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Using STLs for Effective 
In-Field Test of GPUs

 Modern graphics processing units (GPUs) 
are manufactured using cutting-edge technologies 
but are prone to suffer from in-field errors and reliabil-
ity issues [1]. The flexibility and computational power 
of GPUs push their adoption in developing advanced 
driver-assistance systems (ADASs) and sensor fusion 
solutions in the automotive and autonomous systems 
domains. However, the premature aging and wear-out 
features in new transistor technologies promote the 
rising of permanent faults during the in-field opera-
tion. In safety-critical applications, unaffordable fail-
ures caused by faults can induce the entire system 
to fail or even result in catastrophic consequences if 
no appropriate measures are taken promptly. Hence, 
the development of countermeasures for the in-field 
detection of faults is of great importance in GPUs.

Published works, 
addressing in-field fault 
detection for GPUs, can 
be classified into three 
classes: 1) design for 
testability (DfT) meth-
ods, which are purely 

hardware-oriented; 2) hybrid approaches, which 
combine hardware structures with reconfigur-
able capabilities at the software level; and 3) soft-
ware-based self-test (SBST) solutions. DfT schemes 
are widely used for the end-of-production test in cur-
rent devices. However, they are not always available 
for in-field operation and may not satisfy time con-
straints in many applications. Furthermore, hybrid 
solutions, based on the addition or use of available 
structures (i.e., performance counters) to extend the 
fault observability of a module, must be included in 
the design phases by modifying the hardware–soft-
ware interface to provide instruction-based control 
of the included structures. Jagannadha et al. [2] 
proposed an in-system-test architecture based on the 
combination of DfT schemes and hybrid structures 
to detect faults and provide diagnosis features dur-
ing the in-field operation of system-on-chips (SoCs) 
and GPUs. However, a massive effort is required to 
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develop and integrate a coordinated ecosystem to 
design and verify the device. On the other hand, the 
SBST strategy is a noninvasive and flexible approach 
to perform functional in-field tests of proces-
sor-based systems, which has been widely adopted 
in processor testing [3]. Nowadays, semiconductor 
companies and IP providers give SBST support for 
their safety-critical products (e.g., automotive). In 
detail, the SBST strategy resorts to specially written 
software-test libraries (STLs) composed of suitably 
developed test programs (TPs) able to achieve a 
given structural fault coverage (FC) when run by the 
CPU with limited or null external support. A TP is a 
suitable sequence of selected instructions applying 
test patterns to a given unit and propagating fault 
effects up to some observation points. These are 
typically developed starting from high-level abstrac-
tions of a design (RT-level) and then progressively 
reaching and refined at lower levels (Gate-level). 
Moreover, TPs can often be split into small chunks 
of code fitting in the idle times of an application and 
thus more easily matching time constraints. In the 
past, numerous works developed effective STLs for 
CPUs. However, only a few works used SBST strat-
egies for in-field tests in GPUs. Clearly, some of the 
techniques used for CPUs can be extended to GPUs 
as well. Nevertheless, GPUs have some specific fea-
tures and characteristics (e.g., implicit parallelism, 
parallel scheduling, and shared memory manage-
ment), which demand special strategies to test the 
corresponding hardware modules. Di Carlo et al. [4] 
adopted several processor-based techniques into TPs 
for the execution units, register files, and main mem-
ories in a GPU. Nevertheless, observability issues 
restricted the assessment of the FC. Another work 
[5] addressed the test of control units (scheduling 
controller). However, the development of custom-
ized approaches was required. In conclusion, prior 
works on in-field tests are unaffordable due to huge 
complexity and intrusiveness (DfT and hybrid cases) 
or suffer from generality (SBST case), making them 
not fully suitable for GPUs. Hence, there is a need of 
providing a complete solution for in-field tests.

