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Zehra Kesemen1(B) , İlknur Karadeniz1,2 , and Reyhan Aydoğan1,2,3
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3 Interactive Intelligence Group, Delft University of Technology,
Delft, The Netherlands

Abstract. The lack of confirmed negative interactions poses a major
challenge to the prediction of protein-protein interactions. The reliable
selection of these negative samples within a dataset is crucial for a better
understanding of the underlying patterns and dynamics. The random
sampling method is the most widely used negative sampling method,
where negative pairs are randomly selected from unlabelled samples (i.e.,
samples not experimentally confirmed as positive interactions). However,
they tend to introduce inaccurately labelled negative samples, resulting
in less reliable predictions, which may affect the efficiency of the learn-
ing process. Our study aims to assess the reliability of clustering-based
negative sampling methods and highlight their fundamental differences
from the widely used random sampling method. To achieve this goal,
we propose a hierarchical clustering-based algorithm that uses differ-
ent mechanisms to select negative instances from unlabelled instances.
We investigated the effectiveness of our proposed approach compared to
existing clustering-based negative sampling methods and random sam-
pling on four different datasets. The results indicate that clustering-based
methods surpass the commonly used random sampling method.

Keywords: Host-pathogen interactions · Negative sampling strategy ·
Machine learning methods · Binary classification

1 Introduction

Viral infections result from the interaction between pathogen proteins and host
proteins. The extraction of these protein interactions is crucial for understand-
ing the mechanisms of infection. However, the experimental extraction of pro-
tein interactions faces several challenges including the complicated nature of
the domain that requires expert knowledge, high experimental costs, and time
constraints. Therefore, automated extraction of pathogen-host protein interac-
tions (PHI) using computational methods has become an increasingly important
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research topic in recent years [9]. One of the major challenges in the automated
extraction of PHI interactions is the lack of experimentally verified negative
samples for non-interacting protein pairs, although positive samples with exper-
imentally confirmed interacting protein pairs are available. Therefore, the selec-
tion of reliable negative samples is crucial for building satisfactorily generalisable
prediction models to gain a better understanding of pathogen-host protein inter-
actions. In the literature, most of the currently available studies use a random
sampling method [7,8,10,13,14,18], where negative pairs are randomly selected
from the unlabelled samples. However, this approach tends to introduce inac-
curately labelled negative samples, resulting in less reliable predictions, which
may affect the efficiency of the learning process and reduce the performance of
predictive models [6]. In addition, the reproduction of the results might been
affected negatively due to the randomization in the selection process.

In this paper, we present a novel cluster-based approach for negative sam-
pling. Then, we explore existing cluster-based negative sampling methods in the
literature to compare them with the widely used random sampling method. The
intuition of our method is to avoid selecting an unknown positive sample as a
negative sample as much as possible. We aim to select unknown samples with
different characteristics by forming clusters of positive samples and selecting a
few examples from each cluster. To see how the similarity of the negative samples
to the positive samples is affected, we investigate four different alternative selec-
tion mechanisms in which the samples are selected from the clusters depending
on their distance from the centroid of the positive sample clusters. These mecha-
nisms include selecting the closest samples, the farthest samples, samples selected
uniformly from cluster centroids, and selecting both the closest and the farthest
samples. We empirically compare our approach with the existing cluster-based
selection approaches and the random sampling method. The results show that
clustering-based methods perform better than the random sampling method.

The rest of the paper is organized as follows. Section 2 introduces the problem
and highlights a recent study that serves as the basis for this paper. Section 3
describes the data sets used in this study. The proposed new clustering-based
method (CNS) is explained in detail in Sect. 4. Section 5 presents an overview
of the benchmark methods, experimental results, and performance comparisons.
Finally, Sect. 6 concludes the paper and points to future research directions.

