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Abstract

Major advancements over the last few decades in communication networks gave rise to the
new paradigm of Networked Control Systems (NCSs). Within this paradigm, sensing and
actuation signals are exchanged among various parts of a single system or among many
subsystems via communication networks. Although this enables one to perform more complex
tasks than traditional control paradigms, it comes at the cost of complicating the design phase
and the required analysis tools. One of the major challenges when considering a network is
quantization effect which affects the performance of any control laws that were designed
without taking the network effects into account.

Even if the NCS paradigm is well established, few works are available on adaptive methods for
NCSs: this MSc thesis establishes novel adaptive control approaches that attain asymptotic
tracking for linear systems and switched linear systems with parametric uncertainties, when
input measurements are quantized due to the presence of a communication network closing
the control loop. In addition to enlarging the class of systems for which the adaptive quantized
control can be solved, a hybrid control policy is applied to a novel dynamic quantizer with
dynamic offset to address the tracking problem.

The MSc thesis is split into two parts: in the first part we consider the model reference
adaptive control of a linear uncertain system, where a Lyapunov-based approach is used to
derive the adaptive adjustments for the dynamic range, the dynamic offset and the control
parameters. In the second part, the approach is extended to switched uncertain linear systems
with dwell-time switching, where a new time-varying Lyapunov-like function is adopted: it
is proven analytically that the new Lyapunov function we introduce, overcomes the need
for zooming-out at every time instant in order to compensate the possible increment of the
Lyapunov function.

The proposed quantized adaptive control schemes are applied to two benchmark examples:
an electro-hydraulic system and the piecewise linear model of the NASA GTM aircraft, re-
spectively.
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List of Notation

The notations used in the MSc thesis are standard:

N+: the set of non-negative integers;

R+
0 : the set of non-negative real numbers including zero;

λmax(X), (λmin(X)): the largest (smallest) eigenvalue of matrix X;

‖X‖ =
√
λmax(XXT ): the induced 2-norm of matrix X. The superscript T represents

the transpose of matrix X;

‖x‖ =
√∑n

i=1|xi|
2: the Euclidean norm of a vector x ∈ Rn;

tr[X]: the trace of a square matrix X;

L∞ class: a vector signal x ∈ Rn is said to belong to L∞ class (x ∈ L∞), if max
t≥0

∥∥x(t)
∥∥ <

∞, ∀t ≥ 0.
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Chapter 1

Introduction

With its clearly defined goal of designing control systems that can adapt to parametric un-
certainties and changing conditions, adaptive control constitutes a flourishing research area
within the control and systems society [4], [5], providing significant advantages in several
application domains [6], [7], [8], [9].

Although the research field of networked control systems is emerging rapidly, only limited at-
tention has been devoted to adaptive tracking with network-induced constraints. This chapter
introduces the problem of quantization in the tracking control problem and is organized as
follows: Section 1-1 presents the phenomenon of quantization and shows the challenges im-
posed by quantization in the performance of control laws, which were designed ideally in
the absence of networks. Section 1-2 presents the state of art methodologies that have been
proposed by the research community to address the tracking problem, using quantized mea-
surements. Section 1-3 concludes this introductory chapter, stating the research questions we
aim to tackle through this MSc thesis.

1-1 Control with quantization constraints

A networked control system (NCS) is a control system wherein the control loops are closed
through a communication network [10], [11], [12]. A schematic representation of a NCS is
shown in Fig. 1-1. Because of the network, control and feedback signals exchanged among
the system’s components must be quantized.

Master of Science Thesis Nikolaos Moustakis



2 Introduction

Figure 1-1: Typical architecture of an NCS [1]

A quantizer is a device that converts a real-valued signal into a piecewise constant one taking
a finite set of values. In the literature it is usually assumed that the quantization regions are
rectilinear and are either of equal size (uniform quantizer) or get smaller close to the origin
(logarithmic quantizer). The most common types of quantizers are depicted in Fig. 1-2.

Figure 1-2: Quantization regions: (a) uniform, (b) logarithmic, (c) general [2]

The complement of the union of all quantization regions of finite sizes is the infinite quanti-
zation region, in which the quantizer saturates (the corresponding value is shown in Fig. 1-2
with the extra dot outside the quantization region). Let u ∈ Rq be the variable being quan-
tized. The uniform static quantizer is described by a function g : R→ Q, where Q ⊂ Rq. The
finite set of values is defined {u ∈ Rq : g(u) = i}, i ∈ Q.
There are two phenomena that account for changes in the system’s behavior caused by quanti-
zation. The first one is saturation: if the quantized signal is outside the range of the quantizer,
then the quantization error can be in principle large, and the control law designed for the
ideal case of no quantization leads to instability. The second phenomenon resulting from
quantized signals is the deterioration of performance near the equilibrium points: as the dif-
ference between the current and the desired values of the signal to be quantized become small,
higher precision is required, and as a result, in the presence of quantization errors asymptotic
convergence is in general impossible.
To illustrate more precisely what is meant by saturation we assume that positive real numbers
M and ∆ exist such that the two following conditions hold:

Nikolaos Moustakis Master of Science Thesis



1-2 State of the art 3

Condition 1. If
‖u‖ ≤M (1-1)

then ∥∥g(u)− u
∥∥ ≤ ∆. (1-2)

Condition 2. If
‖u‖ > M (1-3)

then ∥∥g(u)
∥∥ > M −∆. (1-4)

Condition 1 gives a bound on the quantization error when the quantizer does not saturate.
Condition 2 provides a way to detect the possibility of saturation. We will refer to M and
∆ as the quantization range and quantization error respectively. Given the maximal size of
finite quantization regions and the size of these regions, suitable values for M and ∆ can be
obtained. Furthermore, given the number of quantization regions, we can define a bit sequence
corresponding to each quantization level. The idea is illustrated graphically in Fig. 1-3.

Figure 1-3: Original and quantized signal (red line corresponds to continuous signal, blue line
corresponds to quantized signal)

1-2 State of the art

Much attention has been devoted by the control community to asymptotic stability in non-
adaptive NCSs in the presence of quantization, with a focus on regulation problems. The most
established research approaches for achieving asymptotic regulation rely on a hybrid control
approach with dynamic quantization mechanisms such as the one referred to as "zooming"
[13], [14], [15]. This mechanism takes its name from the analogy with the zooming mechanism
in digital cameras: since the quantizer has a fixed number of quantization levels (i.e number of
pixels), when the state is outside its range region, the quantizer "zooms out" so that the state
can be captured within the region. This can be achieved by increasing the size of the range.
On the other hand, once the state comes close to the origin, we can "zoom in" by reducing the

Master of Science Thesis Nikolaos Moustakis



4 Introduction

size of the range so that the quantization resolution becomes finer while the region becomes
smaller. The idea is illustrated graphically in Fig. 1-4. Repeating this zooming-in, we can
obtain asymptotic stabilization.

Figure 1-4: Dynamic quantization ("zooming") mechanism [3]

The research on adaptive NCSs with quantization is not as developed as its non-adaptive
counterpart, and most of this research is also limited to regulation problems. Recently, [16]
considered a passification-based adaptive controller with quantized measurements and distur-
bances, where ultimate boundedness can be obtained. The authors in [17] developed a direct
adaptive control framework with a logarithmic quantizer, guaranteeing partial asymptotic
stability, i.e. Lyapunov stability of the closed-loop system states and attraction with respect
to a guaranteed ultimate bound. For nonlinear uncertain systems, [18], [19], developed direct
adaptive control schemes with guaranteed global ultimate boundedness: this is due to the
use of logarithmic quantizers with deadzone around zero control input. The reason for the
focus on regulation problems might be explained with the fact that the quantizer is typically
anti-symmetric with respect to the origin which prevents from achieving high precision in the
tracking case. A smart solution has been recently proposed in [20], [21], where asymptotic
tracking has been achieved via a sliding mode approach. It has to be recognized however,
that the implementation of a sliding-mode controller which has to send information infinitely
often in an NCS is not at all straightforward.
Less attention has been devoted by research community to the adaptive control of switched
systems with quantized measurements. Switched systems are used to model many complex
systems exhibiting an interaction between continuous and discrete dynamics. Such systems,
commonly referred to as hybrid systems, include multi-agent systems [22], automobile power
trains [23], traffic light controls [24], power converters [25], fault tolerant systems [26], [27]
and many more. In recent decades many efforts have been increasingly devoted to studying
switched systems, mainly stability and stabilization problems [26], [28], [29]. Most recently,
advanced robust and adaptive control methodologies have been developed for complex sys-
tems like uncertain switched systems, cf. [30], [31], [32] for robust control, and [33], [34],
[35], [36], [37] for adaptive control. Extensions to (non-adaptive) switched systems into a
NCS framework with quantized measurements have been studied. The authors in [38] de-
signed a dynamic quantizer and a switching law with average dwell time to stabilize switched
linear systems using quantized output-feedback measurements; in [39] a switching law was
proposed based on average dwell time and a dynamic quantizer to stabilize a sample-data
switched linear system considering asynchronous switching between system modes and con-
troller modes; the authors in [40] consider the fault detection problem for switched systems
with quantization effects; [41] studied the problem of stabilizing switched linear systems with
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1-3 Research questions 5

output feedback controllers based on a common Lyapunov function considering switching
delays between system modes and controller modes.

1-3 Research questions

From this overview of the state of the art, we can see that most results on NCSs, with an
eye on adaptive control and in the presence of quantization, focus on uncertain non-switched
systems. As a result, the adaptive control of switched systems with quantized measurements is
a completely open and relevant problem which motivates our research. The research questions
we aim to tackle throughout this MSc thesis are presented as follows:

• Address large uncertainty in the unknown system parameters;

• Achieve asymptotic tracking in the quantized control setting without sending informa-
tion infinitely often;

• Enlarge the class of quantized adaptive tracking control to include uncertain switched
linear systems;

• Avoid the quantizer to zoom out at every switching instants in order to compensate for
discontinuities.

Master of Science Thesis Nikolaos Moustakis



6 Introduction

1-4 Thesis outline

The rest of the MSc thesis is organized as follows.

Chapter 2 introduces a new dynamic quantizer with adjustable offset to handle the tracking
case. A hybrid adaptive control policy is derived to achieve asymptotic tracking in the
quantized input model reference adaptive control scheme.

