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ABSTRACT 

Stated preferences surveys are most commonly used to provide behavioral insights on 

hypothetical travel scenarios such as new transportation services or attribute ranges beyond those 

observed in existing conditions. When designing SP surveys, considerable care is needed to 

balance the statistical objectives with the realism of the experiment. This paper presents an 

innovative method for smartphone-based stated preferences (SP) surveys leveraging state-of-the-

art smartphone-based survey platforms and their revealed preferences sensing capabilities. A 

random experimental design generates context-aware SP profiles using user specific 

socioeconomic characteristics and past travel data along with relevant web data for scenario 

generation. The generated choice tasks are automatically validated to reduce the number of 

dominant or inferior alternatives in real-time, then validated using Monte-Carlo simulations 

offline. In this paper we focus our attention on mode choice and design an experiment that 

considers a wide range of possible existing mode alternatives along with a new alternative on-

demand mobility service that does not exist in real life. This experiment is then used to collect 

SP data or a sample of 224 respondents in the Greater Boston Area. A discrete mode choice 

model is estimated to illustrate the benefit of the proposed method in capturing current context-

specific preferences in response to the new scenario. 

Keywords: Stated preferences; smartphone; mode choice; context-aware; random design; travel 

behavior.
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1. INTRODUCTION 

The pervasiveness of smartphones coupled with developments in information and 

communication technologies (ICT) and enhanced computing performance has paved the way for 

shifting towards “smart mobility”. Smart mobility is one of the main pillars of smart cities 

(Giffinger et al., 2007). It is defined as a combination of improved accessibility, availability of 

ICT, exploration of new data sources and analytics, and modern sustainable and efficient 

transportation systems.  Indeed, technology has not only been changing the transportation 

systems in our cities, but also influencing the way transportation surveys are conducted. The 

popularity of location-enabled devices has greatly expanded transportation data collection 

options (Susilo et al., 2016). Along with location-based big-data collection for aggregate 

mobility patterns (Cottrill et al., 2015; Jiang et al. 2017), smartphones have also been used to 

collect detailed travel diaries (Cottrill et al., 2013; Susilo et al., 2016; Zhao et al., 2015b) in a 

cheap and non-intrusive manner (Prelipcean et al., 2015). While these technologies have been 

well established in collecting trip diaries - or revealed preferences (RP) data, they have not yet 

been utilized in the collection of mobility related stated preferences (SP) data. 

SP data are hypothetically created choice situations in which the researcher has the freedom to 

define the tradeoffs faced by the respondent (Ben-Akiva et al., 2016; Walker et al., 2015). SP 

methods were first introduced by Thurstone (1931), who proposed experiments of the form 

“eight hats and eight pairs of shoes versus six hats and ___ pairs of shoes”. In the context of 

transportation, SP surveys are used to analyze hypothetical scenarios, such as testing attribute 

ranges beyond those observed in RP data or to infer preferences towards new modes and 

services. 

When designing SP surveys, considerable care is needed to balance the statistical objectives with 

the realism of the experiment (Ben-Akiva et al., 2016). The statistical objectives involve 

identifying parameter estimates consistently and with low standard errors. The realism of 

experiments involves accounting for market, personal, or contextual constraints, and presenting 

alternatives in the same way as their market framing. These objectives can be met by designing 

context-aware SP surveys, which pertain to a specific context already faced by the respondent. 

For example, a transportation mode SP survey would refer to a trip performed by the respondent, 

but present different alternatives and attributes from those originally experienced by this 

respondent.  

This paper presents a generic method for context-aware SP surveys leveraging state-of-the-art 

smartphone-based RP methods, and presents its application to mode choice of future smart 

mobility solutions. The context is coming from the observed RP data, e.g., weekly activity 

pattern or a selected trip for a given day, together with user specific information, e.g., vehicle 

ownership, usage of car/bike sharing services, etc. In addition to the direct information obtained 

from the user, we collect external contextual data such as the available activity or transportation 

alternatives for the user through online sources. The experimental design uses this context in 

order to generate SP choice experiments with reasonable alternatives and attributes. By 

accounting for the trip context (e.g. user-specific considerations, and trip-specific constraints) 

and using smartphone data, this method overcomes several limitations associated with traditional 

SP surveys related to data quality, realism, and user experience. This methodology can also be 
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used to estimate preferences towards new mobility solutions which then can be used for the 

design and operation of these solutions.  

The remainder of this paper is organized as follows: section 2 presents a brief literature review 

on prompted recall surveys, context-aware SP surveys, and survey design. Section 3 provides an 

overview of our proposed system architecture and outlines the methodology of SP data 

collection. Section 4 presents its application to a case study on FMOD (Future Mobility on 

Demand). Section 5 presents a discussion of the contributions and limitations of the proposed 

method. Finally, Section 6 presents future research directions and concludes the paper. 

2. LITERATURE REVIEW  

Our proposed SP method subsumes the advantages of prompted recall SP surveys and 

smartphone-based, context-aware surveys in order to generate more realistic SP choice tasks. 

The following sections provide a brief background of prompted recall surveys, context-aware 

surveys, and SP design methods. 

2.1. Prompted Recall SP Surveys 

The main limitation of SP surveys is that they only record choices made in hypothetical 

scenarios (Fifer et al., 2014). This can result in different types of biases such as inattentiveness, 

attribute nonattendance, and incongruity with actual (revealed preferences) behavior. For 

example, different studies have indicated that respondents’ willingness to pay tends to be higher 

in SP surveys than in RP (Fifer et al., 2014; Murphy et al., 2005).  

A diverse body of literature suggests different approaches for addressing these biases. “Pivoting” 

is one such example whereby the attributes in the SP experiment are created by changing the 

attributes of the chosen RP alternative (Hensher, 2004; 2006; 2008; Train and Wilson, 2008). 

Rose et al. (2008) analyzed different strategies for designing statistically efficient SP 

experiments where the attributes of alternatives are pivoted off reference alternatives. Hess and 

Rose (2009) argue that theories derived in behavioral and cognitive psychology and economics 

support approaches that relate SP experiments to individual specific experiences and perceptions, 

such as those obtained from a reference alternative. 

When respondents are asked about their previous trips, considerable attention is needed for 

choosing the reference trip for the SP. Fifer et al. (2011) argue that using a 'typical' trip as a 

reference is problematic because people recall their trip details very poorly. In addition, this 

might also result in under-sampling some activities (e.g. recreational activities) as most people 

tend to choose work or education trips. For example, Zhao et al. (2015a) found that survey 

respondents tend to under-report short trips. One approach to deal with this issue involves asking 

people about their “last trip” (Train and Wilson, 2008). Another approach is to use user-specific 

GPS data, and then choose a trip randomly from the user’s observed trips. GPS data has been 

used by Fifer et al. (2011) in order to study how motorists would react to a distance-based 

charging system that incorporates the risk of driving (which is a function of the distance 

travelled, night-time travel, and speeding), and by Matyas and Kamargianni (2017) who 

conducted an SP experiment to analyze the demand for mobility-as-a-service (MaaS) plans. 
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2.2.  Web and Mobile Based Surveys 

Web- and mobile-based SP surveys have become increasingly popular as they allow researchers 

to better describe the setting or context to respondents. Unlike the traditional paper-and-pencil 

questionnaires, web-based surveys can easily integrate visual and auditory effects which can 

provide more accurate descriptions of attributes. Smartphone based survey platforms have been 

developed to collect trip and activity diaries such as Future Mobility Sensing (FMS) (Cotrill et 

al., 2013; Zhao et al., 2015), the SITSS (Smartphone-based Individual Travel Survey System) 

(Safi et al., 2015), MEILI (Prelipcean et al., 2018; Susilo et al., 2016), UbiActive (Fan et al., 

2013), rMOVE (Resource Systems Group, 2015), and others. These platforms have been mainly 

used to collect RP data. 

