how current standards describe load scenarios for designing bridges against fatigue. Finally, the chapter
provides themathematical framework for identifying live load locations and introduces an innovativemethod to linearize
scaling effects efficiently.

3.1. Different Load Types Considered for Bridge Design
Steel bridges come inmany different shapes and sizes. Many different types of loads occur on a full scale traffic or railway
bridge, on a daily basis. In a full digital representation, all of these loads should be considered, or reasonably assumed
to have no effect. The following are plausible load types for traffic and railway bridges, along with a consideration of
whether these loads will be included in the scaled example discussed in this paper [20] [28]:

• Dead load: the self-weight of the structure. This load does not have a cyclic effect and will not cause fatigue
damage.

• Live load: the load applied by the units using the structure, such as cars, trucks, trains, or pedestrians, depending
on the asset’s purpose. The live load will be taken into account during the analysis.

• Impact load: the dynamic factor that occurs when the vehicles and pedestriansmove over the bridge. This impact
load will be considered during the analysis.

• Wind loads: the forces exerted by wind on the bridge structure. These loads are typically only relevant for large
bridges. Given that the test setup is indoor and relatively small, wind loading on the model will not be significant
and can be safely ignored in the current analysis.

• Longitudinal forces: the force applied by vehicles when braking or accelerating. For pedestrians, these forces are
also applied during normal loading as a portion of the forward motion from each footstep is transferred onto the
bridge. This effect will be ignored in the current analysis.

• Centrifugal forces: the force applied by vehicles when traveling over a curved bridge. These forces are not appli-
cable to this analysis.

• Hydraulic load: the forces exerted on a bridge when it is constructed over water. Since this analysis does not
involve such a scenario, water load is not applicable.

• Thermal stresses: the effect of temperature variations causing the bridge to expand and contract. Sensor measure-
ments will be adjusted for these temperature effects. However, the impact of thermal stresses on fatigue will be
disregarded in this analysis, as the bridge is indoors.

• Seismic load: the impact of seismic activity on the bridge. However, since the bridge is not susceptible to this, it
will be excluded from this analysis.

• Erection stresses: stresses due to construction. The construction period of bridges will not be considered, so this
effect will be ignored.

9
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3.1.1. Live Load Description According to Norm
Themain load type considered during this study is the live load. According to current norms bridges have to be designed
for heavy loads, in the form of trucks for traffic bridges and trains for railway bridges. In the case of a traffic bridge the
present loads are simplified to a frequency of trucks as seen in Figure 3.1. The trucks are then further split into different
truck categories, depending on the type of traffic that uses the road (Figure 3.2).

Figure 3.1: Indicative number of expected heavy weight vehicles per year and per lane for heavy traffic. As presented in NEN-EN 1991:2003 en [19]

Figure 3.2: Collection of equivalent trucks. As presented in NEN-EN 1991:2003 en [19]
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The estimates for truck frequency and categories provide a guideline, but are very overgeneralized. The usage of each
bridge is different, as is the traffic composition. Furthermore, the composition of traffic changes over time. For example,
throughout the past years traffic has become heavier [34] and the prognosis is it will become evenmore frequent [27]. To
better predict remaining fatigue life it is desired to get real-time data from measurements of the bridge and extrapolate
to past and future.

3.2. Requirements for Measuring Loads
Various precise measurements can be made on a structure. When deformation and/or stresses on a number of locations
are known, it is possible to derive the present load from these. Let us consider a simplified bridge model, where the only
load is a vertical downwards live load. For this situation the amount of unknown parameters influencing the stress state
of the bridge is three per load (a, b, F ) as seen in Figure 3.3. In this example, a vertical load exerted by a car is modeled as
an area load at each wheel’s contact point on the bridge deck, represented as a single grid point.

Figure 3.3: Top view of the asset showing the parameter description for a single live load example, where a is the length coordinate of the load, b is
the width coordinate of the load andF is the magnitude of the load. These parameters describe the position and force magnitude of a load area,
which in this case are the contact points of the wheels with the bridge deck, as marked in red. The top corner point with minimum a and b

coordinates is defined as the grid point representing this load area, as marked with the blue dot.

As discussed in Chapter 2, the stress cycles are required to determine fatigue damage. This means that the stress state of
the bridge has to be known at a frequency that captures the resulting cyclic behavior of the applied load. A frequency of 5
Hz is at least required to capture the passage of a truck [32]. Tomore precisely capture peaks, 10Hz has previously been
used for a road bridge [10]. It is desirable to keep the frequency as low as possible tominimize incoming data streams. To
capture the stress state of the entire bridge, there would have to be an enormous amount of sensors, which are expensive
to apply. A better strategy is to combine both digital information and limited sensor information to estimate the stress
state in the entire bridge. An optimum has to be found between costs and accuracy.

Let us then consider an example (Figure 3.4) where a single car is present on a bridge with 8 attached strain sensors to
capture the bridge’s behavior. Not having a known number of loads or set locations, there are infinite combinations of
loads that can cause these exact strain values. In all these solutions the strain values at the sensor locations are the exact
same, but the stress state in the entire bridge is different for all but the real load situation.
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Figure 3.4: Example load of a single car on a bridge with respective strain sensor (yellow rectangles) measurement values.

It is impossible to compute each load situation in a digital model before implementation. However, the linearity of the
material allows for linear scaling and superposition. This means that both magnitudes and different load situations can
be computed independently and combined if necessary. This significantly reduces the required set of precomputed loads
in a database. Assuming that a FEMmodel of the bridge is loaded with a single known load, representing that of a truck
at a known location. This allows us to save the desired stress values of any location of the bridge. If we repeat this process
for different locations we get a database of test loads and strain fields. The process of creating a grid of data points is
further described in Chapter 4.3.

The load of a vehicle at some continuous location on the bridge can now be approximated as a load on the nearest grid
point, linearly scaled for the impact of the vehicle. This reduces the solution space to a finite one. From a measurement
of the sensor strain values, the first step in estimating the stress state of the bridge is determining the location of the loads.
Without additional information, we do not even know the number of loads nloads on the bridge. The total size Σ of
the solution space for placing loads on theNGP grid points is

Σ =

(
NGP

1

)
+

(
NGP

2

)
+

(
NGP

3

)
+ . . .+

(
NGP

NGP

)
. (3.1)

If there are 50 grid points, this would entail a bizarre amount of combinations of Σ = 1.1 × 1015. A couple of these
combinations can be seen in Figure 3.5. Finding the optimumof thismany possibilities is unrealisticwithin the allocated
time window of 1/(10 Hz) to achieve a real-time stress state.

A strategy to find a quick solution for the load distribution, explored in this research, is to determine the number of
loads nloads using a camera with image recognition. Using a separately determined nloads limits the solution space to a
slightly more reasonable value of 50 ≤

(
50

nloads

)
≤ 1.3× 1014 depending on the value of nloads.

To further reduce the solution space we can also use the fact that image recognition can be used to estimate the location.
We can then limit the searched combinations to the grid points within a certain boundary around the estimated location.
If the boundary box contains for example 10 grid points per load, then the size of the solution space for placing loads on
theNGP grid points is reduced to 10nloads . This still scales exponentially with the number of loads. Exponential scaling
would quickly lead to the computations not being able to keep up with the real-time. For this reason a final strategy is
used to optimize the location of each load independently while keeping the others fixed. This reduces the problem to
nloads optimizations with 10 possible solutions each. This strategy will be explained in more detail in Chapter 4.5.



3.3. Proposed Pedestrian Bridge Model Setup 13

Figure 3.5: Options for different values of nloads resulting in equal strain measurements in the sensors (yellow rectangles) by scaling the loads.

3.3. Proposed Pedestrian Bridge Model Setup
For easier access, and to exclude irrelevant data following from loads unrelated to traffic load as much as possible, we
chose not to experiment on an existing bridge, but on a smaller asset. In addition, this has the advantage that the setup is
portable to show theworking principles at different locations. This alternative asset has a similar principle of application
and the methodology developed and tested should be scalable to a full-scale traffic or railway bridge.

The chosen asset is a 3m long aluminium pedestrian bridge. This is a relatively light object, and provides the necessary
portability, as well as being relatively cheap to use for testing. The bridge can be seen in Figure 3.6.
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Figure 3.6: Physical asset used for data collection and testing.

3.3.1. Pedestrian Load Assumptions
For the loads of the pedestrians a rectangular area is considered the size of an average Dutch male footprint, as the vast
majority of colleagues are Dutch males. For Dutch men the average shoe size is said to be 43 [2] [33]. This corresponds
to a foot length of about 270 − 280 mm [39] [15] [31]. With some margin for the actual shoe, a footprint length
of 280 mm is considered. For European males this corresponds to a mean foot width of 105 mm [13]. This area is
applied statically in the FEMmodel, but through time iterations will reflect dynamic behavior of loading and unloading
points of the bridge. Based on this the following effects are disregarded: shoe types and the rolling motion of a footstep.
Another assumption is that the longitudinal and lateral forces applied during walking loads are negligible compared to
the vertical loads.

3.3.2. Structural Quality Assumptions
Material quality is never perfect, and depending on the individual asset can show local imperfections before operation.
The material quality will be set to industry standard values in the FEM calculations. In addition to this, the stress distri-
bution in a structure may also be influenced by its degradation. For instance, continuous use of a road deck can degrade
the quality of the top layer, leading to cracks or potholes. These imperfections result in increased impact loads because
of a higher dynamic factor, as well as increasing the effect of different axle loads [38]. Other effects that have to do with
the degradation of the sub- or superstructure of the bridge are rusting, erosion and crack formation. These conditions
will result in a weakermaterial that is more susceptible to fatigue. In this study, however, these effects will be disregarded,
as there is insufficient time for them to occur. As a result, the bridge structure is assumed to follow linear deformation
at all times.



4
Methodology for Load and Stress State

Estimation

4.1. Designing a Digital Version of the Asset
The industry standard for modeling of steel structures is using FEM. For this analysis the FEM software package Ansys
2023 R2 is used. The FEMmodel will contain the global bridge model in a coarser model to capture the global behavior
to applied loads. In addition, all researched details as mentioned in Chapter 4.1.2 are modeled in separate sub-models.
These sub-models have a finer mesh to capture the local behavior around the welds sufficiently accurate.

4.1.1. Global FEM Model
The bridge consists of the main aluminium profiles, which are connected by the walking deck and six cross girders. The
decks are welded to the profiles in addition to the existing rivets, to reduce vibrations. The bridge has a connection beam
at either end of the bridge to raise the bottom flanges from the ground and allow for bending of the main girders. The
FEMmodel of the global model can be seen in Figure 4.1

Figure 4.1: a) Top view of the bridge as modeled in Ansys 2023 R2, b) Bottom view of the bridge as modeled in Ansys 2023 R2.

Strain Sensors
Strain sensors are attached at multiple locations on the asset. The sensors are modeled at matching locations on the
digital model. This is done in order to link the asset measurements to FEM results. The sensor positions are visualized
in Figure 4.2. The used sensors are fiber Bragg grating (FBG) sensors. The cable length and desired amount of sensor
points are determined inChapter 6.3. Other considerations are the limited availability of different sensor configurations,
budget and time frame. These strain sensors provide a single strain value ϵi in the length direction of the bridge for all
sensors i ∈ I .

15
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Figure 4.2: Bottom view of the bridge, showing the digital strain sensor measurement locations matching the physical sensor locations.

4.1.2. Detail Models
Each detail is modeled within a sub-model for more detailed material behavior around welds. An example sub-model is
shown in Figure 4.3. The cut-off boundaries are chosen at a far enough distance from the weld to eliminate inaccuracies
at the boundaries, but as close as possible to reduce the number of elements and thus computational time.

Figure 4.3: a) Global FEMmodel highlighting one sub-model (circled in red). b) Picture of the researched sub-model on the asset. c) Sub-model
showing the adjusted weld plate thickness from the weld.

Adjustment for weld plate thickness
Welds are essentially added material, and thus provide extra stiffness to the plates. Plates are modeled with increased
plate thickness to account for the increased stiffness. This is done according to the standard [24], with different recom-
mendations based on the applicable weld type. An example of this is a tee joint single fillet weld, as seen in Figure 4.4
h, which appears on the cross girder connections to the aluminium profiles. This thickness adjustment is used on the
detail shown in Figure 4.3 c.

Hot-spot calculation in detail
As discussed in Chapter 4.1.2, the area around a weld is most prone to fatigue damage, and to analyze this behavior the
stress has to be determined at the weld toe. Due to the abrupt change in geometry at the welded connections, peaks will
appear in the stress output of the FEM model at these points. To account for this the hot-spot stress method is used
as suggested by the standard [21]. This calculation strategy entails combining values further away from the singularity
and approximating the supposed value at the weld toe through extrapolation. For different types of hot-spots andmesh
densities the hot-spot stress value is approximated using Table 4.1.
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Figure 4.4: Plate thickness correction for different weld types [24].

Type of
hot-spots
point

Linear extrapolation Quadratic extrapolation

Fine mesh Coarse mesh Fine mesh

type “a”
0.4t and 1.0t 0.5t and 1.5t 0.4t, 0.9t and 1.4t

1.67σ0.4t − 0.67σ1.0t 1.5σ0.5t − 0.5σ1.5t 2.52σ0.4t − 2.24σ0.9t −
0.72σ1.4t

type “b”
– 5mm and 15mm 4, 8 and 12mm

– 1.5σ5mm − 0.5σ15mm 3σ4mm − 3σ8mm + σ12mm

Table 4.1: Hot-spot stress formula for different types of hot-spots and mesh densities [21].
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The type of hot-spots is of type “a”, with a linear extrapolation using a fine mesh. For this reason the hot-spot stresses
are calculated

σHS = 1.67σ0.4t − 0.67σ1.0t (4.1)

by multiplying stress values obtained at a distance of 0.4 and 1.0 times the plate thickness from the weld toe with the
linear extrapolation factors. These hot spot stresses are determined for each desired detail location s ∈ S. The locations
are pre-identified as critical for fatigue analysis. The first 12 locations, positioned along the connections of the left profile
and cross girders (DL1, DL2, DL3, DL4), are illustrated in Figure 4.5. An additional 12 locations, mirrored on the con-
nections with the right profile (DR1, DR2, DR3, DR4), are also included. Therefore, this analysis involves calculating
and estimating a total of 24 stress values, σs.

Figure 4.5: Global FEMmodel with 4 of the sub-model locations shown in detail (DL1, DL2, DL3, DL4). The locations where a hot-spot stress σs

is calculated are marked with an orange dot.

4.2. Digital Representation of a Single Load Case
The first step is to consider a single load at a time. The load on the asset is a single footstep, represented as a rectangular
load described using three parameters: a, the coordinate along the length of the bridge; b, the coordinate along thewidth
of the bridge andF , the load applied by the footstep. This is further visualized in Figure 4.6. The length andwidth of the
footstep are 280 mm and 105 mm, respectively, as described in Chapter 3.3.1. For this load case the values σs ∀s ∈ S
and ϵi ∀i ∈ I are stored.

Figure 4.6: Top view of the asset showing the parameter description for a single load example, where a is the length coordinate of the load, b is the
width coordinate of the load andF is the magnitude of the load. These parameters describe the load area representing the footstep, as marked in red.

The top corner point with minimum a and b coordinates is defined as the grid point representing this load area, as marked with the blue dot.
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4.3. Simulating a Database of Digital Load Cases
A database is set up that describes the asset’s behavior for a set of test cases, which function as comparison for measure-
ment values. The load of the test cases is kept at the same value, while only the parameters a and b are adjusted. A grid is
set up withNa grid points in the length direction andNb grid points in the width direction. Given the maximum and
minimum values of a and b, the distances between the grid points are

∆a = (aupper − alower)/(Na − 1) (4.2)

∆b = (bupper − blower)/(Nb − 1) (4.3)

For each of the points in the grid the coordinates

aq = alower + (q − 1)∆a ∀q ∈ 1, 2, . . . , Na (4.4)

br = blower + (r − 1)∆b ∀r ∈ 1, 2, . . . , Nb (4.5)

are determined by their grid indices q and r in length and width direction of the bridge, respectively. Combined the
coordinates are represented as (aq, br). The FEMmodel is run for each of the grid points as described in Chapter 4.2,
forming the database.

4.3.1. Resolution of Load Cases
By increasing the values of Na and Nb, the resolution of the grid points increases. This makes the future predictions
more accurate, but it comes at the cost of computational speed. As the amount of load cases to be computed in FEM

NGP = Na Nb (4.6)

is equal to the product of the grid points in both directions. The minimum and maximum grid resolution used for the
analysis are shown in Figure 4.7.

Figure 4.7: Visualization of simulated loads within the FEMmodel. a) Example grid configuration with a density ofNa = 20 andNb = 4,
resulting in a total resolution ofNtotal = 80, b) Example grid configuration with a density ofNa = 50 andNb = 10, resulting in a total

resolution ofNtotal = 500.

4.4. Estimating Stress State for Single Load Cases
The newmeasurements obtained in real-time from the asset must now bematched to the existing knowledge of the digi-
talmodel of the asset. Multiple strategieswere considered tomatchnewmeasurements to the created database, including
machine learning. However, due to the data-hungry nature ofmachine learning, itwas decided to use an alternative. The
strategy presented in this chapter provides way more accurate results within a fraction of the calculation time. Using
the strain values from the measurements of the asset, the closest matching grid point is determined from the database,
a process similar to matching the fingerprint of a person in a criminal investigation, hence the name “fingerprinting”.
Thematching process from the database is explained inChapter 4.4.1. Next an interpolation ismade between surround-
ing points as explained in Chapter 4.4.2. Afterwards the test load is scaled to match the measurement as explained in
Chapter 4.4.3.
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4.4.1. Coupling Closest Digital Load Case
When a new measurement is obtained from the asset, where the strain sensor data is ϵi ∀i ∈ I , where I is the set of
active strain sensors on the asset, the most relevant grid point has to be coupled. A strain ratio difference matrixX(n) is
set up for the measurement point compared to grid point n, where each of the matrix elements

X
(n)
ij =

∣∣∣∣∣ϵ(n)i

ϵ
(n)
j

− ϵi
ϵj

∣∣∣∣∣ ∀i, j ∈ I, ∀n ∈ NGP (4.7)

Here, ϵ(n)i is the strain on sensor i due to a load on grid pointn. X(n)
ij are individually determined for each of the sensor

combinations.

To reduce the effect of explosive outliers that arise from near-zero divisions, multiple mathematical operations were
considered, such as average, median, median absolute deviation around the median, median absolute deviation around
the average. The MAD (Median Absolute Deviation) [4] around the median preformed best for location predictions
and will thus be used.

The median
X̃(n) = med

(
X

(n)
ij ∀i, j ∈ I

)
∀n ∈ NGP (4.8)

is taken of the difference matrixX(n)
ij .

After this the MAD operation is performed

MAD(n) = med
(∣∣∣X(n)

ij − X̃(n)
∣∣∣ ∀i, j ∈ I

)
∀n ∈ NGP (4.9)

on the median difference matrix.

To choose the grid point nmin that best matches the strain ratios of the measurement point from the asset, the minimal
MAD value is determined

nmin = argmin
n

MAD(n) (4.10)

by taking the minimum value ofMAD(n) out of all of the grid points n ∈ NGP. For a newmeasurement with a single
load present on the bridge, as shown in Figure 4.8a, the coupled grid pointnmin represents the bestmatching grid point,
illustrated in Figure 4.8 b.

Figure 4.8: a) Example of a load location (in red) from a newmeasurement. b) Coupled grid point nmin (in green) representing the best matching
grid point for the measurement..
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4.4.2. Interpolation between Digital Load Cases
To achieve extra resolution from the determined database, while avoiding having to run more simulations, an interpola-
tion is made from the coupled grid point nmin with the surrounding grid points. The actual location of the load is not
known, meaning that it can be in any of the four quadrants around the coupled grid point.

The coordinates of the optimal grid point nmin are defined as nmin: {amin, bmin}. The surrounding eight grid points,
visualized in Figure 4.9, are divided into the four areas formed by four grid points each. These are all at distances of∆a,
∆b from each other as defined in Equations 4.4 and 4.5.

Figure 4.9: Minimal matching grid point (shown in green), with the surrounding grid points, forming four areas in which the measured load case
could have been located.

For each area h ∈ H , where H = {0, 1, 2, 3} is the set of quadrants, there are four grid points k ∈ K , where
K = {0, 1, 2, 3} is the set of grid points in the area. The coordinates of all of the grid points in their respective area are

ak,h = amin +∆a

(⌊
k

2

⌋
+

⌊
h

2

⌋
− 1

)
∀k ∈ K, ∀h ∈ H (4.11)

bk,h = bmin +∆b

(
1 + (−1)⌊

k−1
2 ⌋

2
+

1 + (−1)⌊
h−1
2 ⌋

2
− 1

)
∀k ∈ K, ∀h ∈ H (4.12)

Each of the coordinates obtained are one of the grid points from the database of NGP grid points. We label the grid
point with coordinates (ak,h, bk,h) as nn,k.

We obtain a best estimate for the location of the load within one of the quadrants by scaling the strains calculated for
loads on the corner grid points by factors βk,h. For each quadrant hwe find the optimal βk,h by minimizing

MAD(h) = med
(∣∣∣X(h)

ij − X̃(h)
∣∣∣ ∀i, j ∈ I

)
, ∀h ∈ H (4.13)

subject to
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
X

(h)
ij =

∣∣∣∣∑k∈K βk,h ϵ
(nk,h)

i∑
k∈K βk,h ϵ

(nk,h)

j

− ϵi
ϵj

∣∣∣∣ ∀i, j ∈ I, ∀h ∈ H

X̃(h) = med
(
X

(h)
ij ∀i, j ∈ I

)
∀h ∈ H

βk,h ∈ R+
0 ∀k ∈ K, ∀h ∈ H∑

k∈K βk,h = 1 ∀h ∈ H

(4.14)

Next, we find the overall best estimate location of the load by finding the optimal quadrant

hmin = argmin
h

MAD(h) (4.15)

Here quadrant hmin is the area in which the measured load case obtained from the asset is predicted to have occurred.
For area hmin the scale factors

βk,hmin = {β0,hmin , β1,hmin , β2,hmin , β3,hmin} (4.16)

will then be as obtained duringminimization. These represent the factors of influence of the four grid points to the total
summed strain values.

An example is given in Figure 4.10 for hmin = 2 (Area 2, as seen in Figure 4.9). The predicted location of the load is
shown, as determined from interpolation between the four surrounding grid points. The coordinates are

aest =
∑
k∈K

βk,hmin
ak,hmin

(4.17)

best =
∑
k∈K

βk,hmin bk,hmin (4.18)

Figure 4.10: Example prediction using interpolation of four grid points in the case of hmin = 2. Where the predicted load location (shown in
red), is determined by scaling the locations of the four surrounding grid points.
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4.4.3. Scaling Coupled Load Case
Thus far the strain ratio between two sensors has been used to determine the predicted location of the load case obtained
from the asset. To obtain the predicted load magnitude, the absolute strain will be considered. For this another scale
factor, α, has to be determined. αwill then represent the scale factor of the predicted load compared with the load that
has been applied for the grid points in the database. Because all of the grid points are run with the same exact load, one
scale factor α is sufficient.

We minimize

Z =
∑
i∈I

∣∣∣∣∣∑
k∈K

(
αβk,hmin

ϵ
(nk,hmin)
i − ϵi

)∣∣∣∣∣ (4.19)

subject to

α ∈ R+
0 (4.20)

Here the previously found scale factors βk,hmin are used.

Scale factors βk,hmin
and α are then used to scale the grid point load to what is the estimated load

Fest = α
∑
k∈K

βk,hmin
Fk,hmin

(4.21)

applied to the asset. Here, Fk,hmin
is the load applied to grid point nk,hmin

in the database. The same scale factors
βk,hmin

and α are used to determine the estimated hot-spot stresses in all of the researched details

σs,est = α
∑
k∈K

βk,hmin σ
(nk,hmin)
s ∀s ∈ S (4.22)

4.5. Estimating Stress State for Multiple Load Cases
For trafficbridges veryoftenmultiple loadswill bepresent on the asset at once. This chapterwill discuss themathematical
model used to predict the location and load of multi-load situations. Scalability is given special attention, such that the
computation time does not become combinatorial explosive. To achieve this, cameras are used to determine the number
of footsteps on the bridge as well as a rough estimate of their locations.

4.5.1. Footstep Image Recognition
Scaling is a significant problem for identifying multi-load situations. All options within the database are tested for
a single load scenario. In cases involving multiple loads, every possible combination of grid points and load magni-
tudes would need to be evaluated to determine the optimal solution. This significantly increases the computational
effort and complexity compared to single-load scenarios. Not knowing an estimate location or the number of footsteps
nfootsteps would mean a computational complexity in the order ofO(|NGP|1) + O(|NGP|2) + O(|NGP|3) + ... +
O(|NGP|nfootstepsmax ) ≈ O(|NGP|nfootstepsmax ). Cameras with image recognition are used to significantly limit com-
putational speed by determining the number of footsteps nfootsteps on the bridge, as well as providing an estimate of
their location. This camera prediction is visualized in Figure 4.11 b, where the cameras predicted the number of foot-
steps, namely 3, and provided an estimate of their location bounded by the inaccuracy abox and bbox. For the image
recognition the shoe detection algorithm from a study about risk assessment of cane users is applied [8]. We explicitly
consider the detection of feet floating in the air, thus providing no load onto the asset. The image recognition application
will further be explained in Chapter 5.3.2.

4.5.2. Multi-Load Coupling
For the single load situation Equations 4.7, 4.8, 4.9 were used. However, the consideration of strain ratio from the
single-load analysis does not work for the multi-load situation. It is impossible to find the location of more than one
load, unless we also scale the loads correctly.
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To couple the best matching grid points for multi loads all combinations of γ(n) should manually be calculated to cer-
tainly achieve the best estimate. However, the nature of this computationwouldbe of orderO(|NGP |nfootsteps), becom-
ing combinatorially explosive in computational time as the number of footsteps increases. This leads to computational
times that would not be viable for large nfootsteps, and would cause issues especially for traffic bridges, where multiple
loads are often present. For this reason the computational scaling is linearized by locking all but one of the footsteps to
the grid points closest to the coordinates determined by the cameras, and searching for the optimal grid point one by
one. This process is visualized in Figure 4.11. Selecting the points sequentially could mean that the guesses for the later
footsteps are more accurate, meaning that running the process multiple times could result in better predictions. After
testing the predictions, however, it was found that the predictions were already closer to the actual situation than the
distance between grid points. Thus, for present setup, extra iterations are not required.

Figure 4.11: Linear computation strategy for coupling grid point in a multi-load scenario. a) Depiction of an unknown load situation at a random
moment in the asset’s lifetime, where nfootsteps = 3. b) Camera prediction location (red dots), with the inaccuracy bounding boxes, in which grid

points are considered. c), d), e) illustrate steps 1, 2 and 3 respectively, in determining the closest matching grid point within their respective
bounding boxes. f) Presents the resulting coupled grid points obtained from the linear computation.

In the multi-load algorithm we use an array γ(n) ∀n ∈ NGP, where the value γ(n) = 0 if grid point n has no load
and γ(n) = 1 if it has a load. In a scenario with nfootsteps loads, we perform nfootsteps steps of the following type. The
initial guess for the grid point index for each of the loads is based on the camera image. All grid points indices containing
a load are stored in array C . During each iteration, the grid point index of one of the loads (subset C−) is optimized,
while those of the other loads (subsetC+) are kept fixed.

