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Time-of-flight is a time for an ultrasonic pulse to cross a sample. It contains valuable information about

the mechanical properties of a material. For the ultrasonic pulse propagating in wood perpendicular to

the grain the relation between the time-of-flight and the elastic constants is rather complex due to the

strong anisotropicity of wood. With the help of some assumptions this relation can be established from

the elastic theory. The analytical calculation results in a function which represents a change of time-of-

flight when the direction of propagation shifts from the radial to the tangential direction while scanning

a board crosswise. The function takes into account the location of the pith and the geometry of the

growth rings. The measurement performed on a sample of European spruce confirms the theoretical

prediction. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4873519]

PACS number(s): 43.35.Zc, 43.35.Cg, 43.20.Bi [JDM] Pages: 3409–3415

I. INTRODUCTION

Ultrasonic testing of wood is a well-established method

and it is widely exploited in industry, technology, and sci-

ence. The velocity of propagation of an ultrasonic wave, the

damping, and the polarization are directly related to the me-

chanical properties of the material in which the wave propa-

gates. The parameters of the wave are used to determine

important mechanical characteristics of wood, such as elastic

coefficients and density.

There are several applications which require the ultra-

sonic assessment of wood quality. Most important are testing

of the quality of standing trees and to assess the tree’s wood

quality,1 determination of wood quality in historical build-

ings,2 and timber grading at sawmills to ensure the supply of

appropriate strength graded timber for structural use.3

There are three main methods of ultrasonic non-

destructive testing applied for wood assessment: (a) high-

resolution imaging, or B-scans, (b) tomography, and (c)

longitudinal pitch–catch system. In high-resolution imaging

the details of the inner structure of wood are visualized by

registering the time of propagation of the signal reflected on

acoustical inhomogeneities, i.e., changes of impedance.2,4 It

is similar to the ultrasonic diagnostics in medicine. In ultra-

sonic tomography, the inner structure of wood is recon-

structed with the use of circular arranged ultrasonic probes,

registering the velocity and damping of the ultrasonic

wave along the intercrossing paths.1,5 In the longitudinal

pitch–catch system, the time-of-flight of the ultrasonic pulse

is measured in a longitudinal direction along the board.3,6

This time-of-flight is related to the speed of sound and

hence, to the modulus of elasticity. Unlike two previous

methods, this is not an imaging system, because there is only

one measurement per board. This measurement is used to

grade the wood to determine its further use.

The high resolution ultrasonic imaging and tomography

have so far not been proven suitable for the industrial

machine grading, which requires processing of 50–150

pieces per minute in order to be economical. Besides, the

systems utilizing these techniques are generally costly and

unaffordable for small and medium enterprises.

Ultrasound longitudinal grading alone proved not to

be very sufficient in increasing the yield in higher

strength classes of wood. It should be combined either

with visual grading7 or with x-ray scanning.8 The draw-

back of the first approach is that is it time-consuming

and not fully automated, the second approach poses the

problem of cost.

A grading machine must be fast, relatively inexpensive,

reliable for the large range of cross sections and wood quality,

and preferable fully automated. Transversal ultrasonic scan

might be a solution of this nontrivial task. In the prototypes of

such machine two types of transducers have been used: dry-

contact transducer and air-coupled transducer. In the first

approach the transducer’s head must be firmly pressed against

the surface to provide a good coupling. It can also utilize

some special coupling material, such as rubber. The measure-

ments described in the present paper were done using a single

point pair transmitter/receiver with a dry-contact. To increase

the speed of measurement the dry-contact transducers are usu-

ally implemented as arrays and mounted into a roller.9,10 In

the case of air-coupled transducers11,12 there is an air gap

between the transducer’s head and the material, typically

equal to the size of the near-field. The advantage of this

approach is that no special coupling or pressure system

required and the disadvantage is a low signal-to-noise ratio

due to the huge losses caused by the reflection between the air

and the wood. So far the air-coupled transducers have been

used only on the boards with the thickness no more than

7 mm.