On the other hand, several web-based surveys have been recently used to collect SP data for new 

modes and services. For example, Choudhury et al. (2018) investigated the acceptability of three 

new and emerging smart mobility options (one way car rental, shared taxi, and park and ride with 

school bus service) and quantified the associated willingness-to-pay values in Lisbon. Similarly, 

Correia and Viegas (2011) used a web-based survey in Lisbon to investigate a new carpooling 

structure in the form of clubs for improving trust among carpoolers. Chebli and Mahmassani 

(2003) used a web-based SP survey to study air travelers’ willingness to adopt new services that 

could help reduce ground access congestion around airports such as transit, rail, and off-airport 

terminals. 

The “vividness” or “representational richness” in web-based environments has been shown to 

enhance user attentiveness (Hoffman and Novak, 1996). In terms of SP surveys, Sethurman et al. 

(2005) showed that web-based surveys are superior to the traditional pencil-and-paper surveys in 

terms of consistency and face validity, even though the authors tried to make the two 

experiments (web-based and mail-based) as close as possible. In order to better describe the 

context, more recent studies have integrated video enhancements in SP surveys (Hoffmann et al., 

2014; Jensen et al., 2017). The effects of videos have been shown to enhance attentiveness (as 

Jensen et al. (2017) reported lower scale parameters when using video effects) and result in more 

plausible results (Hoffmann et al., 2014) as they provide users with a more vivid description of 

the choice setting. 

Recently, Cox (2015) developed an SP survey which uses the Future Mobility Sensing (FMS) 

platform (Cottrill et al., 2013; Zhao et al., 2015b) to estimate the demand for new transportation 

modes and services. This web-based survey is context-aware since it refers to a trip that has 

already been performed by the respondent. Cox used data from GPS and external sources to 

generate hypothetical scenarios for a large number of modes using the random design approach.  

Similarly, Matyas and Kamargianni (2017) designed an SP experiment in order to capture the 

decision making process of purchasing mobility-as-a-service (MaaS) products. This experiment 

allows for inferring people’s preferences and willingness to pay for flexibility. Individual-

specific data is collected using the FMS platform, and users are presented with their current 

travel patterns and the frequency of usage of each transport mode after validating their travel 



Danaf, Atasoy, de Azevedo, Ding-Mastera, Abou-Zeid, Cox, Zhao, and Ben-Akiva 6 

diaries for multiple days. The SP survey presents users with four hypothetical MaaS plans, three 

of which are fixed while the fourth allows the user to customize the product. The attributes of the 

plans include price, transport modes and usage amounts, mode specific features, transferability 

of the features to the next month, and prizes associated with the plans. This SP survey is long 

term, as it uses the respondents’ activity patterns collected over a long period of time. 

2.3. SP Design Methods 

Experimental design is a major consideration in SP surveys. The goal is to achieve good 

statistical identification of the model parameters and reduce their standard errors. To achieve 

this, the design needs to allow for a considerable span and linearly independent variation in the 

attribute levels (Ben-Akiva et al., 2016).  

Different design methods have been proposed for SP surveys. The simplest is the full factorial 

design, which generates choice tasks that span all the possible attribute level combinations. 

These designs are orthogonal, as the attributes in different choice tasks are uncorrelated. 

However, the number of choice tasks grows exponentially with the number of attributes which 

makes these designs difficult to implement in practical applications (Rose and Bliemer, 2009).  

The fractional factorial design uses a subset of the full factorial design in order to reduce the 

number of choice situations while maintaining some desired properties of the full factorial design 

such as orthogonality. Another approach is the random design, whereby choice tasks are 

randomly chosen from a full factorial design. This design is easy to implement, and Walker et al. 

(2015) showed that it performs as well as any design especially when it is modified by 

eliminating dominant and inferior alternatives. 

Orthogonal designs are optimal for linear models (e.g. linear regression) as they produce 

unbiased estimates with the smallest standard errors. This is because the asymptotic variance-

covariance (AVC) matrix in these models is independent of the values of the parameters. 

However, they are not necessarily efficient for non-linear models, such as discrete choice models 

(Kuhfeld et al., 1994). For example, Bliemer et al. (2017) showed that the presence of dominant 

or inferior alternatives in the design (which are common in orthogonal designs) might result in 

biased parameter estimates.  

Efficient designs can reduce the standard errors of the parameter estimates (and thus the required 

sample size) (Rose and Bliemer, 2009; Walker et al., 2015). These designs aim to maximize the 

information obtained from the SP data and thus reduce the sample size requirements (Rose and 

Bliemer, 2009, Kessels et al., 2011). The goal is to minimize the standard errors of the estimated 

parameters via optimization based on the asymptotic variance–covariance (AVC) matrix (Walker 

et al., 2015), which is a function of the model parameters in discrete choice models. Therefore, 

these designs require priors for the parameter values. Several studies showed that these models 

might not be robust if the priors are misspecified, particularly in the mixed MNL model (Walker 

et al., 2015; Zhu et al., 2017).  

Efficient designs were initially developed for Multinomial Logit (MNL) models (Bunch et al., 

1996, Huber and Zwerina, 1996). Extensions were proposed  for Nested Logit (NL) models 
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(Bliemer et al., 2009, Goos et al., 2010), cross-sectional Mixed Logit (ML) models, (Sándor and 

Wedel, 2002, Yu et al., 2009), and panel ML models (Bliemer and Rose, 2010, Yu et al., 

2011). Rose et al. (2008) also introduced an efficient method for pivoting attribute levels around 

a reference alternative. More recently, van Cranenburgh et al. (2018) proposed efficient designs 

that are robust for decision rule uncertainty (such as random regret minimization). 

2.4.  Literature Takeaways 

The aforementioned studies indicate that prompted recall surveys are widely applied in 

transportation along with pivoting in order to generate context-aware SP choice tasks. In 

addition, context-awareness can be further enhanced using smartphones due to their 

representational richness and sensing capabilities. In this paper, we propose a context-aware SP 

method that subsumes the advantages of prompted recall and smartphone-based SP surveys. 

Following the recommendation of Walker et al. (2015), we utilize a variation of the random 

design in order to construct the SP choice tasks based on RP data, and modify the design to 

remove any dominant or inferior alternatives.  

3. METHODOLOGY 

This paper presents a smartphone-based method for trip-based SP surveys which makes it 

possible to accurately analyze the demand for new transportation modes and services and 

analyze hypothetical scenarios. The proposed method can be applied to any activity/trip sensing 

platform. We leverage on the initial concept proposed by Cox (2015) and detail a new 

formulation along with its first deployment, data collection and model estimation. In this section 

the system architecture and the process of generating and validating SP choice tasks are 

presented.  

3.1. System Architecture 

The proposed SP method leverages RP data in generating profiles. A profile is defined as a 

combination of attribute values and levels for a particular alternative (thus each choice task 

includes multiple profiles). The individual specific context is coming from (1) the observed RP 

data, e.g. sensing data, validated trips/activities for a given day (or even the weekly activity 

pattern); and (2) external contextual data such as the transportation alternatives available to the 

user through online sources. The RP data includes the departure and arrival times, origin and 

destination, trip mode and purpose, and activity duration. These are obtained using a 

smartphone-based sensing app. In our application, we use the Future Mobility Sensing (FMS) 

platform, explained in Section 3.2. External contextual is data obtained from a trip planner. Our 

platform uses Google Maps, however, any trip planner can be used in order to obtain the trip 

data. 

