

Delft University of Technology

Using STLs for Effective In-field Test of GPUs

Condia, Josie E.Rodriguez; Augusto da Silva, Felipe; Bagbaba, Ahmet Cagri; Guerrero-Balaguera, Juan-
David ; Hamdioui, Said; Sauer, Christian; Sonza Reorda, Matteo
DOI
10.1109/MDAT.2022.3188573
Publication date
2022
Document Version
Final published version
Published in
IEEE Design & Test

Citation (APA)
Condia, J. E. R., Augusto da Silva, F., Bagbaba, A. C., Guerrero-Balaguera, J.-D., Hamdioui, S., Sauer, C.,
& Sonza Reorda, M. (2022). Using STLs for Effective In-field Test of GPUs. IEEE Design & Test, 40(2),
109-117. Article 9815288. https://doi.org/10.1109/MDAT.2022.3188573

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MDAT.2022.3188573
https://doi.org/10.1109/MDAT.2022.3188573

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

1092168-2364/22©2022 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

Using STLs for Effective
In-Field Test of GPUs

 Modern graphics processing units (GPUs)
are manufactured using cutting-edge technologies
but are prone to suffer from in-field errors and reliabil-
ity issues [1]. The flexibility and computational power
of GPUs push their adoption in developing advanced
driver-assistance systems (ADASs) and sensor fusion
solutions in the automotive and autonomous systems
domains. However, the premature aging and wear-out
features in new transistor technologies promote the
rising of permanent faults during the in-field opera-
tion. In safety-critical applications, unaffordable fail-
ures caused by faults can induce the entire system
to fail or even result in catastrophic consequences if
no appropriate measures are taken promptly. Hence,
the development of countermeasures for the in-field
detection of faults is of great importance in GPUs.

Published works,
addressing in-field fault
detection for GPUs, can
be classified into three
classes: 1) design for
testability (DfT) meth-
ods, which are purely

hardware-oriented; 2) hybrid approaches, which
combine hardware structures with reconfigur-
able capabilities at the software level; and 3) soft-
ware-based self-test (SBST) solutions. DfT schemes
are widely used for the end-of-production test in cur-
rent devices. However, they are not always available
for in-field operation and may not satisfy time con-
straints in many applications. Furthermore, hybrid
solutions, based on the addition or use of available
structures (i.e., performance counters) to extend the
fault observability of a module, must be included in
the design phases by modifying the hardware–soft-
ware interface to provide instruction-based control
of the included structures. Jagannadha et al. [2]
proposed an in-system-test architecture based on the
combination of DfT schemes and hybrid structures
to detect faults and provide diagnosis features dur-
ing the in-field operation of system-on-chips (SoCs)
and GPUs. However, a massive effort is required to

Digital Object Identifier 10.1109/MDAT.2022.3188573

Date of publication: 5 July 2022; date of current version:

10 March 2023.

Josie E. Rodriguez Condia
Politecnico di Torino
10129 Turin, Italy

Felipe Augusto da Silva
Cadence Design Systems
85622 Munich, Germany
Delft University of Technology
2028 Delft, The Netherlands

Ahmet Çağrı Bağbaba
Cadence Design Systems
85622 Munich, Germany
Tallinn University of Technology
19086 Tallinn, Estonia

Editor’s notes:
GPUs have seen an increased adoption in autonomous systems. This
article assesses the fault coverage that can be attained through software
self-test strategies for in-field test of GPUs.

—Nicola Nicolici, McMaster University

Juan-David Guerrero-Balaguera
Politecnico di Torino
10129 Turin, Italy

Said Hamdioui
Delft University of Technology
2028 Delft, The Netherlands

Christian Sauer
Cadence Design Systems
85622 Munich, Germany

Matteo Sonza Reorda
Politecnico di Torino
10129 Turin, Italy

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 13:58:30 UTC from IEEE Xplore. Restrictions apply.

