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1 Abstract

The purpose of this project is to develop a low powignal specific analog to digital
conversion suitable to detect the QRS complex $erin pacemakers. In order to obtain
this we have resorted to wavelet analysis in fadrihe analog to digital conversion. The
wavelet analysis is done by means of a switchedaty filter. The design process
involved three design steps. The first is derivimg filter characteristics in a state-space
representation by means of a SVD approximationt Mexoptimize the state-space
representation for dynamic range. The last stepl@g matrix manipulation to convert
the state-space representation into a tridiagocialv&rz form which enables easy
implementation and offers low sensitivity with regspto component variations.



2 Introduction

21ECG

In this thesis we focus on application in a pacéanaPace-makers monitor the rhythm
of the heart beat and, if needed, the pace mallegaevierate a pulse to stimulate the
heart. A pace maker thus needs to decide if a &iron pulse is needed. In order to do
this the pace maker will have to be able to mortlierheartbeat closely. A recording of a
human heart beat is known as ElectrocardiograplGiEDd is shown in figure 2.1.
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Figure 2.1 A human ECG

From figure 2.1 one can see that the subsequergsa@ithe heart signal are labeled P,
Q, R, S and T. The waves denote the depolarizatioirepolarization of the muscles in
the heart. In this thesis we focus on detectingRheave or QRS complex. This is the
biggest peak and the main feature of the ECG. TR8 Qomplex denotes the activity of
the heart pumping the blood around in your bodys QRS complex is always the
dominant feature of the ECG and if it is missingiybeart needs some pacing.

Electrodes placed on the heart detect the hearalsaond an analog to digital converter
(ADC) in the pace maker converts this analog sigmtal a digital signal. The ADC’s in
some pacemakers use their full resolution to da thigh resolution ADC’s consume a
lot of power. If the resolution of the ADC can leluced then we can save some power.
In this case we aim to lower the power consumpbiymaking the ADC signal specific.
We do this by studying the effects of implementnfijtering action in or around the
ADC. By creating a filtering action before, insideafter the ADC, we can lower the
ADC'’s resolution and hence lower the power consionpt

2.2ADC

The options to choose from when combining a wavétet with an ADC are the
following three.
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Figure 2.2. a: wavelet filter before ADC. b: wavdiker inside ADC. c: wavelet filter after ADC

By putting the wavelet filter after the ADC we canigain any reduction in the ADC'’s
resolution. The ADC still has to convert the anadggnal into a digital signal using its
full resolution. This option is therefore not a gasolution and will not be considered
further. The other two options will be discussedtfar in a subsequent chapter.

2.3 The need for wavelet transforms

Fourier analysis is a tool that allows the desidgndook at the frequency contents of a
signal. A Fourier analysis performed on a time dionsggnal thus yields the frequency
spectrum of that signal. This is a very useful airdquently used tool in circuit design. It
has however the drawback that during the transfoom&o the frequency domain all
time domain information is lost. This means thatirthe frequency domain spectrum
one cannot see at what time a particular frequenoyponent occurred in the time
domain signal. Look for example at figure 2.3.
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Figure 2.3. Two time domain signals and their cgponding Fourier spectra.



In the first column of figure 2.3 one can see atoomain signal on the top and its
corresponding Fourier spectrum on the bottom. énséiecond column of figure 2.3 one
can see another time domain signal on the toptarmbiresponding Fourier spectrum on
the bottom. The two time domain signals look vaffedent but their Fourier spectra are
almost the same. This is because Fourier analpsyscorrelates the input signal with
sine waves. This means that Fourier analysis aallyutates how much of a certain
frequency component is present in the time domigimas For the T column in figure

2.3 the two time domain signals span half the fllotv frequency for 0<t<0.5. and a
higher frequency for 0.5<t<1) whereas in tié@lumn of figure 2.3 both signals span
the entire plot.

Wavelet analysis however does preserve the timeadomformation [1]. Wavelet
analysis is different from Fourier analysis in thatorrelates the input signal with a
wavelet instead of sine waves. This allows the vet\analysis to preserve the time
domain information of the input signal. The termvedat actually means “small wave”. It
has a compact support.
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Figure 2.4. Two time domain signal and their cqpoesling wavelet analysis.

Look for example at figure 2.4. The time domaimsig on the top row are the same as
in figure 2.3 but now on the bottom row we havedbeesponding wavelet analysis.

In this case the wavelet analysis is performediitierent scales (1 tol16 on the y axis)
using a gaus1 {1derivative of a Gaussian) as the mother wavelétpdotted versus time
(x-axis). The scale of the wavelet analysis casd®n as a zooming parameter in the



frequency domain. A low scale means that the wawaglalysis zooms in on the higher
frequency components in the signal and ignoresothidrequency components, and vice
versa for a high scale. In figure 2.4 this is nyaustrated. The fluctuations in the input
signal are expressed as alternating black and whbltes. For a low scale the high
frequency component of the input signal is cleddiected. For an intermediate scale the
high and low frequency components are both deted@tad is because the low and high
frequency are not very far apart. For a high soalg the low frequency component is
detected. This shows that wavelet analysis is Isigit® break a signal up into frequency
components and preserve the time domain informatlowever wavelet analysis can
only do this using several scales. This meansitthaa want to make a wavelet ADC we
need to use a filter bank where each filter cowadp to a wavelet scale.

Because we focus on a pacemaker application iriitegs we have also performed a
wavelet analysis on an ECG signal. On the top rbfigare 2.5 you can see an ideal
ECG without noise and interference. On the middle of figure 2.5 you can see the
same ECG signal but now it is corrupted by 50 Herference. While on the top row of
figure 2.5 all the waves are clearly visible on thieldle row only the QRS complex can
be identified. All the other waves are drowninghe 50 Hz interference. On the third
row you can see the result of the wavelet anajpysiformed on the ECG signal plus
interference using the gausl as the mother wavidi.wavelet analysis is also
performed with 16 scales. For the lower scalesitgker frequency components in the
signal become visible. In this case it is only 8eHz interferer that is visible. For the
higher scales the lower frequency components beatsiige. In this case the ECG
signal is visible again.
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Figure 2.5 A wavelet analysis on an ECG signal.

2.4 Choosing the mother wavelet

The wavelet transform is written as:
W, (7,a) :iDT ey (5 )t 2.1
Ja 2. a

In equation 2.1 f(t) is the input signal or thersigto be analyzed, a is the scale parameter
andr is the translation parameter in time. The fadtifa is used for energy
normalization.¢ is the mother wavelet or wavelet base and * dentaldng the complex

conjugate transpose. The wavelet base is a sn@lladsry wave or wavelet. The
wavelet base has to satisfy the following condgion

T¢(t) @t =0 2.2

W)

o

[dew = C, <o 2.3

g ——38



Equation 2.2 denotes an oscillatory wavelet basle maro mean. Or a wavelet base with
finite duration. Equation 2.3 is the admissibiliggndition. The wavelet base needs to
satisfy this condition in order to be able to restouct the inverse transform. From
equation 2.1 it is observed that performing a weiviegansform is actually performing a
convolution of the input signal with scaled versmi the wavelet base. In this case
scaled can also be read as dilated because, ssdleg parameter a increases, the
impulse response of the wavelet filter becomesdomng. it has a longer duration.
Therefore each scale corresponds to a certainibahe frequency domain. A wavelet
filter is thus a filter that computes the wavetansform for one scale.

There is a wide variety of wavelet bases. Choo#irg'best” wavelet base can be very
challenging. But in general one can say that theertite wavelet base looks like the
signal to be analyzed the better. For this reaseopted for a first derivative of a
Gaussian (gausl) as the mother wavelet. A pictiuaegausl is shown in figure 2.6.

-2 X exp(—xz)

Figure 2.6. The first derivative of a Gaussian.
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3 System design

As mentioned before putting the wavelet filter aftee ADC is not a good solution. The
remaining two options are discussed in the foll@nsnbsections.

3.1 Wavelet in ADC

Here we consider the wavelet filter inside the AEthis stage a choice has to be made
concerning the ADC topology. Our choice for a salg#ecandidate ADC was the sigma
delta ADC shown in figure 3.1. We have chosenlig topology because its noise
shaping character seemed well capable of adjusttoevavelet filtering. With this type

of ADC low pass and band pass ADCs have already breele.

Input Sampler and Output
C G(s) [ quantizer -
DAC (=

Figure 3.1. A sigma delta converter.

The block diagram in figure 3.1 is a low pass sigielia converter if G(s) is 1/s and has
been simulated in Matlab Simulink. For the inpsirausoid of 1001Hz and amplitude of
0.9V was used. The input and output signals arevsho figure 3.2.
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Figure 3.2. The input and output signals of a siglalka modulator.

From figure 3.2 one can see that the output sighthle sigma delta converter is a train

of pulses. In fact, the sigma delta modulator pikse density modulator. As the
amplitude of the input signal increases the nunob@ositive pulses increase and if the
amplitude of the input signal decreases then timebeu of negative pulses increase. If the
input signal is zero then the output signal corst@n equal number of positive and
negative pulses. The input signal is thus containglde density of the negative and
positive pulses. By performing a Fourier analysidite output signal we can see the
frequency content of the signal. This allows ugdémonstrate the noise shaping character
of the sigma delta converter. The spectrum plsh®wn in figure 3.3. The input tone is
clearly visible and that the quantization noiseemgknt a high pass filtering action. The
signal transfer is different from the quantizatiarise transfer because the quantization
noise is generated at the quantizer and the sigaglplied to the input. The signal
transfer from input to output is called STF andakculated as follows:

STE = G(s) 3.1
1+G(s)

The noise transfer from the quantizer to the ouipuaglculated as follows.