These are used together with the user’s personal characteristics obtained from the pre-survey, 

e.g., car ownership, usage of car/bike sharing services, etc. The experimental design uses those 

data in order to generate SP choice experiments with reasonable alternatives and attributes. The 

preferences can then be estimated based on both RP and SP data. The proposed concept is 

presented in Figure 1, and the different components are explained in the following sections. 
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Figure 1: Smartphone-based SP methodology  

  

From the user’s perspective, the action flow and choice task generation process are explained 

below and presented in Figure 2: 

1. Upon registering to the platform, a user’s socio-demographic data as well as attitudes and 

perceptions are collected using the pre-survey.  

2. The app starts to track the user, who then has to validate the activity diaries with trip and 

activity information every day directly on the smartphone app. The sensing platform and trip 

validation are presented in Section 3.2.   

3. After a full day is validated, a trip context (activity, origin/destination, and departure time) 

is selected from the trips that the user has performed as a reference trip. Trip selection is 

explained in Section 3.3.  

4. The alternatives and attributes (e.g., travel times) corresponding to the selected trip context 

are retrieved from the trip planner.  

5. The experimental design presented in Section 3.4 is used to generate SP profiles. 

6. The profiles are checked afterwards for realism and internal validity. Validity checks are 

presented in Section 3.6. 

7. A choice task is presented based on a selected trip directly in the smartphone platform. The 

user is asked about his/her choice if he/she were to repeat the trip under different 

hypothetical scenarios. Each user is presented with a choice task including multiple 

alternatives with different modes, travel times, costs, waiting times, and other attributes. The 

user is required to choose one of the suggested alternatives (which can also include an 
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option for not making the trip at all). This choice task becomes available to the user as soon 

as validation for that day is completed, however, the user can complete it at any time. 

 

Figure 2: SP data collection process. 

3.2. Sensing Platform and Trip Validation 

The sensing platform is needed to collect RP data (activity and trip diaries) for selecting the 

reference trip and obtaining contextual data (e.g. trip purpose, accompanying persons, etc.). In 

our application, we leverage the Future Mobility Sensing (FMS) platform (Cottrill et al., 2013; 

Zhao et al., 2015b). FMS is a smartphone and prompted-recall-based integrated activity-travel 

survey system. It is mainly used to collect RP data in the form of activity diaries which include 

stop locations, durations (start and end time), activities performed, travel modes taken between 

stops, and other information such as travel costs, accompanying persons, etc. As an outcome of 

this study, the FMS platform has been extended to include the SP feature. 

Once installed on the smartphone, the app collects location (GPS, WiFi, GSM), accelerometer 

data and other information (e.g. battery level) on a continuous basis. The backend system 

processes the collected data in-real time in order to detect stops and infer the trip mode, travel 

times and activity type using machine learning algorithms. An app interface presents the users 

with maps showing their stop locations and trip trajectories in addition to partially filled activity 

diaries where they can verify and validate their trips and activities periodically. This overcomes 

the main limitations associated with traditional travel surveys such as under-reporting of trips 

and inaccurate or incomplete time, location and route information (Zhao et al., 2015b). 

Trip diaries are complemented with a pre-survey which provides socio-demographic data about 

users, such as their age, gender, working status, income, car ownership, bike ownership, and 

others, and is filled out before the smartphone data collection. 
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Figure 3 presents screenshots of a sample day trajectory and activity diary validated through the 

sensing platform (these screens were already existing in the FMS platform) and the reference trip 

and SP choice task (these screens were added to this platform as part of this study).  In the SP, 

the user can browse through different tabs showing different categories of alternatives (e.g. 

transit, non-motorized, car, taxi/on-demand, and FMOD tabs). The user can also scroll down to 

view different alternatives listed under a tab. For example, under the transit tab, the user can see 

“walk to transit”, “drive to transit”, and “bike to transit”, and under the FMOD tab, the user can 

see “taxi”, “shared taxi”, and “minibus” alternatives (which are explained in Section 4). Figures 

3d, 3e, and 3f show examples of alternatives under the transit, on-demand, and non-motorized 

tabs. 

This interface was used in the data collection presented in Section 4. It was tested on a smaller 

sample (38 users) in a pilot phase and improved based on this pilot. The SP attributes are 

presented in a way that is similar to how users would see them in real life. For example, travel 

times are presented in minutes, fares are presented in Dollars with two decimal places (which is 

similar to apps such as Uber and Lyft and to transit fares in Boston), and subscription fees are 

presented as whole numbers. 

3.3.Reference Trip Selection 

For a given validated day, a realized trip recorded in the trip diary is selected by our proposed 

framework for the daily SP experiment. Any validated trip can be selected as long as it satisfies a 

set of pre-defined conditions. These conditions are specific to the research question at hand. 

Currently, a single trip can be selected, or intermediate stops can be dropped in order to form a 

half-tour; the trip or half-tour can be either home-based or non-home based; a minimum trip 

length for a trip to be selected can also be specified in order to avoid long non-commuting trips. 

In our applications, users are presented with one SP choice experiment per day (however, this 

can also be modified). 

3.4. Experimental Design 

Profile generation is based on a variation of the random design (whereby constraints are used in 

order to enhance realism and remove dominant and inferior alternatives). This design is found to 

be the most convenient for our application. First, there is a one-to-one correspondence between 

the realized trips and the choice tasks. The attributes of the realized trip can be easily pivoted 

using the random design, and checked for external and internal validity. In addition, this design 

can handle large number of alternatives and attributes (unlike some other designs such as 

orthogonal designs). Finally, previous research has shown that the random design performs 

relatively well, and in the absence of good priors, it might be preferred to efficient designs 

(Walker et al., 2015; Street and Burgess, 2007). Nevertheless, implementing efficient designs on 

smartphone-based platforms is a promising future research direction, as it can build upon the 

results obtained from this paper to produce good priors. 

SP profiles are generated on the backend server in real-time. Despite the large number of 

alternatives and attributes, most of the time a choice task is generated and validation checks are 

completed in less than one second. 
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a) Day trajectories              b) Trip/activity diary validation      c) Reference trip for SP   

 

       
    d) SP profiles: non-motorized         e) SP profiles: transit            f) SP profiles: on-demand 

Figure 3: Screenshots from the FMS platform in the same order in which the user sees 

them (except for SP tabs where the order of tabs is shuffled). 
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3.4.1. Pivoted Alternative Attributes 

In our application, profile attributes are generated using random “design parameters” in addition 

to information from Google Maps or the activity diary. After selecting a reference trip from the 

activity diary, the origin, destination, and departure time of that trip are fed into the Google Maps 

API in order to obtain some baseline attributes, such as travel times using different modes and 

transit access and egress times. These attributes are then “pivoted” using random “design 

parameters” in order to construct the attributes shown in the profiles.  

Design parameters are chosen from a pre-defined set of levels. For example, the travel time 

attribute for car is calculated by multiplying the travel time obtained from Google Maps by a 

design parameter, the travel time ratio, with levels of 0.7, 0.85, 0.95, 1.00, 1.05, 1.15, 1.20, or 

1.50. This means that the pivoted travel time can range between 70% and 150% of the travel 

time obtained from Google Maps for the same trip. A uniform distribution is used such that each 

level of the design parameter has an equal probability of being selected (i.e., the travel time ratio 

is equally likely to be chosen from any of the values above). 

