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Abstract

The farming industry is undergoing a transformative shift towards efficiency and
large-scale production. Manual labor is unable to meet the increasing demand,
leading to the development of automation techniques, particularly in tasks like
crop harvesting. While automating harvesting is an intriguing prospect due
to its straightforward nature and tangible outcomes, other crucial tasks arise
throughout a plant’s lifecycle, depending on the plant type and growing en-
vironment. In greenhouses, plants such as tomatoes or bell pepper are grown
vertically. As these plants grow, a constant working area is created that needs to
be shifted down to keep producing crops. While most greenhouses use a string
to suspend plants, a new Clipper method could ease the automation efforts for
this task. This work investigates the feasibility of developing a system that
detects and determines the position and rotation of clips in the plant extension
process.
To achieve this feasibility, a neural network has been trained on a custom

dataset with images containing 6-D pose annotations of a clip that do not require
manual annotations. The designed system also executes a validation step with a
second set of sensors in the form of a stereo camera. The entire methodology has
been evaluated on a test setup of a greenhouse. The small and round properties
of the clip cause a rotational error that does not fall in positional and rotational
requirements set by a mechanical grabber on a robotic arm. Higher positional
precision of annotation data and depth information from the stereo camera is
necessary to make this methodology feasible.
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Chapter 1

Introduction

The farming industry is evolving into an efficient, large-scale industry. With
manual labor unable to cope with the growing demand, automation techniques
for jobs such as harvesting crops are widely being developed [15, 16, 17]. Har-
vesting might be the most interesting task to automate as it is a reasonably
straightforward task and yields concrete results. However, many other tasks are
needed during a plant’s life, depending on the plant type and growing environ-
ment. The greenhouse is one environment where proper plant care is essential.
The Dutch greenhouse industry produces 10 times more vegetables per hec-
tare than traditional outdoor farming methods [5]. To achieve this, plants like
tomatoes, bell peppers, and cucumbers are grown vertically and are densely
positioned next to each other. They can be grown any time of year, given the
proper lighting and temperature in this sheltered environment, but they need
to be handled with care so as not to cause any damage or infections to spread.
These plants require constant attention to grow upwards optimally, allowing ef-
ficient crop growth along their main stem and optimizing their yield. Once the
plants reach their desired height, they continue to grow but need to be lowered
and moved to allow the new extension to grow new produce. This process alone
needs to be executed regularly during a plant’s lifespan and consumes many
labor hours per week for a hectare of a greenhouse. As this process is repetit-
ive yet skillful, automating the plant extension task would significantly reduce
labor costs. This thesis will focus on automation efforts in the plant extension
process of tomato plants, as this is the most commonly grown plant in Dutch
greenhouses in 2022 [5]. More specifically, Section 1.1 will discuss the various
methods currently used for plant extension with automation in mind. In Sec-
tion 1.2, the challenges for automation in greenhouses are explained. After this,
the problem statement will give a set of sub-questions to build on. This research
is conducted at company Lely. The existing framework created there and other
related work is discussed in Chapter 2.

1.1 Plant extension

Most Dutch greenhouses growing tomato plants do so using a hydroponics sys-
tem. This efficient system uses a soil-less medium packed with nutrients that
can be managed precisely for the plants to grow faster and give higher yields.
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They are planted in horizontal rows above the greenhouse floor. The first stages
of a plant’s growth include reaching the top of the greenhouse and creating the
desired density of plant stems. Depending on the plant extension method, ver-
tical growth can be accommodated using various methods that use a suspended
metal wire hung at the top of the greenhouse.

1.1.1 Hook & Wire

In the most common method used in manual labor, the plant stem is twisted
around a rope that is hung from a suspended wire to force an upwards growth.
This requires the careful guidance of the plant so as not to damage the stem
or the growing produce. Once the stems have reached the desired height, they
continue to grow, introducing an extra step besides twisting the plant around
the wire. Periodically, the plant is lowered by giving more wire from a hook
or spinner and moving it sideways on the suspension wire. A sketch of this
setup can be seen in Figure 1.1 (left). This plant extension process needs to
be applied to all plants roughly every two weeks. Even though this task is
repetitive, the requirement of careful plant movement makes this task highly
specialized to do quickly. With automation in mind, moving these stems like a
skilled worker requires extensive sensing of the plants’ structure. Weak points
need to be identified to ensure that nothing on the plant will be damaged when
handling the plant. For this reason, the Hook & Wire method will not be chosen
to automate.