NTF= 3.2
1+ G(s)

In this case G(s) is 1/s or a continuous time irattey. Substituting 1/s in both equations
yields a low pass filter for signals applied to theut and a high pass filter for the noise
generated by the quantizer.
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Figure 3.3. A plot of the output of a sigma deltaeerter.
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A band pass sigma delta has a structure showgunefi3.4.

Input Sampler and Output
C G(s) [ quantizer -

DAC =

Figure 3.4. A band pass sigma delta converter.

In figure 3.4 G(s) can have the following form.

S
G(s) = 3.3
(®) s*+100s+(4r 163

In this case G(s) is a band pass filter. The bdoegh G(s) looks as follows.
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Figure 3.5 The bode plot of 3.3.

One can see that this is a band pass filter withrg narrow bandwidth. The centre
frequency lies at 20k Hz. With this band passffiltside the loop of the sigma delta
converter we obtain a band pass sigma delta carvdite spectrum plot of the band
pass sigma delta converter is shown in figure 3.6
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Figure 3.6 A plot of the output of a band pass siglelta converter

Now the noise transfer is a band reject filter dredsignal transfer is a band pass filter.
So the noise is effectively “shaped” outside thedoaf interest.

Since a wavelet filter is a kind of band passifjltee step from band pass sigma delta to
wavelet sigma delta didn’t seem too big. We haiegltto make a wavelet sigma delta
converter by implementing a G(z) that behavesdikeavelet filter.

0.14551Z -0.5752% +0.8526°z - 0.5616 @.3387 3.4

G(z) =
@ Z°-4.98517 +9.940% -9.918%°z + 4.942 ®9855

This discrete time transfer function models a fdtder wavelet filter. By inserting this
filtering action in side the loop of a sigma dedtmverter we hoped to obtain a sigma
delta converter that shows wavelet behavior. Wendidsucceed in this. One reason for
this is that the system became unstable. The itsgakas caused by the quantizer
primarily. The quantizer breaks the loop and beeanighis the loop gain becomes
dependent on the input signal. This causes thes blthe system to move outside the
unit circle and thus the system is unstable. Arathason why we did not succeed is that
for a sigma delta converter that was stable itndilshow the desired wavelet behavior.
This again was due to the quantizer. As the posgtipas became dependent on the input
signal, the wavelet behavior was corrupted. Sinednawen’t found a solution to this
problem we decided to abandon this approach andgfoo the last remaining option, a
wavelet filter before the ADC.

14



3.2 Wavelet before ADC

Since two out of three options have been rejectdylane remains. If the analog signal
undergoes some analog preprocessing then the tiesadd the A to D converter can be

lower and hence consume less power. In this tlaesanalog preprocessing by means of
a wavelet filter is proposed.

15



4 Approximation of the mother wavelet

To make an electronic filter that implements a Weivgansfer we need to make a filter
that has as its impulse response the mother wavdletmother wavelet, until now, has
been given as a time domain function i.e. infiitder. Electronic filters have only a
limited number of poles i.e. limited order. Thislsdor approximation.

4.1 Pade

The Pade based approximation [1], [2] offers arr@xmation in the Laplace domain. It
takes the time domain function as input and givearesfer function as output.

The time domain function can be any of the knownelet bases (Morlet, Daubechies
and Gausl). The approximation starts by taking ace transform of the time domain
function. This gives a closed form expression mgkdomain. On this Laplace transform
we will perform a Taylor series expansion (A(s))tam certain order.

A(S):Zg: a® 4.1

This Taylor expansion can then be put into a tamfsinction (R(s)/Qu(s)) by using
Pade. Here Ks) denotes the numerator of the transfer fundimhit is a polynomial of

order L. Qu(s) is the denominator of the transfer function dansla polynomial of order
M.

As)- 18— N=L+M+ 4.2
Qu (s)

From equation 4.2 one can see that the Taylorssexpansion has to be done up to order
N. In order to solve equation 4.2 we multiply by (®), rearrange and set the
normalization condition X0) = 1. This results in the following set of eqoas.

a, +alq +30g

8 =R
a +glq =R
2

' 4.3
a +aq,0q9 +- +glg

a . +qu Feee +§-‘M+1DIGI

I

—_— —

A T Rima Dq +e.e +§D,&] =
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In this set of equations all a’s are known. Thé&sPand @(s) vectors are to be
determined. We can find a solution for vectas(§) by solving the sub set of equations
that equal zero.

a +3L|:Jq +eee +gM+1Dlg
: 4.4

Ayt Qv Dq +e +?-D|\q

By solving for the null space for equation 4.4 vikain a solution for Q(s). Once we
have a solution for Xs) we can find a solution for_ 8) by substituting ((s) in
equation 4.3. Now we have arrived at a continugus transfer function.

Pol:‘gw + Fng'l+
QOB}+ Ql[é‘1+

* R oy 45
+Q

This approximation can be summarized in a blockrdian.

Laplace Taylor Pade

(s) . £(s) num(s)

ft) fs) den(s)

Figure 4.1 Block diagram of the Pade approximation.

h J

A

Having done the Pade approximation we have ar@edcontinuous time transfer
function in the s-domain.

A good property of this approximation method istiihés straight forward and easy to
implement in Matlab. However a drawback is thatd’ddes not always yield a stable
system especially for higher order approximations.

Later on in this thesis we will talk about statexsp descriptions rather than transfer

functions. A transfer function can easily be cotegiinto a state-space description by a
standard method. Take for example the followinggfer function.

nE +n0S +pds+np

H(s) = 4.6
©) s'+dE +d08 +dls+,
This transfer function can directly be inserte@istate-space description.
-d, -d, -d, -d, 1
1 0 0 O 0
XM _ X() + | _|Cu) 4.7
dt O 1 0 ©O 0
O 0 1 o0 0
yO =[n n n n]Ox@ 4.8
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This state-space description is called controllableonical form because it is guaranteed
to be controllable.

An example approximation using Pade is shown iarégl.2. For generating this plot we
used a time shifted (1.7 sec) gausl. The ordepmfoximation is 5 and the Taylor
expansion is done in s = 0.

Impulse Response
1 T T T

Amplitude

1
0 0.5 1 15 2 25 3 3.5 4 4.5 5
Time (sec)

Figure 4.2. The original gausl overlapped withRaele based approximation.

As one can see Pade does not perform very wellappeoximated gausl has a wiggle at
the start of the signal. This comes from the fhat the Taylor expansion has been done
in s = 0. This is necessary because an expansimidany other point than s = 0 results
in ringing. Also at t = 1s the top of the approxtimoa overshoots and at t = 2.4s the top of
the approximation is too shallow. These are all amed effects as they affect the
outcome of the wavelet transformation. The mearmsgarror is calculated and is found
to be 0.00110.

42 5VD

This approximation method relies on the Singulalugd@ecomposition or SVD [3]. The
approximation is done in the discrete time domather than the continuous time
domain. It takes the sampled version of the timmaala signal as input and produces a
state-space description as output.

18



Linear systems have an input output relation wisathefined by the transfer matrix T.
y=TCu 4.9

Here the input and an output respectively look the following.

u:[...u_l y ]T 4.10
y=v[w % 411

The boxed entry denotes the instance at t = O.nfdteix T is the matrix that represents
our system. Because it is a linear system the isgpdsponse of the system can be
calculated as follows.

Tf..0ofd0.] =hd _op,h,h,n]- 4.12

Because T is an LTI system it can be shown thaatmu4 holds for an impulse as input
at any time t. This means that the system matnxubt have a lower triangular structure.

0O 0 0 O O
.h, 0O 0 0 O
. h, b 0 0 O
T = 4.13
. h, h, hy 0 0
. h, h, h, h, 0

Matrix T is constant along its diagonals becausinoé invariance and lower diagonal
due to causality. Of course T is now a matrix dhite dimension which is not really
workable. One way of reducing the size of T ismbydake the inputs in the past and the
outputs in the future. This will result in the f@Ning structure:

BN 0 0 0 0 0 O
Xx 0 0 0 0 Of|u,
x x 0 0 0 Of|u,
Yo | = h, h| [ 0 0o o|fiu, 4.14
Y, h, h, x x 0 0|0
Y, h, x x x 0]||O
L DooXoox o x x|
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The idea here is that only inputs in the past gaeevutputs in the future. By doing this
we obtain a T matrix which is at least semi inBniThe system in equation 6 can also be
written as:

yO hl h2 h3 ul
y.=HL - |7 BRI N H 4.15

Matrix H is called the hankel matrix. Its columransist of shifted versions of the
impulse response. From this hankel matrix H we @altulate the A B C and D matrixes
of the state-space realization we want to obtain.

The impulse response of a state space system &sokdlows:

h=[- 00 0o[0 CB cAB CAB -] 4.16

One can see now that matrix H has great similanitigh h. The columns of H are shifted
versions of the impulse response. So H has a ateuathich looks like:

CB CAB CA’B

CAB CA’B
H= CAZR ) 4.17

In our case we know the H matrix. We construatahf sampled and shifted versions of
the required impulse response. Having done thateeel to extract the A, B, C and D
matrixes from H. We do this by decomposing matriitd two matrixes, a matrix O
called the observability matrix and a matrix K edllcontrollability matrix.