In both schemes, with dry-contact or air-coupled, an ul-

trasonic pulse propagates in the transversal direction and the

time-of-flight is registered at each receiver. The raw data is a

two-dimensional (2D) image of the board, where each pixel is

the time-of-flight registered for each area on the board (equal

to the area of the receiver). Together with the time-of-flight,
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one can also measure attenuation of the wave; in this case the

raw data is two 2D images.

Transversal ultrasonic scan combines the principles of

the visual grading with an ultrasonic measurement. The meas-

urements must be sensitive to wood defects such as knots,

fiber deviation, crack, etc. The present paper studies the physi-

cal principle of such imaging. The elastic theory of ortho-

tropic medium allows obtaining a time required for a wave to

cross the board. In general, the propagation in question does

not happen along the main axes of the wood, so one must han-

dle the case of quasi-longitudinal wave with polarization vec-

tor changing along the direction of propagation. Section II

recalls the theory of mechanics of the orthotropic medium

related to wave propagation phenomenon. This material can

be found in any text book on acoustics and in particular, in

the books devoted to the acoustics of wood by Bucur.13 But,

as it is the fundament of the present study, it is necessary to

summarize it in Sec. II. Section III calculates the time of prop-

agation across the grains of clear, ideal wooden board. The

clear wood is assumed to have no defects; “ideal board” is a

board without any fiber deviation, the long side is strictly

aligned with the direction of fibers and the structure of the

growth rings is perfectly circular. The difference in scanned

images between ideal and real wood may serve in the future

as one of possible criteria to estimate the quality of wood. The

curves are presented for the values for stiffness and density

typical for the European spruce. Section IV describes the

results of measurement of a sample of spruce and compares

them with the theoretical profile.

II. WAVE PROPAGATION IN ORTHOTROPIC MEDIUM

A. Wave equation

The starting point is a linearized three-dimensional

equation of motion

q€u þr � r̂ ¼ 0; (1)

here q is local density, u is the displacement vector, and r̂ is

the stress tensor. In general, all of these parameters are func-

tions of space coordinates. The stress tensor r̂ is related to

the strain tensor ê by the generalized Hooke’s law

r̂ ¼ �Ĉê; (2)

where Ĉ is stiffness tensor, which describes all (linear) me-

chanical properties of the material. The equation directly

uses the Voigt notation: the stiffness tensor has rank 2 (ma-

trix) and the stress and the strain tensors have rank 1 (vec-

tors). Within the frame of the infinitesimal strain theory,

assuming the displacements of particles to be much smaller

than the characteristic dimension of the body, the strain ten-

sor ê is related to the gradient of the displacement vector u
as

ê ¼ 1

2
½ ruð ÞT þ ruð Þ� ; kuk � 1; kruk � 1: (3)

Combining Eq. (1) with Eqs. (2) and (3) one notices that

Eq. (1) relates the second time derivative and the second

space derivative of u, i.e., it represents a wave equation for

the displacement vector. In order to illustrate it, let us consider

a simple case: when the motion is one-dimensional, all tensors

included in the equations are scalars, and the stiffness tensor,

or Young’s modulus, is invariant in space. In this case, it is

easy to show that Eq. (1) reduces to q€u � Cðd2u=dx2Þ ¼ 0,

the one-dimensional wave equation.

In further analysis, the following factors are not consid-

ered: (1) the attenuation by the medium, i.e., absorption and

scattering; (2) the local changes of the stiffness tensor,

kr � Ĉk � 1; and (3) the internal reflections (echoes), dif-

fraction, and interference.

B. Stiffness tensor for orthotropic material

The model of a clear, ideal board assumes the following:

the fibers are aligned strictly parallel to the long side of the

cut, the annual rings have a perfect circular geometry, no

knots are present, nor are cracks, or any other type of defects.

For a given stiffness tensor and density this ideal board pos-

sesses the maximal mechanical properties (for example, a

bending strength). Any deviation from the ideal shape: grain

not parallel to the long side (fiber deviation), local change of

the density (reaction wood), knots, cracks, etc. will influence

the mechanical properties. Any regular changes of the density

and the stiffness tensor, as for instance between juvenile and

mature wood or between the annual rings, can be included

into the model of ideal wood. Also, possible non-circular, el-

liptical shapes of the rings can be included into the model.

Although, for the sake of simplicity the final calculation does

not take these features into account, Sec. III A shows how this

can be done.