1.1.2 Clipper System

An alternative, systematic method is the Clipper system. This system only uses
a rope in the first stage of the plant and is removed once the top is reached.
Instead of twisting the plant, it is held up using two clippers attached to a metal
rod that hangs off the top suspension wire, as seen in Figure 1.1 (right). A single
clip in the greenhouse setting is shown in Figure 1.2. Once the plant needs to
be extended, the following actions need to be taken:

1. The lower clip is removed from the rod.

2. The top clip is slid to the bottom of the rod.

3. A point on the newly grown stem is picked, and the first clip is clipped to
the rod.

4. The rod is moved sideways on the suspension wire

In comparison to the Hook &Wire system, the clipper system is less reliant on
a perfect understanding of its environment. In this system, the main challenges
lie in detecting and positioning the clips and identifying a small section of the
stem to place the clip back on. Moreover, automating this system will reduce
the spread of viruses as a robotic system would only ever deliberately touch the
clips and not the plants. For these reasons, the clipper system has been chosen
as an automation strategy for the robotic system.
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Figure 1.1: Hook & Wire system (left) versus Clipper system (right).

1.2 Environment

Each crop must be grown in specific environments to ensure the most efficient
harvest possible. The greenhouse is built up in rows spaced 1.3 meters apart
from each other [8]. As such, the distance to view the plant becomes relatively
small. In the tomato crop, many different types can be grown. These types can
vary in stem thickness, tomato size, leaf size, and brittleness, to name a few,
which can affect the weight of the plant, its curvatures at the top, and the spa-
cing between each plant. This diversity is important to take into account when
developing any type of automation in the greenhouse. A typical greenhouse row
is shown in Figure 1.3. The tubes that run along the floor of the greenhouse
row are used for heating the greenhouse. As a second purpose, manual laborers
use vertical carts on these rails to travel along the row and reach the top sus-
pension wire of the greenhouse, which is situated roughly 4 meters above the
ground. The clips are situated near the top of the greenhouse, which means
lighting conditions can change drastically depending on the weather. Also, a
grower can choose to use lighting to control photosynthesis. These lights are
also not the same between greenhouses, varying between blue, red, white light,
or a combination. These factors are taken into account in designing a strategy
to automate the plant extension process.
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Figure 1.2: Clipper holding a tomato plant to a metal rod with meas-
urements.

1.3 Lely

The company for which this research is conducted is Lely [22]. Lely is known for
its automation in the dairy industry, with its main campus situated in Maassluis.
This area has many greenhouses growing tomato plants, and Lely developed
an interest in greenhouse automation a few years ago. In recent years, they
developed a robotic arm situated on a large vertical pole that drives across the
greenhouse rails mentioned in Section 1.2 [27]. This setup is used to develop
several end-effectors that can work on one plant at the same time. Lely strives
to replace most of the tasks present in the greenhouse. This thesis will focus on
the end-effector responsible for the plant extension using the clips mentioned
in Subsection 1.3.1. The arm and the existing end-effector hardware are in the
prototyping phase for this work to build on. The results of this work will be
discussed in more detail in Chapter 2.

1.3.1 End-effector clipper

The end-effector that was developed for the robotic arm has been used for initial
tests to gauge an accuracy requirement for the robotic arm to grab and place
a clip successfully. The end-effector consists of three moving parts, an image
of which can be seen in Figure 1.4. The main component is the gripper; this
clamps the clip to be placed and grabbed from the rod and plant. The other
two components are used to aid in this process. The Guider ensures the metal
rod is positioned in the middle of the clip. So that when the gripper opens, the
clip holds onto the rod. Lastly, the Pusher slides between the stem and rod to
push the rod off the clamping beaks on the clipper. This is to ensure the clip
does not get stuck on the rod.