H = O[K 4.18
Where:

o=[c cA ckg -] 4.19
K=[B AB A%B ] 4.20

A reliable way to compute the O and K matrix isggrforming a Singular Value
Decomposition (SVD) on the hankel matrix. An SVDtbhe hankel matrix looks like
this:

H=uU}mw" 4.21

20



In the SVD the matri¥_ is a diagonal matrix with the singular values aged in
decreasing order. Of course if H is infinite t}ems also of infinite order. In this ca3é
is rounded off to a rank 5 matrix. This will resirita 3" order system which can be
implemented in a switched capacitor topology. Then@ K matrix can be calculated
from the SVD as follows:

O = U2 4.22
K= SY2gH 4.23

Where: U, 3 and Vare the rank 5 approximation of the original{Uand V matrixes
respectively. Now having obtained the O and K masiwe need to extract the A matrix
of the state space description from this. A simypg of doing this is by dividing the O
or K matrix in two and divide them to extract thevfatrix. In this example we choose
the O matrix.

— OX T

O=|C CA CA? ... CA" cA 4.24

— o T

O=|C CA CK ... CA' cCA 4.25

One can now see that:

O,[A=0, 4.26
From 4.26 the A matrix is easily found by dividi@g by the pseudo inverse of.O
A=0; [0, 4.27

Now only the B and C matrixes of a state spacerge#®mn have to be found. They are
easily found by taking the first row and first coin of O and K respectively.

B = K(,1) 4.28
C=0(1,) 4.29

Matrix D is set to zero in this case. This is dbeeause we want to obtain a causal
system.

21



In this thesis we will make use of this approxiraatmethod. The reason we choose this
method is because in comparison to other approlomgit gives the best approximation
and it yields state-space descriptions with thetleemponent spread. An example
approximation is given below. In this case the agpnation order is 5 and the time shift
is 1.7 seconds, the same as for the Pade approcamat

Impulse Response
l T T

Amplitude

-1 \ \ \ \ \ I I I
0 1 2 3 4 5 6 7 8 9

Time (sec)

Figure 4.3. The original Gausl overlapped withahproximation.

For the approximation in figure 4.3 one can seétti@approximated version overlaps
the original gaus1 pretty well. The wiggle is nader there and the performance at the
tops is also better. The mean square error is leadoiand found to be 0.00011. Thisis a
factor of ten better than the Pade approximation.

4.3 L 2-approximation

The L2 approximation [4] is a method that worksedity in the time and frequency
domain. A drawback of this method is that it layg@épends on the starting point that is
used. The L2 approximation has local optima anddadioice of the starting point can
cause the iterative process of approximation tougnoh a local optimum instead of the
global optimum. For this reason we have choseraose this method.
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5 State-spacedescriptions

LTI systems are usually described by their tran&fections or impulse responses. This
transfer function completely defines the relatiopdtetween the input and the output but
it doesn’t contain any information about the intdrstates of a system. State-space
descriptions [5] however do describe the behavidh® internal states of a system.

5.1 State-space

A state-space description is a mathematical md@ldescribes the behavior of a system
by its input, output and state variables. Thes@b#es are related to each other By 1
order differential equations. State-space desongtcan be either in the continuous time
domain or discrete time domain. State-space desmrgprovide a convenient and
compact way of modeling a system.

5.1.1 Continuoustime state-space descriptions

The state-space description of a system looks|msvi

$:A&(t)+8 [Wi(t) 5.1

y(t) = CIx(t) + DU 5.2

In these equations x(t) represents the state afytbiem u(t) is the input to the system and
y(t) is the output of the system. A is the n byyastem matrix, B is the n by m input

matrix and C is the p by n output matrix. D is theect feed through matrix of size p by
m. Here n is the number of state variables, pastimber of inputs and m the number of
outputs. The state-space descriptions can also/be o the Laplace domain.

sk(s)= AXk(sy BOu(s 5.3
y(s)= CIX(sy+ DOu(s 5.4

Also a block diagram of a state-space descripsatepicted in figure 5.1. A state of a
system, which is a collection of system variablelsies, completely defines the entire
system at any given time. This means that no inftion of the past of the system helps
in predicting the future of the system, if the stabf the present are known.
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u(s) J g i : s X(s) | c y(s)

Figure 5.1: Block diagram of a continuous timeestsppace description

From a state-space description the transfer functfdhe system can be derived.
H(s)= Cl{s0l- A) " (B+ D 5.5

But of course in a transfer function all the inf@thon about the internal states is lost.
A big advantage of the state space descriptiotiatsve have control over the internal
states. This means that we can actually optimieesyistem with respect to dynamic
range. In order to optimize for dynamic range wedh® calculate the controllability (K)
and the observability (O) matrixes. The officiafid#ion of these matrixes is.

K=[B AB A*(B 0D A™'(B] 5.6
o=[c A A m ©A] 5.7
Controllability of a system means that the stafes $ystem can be steered from any

initial condition to any final value within a giveaime. Observability of a system means
how well the internal states can be inferred frbm dutput.

_w t T Tt iw ; ;
G—!e‘* [BLE ¥ Ddtzzn_ij(go)[F(Jm)mm 5.8
W:Te’“‘ T cé Ddt:if G @) G(jo) Mo 5.9
5 2n 2,

G is the controllability gramian and W is the obsduility gramian. For a stable system
the matrixes G and W satisfy the following two lyapv equations.

AG+GIA"+B[B" =0 5.10
ATIW+WRA+C'[C=0 5.11

Gramian matrixes are positive semi definite, anehgyositive semi definite matrix is

the gramian matrix for some set of vectors. Thengga matrix of any orthonormal basis
is the identity matrix.

24



5.1.2 Discrete time state-space descriptions
The discrete time domain state-space descriptiokslas follows.

X(n+1)= Alk(n)+ BLu(n) 5.12
y(n) = CX(n)+ DCu(n) 5.13

Here x(n), u(n)and y(n) represent the state, it output of the system respectively.
And also A is the n by n system matrix, B is theyrm input matrix and C is the p by n
output matrix. D is the direct feed through matbsize p by m. Here n is the number of
state variables, p is the number of inputs andemtimber of outputs. After applying the
z-transform to equations 5.12 and 5.13 we obtarfahowing equations.

z[X(z)= AX(2)+ BL[u(z) 5.14
y(z) = Ck(z)+ D[u(z) 5.15

A block diagram of a discrete time system is shawiigure 5.2. It is exactly the same as
the continuous time system

u(z) . B 1z X(z) S y(z)

A

A

Figure 5.2. Block diagram of a discrete time stgiaee system.
From this discrete time state-space descriptiocarealso derive the transfer function.
H(z)=CH{zO- A)*'B+D 5.16

The lyapunov equations for a discrete time statesgystem look a little different from
for a continuous time system.

AGMIA'-G+BMB' =0 5.17
ATWA-W+C'[C=0 5.18

The controllability matrix (K) and observability fnix (O) of discrete time systems are
calculated in a similar manner as for the contirsutime systems.

K:[B AB A’[B [ A”'lts] 5.19
o=[C CA Q& mn @A 5.20

25



The gramians are now easier to calculate therhiBcontinuous time case. We don’t
have to calculate the exponent of a matrix. Wehaste to calculate a matrix
multiplication.

G=[ KK | 5.21
Gramian matrixes are positive semi definite, anehgyositive semi definite matrix is

the gramian matrix for some set of vectors. Thengga matrix of any orthonormal basis
is the identity matrix.

5.2 State-space realization
Standard discrete time state-space descriptionsaaed on discrete time delays as active
elements. However our system will be build in atskhed capacitor technology. This
means that the active elements are discrete titagrators or accumulators. To
accommodate for this type of active element we hawveake a small modification to the
first state-space equation.
z[X(z)= AX(2)+ BL[u(z) 5.23

Now if we take the left hand side of the equatiod add and subtract one from z we
obtain the following equation.

(z+1-1)Xx(z)= AlX(z)+ Blu(z 5.24
After rearranging this equation we arrive at a ffiest state-space equation.
(z-1)x(z)= (A-1)X(2)+ Bu(z 5.25

From this we can see that the A matrix has to beified. Simply subtracting the
identity matrix from A is sufficient.

u@ | 5 i j ) X(z) c y(z)
T— A-1 e

Figure 5.3. Block diagram of a discrete time stgiaee system with discrete time integrators.
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5.2.1 Dynamic range optimization

The dynamic range of a system is defined as the ohthe maximum signal swing and
the minimum signal swing that a system can harkii@n the thesis of Guillen [6] and
Rocha [10] it is shown that the dynamic range system can be expressed as.

M ]2 TR(GQ)
DR:(ﬂm

max; LG, yZﬁ W.

5.26

Where:

* Mis the maximum output amplitude of the integrator

» d(p) is a nonlinear monotonically increasing funotaf the fraction of time p that
integrator i is allowed to clip.

* TR s the trace of a matrix, the sum of the elementits main diagonal.

« Qis the state weighing matrix: Q =C.

» vy =E&2KT is the integrator noise figure with T is temgaere in Kelvin, k is the
Boltzmann’s constant arigh> 1 is a constant.

. a = Z‘a}j‘ is the absolute sum of the elements of theiv of A.
j

« G is the I"integrator capacitance.
* G; are the main diagonal elements of G.
* W; are the main diagonal elements of W.

In this thesis we will also make use of this equato calculate the dynamic range
expressed in dB'’s.

In order to maximize the dynamic range of the sydtiege maximum distortion-less signal
that the system can handle needs to be maximizithamoise (minimum signal) needs
to be minimized. These requirements mean thatdh&alability gramian needs to be
the identity matrix. For the observability gramiasimilar thing happens. The
observability gramian needs to be diagonal as Wék entries on the main diagonal do
not need to be the same. Having obtained the dod&@nd W gramians the state space
description can now be optimized for dynamic rafiges is done by performing
similarity transforms on the state-space matriXé® result of these transforms is this:

A =TIAD 5.27
B, =T'B 5.28
C,=C0r 5.29
D, =D 5.30
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In order to find a correct transformation matrixv€ start by looking at the lyapunov
equation. For the matrixes A and B, or input pAirB), the controllability matrix is G
(lyapunov equation). If the system is transformgadreans of a similarity transform then
input pair (A, B) becomes (TAY, TB) and G becomes TGTThis can be verified by
substitution into the lyapunov equation. The nem@&trix is now required to be the
identity matrix. Which means that TGE I. After rearranging this equation we arrive at
T = G. This means that*Thas to be a square root of G.