It is helpful to introduce two systems of coordinates

(Fig. 1): the global one (XYZ), related to the shape of the

board with the center of coordinates in pith, and the local

one (LTR), related to the wood structure. For any point, the

axes of the local system of coordinate are parallel to the

grain (L), tangential to the annual rings (T), and perpendicu-

lar to the annual rings and to the grains (R). The LTR system

of coordinates is transformed into the XYZ system of coordi-

nates by a rotation matrix: If the long side of the board is not

FIG. 1. Geometry of a board: XYZ-coordinate system is related to the sides

of the board; LTR-system is related to the main axes of the wood.
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parallel to the grain, the rotation includes three angles, if the

long side of the board is parallel to the grain (ideal wood),

the rotation is in the YZ-plane only and a transformation ma-

trix â includes only one angle a,

â ¼
1 0 0

0 cos að Þ �sinðaÞ
0 sinðaÞ cos að Þ

2
64

3
75: (4)

If one also needs to include into the model the non-

parallelism between the direction of the grain and the surfa-

ces of the board (so-called fiber deviation), the transforma-

tion matrix will be a multiplication of three sequential

rotations: by angle a around OX, by angle h around OY, and

by angle u around OZ.

Wood is an anisotropic material, which means that the

mechanical properties are different in L, T, and R directions,

but assuming orthotropic behavior can be justified for most

applications.14,15 It means that the stiffness tensor Ĉ in the

LTR system of coordinates is symmetric and sparse,

Ĉ ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
666666664

3
777777775
: (5)

The elements of the tensor are related to the elastic constants

as

C11 ¼ q �1þ �TR�RTð ÞEL; C12 ¼�q �TLþ �TR�RLð ÞEL;

C13 ¼�q �RLþ �TL�RTð ÞEL;

C22 ¼ q �1þ �LR�RLð ÞET ; C23 ¼�q �RT þ �LT�RLð ÞET ;

C33 ¼ q �1þ �LT�TLð ÞER;

C44 ¼ 2GTR; C55 ¼ 2GLR; C66 ¼ 2GLT ; (6)

and parameter q is

q ¼ �1þ �LT�TL þ �LR�RL þ �TR�RTð
þ �TR�LT�RL þ �LR�TL�RTÞ�1: (7)

The elastic constants are EL, ET , ER—elastic moduli in L, T,
and R directions; GTR, GLR, GLT—shear moduli; and �LT ,

�TL,…—Poisson ratios.

To calculate the stiffness tensor in the XYZ system of

coordinates the transformation for the second-rank tensor

must be applied,

Ĉ
0 ¼ M̂ĈM̂

T
; (8)

where the elements of the Bond transformation matrix M̂ are

the algebraic expressions of the elements of the transforma-

tion matrix â. Again, rotation around only one axis is rela-

tively simple,

M̂ ¼

1 0 0 0 0 0

0 cos2 að Þ sin2ðaÞ �sinð2aÞ 0 0

0 sin2ðaÞ cos2 að Þ sinð2aÞ 0 0

0
1

2
sinð2aÞ � 1

2
sinð2aÞ cosð2aÞ 0 0

0 0 0 0 cosðaÞ sinðaÞ
0 0 0 0 �sinðaÞ cosðaÞ

2
666666666664

3
777777777775

: (9)

After the rotation, some zeros of the matrix Ĉ become non-

zero. More complex rotation by three angles removes all ze-

ros from the stiffness tensor.

The stiffness tensor and the density determine the prop-

erties of the acoustic wave, its speed and polarization. To

measure the stiffness tensor in wood is an important issue;

nevertheless it is not a trivial task. There are many papers

concerning the measurements of all nine constants of the

stiffness tensor using ultrasonic techniques.16–19 For this

study it is assumed that the stiffness tensor is known.

C. Plane-wave solution

The standard development is to look for the solution of

the Eq. (1) in the form of a monochromatic plane wave

u x; tð Þ ¼ p exp ixt� ikd � xð Þ; (10)

where x ¼ x; y; zð Þ is the three-dimensional position vector, t
is the time, p is the polarization vector, indicting the direc-

tion of oscillations, k is the wave number, d is the propaga-

tion unit vector, x is the frequency of oscillations. The speed

of sound is v ¼ x=k.