Chapter 3 generalizes the hybrid adaptive control policy obtained in Chapter 2, for the
case of quantized input uncertain switched linear systems, driven by a switching time policy.
A time-varying Lyapunov function is used to design the adaptive law so that asymptotic
tracking can be achieved without zooming out at every switching instant.

Chapter 4 verifies the effectiveness of the proposed methodology via simulations: the adap-
tive hybrid control policy described in Chapter 2 is applied to the case study of an electro-
hydraulic system. The adaptive law using a time-scheduled Lyapunov function introduced in
Chapter 3, is evaluated via a case study of NASA GTM model linearized at multiple points.

Finally, Chapter 5 concludes this MSc thesis and gives some recommendations for future
work.

Nikolaos Moustakis Master of Science Thesis



Chapter 2

Quantized adaptive tracking for
uncertain linear systems

This chapter is organized as follows: Section 2-1 formulates the quantized control problem.
The adaptive control design is established in Section 2-2, while Section 2-3 presents the main
stability and tracking results.

2-1 Problem statement

Let us consider the linear time-invariant system

ẋ(t) = Ax(t) +Bgηµ(u(t)) (2-1)

where x ∈ Rn is the state, u ∈ Rq is the control input, gηµ(u) : Rq → Q, where Q ⊂ Rq, is the
input quantizer (to be defined later), and the matrices A ∈ Rn×n and B ∈ Rn×q are unknown
constant matrices.

2-1-1 Linear reference model system and controller structure

We consider the following linear reference model:

ẋm = Amxm(t) +Bmr(t) (2-2)

where Am ∈ Rn×n, Bm ∈ Rn×q are constant known matrices with Am a Hurwitz matrix,
r ∈ Rq is a bounded continuous reference input signal and xm ∈ Rn is the desired state to
track.

Master of Science Thesis Nikolaos Moustakis



8 Quantized adaptive tracking for uncertain linear systems

The following assumptions are made in order to have a well-posed adaptive problem:

Assumption 1. There exist a constant matrix K∗x ∈ Rn×q and an invertible constant matrix
K∗r ∈ Rq×q such that

Am = A+BK∗Tx , Bm = BK∗r . (2-3)

Assumption 2. There exists a known matrix S ∈ Rq×q such that

Γ = K∗r S (2-4)

is positive definite.

Assumption 3. A and B in (2-1) belong to a known and bounded uncertainty set Θ.

Remark 1. Assumption 1 is required for the existence of a closed-loop that matches (2-1) to
the reference model (2-2) (well-posedness). Assumption 2 generalizes the classical condition
of knowing the sign of the input vector field in the multivariable case. Both assumptions
are, up to now, the most relaxed conditions for ensuring closed-loop signal boundedness in
multivariable adaptive control [4], [42], and will be adopted also in our input quantization
setting. Assumption 3 is required to obtain a bound to the increasing rate of the tracking error
during the zooming-in phase, as it will be explained in Section 2-3.

Being A and B in (2-1) unknown, the control gainsK∗x andK∗r in (2-3) cannot be implemented
and must be estimated. Inspired by [4], the following adaptive state-feedback controller is
applied:

u(t) = KT
x (t)x(t) +Kr(t)r(t). (2-5)

We consider a networked control setup with the controller on the sensor side, so that the
control input (2-5) must be quantized and sent to the actuator via a communication channel.
The next section introduces a quantizer appropriate to our control goals.

2-1-2 Dynamic quantizer design

It must be noted though, that the quantizers commonly adopted in the literature [14], [16],
are anti-symmetric with respect to zero: as such, they can increase precision only around
zero, and thus they are appropriate only for regulation problems. If we adopted standard
uniform quantizers for the tracking case we would get

g(u) = g(KT
x x+Krr) = g

(
KT

x (x− xm) +KT
x xm +Krr

)
(2-6)

from which we notice that, if we define the state-tracking error

e = x− xm (2-7)

then, for e → 0 the quantized input converges to g(KT
x xm + Krr) and asymptotic tracking

would be in general impossible due to finite precision of the quantizer around KT
x xm +Krr.

Nikolaos Moustakis Master of Science Thesis



2-1 Problem statement 9

With this problem in mind, we introduce an adjustable offset η(t) in the quantizer, so as
to achieve quntization anti-symmetry around η(t) = KT

x (t)xm(t) + Kr(t)r(t). We define the
following dynamic quantizer:

gηµ(u) = µg

(
u− η
µ

)
(2-8)

where the time index t has been (and will be when appropriate) omitted for compactness. Note
that the dynamic quantizer in (2-8) satisfies, analogously to (1-1), the following condition:

µ

∥∥∥∥∥g
(
u− η
µ

)∥∥∥∥∥ ≤ µM (2-9)

where µM represents the quantization range of the dynamic quantizer. In case of no satura-
tion, the quantizer must satisfy analogously to (1-2), the additional requirement:

∥∥∥∥∥µg
(
u− η
µ

)
− u

∥∥∥∥∥ = µ

∥∥∥∥∥g
(
u− η
µ

)
− u

µ

∥∥∥∥∥ ≤ µ∆ (2-10)

where µ∆ represents the quantization error in the dynamic quantizer, when no saturation
occurs. The situation with the proposed quantizer (2-8) is depicted in Fig. 2-1.

Figure 2-1: Dynamic quantizer with adjustable offset

Remark 2. As the zooming mechanism of state-of-the-art quantizer is typically explained in
terms of digital videos, we can also give an explanation to the proposed quantizer in similar
terms. In fact, dynamic offsets are often used in video encoding: in many H.264-based com-
pression protocols the encoder is regulated on a frame level (offset) to obtain the number of
bits that is very close to the allocated one [43], [44]. The frame level is also encoded and can
be adjusted. Several mechanisms have been defined to tune the offset of the quantizer based
on the previous frames [45], [46], so as to improve the compression ratio (increase the video
resolution given the allocated bit rate, or reduce the bit rate given a desired video resolution).
As these video encoding mechanisms are able to increase the resolution around similar frames
close in time, similarly our proposed quantizer increases the resolution around a changing
offset in order to achieve asymptotic tracking.
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10 Quantized adaptive tracking for uncertain linear systems

2-1-3 Problem formulation

We are now ready to formulate our control objective:

Problem 1. Input-quantized model reference adaptive control: Design an adaptive
control law for the control gains in (2-3), and adjustment strategies for the dynamic range µ
and dynamic offset η in (2-8) such that, without requiring the knowledge of A and B in (2-1),
the state trajectories of the system (2-1) track asymptotically the trajectories generated by the
reference model (2-2).

A schematic representation of the proposed adaptive NCS is shown in Fig. 2-2.

Figure 2-2: Adaptive NCS in the MRAC framework

2-2 Adaptive law controller design

Since Am in (2-2) must be Hurwitz, so as to generate a bounded signal state xm from bounded
r, there exist positive definite matrices P ∈ Rn×n, Q ∈ Rn×n, such that the following inequal-
ity holds:

ATmP + PAm ≤ −Q. (2-11)

When the quantized adaptive state-feedback controller given by (2-5), (2-8), is applied to
(2-1), the closed-loop system reads as:

ẋ = Ax+B(KT
x x+Krr) + µB

g(KT
x x+Krr − η

µ

)
− KT

x x+Krr

µ


︸ ︷︷ ︸

∆u

(2-12)

where in case of no saturation, it holds from (1-2), ‖∆u‖ ≤ ∆.

In view of (2-2) and (2-12), the evolution of the tracking error can be written as:

Nikolaos Moustakis Master of Science Thesis



2-2 Adaptive law controller design 11

ė = ẋ− ẋm = Ame+BK̃T
x x+BK̃rr +Bµ∆u (2-13)

where K̃x = Kx −K∗x , K̃r = Kr −K∗r , are defined as the controller parameter errors.

In order to analyze the stability of the closed-loop system (2-13), the following Lyapunov-like
function is considered:

V = eTPe+ tr
[
K̃xΓ−1K̃T

x

]
+ tr

[
K̃T

r Γ−1K̃r
]

(2-14)

with Γ ∈ Rq×q coming from (2-4).

The time derivative of (2-14) is

V̇ = ėTPe+ eTP ė+ 2tr
[
K̃xΓ−1 ˙̃Kx

]
+ 2tr

[
K̃rΓ−1 ˙̃Kr

]

= eT [ATmP + PAm]e+ 2xT K̃xB
TPe+ 2rT K̃T

r BPe+ 2tr
[
K̃xΓ−1 ˙̃Kx

]
+ 2tr

[
K̃rΓ−1 ˙̃Kr

]

+ 2eTPBµ∆u (2-15)

Looking at (2-15), we propose the controller parameter adaptation law as follows:

2xT K̃xB
TPe = 2tr

[
xT K̃xB

TPe
]

= 2tr
[
K̃xB

TPexT
]

= −2tr
[
K̃xΓ−1 ˙̃KT

x

]
2rT K̃T

r B
TPe = 2tr

[
rT K̃T

r B
TPe

]
= 2tr

[
K̃T

r B
TPerT

]
= −2tr

[
K̃T

r Γ−1 ˙̃Kr
] (2-16)

In view of Assumption 3, lower and upper bounds for the controller parameters Kx, Kr can
be found (this can be done by testing the matching conditions (2-3) over the uncertainty set
Θ). More precisely, let the upper (lower) bounds be represented by Kx, (Kx), Kr, (Kr) for
the controller parameter estimates Kx, Kr respectively. If we define

KT
x =

[
kx1 kx2 · · · kxi

]
, i = 1, 2, ..., n

Kr =
[
kr1 kr2 · · · krj

]
, j = 1, 2, ..., q

(2-17)

and assume k∗xi ∈ [kxi, kxi], k∗rj ∈ [krj, krj], then for t ≥ 0 we require

kxi(t) ∈ [kxi, kxi], i = 1, 2, ..., n
krj(t) ∈ [krj, krj], j = 1, 2, ..., q

(2-18)

Using (2-4), (2-16) results in the following parameter projection adaptive law:

K̇T
x = −STBT

mPex
T + F Tx

K̇r = −STBT
mPer

T + Fr
(2-19)
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12 Quantized adaptive tracking for uncertain linear systems

where F Tx =
[
fx1 fx2 · · · fxi

]
, i = 1, 2, ..., n, and Fr =

[
fr1 fr2 · · · frj

]
, j = 1, 2, ..., q,

are the projection terms to confine the controller parameters within their known bounds.