This work, for the first time, evaluates the over-
all effectiveness of employing the SBST strategy for 
the in-field test of all logic modules of a GPU core. 
Moreover, this work experimentally quantifies the 
FC achievable on the logic modules in a GPU core. 
Finally, it evaluates how suitable STLs can support the 
failure modes and effects analysis (FMEA) required 

in all safety-critical domains. The main contributions 
of this work can be summarized as follows.

•	 A general overview of the characteristics and 
strategies to develop STLs for GPUs.

•	 An evaluation (the first publicly available, to the 
best of our knowledge) of the overall FC obtained 
on a GPU core with the STL execution.

•	 A report about the failure modes effects and diag-
nostic analysis (FMEDA) process on a GPU core 
using STLs as the only fault-tolerance mechanism.

This work resorts to the FlexGripPlus model, 
describing one low-level microarchitecture of 
NVIDIA, to evaluate and validate the development 
of STLs for GPUs. The experimental results show 
that up to 92.6% of the stuck-at faults (SAFs) in the 
logic blocks of a GPU core can be covered using the 
STLs we developed. The FMEDA analysis shows that 
these results enable to qualify the considered mod-
ules inside a GPU core via STLs at least for the ASIL 
B level. Higher levels can be achieved by combining 
the STLs with other safety mechanisms.

Architectural organization of GPUs

General overview
This section employs NVIDIA’s terminology to 

describe the architectural organization of a GPU.
GPUs are special-purpose processors organized 

as arrays of parallel cores [streaming multiproces-
sors (SMs)]. Each SM adopts the single-instruction 
multiple-data (SIMD) paradigm or variations, such as 
single-instruction multiple-thread (SIMT) by NVIDIA. 
Internally, each SM comprises several pipeline stages 
and uses a specific instruction set architecture partly 
resembling RISC ones with extensions to support 
parallelism.

A host controller (CPU) submits a parallel pro-
gram to the GPU for processing. Then, the program 
is distributed among the available SMs by the sched-
ulers. Internally, the scheduler controllers man-
age and trace the operation of a group of threads 
(warp), which are operated in parallel on individual 
execution units [scalar/streaming processors (SPs)]. 
Each SP is composed of an integer (INT) and a float-
ing-point core (FP). Moreover, the SM includes other 
hardware accelerators (SFUs) as well.

Each SM has access to several levels of the mem-
ory hierarchy (register file, shared, local, constant, 
and main memory). The register file and the shared 
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memory are organized in banks for parallel access 
and store the individual and shared operands and 
results for each thread, respectively. Both resources 
and the first levels of cache are located inside the 
SM. The second-level caches, the constant, and the 
main memories are located outside as a shared 
resource among the SMs.

FlexGripPlus model
FlexGripPlus is an open-source soft-GPU model 

based on the NVIDIA G80 microarchitecture and 
fully described in VHDL [6]. FlexGripPlus is compat-
ible with the CUDA programming environment (SM 
1.0) and is based on a set of SMs supporting up to 52 
assembly (SASS) instructions.

Each SM is divided into five pipeline stages (Fetch, 
Decode, Read, Execute/Control-Flow, and Write), as 
shown in Figure 1. The number of SPs in the Execute 
stage is configurable among 8, 16, or 32. Moreover, 
pipeline registers (“PRx”) are located between the 
pipeline’s stages. Each SM also includes three regis-
ter files (Vector Register File “VRF”), (Address Regis-
ter File “ARF”), and (Predicate Register File “PRF”), 
devoted to storing operands, addresses, and predi-
cate flags of each thread, respectively.

Each SM includes one scheduler controller and a 
divergence management unit (DMU) for intra-warp 
divergence control and execution.

In general, the FlexGripPlus model holds the same 
basic functional modules of a commercial GPU, 
including scheduler controllers, parallel execution 
units, file registers, and pipeline stages. Nevertheless, 
the current memory hierarchy in FlexGripPlus differs 
from the included in commercial devices by missing 
the cache memories.

Despite the few structural limitations, the Flex-
GripPlus model includes a low-level detailed 
microarchitectural description of an NVIDIA GPU 
and is employed as a tool to evaluate the effective-
ness of STLs for GPUs developed using the SBST 
strategy.