After the first transform we have that G is thentiiy matrix I. The newly obtained state
space descriptions are optimized for maximum owpumg and thus yield a good
dynamic range for the system. The second stepeioptimization procedure is to
diagonalize the observability gramian. This steginsilar to the first optimization step
and therefore not further discussed here.

Now that we have optimized the state-space equatoarid like to know how much we
have gained by this optimization process. We catklthis by comparing the Dynamic
range calculation before and after the optimizagiorcess.

DRbefore: 1409dB
DRafter = 162.7dB

One can clearly see that we have gained little 80edB here. The calculations have
been done on d"order SVD approximation of a gausl. The state-spaeations are
not shown here for brevity. The only drawback a$ ttate space description is that the

matrixes are fully dense. To make sparser mattkxesystem can be decomposed into a
Schwarz form [7].

5.2.2 Schwar z

The Schwarz form of the A, B, C and matrixes lo&k khis.

A,=| 0 a, 0 -a, O 5.31

B,=[b, 0 0 0 ( 5.32
C=[e & ¢ ¢ g 5.33
D, =[0] 5.34

To obtain a state space description that has a &ehferm we start by looking at the
properties of the A and B matrices.
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If we substitute G = | into the Lyapunov equatioe arrive at the following equation.
A+AT=-BB' 5.35

In our case we are working with a single input sgstThis means that the B matrix has
only one nonzero entry, namely the first entry.sTigisults in the right hand side of
equation 5.35 to be almost the zero matrix. Ongyttp left entry of this matrix is
nonzero. This means that matrix A must have thpenyg of being nearly skew
symmetric. A skew symmetric matrix has the prop#igt A' = -A. This means that the
rows of A are equal to there corresponding negatremns (g = -g). Here is an
example of a skew symmetric matrix.

0 2 -1
-2 0 -4 5.36
1 4 0

This matrix already has great similarities with thatrix of 5.31 except for two things. In
5.31 a1 is nonzero and the upper and lower triangle alaowekbelow the sub diagonal
are zero respectively. Although in our casei®nonzero the property'A= -A still holds
and we will use it to turn our state space systamthe Schwarz form.

Assuming that the A matrix has the property of slsgsmmetry it is sufficient that we
transform matrix A into an upper-Hessenberg forntrixan order to get to the tri-
diagonal Schwarz form of 5.31. A matrix which igpep Hessenberg has the following
shape.

5.37

O O W B+
o N BB
= w kN
W b~ N W

A matrix that is upper-Hessenberg and has the pyppébeing skew symmetric implies
a tri-diagonal matrix structure which is exactlyathve are looking for because it has a
lot of zero entries. In order to find a suitablensformation matrix T we look at the
controllability matrix of the system we want. Withupper-Hessenberg and B containing
only one nonzero entry the controllability matrixnkust be upper-triangular. In other
words TK must become upper—triangular. This reguame orthogonal matrix T that
converts the original K into an upper-triangulartnxa(TK). To write it down differently,

K = (TY)(TK). This corresponds to a QR decomposition efafiginal controllability
matrix K.

These matrixes are a lot sparser but of courseawe i a little on the optimal dynamic

range. However we still end up with a close-to mpitin dynamic range given a system
order and decomposition. If we take the same &ftter SVD approximation as in the
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previous section and decompose it into a Schwama e can calculate the dynamic
range and compare it to the optimal state-spacaigéden.

DRschwarzz 161.9dB

This is just a little bit less (0.8dB) than theiopim calculated in the previous section.
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6 Circuit

The circuit is implemented in a switched capadio@ology [1],[6],[8]. This topology
closely resembles the RC integrator. The struatfithe RC integrator is shown in figure
6.1.

Cf
I
I

Vi

ngeBJ"TheRCimemami
The output of this circuit is given in equation 6.1
1 t
V,(t) = -————|V.(7)dt + V, (O 6.1
o0 R[Cfl @ ,(0)

In a switched capacitor integrator the resistoeaced by a capacitor and two switches
as can be seen in figure 6.2.

Cf
]
, phi1 phi2
Vi ) Vo
. |
Cs—
F@we62.Astﬁmdcizdmrmmggmn
The output of this circuit is given in equation 6.2
_ Cs ¢
Volk) = -2 Vi) + Vo 0) 6.2
0

The operation of the switched capacitor integra@s follows. Capacitor {is charged
during clock phase phil. During clock phase ph&dharge stored ons@ transferred
to Ge. The average current can now be calculated as.

_ Cy(Vi-V)

avg T
S

6.3
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Here Ly is the average current, Vi is the input voltageis\the voltage at the virtual
ground node andglis the sampling time. This equation compares to®law by saying
that R equals JCs. Thus comparing the continuous time integratohilie discrete time
integrator we can see that there is a relation detwvthe resistor and the switched
capacitor.

R = ! 6.4
Fs[Cs

We have to keep in mind here that the samplinguieagy needs to be at least twice as
high as the input signal or else aliasing will ac@iso, because of the sampling in the
time domain of the input signal, there will be sosimec(t) distortion. This is because
sampling a signal in the time domain is the samm@asiplying the signal with an
impulse train. In order to reconstruct the sampglgdal we need to use a rectangular
baseband filter. This means that the signal isiplidt with the rectangular baseband
filter in the frequency domain, which in turn medhat the sampled signal is convolved
with a sinc(t) function.

One very important aspect here that has not beationed jet is that the two clock

phases need to be non-overlapping. If this ism®thase than charge will inadvertently
be lost.

6.1 (non)inverting SC integrator

The coefficients in the matrixes of the state-spdeseription will be implemented by
capacitor ratios. This ratio will be the ratio betm the feedback capacitor and the
switched capacitor. We have a fifth order systeus thre have five integrators. How all
the matrix coefficients are fitted onto the integra can be seen in the following
matrixes.

i 'CSA1 'CSA3
CFA CFA

0
Cogy 0 'Cs?/ 0 0
Crs Cee
_ o Co
A=| o sc 0 s 0 6.5
Crc Cre
C C /
0 0 coy 0 D
Ceo Ceo
C /
0 0 0 sE 0
CFE a
BTz[CS% 00 0 cﬂ 6.6
FA

0 0
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C C C C C
C= 1 2 3 4 5 6.7
[ %FF /CFF /CFF /CFF /CFJ

In the above equations one can see where all fhecitar ratios go and how the
integrators are connected together. In total taesdive integrators labeled A, B, C, D
and E. The feedback capacitor corresponding tot@giator can be found in the
denominator of the matrix entries. Along each rdwhe matrix the denominators are
constant and the numerators differ. This meansttigparticular integrator gets its
inputs from neighboring integrators. Let’s lookla¢ second row for example. It contains
two nonzero entries, 45:/Crg and -G/ Crs. Here Gg denotes the feedback capacitor of
integrator B and €g(1/2)denotes the switched capacitors of integratortise ratios are
on positions & and as in the matrix respectively. This means that inségr B receives

its input signals from the outputs of integratoraid C. For the rest of matrix A a
similar thing happens. Matrix B has only one noozamntry which is actually the input of
the filter. Matrix C implements a weighted summataf the integrator outputs.

There are positive and negative entries in matrixnfrder to implement this in a
switched capacitor topology we need inverting aod-mverting integrators. The non-
inverting SC integrator is shown in figure 6.3iniplements a first order transfer function
given by:

Hz) = | s |l 6.8
C.) z-1
Cf
I
, phi1 Cs phi2
Vi H ) B Vo

phi2 phi1

Figure 6.3. Non—invérting SC inte@rator.

Figure 6.4 shows an inverting SC integrator. Batrerting and non-inverting SC
integrators now have four switches instead of fllos is because the topology with four
switches suffers les from parasitics.
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phi2  Cs phi2

Vi

phi1 phi1

Figure 6.4. Invertingisc integrat(;r.

The transfer function of the inverting SC integrasogiven by:

H(z) = (&j e 6.9
C.) z1

Now that we know the main building blocks of thecait we can do one more
optimization step. For a given system order weszate the feedback capacitors of the
integrators so that the relative noise contribgiare the same [1]. This is done with the
following equation.

m
Ci = [(;0 6.10
Zj:\/aj W; K t
Here
a =Y |A 6.11
J

Ciwt : Is the total feedback capacitance availabletferintegrators.
Ci : Is the capacitance of the feedback capacitdf oftegrator.

After this last optimization step we can see thate dynamic range is very close to
the optimum.

DRschwarz+capscaling 162.1dB
6.2 Circuit realization
The circuit is implemented in a switched capaciopology in a fully differential fashion.

The switches will be implemented by MOS transistorsoAhe ideal opamp will be
implemented by a real opamp.