In each iteration, we minimize

Z =
∑
i∈I

∣∣∣∣∣ ∑
n∈NGP

(
α(n) γ(n) ϵ

(n)
i − ϵi

)∣∣∣∣∣ (4.23)

by finding a new grid point index n for the load we are optimizing, and by finding best estimates for α(n) ∀n ∈ C .
We use the following constraints:


∑

n∈NGP
γ(n) = nfootsteps

γ(c) = 1 ∀c ∈ C+

γ(n) ∈ {0, 1} ∀n ∈ Nbox

α(n) ∈ R+
0 ∀n ∈ C

(4.24)

The force scale factors α(n) are decision variables, which scale the individual grid points to the predicted force, making
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the absolute strain mathematically comparable. Each iteration the coupled grid points set {γ(n)} gets updated with the
newly obtained optimal grid point.

4.5.3. Multi-Load Interpolation
Interpolation as done for the single-load algorithm has a similar scaling problem as coupling. The computation time
would be in the order ofO(|H|nfootsteps). The same approach is used to linearize the computation as done for coupling,
by locking all but one of the areas around the coupled grid points. As an initial guess for the continuous location of each
load, we assume that it lies in the quadrant towards it leans in the camera image compared to those of the coupled grid
point:

hminc =


0 if acamc

≤ aminc and bcamc
≤ bminc

1 if acamc
≤ aminc and bcamc

≥ bminc
2 if acamc

≥ aminc and bcamc
≥ bminc

3 if acamc
≥ aminc and bcamc

≤ bminc

∀c ∈ C (4.25)

During each iteration there will be a set of locked grid pointsC+, of sizenfootsteps−1 representing all but the currently
optimized point, which itself falls in the setC−. In each iteration, we first minimize

MAD(hc− ) = med
(∣∣∣X(hc− )

ij − X̃(hc− )
∣∣∣ ∀i, j ∈ I

)
, ∀hc− ∈ H (4.26)

with 

X
(hc− )
ij =

∣∣∣∣∑k∈K

∑
c∈C α(c) β(kc,hc) ϵ

(nkc,hc
)

i∑
k∈K

∑
c∈C α(c) β(kc,hc) ϵ

(nkc,hc
)

j

− ϵi
ϵj

∣∣∣∣ ∀i, j ∈ I, ∀hc− ∈ H

X̃(hc− ) = med
(
X

(hc− )
ij ∀i, j ∈ I

)
hc = hminc ∀c ∈ C+

β(kc,hc) ∈ R+
0 ∀kc ∈ K, ∀hc ∈ H∑

kc
β(kc,hc) = 1 ∀hc ∈ H

(4.27)

to find the optimal values of β(kc,hc) ∀c ∈ C . In this step, the values of α(c) ∀c ∈ C are kept fixed at the values
determined in the coupling phase.

Next, each iteration finds the optimal quadrant hc− of the load that is optimized as

hminc−
= argmin

hc−
MAD(hc− ) (4.28)

This value is then inserted back into the array of optimal area values {hc} for the next iteration. After all of the iterations
have been executed, the areas list {hminc} and their respective interpolated scale factors βkc,hminc

∀c ∈ C have been
found.

The estimated load locations for each footstep

aestc =
∑
k∈K

βkc,hminc
akc,hminc

∀c ∈ C (4.29)

bestc =
∑
k∈K

βkc,hminc
bkc,hminc

∀c ∈ C (4.30)

follow from the summation of the location of the grid points in the optimal area by their scale factors βkc,hminc
.
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4.5.4. Multi-Load Scaling
The load factor α(n), as determined during the coupling phase, provides an initial guess for the simplified locations.
However, with the interpolation a more precise location has been determined. For this reason it is desirable to redeter-
mine the scale factor α(c) to better match the newly predicted load locations. We minimize

Z =
∑
i∈I

∣∣∣∣∣∑
c∈C

∑
k∈K

α(c)βkc,hminc
ϵ
(nkc,hminc

)
i − ϵi

∣∣∣∣∣ (4.31)

subject to
α(c) ∈ R+

0 (4.32)

for global force scale factors α(c). Here the previously found scale factors βkc,hminc
are used.

The estimated loads for each of the footsteps follow

Festc = α(c)
∑
k∈K

βkc,hminc
Fkc,hminc

∀c ∈ C (4.33)

where scale factors βkc,hminc
and α(c) are used to scale the force used for the database computation.

To determine the estimated hot-spot stresses in all of the researched details

σs,est =
∑
c∈C

α(c)
∑
kc∈K

βkc,hminc
σ
(nkc,hminc

)
s ∀s ∈ S (4.34)

the same scale factors βkc,hminc
andα(c) are used. These values provide the live stress state of the desired details and the

load description on the asset.

4.6. Fingerprinting Analysis over Time
The estimated stress values in each detail σs,est are determined for a specific value measurement in time. The finger-
printing analysis is run at 10 Hz to capture the load behavior over time. By running the analysis over a period of time
provides the stress-time graph in all of the details. This enables the calculation of fatigue damage using rainflow count-
ing and Palmgren-Miner’s rule. Chapter 7.5 provides a numerical example of the complete fingerprinting methodology
described in this chapter.



5
Developing Real-Time Assessment

Pipeline

In order to achieve a functional test-setup the methodology described in Chapter 4 will be turned into a pipeline of
Python code. This pipeline should entail all of the relevant functionalities in order to achieve load and stress state esti-
mation, as well as provide necessary information for fatigue life prediction. Chapter 5.1 will describe the entire pipeline
and the structure of the system. Chapter 5.2 will explain the input data of both FBG sensors and cameras and how their
real-time data transfer is achieved. In Chapter 5.3 all relevant data analysis functionalities will be thoroughly explained.
Finally, Chapter 7.7 will describe the output of the pipeline.

5.1. Pipeline Structure
Toprovide a broader perspective, let us examine the global application framework first. The desired pipeline should have
an input of sensor data, and through data analysis output all necessary information to predict fatigue life. A simplified
diagram of the application is shown in Figure 5.1.

Figure 5.1: Simplified block diagram showing the functionality of the fingerprinting methodology in a broader desired application.

27



5.1. Pipeline Structure 28

A split is made here between the Physical Space and the Digital Space. The physical space entails the physical asset,
including all of the connected sensor equipment, as well as the loads applied to the asset. The digital space consists of
the written fingerprinting methodology in its broadest form, including all data handling and processing steps, as well as
a visualization of the data. In addition, a block for structural health monitoring exists as a loop to determine if fatigue
damage has occurred and matches the simulated results. If there is fatigue damage, then the digital model could be
adjusted to account for the damages, and more accurately predict future fatigue life.

To provide a deeper understanding of themeaning behind each block and the steps executed in the process—along with
those currently excluded but worth exploring in future research—a more detailed block diagram is presented in Figure
5.2. The diagram again highlights the division between the physical and digital spaces. The blue blocks represent the
aspects related to data handling.

Figure 5.2: Expanded block diagram showing the real-time assessment pipeline and the interaction between physical and digital space.

In the physical space, sensors connected to the asset continuously provide strain data and camera images. This data is
transmitted from the physical space into the digital space, where it is first stored in temporary data storage. If any one of
the strain values exceeds a predetermined cut-off threshold, we interpret this as a relevant load on the asset. The strain
data are then selected for fingerprinting analysis.

The data analysis process, depicted in yellow blocks, consists of three primary steps within the broader fingerprinting
framework. The first step is image recognition, where the number of loads on the asset is determined from associated
camera images. This information, combined with the strain data, serves as the input for the fingerprinting algorithm
in the second step. The algorithm estimates the stress values in each detail of the structure. Finally, in the third step,
rainflow counting is applied to assess fatigue damage over a time window of accumulated stress values, resulting in a
comprehensive stress profile.
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Following the analysis, the gathered results are stored in the green blocks, which consists of twomain components. The
first is data visualization, providing an accessible way to assess the asset’s condition and analyze the effectiveness of the
fingerprinting process. The second is results storage, where a broad range of valuable information is archived. This
includes data on loads, frequencies, stress states, and fatigue damage, which could support future analyses and offer
essential insights into the asset’s long-term performance and durability.

The red block represents the structural health monitoring component, which is designed to create a closed-loop system
for the entire process. However, to simplify the scope of this research, this step is not implemented at this stage. In
future studies, this aspect could be investigated further to enhance the system’s capabilities. Incorporating this compo-
nent would enable continuous feedback and integration of the results back into the monitoring and decision-making
processes, offering a more robust and adaptive approach to asset management.

5.1.1. Application Strategy
The application involves an integrated approach that combines sensor connectivity, real-time data analysis, and efficient
data storage. This means that every component of the pipeline (data acquisition, processing, and storage) must work
seamlessly together to ensure the system’s reliability and responsiveness. Given the real-time requirements, careful atten-
tion is placed on minimizing latency, optimizing data flow, and maintaining synchronization between various stages of
the pipeline.

The system interfaces with a network of sensors to collect high-frequency data in real time. Ensuring robust and consis-
tent communication with the sensors is critical, especially in environments prone to noise or disruptions. The applica-
tion establishes a direct connection to the sensors using Ethernet connections, allowing for the continuous transfer of
data streams. This connectivity layer is designed to handle potential data loss or delays, employing mechanisms such as
error correction and buffer management to ensure the fidelity of incoming data.

The real-time data analysis component is at the heart of the application. It processes the incoming data stream at the
required frequency, extracting meaningful insights and making decisions without delay. Python was chosen as the pri-
mary programming language for this aspect of the application. This decision was guided by previous experience with
Python, as well as its rich ecosystem of libraries and tools for numerical computation, data manipulation, and machine
learning. Libraries such asNumPy, Pandas, and SciPy provide a robust foundation for handling sensor data, while frame-
works like Dash facilitate real-time visualization of analysis results. Python’s versatility also enables rapid prototyping
and iterative development, which are essential for fine-tuning the application’s algorithms.

In parallel with real-time analysis, the system incorporates a data storage layer to ensure that all sensor readings and
analysis results are logged for future reference. This storage solution is optimized for both highwrite speeds and efficient
data retrieval. This archival capabilitynot only supports post-analysis but alsoprovides abackupmechanism to safeguard
against data loss.

By integrating these components into a unified pipeline, the application achieves its goal of delivering accurate, real-
time insights based on live sensor data. Python’s flexibility and ease of use play a crucial role in bridging the gap between
the hardware (sensors) and software (analysis and storage), ensuring the system’s robustness and scalability for future
expansions or modifications.

5.1.2. Folder Structure
The folder structure for the application is designed to align with the overall application strategy. As shown in Figure 5.3,
the main folder is named ”Real-Time Assessment” and contains several subfolders along with a few key files.

One of the files is a ”README” file, which provides an overview of how the tool works. It includes step-by-step instruc-
tions on how tomake necessary adjustments and ensure the application operates correctly. Another important file is the
main Python script, which acts as the starting point for the real-time assessment application. This script gathers input
from the user, initiates all core functions, and manages time synchronization to ensure smooth operation between the
different sensors. Additionally, there is a separate Python script that contains all the supporting functions required for
specific tasks and analysis.

The subfolders in this structure correspond to the yellowblocks in the block diagram shown in Figure 5.2. These include
the Image Recognition, Fingerprinting, and Rainflow Counting subfolders. Each subfolder is dedicated to a specific
function, and their roles and purposes will be detailed in Chapter 5.3.
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Figure 5.3: Folder structure of the Real-Time Assessment pipeline.

5.1.3. Main Run Loop Logic
The main script of the Real-Time Assessment pipeline is the Python file run_real_time_assessment.py. This file serves
as the system’s core, managing the reading of sensor data, synchronizing data to the current iteration time, initiating
data analysis functions, and producing results. It also handles visualization through a dashboard. Establishing clear and
logical operations within this script is essential for the pipeline’s functionality. The overall logic is represented in the
block diagram in Figure 5.4.

In the diagram:

• Blue represents input data, including input parameters, strain sensor data, and camera images.
• Yellow shows the different stages of data analysis.
• Green indicates the output of the analysis, in this case, the counted cycles.

While the script includes many additional outputs and processes, the explanation here focuses on its core functionality
for simplicity.

Sensor data streams continuously and is time-stamped as it is received. When an iteration begins, the system selects the
sensor data closest to the iteration time and discards older data. At the early stages of data collection, there may not be
enough information to effectively perform rainflow counting, as thismethod requires a representative dataset to provide
meaningful results. Additionally, rainflow counting is computationally intensive, making it inefficient to execute often
with limited data. Therefore, the rainflow counting process is postponed until a sufficient amount of data has been
gathered, ensuring that the analysis is both representative and computationally justifiable.

If any strain values ϵi, , , ∀i ∈ I exceed a predefined threshold ϵc, the applied load is deemed significant enough to initiate
the fingerprinting algorithm. The process begins by identifying the camera image closest to the current iteration time t.
Image recognition is then performed on this image to determine the number of footsteps present on the bridge. Based
on this information, the fingerprinting algorithm calculates the stress values at critical locations on the bridge. These
calculated stress values are subsequently stored, and the system advances to the next iteration.

Once enough data is accumulated, the rainflow counting operation begins, producing an output of counted cycles.
Afterward, the process continues with subsequent iterations as described.
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Figure 5.4: Logic of the main operational functionality of the Real-Time Assessment source code. The blue blocks represent the input data, the
yellow blocks represent the data analysis stages, and the green block represents the output.

5.2. Data Input
The data input to the real-time assessment pipeline is provided by strain sensors and a camera. This chapter will describe
the used sensors, how they work and what type of data they provide.

5.2.1. FBG Sensor Data
The strain sensors utilized in this application are Fiber BraggGrating (FBG) strain sensors produced by FBGS [7]. These
sensors were selected for their ability to achieve high-frequency measurements and their suitability for managing a large
number of sensor locations, even on full-scale traffic and railway bridges. Constructed from fiberglass cables, FBG sen-
sors operate based on variations in the refractive index at specific points along the cable. These variations result in shifts
in the wavelength of light traveling through the cable, enabling precise strain measurements.

The wavelength shift depends on howmuch the sensor stretches, which happens when the material to which the sensor
is attached deforms. As thematerial stretches, the sensor stretches too, causing a change in thewavelength. Bymeasuring
this change, the strain on the material can be calculated. This process is illustrated in Figure 5.5.

One sensor cable can havemultiple sensor locations along its length, allowing it to provide strain data from several points.
The strain measured at each location is reported in the unit microstrain (µϵ). The measurement frequency can be ad-
justed using the FBGS software, and the required frequency of 10 Hz is easily achievable.

For this application, a slightly highermeasurement frequency of 15Hzwas chosen. This helps to reduce synchronization
offsets between the strain data from the sensors and the images captured by the camera. Figure 5.6 shows an example of
the measurement plots provided at 10 sensor locations, when a person steps onto the bridge, stands still for some time,
and then steps off.

The strain values are transmitted live using the Transmission Control Protocol (TCP). This protocol sends the data
over the internet, making it accessible to any device connected to the specified IP address and port number. The data is
streamed at the same frequency as the measurements, 15 Hz.
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Figure 5.5: Visual representation of the functioning principle of FBG strain sensors. Obtained from FBGS [6].

Figure 5.6: Example strain graph from 10 of the measurement points along the FBG strip as a result of loading the bridge by stepping onto the
bridge, and stepping off again after a couple of seconds.

The data transmitted from the sensors is a string of bytes with a variable length. It includes several key pieces of infor-
mation, such as themeasurement timestamp, the wavelengths at eachmeasurement point, and the corresponding strain
values. To extract the strain information, the stringmust first be converted into a readable format. The source code used
for reading this sensor data is provided in Appendix B.
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Once the strain values are read, they are processed in two steps:

• The raw strain values are processed using a function detailed in Appendix D. This prepares the data in the desired
format for further analysis.

• The effect of temperature variation is accounted for by applying a moving average. This step removes the influ-
ence of temperature changes, which can cause slight drifts in the strain measurements due to the expansion and
contraction of the bridge material. The function used for this step is shown in Appendix E.

Once the conversion is complete, the strain values at each measurement point are obtained at 15 Hz. These values are
then used as input for the subsequent stages of data analysis.

5.2.2. Camera Data
The camera utilized for this analysis is the Axis Q6055-E, a device readily available and equippedwith specifications well-
suited for the intended tasks. One of its key features is the ability to stream and access images in real time through the
Real-Time Streaming Protocol (RTSP). This capability eliminates the need to store video files, significantly reducing the
storage space requirements. Moreover, specific images can be captured on demand with precise timing, ensuring high
accuracy in data collection.

Once RTSP streaming is enabled via the camera’s online settings interface, the live stream can be accessed through an
RTSP streaming link. This setup allows seamless integration with the real-time assessment pipeline.

The source code for capturing camera images can be seen in Appendix C. The function defined in this code uses the
RTSP streaming link to access the video stream and capture images as often as possible to have the most synchronized
image to the sensor data.

The captured images are subsequently used in the data analysis process, particularly for image recognition tasks. This
step plays a vital role in identifying the number and locations of loads on the asset, which is essential for the subsequent
phases of analysis and decision-making within the pipeline.

5.3. Data Analysis
The next step in setting up the real-time assessment pipeline is to analyze the incoming data. The data analysis will be
executed with three major functions at the core. These functions are image recognition, fingerprinting and rainflow
counting. This chapter will further discuss their implementation and how they work within the real-time assessment
pipeline.

5.3.1. Time Control
The time control logic is fundamental to the smooth operation of the system, as it ensures that the current iteration time
is consistently alignedwith the actual current time. This is achieved through a real-time comparison, where if the process
is found to be lagging behind the actual time, correctivemeasures are immediately implemented. These adjustments can
include pausing the data analysis briefly (putting the process to sleep) or, if necessary, allowing the process to catch up
by proceeding without delay.

This mechanism is critical for maintaining the system’s intended run frequency of 10 Hz, and is necessary to ensure
continuous and accurate synchronization across multiple components. Specifically, it ensures that sensor data, recorded
at 15 Hz, camera images, captured at 30 frames per second (fps), and iteration times are harmonized seamlessly. The
underlying source code that drives this time control logic is provided in Appendix F, offering further insight into its
detailed implementation and functionality.

5.3.2. Implementation of Image Recognition
The image recognition system uses images from the camera stream to estimate the number of footsteps visible in the
image and provide a first estimate of their locations on the bridge. Developing a custom image recognition algorithm
specifically for this application would require significant time and data. While a tailored solution could offer improved
accuracy, the time constraints of this project made it impractical to train such an algorithm. Instead, an existing pre-
trained image recognition algorithm for shoe detection was used.
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The selected algorithm originates from a study by Fernandez et al. at the Graduate School of Life Science and Systems
Engineering, Kyushu Institute of Technology, Japan [8]. This study utilized image recognition to detect shoes from a
cane-mounted camera designed to monitor elderly individuals. The purpose was to identify shoe locations and predict
potential falls, enabling timely interventions to prevent accidents.

The algorithm is based on the MobileNetV2 architecture, known for its excellent balance between accuracy and effi-
ciency. MobileNetV2 is a state-of-the-art model for object detection that performs well with limited computational
resources [30]. In the study, it achieved a mean average precision (mAP) of 60.2% in real-time at 25 frames per second
using a low-cost device. Its real-time processing capability makes it particularly suitable for the Real-Time Assessment
method.

While the algorithm’s real-time functionality is highly beneficial, it does have some notable limitations:

• It struggles with accurately identifying shoes when there are many present in a single frame.
• It can incorrectly detect shoes when multiple are close together, leading to errors in counting and localization.

An example from the study demonstrating the shoe detection algorithm is shown in Figure 5.7. The figure highlights
both the strengths and weaknesses of the algorithm. Correctly detected shoes are marked, but errors are visible in sce-
narios with numerous shoes or when shoes are clustered closely together.

Figure 5.7: Examples of shoe detections: correct recognitions are shown in a), b), and c), while detection errors are illustrated in d), e), and f).
Images sourced from Fernandez et al. [8].

The source code for the image recognition system is provided in Appendix G. The trained TensorFlow model is loaded
and applied to the image. Based on the detected footsteps in the image, the coordinates of each recognized footstep
location on the bridge are then determined.
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5.3.3. Implementation of Fingerprinting
The next step within the data analysis is to use the sensor data and coupled image at almost the exact same time step
as input for the fingerprinting algorithm. This methodology is implemented in the pipeline as Python scripts with the
functionality as described in Chapter 4.5.

The folder structure shown in Figure 5.3 is expanded to include the sub-folder structure of the Fingerprinting folder.
This is illustrated in Figure 5.8. The folder consists of two main parts:

• Import Files: This section contains the .csv file with the database as generated by running the FEMmodel with a
unity load at each grid point.

• prepare_fingerprints.py: This Python file includes the functions responsible for executing all operations related
to the fingerprinting process.

Figure 5.8: Folder structure of the Fingerprinting sub-folder.

The source code of the prepare_fingerprints.py script is shown in Appendix H. Now follows an explanation on the way
the file is structured, the input, the functions used to obtain the best estimate for stress and load estimation and the
output.

This code is designed to determine the unique characteristics (or fingerprint) of a measurement point by coupling the
closest grid points, interpolating between grid points and applying scaling of the coupled grid points.

The input to the code is a row of data consisting of the estimated positions from image recognition on the coordinates
of the loads and the strain values from all of the sensors. In addition the file imports the database of grid points that was
obtained by executing each of the grid points in FEM to obtain the stress and strain values for different load locations
under the same magnitude.

The core of the script is themain function, determine_fingerprint_of_row. Basedonhowaccurate the image recognition
is determined to be the grid points are filtered for each of the footstep locations. This limits the number of grid points
that have to be analyzed during later steps. To avoid division by zero during further computations all of the strain values
that are exactly zero are changed to a negligibly small value. This provides more robust computations.

Implementation of Coupling Grid Points
The first helper function is used to identify coupled grid points and calculate the scale factors for these points. It it-
eratively runs all linear combinations of grid points from the filtered dictionary on the first objective function, which
aims to minimize the summed absolute strain difference between the scaled strain values from the grid points and the
measured strain values. This minimization is carried out using Scipy.Minimize with the “COYBLA” method. Alterna-
tive methods were tested but either provided worse results or were less robust, as they produced optimization errors at
inconsistent iterations. The following code provides the implementation of Equation 4.23.

1 # Define the objective function using NumPy for faster computation
2 def objective(alpha):
3 alpha = np.expand_dims(alpha, axis=-1)
4 eps_FP_sum = np.array(np.sum(alpha * eps_FP_list, axis = 0))
5 return np.sum(np.abs(eps_FP_sum - eps_array))
6

7 # Set initial guess for alpha value
8 initial_alpha = np.full(len(eps_FP_list),1)
9



5.3. Data Analysis 36

10 # Set bounds to ensure alpha values are non-negative
11 bounds = [(0, 10) for _ in range(len(initial_alpha))]
12

13 # Use minimize with the vectorized objective function and bounds
14 result = minimize(objective, initial_alpha, method='COBYLA', bounds=bounds,)

Implementation of Interpolating Grid Points
The second helper function interpolates between the four grid points within each of the quadrants surrounding the
coupled grid points and finds the linearly computed combination of quadrants or areas that together sum to the least
difference in absolute strain from themeasured strain values, as described inChapter 4.5.3. Themain part here again is a
minimization using Scipy.Minimize, this time using themethod “SLSQP”, which provides both bounds and constraints
for the minimization process. The function now uses relative difference to more precisely determine the location. After
all of the linear combinations are tried, the optimal global force scale factorsα(c) and local relative scale factorsβkc,hminc

are found. The following code provides the implementation of Equation 4.31.
1 # Defining the objective function to find the minimal difference area and with that the betas
2 def objective(betas, gp_points_strain, relative_relationships_measurement , alpha):
3

4 # Split betas in lengths of 4 for each of the coupled grid points
5 beta_part = [betas[b:b+4] for b in range(0, len(betas), 4)]
6 beta_part = np.array(beta_part)
7

8 # Restructure betas to be multipliable
9 beta_part = np.expand_dims(beta_part, axis=-1)
10 alpha = np.expand_dims(alpha, axis=-1)
11 alpha = np.expand_dims(alpha, axis=-1)
12

13 # Tranforming grid point strain to array
14 gp_points_strain = np.array(gp_points_strain)
15

16 # Determine relative square points strain after scaling and summation
17 scaled_points_strain = np.sum(beta_part * alpha * gp_points_strain, axis=(0,1))
18 relative_square_points_strain = scaled_points_strain[:, np.newaxis] /

scaled_points_strain[np.newaxis, :]
19

20 # Determine the MAD values per square grid point
21 diff_nested = np.abs(relative_square_points_strain - relative_relationships_measurement)
22 median_diff = np.median(diff_nested)
23 median_absolute_deviation = np.median(np.abs(diff_nested - median_diff))
24 return median_absolute_deviation
25

26 # Defining the constraint
27 def constraint_sum(betas):
28 constraints = []
29 for g in G:
30 beta_part = betas[g*4:(g+1)*4]
31 constraints.append(np.sum(beta_part) - 1)
32 return np.array(constraints)
33

34 # Define the constraints dictionary
35 constraints = {'type': 'eq', 'fun': constraint_sum}
36

37 # Defining the bounds on the beta values to be between 0 and 1
38 bounds = [(0, 1) for _ in range(4*len(active_fingerprints))]
39

40 # Check if 4 points surround the grid points. Does not apply to grid points at the boundaries
of the grid, such as (0, 0)

41 if all(len(item) == 4 for item in active_areas_data):
42

43 gp_points_strain = []
44

45 for g in G:
46 # Filter the strain values from the dataframe
47 points_strain = active_areas_data[g].filter(like=strain_handle).filter(regex=

disabled_strain_pattern).values
48 points_strain[(points_strain >= 0) & (abs(points_strain) < infinitely_small_value)] =

infinitely_small_value
49 points_strain[(points_strain < 0) & (abs(points_strain) < infinitely_small_value)] =

-infinitely_small_value
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50 gp_points_strain.append(points_strain)
51

52 # Define intial guess for beta values
53 initial_betas = np.full(4*len(active_fingerprints), 0.25)
54

55 # Run the minimization function to obtain the optimal area and betas
56 result = minimize(objective, initial_betas, args=(gp_points_strain,

relative_relationships_measurement , alpha),
57 method='SLSQP', bounds=bounds, constraints=constraints ,)

Implementation of Scaling Grid Points
The third helper function recalculates the best estimate for the force scale factors (α(c)) after the interpolation step. This
process is similar to the coupling step but now uses four grid points per footstep location. The minimization is again
carried out using the “COYBLA” method.

The implementation follows the logic of Equation 4.31, and the corresponding code provides the necessary steps to
achieve this refinement.

1 # Defining the objective function to determine optimal scale factors alpha
2 def objective(alpha):
3 alpha = np.expand_dims(alpha, axis=-1)
4 alpha = np.expand_dims(alpha, axis=-1)
5 return np.sum(np.abs(np.sum(alpha * interpolated_betas * min_areas_data_filtered , axis =

(0,1)) - measurement_row_filtered))
6

7 # Set initial guess for alpha values
8 initial_alpha = np.full(len(interpolated_betas),1)
9

10 # Set bounds to ensure alpha values are non-negative
11 bounds = [(0, 10) for _ in range(len(interpolated_betas))]
12

13 # Use minimize with the vectorized objective function and bounds
14 result = minimize(objective, initial_alpha, method='TNC', bounds=bounds,)

Implementation of Fingerprinting through Time
The analysis thus far has focused on single moments in time and considered all the hot-spot stress details collectively.
The fingerprinting algorithm will be executed repeatedly for each iteration step until a sufficient number of data points
have been collected to proceed with the rainflow counting algorithm. Subsequently, the next chapter will delve into the
rainflow counting analysis, which is conducted over the analyzed time period and applied to each detail individually.