SBST strategies for GPUs
STLs developed with the SBST strategy can be 

deployed as complementary mechanisms to moni-
tor the status of a GPU during its operative life and 
contribute to identifying possible fault effects. In 
fact, the main advantage of STLs is the ability to 
detect faults with zero hardware costs. Moreover, 
STLs test a device at the operational speed and nor-
mal conditions, thus also addressing delay faults and 
avoiding overtesting.

In the functional-safety domain, the identification 
and management of faults in a device are manda-
tory. Some faults can be classified as safe, when they 
are proved not to be able to produce any failure in 

Figure 1. General scheme of an SM in FlexGripPlus.
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the considered operational scenario. Safe faults are 
not considered when computing the achieved FC.

In this domain, STLs can be used as safety mech-
anisms and increase reliability by guaranteeing the 
in-field detection of a sufficient percentage of faults, 
thus matching the requirements of the functional 
safety standards, possibly in combination with other 
mechanisms (e.g., ECC for memories, and watch-
dogs). STLs are widely used for CPUs but they can 
also be adopted for accelerators, such as GPUs, 
which demand periodic testing solutions when used 
in safety-critical applications. In this case, we must 
consider two main features: 1) most in-field faults 
in GPUs can only be observed by looking at results 
they produce in memory (as the main observation 
point) and 2) the development of TPs requires 
architectural details from a targeted unit. In gen-
eral, any TP is mainly executed following four steps: 
1) initialization; 2) test pattern’s injection; 3) fault 
effect’s propagation to any observation point; and 
4) identification (see Figure 2). In the execution of 
a TP, several loops can apply different test patterns 
or propagate their effects. However, TPs for GPUs 
must face the addressing of each module exploiting 
the implicit parallelism and operational constraints 
(e.g., divergence and thread-synchronization). For 
this purpose, these TPs must exploit three main char-
acteristics of the parallel operation of GPUs.

•	 Instruction parallelism.
•	 Distributed scheduling.
•	 Management of functional units and memory 

resources.

The following sections summarize some specific 
strategies and algorithms used in the development 
of TPs for STLs targeting GPUs. It should be noted 
that each GPU module may require a combination 
of different approaches. Fortunately, one TP may tar-
get the test of several modules in parallel.

Extending functional test techniques from 
CPUs to GPUs

Two approaches originally developed for CPUs 
can be adopted and extended to the GPU domain: 
automated and deterministic [3], [7].

On the one hand, the automated approaches 
comprise pseudorandom- and ATPG-based meth-
ods. The first method focuses on TPs based on a 
group of instructions randomly selected in combi-
nation with pseudorandom operand values. This 

method can exploit evolutionary algorithms to select 
the most suitable instructions and operands for a TP. 
The second method resort to Automatic Test Pattern 
Generation (ATPG) tools to analyze and extract test 
patterns from a hardware module. Then, these pat-
terns are translated into equivalent instructions, so 
composing one or more TPs. However, it is possible 
that some test patterns cannot be translated and 
must be ignored (possibly resulting in safe faults). In 
both cases, several iterations are used in the devel-
opment of each TP to improve its correct operation 
and reduce unnecessary overhead costs for the 
in-field operation.

In any case, TPs using either automated or deter-
ministic approaches must include three strategies: 1) 
parallel pattern management (PPM); 2) signatures 
per thread (or SpT) [9]; and 3) parallel injection.

The first strategy (PPM) organizes and aligns simi-
lar test patterns and expected results as consecutive 
memory operands, so optimizing the performance 
in memory management and exploiting possible 
execution loops. Then, each thread in the TP can 
address individual or shared test patterns from 
memory.