Other design parameters represent travel time variability (as a percentage of the total trip time). 

These are used along with the pivoted travel times in order to present users with ranges that 

reflect uncertainty in travel time. For example, the drive alone travel time in a given choice task 

can range between 30 and 35 minutes. Similar design parameters are used to represent 

uncertainty in taxi waiting times and transit headways. 

The procedure mentioned above results in profiles that carry the same information as those 

generated by the standard random design. However, the attributes are presented to users in a way 

that is easier for them to process. For example, using the random design, the user might be asked 

to recall a reference trip. Afterwards, he/she will be asked about his/her choice if the travel time 

was 15% greater than that of the reference trip and the travel time variability was +/- 10% of the 

total travel time. On the other hand, this method presents the user with a travel time range in 

minutes that is calculated using the same information. Following the same example, and 

assuming that the reference trip is 30 minutes long, the corresponding range is 31-38 mins, and is 

calculated as �1.15 × 30� ∓ �0.1 × 1.15 × 30�. Therefore, the presented attributes are consistent 

with the way users perceive them in real life. In addition, this saves mental effort for users in 

estimating the total travel time and travel time variability from the attributes presented in the 

profiles.  

3.4.2. Random Alternative Attributes 

It may not be possible for the researcher to obtain all the alternative attributes of the reference 

trip and pivot around these attributes. Therefore, some attributes are constructed using random 

design parameters that directly correspond to attribute levels. For example, the taxi waiting time 

is equally likely to be 2, 5, 8, 10, or 15 minutes, and hence, this attribute is not calculated based 

on information from Google Maps or the activity diary. 

Another design parameter might represent the parking cost per hour. For example, the possible 

levels for the hourly parking cost are specified as 0.5, 1.0, 1.5, 3.0, 4.0, or 8.0 US Dollars. In 
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order to calculate the corresponding attribute (total parking cost), the hourly parking rate is 

multiplied by the activity duration (which is obtained from the travel diary). The researcher 

might choose to present the user with the total parking cost or the hourly parking cost, to be 

consistent with the actual market framing of parking costs. Similarly, the user is presented with 

the fuel cost (gas price per gallon), parking cost (per hour or per day), and toll cost separately, 

and not the total car cost, which is also consistent with the way users see these attributes in real 

life. 

3.4.3. Levels of the Design Variables 

The levels of design parameters are chosen to guarantee sufficient variability in the data, while 

ensuring realistic attribute ranges. According to Sanko (2001), the researcher’s domain 

knowledge is essential is deciding upon these levels. These levels should have a sufficient range 

that will likely cover the users’ “boundary values”, defined as the points as at which users will 

trade-off. Furthermore, these attribute levels should be close enough to each other, and unequally 

spaced in order to accurately estimate these boundary values (Sanko, 2001).  

3.5. Basic Alternatives 

This section introduces the basic alternatives presented in SP (walking, biking, bike-sharing, 

drive alone, carpooling, car-sharing, taxi, on-demand services, and transit). However, it is 

important to note that the generic SP framework provides flexibility for introducing new 

alternatives and attributes. Section 4 presents an application with a new service that does not 

exist in real life, Future Mobility on Demand (FMOD) (Atasoy et al., 2015). Other potential 

applications include travel advisers (e.g. Xie et al., 2019), automated vehicles (Seshadri et al., 

2019), mobility-as-a-service packages, electric mobility, or personal and active mobility modes. 

Considered attributes across all modes are listed in Table 1. Under non-motorized modes, bike-

sharing has additional attributes of access and egress times (as users pick up/drop off bikes at the 

stations), annual subscription, and time-based rental costs. The availability of these modes is 

determined by pre-specified maximum walking and biking distances. Bike availability is 

contingent on bike ownership; however, bike-sharing is always displayed given that maximum 

biking distance is not violated.  

In our SP platform the experimental design explained in Section 3.4 is applied as follows. For 

drive alone and carpool alternatives, the existence of toll and parking costs is randomly decided 

using Boolean design variables. If there is a non-zero parking cost, it is calculated based on the 

activity duration. The experimental design ensures that the drive alone travel time is not greater 

than carpooling travel time. Drive alone availability is determined by car ownership and having a 

valid driving license. If these two conditions are satisfied, the user might also choose carpooling 

“as a driver” or “as a passenger”. Otherwise, only carpooling “as a passenger” is available. 

For on-demand services (e.g. Uber, Lyft, etc.), the design ensures that travel time for shared 

alternatives (e.g., UberPool) is never less than that of the private ones (e.g. UberX). They are 

assumed to be always available except car-sharing which necessitates a valid driving license. 

Note that the new mobility service studied in Section 4 (FMOD) is also an on-demand service. 
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For subscription-based services (e.g., car-sharing or bike-sharing), users who are not subscribed 

to these services are presented with annual subscription fees. 

Finally, transit modes include bus and train, with walk, bike, or car access (i.e., park-and-ride). 

The number of transfers is randomly determined in a time-based manner, e.g., trips shorter than 

10 minutes have no transfers, those between 10 and 20 minutes may have up to one transfer, and 

trips longer than 20 minutes may have up to two transfers. The fares include a fixed and a 

distance-based component for flexibility (e.g., setting the distance-based component to zero 

results in a flat fare). A transit alternative may include bus, train, or a combination of the two. 

The availability is either based on the existing conditions (referring to Google Maps), or defined 

by the researcher in order to test hypothetical scenarios. 

For new/non-existing modes (such as the mobility-on-demand application presented in Section 

4), alternative attributes can be specified as functions of the attributes of existing modes (e.g. car, 

taxi, etc.). 

Table 1 Considered attributes across alternatives 

 Non-motorized Motorized On-demand Transit 

 Walk Bike Bike-

sharing 

Drive 

alone 

Carpool Taxi Uber/

Lyft 

Car-

sharing 

 

Walking time x         

Biking time  x x       

Waiting time      x x   

Schedule delay          

Access/egress time   x x x   x x 

In-vehicle      

travel time 

   x x x x x x 

Parking time    x x     

% Bike lane  x x       

Annual 

subscription cost  

  x     x  

Distance-/time- 

based variable 

cost/fare  

  x   x x x x 

Fuel cost    x x     

Toll cost    x x   x  

Parking cost    x x   x  

Transfers         x 

Headway         x 
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3.6. Validity Checks  

Since SP profiles are generated based on the random experimental design, some combinations of 

attributes might not be realistic to users. For example, walking time in a particular choice task 

may be shorter than biking time. These two attributes are calculated by multiplying the 

walking/biking times obtained from Google Maps by design parameters defined as “travel time 

ratios”. The latter case might occur if the worst biking time ratio and the best walking time ratio 

are both selected. 

In addition, a choice task may include a dominant alternative (i.e. having both its total travel time 

and travel cost better than those of any other alternative) or an inferior alternative (having its 

travel time and cost worse than any other alternative).  

In order to avoid such cases, validity checks are used by defining a set of “flags”, which 

correspond to unrealistic combinations of attributes and dominant/inferior alternatives. Below 

are some examples: 

• Drive alone is cheaper than transit. 

• Drive alone is cheaper and faster than any other mode. 

• Walking is faster than transit, biking, taxi, etc. (except for short trips, e.g., shorter than 1 

km). 