5.3.4. Implementation of Rainflow Counting
The next key part of the Real-Time Assessment method is the Rainflow Counting functionality. The implementation
is based on the methodology explained in Chapter 2.2. In this version of the code, hysteresis filtering is skipped since it
was determined to be unnecessary, because the code already runs efficiently without it.

Implementation of Peak-Valley Filtering
The first step in the process is peak-valley filtering. During this step, each stress value is evaluated to identify whether it
is:

• A peak (the current stress value is higher than the surrounding values).
• A valley (the current stress value is lower than the surrounding values).
• Neither, in which case the stress value is removed from the dataset.

This filtering stepprepares the data for further rainflowcounting analysis. The following code showshow the peak-valley
filtering was implemented.

1 # Step 1: Apply peak-valley filtering to retain significant stress points.
2 def apply_peakvalley_filter(df):
3 """
4 Identifies and retains only the peaks and valleys in the stress data.
5

6 Parameters:
7 - df (DataFrame): DataFrame containing the stress values.
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8

9 Returns:
10 - DataFrame: Filtered DataFrame with only peaks and valleys.
11 """
12 logger.info("Applying␣peak-valley␣filtering.")
13 stress = df.values
14 peakvalley_drop = np.zeros(len(df), dtype=bool)
15

16 # Identify peaks and valleys by checking neighboring values
17 for i in range(1, len(df) - 1):
18 if stress[i] > stress[i - 1] and stress[i] > stress[i + 1]:
19 continue # Peak
20 elif stress[i] < stress[i - 1] and stress[i] < stress[i + 1]:
21 continue # Valley
22 else:
23 peakvalley_drop[i] = True # Not a peak or valley
24

25 # Filter out points that are neither peaks nor valleys
26 df = df[~pd.Series(peakvalley_drop)].reset_index(drop=True)
27 return df

Implementation of Binning
The next step in the Rainflow Counting process is binning. This step involves creating bins based on the range of maxi-
mum and minimum stress values and defining the desired number of bins. Each stress value is then assigned to the bin
whose average stress value is closest to the given stress value. This binning process discretizes the continuous stress data
into corresponding bin values, simplifying the data for subsequent analysis. The following code snippet illustrates the
implementation of peak-valley filtering, which precedes the binning process.

1 # Step 2: Discretize stress values into bins.
2 def apply_binning(df, n_bins, maximum_stress, minimum_stress):
3 """
4 Bins stress values into discrete intervals for analysis.
5

6 Parameters:
7 - df (DataFrame): DataFrame containing the stress values.
8 - n_bins (int): Number of bins.
9 - maximum_stress (float): Maximum stress value.
10 - minimum_stress (float): Minimum stress value.
11

12 Returns:
13 - list: Binned stress values.
14 - list: List of bin ranges and metadata.
15 """
16 logger.info("Applying␣stress␣value␣binning.")
17 stress = df.values
18 stress_range = abs(maximum_stress - minimum_stress)
19 bin_size = stress_range / n_bins
20 bins = []
21

22 # Generate bin ranges and metadata (start, end, average value, bin index)
23 start_value = minimum_stress
24 for i in range(n_bins):
25 end_value = start_value + bin_size
26 avg_value = (end_value + start_value) / 2
27 bins.append((start_value, end_value, avg_value, i))
28 start_value = end_value
29

30 # Map each stress value to the nearest bin's average value
31 bin_stress_values = [min(bins, key=lambda b: abs(b[2] - s))[2] for s in stress]
32 return bin_stress_values, bins
33

34 # Discretize the filtered stress data
35 bin_stress_values, bins = apply_binning(df, n_bins, maximum_stress, minimum_stress)

Implementation of Four-Point Counting
The main step in rainflow counting is the four-point counting method. This method is implemented by continuously
looping through the stress profile until there are fewer than 4 stress values remaining. A new stress cycle is identified if
the following conditions are met:
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1. Components:

• Sinner = |S2 − S3|: Difference between the two inner points.
• Souter = |S1 − S4|: Difference between the two outer points.
• Condition: Sinner ≤ Souter, ensuring that the points form a valid cycle shape, where the outer difference
encompasses the inner one.

2. First Cycle Condition (S1 > S4):

• The cycle forms a descending slope followed by an ascending slope.
• Additional checks:

(a) S1 ≥ S3: The peak is at least as high as the descending midpoint.
(b) S4 ≤ S2: The trough is at most as low as the ascending midpoint.

3. Second Cycle Condition (S1 < S4):

• The cycle forms an ascending slope followed by a descending slope.
• Additional checks:

(a) S1 ≤ S3: The trough is at most as low as the ascending midpoint.
(b) S4 ≥ S2: The peak is at least as high as the descending midpoint.

The following code provides the implementation of the four point counting method:

1 # Step 3: Identify full cycles using four-point counting.
2 def apply_fourpointcounting(bin_stress_values):
3 """
4 Applies four-point counting to detect full stress cycles.
5

6 Parameters:
7 - bin_stress_values (list): List of binned stress values.
8

9 Returns:
10 - list: List of identified full stress cycles.
11 - list: Residual stress values.
12 """
13 logger.info("Performing␣four-point␣cycle␣counting.")
14 stress = np.array(bin_stress_values)
15 rainflow_cycles = []
16

17 while True:
18 # Look for a four-point cycle in the data
19 for n in range(len(stress) - 3):
20 S1, S2, S3, S4 = stress[n:n + 4]
21 S_inner = abs(S2 - S3)
22 S_outer = abs(S1 - S4)
23

24 # Check the cycle conditions
25 if (S1 > S4 and S_inner <= S_outer and S1 >= S3 and S4 <= S2) or \
26 (S1 < S4 and S_inner <= S_outer and S1 <= S3 and S4 >= S2):
27 rainflow_cycles.append((S2, S3))
28 # Remove the identified cycle from the data
29 stress = np.concatenate((stress[:n + 1], stress[n + 3:]))
30 break
31 else:
32 break
33

34 return rainflow_cycles, stress.tolist()

Implementation of Exporting Rainflow Cycles
The final step in rainflow counting is to export the collected cycles. All of the full stress cycles are grouped by their
absolute stress range. The residue from the stress profile is counted as half cycles. The following code provides the
implementation to process the rainflow counting results:
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1 # Step 4: Export the results to a DataFrame.
2 def export_rainflow(rainflow_cycles, residue):
3 """
4 Converts the rainflow counting results into a DataFrame.
5

6 Parameters:
7 - rainflow_cycles (list): Full cycles from the analysis.
8 - residue (list): Remaining stress points not part of a full cycle.
9

10 Returns:
11 - DataFrame: Rainflow counting summary.
12 """
13 logger.info("Exporting␣rainflow␣counting␣results.")
14

15 # Process full cycles (absolute stress differences)
16 full_cycles = [abs(c[0] - c[1]) for c in rainflow_cycles]
17 df_full = pd.DataFrame({full_cycles_column_name: full_cycles})
18 df_full = df_full.groupby(full_cycles_column_name).size().reset_index(name=

frequency_col_name)
19

20 # Process half cycles (absolute stress differences in residue)
21 half_cycles = [abs(residue[i + 1] - residue[i]) for i in range(len(residue) - 1)]
22 df_half = pd.DataFrame({half_cycles_column_name: half_cycles})
23 df_half = df_half.groupby(half_cycles_column_name).size().reset_index(name=

frequency_col_name)
24 df_half[frequency_col_name] *= 0.5 # Adjust frequency for half cycles
25

26 # Combine full and half cycle results into one DataFrame
27 df_combined = pd.concat([
28 df_full.rename(columns={full_cycles_column_name: stress_cycles_column_name}),
29 df_half.rename(columns={half_cycles_column_name: stress_cycles_column_name})
30 ])
31 df_combined = df_combined.groupby(stress_cycles_column_name)[frequency_col_name].sum().

reset_index()
32

33 return df_combined



6
Optimizing Estimation Performance

This chapter focuses on evaluating the system’s performance based on two main Key Performance Indicators (KPIs):
computational time and model accuracy. Computational time is determined by both the database generation time and
the average iteration speed of the Real-Time Assessment pipeline, while model accuracy is measured by the precision
of location, load, and hot spot stress estimations. The performance of the real-time assessment method is influenced by
factors such as the resolution of the generated FEM database and the number of strain sensors deployed. The chapter
will explore strategies for determining the optimal configuration of strain sensors and grid points, aiming to balance
computational accuracy with required processing speed for efficient real-time assessment.

6.1. Database Resolutions Tested
The database resolution depends on the number of grid points over the length of the bridge,Na, and the width of the
bridge,Nb. Four different densities are tested: Na, Nb = (20, 4), (30, 6), (40, 8), (50, 10), leading to total grid points
NGP = 80, 180, 320, 500; respectively referred to as GP1, GP2, GP3, and GP4.

For each of these configurations, FEMcalculations need to be performed at each grid point, with each calculation taking
around six minutes to complete for the full FEMmodel and all detail models. Figure 6.1 illustrates the total generation
time required for these configurations when calculated on a laptop. Because the FEM model is not influenced by the
number of grid points, the database generation time increases linearly with the total number of grid points.

Figure 6.1: Total calculation time of digital database for different amounts of grid pointsNGP.
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6.2. Sensor Configurations Tested
Five different sensor configurations (SCs) were tested to determine the optimal performance. Each configuration placed
sensors along the bottom left and right flanges, aligned along the centerline of the flanges, but the number and placement
of sensors varies. The sensor configurations consist of the following number of measurement points:

• SC1: 20 measurement locations
• SC2: 16 measurement locations
• SC3: 12 measurement locations
• SC4: 8 measurement locations
• SC5: 4 measurement locations

The more sensors in a configuration, the more detailed the information available, which is crucial for distinguishing dif-
ferent load locations, especially inmulti-load situations. Having enough sensors is important to accurately identify these
loads. However, there is no definitive answer to how many sensors are necessary. Therefore, the sensor configurations
will be tested across a large number of test loads to assess and determine the overall performance of each configuration.

6.3. Optimizing the Database Resolution and Sensor Configuration
Both the database resolution and sensor configurations are taken into account for optimization. The various database
resolutions and sensor configurations that were tested are illustrated in Figure 6.2.

Figure 6.2: On the left are the tested grid point resolutions. On the right are the tested sensor configurations (SCs), where the sensor locations are
marked by red dots in their respective configuration.

A total of 200 test loads are simulated in the FEMmodel, consisting of 50 loads for each of the four footstep scenarios
(nfootsteps = 1, 2, 3, 4), with randomly generated parameters for location (a, b) and force (F ). The multi-load fin-
gerprinting method, described in Chapter 4.5, is applied to these digitally generated strain values to assess the average
computational speed and the median hot-spot estimation inaccuracy. All possible combinations of database resolution
and sensor configurations are evaluated in this analysis.

The objective is to minimize computational time per iteration while maximizing the accuracy of hot spot estimation.
However, these goals often conflict, as achieving higher accuracy typically requires increased computational resources.
The laptop used in this study was unable to meet the target operational frequency of 10 Hz, highlighting the need for
greater computational power. The selection of grid points and sensors can be adjusted to improve accuracy, depend-
ing on the computational resources available. In practical applications, the desired operational frequency becomes the
primary criterion for determining the appropriate balance between computational efficiency and accuracy.

The results, displayed in Figure 6.3, show the performance of different combinations of grid points (GPs) and sensor
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configurations (SCs). SC5 is the worst performer in terms of hot spot estimation accuracy due to insufficient sensor
coverage, which prevents proper identification of load locations and magnitudes. SC1, SC2, and SC3 yield similar es-
timation results, but SC3 achieves lower inaccuracy at nearly twice the speed of SC1. The optimal configurations are
found to be either SC3 or SC4. Given that SC3 offers significantly better accuracy at only a slight decrease in compu-
tational speed, it was chosen. When paired with SC3, GP2 and GP3 provide a good balance of performance and speed,
with GP3 selected to maximize estimation accuracy.

Figure 6.3: Computation speed and hot-spot estimation inaccuracy of different combinations of GPs (represented by different shaped indicators)
and SCs (represented by the different colors).



7
Data Collection

To evaluate the effectiveness of the proposedmethodology in a real-life scenario, this chapter introduces the sensor setup
designed to collect real-time data from the asset. It provides a detailed description of the sensor equipment employed
and explains how the various components of the experimental setup are interconnected. Additionally, this chapter out-
lines the approach used to establish a real-time connection and perform data analysis directly from the measurement
system. Finally, it discusses the nature of the collected data, including the recorded data points and the overall dataset
characteristics, providing a comprehensive overview of the experimental framework.

7.1. Measurement Setup
The sensor setup consists of a FBG strain sensor strip and a camera. As determined the desired sensor configuration
is SC3, which consists of a total of 12 sensors. The availability of the FBG was limited, meaning that a slightly sub
optimal strip is used. The used FBG sensor is visualized in Figure 7.1, which is a 20 meter long cable with a total of 20
measurement points at 1 meter intervals.

Figure 7.1: Picture of the used FBG sensor before installation.
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To securely attach the FBG cable to the bridge deck, a special type of structural adhesive is used. This adhesive ensures
that the cable is firmly bonded, allowing it to accurately sense and transmit every strain experienced by the bridge deck.
The process of connecting the FBG sensor to the bridge with structural glue involves the following steps:

• Marking the desired sensor locations with a marking at 5 cm distance on either side for the 10 cm glue length.
• Sanding the desired sensor locations up to 5 cm on both sides of the marking, such that the glue sticks to the
material.

• Drawing a line of glue along a 10 cm path in line with the desired measurement direction. The line is done in an
up-and-downmotion to cover enough space for the line to fall in.

• Laying down one of the marked measurement points of the FBG sensor centered in the glue line.
• Taping up the FBG strip to the asset on either side using duct tape, such that it does not move out of position.
• Pressing down on the sensor location to press out all of the air underneath the sensor strip.
• Laying down a line of glue on top of the sensor strip to fully coat the strip in glue.
• Waiting a day for the glue to fully dry.

The instrumented FBG sensor strip is shown in Figure 7.2. Due to the cable’s length and the specific positions required
for the sensors, the FBG cable had to be routed back and forth across the left and right bottomflanges. This arrangement
ensured a neat and secure fit while allowing the excess cable to be properly attached to the underside of the bridge. By
securing the excess cable in this way, the risk of it flapping around was reduced, contributing to a cleaner and more
functional setup.

Figure 7.2: a) Detail view of one of the FBG sensor locations connected to the asset. b) Visualization of the instrumented FBG sensor strip over the
entire bridge

The camera used for the testing is an Axis Q6055-E, shown in Figure 7.3. The camera has the functionality of providing
a live stream of the camera image. This live stream can then be accessed by the Python script to capture an image at any
desired time frame. This has the added benefit of not requiring data storage beyond the direct images captured from the
live stream. The camera is positioned at feet height, halfway down the width of the bridge, viewing the bridge from a
direction perpendicular to the walking direction. A single camera can be used to estimate a in this orientation. A more
complex setup of multiple cameras can be used to more precisely estimate the location of footsteps in two dimensions.

The sensors and the laptop running the computational script are all connected to the same router, enablinghigh-bandwidth
data transfer with low latency. The general data flow is illustrated in Figure 7.4. This setup is also adaptable for use in ex-
ternal locations. The required equipment, including a router, can be deployed on-site to transfer data either via Ethernet
to a local computer or, ideally, over the internet to a cloud-based computer for processing.
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Figure 7.3: Axis Q6055-E Camera, as used in the experimental setup.

Figure 7.4: Diagram of power- (in red) and data flow (in blue) within the test setup.
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7.1.1. Risk Analysis
The measurement setup involves high-value equipment, making it essential to manage risks associated with improper
installation. One potential issue is the application of the strain sensors. The optical strain sensors, as shown in Figure
7.1, are custom-made to specific lengths and can only be installed on the bridge once. While the sensors themselves are
not the most costly component, their replacement and re-installation can lead to significant delays due to delivery times.

In the context of traffic or railway bridges, this risk requires careful consideration, as replacing sensors could necessitate
a temporary bridge closure. Moreover, traffic bridges may present additional challenges, such as sensors being located
in areas that are difficult to access compared to the controlled environment of the test setup. To mitigate these risks,
installing redundant cables could be beneficial, even though it involves a higher initial investment. Determining the
number of sensors and their exact locations in advance is crucial to ensure that the sensors can be installed correctly in a
single attempt.

Another risk is the potential for the FBG sensor to break during installation or handling. The material’s susceptibility
to snapping when excessively bent became evident during the testing phase. The cable snapped during testing, leading
to delays in acquiring some of the desired data. While the cable can be repaired by welding it back together, this process
requires specialized equipment. To minimize this risk, it is strongly recommended to preplan the exact routing of the
cable on the asset, including its endpoint leading to the Interrogator device. A well-defined cable route without loose or
unsupported sections will significantly reduce the likelihood of breakage during installation or operation.

7.2. Achieving Real-Time Data Transfer
The device executing the optimization script is connected to a router, as illustrated in Figure 7.4. Both the camera and
sensors transmit data via an Ethernet connection. Data transfer delays are not problematic, even if the computer is
located remotely or operates in the cloud, as long as the exact recording time of the sensor data is accurately logged
for synchronization purposes. The primary requirement is that the Ethernet cables and router have adequate speed to
handle the data transfer, which is easily achievable with modern equipment.

7.3. Achieving Real-Time Data Analysis
The Real-Time Assessment script must process all input data into the desired outputs in real time. Failure to do so
could result in the analysis lagging behind, potentially providing outdated information for months or even years. While
the system could theoretically catch up during less busy periods, such as nights or weekends, but relying on this would
compromise the robustness of the system design.

In the experimental setup, the laptop used for testing was unable to perform the real-time assessment pipeline continu-
ously without requiring pauses between applied loads to complete calculations. A significant portion of computational
resources was dedicated to image recognition, which is inherently more optimized for cars than shoes. Advancements
in this field are likely to improve performance for future iterations of this application.

For a full-scale implementation, the computational demands do not increase significantly, as the heavy calculations re-
lated to the large FEM model are precomputed. The primary factors influencing calculation time are the number of
grid points, sensors, and loads. For real-world applications, deploying more capable computational hardware, such as
modern cloud computing systems, will likely resolve these limitations. The required processing speeds are expected to
be well within the capabilities of current technologies.

7.4. Obtained Data Description
For the experimental evaluation of the real-time assessment pipeline’s performance, the following methodology was
implemented. A total of 50 locations were randomly generated, each with unique random a and b coordinates. To
standardize the testing, the same force magnitude F was used for all loads, corresponding to the weight of the test load
applied to the asset during the experiment. The generated single-load scenarios are detailed in Table 7.1.

All of these randomly generated loads were analyzed using the FEM model to calculate the hot spot stresses at critical
details and the strains at the locations corresponding to the sensor measurement points. These FEM results serve as a
baseline for comparison with the experimental data and are referred to as Data AcquisitionModality 1 (DAM1).

The strain values from the FEM model, at the locations specified by SC3, are then fed into the Real-Time Assessment
pipeline. This provides estimations of stress states and loads based on the digital sensor measurements, which is termed
the Simulation Estimation or DAM2.
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Table 7.1: Randomly generated load locations for experimental testing.

# a [mm] b [mm] F [N]
DP 1 1495 300 -834
DP 2 2654 217 -834
DP 3 1334 125 -834
DP 4 459 154 -834
DP 5 498 133 -834
DP 6 2347 254 -834
DP 7 1502 198 -834
DP 8 557 227 -834
DP 9 300 25 -834
DP 10 1661 3 -834
DP 11 1147 12 -834
DP 12 2162 201 -834
DP 13 1101 148 -834
DP 14 1431 26 -834
DP 15 385 279 -834
DP 16 1571 124 -834
DP 17 1624 195 -834
DP 18 2411 113 -834
DP 19 1878 349 -834
DP 20 1456 94 -834
DP 21 718 100 -834
DP 22 353 2 -834
DP 23 519 307 -834
DP 24 984 203 -834
DP 25 853 187 -834

(a) First 25 rows.

# a [mm] b [mm] F [N]
DP 26 151 225 -834
DP 27 786 343 -834
DP 28 2621 228 -834
DP 29 1022 262 -834
DP 30 699 238 -834
DP 31 1648 21 -834
DP 32 1459 108 -834
DP 33 1624 285 -834
DP 34 383 213 -834
DP 35 1181 194 -834
DP 36 1648 135 -834
DP 37 857 42 -834
DP 38 1687 94 -834
DP 39 236 346 -834
DP 40 258 259 -834
DP 41 214 159 -834
DP 42 349 179 -834
DP 43 352 33 -834
DP 44 1873 304 -834
DP 45 1173 313 -834
DP 46 2561 46 -834
DP 47 1603 70 -834
DP 48 1270 167 -834
DP 49 289 285 -834
DP 50 1801 10 -834

(b) Last 25 rows.

For the experimental analysis, the same 50 locations listed in Table 7.1 were marked on the bridge using tape. These
marked locations are illustrated in Figure 7.5. A person sequentially applied a load at each marked location while the
Real-Time Assessment pipeline was fully operational. The strain data collected by the FBG sensor strip during this
process is referred to as Experimental Measurement or DAM3.

Next, the data from the SC3 sensors was used as input to the Real-Time Assessment pipeline to estimate loads, stress
states, and, critically for this analysis, the strain values at eight additional sensor locations excluded during the finger-
printing process. This approach is referred to as the Experimental Estimation or DAM4.

This methodology thus defines four distinct Data AcquisitionModalities (DAMs) used in the experimental analysis:

• DAM1: Simulation calculation (FEM)
• DAM2: Fingerprinting, with input strain values from simulation
• DAM3: Experimental measurement (sensors)
• DAM4: Fingerprinting, with input strain values from experiment

The 8 sensors that were left out for the fingerprinting by choosing SC3 are now used to compare errors of different
DAMs. These 8 sensors are L2, L4, L7, L9, R2, R4, R7, R9 determined by their location on the left or right flange and
order within the sensor strip, as seen in Figure 4.2.

During the experimental analysis of DAM3 and DAM4, the bridge was loaded at the specified load locations. The
process of applying a load to the bridge, remaining stationary, and then stepping off takes a certain amount of time. As
a result, multiple estimations from the fingerprinting algorithm were generated while the load was applied, considering
both the time the load remained in place and the cut-off value for strain readings.
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Figure 7.5: Marked locations on the asset for single-load controlled testing.

The data used for estimation was selected based on the clear identification of the load being fully applied, as verified by
the image recognition process. The data points that met this criterion were then averaged to provide the estimated load
locations, stresses, and strain values in the eight redundant sensors.

In total, the following data was collected and analyzed:

• 50 single load footsteps
• 1203 optimized data points
• 120 seconds of recorded data

The results from the single load location tests for DAM1, DAM2, DAM3, and DAM4 are provided in Appendix J.

7.5. Example Analysis
An example is provided for one of the 50 single load footsteps with the parameters: a = 1495 mm, b = 300 mm,
F = 834 N. All the steps involved in obtaining the estimations for this example are presented to demonstrate the
working principle of the developed fingerprinting algorithm.

7.5.1. DAM1 Example
DAM1consists of data generatedby the FEMmodel for a specific load case. The single load footstepwith the parameters:
a = 1495mm, b = 300mm, F = 834 N is considered. This load is applied to the FEMmodel as seen in Figure 7.6.

The FEM model is solved for this load scenario. The global FEM model provides the strain values ϵi ∀i ∈ I in the
z-direction at the same locations where the sensors are positioned on the asset, as shown in Figure 7.7 a.

Additionally, the sub-models are solved to obtain the hot-spot values at 0.4t and 1.0t from the weld toe. These values
are used to calculate the hot-spot stresses σs ∀s ∈ S at the weld toe using Equation 4.1, as illustrated in Figure 7.7 b.
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Figure 7.6: Single load footstep with the parameters: a = 1495mm, b = 300mm,F = 834N, as applied to the global FEMmodel.

Figure 7.7: a) Bottom view of the global FEMmodel, showing the strain in the solved structure for the single load case a = 1495mm,
b = 300mm,F = 834N. b) Sub-models of the FEMmodel, showing the stress in the solved structure for the single load case a = 1495mm,

b = 300mm,F = 834N.
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The FEMmodel output for the specified load case includes both strain and stress values. The strain results are summa-
rized in Table 7.2, while the stress results are detailed in Table 7.3.

a [mm] 1495
b [mm] 300
F [N] -834
ϵ0 (Sensor L1) [µϵ] 11.0
ϵ1 (Sensor L2) [µϵ] 27.6
ϵ2 (Sensor L3) [µϵ] 44.1
ϵ3 (Sensor L4) [µϵ] 59.8
ϵ4 (Sensor L5) [µϵ] 73.9
ϵ5 (Sensor L6) [µϵ] 81.0
ϵ6 (Sensor L7) [µϵ] 69.9
ϵ7 (Sensor L8) [µϵ] 51.2
ϵ8 (Sensor L9) [µϵ] 32.2
ϵ9 (Sensor L10) [µϵ] 13.6
ϵ10 (Sensor R1) [µϵ] 24.1
ϵ11 (Sensor R2) [µϵ] 47.2
ϵ12 (Sensor R3) [µϵ] 76.7
ϵ13 (Sensor R4) [µϵ] 110.8
ϵ14 (Sensor R5) [µϵ] 144.0
ϵ15 (Sensor R6) [µϵ] 162.6
ϵ16 (Sensor R7) [µϵ] 138.0
ϵ17 (Sensor R8) [µϵ] 95.6
ϵ18 (Sensor R9) [µϵ] 58.4
ϵ19 (Sensor R10) [µϵ] 29.0

Table 7.2: Load parameters for the single load case a = 1495mm,
b = 300mm,F = 834N, and resulting strain values fromDAM1.

σ0 [MPa] 22.43
σ1 [MPa] 2.12
σ2 [MPa] 0.89
σ3 [MPa] -1.30
σ4 [MPa] 1.71
σ5 [MPa] -1.12
σ6 [MPa] -21.97
σ7 [MPa] -1.80
σ8 [MPa] -25.29
σ9 [MPa] -0.29
σ10 [MPa] 23.30
σ11 [MPa] 2.31
σ12 [MPa] -23.32
σ13 [MPa] -2.71
σ14 [MPa] 7.03
σ15 [MPa] -1.06
σ16 [MPa] 6.42
σ17 [MPa] -0.81
σ18 [MPa] 1.61
σ19 [MPa] 2.74
σ20 [MPa] -4.77
σ21 [MPa] 6.69
σ22 [MPa] -19.89
σ23 [MPa] -2.44

Table 7.3: Resulting stress values fromDAM1 for the single load case
a = 1495mm, b = 300mm,F = 834N.

7.5.2. DAM2 Example
DAM2 involves executing the fingerprinting algorithm using the strain values obtained from DAM1. Since SC3 was
selected as the sensor configuration, the strain data is limited to the active sensor locations in SC3. This excludes strain
values ϵ1, ϵ3, ϵ6, ϵ8, ϵ11, ϵ13, ϵ16, ϵ18 fromTable 7.2. The remaining active sensor data used as input for the fingerprint-
ing algorithm is provided in Table 7.4.

Fingerprinting continues only if at least one of these strain values exceeds the cut-off magnitude ϵc = 10 µϵ, which is
the case for a given input. As DAM2 focuses on a single load case, no image recognition is applied and nfootsteps is set
to 1.