1.4 Problem statement

The concept of automation of plant extension is relatively new, with no known
working robot yet. Therefore, the methods to achieve this automation must be
thoughtfully researched and tested. To take a clip off the metal rod with the
current end-effector, there is a need for a method that is able to detect and
estimate the position and rotation in a scene using a camera system. Therefore,
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Figure 1.3: Example of a Dutch greenhouse row

this study focuses on the design and validation of such a method to invest-
igate the feasibility of a system that automates the plant extension using the
Clipper System. As such, this thesis will answer the following research question:

Is it feasible to develop a system that determines the position and rotation of clips
in the plant extension process?

This thesis will answer this question by developing solutions to sense the
clip and its environment accurately. Furthermore, this thesis will answer the
following sub-questions:

• What are the existing technologies or systems available for object detection
and pose estimation in a 3D environment?

• How accurate do the object detection and pose estimation algorithms need
to be for successful clip grasping?

• What sensor technologies and data processing methods are most suitable
for detecting and determining the position and rotation of clips in a green-
house environment?

• What are the limitations of current object detection and pose estimation
techniques in terms of their applicability to the greenhouse setting?
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Figure 1.4: Prototype clipper end-effector: open positions (left) vs.
closed positions (right) of the Gripper (1), Guider (2), and Pusher
(3) mechanisms controlled using servo motors.

During this thesis, a detecting and positioning pipeline has been created to
evaluate the effectiveness of the methods. This pipeline can be deployed in
environments resembling those described in Section 1.2, which includes test en-
vironments like an office setup.
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Chapter 2

Related Work

Greenhouse automation has become an increasingly important area of research
due to the need for sustainable and efficient food production. An essential aspect
is computer vision techniques for object detection, tracking, and classification.
However, detecting the plant extension clips can be challenging due to the occlu-
sion caused by the greenhouse environment. This chapter provides a review of
related work in greenhouse automation and object detection in occluded envir-
onments by examining the current state-of-the-art techniques. These insights
will be valuable for developing a detection pipeline that helps automate the
plant extension process.

2.1 Lely technologies

Although Lely has not yet entered the market of greenhouse automation, their
efforts in developing a robotic arm have already come a long way. Recent
research and development in 2022 have resulted in a prototype setup that will
serve as the basis for this project [27]. This section will give an overview of the
capabilities of this robotic arm.

2.1.1 Philosophy

As mentioned in Section 1.3, Lely aims to automate multiple tasks. In contrast
to developing a separate robot for each task, this project aims at creating a
modular system that can do multiple tasks at once using multiple robotic arms.
Multiple arms are attached to a pole stretching to the top of the greenhouse.
Each arm can move independently of one other or work together on a single task.
As an example, the pole might have three arms, the top arm being responsible
for the plant extension process, the middle for removing unwanted stems, and
the lowest for removing stems below the growing area.

2.1.2 SCARA

To achieve this philosophy, each arm is essentially manufactured in the same
way, apart from a specialized end-effector. A Selective Compliant Articulated
Robot Arm, or SCARA for short, is chosen as the design. This type of arm
allows compliance in the X-Y directions but is rigid in the Z direction. So for
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Figure 2.1: SCARA design with 4 joints. The end-effector is attached
to the wrist, with additional pitch or roll control depending on the
application.

X Y Z
Location (mm) 14 30 5
Rotation 15° 15° 20°

Table 2.1: Maximum allowed position and rotation difference to actual
clip transformation.

vertical movement, the pole is used. This type of design minimizes the vertical
clearance needed when two arms are working in close proximity while retaining
reachability in the greenhouse. An overview of the joints is shown in Figure 2.1.
Each arm houses a computational unit that computes the inverse kinematics as
well as any processing of sensing equipment.

2.1.3 Required accuracy

The arm has been evaluated using the end-effector clipper from Subsection 1.3.1.
With a fixed rod location of the clipper known to the arm, the catching accuracy
is 100%. However, when the clipper location or orientation is not precise enough,
it can cause the mechanism to miss. The developed arm and end-effector can
successfully grab a clip within the location and rotation requirements found in
Table 2.1. These requirements will serve as a threshold to evaluate the feasibility
of the design that will be discussed in Chapter 3.