The next step is to substitute Eq. (10) into the wave

equation Eq. (1), where the stiffness tensor Ĉ must be

replaced by the rotated stiffness tensor Ĉ
0

. By doing so, one

obtains a system of linear equations for the polarization vec-

tor p, called Christoffel’s equations,

Ĉ � qv2 Î
� �

p ¼ 0; (11)

where Î is a diagonal unit-matrix, while the elements of the

Christoffel’s matrix Ĉ are linear combinations of the
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elements of the matrix Ĉ, rotation angles, and the compo-

nents of the propagation vector d. The general solution

involves the eigenvector problem of the Christoffel’s matrix

Ĉ. In the chosen setup (Fig. 1), the wave propagates along

the Z-direction and d ¼ ð0; 0; 1Þ. The eigenvector problem

of the Christoffel’s matrix Ĉ gives three solutions. It means

that vibrations propagating in Z-direction can be decom-

posed in three waves:13 quasi-longitudinal, quasi-shear, and

pure shear. Three waves correspond to three different eigen-

values, i.e., each of them propagates with a different speed.

The ultrasonic systems mentioned in the Sec. I usually work

with the quasi-longitudinal wave. Although the quasi-shear

wave also has a non-zero projection of the vibration on the

Z-axis, but this component is small. Besides, the quasi-shear

wave propagates with a speed two to three times less than

that of the quasi-longitudinal wave and the two components

can be distinguished.

The eigenvalue for the quasi-longitudinal wave is

2q�2 ¼ C33 þ C22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C33 � C22ð Þ2 þ 4C2

23

q
: (12)

As the stiffness matrix is supposed to be known, the free pa-

rameter here is angle a between the direction of propagation

and the radial axis of wood. It is convenient to normalize �
to the speed in tangential direction, vT ,

�T ¼ � a ¼ 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C22=q

p
(13)

and re-write Eq. (12) with respect to the angle a for the nor-

malized speed,

v

vT

� �2

¼ j0 þ j1cos2 að Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j0ð Þ2 � j2 cos2 að Þ þ j3 cos4 að Þ

q
;

(14)

where j0;…; j3 are coefficients, calculated from the stiff-

ness matrix

j0 ¼
C22 þ C44

2C22

; j1 ¼
C33 � C22

2C22

;

j2 ¼
1

2C2
22

C2
22 þ C22C33 � 3C22C44 � 2C2

23

�

� 4C23C44 � C33C44Þ;

j3 ¼
1

4C2
22

C22 þ 2C23 þ C33ð Þ

� C22 þ C33 � 4C44 � 2C23ð Þ : (15)

Equation (14) relates the speed of the quasi-longitudinal

wave to the angle between the direction of propagation and

the radial axis of wood. When a ¼ 0 direction of propagation

coincides with the radial direction and v=vTð Þ2 ¼ C33=C22.

In the opposite case, when a ¼ p=2 direction of the propaga-

tion coincides with the tangential direction and v=vTð Þ2 ¼ 1.

Knowledge of the speed of sound for the arbitrary

orientation between the radial and the tangential directions is

sufficient to now calculate the time-of-flight.

III. TIME-OF-FLIGHT MODELING

A. Wave propagation perpendicular to the grain

While the wave propagates along OZ the angle a
changes (Fig. 1) as

cos að Þ ¼ z

R
; (16)

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p
is the distance from the current posi-

tion to the pith. Representing the speed as � ¼ dz=dt yields

to the following expression for the total time-of-flight:

t yð Þ ¼
ðz2

z1

dz

� zð Þ
¼
ðz2

z1

��1
T Rð Þ

�
j0 Rð Þ þ j1 Rð Þ z2

R2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j0 Rð Þ½ �2� j2 Rð Þ z2

R2
þ j3 Rð Þ z4

R4

r ��1=2

dz;

(17)

where z1 and z2 are the coordinate of the transmitter and re-

ceiver with respect to the pith. (In Fig. 1 z1 ¼ 0 and z2 equals

to the thickness of the board.)