ϵ0 (Sensor L1) [µϵ] 11.0
ϵ2 (Sensor L3) [µϵ] 44.1
ϵ4 (Sensor L5) [µϵ] 73.9
ϵ5 (Sensor L6) [µϵ] 81.0
ϵ7 (Sensor L8) [µϵ] 51.2
ϵ9 (Sensor L10) [µϵ] 13.6
ϵ10 (Sensor R1) [µϵ] 24.1
ϵ12 (Sensor R3) [µϵ] 76.7
ϵ14 (Sensor R5) [µϵ] 144.0
ϵ15 (Sensor R6) [µϵ] 162.6
ϵ17 (Sensor R8) [µϵ] 95.6
ϵ19 (Sensor R10) [µϵ] 29.0

Table 7.4: Input strain data used for DAM2 example as obtained fromDAM1.
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The first step of the fingerprinting algorithm is the coupling of the best matching grid point nmin. In this example, all
points in the GP3 database are considered since no initial position guess is made, as the camera data is not utilized. For
each grid point in the database, the MAD is calculated using Equation 4.23. The MAD values calculated for all grid
points are shown in Figure 7.8, where the grid point color represent the MAD value. The lower the MAD, the better
the match. The best matching grid point nmin is highlighted.

Figure 7.8: Example result for coupling step. Showing the best matching grid point nmin with the minimumMAD out of the grid points.

The second step of the fingerprinting algorithm involves interpolation between the optimal grid point nmin, and the
surrounding grid points. For each surrounding area h ∀h ∈ H , theMAD(h) is computed using Equation 4.31. The
results are shown in Figure 7.9. The area with the lowestMAD(h), identified as hmin the bottom-right quadrant in this
case.

The scale factors for each grid point within hmin, βk, hmin ∀k ∈ K , 0.31, 0.24, 0.19, and 0.26, respectively. Using
these scale factors, the load location coordinates {aest, best} are estimated with Equations 4.29 and 4.30. The estimated
coordinates are 1494.63, 300.23, which closely match the actual load location of a, b = 1495, 300. This estimation is
visualized in Figure 7.10.

Figure 7.9: Example of the area location during the interpolation step. TheMAD(h) values for each area are represented by the corresponding area
color. The area with the lowestMAD(h), identified as hmin, is Area 2.
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Figure 7.10: Example interpolation between grid points in optimal area hmin around the optimal grid point nmin. Showing the scale factors of
each grid point.

The third step of the fingerprinting algorithm involves scaling the force magnitude, performed using Equation 4.5.4.
The scale factor α is calculated as 1.043, resulting in an estimated force magnitude Fest of 834.03 N, as determined
by Equation 4.33 (Figure 7.11). This brings the estimated parameters to aest, best, Fest = 1494.63, 300.23, 834.03,
closely matching the initial single load case a, b, F = 1495, 300, 834.

Figure 7.11: Example interpolation between grid points in optimal area hmin around the optimal grid point nmin. Showing the scaled force
magnitude in each grid point.

The strain values in the extra sensors L2, L4, L7, L9,R2,R4,R7,R9, aswell as the hot-spot stress in all detailsσs ∀s ∈ S
are determined according to Equation 4.34. The output fromDAM2 is shown in Table 7.5 and Table 7.6.
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aest [mm] 1494.63
best [mm] 300.23
Fest [N] -834.03
ϵ1 (Sensor L2) [µϵ] 27.6
ϵ3 (Sensor L4) [µϵ] 59.8
ϵ6 (Sensor L7) [µϵ] 69.9
ϵ8 (Sensor L9) [µϵ] 32.2
ϵ11 (Sensor R2) [µϵ] 47.3
ϵ13 (Sensor R4) [µϵ] 110.9
ϵ16 (Sensor R7) [µϵ] 137.9
ϵ18 (Sensor R9) [µϵ] 58.4

Table 7.5: Output parameters and strains fromDAM2 for the single load
case a = 1495mm, b = 300mm,F = 834N.

σ0 [MPa] 22.51
σ1 [MPa] 2.13
σ2 [MPa] 0.84
σ3 [MPa] -1.30
σ4 [MPa] 1.66
σ5 [MPa] -1.12
σ6 [MPa] -22.08
σ7 [MPa] -1.77
σ8 [MPa] -25.00
σ9 [MPa] -0.32
σ10 [MPa] 23.39
σ11 [MPa] 2.32
σ12 [MPa] -23.44
σ13 [MPa] -2.73
σ14 [MPa] 6.91
σ15 [MPa] -1.07
σ16 [MPa] 6.32
σ17 [MPa] -0.82
σ18 [MPa] 1.32
σ19 [MPa] 2.94
σ20 [MPa] -3.97
σ21 [MPa] 6.32
σ22 [MPa] -20.07
σ23 [MPa] -2.46

Table 7.6: Output hot-spot stresses fromDAM2 for the single load case
a = 1495mm, b = 300mm,F = 834N.

7.5.3. DAM3 Example
DAM3 involves experimental data collected from the FBG sensors on the asset, under the same load parameters as the
example: a = 1495 mm, b = 300 mm, F = 834 N. A single iteration of this experimental data, recorded at the
timestamp 2024-11-8 13:28:01.339193 (see Figure 7.13), is analyzed. While the strain values from the sensors used in
DAM4’s fingerprinting analysis were not stored, additional sensor data from locations L2, L4, L7, L9, R2, R4, R7, and
R9 at this timestamp are listed in Table 7.12.

The strain values differ significantly from those obtained from the FEMmodel in DAM1. These discrepancies may be
attributed to various factors: slight deviations in the actual load location on the asset during DAM3, inaccuracies in
sensor placement or performance, or differences in behavior between the FEMmodel and the physical asset.

The most plausible explanation for such notable inaccuracies, particularly near the center of the bridge, is a mismatch
between the FEMmodel and the real-world behavior of the asset. This indicates that the FEMmodel is not fully accurate.
While more thorough validation of the FEMmodel is needed, time constraints prevented such refinements during this
study.

ϵ1 (Sensor L2) [µϵ] 30.58
ϵ3 (Sensor L4) [µϵ] 67.63
ϵ6 (Sensor L7) [µϵ] 86.98
ϵ8 (Sensor L9) [µϵ] 36.59
ϵ11 (Sensor R2) [µϵ] 38.53
ϵ13 (Sensor R4) [µϵ] 129.72
ϵ16 (Sensor R7) [µϵ] 169.81
ϵ18 (Sensor R9) [µϵ] 57.92

Figure 7.12: Experimental sensor data fromDAM3 for the single
load case a = 1495mm, b = 300mm,F = 834N.

Figure 7.13: Experimental setup image fromDAM3 for the single
load case a = 1495mm, b = 300mm,F = 834N.
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7.5.4. DAM4 Example
DAM4 consists of executing the fingerprinting algorithm based on the input measurement data fromDAM3. As men-
tioned, the input has not been saved, but the cut-off strainwas reached at this iteration. Thus a camera imagewas coupled
and the image recognition correctly recognized the shoe in this image as seen in Figure 7.13. With the knowledge that
nfootsteps = 1, the fingerprinting algorithm is initiated.

The first step of the fingerprinting algorithm is the coupling of the best matching grid pointnmin. In this example, only
the the grid points within the boundary boxes from the initial camera location guess are considered. For each grid point
within this box, theMAD is calculated using Equation 4.23. The bestmatching grid pointnmin from thisminimization
is shown in Figure 7.14.

Figure 7.14: Example result for coupling step. Showing the best matching grid point nmin for DAM4.

The second step of the fingerprinting algorithm involves interpolation between the optimal grid point nmin, and the
surrounding grid points. For each surrounding area h ∀h ∈ H ,MAD(h) is computed using Equation 4.31. The area
with the lowestMAD(h), identified as hmin the bottom-left quadrant in this case, as shown in Figure 7.15.

The scale factors βk,hmin
∀k ∈ K for each grid point within hmin, are 0.14, 0.41, 0.07, and 0.38, respectively. Using

these scale factors, the load location coordinates {aest, best} are estimated with Equations 4.29 and 4.30. The estimated
coordinates are 1494.05, 302.84, which closely match the actual load location of a, b = 1495, 300. This estimation is
visualized in Figure 7.16.

Figure 7.15: Example of the area location during the interpolation step fromDAM4. The area with the lowestMAD(h), identified as hmin, is
Area 1 (marked in green).
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Figure 7.16: Example interpolation for DAM4 between grid points in optimal area hmin around the optimal grid point nmin. Showing the scale
factors of each grid point.

The third step of the fingerprinting algorithm involves scaling the force magnitude, performed using Equation 4.5.4.
The scale factor α is calculated as 1.25, resulting in an estimated force magnitude Fest of 1002.47 N, as determined by
Equation 4.33 (Figure 7.17). This brings the estimated parameters to aest, best, Fest = 1494.05, 302.84, 1002.47,
closely matching the initial single load case a, b, F = 1495, 300, 834 for the coordinates. However, a notable discrep-
ancy is observed in the load magnitude. This difference is likely due to inaccuracies in the FEM model, which caused
deviations between the strain values used in the database and those experimentally measured.

Figure 7.17: Example interpolation for DAM4 between grid points in optimal area hmin around the optimal grid point nmin. Showing the scaled
force magnitude in each grid point.

The strain values in the extra sensors L2, L4, L7, L9,R2,R4,R7,R9, aswell as the hot-spot stress in all detailsσs ∀s ∈ S
are determined according to Equation 4.34. The output fromDAM4 is shown in Table 7.7 and Table 7.8.
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aest [mm] 1494.05
best [mm] 302.84
Fest [N] -1002.47
ϵ1 (Sensor L2) [µϵ] 33.1
ϵ3 (Sensor L4) [µϵ] 71.7
ϵ6 (Sensor L7) [µϵ] 83.0
ϵ8 (Sensor L9) [µϵ] 38.3
ϵ11 (Sensor R2) [µϵ] 58.0
ϵ13 (Sensor R4) [µϵ] 136.1
ϵ16 (Sensor R7) [µϵ] 168.1
ϵ18 (Sensor R9) [µϵ] 71.1

Table 7.7: Output parameters and strains fromDAM4 for the single load
case a = 1495mm, b = 300mm,F = 834N.

σ0 [MPa] 27.74
σ1 [MPa] 2.64
σ2 [MPa] 0.89
σ3 [MPa] -1.57
σ4 [MPa] 1.88
σ5 [MPa] -1.35
σ6 [MPa] -26.50
σ7 [MPa] -2.26
σ8 [MPa] -29.97
σ9 [MPa] -0.53
σ10 [MPa] 28.80
σ11 [MPa] 2.87
σ12 [MPa] -28.95
σ13 [MPa] -3.36
σ14 [MPa] 8.29
σ15 [MPa] -1.30
σ16 [MPa] 7.60
σ17 [MPa] -1.00
σ18 [MPa] 1.76
σ19 [MPa] 3.55
σ20 [MPa] -4.55
σ21 [MPa] 7.59
σ22 [MPa] -24.84
σ23 [MPa] -3.04

Table 7.8: Output hot-spot stresses fromDAM4 for the single load case
a = 1495mm, b = 300mm,F = 834N.

7.6. Multi-Load Example
The methodology developed in this research has been carefully designed to ensure scalability for scenarios involving
multiple simultaneous loads. This chapter presents a detailed data example of a multi-load situation, as determined
through simulation studies. For this analysis, only DAM1 andDAM2 are considered, as this specific load configuration
was not experimentally applied to the physical asset.

7.6.1. Multi-Load DAM1
DAM1consists of data generated by the FEMmodel for a specific load case. Themulti-load scenariowherenfootsteps =
3with the parameters: a0 = 2654mm, b0 = 217mm, F0 = 1102 N; a1 = 349mm, b1 = 179mm, F1 = 1486 N;
a2 = 1173 mm, b2 = 313 mm, F2 = 791 N is considered. This multi-load scenario is applied to the FEMmodel as
seen in Figure 7.18.

Figure 7.18: Multi-load scenario as applied to the global FEMmodel.
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The FEM model is solved for this load scenario. The global FEM model provides the strain values ϵi ∀i ∈ I in the
z-direction at the same locations where the sensors are positioned on the asset, as shown in Figure 7.19 a.

Additionally, the sub-models are solved to obtain the hot-spot values at 0.4t and 1.0t from the weld toe. These values
are used to calculate the hot-spot stresses σs ∀s ∈ S at the weld toe using Equation 4.1, as illustrated in Figure 7.19 b.

Figure 7.19: a) Bottom view of the global FEMmodel, showing the strain in the solved structure for a multi-load scenario where nfootsteps = 3.
b) Sub-models of the FEMmodel, showing the stress in the solved structure for a multi-load scenario where nfootsteps = 3

The FEMmodel output for the specified load case includes both strain and stress values. The strain results are summa-
rized in Table 7.9, while the stress results are detailed in Table 7.10.

7.6.2. DAM2 Example
DAM2 involves executing the fingerprinting algorithm using the strain values obtained from DAM1. Since SC3 was
selected as the sensor configuration, the strain data is limited to the active sensor locations in SC3. This excludes strain
values ϵ1, ϵ3, ϵ6, ϵ8, ϵ11, ϵ13, ϵ16, ϵ18 fromTable 7.9. The remaining active sensor data used as input for the fingerprint-
ing algorithm is provided in Table 7.11.

Fingerprinting continues only if at least one of these strain values exceeds the cut-off magnitude ϵc = 10 µϵ, which is
the case for a given input. No image recognition is applied during DAM2, the number of footsteps determined is set at
nfootsteps=3. A significant inaccuracy in the camera is considered. For this example the coordinates as determined by
the camera are set to be: acam0 = 2709 mm, bcam0 = 236 mm; acam1 = 529 mm, bcam1 = 80 mm; acam2 =
1146mm, bcam2 = 319mm. With a boundary box for considered grid points at abox, bbox = {300, 100} around the
coordinates as determined by the camera.
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a0, a1, a2 [mm] 2654, 349, 1173
b0, b1, b2 [mm] 217, 179, 313
F0, F1, F2 [N] -1102, -1486, -791
ϵ0 (Sensor L1) [µϵ] 81.2
ϵ1 (Sensor L2) [µϵ] 164.1
ϵ2 (Sensor L3) [µϵ] 187.0
ϵ3 (Sensor L4) [µϵ] 183.3
ϵ4 (Sensor L5) [µϵ] 169.4
ϵ5 (Sensor L6) [µϵ] 149.3
ϵ6 (Sensor L7) [µϵ] 132.9
ϵ7 (Sensor L8) [µϵ] 111.5
ϵ8 (Sensor L9) [µϵ] 94.2
ϵ9 (Sensor L10) [µϵ] 63.9
ϵ10 (Sensor R1) [µϵ] 92.0
ϵ11 (Sensor R2) [µϵ] 180.7
ϵ12 (Sensor R3) [µϵ] 224.7
ϵ13 (Sensor R4) [µϵ] 250.5
ϵ14 (Sensor R5) [µϵ] 250.5
ϵ15 (Sensor R6) [µϵ] 217.5
ϵ16 (Sensor R7) [µϵ] 183.7
ϵ17 (Sensor R8) [µϵ] 146.9
ϵ18 (Sensor R9) [µϵ] 120.3
ϵ19 (Sensor R10) [µϵ] 83.2

Table 7.9: Load parameters for a multi-load scenario where
nfootsteps = 3, and resulting strain values fromDAM1.

σ0 [MPa] 47.05
σ1 [MPa] 4.09
σ2 [MPa] 25.36
σ3 [MPa] 0.88
σ4 [MPa] 18.47
σ5 [MPa] 0.17
σ6 [MPa] -12.06
σ7 [MPa] 0.86
σ8 [MPa] -10.64
σ9 [MPa] -1.51
σ10 [MPa] 0.62
σ11 [MPa] -0.05
σ12 [MPa] -2.10
σ13 [MPa] -1.00
σ14 [MPa] 27.76
σ15 [MPa] 1.22
σ16 [MPa] 23.70
σ17 [MPa] 0.33
σ18 [MPa] 12.99
σ19 [MPa] 7.52
σ20 [MPa] 18.77
σ21 [MPa] 2.73
σ22 [MPa] -38.30
σ23 [MPa] -4.13

Table 7.10: Resulting stress values fromDAM1 for a multi-load scenario
where nfootsteps = 3.

ϵ0 (Sensor L1) [µϵ] 81.2
ϵ2 (Sensor L3) [µϵ] 187.0
ϵ4 (Sensor L5) [µϵ] 169.4
ϵ5 (Sensor L6) [µϵ] 149.3
ϵ7 (Sensor L8) [µϵ] 111.5
ϵ9 (Sensor L10) [µϵ] 63.9
ϵ10 (Sensor R1) [µϵ] 92.0
ϵ12 (Sensor R3) [µϵ] 224.7
ϵ14 (Sensor R5) [µϵ] 250.5
ϵ15 (Sensor R6) [µϵ] 217.5
ϵ17 (Sensor R8) [µϵ] 146.9
ϵ19 (Sensor R10) [µϵ] 83.2

Table 7.11: Input strain data used for DAM2 example as obtained fromDAM1.

The first step of the fingerprinting algorithm is the coupling of the best matching grid point nminc
∀c ∈ C for all of

the loads in the multi-load scenario iteratively. Following the strategy as illustrated in Figure 4.11.

Footstep 1: The first iteration considers footstep 1 (acam0
= 2709 mm, bcam0

= 236 mm) at all grid points of the
subset within the boundary box. The other two footstep locations are locked at the grid point closest to the camera
estimation. For each grid point in the subset of grid points, the MAD is calculated using Equation 4.23. The MAD
values calculated for all grid points are shown in Figure 7.20 c, where the grid point color represent theMADvalue. The
lower the MAD, the better the match. The best matching grid point nmin0 is highlighted.

Footstep 2: The second iteration considers footstep 2 (acam1
= 529 mm, bcam1

= 80 mm) at all grid points of
the subset within the boundary box. The other two footstep locations are locked at the previously determined optimal
(nmin0 ), and the grid point closest to the camera estimation (nmin2 ). For each grid point in the subset of grid points,
the MAD is calculated using Equation 4.23. The MAD values calculated for all grid points are shown in Figure 7.20 d,
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where the grid point color represent the MAD value. The lower the MAD, the better the match. The best matching
grid point nmin1

is highlighted.

Footstep 3: The third iteration considers footstep 3 (acam2 = 1146 mm, bcam2 = 319 mm) at all grid points of
the subset within the boundary box. The other two footstep locations are locked at the previously determined optimal
nmin0

and nmin1
. For each grid point in the subset of grid points, the MAD is calculated using Equation 4.23. The

MAD values calculated for all grid points are shown in Figure 7.20 e, where the grid point color represent the MAD
value. The lower the MAD, the better the match. The best matching grid point nmin2

is highlighted.

Figure 7.20: Example result for coupling step fornfootsteps = 3. Showing the coupled grid pointsnminc ∀c ∈ C with the minimumMAD out
of the considered subset of grid points.

The second step of the fingerprinting algorithm involves interpolation between the optimal grid pointsnminc
∀c ∈ C ,

and their surrounding grid points. For each surrounding area h ∀h ∈ H , theMAD(h) is computed using Equation
4.31. The results are shown in Figure 7.21. The area with the lowestMAD(h), identified as hmin.

Figure 7.21: Determining optimal area h for each footstep nminc ∀c ∈ C . TheMAD(h) values for each area are represented by the
corresponding area color. The area with the lowestMAD(h), identified as hmin is marked in red.
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Using these scale factors, the load location coordinates {aestc , bestc} are estimated for all c ∈ C with Equations 4.29
and 4.30. The estimated coordinates are aest0 = 2615.50 mm, best0 = 193.60 mm; aest1 = 372.38 mm, best1 =
170.07 mm; aest2 = 1156.17 mm, best2 = 326.65 mm, which closely match the actual load locations of a0 =
2654 mm, b0 = 217 mm; a1 = 349 mm, b1 = 179 mm; a2 = 1173 mm, b2 = 313 mm. This estimation is
visualized in Figure 7.22.

Figure 7.22: Example interpolation between grid points in optimal area hmin around the optimal grid points nminc ∀c ∈ C . Showing the scale
factors of each grid point.

The third step of the fingerprinting algorithm involves scaling the force magnitude, performed using Equation 4.5.4.
The scale factors αc ∀c ∈ C are determined using Equation 4.33, resulting in estimated force magnitudes Festc =
996.21 N, 1448.30 N, 766.60 N, This result is visualized in Figure 7.23.

Figure 7.23: Example interpolation between grid points in optimal areas hminc around the optimal grid point nminc . Showing the scaled force
magnitude in each grid point.

The strain values in the extra sensors L2, L4, L7, L9,R2,R4,R7,R9, aswell as the hot-spot stress in all detailsσs ∀s ∈ S
are determined according to Equation 4.34. The combined output fromDAM2 for the multi-load example is shown in
Table 7.12 and Table 7.13. The estimation overall was very successful.
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aest0 , aest1 , aest2 [mm] 2615.50, 193.60, 372.38
best0 , best1 , best2 [mm] 193.60, 170.07, 326.65
Fest0 , Fest1 , Fest2 [N] -996, -1448, -767
ϵ1 (Sensor L2) [µϵ] 163.8
ϵ3 (Sensor L4) [µϵ] 184.6
ϵ6 (Sensor L7) [µϵ] 134.3
ϵ8 (Sensor L9) [µϵ] 98.9
ϵ11 (Sensor R2) [µϵ] 176.1
ϵ13 (Sensor R4) [µϵ] 252.3
ϵ16 (Sensor R7) [µϵ] 183.8
ϵ18 (Sensor R9) [µϵ] 117.9

Table 7.12: Output parameters and strains fromDAM2 for the multi
load case example.

σ0 [MPa] 48.04
σ1 [MPa] 4.22
σ2 [MPa] 24.08
σ3 [MPa] 0.89
σ4 [MPa] 18.22
σ5 [MPa] 0.19
σ6 [MPa] -8.84
σ7 [MPa] 0.78
σ8 [MPa] -8.24
σ9 [MPa] -1.30
σ10 [MPa] 12.82
σ11 [MPa] 1.38
σ12 [MPa] -3.73
σ13 [MPa] -1.19
σ14 [MPa] 26.52
σ15 [MPa] 1.03
σ16 [MPa] 22.62
σ17 [MPa] 0.16
σ18 [MPa] 13.65
σ19 [MPa] 6.74
σ20 [MPa] 18.16
σ21 [MPa] 2.47
σ22 [MPa] -30.36
σ23 [MPa] -3.38

Table 7.13: Output hot-spot stresses fromDAM2 for the multi load case
example.

7.7. Experimental Output
This chapter explores the various results obtained from theReal-TimeAssessment pipeline as applied toDAM4 for all of
the 50 single load locations combined. It also illustrates what the stored output might resemble during operation. The
results encompass several key aspects, including computational speed, load estimations, and stress range frequencies.
Additionally, it introduces a dashboard designed to provide a clear and accessible overview of the system’s real-time
status. This dashboard serves as an intuitive interface, offering a snapshot of the ongoing analysis andhighlighting critical
metrics to ensure efficient monitoring and understanding of the pipeline’s performance during each iteration.

7.7.1. Computational Speed
The desired iteration speed was set at 10 Hz. During the test of all 50 load locations in DAM3 and DAM4, lasting
approximately 64 minutes, a total of 38,574 iterations were performed. Of these, 1,203 iterations exceeded the cut-off
threshold in at least one strain sensor, triggering the execution of the fingerprinting algorithm.

For the iterations exceeding the cut-off threshold, the average speed was approximately 2.55 seconds per iteration, corre-
sponding to a frequency of 0.39 Hz. This included all components of the analysis—image recognition, fingerprinting,
and rainflow counting—but fell short of the target 10 Hz. The most significant contributor to this slowdown was the
image recognition process, which requires substantial optimization. Running at a lower frequency introduces delays,
necessitating the storage of sensor data and camera images, which is undesirable. Prolonged delays could lead to storage
limitations or an inability to process data in real-time, causing information to become outdated. To mitigate this, tran-
sitioning the analysis to a faster computing device or leveraging cloud computing could offer substantial performance
improvements.

For iterations where the cut-off threshold was not reached, the average speed was approximately 0.086 seconds per iter-
ation, equating to a frequency of 11.6 Hz, which surpasses the desired 10 Hz. However, the iteration speed is capped at
10 Hz unless the process is actively compensating for delays from above-threshold calculations.



7.7. Experimental Output 63

7.7.2. Estimation Results
The results from each estimation of load location(s) and magnitude(s) are optionally stored for analysis. For every mea-
surement where a strain value exceeds the cut-off value, the pipeline provides an estimation. The saved data includes the
timestamp of themeasurement, the estimated coordinates (aestc and bestc ), and the estimated forcemagnitude for each
load (Festc ).

If redundant strain sensors are present—those intentionally excluded from the fingerprinting algorithm (as discussed
further in Chapter 8.2)—their strain values are also estimated. The saved results include both the actual strain values
measured by these redundant sensors and the corresponding estimated strain values. This comprehensive data storage
ensures detailed tracking and validation of the pipeline’s performance. One such example output is shown inTable 7.14,
which uses the same load case as Chapter 7.5.

Timestamp 8-11-2024 13:28:01
aest0 [mm] 1425.05
best0 [mm] 302.84
Fest0 [N] -1002.47
ϵ0 [µε] 30.58
ϵ2 [µε] 67.63
ϵ5 [µε] 86.98
ϵ7 [µε] 36.59
ϵ10 [µε] 38.53
ϵ12 [µε] 129.72
ϵ15 [µε] 169.81
ϵ18 [µε] 57.92
ϵ0est [µε] 33.1
ϵ2est [µε] 71.7
ϵ5est [µε] 83.0
ϵ7est [µε] 38.3
ϵ10est [µε] 58.0
ϵ12est [µε] 136.1
ϵ15est [µε] 168.1
ϵ18est [µε] 71.1

Table 7.14: An example of an optional output includes the load and strain estimations alongside the measured strain values for a specific applied
load. In this case, the load parameters are a = 1495, b = 300 andF = −834.

7.7.3. Coupled Grid Point Frequency
Another important output is a frequency counter that tracks how often each grid point was coupled. For every grid
point, the total count is recorded, as illustrated in Figure 7.24. This output provides valuable insights into the common
footstep locations and highlights the frequency of usage for specific parts of the asset, offering a clear understanding of
usage patterns and areas of concentrated activity.

Figure 7.24: A top-down view of the asset showing all grid points. The grid points are color-coded to represent the frequency of their coupling
during experimental testing.
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7.7.4. Frequency per Stress Range
The frequency per stress range in each of the researched details, as obtained from rainflow counting, is also stored. For
each detail the frequency fs ∀s ∈ S over all of the stress ranges is shown in Appendix K.

7.7.5. Cumulative Damage
We now have the frequency of stress ranges that occurred in each of the details s ∈ S as shown in Appendix K. The
next step is to determine the fatigue damage from the stress cycles in each stress range. In order to calculate the fatigue
damage we need the theoretical maximum number of cycles for each stress range. For this we need the S-N curve of the
material aluminium and the detail category to obtain the specific detail S-N curve. The S-N curve for aluminium for
different weld categories is shown in Figure 7.25a. The researched details are all single sided fillet welds as seen in Figure
4.3 b. This specific detail type falls under the category 12-3,4, as shown in Figure 7.25b. The endurance limit for each
of the researched stress ranges is obtained from Figure 7.25a and listed in Appendix L.