2.2 Sensing technology

Determining the position and rotation of the clip is, as indicated by the previous
section, a crucial part of taking the clip from the rod. This section will explore
techniques used in other works to sense their environment and/or to find and
locate objects of interest.
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2.2.1 Sensor hardware

In order for a robotic system to function in a non-static environment, it needs
to have data of its surroundings. A color camera is a good way to capture the
surroundings of the system due to the wide range of information it has. De-
termining the position of anything with a single camera is often used in systems
where objects are situated on a plane with a known depth or are always the same
size. For the clipper application, the object to be found is always the same size.
Thus, in theory, a single color camera can be sufficient to accomplish the task.
However, to improve accuracy and deal with the surrounding plants that can
vary in size dramatically, extra depth information is highly desirable. Previous
works for greenhouse automation mostly use a Binocular setup with a camera-
in-hand [29] to obtain an RGB-Depth image (RGB-D). This means the cameras
are positioned near the end-effector and can utilize both Visual-based servoing
and open-loop visual control. Stereo cameras can offer a high resolution and are
relatively low cost. Other depth-sensing methods like Time-of-Flight or LiDAR
are also valid options to consider. These laser sensors have higher accuracy and
do not rely as much on features and lighting conditions as stereo vision, but they
are more expensive, less modular, and have a lower resolution. While there are
certainly options to consider for different applications, the choices are highly
reliant on the methods and requirements.

2.2.2 Farm Technology Group Wageningen University

One source of inspiration is the Dutch Wageningen University (WUR), which
introduced the SWEEPER bell pepper harvester [1]. This harvester scans each
plant for crops ready to be harvested using a calibrated color threshold that
can be set for each session, with shape size constraints as extra reject criteria.
To mitigate ambient illumination effects, the robot applies a Flash-No-Flash
(FNF) controlled illumination acquisition protocol [2]. The depth of the fruit is
then determined using an RGB-D pixel-to-world transformation to calculate the
center point of the pepper. After the location of the pepper is known, the end-
effector needs to determine the rotation at which to cut off the pepper. To do
this, the stem is detected using a deep neural network segmentation network and
processed using a Canny edge detector and straight line detection using Hough
transform. Using two viewpoints, there is enough information to position the
robot such that the stem is behind the fruit, as seen from the camera. This
pipeline achieved an accuracy of 73% with an acceptance of 25 degrees provided
by the end-effector specifications and an average harvesting speed of 24 seconds
per pepper. For this pipeline to work for the clipper application, both the
stem and rod need to be segmented and located to determine the rotation of
the clipper, with an alternative system needed to detect the clips. Achieving
higher accuracy while working with smaller distances in the clipper system will
be difficult but not impossible.

2.2.3 Harvey

Another bell pepper harvester is a robot called Harvey from Queensland Uni-
versity of Technology [19]. This robot employs a different method in the pose
estimation of the cutting point. A deep neural network provides a segmenta-
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Figure 2.2: Pipeline for bell pepper peduncle reconstruction from the
Harvey robot [19]

tion of both the bell pepper and the peduncle, which is the stem on which the
pepper grows. Using an RGB-D camera, a 3D reconstruction of the peduncle
is constructed, and its center point is calculated and used as the cutting point.
The angle at which the robot should approach is calculated using an estimation
of the normal vectors on the chosen cutting point. Figure 2.2 shows the pipeline
of this process from their paper. Using this method, a maximum accuracy has
been achieved of 84% in the detection of peduncles with 77% successful harvests.
Although this method picks an arbitrary point on the peduncle that determ-
ines the rotation of the arm, objects can be segmented and reconstructed in 3D
for further processing to give a better understanding of the environment. This
will be an idea for reconstructing the clip in the environment to determine an
approach angle.