Although such cases might still occur in reality, Bliemer et al. (2017) argue that strictly dominant 

alternatives should be avoided in SP surveys because they bias the estimates in logit models.   

Furthermore, some flags correspond to the difference between the maximum and minimum costs 

(or travel times) among all alternatives exceeding a certain threshold. 

Different choice tasks are generated until a valid one is found. Ideally, users should be presented 

with choice tasks without any flags. However, this might be difficult to achieve depending on the 

complexity of the experiment. Therefore, a choice task is accepted if the number of flags does 

not exceed a pre-defined threshold. For example, the maximum allowable number of flags 

cannot exceed 2 or 3. Increasing this threshold can result in unrealistic choice tasks (having 

many unrealistic combinations). On the other hand, decreasing this threshold can result in 

excessive running times as the number of generated choice tasks will be very high until a valid 

one is found. Another possible approach is generating several choice tasks (e.g. 1000), and 

choosing the one with the least flags. 

Using this design, and unlike the standard random design, not all attribute combinations have an 

equal probability of being chosen. As indicated above, not all of the generated choice tasks are 

accepted; they are evaluated based on pre-specified constraints that increase realism and remove 

dominant/inferior alternatives. In addition, some attribute levels are dependent on others. For 

example, the toll amount is contingent on a Boolean variable indicating whether an alternative 

includes a toll cost or not (if not, then the toll amount is zero 50% of the time).  



Danaf, Atasoy, de Azevedo, Ding-Mastera, Abou-Zeid, Cox, Zhao, and Ben-Akiva 16 

3.7. Design Validation 

The profile generation algorithm is validated using Monte-Carlo simulations to ensure that the 

data can be used in behavioral models. This step simulates data that could be collected using the 

survey, and is done offline prior to deployment. It is needed to prove that the behavioral models 

estimated using the SP choice tasks result in consistent estimates and acceptable confidence 

intervals. The design efficiency can also be assessed analytically using the covariance matrix of 

the attributes (or the D-error), however, the Monte Carlo experiment also allows us to identify 

other issues such as inconsistency (differences between the estimates and the true values of the 

parameters). 

For a sample of trips, choices are simulated using a logit model (or a nested logit model). 

Different attributes are assigned pre-determined coefficients (weights) which are known to the 

researcher. The systematic utilities of all alternatives are then calculated using the assumed 

coefficients and the profile attributes. An extreme value error term is added in order to simulate 

the total utilities. The simulated choices correspond to those with the highest utility among all 

alternatives.  

Afterwards, a new logit model (or nested logit model) is estimated using the simulated choices in 

order to check whether the true values of the coefficients can be recovered. This procedure 

enables the identification of specific issues in the design such as bias, multicollinearity or 

insufficient variations in attributes which can be fixed accordingly. Model structures other than 

logit can also be used to account for correlations among individuals and alternatives (e.g. probit, 

mixed logit, etc.).  

4. CASE STUDY: FUTURE MOBILITY ON DEMAND 

This section presents an application of the SP methodology described above to FMOD, which is 

an app-based service that provides a personalized menu of travel options in real-time from the 

available modes operated by FMOD: taxi, shared-taxi, and minibus (Atasoy et al., 2015). The 

traveler can select one option in the menu for their trip or reject all options. FMOD taxi provides 

door-to-door service in a private vehicle, which is typically the highest priced service. FMOD 

shared-taxi serves multiple passengers in the same vicinity, but travel time may increase due to 

the pick-up and drop-off of other passengers. FMOD minibus runs along fixed routes with fixed 

stops but adapts to passengers’ schedule and typically has the lowest fare. The FMOD operator 

manages the requests and the flexible fleet of vehicles in real-time (in terms of dispatching, 

passenger-vehicle matching, routing, etc.), thus conditioning the attributes of the menu offers to 

its operational performance. FMOD is a demand responsive system and provides flexibility to 

both passengers and operators; passengers can choose from a menu that can be optimized in an 

assortment optimization framework to tailor their needs and preferences, while operators can 

allocate their homogeneous vehicle fleet among all three types of services. 

Since FMOD is a schedule-based service, users are asked about their preferred arrival or 

departure time window. The user request will preferably be assigned to a vehicle that matches 

their preferred time window. However, this might not be always possible due to the limited fleet 

size or operational costs. This introduces schedule delay, which is defined as the difference 
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between the actual pick-up (drop-off) time and the boundary of the preferred departure (arrival) 

time window. 

In the SP design, FMOD taxi and shared-taxi attributes include waiting time, travel time, fare, 

and schedule delay. Schedule delay is not directly provided to the user and only the estimated 

pick-up and drop-off times are displayed. These may or may not fall within the specified time 

window. Moreover, FMOD minibus has additional attributes of access and egress time. 

Therefore, the user is presented with a departure time from home, arrival time at station, pick-up 

time, drop-off time, and arrival time at the final destination. FMOD is assumed to be always 

available to users (except for very short trips, in which FMOD minibus is not available). It is 

presented as a separate tab in the SP user interface which includes all three services. The FMOD-

SP design was validated using the Monte Carlo procedure presented in section 3.7. 

The SP survey selects home-based half-tours, since the goal is to deploy the estimated mode 

choice model in an activity-based travel demand model (namely the one presented in Lu et al., 

2015). 

4.1. Sample Demonstration 

An FMOD case study was conducted with a sample of 224 respondents in the Greater Boston 

Area, who completed 908 SP choice tasks. The number of choice tasks per respondent ranged 

between 1 and 11, with an average of 4. The sample was fairly split between males (46%) and 

females (49%), while the remaining 3% refused to reply. Respondents’ ages ranged between 11 

and 69 years, with a mean of 30.7 and a standard deviation of 9.6. Full-time employees 

accounted for 56% of the sample, and students accounted for 30%. The remaining users were 

either unemployed, part-time employees, retired, or self-employed. The mode shares in the RP 

data are presented in Figure 4. 

 

Figure 4: Mode shares in the revealed preferences data. 

Car
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Walk
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Bike
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Taxi / On-Demand
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Transit

14%
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The SP alternatives included driving alone, carpooling, car-sharing, motorcycle, walking, biking, 

bike sharing, transit (with walk, bike, or car access), and on-demand (taxi, private ride hailing, 

and shared ride hailing), in addition to the three FMOD modes. The current SP design resulted in 

FMOD modes being chosen 24% of the time. Sufficient observations were collected for each 

alternative except for car-sharing and motorcycle (3 and 4 observations respectively).  

In this application, the realism of the experiment was ensured using the experimental design as 

well as the validity checks (see section 3.6.). The maximum allowable number of flags was 

specified to be 2. Nevertheless, we still observed some dominant and inferior alternatives with a 

frequency of 4% and 7%, respectively. By observing the data, we noticed that these correspond 

to special cases (such as short trips, where walking is dominant or driving to transit is inferior). 

Other flags were less likely to occur; for example, car was cheaper than transit in less than 2% of 

the cases, walking was faster than car in less than 2% of the cases, and faster than transit in less 

than 5% of the cases. Other constraints were forced in the experimental design; for example, 

carpooling options were always specified to be slower and less expensive than driving alone, and 

private on-demand and FMOD alternatives were always specified to be faster and more 

expensive than shared alternatives. 