(a) S-N Curves of aluminium alloys for different detail categories. [23] (b)Detail categories for different weld types of aluminium alloys. [23]

Figure 7.25: Comparison of S-N curves and aluminium detail categories.

By combining Appendix K and Table L, we can determine fatigue damages using the Palmgren-Miner rule as expressed
in Equation 2.1. In this scenario, the maximum total fatigue damage for any detail s ∈ S is determined to beD6 =
8.66 · 10−5. The applied loads during testing (collected over approximately 64 minutes, t = 1.07 hours) are assumed
to be representative, and an operational period of 8 hours per day (top) is considered. Additionally a safety factor γMf

is set at 1, as recommended in the standard [23]. Then the theoretical fatigue life of the most critical detail—and by
extension, the bridge—is given by: L = Ls =

t
365 top γMf D6

≈ 4.8 years.

7.8. Extrapolation of Trends
Extrapolating trends within load conditions enables more accurate fatigue life predictions. When the fingerprinting
algorithm is applied from the time of a bridge’s commissioning, stress ranges can be estimated for the entire past lifespan
and projected into the future. However, if the algorithm is implemented during the operational lifetime of the bridge,
the past stress cycles are unknown and must also be extrapolated.

When the real-time assessment pipeline is applied for a limited portion of the bridge’s operational lifetime, such as a few
months or a year, the observed trends during this period significantly influence fatigue life predictions when extrapo-
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lating the collected data. These trends may not fully capture long-term variations, potentially leading to inaccuracies.
Additionally, the predicted fatigue life is further impacted by the selection of safety factors, which account for uncer-
tainties, and by trends in stress cycles and applied loads. These factors must be carefully considered to ensure reliable
and conservative fatigue life estimations.

In this research, it is assumed that stress cycles exhibit similar behavior over time. For real-world applications, trends in
frequency distributions from rainflow counting bins can be analyzed andused to refine both past and future estimations,
improving the reliability of fatigue life predictions. This approach allows for a more comprehensive understanding of
stress patterns and their long-term effects on structural integrity.

7.9. Dashboard
Additionally, results are clearly displayed on the dashboard, which automatically opens in a local browser to showcase
the Real-Time Assessment pipeline in action. Both the current time and iteration time of the real-time assessment are
visible, allowing users to determine how far behind the assessment is or if it is running in real-time.

The dashboard features the camera image corresponding to the current iteration time in the top-right corner. If any of
the strain sensors have reached the cut-off value, the image also includes an overlay from the image recognition system,
indicating the detected shoe locations with bounding boxes placed at those recognized spots.

The top-left section of the dashboard displays a top-down view of the bridge. If the cut-off value has not been reached
during the iteration, no footstep loads are shown in this view. However, if the cut-off is exceeded, the estimated load
locations and their corresponding force magnitudes (represented by color coding) are displayed in this window, as pre-
dicted by the fingerprinting algorithm. It also includes visualizations of various researched details, with color coding to
indicate the estimated stress values in each detail during the specific iteration

The bottom-left section features a graph that shows the frequency of stress ranges occurring in a particular detail. Users
can manually select any of the researched details to view this graph, which helps identify the most common stress types,
indicative of different load conditions.

Finally, the bottom-right view displays a cumulative stress plot for all researched details, spanning the entire lifetime of
the asset. This graph provides insight into the progression of cumulative damage across different details, offering an easy
way to identify areas that may require maintenance based on their fatigue damage.

Figure 7.26: Screen capture of the dashboard during asset testing, displaying multiple useful views of the current state of the asset.
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Results

This chapter will present the results of the research, focusing on the performance of the digital model in terms of load
and stress state estimation accuracy. The results are discussed across three stages of testing. Chapter 8.1 will present the
results from the simulationmodel, demonstrating the isolated accuracy of the fingerprinting algorithm and its potential
to estimate stress states. Chapter 8.2 will cover the results from the experimental testing, where known locations on the
bridge are loaded with a known force to assess the accuracy of the developed pipeline.

8.1. Digital model analysis
A new set of randomly generated digital load combinations is computed to test the methodology for coupling, inter-
polating, and scaling FEM data, as presented in Chapter 4, also known as the fingerprinting algorithm. This load set
consists of four parts that are combined into a larger set. The subsets and the combined set generated for this purpose
are outlined in Table 8.1.

nfootsteps Data points
1 50
2 50
3 50
4 50

1, 2, 3, 4 200

Table 8.1: Subsets of data points used for model testing.

All the loads in this setwill be individually computed in the FEMmodel to calculate the hot spot stresseswithin the detail
models. The output will also include the strains at the sensor locations from SC3. By feeding these strain values into
the fingerprinting model, the output will be the estimated load situation and the corresponding hot spot stresses. This
enables a comparison between the estimation results fromDAM2 and the FEM runs ofDAM1, isolating the inaccuracy
caused solely by the fingerprinting algorithm. This approach highlights themaximumpotential accuracy, assuming that
the provided sensor data perfectly matches the data in the FEM database.

The estimation inaccuracies between DAM1 and DAM2 are evaluated through location and hot spot stress estimation
errors. Location estimation inaccuracy is quantified by the Euclidean distance error over each of the loads with

∆d =
∑
c∈C

√
(ac − aestc)

2 + (bc − bestc)
2 (8.1)

for eachof the 200 load situations. Then∆d is averagedover the 200 load situations. These results are presented inFigure
8.1, showing a clear trend of increasing location estimation error as nfootsteps increases. This indicates the increasing
difficulty for the fingerprinting algorithm to distinguish multiple simultaneous loads on the bridge.

For the chosen grid resolution GP3 and nfootsteps, the average location inaccuracy is only 3.26 mm. Considering the
bridge’s total length of 3000mm, this represents an extremely precise estimation. However, the accuracy declines as the
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Figure 8.1: Average error in distance estimation for different grid number of grid points and number of footsteps.

number of footsteps increases, stabilizing after nfootsteps = 3. This stabilization is primarily influenced by the sensor
configuration but is also affected by the bridge dimensions and the specific characteristics of the loads and their positions.

Despite the challenges posed by higher nfootsteps, the maximum error for GP3 is 56 mm, which is considered quite
reasonable when compared to the overall length of the bridge, which is 3000 mm. This level of accuracy is deemed ac-
ceptable in the context of the system’s performance, given the scale of the bridge. The results dounderline the limitations
of the fingerprinting algorithmwhenmultiple loads are present. Increasing the number of sensors and improving image
recognition techniques can significantly enhance the system’s ability to handle multi-load situations. A greater number
of sensors providesmore detailed strain data, which improves the algorithm’s capability to distinguish betweenmultiple
simultaneous loads. Meanwhile, advancements in image recognition can refine the initial load location and magnitude
estimates, reducing the computational burden on subsequent steps in the pipeline and improving overall accuracy. To-
gether, these enhancements can address the challenges posed by more complex load scenarios, leading to more precise
and reliable estimates.

The hot spot stress error between the simulation results is evaluated using the median rather than the average. This ap-
proach is adopted because, at lower stress values, relative inaccuracies expressed as percentages can appear disproportion-
ately large, even when the absolute differences are minor. Such occurrences are particularly common for loads situated
far from the detail being analyzed. The relative error is determined according to

%∆σ = med

(
|σs,est − σs|

σs
· 100% ∀s ∈ S

)
(8.2)

for each of the load points in the subset, and then averaged to obtain the results. The isolated error caused by the fin-
gerprinting algorithm are presented in Figure 8.2. The results reaffirm that the estimation error increases as nfootsteps

increases. For the selected gridpoint resolutionGP3, the lowestmedianhot spot stress error is observed atnfootsteps = 1,
with a value of 1.06%, while the highest error reaches 7.84% at greater nfootsteps values. These errors are relatively small
when compared to the uncertainties that must be taken into account according to the fatigue calculations in the stan-
dard. The results suggest that the methodology holds potential for practical applications, even under relatively complex
loading conditions.

Interestingly, the location estimation (Figure 8.1) is influenced more by an increase in the number of loads than the
hot-spot stress estimation (Figure 8.2). This is a sign that the model estimated a load configuration that does not exactly
match the actual load situation, yet found an alternative that suits the geometry behavior reasonably accurately.

To show the behavior of the model when estimating individual load situations for nfootsteps = 4 are visualized in
Figure 8.3. This shows that load locations oftenmatchwell. Themodel seems to slightly struggle at appointing the right
force magnitude to the correct locations, swapping around or halving combined forces of loads that are positioned close
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Figure 8.2: Median hot-spot stress estimation error for different grid number of grid points and number of footsteps.

together. This is a direct consequence of loads being positioned closer to each other than the sensors can distinguish
properly. In addition, part of these inaccuracies fall into categories of estimation errors from minimization methods
and local minima. Appointing the correct force magnitude is not a major issue, as the hot-spot stress estimates will
still be comparable. However, using the load magnitudes for determining trends could pose a problem. This is because
inaccurate loadmagnitude estimation candistort the trend analysis over time, potentially affecting fatigue life predictions
and long-term assessments.

Figure 8.3: Individual estimation performance visualization. For different actual load situations (as computed using the digital model) and the
estimated load situation as determined with the fingerprinting method.
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8.2. Experimental Results of Single Load Testing
Single load experiments were conducted to assess the accuracy of the model in a real-world measurement setup and to
identify the sources of the largest inaccuracies. For this analysis there was a large benefit to having more sensors than
used. Sensor configuration 3 (only estimating loads using 12 out of 20 sensors) means that 8 sensor values can be used to
test estimation performance. For these strain values to match properly we chose to load both the digital model and test
setup with matching locations and force magnitudes. These 50 locations were marked on the bridge as seen in Figure
7.5.

The full set of data obtained from the different DAMs of this test is shown in Appendix J. In the simulation tests the
fingerprinting model achieved an average load location error of 3.6 mm and a load magnitude error of 0.58 %. Then
for the experimental tests, the fingerprinting model achieved an average load location error of 43.5mm and a load mag-
nitude inaccuracy of 14.79 %. The simulation model, which isolates only the fingerprinting inaccuracy, continues to
demonstrate exceptional performance. However, the experimental setup showsnoticeably poorer results, indicating that
a significant portion of the overall pipeline inaccuracy arises from other factors. These factors may include loading inac-
curacies, such as not stepping precisely on the designated locations or wobbling during movement, sensor inaccuracies,
or discrepancies between the FEMmodel and the actual behavior of the physical asset.

To facilitate further comparison, the simulation estimation error (difference between DAM1 and DAM2) and the ex-
perimental estimation error (difference between DAM3 and DAM4) are calculated using the strain estimation errors
at eight redundant sensor locations i ∈ I−. These errors are expressed as the percentage of absolute strain difference
relative to the maximum strain at each sensor location, as defined by:

%∆ϵ = med

(
|ϵi,est − ϵi|

ϵmaxi

· 100% ∀i ∈ I−
)

(8.3)

Here we estimate ϵmaxi
for each location i as the maximum value measured over the 50 load situations. This approach

ensures the accuracy evaluation is scaled by the magnitude of the strain values, mitigating the impact of small absolute
differences that could otherwise lead to disproportionately high relative percentage differences. This method provides a
balanced and meaningful assessment of the strain estimation performance.

For each sensor in the set I−, a box plot is created to visualize the variations in strain estimation accuracy and, by exten-
sion, how stress estimation varies across all tested loads. The box plot of simulation errors is shown in Figure 8.4, while
the experimental errors are presented in Figure 8.5.

The simulation model demonstrates consistent strain estimation performance, with variations averaging less than 0.2%.
In contrast, the experimental strain estimations show significantly larger discrepancies, favoring sensors positioned closer
to the center. Notably, the outer sensors located on the right bottom flange (R2 and R9) exhibit greater inaccuracies,
suggesting a dependence of measurement accuracy on sensor location.

Figure 8.4: Box plot showing estimation inaccuracy of single load situation from a FEM load as determined by the fingerprinting model.
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Figure 8.5: Box plot showing estimation inaccuracy of single load situation from the experimental setup as determined by the fingerprinting model.

The results suggest that the location of sensors significantly impacts estimation errors. Sensors closer to the center gen-
erally perform better, partly because they are closer to the average load location. However, further analysis reveals a skew
in experimental location estimation errors across the bridge’s geometry, as shown in Figure 8.6. This visualization high-
lights that the central region excels in estimating load locations, whereas areas toward the edges of the asset exhibit higher
errors.

Figure 8.6: Errors in location estimation from the experimental setup.
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A similar trend is observed for experimental force errors, as illustrated in Figure 8.7. In this case, loads positioned closer
to the center tend to cause overestimated load magnitudes.

Figure 8.7: Errors in force estimation from the experimental setup.

The influencing factors between the experimental errors are the differences between the FEM model and the asset’s
behavior, the inaccuracy of applying the load onto the asset or the simplified footprint geometry and finally an error in
the sensor reading of the asset. There is a clear systematic overestimation of the load magnitude for loads in the center,
which cannot be attributed to the sensors or the way the load is applied. This means that the input in the FEMmodel
slightly differs from the asset’s properties. The FEMmodel is overall more rigid than the asset, causing larger strains in
both flanges. A possible reason is that the connections between parts of the bridge are modeled as rigid where they are
instead connected by welds. The FEM model is clearly a very important part of the fingerprinting performance, and
thus needs to be validated thoroughly in future application.



9
Conclusion

In conclusion, this research aimed to achieve real-time insights into the stress state of bridge structures by addressing
the core research question: How can real-time stress states of bridge structures be derived using a combination of sensor
data and computational modeling?

The methodology developed integrated sensor data with a finite element model (FEM) to determine load locations and
magnitudes by comparing measured strain values with simulated results. To enhance scalability, particularly for real-
world traffic bridges, a camera with image recognition capabilities was introduced. This addition enabled the detection
of the number and approximate locations of loads on the bridge, providing an initial estimate to complement the sensor-
based approach. Linearizing themethodology for scalability was a critical step toward adapting the framework for larger,
more complex structures.

The results demonstrate that the methodology is promising for estimating load scenarios and stress states, particularly
when addressing the inaccuracies inherent to the fingerprinting approach. It provided reasonable estimations for single
and multi-load scenarios using a limited amount of sensor data. However, during testing, the FEM model exhibited
slight inaccuracies in representing the physical asset’s geometric behavior under load. These inaccuracies propagated
through the simulation database of grid points used for the fingerprinting algorithm, reducing estimation accuracy. Fu-
ture applications will require precise FEMmodeling and validation of both the global and detailed behavior of the asset
to achieve more accurate and reliable estimations.

The image recognition for shoes proved to be a limiting factor in the current setup, frequently misidentifying multiple
shoes at the same location or failing to detect them entirely. For successful application on traffic bridges, the systemmust
function reliably under all weather and lighting conditions. Future work should focus on improving the consistency of
image recognition to address this challenge, as well as expanding the functionality to the recognition of vehicles.

Additionally, while the use of optimization algorithms like COBYLA and SLSQP was effective, their performance in
terms of computational speed and estimation accuracy was variable. Exploring alternative minimization methods or
optimization techniques could further refine the model, though initial trials with other methods yielded inconsistent
results. Future research should investigate new approaches to enhance performance.

Finally, achieving real-time analysis for large-scale traffic bridges will require a significant investment in computational
resources. This can involve deploying the system on more powerful local hardware or leveraging cloud computing to
allocate sufficient processing power. Addressing this will be essential for practical, real-time applications on full-scale
traffic bridges.
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Abstract

This research presents a novel approach for real-time stress state estimation in steel bridges using Fiber Bragg Grating
(FBG) sensors and image recognition techniques. Themethodology involves creating a digital model of the bridge, com-
prising a global finite element model (FEM) and detailed sub-models of critical areas. A database of precomputed load
cases is generated, and real-time sensor data is matched to this database using the developed fingerprinting method. Im-
age recognition is employed to detect multiple load scenarios, enhancing the accuracy of stress estimations and ensuring
linear scalability for multi-load situations. The accuracy of the developedmodel was tested using a scaled setup using a 3
meter long aluminum bridge, proving its effectiveness in real-world conditions. The results demonstrate the feasibility
of this approach, with reasonable accuracy achieved in both single and multi-load scenarios. Future work should focus
on improving model accuracy, enhancing image recognition algorithms, and optimizing computational performance
for large-scale applications.

1. Introduction

One of the most prominent failure mechanisms for steel bridges is fatigue [3], [1]. Loads applied by for example ve-
hicles, trains, pedestrians, wind and temperature are typically below the yield strength of the material. However, the
cyclic nature of the loads means that over time the structural integrity of the bridge decays, leading to fracture initiation,
propagation and eventually structural failure. Most of the fatigue-related damage can be repaired andmaintained doing
routine maintenance, but this maintenance is costly and often unnecessary given the poor understanding of the fatigue
status [2]. To safely extend the operational lifetime of existing structures, it is essential to perform continuous analysis
of the stress state and, consequently, the fatigue status at every critical detail.

This analysis is conducted using a 3-meter-long aluminum pedestrian bridge equipped with sensors. A FEM model
of the bridge is developed and analyzed under various load scenarios. Algorithms were developed to compare strain
measurements from the physical bridge to FEM results to estimate hot-spot stresses across the structure. During the
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measuring phase, stress fluctuations are translated to load cases, which are used to determine stress intervals. The col-
lected stress interval data can then be extrapolated to be able to perform fatigue accumulation and make predictions
with regard to fatigue life during the measurement period. This can then be extrapolated for the full bridge life, so that
predictions about the expected life of the structure can be made.

2. Methodology

As a proof-of-concept experiment, we consider a 3 meter long aluminum pedestrian bridge. Computationally, we build
a database of strain profiles in the 3D FEMmodel of this bridge in response to a load at different locations on the surface.
Experimentally, the bridge is equipped with a set of fiber Bragg grating (FBG) sensors that measure strain at up to 20
specific locations. In this research, we have developed a “fingerprinting” methodology to determine the locations and
magnitudes of loads, from a comparison of the sensor values to the calculated database. Subsequently, the database is
used to estimate the hot-spot stresses in the details of the structure. By running our algorithm in real time over prolonged
time, we can keep track of fatigue build up.

2.1 Experimental Setup

The sensor setup consists of a FBG strain sensor strip and a camera. The instrumented FBG sensor is visualized in Figure
A.1, which is a 20 meter long cable with a total of 20 measurement points at 1 meter intervals. Of these 20 sensors, we
use 12 sensors for our algorithmwhile the other 8 are used to estimate the error in our experiments. In addition, a camera
records events on the bridge to provide information on the number of loads and a rough estimate for their locations.

Figure A.1: a) Detail view of one of the FBG sensor locations connected to the asset. b) Visualization of the instrumented FBG sensor strip over the
entire bridge

The sensors and the laptop running the computational script are all connected to the same router, enablinghigh-bandwidth
data transfer with low latency. This setup is also adaptable for use in external locations. The required equipment, includ-
ing a router, can be deployed on-site to transfer data either via Ethernet to a local computer or, ideally, over the internet
to a cloud-based computer for processing.

2.2 Fingerprinting Algorithm

The fingerprinting algorithm is a methodology developed to determine the locations and magnitudes of loads, from a
comparison of the sensor values to a database of FEM results. For each load situation, the fingerprinting algorithm esti-
mates the location(s) andmagnitude(s) of loads and estimates the resulting hot-spot stresses. To estimate the location(s)
and magnitude(s), it goes through three main steps: Coupling to the closest grid points, Interpolation between grid
points, Scaling of grid points. As a final operation in the scaling step, the algorithmuses the scaled grid points to estimate
hot-spot stresses.

Amajor challenge wasmain- taining linear scaling in computational speed formulti-load situations, which was achieved
by introducing a camerawith image recognition to determine the number of loads on the bridge and to provide an initial
guess of their locations. The second step to achieve linear scaling is to limit the tested combinations by locking all but
one grid point and iteratively go through all of the loads, as seen in Figure A.2

(1) Coupling Step — In the multi-load algorithm we use an array γ(n) ∀n ∈ NGP, where the value γ(n) = 0
if grid point n has no load and γ(n) = 1 if it has a load. In a scenario with nfootsteps loads, we perform nfootsteps
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Figure A.2: Linear computation strategy for coupling grid point in a multi-load scenario. a) Depiction of an unknown load situation at a random
moment in the asset’s lifetime, where nfootsteps = 3. b) Camera prediction location (red dots), with the inaccuracy bounding boxes, in which grid

points are considered. c), d), e) illustrate steps 1, 2 and 3 respectively, in determining the closest matching grid point within their respective
bounding boxes. f) Presents the resulting coupled grid points obtained from the linear computation.

steps of the following type. The initial guess for the grid point index for each of the loads is based on amachine-learning
interpretation of the camera image. All grid points indices containing a load are stored in arrayC . During each iteration,
the grid point index of one of the loads (subset C−) is optimized, while those of the other loads (subset C+) are kept
fixed.

In each iteration, we minimize

Z =
∑
i∈I

∣∣∣∣∣ ∑
n∈NGP

(
α(n) γ(n) ϵ

(n)
i − ϵi

)∣∣∣∣∣ (A.1)

by finding a new grid point index n for the load we are optimizing, and by finding best estimates for α(n) ∀n ∈ C .
We use the following constraints:


∑

n∈NGP
γ(n) = nfootsteps

γ(c) = 1 ∀c ∈ C+

γ(n) ∈ {0, 1} ∀n ∈ Nbox

α(n) ∈ R+
0 ∀n ∈ C

(A.2)

(2) Interpolation Step — During each iteration there will be a set of locked grid points C+, of size nfootsteps − 1
representing all but the currently optimized point, which itself falls in the setC−. In each iteration, we first minimize

MAD(hc− ) = med
(∣∣∣X(hc− )

ij − X̃(hc− )
∣∣∣ ∀i, j ∈ I

)
, ∀hc− ∈ H (A.3)
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with 

X
(hc− )
ij =

∣∣∣∣∑k∈K

∑
c∈C α(c) β(kc,hc) ϵ

(nkc,hc
)

i∑
k∈K

∑
c∈C α(c) β(kc,hc) ϵ

(nkc,hc
)

j

− ϵi
ϵj

∣∣∣∣ ∀i, j ∈ I, ∀hc− ∈ H

X̃(hc− ) = med
(
X

(hc− )
ij ∀i, j ∈ I

)
hc = hminc

∀c ∈ C+

β(kc,hc) ∈ R+
0 ∀kc ∈ K, ∀hc ∈ H∑

kc
β(kc,hc) = 1 ∀hc ∈ H

(A.4)

to find the optimal values of β(kc,hc) ∀c ∈ C . In this step, the values of α(c) ∀c ∈ C are kept fixed at the values
determined in the coupling phase.

Next, each iteration finds the optimal quadrant hc− of the load that is optimized as

hminc−
= argmin

hc−
MAD(hc− ) (A.5)

This value is then inserted back into the array of optimal area values {hc} for the next iteration. After all of the iterations
have been executed, the areas list {hminc

} and their respective interpolated scale factors βkc,hminc
∀c ∈ C have been

found.

(3) Scaling Step — The load factor α(n), as determined during the coupling phase, provides an initial guess for the
simplified locations. However, with the interpolation a more precise location has been determined. For this reason it is
desirable to redetermine the scale factor α(c) to better match the newly predicted load locations. We minimize

Z =
∑
i∈I

∣∣∣∣∣∑
c∈C

∑
k∈K

α(c)βkc,hminc
ϵ
(nkc,hminc

)
i − ϵi

∣∣∣∣∣ (A.6)

subject to
α(c) ∈ R+

0 (A.7)

for global force scale factors α(c). Here the previously found scale factors βkc,hminc
are used.

The estimated loads for each of the footsteps follow

Festc = α(c)
∑
k∈K

βkc,hminc
Fkc,hminc

∀c ∈ C (A.8)

where scale factors βkc,hminc
and α(c) are used to scale the force used for the database computation.

To determine the estimated hot-spot stresses in all of the researched details

σs,est =
∑
c∈C

α(c)
∑
kc∈K

βkc,hminc
σ
(nkc,hminc

)
s ∀s ∈ S (A.9)

the same scale factors βkc,hminc
andα(c) are used. These values provide the live stress state of the desired details and the

load description on the asset.

2.3 Fatigue Estimation

Gathering these results over time allows us to extrapolate realistic data to predict a load history for the full life of the
bridge. The following extrapolated load spectrum can then be translated to fatigue damage in each investigated detail,
using the PalmgrenMiner Rule

Ds =
∑
x

nx,s

Nx
(A.10)
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allows us to then estimate current fatigue damage and predict fatigue life.

2.4 Performance Testing

There are two ways performance is tested: Simulation and Experimental. Our simulation tests quantify the isolated per-
formance of the fingerprinting algorithm by feeding it with FEM-generated strain values at the sensor locations. These
tests compare the output of the algorithm with the input of the simulations in terms of hot-spot estimation error and
they consider the computational speed.

For the experimental analysis, 50 experiments were performedwhere a person stepped on the physical bridge at amarked
location. Meanwhile, the Real-Time Assessment pipeline was fully operational. For our performance tests, the strain
values of 8 abundant sensors are measured experimentally, calculated with the FEM model with an input load at the
marked location, and estimated using the fingerprinting algorithm. This constitutes the following Data Acquisition
Modalities (DAMs):

• DAM1: Simulation calculation (FEM)
• DAM2: Fingerprinting, with input strain values from simulation
• DAM3: Experimental measurement (sensors)
• DAM4: Fingerprinting, with input strain values from experiment

3. Results

The performance of DAM2 when estimating individual load situations for nfootsteps = 4, is visualized in Figure A.3.
This shows that load locations often match well. The model seems to slightly struggle at appointing the right force mag-
nitude to the correct locations, swapping around or halving combined forces of loads that are positioned close together.
This is a direct consequence of loads being positioned closer to each other than the sensors can distinguish properly. In
addition, part of these inaccuracies are due to local minima to which the minimization methods converge.

Figure A.3: Individual estimation performance visualization. For different actual load situations (as computed using the digital model) and the
estimated load situation as determined with the fingerprinting method.

Figures A.4 and A.5 presents box plots for each of the 8 redundant sensors, showing variations in strain estimation
accuracy. The box plot of simulation inaccuracies (%∆ between DAM1 and DAM2) is shown in Figure A.4, while
the experimental inaccuracies are presented in Figure A.5 (%∆ between DAM3 and DAM4). The simulation model
demonstrates consistent strain estimation performance, with variations averaging less than 0.2%. In contrast, the exper-
imental strain estimations show significantly larger discrepancies. The locations positioned closer to the center (sensors
L4, L7, R4, andR7) show smaller errors. The greatest errors are found for locations on the right bottom flange (R2 and
R9). This shows a dependence of hot-stress estimation error on location. Further testing strongly suggests this is due to
inaccuracies in the FEMmodel.
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Figure A.4: Box plot showing estimation inaccuracy of single load situation from a FEM load as determined by the fingerprinting model.

Figure A.5: Box plot showing estimation inaccuracy of single load situation from the experimental setup as determined by the fingerprinting model.

4. Conclusions

The results demonstrate that the methodology is promising for estimating load scenarios and stress states. Testing the
fingerprinting algorithm in isolation, using simulated data, showed hot-spot stress estimation errors between 1.06% for
a single-load scenario and 7.84% for a multi-load scenario of 4 footsteps. Experimental tests yielded larger errors. These
could be attributed to inaccuracies in representing the physical asset’s geometric behavior under load in the FEMmodel.
These inaccuracies propagated through the simulation database of grid points used for the fingerprinting algorithm,
increasingmedian strain estimation inaccuracy to between 1.28% and 9.76% already for single loads. Future applications
will require precise FEMmodeling and validation of both the global and detailed behavior of the asset to achieve more
accurate and reliable estimations.