110 IEEE Design&Test

General Interest

develop and integrate a coordinated ecosystem to
design and verify the device. On the other hand, the
SBST strategy is a noninvasive and flexible approach
to perform functional in-field tests of proces-
sor-based systems, which has been widely adopted
in processor testing [3]. Nowadays, semiconductor
companies and IP providers give SBST support for
their safety-critical products (e.g., automotive). In
detail, the SBST strategy resorts to specially written
software-test libraries (STLs) composed of suitably
developed test programs (TPs) able to achieve a
given structural fault coverage (FC) when run by the
CPU with limited or null external support. A TP is a
suitable sequence of selected instructions applying
test patterns to a given unit and propagating fault
effects up to some observation points. These are
typically developed starting from high-level abstrac-
tions of a design (RT-level) and then progressively
reaching and refined at lower levels (Gate-level).
Moreover, TPs can often be split into small chunks
of code fitting in the idle times of an application and
thus more easily matching time constraints. In the
past, numerous works developed effective STLs for
CPUs. However, only a few works used SBST strat-
egies for in-field tests in GPUs. Clearly, some of the
techniques used for CPUs can be extended to GPUs
as well. Nevertheless, GPUs have some specific fea-
tures and characteristics (e.g., implicit parallelism,
parallel scheduling, and shared memory manage-
ment), which demand special strategies to test the
corresponding hardware modules. Di Carlo et al. [4]
adopted several processor-based techniques into TPs
for the execution units, register files, and main mem-
ories in a GPU. Nevertheless, observability issues
restricted the assessment of the FC. Another work
[5] addressed the test of control units (scheduling
controller). However, the development of custom-
ized approaches was required. In conclusion, prior
works on in-field tests are unaffordable due to huge
complexity and intrusiveness (DfT and hybrid cases)
or suffer from generality (SBST case), making them
not fully suitable for GPUs. Hence, there is a need of
providing a complete solution for in-field tests.

This work, for the first time, evaluates the over-
all effectiveness of employing the SBST strategy for
the in-field test of all logic modules of a GPU core.
Moreover, this work experimentally quantifies the
FC achievable on the logic modules in a GPU core.
Finally, it evaluates how suitable STLs can support the
failure modes and effects analysis (FMEA) required

in all safety-critical domains. The main contributions
of this work can be summarized as follows.

•	 A general overview of the characteristics and
strategies to develop STLs for GPUs.

•	 An evaluation (the first publicly available, to the
best of our knowledge) of the overall FC obtained
on a GPU core with the STL execution.

•	 A report about the failure modes effects and diag-
nostic analysis (FMEDA) process on a GPU core
using STLs as the only fault-tolerance mechanism.

This work resorts to the FlexGripPlus model,
describing one low-level microarchitecture of
NVIDIA, to evaluate and validate the development
of STLs for GPUs. The experimental results show
that up to 92.6% of the stuck-at faults (SAFs) in the
logic blocks of a GPU core can be covered using the
STLs we developed. The FMEDA analysis shows that
these results enable to qualify the considered mod-
ules inside a GPU core via STLs at least for the ASIL
B level. Higher levels can be achieved by combining
the STLs with other safety mechanisms.

Architectural organization of GPUs

General overview
This section employs NVIDIA’s terminology to

describe the architectural organization of a GPU.
GPUs are special-purpose processors organized

as arrays of parallel cores [streaming multiproces-
sors (SMs)]. Each SM adopts the single-instruction
multiple-data (SIMD) paradigm or variations, such as
single-instruction multiple-thread (SIMT) by NVIDIA.
Internally, each SM comprises several pipeline stages
and uses a specific instruction set architecture partly
resembling RISC ones with extensions to support
parallelism.

A host controller (CPU) submits a parallel pro-
gram to the GPU for processing. Then, the program
is distributed among the available SMs by the sched-
ulers. Internally, the scheduler controllers man-
age and trace the operation of a group of threads
(warp), which are operated in parallel on individual
execution units [scalar/streaming processors (SPs)].
Each SP is composed of an integer (INT) and a float-
ing-point core (FP). Moreover, the SM includes other
hardware accelerators (SFUs) as well.