The SpT mechanism is based on the computa-
tion, within each thread in a TP, of a signature pro-
viding fine-grain fault-observability out of the values 
produced by the target module during its operation, 
thus propagating fault effects as errors on the com-
puting signature and allowing fault detection. Each 
SpT is described and computed in software by mim-
icking a multiple-input shift register or a counter, 
which reduces the number of instructions per TP 
while providing extended observability. In the end, 
each SpT is stored in memory. The GPU itself (or the 
host) checks for the presence of faults by comparing 
a produced signature with the expected one, which 
is precalculated by the TP itself (in the development 
and verification phases) with minimal performance 
overhead (<5%) and finally stored in specific mem-
ory regions available during the operation of the TPs. 
Those precalculated golden signatures avoid laten-
cies at the in-field operation of TPs.

The parallel injection techniques take advantage 
of thread parallelism in warps or blocks to excite a 
module with different test patterns (one per thread), 
thus exploiting parallelism to increase the opera-
tional performance of a TP, which is effective in 
either individual unit or regular structures.
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Pseudorandom and ATPG-based approaches are 
effective in regular structures of a GPU, such as the 
functional units and the register file, since these struc-
tures are addressed (and tested) in parallel. Moreo-
ver, the static organization and the understanding 
of distribution policies in the schedulers allow the 
development of embarrassingly parallel TPs (see 
Figure 2), exploiting the multithread parallelism to 
inject patterns and also reducing the in-field exe-
cution of TPs [8]. On the other hand, deterministic 
approaches exploit the functionality and structure in 
a module to deploy well-defined algorithms, such as 
March algorithms for internal memories (e.g., within 
the controllers) [4].

It must be noted that, when using a deterministic 
approach, the adaptation of a method may require 
additional steps (i.e., initialization and propagation 
patterns) to face the parallel operational constraints 
in a GPU, but additional efforts are required to con-
trol intrawarp divergences, thread synchronizations, 
and concurrent loops when injecting test patterns, as 
depicted in Figure 2.

Multikernel approach
TPs in this approach utilize a divide-and-conquer 

strategy to target special modules commonly man-
aging configuration parameters devoted to con-
trolling and configuring the parallel operation in a 
GPU. These configuration parameters (i.e., memory 
addresses, number of threads, blocks, grids, and 

registers per thread) come from the program and 
configure modules (i.e., the constant memory and 
the schedulers) for the operative interval of the 
program.

In this case, multiple TPs (kernels) employ the pol-
icies of scheduling and the resource’s management 
to target a different set of faults inside a module. 
More in detail, each TP uses different combinations 
of configuration parameters, which also serve as 
indirect test patterns, so activating different regions 
(and exciting possible faults) in a module. The mul-
tikernel approach is effective when testing modules 
managing parallel parameters, such as the sched-
uling controllers and the pipeline registers. Further 
details can be found in [9]. Finally, this approach 
can be extended to other modules with similar fault 
activation and propagation restrictions (i.e., global 
schedulers outside the SM).

Modular kernel approach
This approach exploits a top-down strategy to 

develop modular routines to build TPs for complex 
units in a GPU. The modular description of a routine 
starts from a high abstraction level and is then cus-
tomized. In this approach, the most suitable instruc-
tions to activate and propagate faults inside the 
target unit are selected considering two factors: 1) 
the parallel observability and controllability features 
and 2) the architectural description and operational 
constraints of a target unit.

Figure 2. General scheme of the execution flow of TPs for CPUs and GPUs.
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First, the controllability and observability features 
are determined for a target unit. In this case, suitable 
instructions (i.e., “Push” and “Pop” in a stack) are 
used to provide both features as initial conditions 
in a TP. Then, several routines to inject test patterns 
while exploiting parallelism are designed (in CUDA 
or SASS) and linked, considering the operational 
constraints of the unit. These routines are the basic 
components of a TP and describe the operation of 
any thread. The flexibility of the approach allows the 
development and exploration of several parallel rou-
tines providing the same functionality. Moreover, the 
execution flow in a TP can be adopted according to 
the selected routines. Finally, the routines are inte-
grated as a single TP and refined for performance 
or FC.