2 Problem Statement

As widely used random sampling method generates negative samples for host-
pathogen protein-protein interactions, which randomly selects from the unla-
belled pairs (i.e. the pairs we cannot ensure about their interactions as they
were not experimentally verified). However, this method may lead to a higher
number of false negatives, potentially affecting the learning process and reduc-
ing the sensitivity in predicting protein-protein interactions. Regarding the neg-
ative sampling strategy, the biggest risk is to select unlabelled samples as neg-
ative, although there is an interaction between these protein pairs that has not
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yet been discovered by scientists. This can mislead the prediction model and
lead to potential interactions being overlooked. To address this issue, the main
task of this study is to identify unlabelled protein pairs through a novel cluster-
based negative sampling approach and evaluate their performance against exist-
ing methods.

This study is based on a recently published article Koca et al. [7], which
obtained state-of-the-art results on the prediction of protein-protein interactions
between human and virus proteins. Their study incorporates the topological
properties into the amino acid embeddings as part of the graph convolution
process using the GraphSAGE model [4]. For encoding of protein sequences,
they used Doc2Vec [11] along with the Byte Pair Encoding (BPE) method [2] to
convert variable-length text segments into vector representations as the amino
acid sequences are considered as documents.

The overall workflow, as illustrated in Fig. 1, shows how these topological
properties and sequence embeddings are integrated into the prediction model.
Our study adopted this workflow for the protein-protein interaction prediction
problem in order to examine the effect of negative sampling strategies.

Fig. 1. Prediction framework for protein-protein interaction between human and virus
proteins, as proposed by Koca et al. [7].

3 Datasets

The main dataset of this study, as used by Koca et al. [7], is the PHISTO
dataset [1], which contains 39, 544 interactions, including 6, 571 viral proteins and
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1, 715 human proteins. Although this dataset provides a comprehensive basis
for the analysis, additional datasets were utilized to ensure the reliability and
generalizability of the methods, as detailed below:

– Gordon’s SARS-CoV-2 dataset is based on the SARS-CoV-2 and human
protein-protein interaction, as detailed in the study by [3]. This study iden-
tified 332 high-confidence protein-protein interactions, involving 332 SARS-
CoV-2 proteins and 27 human proteins.

– Human-Virus dataset which includes 8, 929 interactions from the DeepTrio
study [5] is used as a benchmark dataset. It originally compiled DeepViral
study by Liu-Wei et al. [10].

– Tsukiyama et al. dataset from the study [15] includes 22, 383 interactions,
comprising 5, 882 viral proteins and 996 human proteins.

4 Proposed Approach: Clustering-Based Negative
Sampling Strategy (CNS)

In this section, we propose a novel clustering-based sampling method to select
reliable negative samples from the unlabelled samples. Our intuition for this
method is to avoid selecting an unknown positive sample as a negative sample
as much as possible. Therefore, we aim to select unknown samples with differ-
ent characteristics by forming clusters of positive samples and selecting samples
from each cluster. To minimize the randomness in sample selection, we propose a
clustering-based negative sampling strategy employing Agglomerative Clustering
[12]. In contrast to the K-means method, Agglomerative Clustering is determin-
istic, consistently producing the same clustering structure when applied to the
same dataset. We explain our proposed method step by step, as illustrated in
Fig. 2. We apply the Agglomerative Clustering Algorithm to the positive sam-
ple set P (i.e., experimentally confirmed pairs). Agglomerative Clustering is an
unsupervised data mining technique used to create a hierarchy of clusters. It
operates in a bottom-up manner, where each sample starts as its cluster, and
clusters are progressively merged based on similarity, resulting in a hierarchy.
Our algorithm organizes the positive sample set P into different k clusters. The
positive sample set P is represented in Eq. 1, where each cluster is denoted as
Cn. The centroid of each cluster, Cn-center, serves as a representative of the cor-
responding cluster, which is calculated by averaging the positive samples within
the cluster.