More precisely, for t ≥ 0 :

If kxi(t) ∈ (kxi, kxi) =⇒ fxi(t),= 0 (2-20a)
If kxi(t) = kxi, (kxi) & k̇xi(t), (k̇xi(t)) = 0 =⇒ fxi(t) = 0 (2-20b)
If krj(t) ∈ (krj, krj) =⇒ frj(t) = 0 (2-20c)
If krj(t) = krj, (krj) & k̇rj(t), (k̇rj(t)) = 0 =⇒ frj(t) = 0 (2-20d)
If kxi(t) = kxi, (kxi) & k̇xi(t) < 0, (k̇xi(t) > 0) =⇒ fxi(t) = −hxi(t) (2-20e)
If krj(t) = krj, (krj) & k̇rj(t) < 0, (k̇rj(t) > 0) =⇒ frj(t) = −hrj(t) (2-20f)

where

HT
x =

[
hx1 hx2 · · · hxn

]
= −STBT

mPex
T

Hr =
[
hr1 hr2 · · · hrq

]
= −STBT

mPer
T .

(2-21)

Using (2-19) and the properties of Fx and Fr in (2-20), the time derivative of (2-15) along
(2-13) is:

V̇ = eT (AmP + PAm)e+ 2tr
[
K̃xΓ−1F Tx

]
+ 2tr

[
K̃T

r Γ−1Fr
]

︸ ︷︷ ︸
Kv

+2eTPBµ∆u. (2-22)

Lemma 2-2.1. [36] Assume Kx,Kr ∈ R and let t0 be a time instant such that t0 ≥ 0. Then,
it is true that

K̃x(t0)Fx(t0), K̃r(t0)Fr(t0) ≤ 0 (2-23)

Proof. One can distinguish two cases with accordance to (2-20):

Case (a): Let Kx(t0) = Kx, (Kx). If additionally, K̇x(t0) > 0, (K̇x(t0) < 0), we have
from (2-20e): Fx(t0) < 0, (Fx(t0) > 0).
Thus, K̃x(t0) = Kx −K∗x > 0, (Kx −K∗x < 0 ) =⇒

K̃x(t0)Fx(t0), (K̃x(t0)Fx(t0)) < 0. (2-24)

Case (b): Let Kx(t0) ∈ (Kx,Kx). Because of (2-20a), it holds:

K̃x(t0)Fx(t0) = 0. (2-25)

A schematic representation of the two cases, (a), (b), can be shown in Fig. 2-3.
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2-2 Adaptive law controller design 13

Figure 2-3: Parameter adaptive projection law

Then, (2-24), (2-25), imply K̃x(t0)Fx(t0) ≤ 0. With similar argumentation we can conclude
that K̃r(t0)Fr(t0) ≤ 0. This completes the proof.

Lemma 2-2.1 can be easily extended to the multivariable case, thus it holds for Kv in (2-22)

Kv ≤ 0. (2-26)

Using (2-11) and (2-26), (2-22) results in

V̇ ≤ −eTQe+ 2eTPBµ∆u. (2-27)

Because, Kx, Kr are bounded due to the projection terms in (2-19), we can define ρ ∈ R ≥ 0
such that:

ρ = max
t≥0

{
tr
[
K̃xΓ−1K̃T

x

]
+ tr

[
K̃T

r Γ−1K̃r

]}
(2-28)

and because of (2-14), we have

eTPe ≤ V ≤ eTPe+ ρ. (2-29)

Because P is positive definite, the following inequality from linear algebra is known:

λmin(P )‖e‖2 ≤ eTPe ≤ λmax(P )‖e‖2 (2-30)

with λmax(P ) ≥ λmin(P ) > 0.
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14 Quantized adaptive tracking for uncertain linear systems

2-3 Hybrid control policy

Inspired by [14], the time derivative of V in (2-27), in case of no saturation, it can be equiv-
alently expressed as

V̇ ≤ −eTQe+ 2eTPBµ∆u ≤ −λmin(Q)‖e‖2 + 2eTPBµ∆

≤ −λmin(Q)‖e‖

‖e‖ − 2 maxB∈Θ‖PB‖
λmin(Q)︸ ︷︷ ︸

R

µ∆

 =⇒

V̇ ≤ −‖e‖λmin(Q)(‖e‖ − µR∆) (2-31)
where R is bounded. According to (2-9), the requirement of no saturation can be equivalently
expressed by the following condition:

‖u− η‖ ≤ µM. (2-32)

Because the controller parameter estimates Kx, Kr are bounded in view of Assumption 3, we
define

Kx = max
t≥0
‖Kx‖ . (2-33)

Considering ‖u− η‖ =
∥∥∥KT

x x+Krr −KT
x xm −Krr

∥∥∥ =
∥∥∥KT

x (x− xm
∥∥∥, the condition of satu-

ration given by (2-32) is satisfied if the following condition holds:

‖e‖ ≤ µM

Kx
. (2-34)

We define the following regions:

B1(µ) :=

e :‖e‖ ≤ µM

Kx

 (2-35a)

I1(µ) :=

e : eTPe ≤ λmin(P )µ
2M2

K
2
x

 (2-35b)

B2(µ) :=
{
e :‖e‖ ≤ µR∆

}
(2-35c)

I2(µ) :=
{
e : eTPe ≤ λmax(P )µ2R2∆2

}
. (2-35d)

Note that, when

√
λmin(P )M
Kx

>
√
λmax(P )R∆

then B2(µ) ⊂ I2(µ) ⊂ I1(µ) ⊂ B1(µ). The situation is depicted graphically in Fig. 2-4.
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2-3 Hybrid control policy 15

Figure 2-4: Regions of interest

2-3-1 Main result

Using the previously explained design, the following stability result can be derived:

Theorem 2-3.1. Consider the input-quantized model reference adaptive control given by
system (2-1), reference model (2-2), quantizer (2-8), adaptive laws (2-19). If the following
holds

√
λmin(P )M
Kx

>
√
λmax(P )R∆ (2-36)

then there exists an error-based hybrid quantized feedback control policy that makes the closed-
loop system (2-13) globally asymptotically stable with lim

t→∞
e(t) = 0.

Proof. The hybrid quantized feedback control policy is designed in a constructive way along
the proof. Following a similar approach as in [14] we distinguish two phases, namely the
zooming-in and zooming-out phases. In the zooming-out phase, µ is chosen so that e ∈ B1(µ)
and thus boundedness can be guaranteed. During zooming-in phase, the objective is to shrink
the smaller region I2(µ) by reducing the dynamic quantizer parameter µ so that state-tracking
properties can be concluded. The two phases are examined thoroughly as follows:

Zooming-out phase: Let µ(0) = 1. If
∥∥e(0)

∥∥ > M
Kx

, in view of (2-34), saturation is detected
in the quantizer. In this case, we make µ(t) increase in a piecewise fashion fast enough to
dominate the growth factor of e which can be seen by (2-13) that equals

∣∣∣∣emaxA,B∈Θ‖A+BKT
x ‖
∣∣∣∣,

where maxA,B∈Θ
∥∥∥A+BKT

x

∥∥∥ is bounded in view of Assumption 3. There will be a time
instant t0 ≥ 0 and a bounded µ(t0) at which the following relation will be true

∥∥e(t0)
∥∥ ≤ √λmin(P )

λmax(P )
µ(t0)M
Kx

(2-37)
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16 Quantized adaptive tracking for uncertain linear systems

and as a consequence of (2-30), (2-35a), and (2-35b), it holds e(t0) ∈ I1(µ(t0)) ∩B1(µ(t0)).
Because e(t0) ∈ B1(µ(t0)) and B2(µ) ⊂ B1(µ) from (2-36), we get from (2-31) V̇ ≤ 0. Thus,
for t ≥ t0 when e(t) ∈ B1(µ(t0)) and e(t) /∈ B2(µ(t0)) we have

V̇ ≤ 0 =⇒ V (t) ≤ V (t0) =⇒
∥∥e(t)∥∥ ≤ √µ2(t0)M2

Kx
2 + ρ

λmin(P ) (2-38)

which implies, with accordance to (2-35a), that e(t) does not necessarily belong to B1(µ(t0)).
Then, for t ≥ t0 we might have two cases: either the norm of the tracking error is decreasing,
in which case there is no saturation and we go to the zooming-in phase; or the norm of
the tracking error is increasing in which case we keep increasing µ(t) at the same rate. For
this second case, because µ(t) is updated continuously at much higher rate compared to the
growth of e(t) to avoid saturation, we can assume that ∀t ≥ t0, e(t) ∈ B1(µ(t)). If additionally
e /∈ B2(µ), implying V̇ ≤ 0 for t ≥ t0, the following inequality is true:

∥∥e(t)∥∥ ≤ √ V (t0)
λmin(P ) =⇒ e(t) ∈ L∞. (2-39)

Zooming-in phase: Let t′ be a time instant such that t ≥ t′ ≥ t0, and e(t) ∈ B1(µ(t′)). Then
it is true that V̇ ≤ 0 as long as e /∈ B2(µ(t′)). One can see from (2-35) and Fig. 2-4, that
B2(µ) ⊂ I2(µ). Thus, at time t̃ with t̃ ≥ t′, when e(t) ∈ I2(µ(t′)), µ(t̃) is updated

µ(t̃) = Kx
√
λmax(P )R∆√
λmin(P )M︸ ︷︷ ︸

Ω

µ(t′). (2-40)

Obviously Ω < 1 due to (2-36). Thus, zooming-in event occurs, and one can see that
I1(µ(t̃)) = I2(µ(t′)), where µ(t′) is the value of µ that prevents saturation (according to
(2-37)), with µ(t0) replaced by µ(t′). After the zooming-in event one might have two cases:
either the tracking error increases tending to violate e ∈ B1(µ(t̃)), in which case a new
zooming-out phase is activated; or the tracking error keeps decreasing in which case a new
zooming-in will eventually be triggered. In the second case, since µ is updated when e ∈ I2(µ)
and because B2(µ) ⊂ I2(µ), it is true that V̇ ≤ 0 and as a consequence (2-38) holds, im-
plying e(t) ∈ L∞. Additionally, because of (2-7) and because xm is bounded, it is true that
x ∈ L∞. By looking at (2-13) and (2-22) we can see by using similar argumentation that ė
and V̈ consist of bounded terms, and thus they are bounded. The following lemma will be
useful in our stability analysis.