6.2.1 The switches
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The circuit is implemented in a fully differenti@shion. This means that the switches
will also be implemented in a fully differential fasn. An example of a fully differential
switched capacitor integrator is shown in figure &&. implementing the switches we
choose to use CMOS switches or transmission gatesdswitches connected to the
input. CMOS switches are usually employed to allowaftarge signal swing. This is
also the case for our input switch. All the other shdis are NMOS switches. We have
used the parasitic insensitive configuration fa $fwitches. This means that the parasitic
capacitors have no influence. The switches that ttaie source and drain both
connected to the input of the opamp are dummy sestchhey are there to cancel the
charge injection from the preceding switches. Theyhalf the size of the preceding
switches.

a

i Mﬂ' Cs L¢2 L
i+ TI1 I TIT
=
(og @2 A ﬁf
JE JE Vo+
Vem -3
" Vo-
g2 -
a |
@1 » %L cf
Vi- H ﬁ I 71T

14
a Cs
Figure 6.5 A fully differential switched capacitolock.

6.2.2 The opamp

The opamp used for implementing the integratorfidlg differential opamp [8]

operating in weak inversion. The specificationstf@ opamp are derived trough
simulation. The setup of this simulation is asdalé. The entire filter is constructed from
the real capacitors and switches but the opamp ideath one. By ideal we mean a
voltage controlled current source. At the outputhis ideal opamp we connect a resistor.
The value of the resistor is set to R. Now we canrgeie the DC voltage gain by
playing with the gm of the voltage controlled cutrsaurce because the DC voltage gain
is gm*R. We started off with a high setting of gnddhen run a transient simulation to
produce the impulse response of the filter. Thigutse response is compared to the
impulse response of the ideal fifth order filtértHe Impulse response does not differ
from the ideal then | lowered the gm of the voltagatrolled current source and did the
simulation again. This process is repeated urdilitipulse response starts to differ from
the ideal. With this procedure the required DC \g@tgain is found to be gm*R is 40dB.
So the allowable steady state error is 0.01. Thel\waith and settling time requirement
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is obtained in a similar manner. A capacitor is @ed in parallel to the resistor. The
time constant of the resistor and capacitor setb#mdwidth of the opamp and assuming
a first order behavior it also sets the gain bantw{&BW) of the opamp. The GBW was
calculated to be 1 kHz. This figure is calculatemhgshe slides of Klaas Bult [11].

This is an elegant way of deriving the specificagiohthe opamp, but there is one thing
worth mentioning here. We do not know how accurate @elrio approximate the ideal
wavelet. This means that the specifications obtalnyesimulation are indicative. The
exact specifications are difficult to derive sirthere is no way of knowing how good the
impulse response needs to be. Sind’s there is yooManowing what the acceptable
error is; we work with the specifications obtainedehdihat is, 40dB DC gain and GBW
is 1 kHz.

The opamp used in the filter is a fully differehfisided cascode opamp, shown in figure
6.6.

Vdd
Al V1 V1 V1
M11 EF jE M5a jE M7 jE M5b
V2 V2 V2 V2
M10 EF jE Mda jE M6 jE Mdb
| Vor Vi- | L, Vi+ V.
ee ° P wia mib Y o
Mo ELE \EE M2a VﬂE M2b
M8 ELX" \EE M3a VﬂE M3b
Vss

Figure 6.6. The folded cascode opamp.

The left most branch in figure 6.6 is the biasiirguat the remaining part of the figure is
the opamp itself.

The folded cascode architecture is chosen becdube BC Voltage gain and output
swing. A simple differential pair doesn’t provide egh gain. The DC gain of a
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differential pair (M1a, M1b) is gm*ro. This can bereased by adding a cascode stage.
This cascode stage increases the DC gain by inogetts output resistance. Look for
example at the differential half circuit of the ogashown in figure 6.7.

Vdd
L, Vbias 1
M5a ﬂ
Vi
-
*> Mia L Vbias 2
M4a ﬂ
Vo
Vbi 0 M2a
ias
> |
“)bc
Vss

Figure 6.7. The differential half circuit.

The gm of this circuit is almost the same as theofjtnansistor M1a so gm = gml. The
output resistance can be calculated as follows.sistr M1a is a common source stage
and has an output impedance of rol. Transistor islascommon gate stage. The output
impedance depends on its source and load. Thetdatpadance is given by.

ro = (ro4 + ro5)//[ro2 + rol(1 + gm2) rp
now if we take (ro4 + ro5) oo

ro =ro2 + rol + gm@ rdl ro2

ro = gm2irollro2

6.12

Now the voltage gain can be calculated as we knowrtihand the ro of the opamp.

Av = gm[to = gmIIigm2 rod ro 6.13

This is more gain than a normal common source stage

The opamp is fully differential because the erfiter is built up differentially. An
alternative for a fully differential opamp is toaua 2 times single ended opamp, but this
would consume more power. The drawback of using g €lfferential opamp is that it
requires a common mode feedback circuit [9] tdlseutput common mode of the
opamp properly.
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Figure 6.8 The common mode feedback circuit.

The common mode feedback circuit used is showrgurd 6.8. It is also a switched
capacitor circuit because it consumes the least pawtle respect to a continuous time
version.

In general a common mode feedback circuit consistsscommon mode sense circuit to
sense the output common mode level. This commoreret! is then compared to a
reference level. Then the result of this compariglos a certain bias level is then fed
back to a common mode control node in the circugdt the output common mode
voltage.

The way the common mode feedback circuit works ®lkmvs. Consider the circuit in
fig 6.9 a.

V5 Va V5 Vb

C3 C4 Vo vde ‘ C3 C4 ‘ vdc

Vo+ - Vo+ -
H H —O——| ——0—
a *Vvdc -Vdc+ b
Figure 6.9.

The voltages Vo+ and Vo- are level shifted by Vdc andraged by capacitors C3 and
C4. This results in the bias voltage at node V5. Ve in figure 6.9 a (consisting of V4
+Vcm) can also be represented by a series connecliagie source as shown in figure
6.9 b.

By equating the current through the capacitors wedeive the following formula.

_ C3va + C41Vvb
C3+C4

V5 6.14

In equation 6.14 Va = (Vo+) - Vdc and Vb = (Vo-) - V&ubstituting this into equation
6.14 we get.

_ C3[{(Vo+) - vdg + C4{ (Vo-) - Vd¢
B C3+C4

V5 6.15

After rearranging this equation we arrive at.
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_ C3[QVo+) + C4(Vo-)
C3 + C4

V5 - Vdc 6.16

Now if Capacitor C3 is the same as C4 we get.

_ (Vot) + (Vo)

V5 -Vdc = Vcm - Vdc 6.17

From equation 6.17 we can conclude that the seoiesected capacitors can be used as a
common mode feed back circuit. Another way of logkat the common mode feedback
circuit is shown in figure 6.10.

ki

R

Vem  J11 Py
c1l c2
Rl I
v4 TIT Py V6 |-
7+Acm 77 cl
V4 .

Figure 6.10. A switched capacitor common mode tiatuit.

The opamp in this figure is the actual folded cdscopamp that is used for the integrator
but now we are interested in its common mode gaipa€itor C1 is charged to Vcm —

V4 during clock phase 1. During clock phase 2 capexi€l and C2 are connected in
parallel. The charge is redistributed and the opamtisteer its output to such a level

that the voltage of node V5 is the same as the g®ltd node V4. This occurs if the
output of the opamp is Vcm.
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7 Simulations

Here in this chapter the simulations on the ciratgt explained. The circuit is
implemented in the TSMC 0.13 process. The simulatimave been performed on system
and circuit level. For the system level simulatidbfatlab has been used and for circuit
level simulations Cadence Spectre RF proved a htaly

7.1 System simulation

The system level simulation has been carried out Miatlab Simulink. After having
done the approximation and optimization we havevadriat the state-space description
we want to implement. This state-space descriptidii$ using the standard
components in Simulink and an impulse is applieth&input to check its functionality.

output

A fifth order discrete time
wavelet filter

Figure 7.1. A fifth order state-space description.

In figure 7.1 one can see the block schematicwastsimulated in Simulink. In this
figure all the triangles labeled a, b and c areethigies from the A, B and C matrices
respectively. The functionality of this block scher is verified by applying an impulse
at the input. At the output the impulse responsibgerved, which is the approximated
Gausl. In figure 7.2 the impulse response of thekdohematic is shown in overlap
with the ideal Gausl.
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Figure 7.2. The impulse response

The response in figure 7.2 looks rather good. Ehizecause the components in figure
7.1 are all ideal. All these blocks will be implemashby real components. These real
components will have imperfections which will degr#élae performance of the circuit.
The degradation of performance is shown in the segtion.

7.2 Circuit smulation

The circuit simulations have been carried out idé€ee. First the wavelet filter is built
up with ideal components (ideal switches, ideal opampideal caps). This ideal filter is
then simulated using a transient simulation. Aftesuecessful simulation with ideal
components, one by one the ideal components al@cezpby real components which
will degrade the performance of the circuit. Aftepleing an ideal component for a real
component the functionality of the circuit is chedkagain by means of a transient
simulation. In this way the entire circuit is slovilyned into a real circuit and in each
intermediate step the functionality is verified.elimpulse response of the ideal circuit is
shown in figure 7.3.
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Figure 7.3. The impulse response of the ideal tircu
To give the reader an impression of how the idealdiis build up we give a schematic
of one integrator section of the circuit. This soladic is shown in figure 7.4. Here the

ideal opamp is just a voltage controlled currentree. The switches are, as you can see,
ideal switches.
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Figure 7.4. a: A switched capacitor section ofitleal circuit. b: An opamp section of the ideatait.

The first step taken to turn this ideal circuitdra real circuit is to change the ideal
switches for real MOS switches. We started using muninsize N-MOS switches. This

is because they cause the least charge injectthaneast clock feed through. From the
simulation this proved insufficient. The signal syt the input of the switched
capacitor was such that a transmission gate or CM@Shsis needed. The charge
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injected by the N-MOS switch connected to the opaarple annihilated by a dummy
switch in a subsequent clock phase. The switch corgtgpn can be seen in figure 6.5.