The modular approach is effectively applied to 
complex units in a GPU, such as the DMU and the 
embedded memories [10].

Customs approaches
The custom approaches require the manual devel-

opment of TPs following some specific algorithm 
that takes into account the architecture of the units, 
their functional operation, the expected behavior, 
their restrictions, and the target fault model. These 
TPs target particular modules in the GPU, which do 
not exist in CPUs (such as the scheduler controllers 
[5] and the special-purpose memories [4]). In detail, 
the TPs are based on algorithms causing controlled 
divergence, the combination of sequences of embar-
rassingly parallel, and serial-thread executions on a 
set of threads to excite and propagate fault effects.

This approach requires a deep knowledge of the 
GPU’s low-level microarchitectural details, their par-
allel operations and the use of parallelism, distrib-
uted scheduling, and available hardware resources 
to provide specific test solutions per module.

Setup and preliminary GPU analysis
The evaluation of the STLs (developed using 

all techniques described in the previous section) 
resorted to a commercial fault simulation environ-
ment targeting the units in the FlexGripPlus model. 
This framework uses the RT-level description of the 
GPU and evaluates each TP by injecting SAFs into 
the logic of every logic module.

In the experiments, we targeted the evaluation of 
all logic modules and embedded memories in the 
GPU core. One fault is detected when at least one 

mismatch is found after comparing results from a 
golden execution and a faulty one. The flexibility of 
the tool allows the selection of the memory buses 
and the output control signals as the main in-field 
observation points of faults. It is worth noting that the 
main memory and the memory controllers were not 
targeted, since these are not part of the GPU core. 

Three preliminary architectural analyses identi-
fied safe faults in the GPU. The first analysis is based 
on the architectural propagation analysis, which 
consists of evaluating the propagation paths of each 
fault in the design up to the observability points. In 
addition, the fault activation analysis evaluates the 
inputs of the GPU and identifies those faults that can-
not be excited. Finally, a barrier analysis provides 
the analysis of the structural and operational effects 
of removing modules in the GPU [11].

Table 1 reports the number of identified safe faults 
in the FlexGripPlus SM. Interestingly, the fault propa-
gation analysis effectively identified most of the safe 
faults per module (>90%). The other two methods 
effectively identified faults in the GPU’s special struc-
tures, such as inside the scheduler. A postchecking 
process was required to determine any detectable 
and dangerous fault (i.e., faults in locations that 
remain temporarily fixed by the effect of the kernel 
or host configuration, but in other conditions, these 
may cause misbehaviors), so removing them from 
the list of safe faults.

STL effectiveness evaluation
In the experiments, FlexGripPlus was configured 

with one SM and 32 SPs. A set of 18 TPs were imple-
mented using the methods outlined in the previous 
section. Each TP is developed according to the unit’s 
features.

Three automatic TPs targeted the functional units 
and the decode unit by exploiting instructions that 

 
Table 1. Untestable fault identification.
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excite as many patterns (operands) as threads on 

them. Moreover, three deterministic and modular 

TPs targeted the embedded memories, using the 

operational features (writing and reading methods) 

to excite the units. Nine TPs used the multikernel 

approach targeting programmable pipeline registers. 

Finally, three custom TPs focus on exciting control-

lers and dispatchers in the GPU.

In the end, 15 fault injection campaigns were per-

formed on the complete GPU model, after generat-

ing the full list of SAFs, safe faults were first removed. 

Moreover, in the fault campaigns, the total number 

of faults (327,207) was reduced by injecting faults 

only in one module among the regular modules 

in the GPU (i.e., one SP and the associated regis-

ter file per core, instead of the 32 execution units). 

As a result, in each fault simulation campaign, we 

injected 141,140 SAFs.

Since the current version of FlexGripPlus does 

not include accurate descriptions of the caches, the 

memory controllers were not addressed.