Lemma 2-3.2. [47] (Generalized Barbalat’s lemma) Suppose V (t) : [0,∞)→ R satisfies

1. lim
t→∞

V (t) exists (V (t) is lower bounded);

2. ˙V (t) is negative semi-definite ( ˙V (t) ≤ 0);

3. ¨V (t) is finite (well-defined) when ˙V (t) switches,

then it is true lim
t→∞

˙V (t) = 0.
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2-3 Hybrid control policy 17

Let us now look at the combined behavior of zooming-in and zooming-out phases. For t ≥ t0,
at both zooming-in and zooming-out phases it holds V̇ ≤ 0 =⇒ V (t) ≤ V (t0), thus V is
lower-bounded by V (t0). Because V̈ is bounded and V is lower bounded by V (t0), because it
holds V̇ ≤ 0 ∀t ≥ t0, we can conclude using generalized Barbalat’s lemma, lim

t→∞
V̇ (t) = 0.

The following relation from (2-31) holds:

lim
t→∞

V̇ (t) ≤ − lim
t→∞

∥∥e(t)∥∥λmin(Q)
(∥∥e(t)∥∥− µ(t)R∆

)
=⇒

0 ≤ − lim
t→∞

∥∥e(t)∥∥λmin(Q)
(∥∥e(t)∥∥− µ(t)R∆

)
.

(2-41)

The above relation is true when

lim
t→∞

∥∥e(t)∥∥ = 0 or lim
t→∞

∥∥e(t)∥∥− µ(t)R∆ ≤ 0. (2-42)

The second relation implies that e ∈ B2(µ). However when e ∈ I2(µ), and because I2(µ) ⊃
B2(µ), µ is decreasing as in (2-40) because zooming-in occurs, and consequently e /∈ B2(µ).
As a consequence lim

t→∞
µ(t) = 0 and by (2-42) we conclude lim

t→∞

∥∥e(t)∥∥ = 0. Because all signals
are bounded and lim

t→∞
e(t) = 0, we can conclude (2-13) is globally asymptotically stable.

A state flow diagram of the adaptive hybrid control strategy is shown in Fig. 2-5.

Figure 2-5: Error dependent adaptive hybrid control strategy
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18 Quantized adaptive tracking for uncertain linear systems

Remark 3. In [14] a hybrid time-dependent switching strategy is used for updating the values
of µ. More precisely an upper bound T is derived on the time interval T such that if e(t0) ∈
I1(µ(t0)) =⇒ e(t0 + T ) ∈ I2(µ(t0)) and then µ is updated as µ(t0 + T ) = Ωµ(t0). This is
not applicable to the adaptive control case, unless additional requirements on ‖e‖ are imposed,
because V in (2-14) is given in terms of inequalities. The error-dependent switching strategy
we employ in this work relies on on-line evaluation of the tracking error to determine the time
instants at which e enters a certain region. This can give more reliability and robustness with
respect to modelling errors.

Remark 4. It has to be underlined that the term "zooming-in phase" was originally adopted
in literature [14] with reference to the fact that that µ decreases monotonically. Later, the
same term has been adopted also in settings where the decrease of µ was not monotonic (e.g.
in switched systems [48]). The proof of Theorem 2-3.1 shows that also in our adaptive setting
the decrease of µ may be not monotonic. In our case, we recover the original meaning by using
the term ”zooming-in phase” only when smaller regions I1(µ), I2(µ) are obtained. For this
reason we might have multiple zooming-in and zooming-out phases, as it will be illustrated in
Section 4-1.

2-4 Summary

The adaptive asymptotic state-tracking control problem in the model reference adaptive con-
trol case, with quantized input measurements has been investigated. A hybrid control policy
has been applied to a novel dynamic quantizer with adjustable offset, and it was proven to
guarantee global asymptotic stability and state-tracking. A practical example of an electro-
hydraulic system will be used in Section 4-1 to demonstrate the effectiveness of the proposed
hybrid control scheme.
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Chapter 3

Quantized adaptive tracking for
uncertain switched linear systems

This Chapter is organized as follows: Section 3-1 introduces the quantized control problem.
The adaptive control design is established in Section 3-2 and Section 3-3 presents the stability
and tracking results. The interested reader must check Appendix A for preliminaries for
the stability of switched linear systems driven by a time-scheduled policy, which are the
background for the results in this Chapter.

3-1 Problem statement

Let us consider the uncertain time-driven switched linear system

ẋ(t) = Aσ(t)x(t) +Bσ(t)gηµ(u(t)), σ(t) ∈ N = {1, ..., N} (3-1)

where x ∈ Rn is the state, u ∈ Rq is the control input, gηµ(u) : Rq → Q, with Q ⊂ Rq, is
the input quantizer given by (2-8), and σ(·) is a piecewise switching law taking values in N ,
where N denotes the number of subsystems. The system is uncertain because the matrices
Ap ∈ Rn×n, Bp ∈ Rn×q are unknown constant matrices for all p ∈ N . The switching law σ(·)
satisfies the following slowly-switching constraint:

Definition 3-1.1. [34] (Dwell-time switching) A switching law defining a switching se-
quence S := {t1, t2, ...} is admissible with dwell-time if there exists a number τd ≥ 0 such that
ti+1 − ti ≥ τd, ∀i ∈ N+. Any τd that satisfies these constraints is called dwell-time and the
set of admissible with dwell-time switching laws is denoted by D(τd).
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20 Quantized adaptive tracking for uncertain switched linear systems

3-1-1 Switched linear reference model system and controller structure

Let us consider the following switched linear reference model:

ẋm(t) = Amσ(t)xm(t) +Bmσ(t)r(t), σ(t) ∈ N (3-2)

where xm ∈ Rn is the desired state vector to track and r ∈ Rq is a bounded continuous
reference input signal. The matrices Amp ∈ Rn×n, Bmp ∈ Rn×q are constant known matrices
with Amp ∈ Rn×n Hurwitz matrices for p ∈ N . We suppose that each pair (Amp, Bmp) is
associated to its own corresponding subsystem (Ap, Bp) in (3-1). The following assumptions
are made in order to have a well-posed adaptive problem:

Assumption 4. There exist constant matrices K∗xp ∈ Rn×q and invertible constant matrices
K∗rp ∈ Rq×q such that

Amp = Ap +BpK
∗
xp
T , Bmp = BpK

∗
rp. (3-3)

Assumption 5. There exist known matrices Sp ∈ Rq×q such that

Γp = K∗rpSp (3-4)

are positive definite.

Assumption 6. For each subsystem in (3-1), the matrices Ap and Bp belong to a known and
bounded uncertainty set Θp.

Remark 5. Assumptions 4 and 5 are the generalization of Assumptions 1 and 2 for switched
systems. Assumption 6 is required to obtain a bound on the increasing rate of the tracking
error during the zooming-out phase, as it will be illustrated in Section 3-3.

Since Ap and Bp are unknown in (3-1), the control gains K∗xp ∈ Rn×q and K∗rp ∈ Rn×q in (3-3)
must be estimated. In the spirit of [4], the following switched adaptive controller is applied:

u(t) = KT
xσ(t)(t)x(t) +Krσ(t)(t)r(t), σ(t) ∈ N (3-5)

where Kxp, Krp, p ∈ N , are the estimates of K∗xp, K∗rp respectively, to be updated by an
appropriate adaptive law to be introduced in the next section. We consider a networked
control setup with the controller on the sensor side, so that the control input given by (3-5)
must be quantized and sent to the actuator via a communication channel. The quantizer is
given by (2-8), with u given by (3-5), and η given by η = KT

xpxm +Krp. Our control objective
is formulated as follows:

3-1-2 Problem formulation

Problem 2. (Input-quantized switched linear model reference adaptive control):
Design an adaptive control law for the control gains in (3-5), and adjustment strategies for
the dynamic parameter µ and dynamic offset η in (2-8) such that, without requiring the
knowledge of Ap and Bp in (3-1), the state trajectories of the uncertain switched system (3-1)
track asymptotically the trajectories generated by the switched reference model (3-2).
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3-2 Adaptive law controller design 21

3-2 Adaptive law controller design

In order to guarantee that the states x in (3-1) track xm in (3-2) asymptotically, we need first
to guarantee global asymptotic stability of the homogeneous part of the reference switched
system (3-1) (i.e. with r = 0) under a dwell-time admissible switching law σ(·) ∈ D(τd).
Inspired by [34], [30], the following lemma is stated.

Lemma 3-2.1. The homogeneous part of the reference switched system (3-2) is globally
asymptotically stable for any switching law σ(·) ∈ D(τd) if there exist: a collection of sym-
metric matrices Pp,c ∈ Rn×n, p ∈ N , c = 0, 1, ..., C, and a sequence {δc}Cc=1 > 0 with∑C
c=1 δc = τd such that the following holds:

Pp,c > 0 (3-6a)
Pp,c+1 − Pp,c

δc+1
+ Pp,cAmp +ATmpPp,c < 0 (3-6b)

Pp,c+1 − Pp,c
δc+1

+ Pp,c+1Amp +ATmpPp,c+1 < 0 (3-6c)

c = 0, ..., C − 1
Pp,CAmp +ATmpPp,C < 0 (3-6d)

Pp,C − Pl,0 ≥ 0 (3-6e)
∀l = 1, ..., p− 1, p+ 1,...N,

where C is a positive integer that can be selected a priori, depending on the allowed compu-
tational complexity.