Finally, achieving real-time analysis for large-scale traffic bridges will require a substantial investment in computational
resources. This could involve deploying the system on more powerful local hardware or utilizing cloud computing
to ensure adequate processing capabilities. Additionally, improvements in image recognition technology will be criti-
cal. Addressing these challenges will be essential for implementing practical, real-time applications on full-scale traffic
bridges.
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B
Read FBG Sensor Data Source Code

1 # Function to read, process and store the sensor data
2 def read_sensor_data(TCP_IP,
3 TCP_PORT,
4 sensor_data_separator):
5

6 global sensor_data_storage_list
7

8 sensor_data = []
9

10 try:
11 # Create a TCP socket
12 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
13

14 # Measure ping time
15 start_ping = time.time()
16 s.connect((TCP_IP, TCP_PORT))
17 end_ping = time.time()
18 ping_duration = (end_ping - start_ping) / 2 # Half round trip time
19 logger.info(f"Connected␣to␣{TCP_IP}:{TCP_PORT}")
20

21 # Keep receiving data
22 while True:
23

24 # First read the 4-byte integer for the length of the data string
25 raw_len = s.recv(4)
26 if not raw_len:
27 continue
28 data_length = struct.unpack('!I', raw_len)[0]
29

30 # Now read the full data string based on the received length
31 data = s.recv(data_length)
32 if not data:
33 continue
34 decoded_data = data.decode('utf-8').strip()
35 split_data = decoded_data.split(sensor_data_separator)
36

37 # Store the parsed data
38 sensor_data.append(split_data)
39

40 # Retrieve current time, which forms the basis for the sensor iteration time
in all future lines

41 sensor_measurement_time = retrieve_current_time(time_format)
42

43 # Adjust the start time by subtracting the ping duration
44 sensor_measurement_time -= timedelta(seconds=ping_duration)
45

46 # Convert the time to the desired time format
47 sensor_measurement_time = sensor_measurement_time.strftime(time_format)
48
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49 # Store sensor data if sensor data is read
50 if len(sensor_data) > 0:
51 processed_sensor_data , sensor_data = process_sensor_data(sensor_data=

sensor_data,
52 sensor_measurement_time=sensor_measurement_time ,
53 sensor_strain_data_positions=sensor_strain_data_positions ,
54 strain_scale_factor=strain_scale_factor)
55

56 # Continuously adjust for moving averages due to temperature changes
within the material to prevent drift within the strain measurements

57 if continuous_strain_calibration_statement:
58 processed_sensor_data = remove_moving_average_effect(

processed_sensor_data=processed_sensor_data ,
59 window_size_calibration=window_size_calibration ,
60 calibration_strains=calibration_strains ,
61 processed_strain_data_positions=processed_strain_data_positions ,
62 strain_cut_off_value=strain_cut_off_value ,
63 reset_calibration_values=reset_calibration_values)
64

65 # Writing the found sensor values to memory storage, while preventing
other threads from reading the list during this operation

66 with sensor_data_lock:
67 for i in range(len(processed_sensor_data)):
68 sensor_data_storage_list.append(processed_sensor_data[i])
69

70 # Provide error information when no connection can be made to the sensor device
71 except socket.error as e:
72 logger.info(f"Error␣while␣reading␣sensor␣data:␣{e}")



C
Capture Camera Images Source Code

1 # Function that captures images from camera stream and saves them on memory
2 def initiate_axis_stream_capture_to_images(
3 time_format,
4 camera_username,
5 camera_ip_address,
6 camera_password,
7 camera_video_codec,
8 image_storage_folder_path
9 ):
10

11 global temporary_frame_storage_dict
12

13 # Formatting the stream URL used to give access to the stream
14 stream_url = f'rtsp://{camera_username}:{camera_password}@{camera_ip_address}/axis-media/

media.amp?videocodec={camera_video_codec}&camera=1'
15

16 # Set up video capture from the camera's stream
17 cap = cv2.VideoCapture(stream_url)
18 cap.set(cv2.CAP_PROP_BUFFERSIZE , 1) # Set buffer size to 1
19

20 # Check if the video capture is successful
21 if not cap.isOpened():
22 logger.info("Error:␣Could␣not␣open␣video␣stream.")
23

24 if not stream_url.startswith(('␣http://', 'https://', 'rtsp://', 'ftp://')):
25 logger.info("Possible␣cause:␣The␣URL␣provided␣is␣not␣a␣valid␣or␣supported␣

protocol.")
26 else:
27 logger.info(f"Warning:␣If␣live␣camera␣images␣is␣desired,␣try␣rerunning␣the␣script

␣with␣adjusted␣settings")
28 logger.info(f"Warning:␣If␣the␣run␣is␣done␣to␣process␣existing␣data,␣then␣do␣not␣

mind␣the␣warning")
29 logger.info("Possible␣Causes:")
30 logger.info("-␣The␣camera/server␣might␣be␣offline␣or␣unavailable")
31 logger.info("-␣The␣laptop␣might␣be␣correctly␣set␣up␣in␣the␣same␣subnet␣as␣the␣

camera")
32 logger.info("-␣The␣credentials␣of␣the␣stream␣authentication␣are␣incorrect")
33 logger.info("-␣Unsupported␣or␣incorrect␣video␣codec␣or␣format")
34

35 # Start while loop to continue capturing frames
36 while True:
37

38 # Reading a frame from the captured camera video
39 ret, frame = cap.read()
40

41 # Exit the capture loop if the connection to the camera is lost
42 if not ret:
43 logger.info("Warning:␣failed␣to␣grab␣frame")
44 break
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45

46 # Determine recorded frame time by obtaining the current time and removing any delay
47 current_time = (datetime.now() - timedelta(seconds=camera_image_delay)).strftime(

time_format)
48 image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
49

50 # Saving the camera images in memory
51 with camera_data_lock:
52 temporary_frame_storage_dict[current_time] = image
53

54 # Stopping the entire Real-Time Assessment run when no images can be captured anymore
55 cap.release()
56 sys.exit()



D
Processing Sensor Data Source Code

1 # Process the sensor data from raw bytes to list of desired column values
2 def process_sensor_data(sensor_data,
3 sensor_measurement_time ,
4 sensor_strain_data_positions ,
5 strain_scale_factor):
6

7 processed_sensor_data = []
8

9 # For each line of read sensor data, process the line
10 for line in sensor_data:
11 processed_sensor_data_line = []
12

13 # Append the timestamp at which the sensor data was recorded to the processed data
line

14 processed_sensor_data_line.append(sensor_measurement_time)
15

16 # Append each of the strain measurements to the processed
17 for pos in sensor_strain_data_positions:
18

19 # Scale the strain values from microstrain to strain
20 strain_value = float(line[pos]) * strain_scale_factor
21 processed_sensor_data_line.append(strain_value)
22

23 processed_sensor_data.append(processed_sensor_data_line)
24

25 # Empty the list used for temporarily storing read sensor data
26 sensor_data = []
27

28 return processed_sensor_data , sensor_data
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E
Calibrate Strain Data for Temperature

Variance Source Code

1 # Function to remove temperature effect using the effect of a moving average over
predetermined window size

2 def remove_moving_average_effect(processed_sensor_data ,
3 window_size_calibration ,
4 calibration_strains ,
5 processed_strain_data_positions ,
6 strain_cut_off_value,
7 reset_calibration_values):
8

9 # Initialize a list to store adjusted sensor data
10 filtered_sensor_data = []
11

12 # Function that determines if calibration using the moving average is required, the
calibration is not done if the cut off value is met

13 def check_strain_values_for_calibration_requirement(calibration_strains,
processed_strain_data_positions , strain_cut_off_value):

14 # Loop through each position in processed_strain_data_positions
15 for pos in processed_strain_data_positions:
16 # Use generator expression for early exit if a condition is not met
17 if any(abs(value) >= strain_cut_off_value for value in calibration_strains[pos]):
18 return False
19 return True
20

21 # Retrieve statement on if the calibration should be updated based on if the cut-off
strain value is reached

22 update_calibration_statement = check_strain_values_for_calibration_requirement(
calibration_strains , processed_strain_data_positions , strain_cut_off_value)

23

24 # Check if calibration data is insufficient or if any processed strain data exceeds the
cut-off value

25 if len(calibration_strains[processed_strain_data_positions[0]]) >=
window_size_calibration and update_calibration_statement:

26 # Reset calibration values to the mean of the calibration strains for each position
27 for x in processed_strain_data_positions:
28 reset_calibration_values[x] = np.median(calibration_strains[x])
29

30 # Process each new incoming data
31 for data in processed_sensor_data:
32 # Extract timestamp and sensor values
33 timestamp = data[0]
34 sensor_values = data[1:]
35

36 # Adjust sensor values by removing the moving average
37 filtered_values = []
38 for pos in processed_strain_data_positions:
39 # Get the current sensor strain value for the given position
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40 current_value = sensor_values[pos - 1] # adjust for 0-indexed list
41

42 # Update the moving average list for the current position
43 calibration_strains[pos].append(current_value)
44

45 # Maintain a fixed window size
46 if len(calibration_strains[pos]) > window_size_calibration:
47 calibration_strains[pos].pop(0)
48

49 # Subtract the moving average from the current value to remove slow changes
50 filtered_value = current_value - reset_calibration_values[pos]
51

52 filtered_values.append(filtered_value)
53

54 # Append filtered sensor data (with timestamp) to the result list
55 filtered_sensor_data.append([timestamp] + filtered_values)
56

57 return filtered_sensor_data



F
Time Control Source Code

1 ### Time control ###
2 def run_time_control(current_iteration_time ,
3 start_iteration_time ,
4 non_zero_data_statement):
5

6 global total_iterations
7 global average_iteration_time
8 global non_zero_iterations
9 global average_non_zero_iteration_time
10

11 # Save current iteration time
12 if live_data_statement:
13 save_current_iteration_time(current_iteration_time=current_iteration_time ,
14 storage_folder_name=storage_folder_name ,
15 current_iteration_time_file_name=current_iteration_time_file_name

,
16 time_format=time_format)
17

18 # Retrieve current time
19 current_time = retrieve_current_time(time_format=time_format) - timedelta(seconds=

iteration_delay)
20

21 # Determine iteration time
22 end_iteration_time = current_time
23 iteration_time = (end_iteration_time - start_iteration_time).total_seconds()
24

25 # Determine iteration speed and updating the information values
26 average_iteration_time = (average_iteration_time*total_iterations + iteration_time) / (

total_iterations + 1)
27 total_iterations += 1
28

29 if non_zero_data_statement:
30 average_non_zero_iteration_time = (average_non_zero_iteration_time*

non_zero_iterations + iteration_time) / (non_zero_iterations + 1)
31 non_zero_iterations += 1
32

33 # Store iteration speed information
34 to_be_saved_string = f"{total_iterations},{non_zero_iterations},{average_iteration_time

},{average_non_zero_iteration_time},{iteration_speed_info_string}"
35 store_string_as_txt(storage_folder_name=storage_folder_name,
36 storage_file_name=iteration_speed_information_file_name ,
37 to_be_saved_string=to_be_saved_string)
38

39 # Pause analysis if the new iteration time would be later than the current time
40 time_difference = (current_iteration_time + interval_dt) - current_time
41 time_difference = time_difference.total_seconds()
42

43 logger.info(f'time_difference:␣{time_difference}')
44
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45 if time_difference > 0:
46 if time_difference > 1/desired_run_frequency:
47 logger.info(f'Found␣a␣time␣difference␣larger␣than␣a␣single␣time␣step,␣make␣sure␣

the␣current␣time␣is␣not␣lower␣than␣the␣current␣iteration␣time.')
48 raise ValueError('Time␣difference␣exceeds␣expected␣single␣time␣step.')
49 else:
50 sleep_time = time_difference
51 time.sleep(sleep_time)
52

53 # Update the current iteration time
54 current_iteration_time = update_current_iteration_time(current_iteration_time=

current_iteration_time ,
55 interval_dt=interval_dt)
56

57 return current_iteration_time



G
Image Recognition Source Code

Code presented here is a slightly altered version of the code developed by Fernandez et al. [8].

1 import cv2
2 import numpy as np
3 import tensorflow as tf
4

5 # Function to execute the shoe detection algorithm and obtain the footstep coordinates and
their boundary boxes along the image dimensions

6 def detect_shoes(side_image,
7 side_left_clearance ,
8 side_right_clearance,
9 bridge_length,
10 bridge_width,
11 footstep_width,
12 threshold,
13 PATH_TO_CKPT):
14

15 # Load the TensorFlow model into memory
16 detection_graph = tf.Graph()
17 with detection_graph.as_default():
18 od_graph_def = tf.compat.v1.GraphDef()
19 with tf.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
20 serialized_graph = fid.read()
21 od_graph_def.ParseFromString(serialized_graph)
22 tf.import_graph_def(od_graph_def, name='')
23

24 sess = tf.compat.v1.Session(graph=detection_graph)
25

26 img_array = np.array(side_image)
27 side_image = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
28 side_image = np.expand_dims(side_image, axis=0)
29

30 # Define input and output tensors
31 image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
32 detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
33 detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
34 detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
35 num_detections = detection_graph.get_tensor_by_name('num_detections:0')
36

37 def preform_detection(image):
38 # Perform the actual detection
39 (boxes, scores, classes, num) = sess.run(
40 [detection_boxes, detection_scores, detection_classes, num_detections],
41 feed_dict={image_tensor: image})
42

43 # Squeeze arrays for easier handling
44 boxes = np.squeeze(boxes)
45 scores = np.squeeze(scores)
46 classes = np.squeeze(classes).astype(np.int32)
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47

48 # Visualization parameters
49 _, image_height, image_width, _ = image.shape
50

51 # Store footsteps
52 footsteps = []
53

54 # Draw bounding boxes on the image
55 for i in range(int(num[0])):
56 if scores[i] > threshold:
57 box = boxes[i]
58 ymin, xmin, ymax, xmax = box
59 (left, right, top, bottom) = (xmin * image_width, xmax * image_width,
60 ymin * image_height, ymax * image_height)
61

62 # Append drawn box to footsteps
63 footsteps.append({'left': left, 'right': right, 'bottom': bottom, 'top': top,

'confidence': scores[i]})
64

65 return footsteps, image_width
66

67 side_footsteps, image_width = preform_detection(side_image)
68

69 # Determine footstep location
70 def determine_location_side(footstep, image_width):
71 xmin = footstep['left'] / image_width
72 a_coordinate = (bridge_length * (xmin - side_left_clearance))/(1 -

side_left_clearance - side_right_clearance)
73 footstep['a_coordinate'] = a_coordinate
74

75 return footstep, a_coordinate
76

77 # Determine the guessed location of the footstep from the shoe detection and obtaining
the length coordinate along the bridge

78 footsteps = []
79 for index, footstep in enumerate(side_footsteps):
80 side_footsteps[index], a_coordinate = determine_location_side(footstep, image_width)
81 b_coordinate = bridge_width/2 - footstep_width/2
82 dummy_force_value = 0
83 footsteps.append((a_coordinate, b_coordinate, dummy_force_value))
84

85 detection_boxes = side_footsteps
86 return footsteps, detection_boxes



H
Fingerprinting Source Code

1 import logging
2 from collections import Counter
3

4 # Use the already configured logger
5 logger = logging.getLogger('shared_logger')
6

7

8 # Defining the single function used to determine the fingerprint of a measurement point
9 def determine_fingerprint_of_row(measurement_row,
10 fingerprints,
11 strain_handle,
12 disabled_strain_pattern ,
13 a_handle,
14 b_handle,
15 force_handle,
16 fingerprint_handle,
17 hot_spot_handle,
18 n_footsteps_handle,
19 a_box_boundary,
20 b_box_boundary,
21 d_a,
22 d_b,
23 grid_point_filter_offset):
24 """
25 Determines the fingerprint of a measurement point by processing measurement data,
26 interpolating strain values, and scaling results.
27

28 Args:
29 measurement_row (pd.Series): Single row of measurement data.
30 fingerprints (pd.DataFrame): DataFrame containing simulation results.
31 strain_handle (str): Characteristic string for strain sensor measurements columns.
32 disabled_strain_pattern (str): String pattern to filter out deactivated strain sensor

handles.
33 a_handle (str): String for the length-direction column.
34 b_handle (str): String for the width-direction column.
35 force_handle (str): String for the force column.
36 fingerprint_handle (str): String for the simulation result unique identifier column.
37 hot_spot_handle (str): String for hot spot value columns.
38 n_footsteps_handle (str): String for footstep count.
39 a_box_boundary (float): Boundary for the length-direction grid points.
40 b_box_boundary (float): Boundary for the width-direction grid points.
41 d_a (float): Distance between grid points in the length direction.
42 d_b (float): Distance between grid points in the width direction.
43 grid_point_filter_offset (float): Number used as offset range for finding

neighbouring grid points.
44

45 Returns:
46 tuple: Contains the following:
47 - coupled_fingerprint_data_scaled (pd.Series): Predicted values based on input
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measurement_row.
48 - scale_factor (float): Scaling factor for force.
49 - coupled_fingerprint_data (pd.Series): Coupled grid point values.
50 - coupled_fingerprint (str): Unique identifier of the coupled grid point.
51 - a_interpolated (pd.Series): Interpolated length coordinates.
52 - b_interpolated (pd.Series): Interpolated width coordinates.
53 - alpha (np.ndarray): Force scale factors for each of the footsteps.
54 """
55

56

57 ### START OF FUNCTION DEFINITIONS ###
58 def determine_scale_factors_iteratively(fingerprints_dict,
59 fingerprints,
60 fingerprint_index,
61 measurement_array,
62 a_values_measurement ,
63 b_values_measurement):
64 """
65 Iteratively determines the scaling factors to match measurement data with fingerprint

data.
66

67 Args:
68 fingerprints_dict (dict): Dictionary of fingerprints for each footstep.
69 fingerprints (pd.DataFrame): DataFrame of fingerprint data.
70 fingerprint_index (int): Index of the fingerprint column.
71 measurement_array (np.ndarray): Array of measurement values.
72 a_values_measurement (np.ndarray): Length-direction values of the measurement.
73 b_values_measurement (np.ndarray): Width-direction values of the measurement.
74

75 Returns:
76 tuple: Contains the following:
77 - gamma_values (np.ndarray): Array of gamma values for scaling.
78 - alpha_values (np.ndarray): Array of alpha values for scaling.
79 - gamma_keys (list): List of keys for the optimal grid points.
80 - a_values_measurement (list): List of length-direction measurement values.
81 - b_values_measurement (list): List of width-direction measurement values.
82 """
83

84 ## Save the nearest keys ##
85 current_optimal_keys = []
86

87 for i in range(len(a_values_measurement)):
88 key = f"footstep_{i}"
89

90 # Compute the Euclidean distance for each row in the DataFrame
91 distances = np.sqrt((fingerprints_dict[key][a_col_name] - a_values_measurement[i

])**2 + (fingerprints_dict[key][b_col_name] - b_values_measurement[i])**2)
92

93 if len(distances) > 0:
94 # Find the minimum distance and its corresponding index
95 min_distance_index = distances.idxmin()
96

97 # Append the key corresponding to the minimum distance
98 current_optimal_keys.append(fingerprints_dict[key].loc[min_distance_index,

fingerprint_col_name])
99 else:
100 continue
101

102 logger.info(f"current_optimal_keys:␣{current_optimal_keys}")
103

104 # Filter the strain columns
105 fingerprint_strain = np.array(fingerprints.filter(like=strain_handle).filter(regex=

disabled_strain_pattern))
106

107 # Convert the strain values for the fingerprints to a dictionary
108 eps_FP_dict = {
109 name: fingerprint_strain[i].tolist()
110 for i, name in enumerate(fingerprints.iloc[:, fingerprint_index])
111 }
112

113 fingerprint_col = fingerprints.columns[fingerprint_index]
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114

115 # Extract all unique fingerprint_index values
116 filtered_fingerprints = []
117 for df in fingerprints_dict.values():
118 fingerprints_temp = df[fingerprint_col].tolist()
119 if fingerprints_temp:
120 filtered_fingerprints.append(fingerprints_temp)
121

122 # Set the relative matrix from the measurement to a more convenient name
123 eps_array = measurement_array
124

125 # Make a list out of all of the dictionary entries to access the grid point data
126 keys = list(eps_FP_dict.keys())
127

128 alpha_list = []
129

130 # For loop to determine optimal gammas
131 for i in range(n_footsteps):
132

133 logger.info(f"current_optimal_keys:␣{current_optimal_keys}")
134 locked_keys = []
135

136 # Setting the initial dummy values of the optimization results
137 min_value = float('inf')
138 min_diff_entries = None
139 optimized_alpha = None
140

141 for k in range(n_footsteps):
142 if i == k:
143 continue
144 else:
145 locked_keys.append(current_optimal_keys[k])
146

147 current_combinations = []
148 for filt_fp in range(len(filtered_fingerprints[i])):
149 current_combination = []
150 for k in range(n_footsteps):
151 if i == k:
152 current_combination.append(filtered_fingerprints[i][filt_fp])
153 else:
154 current_combination.append(current_optimal_keys[k])
155 current_combinations.append(current_combination)
156

157 for combination in current_combinations:
158

159 # Setting empty lists to store keys and epsilon values
160 active_keys = combination
161 eps_FP_list = []
162

163 for index in combination:
164 eps_FP_list.append(np.array(eps_FP_dict[index]))
165

166 # Define the objective function using NumPy for faster computation
167 def objective(alpha):
168 alpha = np.expand_dims(alpha, axis=-1)
169 eps_FP_sum = np.array(np.sum(alpha * eps_FP_list, axis = 0))
170 return np.sum(np.abs(eps_FP_sum - eps_array))
171

172 # Set initial guess for alpha value
173 initial_alpha = np.full(len(eps_FP_list),1)
174

175 # Set bounds to ensure alpha values are non-negative
176 bounds = [(0, 10) for _ in range(len(initial_alpha))]
177

178 # Use minimize with the vectorized objective function and bounds
179 result = minimize(objective, initial_alpha, method='COBYLA', bounds=bounds,)
180

181

182 # Save resulting scale factor
183 alpha = result.x
184 optimal_value = result.fun
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185

186 # Testing if the new minimum MAD is lower than previously found MAD value
187 if optimal_value < min_value:
188 min_value = optimal_value
189 min_diff_entries = active_keys
190 optimized_alpha = alpha
191

192

193 # Export keys and alphas from minimal combination
194 current_optimal_keys = min_diff_entries
195 alpha_list.append(optimized_alpha[i])
196

197 logger.info(f"current_optimal_keys:␣{current_optimal_keys}")
198

199 # Converting gamma list to array
200 current_optimal_key_numbers = []
201 for index, value in enumerate(current_optimal_keys):
202 current_optimal_key_numbers.append(int(value.rsplit('␣', 1)[-1]))
203

204 # Zip the lists together
205 paired_list = list(zip(current_optimal_key_numbers , alpha_list, a_values_measurement ,

b_values_measurement))
206

207 # Sort the paired list based on the first element of each pair
208 sorted_paired_list = sorted(paired_list, key=lambda x: x[0])
209

210 # Unzip the sorted paired list
211 current_optimal_key_numbers , alpha_list, a_values_measurement_temp ,

b_values_measurement_temp = zip(*sorted_paired_list)
212

213 # Convert the results back to lists
214 current_optimal_key_numbers = list(current_optimal_key_numbers)
215 alpha_list = list(alpha_list)
216 a_values_measurement = list(a_values_measurement_temp)
217 b_values_measurement = list(b_values_measurement_temp)
218

219 alpha_values = np.array(alpha_list)
220 gamma_keys = current_optimal_key_numbers
221 logger.info(f"alpha_values:␣{alpha_values}")
222 logger.info(f"gamma_keys:␣{gamma_keys}")
223

224 return current_optimal_keys , alpha_values, gamma_keys, a_values_measurement ,
b_values_measurement

225

226

227 def determine_interpolated_betas(relative_relationships_measurement ,
228 alpha,
229 fingerprints,
230 gamma,
231 d_a,
232 d_b,
233 fingerprint_handle):
234 """
235 Interpolates betas for the surrounding area based on minimal difference in strain

values.
236

237 Args:
238 relative_relationships_measurement (np.ndarray): Relative strain relationships

from the measurement.
239 alpha (np.ndarray): Alpha values for scaling.
240 fingerprints (pd.DataFrame): DataFrame of fingerprint data.
241 gamma (np.ndarray): Gamma values for scaling.
242 d_a (float): Distance between each grid point in length direction.
243 d_b (float): Distance between each grid point in width direction.
244

245 Returns:
246 tuple: Contains the following:
247 - interpolated_betas (list[float]): List of interpolated betas.
248 - square_points (pd.DataFrame): Data from the surrounding grid points.
249 - a_interpolated (float): Interpolated length coordinate.
250 - b_interpolated (float): Interpolated width coordinate.
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251 - a_coupled (np.ndarray): Length coordinates of the coupled grid points.
252 - b_coupled (np.ndarray): Width coordinates of the coupled grid points.
253 """
254

255 # Find the column with the fingerprint handle
256 fingerprint_column = next((col for col in fingerprints.columns if fingerprint_handle

in col), None)
257 if fingerprint_column:
258 # Filter rows where the fingerprint column is in the keys of gamma
259 active_fingerprints = fingerprints[fingerprints[fingerprint_column].isin(gamma)]
260

261 # Count occurrences of each value in gamma
262 gamma_counts = Counter(gamma)
263

264 # Repeat rows based on gamma_counts
265 active_fingerprints = active_fingerprints.loc[
266 active_fingerprints.index.repeat(active_fingerprints[fingerprint_column].map(

gamma_counts))
267 ]
268 else:
269 logger.info("No␣matching␣column␣found␣for␣the␣specified␣fingerprint␣handle.")
270

271 active_fingerprints = active_fingerprints.reset_index(drop=True)
272

273 ## Data preperation ##
274 # Obtain the column names for the a and b values
275 a_column = next((col for col in fingerprints.columns if a_handle in col), None)
276 b_column = next((col for col in fingerprints.columns if b_handle in col), None)
277

278 # Obtaining the a and b values for the grid point that was coupled previously
279 a_coupled = active_fingerprints[a_column].values
280 b_coupled = active_fingerprints[b_column].values
281

282 logger.info(f"a_coupled␣=␣{a_coupled}")
283 logger.info(f"b_coupled␣=␣{b_coupled}")
284

285 # Setting ranges for quadrants and grid points in quadrants
286 G = range(len(active_fingerprints))
287 H = range(4)
288 K = range(4)
289 area_names = ["top_left_area", "bot_left_area", "bot_right_area", "top_right_area"]
290

291 ## Save the nearest keys ##
292 current_optimal_areas = []
293 current_optimal_betas = []
294

295 for idx, value in enumerate(gamma_keys):
296 if a_values_measurement[idx] <= active_fingerprints.loc[idx, a_col_name] and

b_values_measurement[idx] <= active_fingerprints.loc[idx, b_col_name]:
297 temp_area = area_names[0]
298 temp_betas = np.array([0, 0, 1, 0])
299 elif a_values_measurement[idx] <= active_fingerprints.loc[idx, a_col_name] and

b_values_measurement[idx] >= active_fingerprints.loc[idx, b_col_name]:
300 temp_area = area_names[1]
301 temp_betas = np.array([0, 0, 0, 1])
302 elif a_values_measurement[idx] >= active_fingerprints.loc[idx, a_col_name] and

b_values_measurement[idx] >= active_fingerprints.loc[idx, b_col_name]:
303 temp_area = area_names[2]
304 temp_betas = np.array([1, 0, 0, 0])
305 elif a_values_measurement[idx] >= active_fingerprints.loc[idx, a_col_name] and

b_values_measurement[idx] <= active_fingerprints.loc[idx, b_col_name]:
306 temp_area = area_names[3]
307 temp_betas = np.array([0, 1, 0, 0])
308 current_optimal_areas.append(temp_area)
309 current_optimal_betas.append(temp_betas)
310