The opamp is a fully differential folded cascodeump as it is shown in figure 6.6. On
this circuit we have performed an ac simulationsTikibecause in this case we are
interested in the frequency performance of theudird@he result of the ac simulation is
shown in figure 7.5. The markers in the plot indéctite DC gain and the unity gain
frequency.
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Figure 7.5. The ac performance of the opamp.

The opamp discussed above needs a common modadiecibuit as described in the
previous chapter. The functionality of this circigitverified by means of a transient
analysis. Again we started by building with ideaingmnents as shown in figure 7.6. We
only build a differential half circuit to check tifienctionality. This is sufficient since the
full differential circuit can be divided into two l&ircuits which are equal. Simulating
only a half circuit is sufficient to verify its fustionality.
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The common mode value for our circuit is set t®&B@mV. This exactly half of the
power supply of the circuit. We have chosen thisi@ddecause it yields the maximum
voltage swing at the output of the integrator. Makie of half the power supply is a

consequence of the dynamic range optimization we dane. There we said that the

dynamic range is optimum if all the integrators énélve same signal swing at the output.

The transient response of the common mode halficicshown in figure 7.7.
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Figure 7.7. Transient response of the common matfecincuit.

For this circuit only the ideal switches have tarbplemented by real switches. The
ideal opamp shown in figure 7.6 will in reality betfolded cascode opamp. The only
thing is that for the common mode feedback ciradgtwill use the common mode gain
of this opamp instead of the differential mode gain

Now that all ideal components have been replace@&lycomponents we have arrived at

an implementable circuit. The whole circuit is siatedd by means of a transient analysis.
The result is shown in figures 7.8 and 7.9.
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Figure 7.8. The impulse response of the filtere-itteal gaus1.
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Figure 7.9. The impulse response of the filtere-dpproximation.

The whole circuit has also been simulated by me&agac simulation in order to obtain

the bode plot of the circuit. The result is showfigires 7.10 and 7.11.
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Figure 7.10. The magnitude response of the circuit.
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Figure 7.11. The phase response of the circuit.
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8 Conclusions

The Pade method offers a straight forward way pf@amating the wavelet. It has
however a few shortcomings. The first is that it doesalways yield a stable solution,
especially for higher orders of approximation. Beeond is that it shows some ringing at
the beginning of the approximation which is undddea

The SVD approximation performs much better in thissee It always yields a stable
solution, even for high orders of approximatiorddiesn’t show the ringing as in the
Pade approximation. And in terms of mean square groaitperforms the Pade method.
The last benefit of SVD over Pade, which is worth nogrg here, is that the SVD
method in the end yields matrix entries which aoset to each other.

The optimization method which is based on the wér&menewold [12] and described
by Haddad [1] and described in more detail by Rd&baprovides a considerable
improvement in the circuit’s dynamic range. Howewedrawback of this procedure is
that it typically yields state-space descriptionsalkare fully dense. This drawback is
overcome by the Schwarz decomposition. We gavelittlalon the dynamic range but
we obtained a sparse state-space description wheasisto implement.

The work of this thesis has led to a Matlab progmanvhich all the steps, approximation,
optimization and decomposition, have been incoteadralr ogether with the requirements
(wavelet, order of approximation and sampling freauyg of the user this program will
derive the optimal, sparse state-space descriptiay for implementation.

In this thesis the wavelet filter was implemented illy differential switched capacitor
technology. The reason for choosing this technoledlpat it provides the maximum
dynamic range, namely the voltage swing at the duipthe integrator spans the entire
supply voltage and therefore it has the highesadyo range. The differential structure
made it easy to implement the negative entrieb@fttate-space description.

The contributions | have made are the applicaticth® SVD approximation and the
application of the Schwarz form. Furthermore ithie first time that a wavelet filter is
constructed in a fully differential switched capacitircuit with common mode
feedback. Also the program which has been writtenigesvan easy design tool for
wavelet filter design. The work done for this thédgas led to two publications. One
ISCAS paper and an abstract and poster. Both céoubéd in the appendix.
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9 Appendix
A TheMatlab program

o

%This program requires the user to define a symboli C expression.
%This program will first perform a Pade approximati on on that
expression.

%The order of this approximation is defined by the user. The Pade
%approximation always yields a transfer function in the S domain.
Later,

%if needed, it can be converted into the Domain by the impinvar method
or

%the bilinear method.

%Then the program will convert this Pade approximat ion into a state-
%space description of the form chosen by the user.

%The output of this program is the variable SSN, wh ich is a state-

%space description.
Ofmmmmmmmmmmmmm e mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmee e

disp( 'Enter the symbolic expression you want to approxim ate.' );
disp( 'Default value is -2*(t-1.7)*exp(-(t-1.7)"2)' );
user_entryl = input( 'Give the symbolic expression:' );
if size(user_entryl) ==
syms t;
user_entryl = sym( -2%(t-1.7)*exp(-(t-1.7)72)' ); %default value
end
disp( "" )
user_entry2 = input( 'Give the order of the numerator (default=2):' );
if size(user_entry2) ==
user_entry2 = 2; %default value
end
user_entry3 = input( 'Give the order of the denominator (default=4):' );
if size(user_entry3) ==
user_entry3 = 4; %default value
end
disp( "" )
sys_a = myapprox(user_entryl, user_entry2, user_ent ry3) %the PADE
approx.
%Make a choice between the S or the Z domain (S is default)
disp( 'The program now requires you to choose between the Sor )
disp( 'the Z domain.' );
disp( 'The options to choose from are "S" for the S domai nand "Z"
for' );
disp( 'the Z domain (default=S)' );
user_entry4 = input( 'Give the domain:' ,'s' ),

if isempty(user_entry4)
user_entry4 = 'S' %default value



end

disp( "" )
if user_entry4 == 'S’ %S domain
disp( "The approximation in the S domain is:' );
Sys_a %display the transfer function
disp( " )
disp( "The program now requires you to choose the specifi
disp( 'state space description.’
disp( "The options to choose from are "O" for the orthono
disp( ‘form and "S" for the schwarz form (default=0)' );
user_entry5 = input( 'Give the specific State Space
desription:’ ,'s' ),
if isempty(user_entry5)
user_entry5 = ‘0 ; %default value
end
disp(  "" )
if user_entry5 == o' %orthonormal
SS = myorth_ladder(sys_a);
end
if user_entry5 == 'S' %schwarz
temp = myss(sys_a); %create canonical SS
opt = myoptimal(temp); %optimize for dynamic range
SS = schwarzform(opt); %schwarzform
end
end
if user_entry4 == 'z %Z domain
disp( "The program will have to transfer a function from
domain' );
disp( 'to the Z domain. This can be done by the Impulse |
method' );
disp( ‘or the Bilinear method.’ );
disp( 'Choose "I" for the Impulse Invariant method or "B"
Bilinear' );
disp( 'method. (default=I)' );
user_entry9 = input( 'Give the transfer method:' ,'s' ),
if isempty(user_entry9)
user_entry9 = " ;  %default value
end
disp( " )
disp( 'Also, the program needs a sampling frequency to ma
conversion' );
disp( ‘from S domain to Z domain.' );
user_entry10 = input( 'Give the sampling frequency
(default=unspecified):' );
if size(user_entryl0) ==
user_entry10 = -1; %default value
end
disp(  "" )
if user_entry9 == I' %impinvar method
[num_s den_s] = tfdata(sys_a, V),

the S

nvariant

for the

ke a
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[num_z, den_z] = impinvar(num_s, den_s, use r_entryl10);
disp( "The approximation in the Z domain is:' );

sys = tf(user_entry10*num_z, den_z, (1/user _entry10))
end

if user_entry9 == 'B' %bilinear method

[num_s den_s] = tfdata(sys_a, V'),

[num_z,den_z] = bilinear(hnum_s, den_s, user _entry10);
disp( "The approximation in the Z domain is:' );

sys = tf(num_z, den_z, (1/user_entry10))

end

disp( " )

disp( "The program now requires you to chiose the type of active
element' );

disp( 'for your implemuntation.' );

disp( "The options to choose from are "D" for 1/z or "I" for 1 )z-
)

disp( '(default=1)' );

user_entry7 = input( 'Enter the type of active element:’ ,'s' ),
if isempty(user_entry7)
user_entry7 = " ;  %default value
end

disp(  "" )

if user_entry7 = ‘D’ %the ictive element is a delay
disp( The program now requires you to choose the specifi c);

disp( 'State space description.’
disp( "The options to choose from are "O" for the orthono rmal

disp( ‘form and "S" for the schwarz form (default=0)' );

user_entry6 = input( 'Give the specific State Space

desription:’ 's' ),
if |sempty(user entryo)
user_entry6 = ‘0 ; %default value
end
disp( DK

if user_entry6 == o' %orthonormal
SS = myorth_ladder_z(sys);
end
if user_entry6 == 'S’ %schwarz
temp = myss_z(sys); %create canonical SS
opt = myoptimal_z(temp); %optimize for dynamic range
SS = schwarzform_z(opt); %schwarz form
end

end
if user_entry7 = I %the active element is an integrator

disp( "The program now requires you to choose the specifi c);

disp( 'state space description.’ );
disp( "The options to choose from are "O" for the orthono rmal

disp( 'form and "S" for the schwarz form (default=0)’ );
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user_entry8 = input(

desription:’ ,'s' ),
if isempty(user_entry8)
user_entry8 = 'O’
end
disp( DK
if user_entry8 == o'

orthl = myorth_ladder_z(sys);
[a b c d ts] = ssdata(orthl);
a = a-eye(length(a));
SS =ss(a,b,c,d,ts);
end
if user_entry8 == 'S’
templ = myss_z(sys);
[a b c d ts] = ssdata(templ);
a = a-eye(length(a));
temp = ss(a,b,c,d,ts);
opt = myoptimal_z(temp);
SS = schwarzform_z(opt);
end
end
end

% The program will now determine if the State Space
% has complex coefficients. These coefficients will

% real coefficients.