By solving the linear matrix inequalities (LMIs) in (3-6), we obtain a collection of symmetric
matrices Pp,c. This collection of matrices is used to obtain a time varying matrix Pp(t) via
interpolation. The time-varying matrix Pp(t), p ∈ N is defined as:

Pp(t) =

Pp,c + Pp,c+1−Pp,c

δc+1
(t− ti,c), for ti,c ≤ t < ti,c+1

Pp,C for ti,C ≤ t < ti+1
(3-7)

and it will be used later to define and an appropriate Lyapunov function. Assume that
σ(ti) = p and σ(ti+1) = l, with i ∈ N+ and p, l ∈ N . By defining a time sequence {ti,0, ..., ti,C}
with ti,c+1 − ti,c = δc+1, c = 0, ..., C − 1, and assuming ti,0 = ti, ti,C − ti = τd, the time
sequence between two switching instants ti, ti+1 (and corresponding matrices Pp,c) can be
seen in Fig. 3-1. The dashed vertical lines denote the value of Pp(t) at each corresponding
time instant.

When the quantized adaptive state-feedback controller given by (2-8) is applied to (3-1), the
closed-loop system reads as:

ẋ(t) =Aσ(t)x(t) +Bσ(t)

(
KT

xσ(t)x(t) +Krσ(t)r(t)
)

+Bσ(t)µ

g
KT

xσ(t)x(t) +Krσ(t)r(t)− η(t)
µ

− KT
xσ(t)x(t) +Krσ(t)r(t)

µ


︸ ︷︷ ︸

∆u

(3-8)
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22 Quantized adaptive tracking for uncertain switched linear systems

Figure 3-1: Time sequence and values of Pp(t) between two switching instants ti, ti+1.

where in case of no saturation, it holds from (1-2), ‖∆u‖ ≤ ∆. In view of (3-2) and (3-8), the
evolution of the tracking error can be written as

ė(t) = ẋ(t)− ẋm(t) = Amσ(t)e(t) +Bσ(t)K̃
T
xσ(t)x(t) +Bσ(t)K̃rσ(t)r(t) +Bσ(t)µ∆u (3-9)

where K̃xp = Kxp −K∗xp, K̃rp = Krp −K∗rp, p ∈ N , are defined as the controller parameter
errors.

In order to analyze the stability of the closed-loop system (3-9) the following Lyapunov-like
function is considered:

V (t) = e(t)TPσ(t)(t)e(t) +
N∑
p=1

tr
[
K̃xp(t)Γ−1

p K̃T
xp(t)

]
+

N∑
p=1

tr
[
K̃T

rp(t)Γ−1
p K̃rp(t)

]
(3-10)

with Γp ∈ Rn×n > 0 coming from (3-4).

In view of Assumption 6, lower and upper bounds for the controller parameters Kxp, Krp can
be found (this can be done by testing the matching conditions (3-3) over the uncertainty set
Θp, ∀p ∈ N ). The parameter projection adaptive law is derived as follows:

K̇T
xσ(t)(t) = −STσ(t)B

T
mσ(t)Pσ(t)(t)e(t)x(t)T + F Txσ(t)

K̇rσ(t)(t) = −STσ(t)B
T
mσ(t)Pσ(t)(t)e(t)r(t)T + Frσ(t)

(3-11)

where Fxp and Frp are the projection terms that keep the estimates inside the lower and upper
bounds, similarly to (2-19).

Remark 6. The adaptive law (3-11) is implemented as follows: Let {t+p1 , t
+
p2 , ...} represent the

sequence of switch-in time instants of subsystem p, p ∈ N , and let {t−p1 , t
−
p2 , ...} represent the

switch-out time instants of subsystem p. The initial conditions of (3-11) at a switch-in time
instant for subsystem p are taken from the estimates at the previous switch-out time instant of
the corresponding subsystem, thus it holds Kxp(t+pk+1) = Kxp(t−pk

) and Krp(t+pk+1) = Krp(t−pk
),

∀k ∈ N+. Subsequently, Kxp, Krp evolve continuously in time.

It can be seen by (3-7) that, Pσ(·)(·) is continuous in the time interval between two consecutive
switches and discontinuous at switching time instants. Because the controller parameter
estimates evolve continuously in time in view of Remark 6, V (t) in (3-10) is continuous
during the interval between two consecutive time instants and discontinuous at switching
instants.
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3-2 Adaptive law controller design 23

3-2-1 Stability with slow switching

We consider a time interval during two consecutive switching instants ti and ti+1, such that
σ(ti) = p and σ(ti+1) = l, with i ∈ N+ and p, l ∈ N . For t ∈ [ti, ti+1), subsystem p is active
and consequently Kxj , Krj , ∀j ∈ N /p, are kept constant with their values identified with
the values at the last switch-out instant of subsystem j, before the switching instant ti.

Using (3-11) and the properties of the projection terms Fxp, Frp [49], the time derivative of
(3-10) along (3-9) is, during the interval [ti, ti+1):

V̇ = eT
(
ATmpPp + PpAmp + Ṗp

)
︸ ︷︷ ︸

−Qp

e+ 2tr
[
K̃xpΓ−1

p F Txp + K̃rpΓ−1
p Frp

]
︸ ︷︷ ︸

Kvp

+2eTPpBpµ∆u, (3-12)

and because Kvp ≤ 0 [49], (3-12) becomes

V̇ ≤ −eTQpe+ 2eTPpBpµ∆u. (3-13)

Because Kxp, Krp are bounded due to the projection terms in (3-11) we can define ρ′ ∈ R ≥ 0
such that:

ρ′ = max
t≥0

N∑
p=1

tr
[
K̃xpΓ−1

p K̃T
xp

]
+ tr

[
K̃T

rpΓ−1
p K̃rp

] (3-14)

and because of (3-10) we have

eTPpe ≤ V ≤ eTPpe+ ρ′. (3-15)

Next, we analyze the properties of −Qp(t) in (3-13).

For t ∈ [ti, ti+1) we consider t ∈ [ti,c, ti,c+1), c = 0, ..., C − 1. By looking at the expression of
Pp in (3-7), one can see that −Qp can be written, in the time interval under consideration,
as follows:

−Qp =λ1

(Pp,c+1 − Pp,c)
δc+1

+ Pp,cAmp +ATmpPp,c


+λ2

(Pp,c+1 − Pp,c)
δc+1

+ Pp,c+1Amp +ATmpPp,c+1

 (3-16)

where λ1 = 1− (t−ti,c)
δc+1

, λ2 = (t−ti,c)
δc+1

. It can be seen by (3-6b), (3-6c), that

−Qp(t) < 0, for t ∈ [ti,c, ti,c+1). (3-17)

Next, we consider the interval t ∈ [ti,C , ti+1) for the case ti+1− ti > τd. In this case, it is true
Pp(t) = Pp,C because of (3-7), and because of (3-6d) it holds

−Qp(t) = ATmpPp,C + Pp,CAmp < 0, t ∈ [ti,C , ti+1). (3-18)

Because of (3-17), (3-18), we have

−Qp(t) < 0, for t ∈ [ti, ti+1). (3-19)
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24 Quantized adaptive tracking for uncertain switched linear systems

Let σ(ti) = p and σ(ti+1) = l with i ∈ N+ and p, l ∈ N . At the switching instant ti+1, the
following holds

V (ti+1)− V (t−i+1) = eT (ti+1)(Pσ(ti+1) − Pσ(t−i+1))e
T (ti+1) = eT (ti+1)(Pl,0 − Pp,C)e(ti+1)

and because of (3-6e), it must be true

V (ti+1)− V (t−i+1) ≤ 0. (3-20)

Because Kxp, Krp and e evolve continuously with respect to the time, (3-20) states that the
Lyapunov-like function V as given in (3-10) is non-increasing at switching time instants.

3-3 Hybrid control policy

Because of (3-19), it must be true that

λmin(Qp)‖e‖2 ≤ eTQpe ≤ λmax(Qp)‖e‖2 , p ∈ N , t ∈ [ti, ti+1), (3-21)

where λmax(Qp) ≥ λmin(Qp) > 0.

By referring to (3-13) and by assuming no saturation in the quantizer (‖∆u‖ ≤ ∆), we are in
a position to state the following:

V̇ ≤ −λmin(Qp)‖e‖2 + 2eTPpBpµ∆

≤ −λmin(Qp)‖e‖

‖e‖ − 2 max
Bp∈Θ

∥∥PpBp∥∥
λmin(Qp)︸ ︷︷ ︸

Rp

 =⇒

V̇ ≤ −φ‖e‖
(
‖e‖ −R′µ∆

)
(3-22)

with φ = min
p∈N

[λmin(Qp)], R′ = max
p∈N

Rp, where R′ is bounded in view of Assumption 6.

According to (2-9), the requirement for no saturation can be equivalently expressed by the
following condition:

‖u− η‖ ≤ µM. (3-23)

We define
Kx
′ = max

p∈N , t≥0

∥∥Kxp
∥∥ . (3-24)

Because‖u− η‖ =
∥∥∥KT

xpx+Krpr −KT
xpxm −Krpr

∥∥∥ =
∥∥∥KT

xpe
∥∥∥, the condition for no saturation

is satisfied if the following condition is true:

‖e‖ ≤ µM

Kx
′ , (3-25)

We define
min
p∈N

[λmin(Pp)] = ξmin, max
p∈N

[λmax(Pp)] = ξmax (3-26)
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3-3 Hybrid control policy 25

and the following regions:

B1
′(µ) :=

e(t) :
∥∥e(t)∥∥ ≤ µM

Kx
′

 (3-27a)

I1
′(µ) :=

e(t) : e(t)TPσ(t)(t)e(t) ≤ ξmin
µ2M2

Kx
′2

 (3-27b)

B2
′(µ) :=

e(t) :
∥∥e(t)∥∥ ≤ µR′∆

 (3-27c)

I2
′(µ) :=

e(t) : eT (t)Pσ(t)(t)e(t) ≤ ξmaxµ2R′2∆2

. (3-27d)

One can see that, if √
ξminM

Kx
′ >

√
ξmaxR

′∆

then it holds ∀Pσ(t)(t), σ(t) ∈ N , t ≥ 0: B2
′(µ) ⊂ I2

′(µ) ⊂ I1
′(µ) ⊂ B1

′(µ).
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26 Quantized adaptive tracking for uncertain switched linear systems

3-3-1 Main result

Using similar argumentation as in Theorem 2-3.1, the following theorem is proposed:

Theorem 3-3.1. Consider the input-quantized model reference adaptive control given by the
switched uncertain system (3-1), the switched reference model (3-2), the dynamic quantizer
with adjustable offset (2-8), and the adaptive law (3-11). If the following condition holds

√
ξminM

Kx
′ >

√
ξmaxR

′∆ (3-28)

(with ξmin, ξmax be defined in (3-26), Kx
′ be defined in (3-24) and R′ defined after (3-

22)), then there exists an error-based hybrid quantized feedback control policy that renders the
closed-loop system (3-9) globally asymptotically stable with lim

t→∞
e(t) = 0.