2.2.4 Object Pose Estimation

Robotic solutions for object detection outside the greenhouse environment are
also widely being researched and tested. Many modular systems use similar
strategies, as discussed earlier, to identify a gripping point [25, 23]. However,
in the clipper system, there is only one valid gripping point, and this is always
in the same orientation relative to the clip. Therefore, the gripping point angle
can be determined when the exact transformation is known. While much less
perfected than detection and segmentation networks, various works have gone
into 6-dimensional pose estimation of all kinds of objects. To encourage research
in pose estimation and set up a uniform dataset format, Hodan et al. [13] pub-
lished a benchmark for 6-Dimensional pose estimation of rigid objects from a
single RGB-D input image (BOP). This platform allows methods to be tested
with identical datasets, with a variety of objects and different levels of occlu-
sion. Since 2018, the publishers of the benchmark have run a BOP Challenge for
methods to be compared against each other. These challenges require methods
to be run on known validation data as well as unkown validation data on fresh
datasets; a leaderboard1 shows the scores of the results on each dataset.

1https://bop.felk.cvut.cz/leaderboards/
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Figure 2.3: PoseCNN for 6D object pose estimation, where the network
is trained to perform three tasks: semantic labeling, 3D translation
estimation, and 3D rotation regression [28].

PoseCNN

One approach that many implementations consider their backbone structure is
PoseCNN [28]. PoseCNN is a Pose Convolutional Neural Network. It combines
template-based methods and feature extraction to gather helpful information
in an image and feed this into a deep neural network. Based on a 3D object
model, the network is trained on translation matrix T and rotation matrix R.
As Figure 2.3 shows the pipeline, semantic labeling is first applied to the fea-
ture map that produces confidence scores on each pixel for an object. Next, 3D
translation estimation first uses regression to find the object center point using
camera intrinsics. It then combines this with the semantic labeling in a Hough
voting scheme to vote the final estimation of the object centroid in the image.
Due to this setup, where all object pixels are considered, the center of the object
can be occluded. Finally, the rotation is regressed using the translation gained
from the last step and a loss function that computes the distance between the
annotated and predicted rotation. Notice that this method does not require
depth information to be available as it trains on the annotation data. In this
paper, depth is an optional addition for the network to extract more features
from but can be run without. Other works use the depth information to per-
form a final alignment during or after regression is finished to fit an object model
into the 3D pixel points (Point cloud) and adjust regression accordingly [20, 18].

As the robotic arm with a camera setup could return relative positions and
rotations from the camera, it can run parallel to other tasks as long as the
processing power on the arm can handle the computation. Training a network
like this on a specialized object requires some effort, but results may work well
with a wide range of environments and lighting conditions.
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2.2.5 Winner BOP 2022

While PoseCNN from the previous section has set up a great baseline, it is
already relatively old and inaccurate compared to other state-of-the-art meth-
ods. Prior Geometry Guided Direct Regression Network (PGDRN) [21] was the
winner of the most recent BOP Challenge in 2022. This network largely differs
in the methods used to detect and match features. In this paper, a detailed 3D
reconstruction of the object is used to compute prior features to compare to the
input image. This image is first fed into a 2D Detection network to create a box
around the object, after which color features are extracted using a ResNet [11]
backbone with deconvolution layers and upsample layers. The color image and
3D model features are concatenated to end up with a prior-color feature map.
This is then used to predict object regions and coordinates to regress the final
transformation values. This method heavily relies on the 3D reconstruction of
the object. Next, the network performs best when trained on large amounts of
data, as other networks submitted to the BOP Challenge. The datasets in the
BOP challenge are not very large, with around a thousand images per object.
However, this paper, as well as many others, uses physically based rendering
(PBR) techniques to acquire more training data [14]. All datasets in the BOP
challenge have objects laid out on a flat surface. Using the PBR method, the
scenes for which to train can be recreated using simulated gravity. Creating
a rendered environment for the greenhouse, which is random, is difficult to
achieve and requires large computing power. While this method works best on
all datasets provided to the BOP challenge, it does not inherently mean this
method will work best for the clipper system when rendered annotation data is
not available.