Each SM has access to several levels of the mem-
ory hierarchy (register file, shared, local, constant,
and main memory). The register file and the shared

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 13:58:30 UTC from IEEE Xplore. Restrictions apply.

111March/April 2023

memory are organized in banks for parallel access
and store the individual and shared operands and
results for each thread, respectively. Both resources
and the first levels of cache are located inside the
SM. The second-level caches, the constant, and the
main memories are located outside as a shared
resource among the SMs.

FlexGripPlus model
FlexGripPlus is an open-source soft-GPU model

based on the NVIDIA G80 microarchitecture and
fully described in VHDL [6]. FlexGripPlus is compat-
ible with the CUDA programming environment (SM
1.0) and is based on a set of SMs supporting up to 52
assembly (SASS) instructions.

Each SM is divided into five pipeline stages (Fetch,
Decode, Read, Execute/Control-Flow, and Write), as
shown in Figure 1. The number of SPs in the Execute
stage is configurable among 8, 16, or 32. Moreover,
pipeline registers (“PRx”) are located between the
pipeline’s stages. Each SM also includes three regis-
ter files (Vector Register File “VRF”), (Address Regis-
ter File “ARF”), and (Predicate Register File “PRF”),
devoted to storing operands, addresses, and predi-
cate flags of each thread, respectively.

Each SM includes one scheduler controller and a
divergence management unit (DMU) for intra-warp
divergence control and execution.

In general, the FlexGripPlus model holds the same
basic functional modules of a commercial GPU,
including scheduler controllers, parallel execution
units, file registers, and pipeline stages. Nevertheless,
the current memory hierarchy in FlexGripPlus differs
from the included in commercial devices by missing
the cache memories.

Despite the few structural limitations, the Flex-
GripPlus model includes a low-level detailed
microarchitectural description of an NVIDIA GPU
and is employed as a tool to evaluate the effective-
ness of STLs for GPUs developed using the SBST
strategy.

SBST strategies for GPUs
STLs developed with the SBST strategy can be

deployed as complementary mechanisms to moni-
tor the status of a GPU during its operative life and
contribute to identifying possible fault effects. In
fact, the main advantage of STLs is the ability to
detect faults with zero hardware costs. Moreover,
STLs test a device at the operational speed and nor-
mal conditions, thus also addressing delay faults and
avoiding overtesting.

In the functional-safety domain, the identification
and management of faults in a device are manda-
tory. Some faults can be classified as safe, when they
are proved not to be able to produce any failure in

Figure 1. General scheme of an SM in FlexGripPlus.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 13:58:30 UTC from IEEE Xplore. Restrictions apply.

112 IEEE Design&Test

General Interest

the considered operational scenario. Safe faults are
not considered when computing the achieved FC.

In this domain, STLs can be used as safety mech-
anisms and increase reliability by guaranteeing the
in-field detection of a sufficient percentage of faults,
thus matching the requirements of the functional
safety standards, possibly in combination with other
mechanisms (e.g., ECC for memories, and watch-
dogs). STLs are widely used for CPUs but they can
also be adopted for accelerators, such as GPUs,
which demand periodic testing solutions when used
in safety-critical applications. In this case, we must
consider two main features: 1) most in-field faults
in GPUs can only be observed by looking at results
they produce in memory (as the main observation
point) and 2) the development of TPs requires
architectural details from a targeted unit. In gen-
eral, any TP is mainly executed following four steps:
1) initialization; 2) test pattern’s injection; 3) fault
effect’s propagation to any observation point; and
4) identification (see Figure 2). In the execution of
a TP, several loops can apply different test patterns
or propagate their effects. However, TPs for GPUs
must face the addressing of each module exploiting
the implicit parallelism and operational constraints
(e.g., divergence and thread-synchronization). For
this purpose, these TPs must exploit three main char-
acteristics of the parallel operation of GPUs.