[a b c dts] = ssdata(SS);
N = length(b);
for t=1:N
if imag(b(t)) ~=0
b(t) = b(t)*i;
end
if imag(c(t)) ~=0
c(t) = c()/i;
end
end

% noise scaling
[Ks,Ws] = grams(SS);

sumAr = sum(abs(a'));
sumAc = sum(abs(a));

'Give the specific State Space

%default value

%orthonormal
%create the integrator
%schwarz
%create canonical SS

%create the integrator

%optimize for dynamic range
%schwarz form

description (SS)
be turned into

alfaWsr = sumAr.*(diag(Ws).*diag(Ks));
alfaWsc = sumAc.*(diag(Ws).*diag(Ks))";

Copt = sgrt(alfawsr)./sum(sqrt(abs(alfawsc)));
SSN = ss(a,b,c,d,ts)

return

53



%this function generates the Pade approximation of a symbolic
expression.
%t is a function in the form of a symbolic expressi on.
%num is the numerator of the Pade approximation.
%den is the denominator of the Pade approximation.
%this function returnes a transferfunction (tf) wit h name S.
Qfm e mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmeeee
function S = myapprox(t,num,den)
format long ;
syms s;
f = laplace(t);
L = num; %Numerator order
M = den; %Denominator order
N = L+M+1; %Taylor approx. order
A = taylor(f,N,0); % A(X)
a = sym2poly(A); %Convert to a vector
a(1:1:N) = a(N:-1:1); %Reverse the order
C = zeros(N,M+1); %Create a matrix of dimension N*M+1
temp = zeros(1,N); %Create a vector of length N
temp(1:1:N) = a(1:1:N); %Copy a in temp
for n=(1:1:M+1) %The main matrix C
C(n:1:end,n) = temp(1:1:N+1-n);
end
Ct = C(L+2:1:end,1:1:end); %Sub matrix
Ct = rref(Ct); %Reduced row echelon form
n = norm(Ct); %The norm of Ct
Q = null(Cb);
if Q(1,1)<0
Q = null(Ct)*(-n); %Find the Q coefficients
else
Q = null(Ct)*n; %Find the Q coefficients
end
Q;
P = C*Q; %Find the P coefficients
P =P(1:1:L+1); %0nly the first L+1 coeff.
P(1:1:end) = P(end:-1:1); %Reverse the order
Q(1:1:end) = Q(end:-1:1); %Reverse the order
S = tf(P',Q";
format short
Qfm e mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmeeee
%H = myorth_ladder(TF) returns the state-space desc ription (H)

representing
%an orthonormal filter. TF is the transfer function

containing the
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%coeffecients in the numerator and denominator, sta
highest

%order coefficient.

%

function  H = myorth_ladder(sys_tf)

[num den] = tfdata(sys_tf, V),

D=num(1);

%fill up with zeros in num

m = length(num);

n = length(den);

if (m~=n)

numl = num,;

for i=1:1:(n-m)
num(i) = 0;
end
for i=(n-m)+1:1:n
num(i) = num1(i-(n-m));
end

end

%Check whether partial fraction expansion is needed
if num(1)~=0

num=num-num(1)*den;
end;

N=length(den);
%separate odd and even denominator coefficients
if mod(N,2)==0 %returns X - n.*Y where n = floor(X./Y)
for i=1:ceil(N/2)
first(i)=den(2*i-1);
second(i)=den(2*i);
end;
else
first(1)=den(1);
for i=2:ceil(N/2)
first(i)=den(2*i-1);
second(i-1)=den(2*i-2);
end;
end;

%loop for getting reactances
for i=1:(N-1)
r(N-i)=first(1)/second(1);
first=first(2:end)-r(N-
i)*[second(2:end),zeros(1,(length(first(2:end))-
length(second(2:end))))];
temp=first;first=second;second=temp;
end;

%convert reactances in orthonormal coefficients
alpha(N-1)=1/r(N-1);

rting with the
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alpha(l:end-1)=1./sqrt((r(1:end-1).*r(2:end)));

%calculate F

betal=sqrt(r(1)/pi);

F(1,N-1)=betal*den(N);

F(2,N-2)=F(1,N-1)/alpha(1);

for i=3:N-1
F(i,:)=([F(i-1,2:end),0]+alpha(i-2)*F(i-2,:))/a

end;

%create state space system
A=diag(alpha(1:end-1),1)+diag(-alpha(1:end-1),-1);
A(N-1,N-1)=-alpha(N-1);
B(N-1)=sqrt(alpha(N-1)/pi);
B=B.;
C(N-1)=num(2)/F(N-1,1);
C(N-2)=num(3)/F(N-2,2);
for i=3:N-1

C(N-i)=(num(i+1)-C*F(:,i))/F(N-i,i);
end;

H=ss(A,B,C,D);

Ipha(i-1);

%
%H = myorth_ladder(TF) returns the state-space desc
%an orthonormal filter. TF is the transfer function
%coeffecients in the numerator and denominator, sta
highest

%order coefficient.

%

function  H = myorth_ladder_z(sys_tf)

[num den Ts] = tfdata(sys_tf, V),

D=num(1);

%fill up with zeros in num

m = length(num);

n = length(den);

if (m~=n)

numl = num,;

for i=1:1:(n-m)
num(i) = 0;
end
for i=(n-m)+1:1:n
num(i) = num1(i-(n-m));
end

end

%Check whether partial fraction expansion is needed

if num(1)~=0
num=num-num(1)*den;
end;

ription representing
containing the
rting with the
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N=length(den);
%separate odd and even denominator coefficients
if mod(N,2)==0 %returns X - n.*Y where n = floor(X./Y)
for i=1:ceil(N/2)
first(i)=den(2*i-1);
second(i)=den(2*i);
end;
else
first(1)=den(l);
for i=2:ceil(N/2)
first(i)=den(2*i-1);
second(i-1)=den(2*i-2);
end;
end;

%loop for getting reactances
for i=1:(N-1)
r(N-i)=first(1)/second(1);
first=first(2:end)-r(N-
i)*[second(2:end),zeros(1,(length(first(2:end))-
length(second(2:end))))];
temp=first;first=second;second=temp;
end;

%convert reactances in orthonormal coefficients
alpha(N-1)=1/r(N-1);
alpha(l:end-1)=1./sqrt((r(1:end-1).*r(2:end)));

%calculate F

betal=sqrt(r(1)/pi);

F(1,N-1)=betal*den(N);

F(2,N-2)=F(1,N-1)/alpha(1);

for i=3:N-1
F(i,:)=([F(i-1,2:end),0]+alpha(i-2)*F(i-2,:))/a

end;

%create state space system
A=diag(alpha(1:end-1),1)+diag(-alpha(1:end-1),-1);
A(N-1,N-1)=-alpha(N-1);
B(N-1)=sqrt(alpha(N-1)/pi);
B=B.'
C(N-1)=num(2)/F(N-1,1);
C(N-2)=num(3)/F(N-2,2);
for i=3:N-1

C(N-i)=(num(i+1)-C*F(:,i))/F(N-i,i);
end;

H=ss(A,B,C,D,Ts);

Ipha(i-1);

%
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%This function creates a canonical SS description o
transferfunction.

%This function returnes a state space description (
SyS_Ss.

%

function  sys_ss = myss(sys_tf)

fa

ss)with the name

sys_ss = canon(sys_tf, ‘companion’ );

Ofmmmmmmmmmmmmm e mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmee e
%This function creates a canonical SS description o fa
transferfunction.

%This function returnes a state space description ( SS).

Ofmmmmmmmmmmmm e mmmmmmm e mmmmmmmmmmmmmmmmmmmmmmee e
function  sys_ss = myss_z(sys_tf)

sys_ss = canon(sys_tf, ‘companion’ );

Qfm e mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmeeee
% This function optimizes the state space discripti on.

% The input and output of this function are both st ate space

discriptions.
%

function  F = myoptimal(sys)
% first calculate the controllability and observabi

[A1,B1,C1,D1] = ssdata(sys);

lity grammians

%convert ss into single matrixes

[K,W] = grams(sys); %calculate the controllability and observability

grammians

% first optimization step finds a similarity transf

% controllability grammian of the new system become

with
% equal diagonal entries.

[P,Ds] = eig(K); %calculate the eigenvectors and eigen values
D = sqrt(Ds); %square root

T = P*D;

Tt = transpose(T);

Tinv = inv(T);

Tinvt = transpose(Tinv);

K1 = Tinv*K*Tinvt;

orm, such that the
s a diagonal matrix



W1 = Tt"W*T,

Anew = Tinv*Al1*T;

Bnew = Tinv*B1;

Cnew = C1*T;

Dnew = D1;

sysnew = ss(Anew,Bnew,Cnew,Dnew);

% Second optimization step.

[WMat,WAutov] = eig(W1); %calculate the eigenvectors and eigen
values

T2 = WMat;

T2t = transpose(T2);

T2inv = inv(T2);

T2invt = transpose(T2inv);

Wfin = T2t*W1*T2;
Kfin = K1;

Afin = T2inv*Anew*T2;
Bfin = T2inv*Bnew;
Cfin = Cnew*T2;

Dfin = D1;

sysfin = ss(Afin,Bfin,Cfin,Dfin);

F = sysfin;

Ofmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmee
%This function optimizes the state space discriptio n.