Proof. The hybrid quantized feedback policy is designed following a similar approach as the
one proposed by Theorem 2-3.1. We distinguish two phases, the zooming-out and zooming-in
phases. During zooming-out phase, we increase µ in such a way, so that to avoid saturation
and during zooming-in phase, we shrink the smaller region I ′2(µ) by reducing the hybrid
parameter µ so that state-tracking properties can be concluded. The two phases are examined
thoroughly as follows:

Zooming-out phase: Let µ(0) = 1. If
∥∥e(0)

∥∥ > M
Kx′

we have saturation. In this case we make
µ(t) increase in a piecewise fashion to dominate the growth of e, which it can be seen by
(3-9) that equals

∣∣∣∣emaxAp,Bp∈Θ‖Ap+BpKT
xp‖
∣∣∣∣ with maxAp,Bp∈Θ

∥∥∥Ap +BpK
T
xp

∥∥∥ bounded in view of
Assumption 6. There will be a time instant t0 ≥ 0 and a bounded µ(t0) at which the following
relation will be true: ∥∥e(t0)

∥∥ ≤ √ ξmin
ξmax

µ(t0)M
Kx
′ (3-29)

and as a consequence of (3-14), e(t0) ∈ I1
′(µ(t0))∩B1

′(µ(t0)). Let us assume two consecutive
switching time instants ti and ti+1, such that σ(ti) = p, σ(ti+1) = l, p, l ∈ N . If t0 ∈ [ti, ti+1),
then it is true that, because e(t0) ∈ B1

′(µ(t0)) and B2(µ) ⊂ B1(µ) from (3-28), by looking
at the expression of V̇ in (3-22), we get V̇ ≤ 0.

One can see that, for t ∈ [ti, ti+1), t ≥ t0, when e(t0) ∈ B1
′(µ(t0)) and V̇ ≤ 0, we have

V (t) ≤ V (t0) =⇒
∥∥e(t)∥∥ ≤ √µ2(t0)M2

Kx
′2 + ρ′

ξmin
. (3-30)

Moreover, if t = ti+1, because e evolves continuously, (3-30) still holds implying that e(t) does
not necessarily belong to B1

′(µ(t0)). Hence, for t ≥ t0 there might be two cases: either the
norm of the tracking error is decreasing and we go to the zooming-in phase; or the norm of
the tracking error is increasing in which case we keep increasing µ(t) at the same rate to avoid
saturation and guarantee that e(t) ∈ B1

′(µ(t)). For the second case, because µ(t) is updated
at much higher rate compared to the growth of e(t) to avoid saturation, we can assume that
∀t ≥ t0 =⇒ e(t) ∈ B1

′(µ(t)). Because from (3-20) we have that V is non-increasing at
time-switching instants, if additionally in the time interval between two switchings [ti, ti+1)
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3-3 Hybrid control policy 27

it holds ∀t ≥ t0, e(t) /∈ B2
′(µ(t)), then it is true that V̇ (t) ≤ 0, ∀t ≥ t0. In this case, because

of (3-30), it is true e(t) ∈ L∞, ∀t ≥ t0.

Zooming-in phase: Let t′ be a time instant such that t ≥ t′ ≥ t0, and e(t) ∈ B1
′(µ(t′)). It is

true, as it was shown in the zooming-out phase, that V̇ ≤ 0 between time switching instants
as long as e /∈ B2

′(µ(t′)), and V is non increasing at switching time instants. Then, (3-30)
holds implying V (t) is bounded. One can see from (3-27) that B2

′(µ) ⊂ I2
′(µ). Thus, at

time t̃ with t̃ ≥ t′, if e(t) ∈ I2
′(µ(t′)), µ((̃t)) is updated

µ(t̃) = Kx
′√ξmaxR′∆√
ξminM︸ ︷︷ ︸

Ω′

µ(t′). (3-31)

In view of (3-28) it holds Ω′ < 1. Then, zooming-in event occurs, and by looking at (3-27)
one can see that I1

′(µ(t̃)) = I2
′(µ(t′)), where µ(t′) is the value of µ that prevents saturation

(according to (3-29), with µ(t0) replaced by µ(t′)). After the zooming-in event one might have
two cases: either the tracking error increases tending to violate e ∈ B1

′(µ(t̃)), in which case
a new zooming-out phase is activated; or the tracking error keeps decreasing in which case
a new zooming-in event will eventually be triggered. In the second case, since µ is updated
when e ∈ I2

′(µ) and because B2
′(µ) ⊂ I2

′(µ), it is true that V̇ ≤ 0 during the time interval
between two consecutive switchings, as it was proven in the zooming-out phase.

Let us now look at the combined behavior of zooming-in and zooming-out phases. For t ≥ t0,
at both zooming-in and zooming-out phases, because V is not increasing it holds V (t) is
lower-bounded by V (t0). Moreover, because V̇ < 0 (for ‖e‖ 6= 0) between switching time
instants if e /∈ B2

′(µ), and because V is non-increasing at switching time instants it is true
that V is bounded. Because V is bounded, (3-30) holds implying e(t) ∈ L∞, ∀t ≥ t0. By
looking at (3-9) we can conclude with similar argumentation that ė is bounded because it
consists of bounded terms. Finally, by looking at the expression of V̇ in (3-12), one can
see that V̈ is bounded, as it consists of bounded terms, thus it is bounded in the interval
between time switching instants. As a result of the generalized Barbalat’s lemma, it holds
that lim

t→∞
V̇ (t) = 0.

Consequently, the following relation from (3-22) holds:

lim
t→∞

V̇ (t) ≤ −φ
(

lim
t→∞

∥∥e(t)∥∥ (‖e‖ −R′µ∆
))

=⇒

0 ≤ −φ
(

lim
t→∞

∥∥e(t)∥∥ (‖e‖ −R′µ∆
))
.

The above relation is true when

lim
t→∞

∥∥e(t)∥∥ = 0 or lim
t→∞

∥∥e(t)∥∥− µ(t)R′∆ ≤ 0. (3-32)

The second relation implies that e ∈ B2
′(µ). However, when e ∈ I2

′(µ), a zooming-in event
occurs and because B2

′(µ) ⊂ I2
′(µ) it is always true that e /∈ B2

′(µ). As a consequence
lim
t→∞

µ(t) = 0 and by (3-32) we conclude that lim
t→∞

∥∥e(t)∥∥ = 0. Because all signals are bounded
and lim

t→∞
e(t) = 0, we can conclude that (3-9) is globally asymptotically stable.
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28 Quantized adaptive tracking for uncertain switched linear systems

Remark 7. The classical condition for asymptotic tracking using switching laws based on
dwell time, as explained in the Lemma A-1.1 in the Appendix, assumes candidate Lyapunov
functions satisfying inequalities of the form (A-6). This result is not applicable to our case
due to the nature of V as expressed by the inequalities in (3-15). The most established results
on adaptive control of switched systems, the switching laws based on dwell-time [36] or average
dwell-time [50], assume a Lyapunov function with an exponential decay, during the interval
between consecutive switches, i.e., V̇ ≤ −αV − (V − m), for V > m, where α denotes a
compatible number with α > 0. Note that the switching laws based on this property and
adaptive laws with constant positive definite matrices Pp prevent asymptotic tracking from
being achieved.

Remark 8. In [41] a classic multiple quadratic Lyapunov function with a constant positive
definite matrix was adopted. This implies that at every switching instant it was necessary
to zoom out, in order to compensate the possible increment of the Lyapunov function at the
switching time instants. Here, the time-varying Lyapunov function (3-10) we adopt is non-
increasing at the switching instants, which does not require to zoom out (discontinuously) at
each switching instant to compensate possible discontinuous increments (i.e. jumps). It might
be necessary however to zoom-out (continuously) in case the activation of a new subsystem
generates a transient in the tracking error (e.g. due to poor estimates of a subsystem that is
activated for the first time). This mechanism, which gets rids completely of any discontinu-
ous zooming-out phase, greatly simplifies the design of the dynamic quantizer and makes it
consistent with the zooming procedure in non-switched systems [14].

3-4 Summary

This work has established a novel adaptive control approach that attains asymptotic track-
ing for switched linear systems with parametric uncertainties and dwell-time switching with
quantized input measurements. In addition to enlarging the class of systems for which the
adaptive quantized control can be solved, we have also introduced a time-scheduled Lyapunov
approach in an adaptive framework in order to avoid to zoom out at every switching instant
to compensate the possible increment of the Lyapunov function at the switching instants. A
Lyapunov-based approach has been used to derive the adaptive adjustments for the control
parameters, and for the dynamic range and dynamic offset of the quantizer: the resulting
(error-dependent) hybrid control policy has been given in a constructive manner, and asymp-
totic state tracking was shown. A practical example of the NASA GTM model will be used in
Section 4-2 in order to demonstrate the effectiveness of the proposed hybrid adaptive control
scheme.
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Chapter 4

Simulation results

This Chapter is organized as follows: In Section 4-1, the effectiveness, stability and tracking
properties of the quantized adaptive hybrid control methodology studied in Section 2-3, is
verified via simulations. A networked implementation of the proposed design using an encod-
ing/decoding scheme is shown in Subsection 4-1-3. In Section 4-2, the hybrid control policy
studied in Section 2-3 and the adaptive law using the time scheduled Lyapunov function from
Section 3-3 are used to evaluate, via simulations, the tracking performance for the case of
unknown switched linear systems driven by a dwell-time switching policy.

4-1 Quantized adaptive control: an electro-hydraulic system test
case

In this section we study the effectiveness of the adaptive hybrid control policy studied in
Section 2-3 using the electro-hydraulic system studied in [49], [51].

4-1-1 Design and simulation parameters

The system shown in Fig. 4-1, consists of a Moog E760 torque motor/flapper operated four-
way double-acting servovalve, hydraulically connected to a cylinder/actuator arm. The ac-
tuator cylinder has a diameter of 32 m, the actuator arm has a stroke of approximately l00
mm and the end of the arm is connected to an inertial load representing an aircraft control
surface.