•	 Instruction parallelism.
•	 Distributed scheduling.
•	 Management of functional units and memory

resources.

The following sections summarize some specific
strategies and algorithms used in the development
of TPs for STLs targeting GPUs. It should be noted
that each GPU module may require a combination
of different approaches. Fortunately, one TP may tar-
get the test of several modules in parallel.

Extending functional test techniques from
CPUs to GPUs

Two approaches originally developed for CPUs
can be adopted and extended to the GPU domain:
automated and deterministic [3], [7].

On the one hand, the automated approaches
comprise pseudorandom- and ATPG-based meth-
ods. The first method focuses on TPs based on a
group of instructions randomly selected in combi-
nation with pseudorandom operand values. This

method can exploit evolutionary algorithms to select
the most suitable instructions and operands for a TP.
The second method resort to Automatic Test Pattern
Generation (ATPG) tools to analyze and extract test
patterns from a hardware module. Then, these pat-
terns are translated into equivalent instructions, so
composing one or more TPs. However, it is possible
that some test patterns cannot be translated and
must be ignored (possibly resulting in safe faults). In
both cases, several iterations are used in the devel-
opment of each TP to improve its correct operation
and reduce unnecessary overhead costs for the
in-field operation.

In any case, TPs using either automated or deter-
ministic approaches must include three strategies: 1)
parallel pattern management (PPM); 2) signatures
per thread (or SpT) [9]; and 3) parallel injection.

The first strategy (PPM) organizes and aligns simi-
lar test patterns and expected results as consecutive
memory operands, so optimizing the performance
in memory management and exploiting possible
execution loops. Then, each thread in the TP can
address individual or shared test patterns from
memory.

The SpT mechanism is based on the computa-
tion, within each thread in a TP, of a signature pro-
viding fine-grain fault-observability out of the values
produced by the target module during its operation,
thus propagating fault effects as errors on the com-
puting signature and allowing fault detection. Each
SpT is described and computed in software by mim-
icking a multiple-input shift register or a counter,
which reduces the number of instructions per TP
while providing extended observability. In the end,
each SpT is stored in memory. The GPU itself (or the
host) checks for the presence of faults by comparing
a produced signature with the expected one, which
is precalculated by the TP itself (in the development
and verification phases) with minimal performance
overhead (<5%) and finally stored in specific mem-
ory regions available during the operation of the TPs.
Those precalculated golden signatures avoid laten-
cies at the in-field operation of TPs.

The parallel injection techniques take advantage
of thread parallelism in warps or blocks to excite a
module with different test patterns (one per thread),
thus exploiting parallelism to increase the opera-
tional performance of a TP, which is effective in
either individual unit or regular structures.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 13:58:30 UTC from IEEE Xplore. Restrictions apply.

113March/April 2023

Pseudorandom and ATPG-based approaches are
effective in regular structures of a GPU, such as the
functional units and the register file, since these struc-
tures are addressed (and tested) in parallel. Moreo-
ver, the static organization and the understanding
of distribution policies in the schedulers allow the
development of embarrassingly parallel TPs (see
Figure 2), exploiting the multithread parallelism to
inject patterns and also reducing the in-field exe-
cution of TPs [8]. On the other hand, deterministic
approaches exploit the functionality and structure in
a module to deploy well-defined algorithms, such as
March algorithms for internal memories (e.g., within
the controllers) [4].

It must be noted that, when using a deterministic
approach, the adaptation of a method may require
additional steps (i.e., initialization and propagation
patterns) to face the parallel operational constraints
in a GPU, but additional efforts are required to con-
trol intrawarp divergences, thread synchronizations,
and concurrent loops when injecting test patterns, as
depicted in Figure 2.

Multikernel approach
TPs in this approach utilize a divide-and-conquer

strategy to target special modules commonly man-
aging configuration parameters devoted to con-
trolling and configuring the parallel operation in a
GPU. These configuration parameters (i.e., memory
addresses, number of threads, blocks, grids, and

registers per thread) come from the program and
configure modules (i.e., the constant memory and
the schedulers) for the operative interval of the
program.