In general, parameters �T , and j0::: j3 are functions of

R. The gradual change of the density and stiffness between

the juvenile and mature wood can be taken into account by

including some models for these parameters. In a simplified

calculation these parameters are assumed to be invariable.

Some mathematical re-arrangement yields in the following

result for time-of-flight:

t yð Þ ¼ ��1
T z2g

y

z2

� �
� z1g

y

z1

� �� �
; (18)

where

g cð Þ ¼ c
ðc�1

0

fj0 þ j1 1þ u�2ð Þ�1

þ ½ 1� j0ð Þ2 � j2 1þ u�2ð Þ�1

þj3 1þ u�2ð Þ�2� 1=2g
�1=2

du: (19)

This integral can be calculated either numerically or with the

help of any symbolic calculation software, for example

MATHEMATICA or MAPLE. To plot function g cð Þ one must

choose some values for the parameters j0;…; j3, which are

related to the elastic constants. Of course, the values of these

parameters vary between and within the species; they also

depend on the growth region, the wood moisture content, the

density, and so on. The following calculations are done for

the European spruce with the density in a range of

350–480 kg/m3, moisture content of 8%–10%, based on the

values for the elastic constants reported by Hearmon.20

Table I presents the parameters j0;…; j3 together with the

elastic coefficients upon which they depend according to
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Eqs. (6), (7), and (15), as well as the tangential speed of

sound. Function g cð Þ is plotted in Fig. 2.

Function g cð Þ is symmetric around zero, achieves a min-

imum when c ¼ 0: g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22=C33

p
, and saturates to unity at

large c. The minimum corresponds to the minimal time-of-

flight in the radial direction

tR ¼ ��1
T z2 � z1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22=C33

p
: (20)

The saturation level corresponds to the maximal time-of-

flight in the tangential direction

tT ¼ ��1
T z2 � z1ð Þ: (21)

It is more practical to use a more simple function, rather

than directly Eq. (19). The function g cð Þ can be substituted

by a polynomial ratio

gf it cð Þ ¼
g0 þ a1jcj þ a2jcj3

1þ b1jcj þ a2jcj3
; (22)

where g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22=C33

p
and a1; a2, and b1 are the fitting

coefficients. This polynomial ratio possesses the same prop-

erties as the function g cð Þ: it has a minimum equal to g0 at

zero, saturates to unity at large argument, and has a slight

local maximum around c ¼ 1:4–1:8.

Table II gives the fitting coefficients for the four den-

sities of spruce listed in the Table I. For these four cases a

chi-square difference between functions g cð Þ and gfit cð Þ is

about 10�7 and on the plot the initial and fitted curves are

undistinguishable.

B. Influence of position of pith

According to Eq. (18) the time-of-flight strongly

depends on the position of pith (the center of coordinated of

XYZ-system). This influence can be followed by varying the

low border of the board (parameter z1) and keeping the total

width of a board fixed. Curves on Fig. 3 are calculated for

four cases: z1 ¼ �d=2, when the pith is located within the

board in the center; z1 ¼ 0, when pith is at the edge of the

board; z1 ¼ d=2; and z1 ¼ d, when the pith is located not

within the board, but at 60 mm outside of it. The thickness of

the board d ¼ z2 � z1 in all cases is equal to 60 mm. The

sharpest curve corresponds to the case when the pith is

located in the center of the board. While the pith is moving

further and further from the board the curvature of the annu-

lar rings decreases and the direction of propagation

approaches the radial direction; the time-of-flight curve

descends and eventually becomes a horizontal line with

t ¼ tR.

IV. MEASUREMENT OF SPRUCE

The theoretical prediction of time-of-flight is verified

by the measurement on a sample of European spruce. The

average density of the sample is 405 kg/m3, moisture con-

tent 9%, thickness of the board d ¼ 62 mm, width 103 mm.

To time-of-flight was measured with a PUNDIT Mark V

ultrasonic device using Exponential Probe receiving and

transmitting transducers. The central frequency is 54 kHz.

The diameter of the probe’s tip is 6 mm and is flat for the

transmitter and round-shaped for the receiver. As the

size of an aperture is much less than a wavelength

(around 30 mm) the propagation can be regarded as “point

to point.” According to Huygens–Fresnel principle the

point-to-point propagation can be calculated using a

plane-wave model.