The operating condition with respect to supply pressure 11.0 MPa is selected, and the corre-
sponding transfer function is:

G(s) = 62.4
s(s+ 4.58)

which can be equivalently written in controllable canonical form:
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30 Simulation results

Figure 4-1: A schematic diagram of the electro-hydraulic system

ẋ(t) =
[
0 1
0 −4.58

]
x(t) +

[
0

62.4

]
u(t) (4-1)

where x = [x1, x2]T , with x1, x2 representing the displacement and the velocity of the arm
respectively, u(t) is the control voltage and y(t) is the measurement of the actuator arm
displacement.

The desired dynamics are given as follows:

ẋm(t) =
[

0 1
−15 −8

]
xm(t) +

[
0

31.2

]
r(t)

where the reference input signal r(t) is specified as r(t) = sin(0.8πt) + sin(πt). Moreover, the
matrices P , Q in (2-11) are defined as

P =
[
1.2830 0.1030
0.1030 0.0578

]
, Q =

[
2.1811 0.1751
0.1751 0.0983

]
and S in (2-4) is chosen equal to 2. The quantizer is chosen so that M = 10, ∆ = 0.01 and µ
initially is 1. The initial error in the simulations is chosen e(t0) = [0.1,−0.2]T . The controller
parameters are assumed to reside between lower and upper bounds as follows: Kr ∈ [0.01, 0.8],
K

(i,j)
x ∈ [−0.5, 0.5], i, j = {1, 2} (the notation K(i,j) represents the (i, j)-th entry of matrix

K). The initial parameter estimates are chosen Kx(0) =
[
0 0

]
, Kr(0) = 0.6.
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4-1 Quantized adaptive control: an electro-hydraulic system test case 31

4-1-2 Simulation results

At first, we present the simulation results in Matlab-Simulink R© for the case of no input
quantization: tracking performance is shown in Fig. 4-2, while parameter estimates in Fig. 4-
3.
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Figure 4-2: State tracking error and control input without input quantization
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Figure 4-3: Controller parameters without input quantization

Next, we perform similar simulations for the case of dynamic input quantizer with adjustable
offset. For the purpose of the simulation Ω in (2-40) is computed Ω = 0.78.

Fig. 4-4 and Fig. 4-5 shows that the tracking performance of the dynamic quantizer with
adjustable offset is clearly satisfactory: it is hard to notice any difference among Fig. 4-2
– Fig. 4-3 (no quantization) and Fig. 4-4 – Fig. 4-5 (dynamic quantization). This reveals
that the same tracking performance can be attained without the need for infinite bandwidth.
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Figure 4-4: State tracking error and control input with input quantization
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Figure 4-5: Controller parameters with input quantization
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Figure 4-6: Hybrid control parameter µ(t) versus time (for the first 10 seconds of the simulation)

Details about the implementation of the proposed quantizer (including encoder and decoder)
are given in subsection 4-1-3.
The parameter µ in Fig. 4-6 is decreasing abruptly since the first seconds of the experi-
ment, indicating that the condition e ∈ I2(µ) triggers (2-40) very often and state-tracking
is achieved quite fast. Because µ stays close to 0, from (2-10) we have that the quantized
measurement of the input gηµ(u) is almost identical to the actual input value u, thus it
holds gηµ(u) ≈ η = KT

x xm + Krr, which is the desired input value to achieve asymptotic
state-tracking in the non-quantized model reference adaptive control case.
One can see in Fig. 4-6 that µ is not strictly decreasing, indicating intermediate zooming-out
phases in between zooming-in time intervals which complies with our theoretical result in
(2-38). When e /∈ B1(µ), µ is increased continuously in a piecewise fashion faster than the
growth of ‖e‖ to avoid saturation. Then µ decreases in a piecewise manner when e ∈ I2(µ),
according to (2-40), and subsequently new smaller regions I1(µ), I2(µ) are obtained.

4-1-3 Networked implementation of the dynamic quantizer

In this section we investigate the applicability of the proposed hybrid adaptive control design
in the framework of networked control systems. In particular, for the simulations in Section
4-1, we implemented the encoding/decoding scheme shown in Fig. 4-7.
The decoder located on the actuator side waits for the quantized values of µ, η and the
quantization level associated to the dynamic quantizer gηµ(u), so that it can reconstruct
the input u computed by the adaptive controller. In order to encode µ and η, we designed
uniform static quantizers with dynamic range M = 10 and quantization error ∆ = 0.001,
thus we need to transmit 20001 quantization levels (encoded in 15 bits). The decoder maps
the received bits into the associated quantization level, for µ, η and gηµ(u). The transmitter
is event-triggered, i.e. no data packages (15 bits for µ, η or 11 bits for gηµ(u)) are sent till a
switch to a new quantization level occurs. Fig. 4-8 shows the bit depth (number of bits of
information) transmitted at each triggered transmission time instant for µ, η and gηµ(u).
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Figure 4-7: Block diagram of the implemented encoding/decoding scheme
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Figure 4-8: Bit depth for µ, η and gηµ(u) (for the first 10 seconds of the simulation)
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The transmission of µ is activated less often (mostly during zooming-out phases) because, as
shown in Subsection 4-1-2, µ approaches zero very fast. Finally, the bit rate (the number of
bits per second transmitted through the network) is illustrated in Fig. 4-9, where it can be
seen that the maximum bit rate is around 3 Kbit/s.
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Figure 4-9: Transmitted bit rate
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4-2 Quantized adaptive control of piecewise linear systems: a
NASA GTM test case

In this section we study the effectiveness of the proposed adaptive hybrid control policy,
performed on the NASA Generic Transport Model (GTM) [52].

4-2-1 Design and simulation parameters

The system, is linearized at steady-state, straight, wings-level flight condition at 75 and
85 kt at 800 ft, respectively. More precisely, the GTM models linearized at points x01 =
[127.6597, 10.3615, 0, 8.0987]T , u01 = [1.3109, 14.1457]T and x02 = [144.9022, 8.5931, 0, 5.9234]T ,
u02 = [2.3649, 14.8592]T , are given respectively as follows:

A1 =


−0.0190 0.0825 −0.1005 −0.3206
−0.2154 −2.7859 1.2031 −0.0271
3.2527 −30.7871 −3.5418 0

0 0 1 0

 , B1 =


0.0065 0.0534
−0.6103 0.0020
−74.6355 0.5431

0 0



A2 =


−0.0312 0.1095 −0.0938 −0.3210
−0.1057 −3.2245 1.3765 −0.0217
3.9602 −33.8308 −4.0756 0

0 0 1 0

 , B2 =


0.0032 0.0534
−0.7821 0.0020
−96.0149 0.5431

0 0


and the desired dynamics are given as follows:

Am1 =


−0.0215 0.0810 −0.0988 −0.3180
−0.0706 −2.6377 1.0345 −0.2636
20.9585 −12.6579 −24.1637 −28.9269

0 0 1 0



Am2 =


−0.0328 0.1088 −0.0930 −0.3196
0.0753 −3.0601 1.1577 −0.3276
26.1845 −13.6389 −30.9393 −37.5452

0 0 1 0


with Bm1 = B1 and Bm2 = B2 for the reference model. It is important to underline that the
matrices A1, B1, A2, B2 are given for simulation purposes, while the controller design does
not use the knowledge of these matrices (only the knowledge of the reference model is used).
The matrices Sp, p = 1, 2, in (3-11) are chosen as S1 = S2 = 0.05 · I2, and the reference signal
is chosen r(t) = [2 sin(0.02πt), 0]T . For a dwell time τd = 5 sec, we pick C = 1 in (3-6) and
the matrices obtained by solving the LMIs in (3-6), are:

P1,0 =


1.8426 0.0495 −0.0142 −0.5113
0.0495 0.2034 −0.0064 −0.0372
−0.0142 −0.0064 0.0193 0.0208
−0.5113 −0.0372 0.0208 0.9662


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P1,1 =


2.5588 0.0174 −0.0155 −0.7376
0.0174 0.4338 −0.0181 −0.0097
−0.0155 −0.0181 0.0444 0.0251
−0.7376 −0.0097 0.0251 1.7162



P2,0 =


1.8612 0.0455 −0.0108 −0.5542
0.0455 0.2016 −0.0062 −0.0251
−0.0108 −0.0062 0.0182 0.0166
−0.5542 −0.0251 0.0166 1.0178



P2,1 =


2.5366 0.0283 −0.0115 −0.7328
0.0283 0.3913 −0.0147 −0.0110
−0.0115 −0.0147 0.0361 0.0197
−0.7328 −0.0110 0.0197 1.7429

 .

The parameters of the input quantizer gηµ(u) in (2-8) are chosen as M = 10, ∆ = 0.01 and
µ initially is equal to 1. The initial tracking error is e(0) = [2,−1, 1, 0.5]T and the initial
parameter estimates are chosen

Kx1(0) =
[
−0.1899 −0.1943 0.2210 0.3101
−0.0142 0.0007 −0.0014 0.0009

]T
, Kr1(0) = 0.75 · I2

Kx2(0) =
[
−0.1853 −0.1682 0.2238 0.3128
−0.0138 0.0002 −0.0012 0.0016]

]T
, Kr2(0) = 0.75 · I2.

The controller parameters are assumed to reside between lower and upper bounds as follows:
K

(1,2)
rp ,K

(2,1)
rp ∈ [−1, 1], K(1,1)

rp ,K
(2,2)
rp ∈ [0.5, 1.2] and K

(i,j)
xp ∈ [−1, 1], i ∈ [1, 4], j ∈ [1, 2],

p = 1, 2 (the notation K(i,j) represents the (i, j)-th entry of matrix K). For the purpose of
the simulation, Ω in (2-40) is computed Ω = 0.49.

4-2-2 Simulation results

The simulation has been conducted in Matlab-Simulink R© and the simulation results are
shown in Figs. 4-10 – 4-14.