In this case, multiple TPs (kernels) employ the pol-
icies of scheduling and the resource’s management
to target a different set of faults inside a module.
More in detail, each TP uses different combinations
of configuration parameters, which also serve as
indirect test patterns, so activating different regions
(and exciting possible faults) in a module. The mul-
tikernel approach is effective when testing modules
managing parallel parameters, such as the sched-
uling controllers and the pipeline registers. Further
details can be found in [9]. Finally, this approach
can be extended to other modules with similar fault
activation and propagation restrictions (i.e., global
schedulers outside the SM).

Modular kernel approach
This approach exploits a top-down strategy to

develop modular routines to build TPs for complex
units in a GPU. The modular description of a routine
starts from a high abstraction level and is then cus-
tomized. In this approach, the most suitable instruc-
tions to activate and propagate faults inside the
target unit are selected considering two factors: 1)
the parallel observability and controllability features
and 2) the architectural description and operational
constraints of a target unit.

Figure 2. General scheme of the execution flow of TPs for CPUs and GPUs.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 13:58:30 UTC from IEEE Xplore. Restrictions apply.

114 IEEE Design&Test

General Interest

First, the controllability and observability features
are determined for a target unit. In this case, suitable
instructions (i.e., “Push” and “Pop” in a stack) are
used to provide both features as initial conditions
in a TP. Then, several routines to inject test patterns
while exploiting parallelism are designed (in CUDA
or SASS) and linked, considering the operational
constraints of the unit. These routines are the basic
components of a TP and describe the operation of
any thread. The flexibility of the approach allows the
development and exploration of several parallel rou-
tines providing the same functionality. Moreover, the
execution flow in a TP can be adopted according to
the selected routines. Finally, the routines are inte-
grated as a single TP and refined for performance
or FC.

The modular approach is effectively applied to
complex units in a GPU, such as the DMU and the
embedded memories [10].

Customs approaches
The custom approaches require the manual devel-

opment of TPs following some specific algorithm
that takes into account the architecture of the units,
their functional operation, the expected behavior,
their restrictions, and the target fault model. These
TPs target particular modules in the GPU, which do
not exist in CPUs (such as the scheduler controllers
[5] and the special-purpose memories [4]). In detail,
the TPs are based on algorithms causing controlled
divergence, the combination of sequences of embar-
rassingly parallel, and serial-thread executions on a
set of threads to excite and propagate fault effects.

This approach requires a deep knowledge of the
GPU’s low-level microarchitectural details, their par-
allel operations and the use of parallelism, distrib-
uted scheduling, and available hardware resources
to provide specific test solutions per module.

Setup and preliminary GPU analysis
The evaluation of the STLs (developed using

all techniques described in the previous section)
resorted to a commercial fault simulation environ-
ment targeting the units in the FlexGripPlus model.
This framework uses the RT-level description of the
GPU and evaluates each TP by injecting SAFs into
the logic of every logic module.

In the experiments, we targeted the evaluation of
all logic modules and embedded memories in the
GPU core. One fault is detected when at least one

mismatch is found after comparing results from a
golden execution and a faulty one. The flexibility of
the tool allows the selection of the memory buses
and the output control signals as the main in-field
observation points of faults. It is worth noting that the
main memory and the memory controllers were not
targeted, since these are not part of the GPU core.

Three preliminary architectural analyses identi-
fied safe faults in the GPU. The first analysis is based
on the architectural propagation analysis, which
consists of evaluating the propagation paths of each
fault in the design up to the observability points. In
addition, the fault activation analysis evaluates the
inputs of the GPU and identifies those faults that can-
not be excited. Finally, a barrier analysis provides
the analysis of the structural and operational effects
of removing modules in the GPU [11].