311 # Calculating all the coordinates for each grid point in each area in each minimum
coupled grid point

312 area = []
313 for g in G:
314 area_g = {}
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315 for h in H:
316 area_hg = pd.DataFrame()
317 for k in K:
318 a_khg = a_coupled[g] + d_a*(math.floor(k/2) + math.floor(h/2) - 1)
319 b_khg = b_coupled[g] + d_b*((1+(-1)**(math.floor((k-1)/2)))/2 + (1+(-1)

**(math.floor((h-1)/2)))/2 - 1)
320 filtered_fingerprint = fingerprints[
321 (fingerprints[a_column].between(a_khg - grid_point_filter_offset , a_khg +

grid_point_filter_offset)) &
322 (fingerprints[b_column].between(b_khg - grid_point_filter_offset , b_khg +

grid_point_filter_offset))]
323

324 if not filtered_fingerprint.empty:
325 area_hg = pd.concat([area_hg, filtered_fingerprint], ignore_index=

True)
326 area_g[area_names[h]] = area_hg
327 area.append(area_g)
328

329 # Starting loop to find minimal interpolated locations
330 for i in range(n_footsteps):
331

332 logger.info(f"current_optimal_areas:␣{current_optimal_areas}")
333

334 # Setting the initial dummy values of the optimization results
335 min_diff = float('inf')
336 min_combination = None
337 a_interpolated = [float('inf') for g in G]
338 b_interpolated = [float('inf') for g in G]
339

340 # Obtaining the 4 area combination options of the footstep currently being
optimized

341 area_combinations_filtered = []
342 for h in range(len(area_names)):
343 combination = current_optimal_areas.copy()
344 combination[i] = area_names[h] # Change only the i-th position
345 area_combinations_filtered.append(combination)
346

347 # Running the interpolation for each of the 4 areas of footstep i
348 for combination in area_combinations_filtered:
349

350 # Obtain the active_areas_data for the current combination
351 active_areas_keys = combination
352 active_areas_data = []
353 for index, key in enumerate(active_areas_keys):
354 active_areas_data.append(area[index][key])
355

356 ## Minimization ##
357 # Defining the objective function to find the minimal difference area and

with that the betas
358 def objective(betas, gp_points_strain, relative_relationships_measurement ,

alpha):
359

360 # Split betas in lengths of 4 for each of the coupled grid points
361 beta_part = [betas[b:b+4] for b in range(0, len(betas), 4)]
362 beta_part = np.array(beta_part)
363

364 # Restructure betas to be multipliable
365 beta_part = np.expand_dims(beta_part, axis=-1)
366 alpha = np.expand_dims(alpha, axis=-1)
367 alpha = np.expand_dims(alpha, axis=-1)
368

369 # Tranforming grid point strain to array
370 gp_points_strain = np.array(gp_points_strain)
371

372 # Determine relative square points strain after scaling and summation
373 scaled_points_strain = np.sum(beta_part * alpha * gp_points_strain, axis

=(0,1))
374 relative_square_points_strain = scaled_points_strain[:, np.newaxis] /

scaled_points_strain[np.newaxis, :]
375

376 # Determine the MAD values per square grid point
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377 diff_nested = np.abs(relative_square_points_strain -
relative_relationships_measurement)

378 median_diff = np.median(diff_nested)
379 median_absolute_deviation = np.median(np.abs(diff_nested - median_diff))
380 return median_absolute_deviation
381

382 # Defining the constraint
383 def constraint_sum(betas):
384 constraints = []
385 for g in G:
386 beta_part = betas[g*4:(g+1)*4]
387 constraints.append(np.sum(beta_part) - 1)
388 return np.array(constraints)
389

390 # Define the constraints dictionary
391 constraints = {'type': 'eq', 'fun': constraint_sum}
392

393 # Defining the bounds on the beta values to be between 0 and 1
394 bounds = [(0, 1) for _ in range(4*len(active_fingerprints))]
395

396 # Check if 4 points surround the grid points. Does not apply to grid points
at the boundaries of the grid, such as (0, 0)

397 if all(len(item) == 4 for item in active_areas_data):
398

399 gp_points_strain = []
400

401 for g in G:
402 # Filter the strain values from the dataframe
403 points_strain = active_areas_data[g].filter(like=strain_handle).

filter(regex=disabled_strain_pattern).values
404 points_strain[(points_strain >= 0) & (abs(points_strain) <

infinitely_small_value)] = infinitely_small_value
405 points_strain[(points_strain < 0) & (abs(points_strain) <

infinitely_small_value)] = -infinitely_small_value
406 gp_points_strain.append(points_strain)
407

408 # Define intial guess for beta values
409 initial_betas = np.full(4*len(active_fingerprints), 0.25)
410

411 # Run the minimization function to obtain the optimal area and betas
412 result = minimize(objective, initial_betas, args=(gp_points_strain,

relative_relationships_measurement , alpha),
413 method='SLSQP', bounds=bounds, constraints=constraints ,)
414

415 # Check if the minimization was successful and save the result data
416 if result.success:
417 diff = result.fun
418 if diff < min_diff:
419 min_diff = diff
420 betas = result.x
421 beta_part = [betas[b:b+4] for b in range(0, len(betas), 4)]
422 interpolated_betas = beta_part
423

424 min_combination = combination
425 current_optimal_areas[i] = combination[i]
426

427 min_areas_data = active_areas_data
428 a_interpolated = []
429 b_interpolated = []
430 for part in range(len(interpolated_betas)):
431 a_interpolated.append(np.sum(beta_part[part][b] *

active_areas_data[part].iloc[b, :].filter(like=a_handle).
values[0] for b in range(4)))

432 b_interpolated.append(np.sum(beta_part[part][b] *
active_areas_data[part].iloc[b, :].filter(like=b_handle).
values[0] for b in range(4)))

433

434 else:
435 print(f"Optimization␣failed␣for␣{combination}:␣{result.message}")
436 logger.info(f"Optimization␣failed␣for␣{combination}:␣{result.message}

")
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437 else:
438 logger.info(f"Skipping␣combination␣{combination}␣because␣at␣least␣one␣

area␣falls␣outside␣of␣asset␣boundaries")
439

440 logger.info(f"min_combination:␣{min_combination}")
441 logger.info(f"interpolated_betas:␣{interpolated_betas}")
442 logger.info(f"a_interpolated:␣{a_interpolated}")
443 logger.info(f"b_interpolated:␣{b_interpolated}")
444 return interpolated_betas, min_areas_data, a_interpolated, b_interpolated, a_coupled,

b_coupled
445

446

447 # Function to determine force and hot spot scale factor
448 def determine_alpha(measurement_row,
449 interpolated_betas,
450 min_areas_data):
451 """
452 Determines the overall force and hot spot scale factor (alpha) based on measurement

data and interpolated betas.
453

454 Args:
455 measurement_row (Series): A single row of measurement data.
456 interpolated_betas (list[float]): List of beta values interpolated in a

surrounding area.
457 min_areas_data (list[DataFrame]): List of DataFrames containing minimal area data

for each grid point.
458

459 Returns:
460 np.ndarray: Array of scale factors (alpha) for overall force and hot spot.
461 """
462

463 min_areas_data_filtered = []
464 # Filter to only give the used strain columns
465 for i in range(len(min_areas_data)):
466 min_areas_data_filtered.append(min_areas_data[i].filter(like=strain_handle).

filter(regex=disabled_strain_pattern).values)
467 measurement_row_filtered = measurement_row.filter(like=strain_handle).filter(regex=

disabled_strain_pattern).values
468

469 # Convert lists to arrays for multiplication
470 interpolated_betas = np.array(interpolated_betas)
471 min_areas_data_filtered = np.array(min_areas_data_filtered)
472

473 # Restructure betas to be multipliable
474 interpolated_betas = np.expand_dims(interpolated_betas, axis=-1)
475

476 # Define the objective function using NumPy for faster computation
477 def objective(alpha):
478 alpha = np.expand_dims(alpha, axis=-1)
479 alpha = np.expand_dims(alpha, axis=-1)
480 return np.sum(np.abs(np.sum(alpha * interpolated_betas * min_areas_data_filtered ,

axis = (0,1)) - measurement_row_filtered))
481

482 # Set initial guess for alpha value
483 initial_alpha = np.full(len(interpolated_betas),1)
484

485 # Set bounds to ensure alpha values are non-negative
486 bounds = [(0, 10) for _ in range(len(interpolated_betas))]
487

488 # Use minimize with the vectorized objective function and bounds
489 result = minimize(objective, initial_alpha, method='TNC', bounds=bounds,)
490

491

492 # Save resulting scale factor
493 alpha = result.x
494

495 logger.info(f"scale␣factors:␣{alpha}")
496 return alpha
497

498

499 # Function to scale the measurement and coupled grid points data into an export of
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predicted values
500 def scale_data(alpha,
501 measurement_row,
502 interpolated_betas,
503 min_areas_data,
504 a_interpolated,
505 b_interpolated):
506 """
507 Scales the measurement data and grid points data to predict values.
508

509 Args:
510 alpha (np.ndarray): Array of scale factors for overall force and hot spot.
511 measurement_row (Series): A single row of measurement data.
512 interpolated_betas (list[float]): List of beta values interpolated in a

surrounding area.
513 min_areas_data (list[DataFrame]): List of DataFrames containing minimal area data

for each grid point.
514 a_interpolated (list[float]): Interpolated values for 'a' parameter.
515 b_interpolated (list[float]): Interpolated values for 'b' parameter.
516

517 Returns:
518 Series: Output row of all values as predicted by the model.
519 """
520

521 # Extract strain and hot spot data from the measurement_row
522 strain_data = measurement_row.filter(like=strain_handle)
523

524 # Hot spot data
525 hot_spot_data = []
526 for i in range(len(min_areas_data)):
527 hot_spot_data.append(min_areas_data[i].filter(like=hot_spot_handle))
528 hot_spot_data_filtered = np.array(hot_spot_data)
529

530 # Create a copy of the measurement_row to avoid modifying the original data
531 coupled_fingerprint_data_scaled = measurement_row.copy(deep=True)
532 strain_data_indices = [col for col in measurement_row.index if strain_handle in col]
533 hot_spot_data_indices = [col for col in fingerprints.columns if hot_spot_handle in

col]
534

535 # Defining column names
536 a_column_name = measurement_row.filter(like=a_handle).index
537 b_column_name = measurement_row.filter(like=b_handle).index
538 force_column_name = measurement_row.filter(like=force_handle).index
539 force_column_name_FP = min_areas_data[0].filter(like=force_handle).columns[0]
540

541 # Adding all load description columns to the DataFrame
542 for i in range(len(min_areas_data)):
543 coupled_fingerprint_data_scaled[a_column_name[i]] = a_interpolated[i]
544 coupled_fingerprint_data_scaled[b_column_name[i]] = b_interpolated[i]
545 coupled_fingerprint_data_scaled[force_column_name[i]] = np.sum(alpha[i] *

interpolated_betas[i] * min_areas_data[i].loc[:, force_column_name_FP])
546

547 # Update the copied DataFrame with the scaled hot spot data and the strain data
548 alpha = np.expand_dims(alpha, axis=-1)
549 alpha = np.expand_dims(alpha, axis=-1)
550 interpolated_betas = np.expand_dims(interpolated_betas, axis=-1)
551 coupled_fingerprint_data_scaled[strain_data_indices] = strain_data.values
552

553 # Update the hot spot data directly in the DataFrame without concatenation
554 coupled_fingerprint_data_scaled.loc[hot_spot_data_indices] = np.sum(alpha *

interpolated_betas * hot_spot_data_filtered , axis=(0, 1))
555

556 return coupled_fingerprint_data_scaled
557

558 ### END OF FUNCTION DEFINITIONS ###
559

560

561 ### START OF CODE ###
562

563 # Import statements
564 import numpy as np
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565 import pandas as pd
566 from scipy.optimize import minimize
567 import math
568

569 # Filter fingerprints based on boundary boxes as obtained by the cameras
570 a_values_measurement = measurement_row.filter(like=a_handle).values
571 b_values_measurement = measurement_row.filter(like=b_handle).values
572

573 # Remove NaN values using numpy
574 a_values_measurement = [x for x in a_values_measurement if not math.isnan(x)]
575 b_values_measurement = [x for x in b_values_measurement if not math.isnan(x)]
576

577 a_col_name = fingerprints.filter(like=a_handle).columns[0]
578 b_col_name = fingerprints.filter(like=b_handle).columns[0]
579 fingerprint_col_name = fingerprints.filter(like=fingerprint_handle).columns[0]
580

581 # Opening a dictionary to store fingerprints for different footsteps
582 fingerprints_dict = {}
583

584 # Iterate over the range of a_values_measurement
585 for i in range(len(a_values_measurement)):
586 # Construct the condition for the current i
587 condition = ((fingerprints[a_col_name] >= a_values_measurement[i] - a_box_boundary)
588 & (fingerprints[a_col_name] <= a_values_measurement[i] + a_box_boundary)
589 & (fingerprints[b_col_name] >= b_values_measurement[i] - b_box_boundary)
590 & (fingerprints[b_col_name] <= b_values_measurement[i] + b_box_boundary))
591

592 # Dictionary entry name
593 key_fp = f"footstep_{i}"
594

595 # Combine the condition with the previous conditions using OR
596 fingerprints_dict[key_fp] = fingerprints[condition]
597

598 # Zero replacement value
599 infinitely_small_value = 1*10**(-8)
600

601 # Determine the column index of the column where the fingerprint name identifier appears
602 fingerprint_index = fingerprints.columns.get_loc(fingerprint_handle)
603

604 # Reuse the filtered array for the second calculation
605 measurement_filtered = measurement_row.filter(like=strain_handle).filter(regex=

disabled_strain_pattern)
606

607 # Convert to numpy array for faster computation
608 measurement_array = measurement_filtered.values
609

610 # Replace zero values with infinitely small values
611 measurement_array[(measurement_array >= 0) & (abs(measurement_array) <

infinitely_small_value)] = infinitely_small_value
612 measurement_array[(measurement_array < 0) & (abs(measurement_array) <

infinitely_small_value)] = -infinitely_small_value
613

614 # Compute the relative relationships using numpy operations directly
615 relative_relationships_measurement = measurement_array[:, np.newaxis] / measurement_array
616

617 # Obtain the number of footsteps
618 n_footsteps = len(a_values_measurement)
619

620 if n_footsteps > 0:
621

622 # Determine gammas
623 gamma, alpha, gamma_keys, a_values_measurement , b_values_measurement =

determine_scale_factors_iteratively(fingerprints_dict=fingerprints_dict,
fingerprints=fingerprints, fingerprint_index=fingerprint_index, measurement_array
=measurement_array, a_values_measurement=a_values_measurement ,
b_values_measurement=b_values_measurement)

624

625 # Determine interpolation
626 interpolated_betas, min_areas_data, a_interpolated, b_interpolated, a_coupled,

b_coupled = determine_interpolated_betas(relative_relationships_measurement=
relative_relationships_measurement , alpha=alpha, fingerprints=fingerprints, gamma
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=gamma, d_a=d_a, d_b=d_b, fingerprint_handle=fingerprint_handle)
627

628 # Determine force scale factor
629 alpha = determine_alpha(measurement_row=measurement_row, interpolated_betas=

interpolated_betas, min_areas_data=min_areas_data)
630

631 # Scale new measurement point according to the scale factor together with the matched
fingerprint

632 coupled_fingerprint_data_scaled = scale_data(alpha=alpha, measurement_row=
measurement_row, interpolated_betas=interpolated_betas, min_areas_data=
min_areas_data, a_interpolated=a_interpolated, b_interpolated=b_interpolated)

633

634 else:
635 logger.info("Skipped␣0␣footstep␣row")
636 coupled_fingerprint_data_scaled = measurement_row
637

638 ### END OF CODE ###
639

640 return coupled_fingerprint_data_scaled , a_coupled, b_coupled, a_interpolated,
b_interpolated, alpha
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Rainflow Counting Source Code

1 import pandas as pd
2 import numpy as np
3 import logging
4

5 # Use the already configured logger
6 logger = logging.getLogger('shared_logger')
7

8 def run_rainflow_counting(
9 df, n_bins, hot_spot_handle, maximum_stress, minimum_stress,
10 frequency_col_name, half_cycles_column_name , full_cycles_column_name ,

stress_cycles_column_name
11 ):
12 """
13 Executes the rainflow counting process on a given stress dataset.
14

15 Parameters:
16 - df (DataFrame): The input DataFrame with stress values.
17 - n_bins (int): Number of bins for discretizing stress values.
18 - hot_spot_handle (str): Placeholder for specific handling (not implemented here).
19 - maximum_stress (float): Maximum stress value for binning.
20 - minimum_stress (float): Minimum stress value for binning.
21 - frequency_col_name (str): Name of the column for cycle frequencies.
22 - half_cycles_column_name (str): Name of the column for half-cycle stress values.
23 - full_cycles_column_name (str): Name of the column for full-cycle stress values.
24 - stress_cycles_column_name (str): Name of the column for combined stress values.
25

26 Returns:
27 - DataFrame: A DataFrame with rainflow counting results.
28 """
29

30 # Step 1: Apply peak-valley filtering to retain significant stress points.
31 def apply_peakvalley_filter(df):
32 """
33 Identifies and retains only the peaks and valleys in the stress data.
34

35 Parameters:
36 - df (DataFrame): DataFrame containing the stress values.
37

38 Returns:
39 - DataFrame: Filtered DataFrame with only peaks and valleys.
40 """
41 logger.info("Applying␣peak-valley␣filtering.")
42 stress = df.values
43 peakvalley_drop = np.zeros(len(df), dtype=bool)
44

45 # Identify peaks and valleys by checking neighboring values
46 for i in range(1, len(df) - 1):
47 if stress[i] > stress[i - 1] and stress[i] > stress[i + 1]:
48 continue # Peak

105
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49 elif stress[i] < stress[i - 1] and stress[i] < stress[i + 1]:
50 continue # Valley
51 else:
52 peakvalley_drop[i] = True # Not a peak or valley
53

54 # Filter out points that are neither peaks nor valleys
55 df = df[~pd.Series(peakvalley_drop)].reset_index(drop=True)
56 return df
57

58 # Filter the stress data to retain only peaks and valleys
59 df = apply_peakvalley_filter(df)
60

61 # Step 2: Discretize stress values into bins.
62 def apply_binning(df, n_bins, maximum_stress, minimum_stress):
63 """
64 Bins stress values into discrete intervals for analysis.
65

66 Parameters:
67 - df (DataFrame): DataFrame containing the stress values.
68 - n_bins (int): Number of bins.
69 - maximum_stress (float): Maximum stress value.
70 - minimum_stress (float): Minimum stress value.
71

72 Returns:
73 - list: Binned stress values.
74 - list: List of bin ranges and metadata.
75 """
76 logger.info("Applying␣stress␣value␣binning.")
77 stress = df.values
78 stress_range = abs(maximum_stress - minimum_stress)
79 bin_size = stress_range / n_bins
80 bins = []
81

82 # Generate bin ranges and metadata (start, end, average value, bin index)
83 start_value = minimum_stress
84 for i in range(n_bins):
85 end_value = start_value + bin_size
86 avg_value = (end_value + start_value) / 2
87 bins.append((start_value, end_value, avg_value, i))
88 start_value = end_value
89

90 # Map each stress value to the nearest bin's average value
91 bin_stress_values = [min(bins, key=lambda b: abs(b[2] - s))[2] for s in stress]
92 return bin_stress_values, bins
93

94 # Discretize the filtered stress data
95 bin_stress_values, bins = apply_binning(df, n_bins, maximum_stress, minimum_stress)
96

97 # Step 3: Identify full cycles using four-point counting.
98 def apply_fourpointcounting(bin_stress_values):
99 """
100 Applies four-point counting to detect full stress cycles.
101

102 Parameters:
103 - bin_stress_values (list): List of binned stress values.
104

105 Returns:
106 - list: List of identified full stress cycles.
107 - list: Residual stress values.
108 """
109 logger.info("Performing␣four-point␣cycle␣counting.")
110 stress = np.array(bin_stress_values)
111 rainflow_cycles = []
112

113 while True:
114 # Look for a four-point cycle in the data
115 for n in range(len(stress) - 3):
116 S1, S2, S3, S4 = stress[n:n + 4]
117 S_inner = abs(S2 - S3)
118 S_outer = abs(S1 - S4)
119
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120 # Check the cycle conditions
121 if (S1 > S4 and S_inner <= S_outer and S1 >= S3 and S4 <= S2) or \
122 (S1 < S4 and S_inner <= S_outer and S1 <= S3 and S4 >= S2):
123 rainflow_cycles.append((S2, S3))
124 # Remove the identified cycle from the data
125 stress = np.concatenate((stress[:n + 1], stress[n + 3:]))
126 break
127 else:
128 break
129

130 return rainflow_cycles, stress.tolist()
131

132 # Perform four-point rainflow counting
133 rainflow_cycles, residue = apply_fourpointcounting(bin_stress_values)
134

135 # Step 4: Export the results to a DataFrame.
136 def export_rainflow(rainflow_cycles, residue):
137 """
138 Converts the rainflow counting results into a DataFrame.
139

140 Parameters:
141 - rainflow_cycles (list): Full cycles from the analysis.
142 - residue (list): Remaining stress points not part of a full cycle.
143

144 Returns:
145 - DataFrame: Rainflow counting summary.
146 """
147 logger.info("Exporting␣rainflow␣counting␣results.")
148

149 # Process full cycles (absolute stress differences)
150 full_cycles = [abs(c[0] - c[1]) for c in rainflow_cycles]
151 df_full = pd.DataFrame({full_cycles_column_name: full_cycles})
152 df_full = df_full.groupby(full_cycles_column_name).size().reset_index(name=

frequency_col_name)
153

154 # Process half cycles (absolute stress differences in residue)
155 half_cycles = [abs(residue[i + 1] - residue[i]) for i in range(len(residue) - 1)]
156 df_half = pd.DataFrame({half_cycles_column_name: half_cycles})
157 df_half = df_half.groupby(half_cycles_column_name).size().reset_index(name=

frequency_col_name)
158 df_half[frequency_col_name] *= 0.5 # Adjust frequency for half cycles
159

160 # Combine full and half cycle results into one DataFrame
161 df_combined = pd.concat([
162 df_full.rename(columns={full_cycles_column_name: stress_cycles_column_name}),
163 df_half.rename(columns={half_cycles_column_name: stress_cycles_column_name})
164 ])
165 df_combined = df_combined.groupby(stress_cycles_column_name)[frequency_col_name].sum

().reset_index()
166

167 return df_combined
168

169 # Export the rainflow counting results
170 export_df = export_rainflow(rainflow_cycles, residue)
171 return export_df
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Controlled Location Loading Result

Data

# DAM GP SC a
[mm]

b
[mm]

Force
[N]

L2
[µε]

L4
[µε]

L7
[µε]

L9
[µε]

R2
[µε]

R4
[µε]

R7
[µε]

R9
[µε]

1

1 3 3 1495.0 300.0 -834.0 27.60 59.80 69.90 32.20 47.20 110.78 138.01 58.40
2 3 3 1494.6 300.2 -834.0 27.60 59.82 69.86 32.17 47.26 110.87 137.87 58.40
3 3 3 1495.0 300.0 -834.0 30.58 67.63 86.98 36.59 38.53 129.72 169.81 57.92
4 3 3 1489.7 304.1 -1011.5 33.13 71.68 82.98 38.32 57.99 136.13 168.09 71.16

2

1 3 3 2654.0 217.0 -834.0 5.08 11.20 20.40 34.90 5.18 11.60 22.20 40.40
2 3 3 2655.9 216.6 -841.0 5.06 11.18 20.41 34.87 5.17 11.58 22.16 40.34
3 3 3 2654.0 217.0 -834.0 4.30 12.22 27.36 42.66 -1.36 8.60 24.04 45.40
4 3 3 2617.0 196.5 -790.7 5.85 13.04 24.54 41.04 5.80 12.92 24.16 40.48

3

1 3 3 1334.0 125.0 -834.0 49.60 116.05 111.64 47.80 34.40 76.40 73.80 33.30
2 3 3 1333.0 124.6 -834.3 49.70 116.26 111.74 47.81 34.44 76.35 73.65 33.23
3 3 3 1334.0 125.0 -834.0 54.73 146.12 135.73 50.39 27.54 88.74 84.55 27.73
4 3 3 1348.4 135.9 -1041.5 59.85 139.54 137.24 58.86 44.09 98.32 96.86 43.42

4

1 3 3 459.0 154.0 -834.0 79.40 78.40 39.30 17.40 60.00 61.60 33.30 15.00
2 3 3 459.0 154.5 -834.5 79.01 78.34 39.34 17.40 59.97 61.74 33.38 15.04
3 3 3 459.0 154.0 -834.0 85.24 85.29 48.49 16.67 79.51 76.36 35.16 9.66
4 3 3 534.4 156.9 -871.5 80.63 92.63 46.43 20.50 62.43 73.61 39.46 17.77

5

1 3 3 498.0 133.0 -834.0 83.70 88.90 43.80 19.20 54.50 61.00 33.80 15.30
2 3 3 487.6 133.6 -847.0 84.90 88.47 43.66 19.19 55.61 61.11 33.76 15.30
3 3 3 498.0 133.0 -834.0 91.80 98.24 52.08 16.92 70.00 70.54 34.24 9.90
4 3 3 551.8 145.8 -910.4 86.32 102.61 51.00 22.44 61.96 75.50 41.04 18.54

6

1 3 3 2347.0 254.0 -834.0 12.30 27.20 48.70 54.20 15.10 34.30 69.10 82.60
2 3 3 2340.3 253.4 -824.0 12.31 27.24 48.84 53.64 15.18 34.41 69.24 81.28
3 3 3 2347.0 254.0 -834.0 11.60 30.27 66.09 76.56 7.84 35.61 76.69 95.09
4 3 3 2244.1 208.1 -812.6 15.73 35.14 66.79 64.17 16.60 37.31 72.80 70.93

7

1 3 3 1502.0 198.0 -834.0 36.90 83.80 103.38 45.10 37.60 85.80 105.97 46.10
2 3 3 1502.4 198.0 -834.4 36.90 83.89 103.39 45.10 37.62 85.84 106.01 46.11
3 3 3 1502.0 198.0 -834.0 40.12 93.35 120.10 49.72 27.50 101.18 136.40 44.28
4 3 3 1503.4 216.8 -1023.1 43.08 97.27 119.25 52.47 48.20 110.68 137.69 59.50

8

1 3 3 557.0 227.0 -834.0 60.30 73.90 39.50 17.70 75.80 91.00 45.60 20.10
2 3 3 557.7 227.0 -833.3 60.28 73.96 39.47 17.71 75.65 90.99 45.57 20.12
3 3 3 557.0 227.0 -834.0 69.33 83.29 47.60 16.19 85.76 106.86 48.40 12.85
4 3 3 569.6 216.8 -971.2 72.14 90.60 47.88 21.43 85.07 104.50 52.83 23.38