2.3 Discussion

The greenhouse is an environment with many unknowns that require adaptab-
ility and redundancy. Even though the clipper is a rigid object, no assumptions
should be made about the object’s location, as damaging a plant might mean
plant loss or infection spread. The current methods for environmental aware-
ness, especially in the greenhouse, have come a long way but are not perfect. If
the clipper method is to be feasible, the robot needs to achieve high accuracy
to be able to replace a laborer. As the clipper method is not standard in a
greenhouse yet, training networks like those discussed in Section 2.2.4 will need
a setup for annotation of position and rotation in the greenhouse to achieve
high-accuracy results for a feasible solution. Choosing a suitable Pose estima-
tion network is a challenging task, as the benchmarks that have been set do not
resemble the greenhouse environment in any way. The methods discussed also
do not verify the prediction with an extra set of sensors which is an important
aspect, as a wrong prediction can cause plant loss.
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Chapter 3

Design

The robotic arm that Lely has developed serves as a starting point to tackle
the clip extension process. While the entire clip extension process is interesting
on its own, the current end-effector described in Section 1.4 is too long for the
greenhouse to be able to maneuver between the plants. Tomato stems are
separated between 20 and 40 cm and would, therefore, not fit the current 30 cm
end-effector. For this reason, the feasibility of achieving the required location
and rotation accuracy of the clip from Table 2.1 first needs to be reached before
improvements should be made to the size of the end-effector. This chapter will
show the design that locates the clips in terms of rotation and position in 3-D
space. The first section will describe and provide a systematic overview of the
system. Then, the vision pipeline and neural network that have been set up will
be explained.

3.1 Systematic overview

Building upon the baseline robotic arm from Section 2.1, this section provides
a systematic overview of the system that is developed. This section will first
look at the separate components in the system, providing the communication
network for a single arm. The camera setup will then be discussed, followed by
how the image data is parsed and processed on the central computation unit.

3.1.1 Hardware

The hardware design of the entire system can be split into two parts. While this
project only accounts for one robotic arm, the entire robotic system will mount
multiple arms that each perform their own tasks. These arms are all positioned
along one central cart pole that can move horizontally across the greenhouse
rails. This cart is one of the two parts. However, since this part of the system
is only used for creating stability for the arms and moving from plant to plant,
it falls out of scope for this project. The focus here lies on the extension of a
single plant and will, therefore, not be discussed any further. The second part
is the robotic arm. This arm operates a total of 5 motors for positional control
using inverse kinematics to position the end-effector to any position it is able to
reach. The motors, as well as the end-effector, are controlled over a Controller
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Area Network (CAN bus) with an M7 microprocessor to handle communication.
The M7 serves as a middleman between the CAN components and the central
command running Linux and Robotic Operating System 2 (ROS2). This is
a flexible distributed framework used for the development of robotic systems.
ROS2 allows for multiple components called nodes to interact with one another
and be deployed on multiple machines across a network. Unlike its name, ROS2
is not an operating system but rather a framework with a set of tools on top
of an installed Linux distribution. An NVIDIA Jestson is used as the central
command unit for the arm. This module has all the necessary components
to test and deploy various programs and is able to run large neural networks.
With this system, there are little to no limitations in computation power for the
development of the arm. The arm can move freely up and down the cart pole.
This is because the communication is handled over a Local Area Network that
is set up on the cart. Communication with the cart or any other device, such
as a manual controller, is done over this network. Power to the system comes
from four 12V batteries configured in series to obtain 48V that is required for
the multiple motors. This voltage is then converted for the other components
in the system. Power is delivered to each arm using two copper rails and sliding
contacts to eliminate the need for a cable harness from the cart to the arm that
may tangle up with the plants. An overview of the electrical components in the
system can be seen in Figure 3.2.