Figure 4 shows a photograph of the end of the board

with the structure of the growth rings. The line of the scan is

20 mm from the end. For this sample pith is not included in

TABLE I. Parameters, related to the calculation of time-of-flight for spruce. Units: kg/m3, GPa, km/s. Coefficients �RT ;…; �LT and j0;…; j3 are unitless.

q ER ET GTR �RT �RL �TR �TL �LR �LT j0 j1 j2 j3 �T

370 0.73 0.41 0.022 0.57 0.031 0.29 0.013 0.44 0.56 0.54 0.39 0.73 1.25 1.16

390 0.71 0.43 0.023 0.51 0.03 0.31 0.025 0.38 0.51 0.54 0.32 0.74 1.14 1.16

430 0.89 0.48 0.032 0.56 0.03 0.3 0.019 0.45 0.54 0.55 0.43 0.7 1.27 1.17

440 0.69 0.39 0.036 0.47 0.028 0.25 0.013 0.44 0.38 0.58 0.39 0.61 1.09 1.01

TABLE II. Fitting coefficients the function g cð Þ for different densities of

spruce. Units of density: kg/m3; other parameters are unitless.

q g0 a1 a2 b1

370 0.748 1.41 2.22 1.16

390 0.780 1.38 2.28 1.10

430 0.733 1.43 2.20 1.20

440 0.749 1.44 2.27 1.21
FIG. 2. Function g cð Þ for different densities of spruce.
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the wood, but is estimated to be located 8 mm below the cut.

Figure 5 shows the results of the scan: time-of-flight with

2 mm sampling. The 25 ls calibration time was subtracted

from each measurement. The theoretical curve is fitted to the

data. The fitted parameters are not so different from the ones

in the Table II: g0 ¼ 0:75, a1 ¼ 1:47, a2 ¼ 2:20, b1 ¼ 1:15,

�T ¼ 1:17 km=c.

There are two areas in which the measurements fall

away from the theoretical curve: from �60 to �40 and from

20 to 30 mm. These areas correspond to the defects, which

can be seen on the photograph as a deviation of the growth-

ring structure from the circular geometry. The area from 20

to 30 mm corresponds to a knot; area from �60 to �40 mm

is compressed wood. If one subtracts the fitted curve from

the measurement, the result will contain the information

about the size and location of the defects and it can be used

afterward for an automatic recognition and classification of

the defects.

V. CONCLUSION

When the direction of wave propagation changes from the

radial (R) to the tangential (T) direction, the profile of time-of-

flight (RT-profile) has a V-like shape, and depends on the elas-

tic coefficients, density, and position of pith. This profile was

calculated directly from the theory of wave propagation and fit-

ted by the polynomial ratio which can be used to avoid analyti-

cal integration and implementation of any special functions.

The examples of calculations were done for the most

favorable case of dry mature spruce, when the difference of

elastic parameters in different directions is large. The con-

trast of the RT-profile (the difference in time-of-flight

between the radial and the tangential directions) is 13 ls for

62 mm thickness. With the moisture content increasing, the

contrast of the RT-profile will decrease. A similar effect is

associated with the juvenile wood: In juvenile wood the dif-

ference between C22 and C33 coefficients is small, and so is

the difference in the acoustic speed in R and T directions.

The RT-profile will be more flat and shallow in the middle if

one takes into account the juvenile part of the board.

This paper concentrates only on the case of clear ideal

wood without defects. The defects (essentially, knots) can be

detected as deviations of the measurements from the ideal

RT-profile. In order to do that one has to define the location

of the pith for each position along the board, fit the RT-pro-

file and subtract the RT-profile from the measured data. The

resulting image will contain only information about the

defects and can be further treated to recognize the defects,

represent, and quantify them.

The theory described in this paper, can be further used

to model the time-of-flight through a knot. The simplest

approach is to consider a knot as an area where the LRT sys-

tem of coordinate is substituted by the RTL system of coordi-

nate with some increase of a density. One can estimate the

sensitivity of knots detection by considering different geo-

metries and locations of this area.
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Tables I and II.
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