P =
k⋃

n=1

Cn, n ∈ {1, 2, . . . , k}. (1)

The next step is to assign the unlabelled protein sequences from the set U to
the closest cluster. Since Agglomerative Clustering does not support assigning
unseen data to existing clusters and is only capable of clustering the train-
ing data, we assigned those sequences in a similar way to K-means. That
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Fig. 2. The process of our clustering-based sampling approach.

is, we assigned the protein sequences to the clusters based on their similar-
ity to the cluster centroids. To assess the similarity between positive protein
sequences x and unlabelled protein sequences y, we use three distance met-
rics such as dCanberra(x, y), dEuclidean(x, y) and dCosine(x, y), which are calcu-
lated according to the corresponding equations (See Eqs. 2–4). In all equations,
x = (x1, x2, . . . , xm) stands for the vector of attributes of the cluster centroid
and y = (y1, y2, . . . , ym) for the vector of attributes of the unlabelled sample.

– Canberra distance normalizes the differences between elements by their
sum, making it effective for measuring relative differences.

– Euclidean distance measures the straight-line distance between two points
in a multidimensional space and calculates the absolute geometric distance
between the cluster centroid and the unlabelled sample.

– Cosine distance evaluates how the vectors are in terms of direction. It
assesses the cosine of the angle between two vectors x and y, where x · y is
the dot product of the vectors, and |x| and |y| represent Euclidean norms.

dCanberra(x, y) =
m∑

i=1

|xi − yi|
|xi| + |yi| (2)

dEuclidean(x, y) =

√√√√
m∑

i=1

(xi − yi)2 (3)

dCosine(x, y) = 1 − x · y
‖x‖‖y‖ (4)

We pose the question of which unlabelled samples should be selected as negative
samples from each cluster. To address this question, we propose four methods
for utilizing the cluster structure in the selection process:

– Closest selection selects the elements closest to the centroids to ensure that
the most representative elements of each cluster are selected.

– Farthest selection selects the elements farthest from the centroids, there-
fore, the more outlier instances within each cluster are captured.
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– Closest and Farthest selection selects both the closest and farthest ele-
ments to create a balance between representative and diverse elements.

– Uniform selection ensures an equitable distribution by selecting elements
evenly across all clusters (See Fig. 3 for detailed information).

Fig. 3. The sets R,L, . . . ,M denote unlabelled samples, with a total sum of U . The
equation R×|N|

U
+ L×|N|

U
+ . . .+ M×|N|

U
= |N | ensures proportional selection from each

set, where |N | is the total number of negative samples required.

We investigate the degree of similarity between the unlabelled samples and their
positive centroids according to the selection mechanism to understand how these
unlabelled samples are positioned within their assigned clusters. In each selection
method, the number of elements chosen from each cluster is adjusted to be
proportionate to its size. Here, |N | denotes the total number of negative samples
we seek to select, while |Cn| signifies the number of elements within a given
cluster where n ∈ (1, k). The number of elements chosen from this cluster is
determined by the |N | to |Cn| ratio, guaranteeing proportional representation
relative to cluster size.

5 Evaluation

There are two notable studies in the literature [16,17] that use clustering-based
methods for negative sample selection, which we compare with our proposed
model. We compare our approach with these clustering-based strategies for
negative sampling. Wang et al. [16] propose a clustering-based negative sam-
pling strategy, in which all unlabelled data U are clustered using the K-means
clustering algorithm, while our approach clusters the positive samples P using
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hierarchical clustering. In Wang’s study, the number of unlabelled samples to
be selected from each cluster is determined based on the proportion of sam-
ples within the cluster relative to the total unlabelled data. This ensures that
the negative samples are proportionally distributed across clusters. Finally, the
samples closest to the center of each cluster are selected based on the estimated
number of instances. On the other hand, Wei et al. [17] suggest applying the
MiniBatchKMeans clustering algorithm to the entire dataset consisting of both
positive interactions P and unlabelled interaction sets U . The ratio of unla-
belled examples within each cluster for the entire cluster is calculated and the
clusters are sorted in descending order according to this ratio. The unlabelled
instances are extracted from the clusters whose unlabelled instance density is the
highest regarding the aforementioned sort operation.