4.2. Model Estimation  

The SP data are used in order to estimate a mode choice model among the existing modes and 

FMOD modes. Since some choice tasks were completed within a very short time (e.g., less than 

10 seconds), some of these might have been filled out at random. Therefore, a latent class model 

is used in order to model two choice protocols: utility maximization and random choice. A 

binary logit model is used to model the (latent) choice protocol. In the case of utility 

maximization, a mixed logit model with random parameters and error terms following the 

normal or the log-normal distribution is used. In the case of random choice, equally likely 

probabilities are assumed to all the available alternatives. 

The attributes used in the utility maximization model are cost, travel time (in-vehicle, out-of-

vehicle, and non-motorized travel time), and travel time variability. A dummy variable is 

included in the SP utility equations representing whether the SP mode was chosen in the 

reference trip or not. This variable accounts for the context specific to each trip. 

4.2.1. Model Specification 

The choice protocol model is specified as a binary logit that includes socio-demographic 

variables, the choice task number, and the time for completing the choice task divided by the 

number of available alternatives. Age is the only socio-demographic variable that was found to 

be significant. The utility equations are presented in equation 1 below: 

 


�� = ����� + ���� ∗ ��� + ��������� ∗ �ℎ"#$�%&' + �(�) ∗
*&+,-#".

%&'�/-
+ 0�� 

 


1234� = 0 + 01234�                    (1) 
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Where ��� is the respondent’s age (divided by 100), �ℎ"#$�%&' is the choice number, 

Duration is the completion time measured in seconds, and %&'�/- is the number of available 

alternatives in the choice task. 

The utility functions of the utility maximization model are presented in Equation (2). A scale 

parameter is estimated while the cost coefficient is fixed to -1. Therefore, all other parameters 

are in the willingness to pay space (money-metric utility). A higher scale parameter indicates a 

higher explanatory power of the model variables compared to the error component and vice 

versa.  

The scale parameter and the parameters of all attributes are modeled with inter-personal 

heterogeneity in order to account for the panel nature of the data (since multiple observations are 

available from the same user). Travel time and travel time variability coefficients follow the log-

normal distribution through the exponential form which ensures that all of these parameters are 

negative. Exponentiation is also used for the scale parameter in order to ensure that this 

parameter is positive. The estimated coefficients are the mean and standard deviation of the 

underlying normal distributions (thus, these can take any sign, while the actual parameters 

maintain their correct sign). A full set of alternative specific constants (ASC) is used, ASCTransit 

is arbitrarily normalized to 0. Normally distributed error terms are used to account for 

correlations among alternatives (namely correlations among car modes, transit modes, on-

demand modes, FMOD, and non-motorized modes). A full set of alternative specific constants 

(ASC) is used, ASCTransit is arbitrarily normalized to 0.  

For car, in-vehicle travel time includes both average travel time and parking time, while for other 

modes it only includes average travel time. Two different in-vehicle travel time coefficients are 

estimated, for drive alone and for other motorized modes. For transit with car access, this 

includes the total in-vehicle travel time in car and in transit. Out-of-vehicle travel time includes 

access time (car modes, transit, and FMOD minibus), egress time (car modes, transit, and FMOD 

minibus), and waiting time (transit, on-demand modes, and FMOD minibus). Non-motorized 

travel time is the travel time for walking or biking modes. Cost is the fare for all modes except 

for car, which is the sum of fuel cost, parking cost and toll cost. In order to obtain similar 

magnitudes of all coefficients, cost is measured in tens of USD. Finally, travel time variability is 

defined as the difference between the maximum and the minimum travel time, divided by their 

mean. 


� = exp �Scale��−�">-� + ���� + exp �?@ABB�CDEE� + exp �?FABB�GDEE� +
exp �?��BB�%HEE� +exp �?BBA�1�EED�I� + ?@3�)J�2IK� + ?LM + N�� + 0� (2) 

Where: 

ΒIVTTCar ~ N(ΒIVTTCar_mean, ΒIVTTCar_std): coefficient for in-vehicle travel time by car 

ΒIVTT ~ N(ΒIVTT_mean, ΒIVTT_std): coefficient for in-vehicle travel time by other modes 

ΒOVTT ~ N(ΒOVTT_mean, ΒOVTT_std): coefficient for out-of-vehicle travel time 

ΒNMTT ~ N(ΒNMTT_mean, ΒNMTT_std): coefficient for non-motorized travel time 

ΒTTVAR ~ N(ΒTTVAR_mean, ΒTTVAR_std): coefficient for travel time variability 

Βintertia ~ N(Βintertia_mean, Βintertia_std): coefficient for inertia 
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Scale ~ N(Scalemean, Scalestd): scale parameter 

IVTT, OVTT, and NMTT: in-vehicle, out-of-vehicle, and non-motorized travel time 

respectively (min) 

TTVAR: travel time variability (unitless) 

COST: travel cost (tens of USD) 

RP: a dummy variable indicating whether the SP mode was chosen in the reference trip 

or not 

M: a vector of individual characteristics and socio-demographics (age, gender, student 

status, income, and car ownership) with coefficients ?L 

ηP~%�0, S�): a normally distributed error term to capture correlations among modes. 

0�: an iid error component following the extreme value distribution. 

4.2.2. Estimation Results 

The model was estimated using Maximum Simulated Likelihood (MSL) in Python Biogeme 

(Bierlaire, 2016). Trips exceeding 30 miles were excluded. The estimation results are presented 

in Tables 2 and 3. The model converges with 10,000 random Halton draws of the random 

parameters. Using the same starting values, the model coefficients do not vary significantly when 

the number of draws is increased beyond 10,000 (however, using different starting values 

sometimes results in a different local optimum, with significantly different estimates and a lower 

log-likelihood).  

The estimation results of the Choice Protocol model are presented in Table 2. The constant is 

positive, indicating that respondents are likely to make a choice according to utility 

maximization rather than at random. However, the coefficient of age is negative, indicating that 

older respondents are more likely to choose at random. The choice task coefficient is also 

negative, indicating that in the later choice tasks, respondents are more likely to choose at 

random. Finally, duration divided by the number of alternatives is positive, indicating that the 

more time respondents spend per alternative, the less likely they are to choose at random.  

Table 2: Estimation results for the choice protocol model. 

Parameter  Estimate Robust Std err Robust t-test p-value 

Constant (UM) 6.84 2.40 2.84 < 0.01 

Age -0.133 0.0437 -3.04 < 0.01 

Choice Task -0.421 0.253 -1.67 0.100 

Duration/NumAlt 0.307 0.162 1.89 0.06 

 

The estimation results of the utility maximization model are presented in Table 3. Significant 

heterogeneity is present in the scale parameter and in all travel time, travel time variability, and 

inertia coefficients. The mean of the inertia coefficient is positive as expected, indicating that 

respondents are more likely to choose the RP chosen mode in the SP choice task. This can be due 

to unobserved constraints associated with that specific trip favoring that mode, but can also 

capture other effects such as justification bias. The standard deviations of on-demand and non-

motorized modes are significant, indicating strong correlations among the alternatives belonging 
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to these groups. The correlations between car modes, FMOD modes, and transit are not 

significant. 

The coefficients of travel time, travel time variability, and the scale parameter are log-normally 

distributed. The estimated mean and standard deviation are for the underlying Normal 

distribution. The mean of a log-normally distributed variable can be calculated as exp �μ + σW/2� 

where μ and σW are the mean and variance of the corresponding normal distribution, respectively. 

Therefore, we can obtain the mean of the IVTT, OVTT, and NMTT coefficients. As everything 

is in willingness to pay space, the values of IVTT by car, IVTT by all other modes, OVTT, and 

NMTT (in USD/hour) are presented in Table 4. The signs to the mean values of travel times are 

negative because the corresponding coefficients are given negative signs in the utility function. 