%The input and output of this function are both sta te space
discriptions.

O Qmmm e e

function  F = myoptimal_z(sys)

% first calculate the controllability and observabi lity grammians
[A1,B1,C1,D1,Ts] = ssdata(sys); %convert ss into single matrixes

[K,W] = grams(sys); %calculate the controllability and observability

grammians

% first optimization step finds a similarity transf orm, such that the
% controllability grammian of the new system become s a diagonal matrix
with

% equal diagonal entries.

[P,Ds] = eig(K); %calculate the eigenvectors and eigen values
D = sqrt(Ds); %square root
T = P*D;
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Tt = transpose(T);
Tinv = inv(T);
Tinvt = transpose(Tinv);

K1 = Tinv*K*Tinvt;
W1 = Tt*"W*T;

Anew = Tinv*A1*T;

Bnew = Tinv*B1;

Cnew = C1*T;

Dnew = D1,

sysnew = ss(Anew,Bnew,Cnew,Dnew);

% Second optimization step.

[WMat,WAutov] = eig(W1); %calculate the eigenvectors and eigen

values

T2 = WMat;

T2t = transpose(T2);
T2inv = inv(T2);

T2invt = transpose(T2inv);

Wfin = T2t*W1*T2;
Kfin = K1;

Afin = T2inv*Anew*T2;

Bfin = T2inv*Bnew;

Cfin = Cnew*T2;

Dfin = D1;

sysfin = ss(Afin,Bfin,Cfin,Dfin, Ts);

F = sysfin;

%
% H = SCHWARZFORM(opt)

%

% Transforms a continuous-time stable state-space s
% input normal Schwarz form.

%

% By Ralf Peeters,

% Dept. Mathematics, University Maastricht.

% This version: 19 October 2006.

%

function  H=schwarzform(opt)
[a b c d] = ssdata(opt);

% P is the controllability Grammian.
p=lyap(a,b*b’);

ystem (A,B,C) into
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% T is a square root of P.
[u,s,v]=svd(p);
t=u*(s".5)*v';
% This applies a state space transformation to achi
aa=t\a*t;
bb=t\b;
cc=c*t;
% M is the controllability matrix of the input norm
m=ctrb(aa,bb);
% This performs QR-decomposition on M. Then Q can b
% controllability matrix upper triangular while mai
% normality.
[9.r]=gr(m);
% The signs of the diagonal entries of R are used t
upper
% triangular.
sig=sign(diag(r));
q=qg*diag(sig);
% The orthogonal matrix Q is used to achieve an inp
form.
as=q'*aa*q;
bs=q*bb;
CS=cc*q;
% Make all the theoretically zero entries in A and
[n,m]=size(a);
for i=2:n,
as(i,i)=0;
bs(i)=0;
end;
for i=3:n,
for j=1:i-2,
as(i,})=0;
as(j,i)=0;
end;
end;
ds =d;
H=ss(as,bs,cs,ds);
return

eve input normality.

al system.

e used to make the
ntaining input

o0 make R positive

ut normal Schwarz

B into hard zeros.

%
% H = SCHWARZFORM(opt)

%

% Transforms a continuous-time stable state-space s
% input normal Schwarz form.

%

% By Ralf Peeters,

% Dept. Mathematics, University Maastricht.

% This version: 19 October 2006.

%

function  H=schwarzform_z(opt)

[a b c d Ts] = ssdata(opt);

ystem (A,B,C) into
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% P is the controllability Grammian.
p=lyap(a,b*b’);

% T is a square root of P.

[u,s,v]=svd(p);

t=u*(s".5)*v';

% This applies a state space transformation to achi
aa=t\a*t;

bb=t\b;

cc=c*t;

% M is the controllability matrix of the input norm
m=ctrb(aa,bb);

% This performs QR-decomposition on M. Then Q can b

% controllability matrix upper triangular while mai
% normality.
[a.r]=qr(m);
% The signs of the diagonal entries of R are used t
upper
% triangular.
sig=sign(diag(r));
q=qg*diag(sig);
% The orthogonal matrix Q is used to achieve an inp
form.
as=q'*aa*q;
bs=q*bb;
CS=CcC*q;
% Make all the theoretically zero entries in A and
[n,m]=size(a);
for i=2:n,
as(i,i)=0;
bs(i)=0;
end;
for i=3:n,
for j=1:i-2,
as(i,j)=0;
as(j,i)=0;
end;
end;
ds =d;
H=ss(as,bs,cs,ds,Ts);
return

eve input normality.

al system.

e used to make the
ntaining input

o0 make R positive

ut normal Schwarz

B into hard zeros.

% This function calculates the K matrix (Controllab
also

% W matrix (Observability Grammian) for the state s
% function..

function  [K,W] = grams(sys)

K = gram(sys, c
W = gram(sys, 'o'

);
).

ility Grammian) and

pace input to the
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B The SVD approximation

Ofmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmee
% This code implements the system identification of a signal. A signal
in

% time domain is used as input to the calculation. From this signal a
% discrete time State Space description will be der ived that has this
% signal as its impulse response.
o

ts = 1/300; % Sample time

x = [0:ts:8]; % Sample time vector

F = (-2*(x-1.7).*exp(-(x-1.7).72)); % Gaus 1

figure(1);

plot(F);

r = zeros(1,length(x)); % Column vector of zero's

r(1,1) = F(1,1); % First entry of r is first entry of F

T = toeplitz(F,r); % Toeplitz matrix of F (lower triangular)

H = hankel(T(:,1)); % Hankel matrix of T

[U S V] = svd(H); % Calculate the SVD

cond(S);

figure(2);

plot(diag(S), X' )
% resize U, S and V according to the approximation.

U =U(, 1:1:5);

S =5(1:1:5, 1:1:5);

V =V(;, 1:1:5);

H_appr = U*S*V/, % The new approximated hankel matrix.
cond(S);

C = SMNA/2)*V" % Controllability matrix

O = U*sSN1/2); % Observability matrix

Ot = O(1:1:end-1, 1:1:end); % The upper part of the observability
Ob = 0O(2:1:end, 1:1:end); % The lower part of the observability
a = Ot\Ob; % Calculate the A matrix

b=C(,1); % Calculate the B matrix

c=0(1,); % Calculate the C matrix

SS =ss(a,b,c,0,ts); % Create the State-space system
figure(3)

impulse(SS)

Wc = gram(SS, 'c' ); % controllability grammian

Wo = gram(SS, 'o' ); % observability grammian

test = Wc*Wo;



C The paper
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ABSTRACT

A structured design methodology for on-chip, analog wavelet filters for biomedical signal analysis
is proposed. In many wearable and implantable devices, the analog-to-digital converter (ADC)
takes up a large chunk of the device’'s power consumption. For this reason, we propose to reduce
the overall power consumption by performing analog pre-processing employing a wavelet filter.
Despite consuming power itself, the wavelet filter allows for a reduction of the ADC resolution and
hence may entail a favorable reduction in power consumption of the entire system.

A wavelet filter is a device which has a (time-reversed) mother wavelet as its impulse response
and implements one scale of the corresponding wavelet transform. We present a design flow that
can generate a wavelet filter topology from an arbitrary given wavelet base [1]. The design flow is
implemented in Matlab code. It requires a function description as input and produces an
optimized state-space description and wavelet filter topology.

The program first requires the user to define the wavelet base in the form of a function description
(in the time domain). This can be any known wavelet, e.g., a Gaussl (1* derivative of a
Gaussian), Daubechies or Morlet wavelet, or a (multi-) wavelet tailored to the detection of a
particular signal morphology [2]. The user of the program then has the option to choose between
a continuous-time (CT) and a discrete-time (DT) system. For the DT wavelet filter, the user
subsequently can define the sampling frequency (Fs) and the nature of the basic building block
employed, e.g. a delay (1/z) element or an integrator (1/(z-1)) element. Based on the proper
choice of this element, the system can be consequently implemented by means of a switched
current (Sl) or switched capacitor (SC) circuit technique. For the CT case, the only active element
the designer can select is the integrator (1/s), which can be implemented, e.g., using gm-C,
opamp-RC or dynamic-translinear (DTL) circuit techniques. For both the CT and the DT case the
user can choose the order of the filter. The output of the program in both cases is a state-space
description of which the A matrix has an orthonormal ladder form [3], corresponding with a
wavelet filter topology with close-to-optimal dynamic range, minimal power consumption and
minimal sensitivity to component variations.

As an example, we used the program to derive a 5™ order discrete-time Gauss1 wavelet filter for
cardiac signal analysis in pacemakers. The resulting wavelet filter has discrete-time integrators as
active elements, runs at a sampling frequency of 300Hz and is implemented using switched
capacitor circuit techniques. Its power consumption allows implementation in the sense amplifier
of cardiac pacemakers to reliable detect the heart rate, even in presence of strong (50 or 60 Hz)
interference.

The design methodology can also be adopted for the design of electronic filters to implement any
arbitrary transfer function or impulse response.
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A Structured Wavelet Filter DeS|gn

Michiel A. Grashuis, Wouter A. Serdijn

\ hence a reduction in power consumption.

/ In Wearable Implantable Medical Devices (WIMD) power consumption is a big issue. In order to reduce power\
consumption we propose analog preprocessing by means of an analog wavelet filter bank before the signal
enters the Analog to Digital Converter (ADC). This will allow for a reduction in the resolution of the ADC and
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Using this structured design methodology a fifth order ultra low power switched capacitor wavelet filter is designed.
The methodology employed can be adopted to for the design of electronic filters to implement any arbitrary transfer

function or impulse response.
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