Table 1 reports the number of identified safe faults
in the FlexGripPlus SM. Interestingly, the fault propa-
gation analysis effectively identified most of the safe
faults per module (>90%). The other two methods
effectively identified faults in the GPU’s special struc-
tures, such as inside the scheduler. A postchecking
process was required to determine any detectable
and dangerous fault (i.e., faults in locations that
remain temporarily fixed by the effect of the kernel
or host configuration, but in other conditions, these
may cause misbehaviors), so removing them from
the list of safe faults.

STL effectiveness evaluation
In the experiments, FlexGripPlus was configured

with one SM and 32 SPs. A set of 18 TPs were imple-
mented using the methods outlined in the previous
section. Each TP is developed according to the unit’s
features.

Three automatic TPs targeted the functional units
and the decode unit by exploiting instructions that

Table 1. Untestable fault identification.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 13:58:30 UTC from IEEE Xplore. Restrictions apply.

115March/April 2023

excite as many patterns (operands) as threads on

them. Moreover, three deterministic and modular

TPs targeted the embedded memories, using the

operational features (writing and reading methods)

to excite the units. Nine TPs used the multikernel

approach targeting programmable pipeline registers.

Finally, three custom TPs focus on exciting control-

lers and dispatchers in the GPU.

In the end, 15 fault injection campaigns were per-

formed on the complete GPU model, after generat-

ing the full list of SAFs, safe faults were first removed.

Moreover, in the fault campaigns, the total number

of faults (327,207) was reduced by injecting faults

only in one module among the regular modules

in the GPU (i.e., one SP and the associated regis-

ter file per core, instead of the 32 execution units).

As a result, in each fault simulation campaign, we

injected 141,140 SAFs.

Since the current version of FlexGripPlus does

not include accurate descriptions of the caches, the

memory controllers were not addressed.

Table 2 reports the obtained FC figures. As

observed, the developed STLs mainly focused on the

largest modules in the GPU’s core architecture, such

as the execution units, internal logic, and embed-

ded memories, which account for more than 90%

of faults in an SM. Although some TPs provide mod-

erate fault detection in some modules of the GPU

(e.g., controllers), the small size of these structures

does not significantly affect the overall FC in the GPU

core. Further efforts could be made to develop suita-

ble TPs specifically addressing these modules.

Previous results demonstrate that STLs can

be effectively developed and provide a high FC.

Although the obtained results were focused on

one GPU core, the implemented TPs are scalable

and results can be extended to multi-SM GPUs.

Furthermore, the development of STLs can be
applied to other GPU architectures.

Functional-safety evaluation
The calculation of the FC is an indication of the

design safety based on the efficiency of a given
safety mechanism (SMech). However, it is not suf-
ficient to assure compliance with functional safety
standards, like ISO26262; for such a purpose, we
need to determine the reduction in the probability
of system failures, also known as the failure in time
(FIT) rate. The single-point faults metric (SPFM),
which represents permanent faults’ potential to
violate safety-related functionalities, is defined by
ISO26262 as evidence of safety integrity [12]. The
SPFM considers the total FIT rate (λ) and the contri-
bution of the fault classes.

•	 Single-point faults (λSPF): Not covered by
SMechs.

•	 Residual faults (λR): Undetected by SMechs.

The SPFM can be calculated according to

	
SPFM = −

∑ +()

∑

1
λ λ

λ

SPF R
.
�

(1)

The primary methodology for determining the
safety metrics parameters is the FMEDA, which cor-
relates IC components (Gates, Flip-flops, and Memory
cells) to failure modes (FMs). Then, by computing λ
of individual IC components, the FC, and the Safe
faults, we can determine the total λ of each FM.

First, the FMs are defined and the design com-
ponents mapped. For FlexGripPlus, we considered
28 subparts (components inside the GPU core,
including local controllers, functional units, embed-
ded memories, and registers). Each subpart was
analyzed to determine function-specific FMs. After
mapping each FM to the appropriate design com-
ponent(s), we evaluate the percentage of Safe faults
and the FC. The FlexGripPlus’ FMEDA comprises 92
FMs mapped to 2,751,088 gates, 1,507,085 flops, and
784,224 memory cells.