The values of travel time are close to those found by Xie et al. (2019), who used the same survey 

platform to collect data from a similar sample of respondents in the Greater Boston Area. In 

addition, they are close to the values obtained by Atasoy et al. (2018) who used a convenience 

sample of 38 users in a pilot of this survey. 

The value of time of non-motorized modes is very high, indicating that users are very sensitive to 

travel time by these modes. This is expected, especially because of the cold weather in winter in 

the Greater Boston Area. Except for car, the value of IVTT is the lowest indicating participants 

are more tolerant to IVTT in comparison to NMTT and OVTT, which is reasonable due to the 

comfort of staying in vehicles and the possibility of multi-tasking. On the other hand, the IVTT 

by car is the highest. This could be potentially due to the discomfort associated with driving and 

the inability to multitask. However, it can be due to the fact that people with a higher value of 

time are more likely to drive alone. 

The constants of FMOD modes are comparable to those of Uber/Lyft and UberPool/LyftLine, 

and substantially higher than the taxi constant, which might indicate that respondents are willing 

to adopt these services in comparable rates. In addition, the results indicate that respondents with 

high income and young respondents are more likely to use FMOD compared to other market 

segments. 

 

The estimated model accounts for heterogeneity as well as the random response bias. In order to 

justify its complexity, we compare it to an MNL model with the same specification, but without 

heterogeneity in any of the parameters and without the choice protocol model. The results are 

presented in Table 5. Both models achieve convergence as indicated by the low values of the 

final gradient norm. However, the complex model shows an improvement of 26.8 points in the 

log-likelihood over MNL. The likelihood ratio test results in a test statistic of 53.67, which is 

higher than the critical value at the 95% level of confidence with 16 degrees of freedom (26.30). 

This indicates that the estimated model is superior to MNL. It is also important to note that the 

MNL estimates are not realistic; for example, the estimated parameter for walking or biking time 

is positive and very close to zero. This reinforces the importance of accounting for heterogeneity 

as otherwise even biased estimates might be obtained.   
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Table 3: Estimation results for the utility maximization model. 

Parameter Estimate Robust Std err Robust t-test p-value 

Scale - mean 0.516 0.265 1.94 0.05 

Scale - std dev. 1.75 0.400 4.38 < 0.01 

IVTT by car - mean -2.51 0.251 -10.01 < 0.01 

IVTT by car - std dev. 0.278 0.0826 3.37 < 0.01 

IVTT by other modes - mean -3.47 0.213 -16.3 < 0.01 

IVTT by other modes - std dev. 0.529 0.0906 5.84 < 0.01 

NMTT - mean -2.83 0.176 -16.06 < 0.01 

NMTT - std dev. 0.602 0.0635 9.49 < 0.01 

OVTT - mean -4.29 0.518 -8.27 < 0.01 

OVTT - std dev. 1.67 0.232 7.23 < 0.01 

Travel Time Var.- mean -0.251 0.332 -0.760 0.45 

Travel Time Var.- std dev. 0.118 0.065 1.82 0.07 

Inertia - mean 0.884 0.189 4.67 < 0.01 

Inertia - std dev. 0.650 0.317 2.05 0.04 

Drive alone constant 0.877 0.446 1.97 0.05 

Carpool constant -0.467 0.224 -2.09 0.04 

Walk constant 0.876 0.340 2.58 0.01 

Bike constant 0.995 0.335 2.97 < 0.01 

Bikeshare constant -0.548 0.249 -2.20 0.03 

FMOD minibus constant -1.66 0.422 -3.95 < 0.01 

FMOD shared taxi constant -1.95 0.529 -3.70 < 0.01 

FMOD taxi constant -2.22 0.633 -3.50 < 0.01 

Taxi constant -3.23 0.846 -3.82 < 0.01 

Uber/Lyft constant -1.90 0.504 -3.76 < 0.01 

Uberpool/LyftLine constant -1.75 0.438 -4.00 < 0.01 

Driving modes - std dev. 0.0516 0.0768 0.67 0.5 

On Demand modes - std dev. 2.16 0.364 5.93 < 0.01 

Non-motorized modes - std dev. 0.317 0.0564 5.61 < 0.01 

Transit modes - std dev. 0.0623 0.114 0.550 0.58 

FMOD modes - std dev. 0.0549 0.0561 0.98 0.33 

Age (FMOD) -2.29 0.594 -3.85 < 0.01 

Age (Non-motorized) -0.730 0.293 -2.49 0.01 

Student (Non-motorized) 0.673 0.352 1.91 0.06 

Student (Transit) -0.753 0.427 -1.76 0.08 

Income (Driving) 0.705 0.258 2.73 0.01 
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Income (FMOD) 2.34 0.370 6.31 < 0.01 

 

 

 

 

Table 4: Estimated values of time. 

Mean VOT (USD/hr) 

In-vehicle travel time (drive alone) 50.68 

In-vehicle travel time (Other modes) 21.47 

Non-motorized travel time 42.44 

Out-of-vehicle travel time 33.16 

 

 

Table 5: Summary statistics and comparison to MNL. 
 Estimated Model Multinomial Logit (MNL) 

Number of estimated parameters 40 24 

Final log likelihood -636.12 -662.957 

Final gradient norm 7.15E-05 4.53E-05 

Run time 02h 15:00 min 0:02 sec 

Number of draws 10,000 - 

Sample size 640 

 

4.2.3. Joint SP/RP Estimation 

In this work, the model was estimated using SP data only. However, the RP data might be used 

in order to estimate a joint SP/RP model. An example is presented in Atasoy et al. (2018) 

whereby a joint model is estimated for a pilot sample of 38 respondents. The combined SP/RP 

model relies on the construction of realistic choice sets for each RP observation from such data 

sources, contrarily to the SP experiment where the full choice set is provided by design. Such 

choice set reconstruction requires careful modelling and data (attributes) estimation which can be 

error prone and significantly affect estimation results. In this application, choice sets were 

obtained from Google Maps and from the pre-survey (car and bike ownership). Attributes such 

as travel times and access/egress times were also obtained from Google Maps and parking costs, 

taxi rates and public transportation fares were estimated from public online sources for the 

Boston/Cambridge area. However, some assumptions had to be made in this process both for the 

choice set (e.g.: limited by Google Maps API outputs) and its attributes (such as average transit 

and taxi waiting times) resulting in an unstable estimation procedure. Besides the need for testing 

such method to larger samples, such as the one in this current study, further research is needed to 

relax the limitations found in the choice set generation method proposed in Atasoy et al. (2018). 

5. DISCUSSION 

This section presents the main contributions and limitations of the proposed SP method. 
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5.1. Methodological Contributions 

By accounting for the trip-specific context and using smartphone sensing capabilities, this 

method overcomes several limitations associated with traditional pencil-and-paper surveys in 

terms of data quality and user experience.  

5.1.1. Data Quality 

This methodology is context-aware, as the user can easily relate to the RP trip. The SP attributes 

are generated based on the RP attributes together with the user specific and trip specific context, 

which ensures that the values presented to the user are realistic. The random design and the 

validation checks are easy to implement in real-time, and ensure that dominant and inferior 

alternatives are avoided automatically. The user is presented with the exact trip details (such as 

the arrival/departure times, trajectory, and origin/destination) and asked to validate these details 

before completing the choice task. Therefore the context described to the user is very similar to 

his/her real experience for the recalled trip. In terms of modeling, the unobserved context can be 

partially captured by an inertia parameter (similar to the one that was estimated in the application 

presented in Section 4). In addition, other contextual variables specific to the trip can be included 

such as the trip time of day, weather conditions, etc. 