The switching sequence admissible with dwell time is shown in Fig. 4-10, while Fig. 4-11
shows the dynamic range µ. Fig. 4-12 shows that the tracking performance of the dynamic
quantizer with adjustable offset is clearly satisfactory. From Fig. 4-11 it can be seen that
the quantizer parameter µ retains its initial value for the initial 7 seconds indicating that
the signal is not saturated; then it decreases abruptly in a piecewise manner indicating that
the condition e ∈ I2

′(µ) triggers (3-31) consecutively. Thereafter, because µ stays close to
zero, we have from (2-10) that the quantized measurement of the input value gηµ(u) is almost
identical to the actual input value u, thus it holds gηµ(u) ≈ η = KT

xpxm +Krp, p ∈ N , which
identifies with the desired input to achieve asymptotic tracking in the non-quantized switched
systems model reference adaptive control case.
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Figure 4-10: The switching signal σ(t).
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Figure 4-11: Hybrid control parameter µ(t).
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Figure 4-12: State tracking error
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Figure 4-13: Quantized input
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Figure 4-14: Controller parameter estimates

It can be seen in Fig. 4-11 that µ is not monotonically decreasing indicating zooming-out
events in between zooming-in time intervals, which complies with our theoretical result in (3-
30). When the condition e ∈ B1

′(µ) tends to be violated, µ increases at a faster rate than the
growth of ‖e‖ to avoid saturation. It is important to underline that the zooming-out phases
are mostly occurring in switching time instants, not in order to compensate the possible
increment of the Lyapunov function at the switching instants (we have shown in (3-20) that
this is not possible), but rather as a result of poor controller parameter estimates from the
previous switch-out controller time instants. This is less evident, as the estimates settle for
all subsystems, at 15s 51s, and 72s. Then µ decreases in a piecewise manner according to
(2-40) when e ∈ I2

′(µ), and subsequently smaller regions I1
′(µ), I2

′(µ) are obtained.
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Chapter 5

Conclusions and future work

This Chapter concludes the MSc thesis. In Section 5-1 we recall the research questions from
Section 1-3 and summarize how we tackled them. In Section 5-2, we formulate new research
questions with a possible direction towards solving them.

5-1 Conclusions

The aim of this MSc thesis was to address the following aspects:

• Address large uncertainty in the unknown system parameters
This was achieved by embedding quantized control in a model reference adaptive control
framework.

• Achieve asymptotic tracking in the quantized control setting, without sending informa-
tion infinitely often
This was achieved by introducing a novel dynamic quantizer with dynamic offset. A
Lyapunov-based approach was used to derive the adjustments of the dynamic range, of
the dynamic offset, and of the control parameters.

• Enlarge the class of quantized adaptive tracking control to include uncertain switched
linear systems
We extended the quantized adaptive control scheme for switched linear systems with
dwell-time switching, by exploiting a time-scheduling technique [53] to develop a new
Lyapunov function with a time-varying positive definite matrix.

• Avoid the quantizer to zoom out at every switching instants in order to compensate for
discontinuities
Differently from the classic quadratic Lyapunov functions with a constant positive def-
inite matrix, e.g. in [38] and [41], the new Lyapunov function is nonincreasing at the
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switching instants, which does not require to zoom out at each switching instant. This
mechanism greatly simplifies the design of the dynamic quantizer and makes it consis-
tent with the zooming procedure in non-switched systems.

5-2 Future work

For the purposes of this Msc thesis we have implicitly assumed perfect, event-triggered, com-
munication channels; once the control signal is available in the network, the quantized signal
is directly transmitted to the unknown system. This framework does not take into account
communication errors (data-packet dropouts), which is the case in realistic networks [11].
In Chapter 3, the adaptive control of quantized-input switched linear systems under slow
switching was investigated, assuming synchronous switching between each subsystem and its
corresponding controller. This assumption is often unrealistic in practice [54]. Normally,
because of the presence of the network closing the control loop, the controller switches later
than the system which causes asynchronous switching in the closed-loop system. Apparently,
the mismatched controller may lead to instability the closed-loop [55].

In Subsection 4-1-3, it was shown that asymptotic tracking can be achieved without infinite
bandwidth. This was possible, because at each time instant only the bits that activate a new
quantization level are transmitted through the network. An optimal dynamic bandwidth al-
location management policy, which allocates the required bandwidth to guarantee asymptotic
tracking for a certain bit rate could reduce the load of the network and save bandwidth for
other components connected to the network.

From the above discussion, some new research questions are proposed as follows:

• Study the asymptotic tracking control for uncertain systems under communication
losses, delays and quantization effect;

• Achieve asymptotic tracking for uncertain asynchronous switched systems;

• Design bandwidth allocation management policies in the framework of unknown systems
with guaranteed asymptotic tracking.

In [56] a robust control approach is used, to evaluate the tracking performance taking into
consideration network delays and data-packet dropouts. An LMI-based procedure is proposed
for designing state-feedback controllers, which guarantee that the output of the closed-loop
networked control system tracks the output of a given reference model in the H∞ sense. A
possible extension of this work, could be a hybrid control policy, similar to the one we used
in Section 2.3, taking into account the quantization effect.

In [49], the stability problem for parametric uncertain switched systems in the presence of
asynchronous dwell-time is addressed. A possible improvement to achieve asymptotic stability,
could be the design of a new time-varying Lyapunov function, similar to the one we adopted
in Section 3.2, with the difference that the new Lyapunov function is continuous at switching
time instants and discontinuous at the instants when the system and controller modes are
matched. If one can prove that the jumps of this Lyapunov function form a decreasing
sequence then asymptotic stability is achieved.
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A dynamic control-based approach to bandwidth management in NCSs has been proposed
in [57]. In this work, each bandwidth allocation is determined locally for each loop, taking
into account both the local plant dynamics and the global network dynamics. A possible
extension to this work could be the expression of the error dynamics into an adaptive control
framework using quantized measurements, and express the bandwidth allocation management
policy taking into account the dynamics of the quantizer.
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Appendix A

Preliminaries in stability for switched
linear systems under time dependent

switching

A-1 Time dependent switching

Suppose we are given a family of linear systems, Ap ∈ Rn×n, such that

ẋ = Apx, p ∈ N (A-1)

where the index set N is finite: N = {1, 2, ..., N}.

To define a switching signal generated by (A-1), we need the notion of a switching signal.
This is a piecewise constant function σ : [0,∞)→ N . Such a function σ has a finite number
of discontinuities, namely the switching times, on every interval between two consecutive
switching times. The role of σ is to specify, at each time instant t, the index σ(t) ∈ N of the
active subsystem, i.e., the system from the family (A-1) that is currently being followed. It
is assumed that σ is continuous from the right everywhere: σ(t) = lim

τ→t+
σ(τ), for each τ ≥ 0.

An example of such a switching signal for the case N = {1, 2} is depicted in Fig. A-1.

A switched linear system with time-dependent switching can be described by the equation

ẋ(t) = Aσ(t)x(t), σ(t) ∈ N . (A-2)

A-1-1 Linear switched systems dwell-time stability

It is well known that a switched system with time-dependent switching is stable, if all indi-
vidual subsystems in (A-1) are stable and the switching is sufficiently slow, so as to allow the
transient effect to dissipate after each switching time instant. In this subsection, we discuss
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Figure A-1: A switching signal σ(t) [2]

how this property can be precisely mathematically formulated and justified using multiple
Lyapunov function techniques.

Lemma A-1.1. [49] (Dwell time global asymptotic stability) Assume that each sub-
system in (A-1) is globally asymptotically stable, that is, there exist positive definite matrices
Pp and a constant scalar λ > 0 such that the inequalities

ATp Pp + PpAp + 2λPp ≤ 0, p ∈ N , (A-3)

hold. For a switching signal σ(t), let ti, i ∈ N+, denote the switching time instants and let
τd represent the minimum switching time interval: τd = min

i∈N+
{ti+1 − ti}. By defining the

following Lyapunov function candidate

Vσ(t)(x(t)) = xT (t)Pσ(t)x(t) (A-4)

for the switched linear system (A-1), the following properties are obtained:

1. Each Vp(x(t)) = xT (t)Ppx(t) in (A-4) is positive definite, and its time derivative along
the trajectory of the corresponding subsystem of (A-1) satisfies

V̇p(t) = xT (t)(ATp Pp + PpAp)x(t)
≤ −2λVp(x(t)).

(A-5)

2. The inequalities
α1
∥∥x(t)

∥∥2 ≤ Vp(x(t)) ≤ α2
∥∥x(t)

∥∥2 (A-6)

hold for α1 = min
p∈N

[λmin(Pp)] and α2 = max
p∈N

[λmax(Pp)].

3. For z = α2
α1
, it holds that

Vp(x(t)) ≤ zVl(x(t)), ∀p, l ∈ N , p 6= l. (A-7)

According to (A-5)-(A-7) and the result in [58], if the switching signal σ(t) satisfies the dwell
time condition

τd ≥
ln z
2λ

(A-8)

then the switched linear system (A-2) is globally asymptotically stable.
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Remark 9. If all Ap in (A-1) are the same, or there exists a common positive definite matrix
P such that ATp P+PAp < 0, the switched linear system (A-1) is globally asymptotically stable
for arbitrary switching (arbitrary slow switching). Conditions for the existence of a common
positive definite matrix P can be found in [59].

Consider (A-1) with N = {1, 2} and let ti, i = 1, 2, ... be the switching instants. Let V1 and
V2 given by (A-4) be their respective (radially unbounded) Lyapunov functions. In case a
common P exists, the values of V1 and V2 coincide at each switching time, i.e., Vσ(ti−1)(ti) =
Vσ(ti)(ti) for all i, and then Vσ is a continuous Lyapunov function for the switched system
and asymptotic stability follows. This situation is depicted in Fig. A-2(a).

In case such common P does not exist, Vσ is discontinuous. While each Vp, p ∈ N , decreases
when the pth subsystem is active, it may increase when the pth subsystem is inactive. The
idea that follows the dwell time property in Lemma A-1.1 is the following: by looking at the
values of Vp at the beginning of each interval on which σ = p, the switched system (A-1)
is globally asymptotically stable if these values form a decreasing sequence for each p. This
situation is depicted in Fig. A-2(b).

Figure A-2: Two Lyapunov functions (solid graphs correspond to V1, dashed lines correspond to
V2): (a) continuous Vσ, (b) discontinuous Vσ [2]
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