The analysis of FlexGripPlus, considering the
15-nm FinFET-based Open Cell Library, resulted in a
total λ of 10.08 FIT (based on IEC 62380 Electronic
Reliability Prediction Standard), which defines a
base FIT Rate for the components of a given tape-out
technology. In this case, the unit’s base FIT consid-
ers digital (NAND2 gate’s area) and memory (cell’s
area) components. Then, we multiply the number

Table 2. FC results per module.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 13:58:30 UTC from IEEE Xplore. Restrictions apply.

116 IEEE Design&Test

General Interest

	 [5]	 S. D. Carlo, J. E. R. Condia, and M. S. Reorda, “An on-

line testing technique for the scheduler memory of a

GPGPU,” IEEE Access, vol. 8, pp. 16893–16912, 2020.

	 [6]	 J. E. R. Condia et al., “FlexGripPlus: An improved

GPGPU model to support reliability analysis,”

Microelectron. Rel., vol. 109, Jun. 2020, Art. no.

113660.

	 [7]	 P. Bernardi et al., “Development flow for on-line core

self-test of automotive microcontrollers,” IEEE Trans.

Comput., vol. 65, no. 3, pp. 744–754, Mar. 2016.

	 [8]	 J.-D. Guerrero-Balaguera, J. E. R. Condia, and M. S.

Reorda, “On the functional test of special function

units in GPUs,” in Proc. 24th Int. Symp. Design Diag.

Electron. Circuits Syst. (DDECS), Apr. 2021,

pp. 81–86.

	 [9]	 J. E. R. Condia and M. S. Reorda, “Testing permanent

faults in pipeline registers of GPGPUs: A multi-kernel

approach,” in Proc. IEEE 25th Int. Symp. On-Line Test.

Robust Syst. Design (IOLTS), Jul. 2019, pp. 97–102.

	[10]	 J. E. R. Condia and M. S. Reorda, “Modular functional

testing: Targeting the small embedded memories in

GPUs,” in Proc. VLSI-SoC (Design Trends Series),

2021, ch. 10.

	[11]	 F. A. da Silva et al., “Determined-safe faults

identification: A step towards ISO26262 hardware

compliant designs,” in Proc. IEEE Eur. Test Symp.

(ETS), May 2020, pp. 1–6.

	[12]	 Y.-C. Chang et al., “Assessing automotive functional

safety microprocessor with ISO 26262 hardware

requirements,” in Proc. Tech. Papers Int. Symp. VLSI

Design, Autom. Test, Apr. 2014, pp. 1–4.

Josie E. Rodriguez Condia is interested
in functional testing, parallel architectures, and
embedded system design. Rodriguez Condia has a
PhD in computer engineering from the Politecnico di
Torino, 10129 Turin, Italy, and an MSc in electronics
from the Universidad Pedagógica y Tecnológica de
Colombia (UPTC), Tunja, Colombia. He is a Member
of IEEE.

Felipe Augusto da Silva is pursuing a PhD
in functional safety with Cadence Design Systems,
85622 Munich, Germany, and the Delft University of
Technology, 2028 Delft, The Netherlands. He works
on functional safety projects for the automotive, aero-
space, and defense industries. Da Silva has an MSc
in electrical and electronics engineering from the
Federal University of Santa Catarina (UFSC), Flori-
anópolis, Brazil.

of gates and cells, mapped to each FM, by the dig-
ital and memory FITs, respectively; from these, the
implemented safety strategies provide the following
results:

•	 Detected by the STL: 9.17 FIT.
•	 Undetected (λR): 0.57 FIT.
•	 Safe faults (λS): 0.33 FIT.

Finally, reducing λR by increasing λS and FC
directly impacts the SPFM. The proposed Safety tech-
nique based on only STLs for FlexGripPlus resulted
in an SPFM of 94.27%, allowing ASIL B assessment
without hardware modifications to the logic units of
an SM and without any other SMech.