To assess the effectiveness of each clustering-based approach for negative
sample selection, a binary classifier is trained to predict protein interaction (i.e.,
positive and negative samples are labelled 1 and 0 respectively). To increase the
reliability of the performance evaluation, we applied 5-fold cross-validation tech-
nique in which the dataset is divided into five subsets and each subset in turn
serves as a test set, to obtain a comprehensive evaluation of the overall perfor-
mance of the model. We chose a ratio of 1 : 10 for positive and negative samples,
as recommended in previous research in this field reflecting the typical imbal-
ance in real-world data. For the Agglomerative Clustering Algorithm, we used
the average linkage method, which tends to produce more balanced clusters.

5.1 Effect of Distance Metrics on Method’s Performance

The performance of the proposed sampling methods may vary depending on
parameters such as the number of clusters, distance metrics, and selection mech-
anisms. We conducted further analyses to understand the impact of these param-
eters. First, the impact of distance metrics on the performance of our method
was evaluated using the PHISTO dataset. In this phase, the GA2M classifier was
selected aligning with the work of Koca et al. [7]. Figure 4(a) shows the recall
metric (i.e., the percentage of true positive predictions compared to the con-
firmed positive samples) where the y-axis represents the selection criterion, the
x-axis shows the number of clusters (k) and the type of distance metric used. As
can be seen in Fig. 4, the choice of distance metric has significant effects on recall
and F1 scores. Regardless of the number of clusters, it can be seen that the Can-
berra distance performs better than other methods with the farthest selection.
Based on these results, the Canberra distance was used as the distance metric
for our method in the further experimental studies below.

5.2 Effect of Cluster Numbers

We analyzed the effects of different cluster numbers, including 2, 4, and 8, on the
PHISTO dataset. As can be seen in Table 1, the optimal cluster number varied
depending on the method. For example, the best performance for the Closest,
Closest and Farthest, and Uniform methods was achieved with 2 clusters, while
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Fig. 4. Performance metrics of GA2M on the PHISTO dataset.

the Farthest method performed best with 8 clusters. Similarly, Wang’s method
achieved the highest F1 and recall values with 4 clusters, while Wei’s method
showed the best results with 8 clusters. Consequently, the optimal number of
clusters for each method was fixed based on their performance in the following
analyses.

5.3 Analysis of Classifier Performance

In this section, we assess the performance of different classifiers with the sampling
strategies. Table 2 shows the F1 and recall values of each classifier. We used the
classifiers aligned with Koca’s study [7], including Random Forest (RF), Logistic
Regression (LR), Support Vector Machine (SVM) and Generalized Additive 2
Model (GA2M). The results show that the proposed approach with the farthest
selection slightly outperforms the other strategies. Of the four classifiers, the
Random Forest classifier outperformed the others, showing slightly better results
than GA2M. Therefore, we advocated using the Random Forest.
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Table 1. The F1 and recall values in percent for the PHISTO dataset with different
cluster numbers.

Cluster Numbers k = 2 k = 4 k = 8

F1 Recall F1 Recall F1 Recall

Closest 94.94 92.08 94.90 92.02 94.31 91.20

Closest & Farthest 95.97 94.32 95.96 94.19 95.61 93.64

Farthest 99.60 99.42 99.62 99.45 99.64 99.52

Uniform 91.96 88.20 91.88 88.12 91.56 87.85

Wang’s method 91.56 87.85 96.18 93.95 94.28 91.58

Wei’s method 97.73 95.81 97.84 96.08 99.22 98.90

Table 2. The F1 and recall values in percent for the PHISTO dataset with different
classifiers and the optimal cluster number for each method.