Table 2 reports the obtained FC figures. As 

observed, the developed STLs mainly focused on the 

largest modules in the GPU’s core architecture, such 

as the execution units, internal logic, and embed-

ded memories, which account for more than 90% 

of faults in an SM. Although some TPs provide mod-

erate fault detection in some modules of the GPU 

(e.g., controllers), the small size of these structures 

does not significantly affect the overall FC in the GPU 

core. Further efforts could be made to develop suita-

ble TPs specifically addressing these modules.

Previous results demonstrate that STLs can 

be effectively developed and provide a high FC. 

Although the obtained results were focused on 

one GPU core, the implemented TPs are scalable 

and results can be extended to multi-SM GPUs. 

Furthermore, the development of STLs can be 
applied to other GPU architectures.

Functional-safety evaluation
The calculation of the FC is an indication of the 

design safety based on the efficiency of a given 
safety mechanism (SMech). However, it is not suf-
ficient to assure compliance with functional safety 
standards, like ISO26262; for such a purpose, we 
need to determine the reduction in the probability 
of system failures, also known as the failure in time 
(FIT) rate. The single-point faults metric (SPFM), 
which represents permanent faults’ potential to 
violate safety-related functionalities, is defined by 
ISO26262 as evidence of safety integrity [12]. The 
SPFM considers the total FIT rate (λ) and the contri-
bution of the fault classes.

•	 Single-point faults (λSPF): Not covered by 
SMechs.

•	 Residual faults (λR): Undetected by SMechs.

The SPFM can be calculated according to

	
SPFM = −

∑ +( )

∑

1
λ λ

λ

SPF R
.
�

(1)

The primary methodology for determining the 
safety metrics parameters is the FMEDA, which cor-
relates IC components (Gates, Flip-flops, and Memory 
cells) to failure modes (FMs). Then, by computing λ 
of individual IC components, the FC, and the Safe 
faults, we can determine the total λ of each FM.

First, the FMs are defined and the design com-
ponents mapped. For FlexGripPlus, we considered 
28 subparts (components inside the GPU core, 
including local controllers, functional units, embed-
ded memories, and registers). Each subpart was 
analyzed to determine function-specific FMs. After 
mapping each FM to the appropriate design com-
ponent(s), we evaluate the percentage of Safe faults 
and the FC. The FlexGripPlus’ FMEDA comprises 92 
FMs mapped to 2,751,088 gates, 1,507,085 flops, and 
784,224 memory cells.

The analysis of FlexGripPlus, considering the 
15-nm FinFET-based Open Cell Library, resulted in a 
total λ of 10.08 FIT (based on IEC 62380 Electronic 
Reliability Prediction Standard), which defines a 
base FIT Rate for the components of a given tape-out 
technology. In this case, the unit’s base FIT consid-
ers digital (NAND2 gate’s area) and memory (cell’s 
area) components. Then, we multiply the number 

 
Table 2. FC results per module.
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of gates and cells, mapped to each FM, by the dig-
ital and memory FITs, respectively; from these, the 
implemented safety strategies provide the following 
results:

•	 Detected by the STL: 9.17 FIT. 
•	 Undetected (λR): 0.57 FIT.
•	 Safe faults (λS): 0.33 FIT.

Finally, reducing λR by increasing λS and FC 
directly impacts the SPFM. The proposed Safety tech-
nique based on only STLs for FlexGripPlus resulted 
in an SPFM of 94.27%, allowing ASIL B assessment 
without hardware modifications to the logic units of 
an SM and without any other SMech.

This work is the first to provide a quantitative eval-
uation of the effectiveness of STLs for the in-field test-
ing of GPU cores. The reported results showed that an 
SAF coverage of more than 92% could be obtained 
on the logic modules and embedded memories. The 
functional-safety results (SPFM of 94.27%) show the 
effectiveness of STLs as a safety mechanism for SMs 
in GPUs.

The results allow us to state that the SBST strat-
egy can be used as an effective solution, possibly 
combined with other strategies, to guarantee the 
reliability and functional safety of GPU-based appli-
cations for safety-critical domains.� 
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