This work is the first to provide a quantitative eval-
uation of the effectiveness of STLs for the in-field test-
ing of GPU cores. The reported results showed that an
SAF coverage of more than 92% could be obtained
on the logic modules and embedded memories. The
functional-safety results (SPFM of 94.27%) show the
effectiveness of STLs as a safety mechanism for SMs
in GPUs.

The results allow us to state that the SBST strat-
egy can be used as an effective solution, possibly
combined with other strategies, to guarantee the
reliability and functional safety of GPU-based appli-
cations for safety-critical domains.� 

Acknowledgments
This work was supported by the European Com-

mission through the Horizon 2020 RESCUE-ETN Pro-
ject under Grant 722325.

 References
	 [1]	 D. Tiwari et al., “Reliability lessons learned from GPU

experience with the Titan supercomputer at oak ridge

leadership computing facility,” in Proc. Int. Conf. High

Perform. Comput., Netw., Storage Anal., Nov. 2015,

pp. 1–12.

	 [2]	 P. K. D. Jagannadha et al., “Special session: In-

system-test (IST) architecture for NVIDIA drive-AGX

platforms,” in Proc. IEEE 37th VLSI Test Symp. (VTS),

Apr. 2019, pp. 1–8.

	 [3]	 M. Psarakis et al., “Microprocessor software-based

self-testing,” IEEE Design Test Comput., vol. 27, no. 3,

pp. 4–19, May/Jun. 2010.

	 [4]	 S. Di Carlo et al., “A software-based self test of CUDA

Fermi GPUs,” in Proc. 18th IEEE Eur. TEST Symp.

(ETS), May 2013, pp. 1–6.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 13:58:30 UTC from IEEE Xplore. Restrictions apply.

117March/April 2023

Ahmet Çağrı Bağbaba is with Cadence
Design Systems, 85622 Munich, Germany. His
research interests include hardware functional safety
verification in the context of ISO26262, a digital and
embedded system design. Bağbaba has a PhD in
computer and systems engineering from the Tallinn
University of Technology, Tallinn, Estonia, and an MSc
in electronics and telecommunication engineering
from Istanbul Technical University, İstanbul, Turkey.

Juan-David Guerrero-Balaguera is pur-
suing a PhD with the Department of Control and
Computer Engineering, Politecnico di Torino, 10129
Turin, Italy. His research interests include functional
testing, artificial intelligence, and parallel architec-
tures. Guerrero-Balaguera has an MSc in electronics
from the Universidad Pedagógica y Tecnológica de
Colombia (UPTC), Tunja, Colombia. He is a Member
of IEEE.

Said Hamdioui is the Chair Professor and the
head of the Department of Quantum and Computer
Engineering, Delft University of Technology, 2028
Delft, The Netherlands. His research interests include
hardware dependability and emerging computing
paradigms. He is a Senior Member of IEEE and
serves on the Editorial Board of IEEE Design&Test.

Christian Sauer is the head of the European
System Design Enablement Team, Cadence Design
Systems, 85622 Munich, Germany. He works on cus-
tomer-specific projects developing tailored solutions
for cutting-edge SoCs and systems across automo-
tive and 5G domains. His research interests include
the development of application-specific multiproces-
sor platforms, tools, and methodologies for their
applications.

Matteo Sonza Reorda is a full professor with
the Department of Control and Computer Engineer-
ing, Politecnico di Torino, 10129 Turin, Italy. His
research interests include the design and test of reli-
able electronic circuits and systems. Sonza Reorda
has a PhD in computer engineering from the Politec-
nico di Torino. He is a Fellow of IEEE.

 Direct questions and comments about this article
to Josie E. Rodriguez Condia, Politecnico di Torino,
10129 Turin, Italy; josie.rodriguez@polito.it.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 05,2023 at 13:58:30 UTC from IEEE Xplore. Restrictions apply.