3.1.2 Camera Setup

The camera setup that has been chosen for this application involves three cam-
eras positioned on the wrist of the robotic arm from Section 2.1. This position
has been chosen to view plants from multiple angles and can utilize active visual
servoing when approaching clips. Two cameras are used to construct a three-
dimensional map (point cloud) of the scene using a stereo-matching approach.
These cameras are placed at a fixed distance from each other, called the baseline,
and an image is taken from both simultaneously. A distortion matrix is applied
to both images such that points in the world lay on one line in the real world.
The two lines from both images can then be used for feature-matching, which
is an algorithm matching pixels from left and right images. The 3D point can
then be obtained using trigonometry. When objects are close by, the horizontal
shift from one image to the other becomes greater and therefore requires a more
extensive search area for feature matching. This causes the feature matching
to produce fewer matches as near objects will be viewed with different angles,
which causes the same features to not appear in both images. One way to solve
this problem is to shorten the distance between the two cameras. This causes
more corresponding features between the two images as the two images are more
similar, and therefore more points can be calculated for the point cloud. The
working area of the arm is relatively short, with the distance from the arm
to the plant being less than 30 centimeters. This is while most off-the-shelf
stereo cameras are designed for distances with a minimum of 30 centimeters.
For this reason, a custom stereo-vision setup has been constructed using the
OAK-FFC-3P modular baseboard from Luxonis [3]. The setup consists of two
global shutter grayscale 1-megapixel cameras with a horizontal separation of
25-millimeter. The setup achieves a significantly higher density of the point
cloud in close-range objects compared to a pre-configured 75-millimeter OAK-
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Figure 3.1: 3D points determined using stereo-matching with a baseline
of 75mm (left) versus 25mm (right) on a single clip with a fake stem.
Points further than 50 cm are not included to exclude the background.

Figure 3.2: Schematic overview of the electronic components with com-
munication types

D option, with on average 128 % additional points in the point cloud, a visual
difference is shown in Figure 3.1. For additional information, a 12-megapixel
color camera is positioned 25mm left of the stereo pair. The modular baseboard
is equipped with a RoboticsVisionCore 2, which can perform actions such as
stereo-matching to obtain a point cloud or run any AI model if converted to the
right format. The ability of the camera to do its own calculations means the
main computation unit can allocate more of its resources to other tasks.

3.2 Annotation pipeline

The system that will be used involves the use of a neural network to cope with
the adaptability requirement of the greenhouse. An annotation pipeline is an es-
sential component in the development of neural networks, especially for objects
that are not in any dataset yet. Annotating is the process of labeling the input
data to provide a neural network with ground truth information. However, the
annotation process can be time-consuming and therefore expensive, making it

15



Figure 3.3: Items are placed randomly on a table with a surround-
ing ring of markers that register an object’s relative position for the
LINEMOD dataset [12].

challenging to obtain large amounts of accurately labeled data. This challenge is
particularly significant when dealing with pose estimation. While 2D segmenta-
tion annotators can manage a few hundred annotations in a day with specialized
tools, scaling this up to three-dimensional, including the object rotations, sig-
nificantly increases the time needed for annotation. As a reference, the BOP
datasets discussed in Chapter 2 consists of about a thousand real images, with
some approaches adding more than ten thousand procedural generated images.
Manually generating training data is both time and accuracy-wise not viable.
There is a need for a pipeline to automate the process.

3.2.1 Scene annotations

The way most 6-D pose datasets are annotated is achieved in scenes. A scene
consists of an object that needs to be annotated and a set of ARTags [9], often
implementing ArUcO [10]. These markers are typically placed on a table in a
circular pattern to ensure at least one marker is always visible when viewing
objects from different angles. An essential factor between scenes is that the
relative transformation between the object and marker is not constant. The
reason for this is to negate any correlation between the markers and the object
when training for a neural network. An example of this setup can be found
in the LINEMOD dataset, Figure 3.3, which is the most common dataset to
validate 6D Pose estimation networks on. The markers have a known length,
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and their position and rotation relative to the camera can be calculated using
the camera intrinsics. This information is useful when paired with the relative
transformation from marker to object. For the duration of a scene, which in
LINEMOD is around 50 images, only one annotation for an object is necessary
to calculate the camera transformation for all other images in the scene. This
method improves the speed of annotation dramatically and ensures a consistent
measurement. As an addition to this annotation pipeline, a registration ring
has been developed to ease the annotation even further. This ring consists of
5 ArUcO markers in a half-circle configuration, as shown in Figure 3.4. The
ArUcO board to place in the scene consists of a grid of two by four to ensure
the camera sees at least part of the markers to register its 3D transformation.
The measurement becomes less accurate when the markers become smaller or
fewer markers are present. This becomes specifically apparent when the single
markers on the ring are less visible to the camera. The methods for detecting
the markers use segmentation on the borders and inside patterns. An additional
transformation to each marker position and rotation to the center of the clip is
applied to return the same pose depending on the relative marker placement on
the ring. When the markers become difficult to segment due to extreme angles
or low lighting, the estimated position and rotation will be off. For this reason,
a moving median of 10 measurements across multiple frames is taken for all
visible ring markers to achieve an accurate pose from the combined markers.