Classifiers GA2M LR SVM RF

F1 Recall F1 Recall F1 Recall F1 Recall

Closest 94.94 92.08 92.76 89.30 94.33 91.28 94.90 91.46

Closest & Farthest 95.97 94.32 93.42 91.18 95.97 94.20 96.34 94.05

Farthest 99.64 99.52 99.49 99.24 99.58 99.40 99.64 99.44

Uniform 91.96 88.20 88.60 83.67 91.30 87.05 92.36 87.72

Wang’s method 96.18 93.95 94.00 90.76 95.45 92.96 96.44 93.91

Wei’s method 99.22 98.90 98.88 98.37 98.99 98.36 99.36 99.10

Random sampling 73.32 67.94 62.34 54.44 70.97 63.06 79.39 73.52

5.4 Performance Across Other Datasets

To evaluate the effectiveness of the sampling strategies across different pathogen-
host protein-protein interaction datasets, we further analyze the performance of
the Random Forest classifier on three additional datasets, as described in Sect. 3.
Table 3 presents the results for cluster numbers 2, 4, and 8 across all datasets.
Based on the results in Table 3, Wei’s method consistently achieved the highest
performance across most datasets and cluster numbers for Random Forest. In
the PHISTO dataset, our method with the farthest selection outperformed other
methods and reached an F1 score of 99.64% with Random Forest at k = 8.

It is worth noting that there is no superior sampling strategy resulting in
terms of prediction accuracy in all datasets. On the other hand, the results
show that all cluster-based sampling approaches outperformed random sam-
pling. Therefore, we suggest that the clustering-based method is preferable to
the random sampling method in this domain.
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Table 3. Performance of the Random Forest classifier across all datasets with different
cluster numbers.

Datasets Cluster Numbers Farthest Wang’s MethodWei’s Method Random Sampling

F1 Recall F1 Recall F1 Recall F1 Recall

PHISTO k = 2 99.62 99.30 95.96 93.01 97.15 94.71

k = 4 99.62 99.40 96.44 93.91 97.39 95.36 79.39 73.52

k = 8 96.64 99.44 94.53 90.94 99.36 99.10

Tsukiyama et al. k = 2 96.02 92.68 96.17 93.06 96.62 93.78

k = 4 95.85 92.62 96.42 93.44 96.50 93.39 68.84 59.80

k = 8 96.06 92.62 93.78 89.24 97.60 95.54

Human-Virus k = 2 92.34 87.04 92.12 86.52 95.10 91.36

k = 4 92.06 86.88 89.76 83.53 96.54 93.68 72.32 64.16

k = 8 92.31 87.12 89.00 82.48 97.52 95.74

SARS-CoV-2 k = 2 69.26 55.92 70.96 55.70 87.32 79.84

k = 4 67.58 55.48 68.80 53.96 80.89 69.30 67.40 55.51

k = 8 84.08 75.79 76.74 64.20 91.99 85.64

6 Conclusion

In this study, we address the challenge of selecting negative samples from unla-
belled samples for pathogen-host protein-protein interactions. We propose a
novel clustering-based approach to enhance the reliability of negative sam-
ple selection. We highlight the fundamental differences between our method
and other clustering-based approaches, as well as the widely used random sam-
pling method. Our experiments, conducted on four different datasets of virus-
human protein interactions, employ four selection methods and four classifiers.
The results demonstrate that clustering-based approaches outperform the widely
used random sampling method. We believe that providing a more precise defini-
tion of protein feature representation will result in more distinguishable outcomes
in the selection of negative samples. As future work, it would be interesting to
analyze the characteristics of the datasets and their correlation with the obtained
results on that dataset regarding the effectiveness of the negative sampling
methods.
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volutional network based virus-human protein-protein interaction prediction for
novel viruses. Comput. Biol. Chem. 101, 107755 (2022). https://doi.org/10.1016/
j.compbiolchem.2022.107755, https://www.sciencedirect.com/science/article/pii/
S1476927122001359

8. Kshirsagar, M., Carbonell, J., Klein-Seetharaman, J.: Multitask learning for host-
pathogen protein interactions. Bioinformatics 29(13), i217–i226 (2013). https://
doi.org/10.1093/bioinformatics/btt245

9. Lian, X., Yang, X., Yang, S., Zhang, Z.: Current status and future perspectives
of computational studies on human–virus protein-protein interactions. Briefings
Bioinform. 22(5), bbab029 (2021). https://doi.org/10.1093/bib/bbab029
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