In traditional SP surveys, choice tasks are generated based on the same reference trip. On the 

other hand, this methodology allows the researcher to obtain different SP observations from the 

same individual corresponding to different trips. This allows for modeling more complex 

phenomena such as intra-personal heterogeneity (Becker et al., 2018), which is difficult to 

identify using choice tasks filled out in a short time period and corresponding to the same 

reference trip. 

Compared to traditional SP surveys, smartphones allow for better and more flexible sampling of 

trips. The researcher is able to impose constraints on trip selection based on the research needs. 

For example, he/she might be interested in short (or long trips), work trips only, or trips 

involving multiple household members in order to study intra-household interactions.  

Since users are presented with one choice task per day, some biases associated with traditional 

SP surveys are minimized. For example, the user’s response in one day is less likely to affect 

his/her responses in the following days. In addition, the “fatigue” bias is reduced as users spend 

less time each day on the single choice task. Finally, since the time required for completing the 

choice task is recorded, it can be used to filter outliers (either directly or using a modeling 

approach similar to the one in Section 4). 

5.1.2. User Experience 

From the users’ perspective, this methodology reduces the mental burden which is typical in 

traditional SP surveys. Users are presented with profile attributes that are easy for them to 

understand and process as they are based on realized trips and mimic the presentation of these 

attributes in the market (e.g. in the case of app-based services).  Uncertainty is also captured by 
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presenting users with travel time ranges (in minutes) calculated as a percentage of the total travel 

time rather than showing percentages or fixed ranges.  

Finally, users are not constrained by the time at which they have to complete the choice task, as 

the smartphone-based survey is easily accessible at any time. While this might be advantageous 

to users, it might result in inconsistencies depending on the time interval between the reference 

trip and completing the choice task. In our application, half of the respondents completed the 

choice task within the two days of the recalled trip, and 76% completed it within one week. 

Further research can investigate the effect of time between completing the reference trip and 

filling out prompted recall surveys.  

5.2.  Limitations 

Although this method overcomes several limitations associated with SP surveys, there are still 

several limitations, most of which are common in SP survey design.  

First, this method relies on design variables which have to be specified by the researcher. As in 

most SP designs, the researcher has to decide on the levels and ranges of these variables.  Thus, 

the design needs to be checked for face validity and internal validity. Therefore, the logical 

checks presented in Sections 3.6 and 3.7 are necessary to ensure that the presented profiles are 

realistic, and that the data can be used in in estimating behavioral models. The interface design 

can also be tested and further enhanced in order to ensure that respondents are not attentive to 

some attributes more than others. 

Furthermore, smartphone data might have measurement errors (e.g., in distances and travel 

times), however, these are not problematic for the SP data. First, users are asked to validate their 

travel times beforehand and correct any errors recorded by the phone app. Second, by design, the 

SP attributes are pivoted off the RP attributes which are obtained from the trip planner (e.g., 

Google Maps). In model estimation, the researcher only uses the pivoted SP attributes (and not 

the initial attributes obtained from the trip planner). Nevertheless, these errors might become 

problematic if the researcher estimates a joint SP/RP model using the attributes obtained from 

travel advisors as these might have some measurement errors.  

Another limitation associated with the joint estimation of SP/RP data is that the sensing platform 

does not collect data about the choice and consideration sets of users. Even though choice sets 

are obtained from trip planners such as Google Maps, the user might not consider the same 

available alternatives while making a choice. This issue can be overcome by modeling the 

consideration sets explicitly (e.g., Shocker et al., 1991, Swait and Ben-Akiva, 1987). 

As in most RP-based SP surveys, justification bias might be expected as users might be more 

likely to select the alternative they chose in the RP in order to justify their previous choice. 

While this might introduce bias to the estimation results, it can be mitigated by including an 

“inertia” variable in the estimation as in the previous case study.  
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While this smartphone-based data collection method can be easily scalable, such platforms might 

be likely to attract young educated users. Therefore, considerable care is needed for sampling, or 

behavioral models should account for sampling bias.  

5.3. FMOD Application 

This paper presented a novel application to a non-existing transportation service, FMOD, which 

has been studied before from the supply/operational side, but not from the demand angle (Atasoy 

et al., 2015). Understanding the factors affecting the demand for FMOD modes is critical for 

operators. First, it allows them to assess the feasibility/profitability of the service. It also allows 

for optimizing the operational aspects (such as fleet size, pricing of different types of services, 

etc.). During operation, it also enables operators to test different policies, such as changes in 

pricing, constraints on maximum waiting times, and allowable route deviations due to pooling 

passengers. Finally, it allows operators to identify potential market segments that are more likely 

to use the service; in our application, the results showed that younger respondents and 

respondents with higher income are more likely to use the service compared to others.  

6. CONCLUSION  

This paper presented a generic method for context-aware SP surveys leveraging state-of-the-art 

smartphone-based RP methods, in addition to an application to mode choice of future smart 

mobility solutions. This method utilizes a random experimental design and is flexible in terms of 

adding new modes or services. The current version includes a variety of modes including non-

motorized modes, on-demand modes, private motorized modes, and transit. In the FMOD case 

study, the estimation of the mode choice model resulted in reasonable values of the model 

parameters and the estimated value of time. 

A number of extensions can be considered in future research. Although the context-aware nature 

of our method overcomes common issues with SP surveys such as framing and realism, we 

might still expect some biases such as attribute non-attendance and justification bias. Future 

research will focus on making the SP survey incentive compatible in order to eliminate such 

biases (Ben-Akiva et al., 2016). In addition, smartphone-based SP surveys can be compared to 

traditional paper-based surveys and web-based surveys, and the effects on behavior can be 

investigated. Future work will also focus on parallelization and distributed processing in order to 

overcome the tradeoff between design realism (number of allowable flags) and the time needed 

to generate a valid choice task. 

While this paper presented an application to FMOD, similar context-based SP surveys were 

deployed in Singapore and in the Greater Boston Area (GBA). In Singapore, data was collected 

on automated mobility on demand (AMOD) from a sample of 350 respondents who completed 

more than 2500 choice tasks. A similar SP survey was implemented in GBA where 1155 choice 

tasks were completed by 183 respondents to collect data for an app (Tripod) that incentivizes 

users to switch towards energy efficient travel choices.  

The information obtained from the pre-survey allows for developing behaviorally rich demand 

models that do not only model choices from the SP menu, but also other choices such as 
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subscriptions to app-based services and using these services for a particular trip. Xie et al. (2019) 

propose a framework for estimating demand for new transportation surveys using pre-survey, SP, 

and post-survey data whereby a nested structure is proposed for different models including (1) an 

app subscription model which predicts whether an individual will subscribe to the new service or 

not, (2) an app usage model, which predicts whether the individual will access the service 

(conditional on subscription), and (3) a model predicting the user’s mode choice from the menu 

presented in the app. 

Finally, the current version of the SP survey is trip-based; it considers half-tours only. Ongoing 

research is focusing on activity-based SP where travelers can be presented with alternatives for 

their entire travel and activity pattern. One of the initial attempts focusing on travel patterns was 

in the context of mobility-as-a-service packages (Matyas and Kamargianni, 2017) described in 

Section 2.2. Such research stream can further shed light into higher level individual context in 

fundamental travel decisions, at the reach of a smartphone.
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