9

1 3 3 300.0 25.0 -834.0 97.80 73.40 34.70 15.00 26.20 26.90 17.70 8.27
2 3 3 275.2 22.8 -886.9 101.01 73.30 34.65 14.99 26.74 26.91 17.63 8.27
3 3 3 300.0 25.0 -834.0 104.40 80.19 40.87 12.73 39.67 35.07 18.41 4.60
4 3 3 385.3 77.0 -855.8 96.90 83.31 40.01 17.43 41.36 41.30 24.81 11.46

10 1 3 3 1661.0 3.0 -834.0 47.40 111.91 178.13 77.70 17.80 36.80 45.00 22.90

108
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[mm]

b
[mm]

Force
[N]

L2
[µε]

L4
[µε]

L7
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[µε]
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[µε]

R7
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2 3 3 1659.1 2.7 -833.9 47.59 112.17 177.85 77.59 17.87 36.76 44.89 22.85
3 3 3 1661.0 3.0 -834.0 48.78 134.20 222.48 88.57 9.97 37.82 58.20 22.77
4 3 3 1647.1 24.3 -1040.9 57.93 136.28 212.36 92.54 24.67 51.65 64.80 32.08

11

1 3 3 1147.0 12.0 -834.0 71.40 168.16 120.27 50.80 23.60 47.80 40.30 19.50
2 3 3 1144.8 11.9 -835.8 71.72 168.45 120.29 50.77 23.73 47.90 40.33 19.54
3 3 3 1147.0 12.0 -834.0 74.32 204.17 137.08 48.45 21.27 55.32 42.55 14.93
4 3 3 1123.6 19.2 -996.5 85.78 200.26 138.80 58.65 29.58 60.12 49.40 23.75

12

1 3 3 2162.0 201.0 -834.0 18.70 41.80 80.50 66.50 19.20 43.10 84.10 69.80
2 3 3 2163.1 200.6 -835.1 18.70 41.86 80.54 66.66 19.18 43.10 84.02 69.71
3 3 3 2162.0 201.0 -834.0 18.22 49.34 112.52 87.02 7.50 43.28 95.22 70.64
4 3 3 2109.7 160.5 -972.6 25.34 57.42 114.44 86.14 22.12 49.36 92.30 68.80

13

1 3 3 1101.0 148.0 -834.0 55.60 128.03 87.10 37.80 42.70 95.30 67.60 30.30
2 3 3 1114.7 147.5 -827.7 54.65 126.30 87.52 38.00 41.98 93.78 67.71 30.35
3 3 3 1101.0 148.0 -834.0 65.78 168.80 107.56 40.08 34.42 100.40 66.54 20.62
4 3 3 1073.8 126.3 -992.8 71.06 162.98 106.46 46.00 47.92 105.04 73.42 33.20

14

1 3 3 1431.0 26.0 -834.0 55.80 132.42 149.27 62.60 22.50 46.80 49.50 24.00
2 3 3 1433.6 26.0 -836.2 55.80 132.44 149.83 62.87 22.53 46.87 49.77 24.07
3 3 3 1431.0 26.0 -834.0 54.49 149.51 171.71 64.11 16.19 53.43 61.80 21.56
4 3 3 1404.3 42.6 -991.8 65.81 156.01 168.38 70.77 29.13 61.33 63.76 30.37

15

1 3 3 385.0 279.0 -834.0 48.20 45.80 26.40 12.00 88.60 75.60 36.90 16.20
2 3 3 379.1 279.2 -844.3 48.47 45.80 26.36 12.02 89.11 75.65 36.91 16.19
3 3 3 385.0 279.0 -834.0 60.60 54.40 34.03 12.27 106.72 87.28 36.47 8.17
4 3 3 421.9 226.4 -866.4 63.60 61.12 32.87 14.82 79.90 74.25 37.52 16.60

16

1 3 3 1571.0 124.0 -834.0 41.30 95.80 133.34 57.10 29.40 64.90 84.80 38.30
2 3 3 1568.4 123.9 -834.1 41.43 96.12 132.91 56.95 29.42 64.91 84.71 38.28
3 3 3 1571.0 124.0 -834.0 43.75 112.70 155.94 60.09 18.51 72.18 104.65 34.14
4 3 3 1536.8 134.2 -1001.7 49.93 115.65 152.46 65.33 37.23 82.64 104.26 46.74

17

1 3 3 1624.0 195.0 -834.0 33.80 76.70 111.83 49.30 34.00 77.10 112.58 49.50
2 3 3 1623.2 194.7 -834.0 33.86 76.82 111.67 49.26 33.96 77.08 112.30 49.50
3 3 3 1624.0 195.0 -834.0 35.15 89.83 134.73 52.50 22.98 87.07 137.08 46.62
4 3 3 1627.0 194.2 -1031.7 41.78 94.77 138.56 61.22 41.83 95.00 138.80 61.28

18

1 3 3 2411.0 113.0 -834.0 13.50 30.60 62.40 83.20 10.40 22.80 39.50 47.00
2 3 3 2411.3 113.3 -835.4 13.48 30.71 62.51 82.98 10.39 22.83 39.57 46.87
3 3 3 2411.0 113.0 -834.0 12.08 33.40 76.73 102.65 0.35 19.80 43.40 56.75
4 3 3 2297.8 115.4 -744.6 15.38 35.08 71.75 77.85 11.55 25.35 44.50 44.80

19

1 3 3 1878.0 349.0 -834.0 17.50 37.20 55.00 30.00 35.90 83.70 164.77 85.30
2 3 3 1878.1 349.1 -834.1 17.48 37.17 55.10 30.01 35.86 83.66 164.52 85.26
3 3 3 1878.0 349.0 -834.0 16.77 36.28 62.47 33.07 23.85 99.12 213.08 90.33
4 3 3 1831.5 365.5 -991.0 20.32 42.77 59.88 31.92 46.02 107.77 204.30 101.13

20

1 3 3 1456.0 94.0 -834.0 48.20 112.97 132.24 56.00 28.80 62.80 70.30 32.20
2 3 3 1456.6 94.0 -834.5 48.15 112.94 132.34 56.03 28.89 62.88 70.39 32.23
3 3 3 1456.0 94.0 -834.0 50.40 139.35 163.50 59.33 19.83 66.55 79.93 28.35
4 3 3 1453.5 82.1 -1012.6 60.00 141.11 164.40 69.50 33.65 72.75 80.95 37.40

21

1 3 3 718.0 100.0 -834.0 81.30 131.71 64.50 28.00 43.10 70.50 40.90 18.70
2 3 3 716.3 99.9 -835.8 81.55 131.44 64.53 28.04 43.17 70.52 40.95 18.78
3 3 3 718.0 100.0 -834.0 92.78 166.66 79.46 26.10 40.76 73.02 39.60 11.20
4 3 3 743.1 85.4 -980.2 97.20 163.52 80.48 34.86 46.70 79.00 47.08 21.70

22

1 3 3 353.0 2.0 -834.0 105.80 87.50 41.10 17.70 22.30 25.90 17.80 8.40
2 3 3 348.3 1.6 -841.4 106.46 87.36 41.02 17.73 22.35 25.92 17.78 8.40
3 3 3 353.0 2.0 -834.0 113.06 96.57 46.77 14.26 34.27 33.77 19.04 5.60
4 3 3 484.6 34.0 -768.7 95.59 99.48 46.96 20.27 28.54 34.93 22.64 10.59

23

1 3 3 519.0 307.0 -834.0 41.80 50.70 30.20 13.90 94.40 104.38 49.90 21.70
2 3 3 519.4 306.7 -833.5 41.83 50.85 30.23 13.91 93.97 104.18 49.88 21.70
3 3 3 519.0 307.0 -834.0 62.05 69.00 41.75 15.60 92.25 108.80 48.65 13.50
4 3 3 450.2 255.4 -1102.5 72.10 74.35 41.30 18.75 110.93 107.84 53.20 23.40

24

1 3 3 984.0 203.0 -834.0 51.50 112.21 68.10 30.20 54.30 119.07 71.40 31.50
2 3 3 984.2 203.0 -834.1 51.52 112.07 68.14 30.17 54.32 118.90 71.47 31.49
3 3 3 984.0 203.0 -834.0 62.26 148.62 83.76 29.84 52.00 143.10 78.88 25.48
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b
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L4
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[µε]

L9
[µε]

R2
[µε]

R4
[µε]

R7
[µε]

R9
[µε]

4 3 3 998.0 198.9 -1015.8 62.94 137.69 85.04 37.62 64.90 142.31 87.04 38.40

25

1 3 3 853.0 187.0 -834.0 58.60 115.23 62.50 27.60 56.10 110.14 60.30 26.80
2 3 3 829.5 186.7 -855.0 61.13 116.63 62.50 27.63 58.32 111.24 60.27 26.82
3 3 3 853.0 187.0 -834.0 65.91 144.31 75.03 26.86 56.04 135.19 70.02 22.55
4 3 3 857.1 180.0 -1012.0 72.45 142.25 77.36 34.10 66.64 130.05 72.03 32.11

26

1 3 3 151.0 225.0 -834.0 45.00 29.80 16.30 7.38 55.50 34.20 17.50 7.81
2 3 3 150.0 225.2 -837.5 44.97 29.79 16.25 7.38 55.44 34.16 17.55 7.82
3 3 3 151.0 225.0 -834.0 47.86 28.39 15.20 4.50 56.46 36.28 16.43 2.31
4 3 3 153.7 212.8 -835.1 47.06 30.79 16.60 7.51 53.63 33.68 17.50 7.81

27

1 3 3 786.0 343.0 -834.0 31.60 55.60 36.20 17.00 87.60 157.22 77.70 33.40
2 3 3 784.8 343.4 -834.9 31.55 55.57 36.17 16.94 87.72 156.91 77.71 33.38
3 3 3 786.0 343.0 -834.0 36.91 59.45 36.92 13.38 92.76 199.61 89.64 23.58
4 3 3 728.7 360.7 -1024.5 35.36 58.66 39.15 18.41 115.55 189.16 91.68 39.34

28

1 3 3 2621.0 228.0 -834.0 5.92 13.10 23.60 38.00 6.20 13.90 27.00 47.40
2 3 3 2625.9 225.5 -850.7 5.89 13.01 23.60 38.21 6.18 13.90 26.91 47.09
3 3 3 2621.0 228.0 -834.0 6.30 13.90 29.00 44.30 -1.10 10.10 27.10 49.20
4 3 3 2613.1 195.2 -817.9 6.16 13.70 25.80 42.80 6.16 13.80 25.80 43.00

29

1 3 3 1022.0 262.0 -834.0 41.40 89.40 59.20 26.80 61.90 139.78 85.20 36.90
2 3 3 1022.3 262.0 -834.1 41.40 89.26 59.20 26.78 61.93 139.42 85.23 36.94
3 3 3 1022.0 262.0 -834.0 48.79 116.38 72.31 25.68 57.46 167.00 97.25 30.78
4 3 3 1006.8 252.3 -1034.9 53.65 115.53 74.83 33.71 75.81 169.17 101.96 44.33

30

1 3 3 699.0 238.0 -834.0 53.90 85.20 46.20 20.80 72.20 113.66 56.90 25.00
2 3 3 697.9 238.1 -834.5 53.88 85.17 46.18 20.79 72.26 113.52 56.80 24.94
3 3 3 699.0 238.0 -834.0 64.50 101.02 54.23 18.97 77.27 139.50 65.30 18.95
4 3 3 701.0 242.2 -1024.9 65.10 103.05 56.25 25.35 89.62 141.14 70.63 30.95

31

1 3 3 1648.0 21.0 -834.0 46.60 109.88 172.15 74.60 19.50 40.60 50.90 25.30
2 3 3 1647.2 20.4 -834.7 46.80 110.16 171.92 74.62 19.44 40.54 50.86 25.29
3 3 3 1648.0 21.0 -834.0 47.60 133.50 210.76 80.04 9.16 39.38 60.88 22.50
4 3 3 1627.8 19.7 -1006.2 57.48 135.39 205.91 88.80 23.68 49.34 60.82 30.18

32

1 3 3 1459.0 108.0 -834.0 46.70 109.21 128.29 54.50 30.10 66.20 74.70 34.00
2 3 3 1459.2 107.9 -834.2 46.72 109.30 128.33 54.47 30.14 66.09 74.77 33.93
3 3 3 1459.0 108.0 -834.0 49.00 125.25 144.80 56.10 20.80 69.00 81.65 27.80
4 3 3 1413.0 103.7 -949.9 55.65 130.54 142.34 60.40 34.85 76.30 81.40 37.05

33

1 3 3 1624.0 285.0 -834.0 26.50 58.00 79.10 36.50 41.20 95.80 144.34 62.20
2 3 3 1626.1 284.9 -835.5 26.51 57.94 79.36 36.68 41.19 95.84 144.40 62.33
3 3 3 1624.0 285.0 -834.0 26.77 63.87 95.30 38.50 29.83 110.97 174.83 59.37
4 3 3 1576.8 297.3 -988.2 31.27 67.97 87.00 40.23 51.97 121.49 171.37 73.20

34

1 3 3 383.0 213.0 -834.0 64.50 57.10 30.40 13.60 73.70 63.80 32.70 14.50
2 3 3 383.2 213.1 -834.1 64.23 57.14 30.37 13.64 73.39 63.86 32.72 14.51
3 3 3 383.0 213.0 -834.0 71.62 61.34 37.62 13.44 95.96 76.72 32.20 6.94
4 3 3 444.9 190.7 -831.9 70.22 68.72 35.62 15.88 68.64 67.38 35.12 15.66

35

1 3 3 1181.0 194.0 -834.0 46.60 107.07 82.50 36.30 46.60 107.09 82.50 36.30
2 3 3 1184.3 193.8 -833.1 46.51 106.76 82.67 36.37 46.49 106.66 82.55 36.32
3 3 3 1181.0 194.0 -834.0 50.93 126.63 94.88 35.95 41.53 129.08 94.80 29.08
4 3 3 1151.2 198.6 -1001.8 56.40 128.79 95.58 42.15 57.90 132.65 97.93 43.05

36

1 3 3 1648.0 135.0 -834.0 37.80 87.30 134.69 58.70 28.60 63.40 91.50 41.60
2 3 3 1649.1 135.0 -834.9 37.84 87.29 134.56 58.80 28.61 63.41 91.58 41.71
3 3 3 1648.0 135.0 -834.0 37.07 89.40 140.13 58.10 21.20 68.40 109.97 39.93
4 3 3 1638.4 164.2 -915.3 39.37 90.10 135.57 59.47 34.23 76.73 111.69 50.03

37

1 3 3 857.0 42.0 -834.0 83.70 164.86 84.90 36.40 30.40 56.90 38.10 17.90
2 3 3 856.4 42.0 -834.3 83.78 164.34 84.93 36.42 30.37 56.90 38.08 17.85
3 3 3 857.0 42.0 -834.0 86.53 196.53 99.03 34.60 30.98 69.63 40.58 12.70
4 3 3 854.8 52.3 -984.4 97.00 189.85 98.20 42.15 37.93 71.08 46.73 21.78

38

1 3 3 1687.0 94.0 -834.0 39.60 92.10 150.87 66.40 24.60 53.50 77.10 36.40
2 3 3 1686.7 94.2 -834.3 39.58 92.04 150.45 66.35 24.64 53.61 77.25 36.42
3 3 3 1687.0 94.0 -834.0 38.50 99.15 172.05 69.30 15.95 58.15 99.85 37.55
4 3 3 1668.0 116.1 -956.8 44.30 102.55 162.65 71.40 30.65 67.35 97.31 45.05

39 1 3 3 236.0 346.0 -834.0 27.70 25.60 16.30 7.60 87.20 59.00 28.00 12.10
2 3 3 235.5 346.2 -834.7 27.82 25.67 16.31 7.59 86.60 58.93 27.97 12.16
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3 3 3 236.0 346.0 -834.0 30.95 24.90 16.25 5.30 94.15 62.75 25.60 3.50
4 3 3 257.5 300.1 -730.2 33.70 28.30 16.80 7.75 72.20 50.40 24.45 10.65

40

1 3 3 258.0 259.0 -834.0 47.80 37.40 21.10 9.61 75.50 52.70 26.20 11.50
2 3 3 257.0 259.3 -836.2 47.70 37.45 21.08 9.61 75.10 52.63 26.13 11.53
3 3 3 258.0 259.0 -834.0 54.98 40.58 24.36 7.56 85.36 57.60 23.68 3.52
4 3 3 304.9 207.4 -798.1 59.54 46.66 24.80 11.12 65.44 50.54 26.12 11.66

41

1 3 3 214.0 159.0 -834.0 64.60 43.00 22.00 9.76 50.80 36.20 19.80 8.96
2 3 3 209.0 157.8 -845.1 65.04 43.04 21.92 9.75 50.73 35.97 19.70 8.92
3 3 3 214.0 159.0 -834.0 68.90 43.40 22.70 5.80 62.00 42.60 20.00 4.40
4 3 3 229.7 175.9 -870.4 65.70 45.40 23.50 10.50 57.80 41.30 22.10 9.98

42

1 3 3 349.0 179.0 -834.0 71.60 58.60 30.20 13.50 64.50 53.90 28.60 12.80
2 3 3 349.5 179.0 -833.2 71.40 58.59 30.19 13.41 64.36 53.87 28.59 12.80
3 3 3 349.0 179.0 -834.0 78.24 61.02 35.70 12.24 82.60 61.48 27.08 6.70
4 3 3 343.2 159.6 -898.8 81.04 65.52 33.24 14.70 63.80 53.92 29.24 13.18

43

1 3 3 352.0 33.0 -834.0 101.10 82.40 38.90 16.80 29.20 30.80 20.00 9.33
2 3 3 335.9 30.6 -863.3 103.26 82.30 38.93 16.86 29.48 30.81 19.90 9.31
3 3 3 352.0 33.0 -834.0 114.32 99.06 48.28 14.32 37.74 36.40 19.18 4.70
4 3 3 467.3 65.0 -876.2 102.69 102.81 49.02 21.24 40.24 45.50 27.84 12.90

44

1 3 3 1873.0 304.0 -834.0 20.40 44.20 71.20 37.90 33.40 77.40 151.15 77.40
2 3 3 1881.0 304.4 -840.7 20.37 44.20 71.46 38.25 33.43 77.38 151.59 78.44
3 3 3 1873.0 304.0 -834.0 20.77 45.50 86.05 44.52 22.37 86.93 187.53 85.45
4 3 3 1883.2 306.2 -1015.1 24.42 52.98 85.27 45.77 40.37 93.50 183.05 95.32

45

1 3 3 1173.0 313.0 -834.0 31.50 67.50 54.80 25.50 62.20 146.79 109.13 46.50
2 3 3 1184.3 312.8 -830.0 31.15 67.03 55.02 25.56 61.32 144.86 109.62 46.68
3 3 3 1173.0 313.0 -834.0 37.82 82.88 65.00 25.04 52.76 174.82 122.14 35.90
4 3 3 1155.6 308.4 -1008.0 39.08 84.14 66.78 30.94 75.42 177.20 128.62 54.88

46

1 3 3 2561.0 46.0 -834.0 9.12 21.00 44.20 73.30 6.23 13.40 21.00 24.90
2 3 3 2562.6 45.6 -838.5 9.12 21.00 44.18 73.03 6.21 13.37 20.94 24.90
3 3 3 2561.0 46.0 -834.0 9.70 25.25 59.83 91.45 -0.45 11.65 25.50 32.68
4 3 3 2457.5 63.6 -761.0 11.58 26.65 55.73 78.80 7.65 16.53 26.68 30.30

47

1 3 3 1603.0 70.0 -834.0 44.60 104.58 153.68 65.70 24.20 51.90 67.00 31.60
2 3 3 1602.9 69.7 -833.9 44.67 104.62 153.62 65.65 24.15 51.89 67.04 31.57
3 3 3 1603.0 70.0 -834.0 44.10 119.30 184.20 69.10 14.05 55.85 86.90 29.60
4 3 3 1598.8 84.3 -1002.2 52.50 122.62 178.12 76.40 30.50 66.00 86.45 40.30

48

1 3 3 1270.0 167.0 -834.0 47.10 109.11 95.30 41.40 40.70 92.40 81.40 36.10
2 3 3 1270.0 166.9 -834.5 47.13 109.22 95.34 41.39 40.71 92.46 81.46 36.09
3 3 3 1270.0 167.0 -834.0 49.77 131.03 109.90 40.43 36.17 111.93 95.20 30.20
4 3 3 1265.5 157.1 -992.7 57.60 133.83 116.03 50.23 47.23 106.83 93.57 41.63

49

1 3 3 289.0 285.0 -834.0 43.60 36.80 21.50 9.84 83.60 60.80 29.70 13.00
2 3 3 294.8 285.0 -822.6 43.17 36.86 21.43 9.81 82.62 60.91 29.71 13.05
3 3 3 289.0 285.0 -834.0 53.68 41.95 25.40 7.60 92.33 64.93 27.13 4.60
4 3 3 321.0 232.4 -823.5 56.53 46.38 25.28 11.40 73.93 57.73 29.20 12.93

50

1 3 3 1801.0 10.0 -834.0 40.90 95.80 177.82 85.10 16.70 34.80 46.60 24.70
2 3 3 1796.9 10.1 -831.2 40.91 95.91 176.93 84.50 16.65 34.82 46.59 24.64
3 3 3 1801.0 10.0 -834.0 43.64 118.56 224.34 95.28 6.32 28.20 45.88 22.04
4 3 3 1718.0 15.4 -987.1 52.14 122.47 207.99 93.82 21.52 44.94 58.30 29.64



K
Frequency per Stress Range Table

See next page

112



113

∆σ [MPa] f0 f1 f2 f3 f4 f5 f6 f7
1 129 266.5 154.5 281 163.5 302 118 242.5
2 44.5 26.5 53.5 14 42.5 7.5 48.5 35.5
3 24.5 7 23.5 0 30.5 0.5 28.5 10
4 21 1 13 0 10 0 24 3
5 11.5 2 6.5 0 5 0 15 2.5
6 10.5 1.5 3 0 8 0 8.5 2
7 9 0 5.5 0 6 0 5.5 3
8 8.5 0 4 0 2 0 16 0.5
9 5.5 0 3 0 2.5 0 4.5 0
10 7 0 5.5 0 2 0 7.5 0
11 4.5 0 3 0 2 0 2.5 0
12 2.5 0 3 0 4 0 3.5 0
13 2 0 2.5 0 1.5 0 2.5 0
14 4.5 0 1 0 0 0 3.5 0
15 1.5 0 1.5 0 0 0 2.5 0
16 1 0 0.5 0 0 0 2 0
17 2 0 0 0 0 0 1 0
18 2 0 0 0 0 0 0.5 0
19 1.5 0 0 0 0 0 0.5 0
20 0.5 0 0 0 0 0 0 0
21 0.5 0 0 0 0 0 4 0
22 2.5 0 0 0 0 0 1.5 0
23 3 0 0 0 0 0 2.5 0
24 3 0 0 0 0 0 2.5 0
25 0.5 0 0 0 0 0 2.5 0
26 0 0 0 0 0 0 1 0
27 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0
29 0.5 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0
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∆σ [MPa] f8 f9 f10 f11 f12 f13 f14 f15
1 123 246 125 269 126 270 166 289.5
2 51 27.5 58 21 47 22.5 65 15
3 25 9 23 5.5 28.5 5 27 0
4 23 6 17.5 3 19 3.5 14 0
5 12.5 2.5 17 2 8.5 3 3 0
6 12 2 9.5 1 14 0 5 0
7 7 3 7.5 0.5 9.5 0 5.5 0
8 12.5 0 7.5 0 6 0 6.5 0
9 4.5 0 6.5 0 3.5 0 2 0
10 4.5 0 4.5 0 4.5 0 4 0
11 4.5 0 2.5 0 5 0 1.5 0
12 6 0 3 0 5.5 0 0.5 0
13 4 0 1 0 2.5 0 1.5 0
14 2 0 2.5 0 1.5 0 2.5 0
15 2.5 0 1.5 0 3 0 1 0
16 1 0 0 0 2 0 0 0
17 0.5 0 0.5 0 0.5 0 0 0
18 1.5 0 0.5 0 0.5 0 0 0
19 1.5 0 1 0 1 0 0 0
20 1.5 0 0 0 0 0 0 0
21 1 0 2 0 1 0 0 0
22 0.5 0 1.5 0 1.5 0 0 0
23 1 0 2 0 3 0 0 0
24 3.5 0 4 0 4 0 0 0
25 1.5 0 0.5 0 1.5 0 0 0
26 1 0 0 0 0 0 0 0
27 0 0 0.5 0 0 0 0 0
28 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0
33 0 0 0.5 0 0 0 0 0
34 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0
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∆σ [MPa] f16 f17 f18 f19 f20 f21 f22 f23
1 167.5 298.5 122 248 132.5 251.5 125.5 261
2 64 9 58.5 29 53.5 36.5 49.5 20
3 28 0.5 25.5 12 25.5 7 28.5 6.5
4 13 0 20 5.5 16 4 20 3
5 6 0 16.5 4.5 13 3.5 13 2.5
6 5.5 0 5.5 0.5 9.5 1 11 0
7 2.5 0 8 0.5 6.5 0.5 8.5 0
8 2 0 5 0 6 0.5 6 0
9 2 0 7 0 4 0 3.5 0
10 3 0 5 0 5 0 5 0
11 1 0 3 0 5 0 6 0
12 1 0 2.5 0 2 0 1.5 0
13 0.5 0 3 0 3 0 1 0
14 0.5 0 3 0 3.5 0 2.5 0
15 0 0 1.5 0 0 0 0.5 0
16 0 0 1.5 0 1.5 0 0.5 0
17 0 0 0.5 0 1.5 0 0.5 0
18 0 0 1.5 0 0 0 1 0
19 0 0 1 0 2 0 1 0
20 0 0 2.5 0 0 0 0 0
21 0 0 1 0 0.5 0 2.5 0
22 0 0 0.5 0 2 0 2.5 0
23 0 0 3 0 2 0 2 0
24 0 0 3 0 3.5 0 3 0
25 0 0 0 0 0 0 0.5 0
26 0 0 0.5 0 0 0 0 0
27 0 0 0 0 0.5 0 0.5 0
28 0 0 0.5 0 0.5 0 0 0
29 0 0 0.5 0 0 0 0 0
30 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0



L
Endurance Limit Aluminium Alloy

Details

∆σ [MPa] Nx

1 ∞
2 ∞
3 ∞
4 ∞
5 ∞
6 51.0E+06
7 22.1E+06
8 10.7E+06
9 5.6E+06
10 3.8E+06
11 2.7E+06
12 2.0E+06
13 1.5E+06
14 1.2E+06
15 945.3E+03
16 758.7E+03
17 617.1E+03
18 507.9E+03
19 422.4E+03
20 354.7E+03
21 300.4E+03
22 256.3E+03
23 220.3E+03
24 190.6E+03
25 165.8E+03

∆σ [MPa] Nx

26 145.1E+03
27 127.6E+03
28 112.7E+03
29 100.0E+03
30 89.1E+03
31 79.7E+03
32 71.5E+03
33 64.4E+03
34 58.2E+03
35 52.7E+03
36 47.9E+03
37 43.6E+03
38 39.8E+03
39 36.4E+03
40 33.4E+03
41 30.7E+03
42 28.3E+03
43 26.1E+03
44 24.2E+03
45 22.4E+03
46 20.8E+03
47 19.3E+03
48 18.0E+03
49 16.7E+03
50 15.6E+03

Table L.1: Endurance limit of aluminium alloy welds with detail category 12-3,4. [23]
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