Once the relative transformation from the ArUcO board to the ring is saved,
the ring can be removed. Small magnets are embedded inside the ring that
snaps on the clip and can be easily removed without the clip moving from its
position. During annotation, the image, transformation from camera to clip,
camera intrinsic, and depth are processed into the BOP format from Subsec-
tion 2.2.4. This step also generates a mask of the clip and a mask based on the
clip visibility in the depth image that is used for training 2D classification. Using
this pipeline, a dataset has been created using a variety of locations that offer
different lighting conditions on and around the clip. Around three thousand
annotations are generated across fifty scenes.

3.3 Pose Neural Network

Now that a pipeline has been set up to gather data, it is time to train a neural
network on this data. The neural network must be able to detect and give
rotation and translation vectors relative to the camera. For the clip application,
several factors come into play. The network should not penalize the symmetric
properties of the clip. Neural networks are evaluated based on a function, so
this function must return the same score when rotated by 180 degrees around
its symmetrical axis. Another factor to consider is the amount of training data
that is needed to train these networks. Even though the annotation pipeline
from Section 3.2 is efficient, the amount of training data most of the networks
from Section 2.2.4 need up and around fifty thousand annotated images. These
networks use procedurally generated images with only a portion of real images.
With highly detailed 3D models, a virtual environment is created to train on.
These environments replicate the position and occlusion that are found in the
real world using physics simulation. However, creating a procedurally generated
greenhouse setting that is realistic enough for training is outside of the scope
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Figure 3.4: Aruco ring that is attached on the clip using magnets to
register the relative transformation to the AruCo board. After this,
the ring is removed. An annotation can then be created if the board
is in view.

of this project. The chosen neural network, therefore, only uses real images for
training.

3.3.1 EfficientPose

The neural network that has been chosen is EfficientPose [4]. This network is
based on a 2D classification and bounding box detection network called Effi-
cientDet [26]. The EfficientPose network extends EfficientDet to add two sub-
networks to predict the rotation R and translation t. Due to the small size of
these subnets and their utilization of shared input feature maps with the exist-
ing classification and bounding box subnets, the added computational overhead
is negligible. To combat the need for large datasets, the training of this network
employs 6D augmentation on the real images in order to increase the amount
of training data and help to converge the network to a more general solution.
This network can add extra rotation, scaling, and shearing on the image and
annotation to generate more data. A small error is introduced when objects
are not in the center of the image. As the camera perspective on the 3D object
changes, so does the projection onto the 2D image plane. However, the neural
network has shown that the benefits from the additional data obtained with
this 6-D augmentation outweigh the introduced error. These images are then
also color transformed, like adjusting the contrast and brightness of the input
image, which does not affect the annotated data.
For evaluating transformations, points (vertices) in a 3D model are used for

evaluating the position. This 3D model has been created using Blender [7] and
contains around three thousand vertices to depict the clip accurately; Figure 3.5
shows a render of the object. A common metric ADD(-S) [12] is used for evalu-
ating the model. The average point distances between the 3D model point set
M, transformed using the ground truth R and t, and the model point set trans-
formed with the estimated R̃ and t̃, are calculated by this metric in Equation 3.1.
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Figure 3.5: A 3D model is used to evaluate the accuracy of the predic-
tion. The model is mirrored along the horizontal and vertical axis.
The model with stem (right) is used as a refinement step on the
camera point cloud.

Equation 3.2 displays the metric for symmetric objects. This metric finds the
vertices with the lowest distance to the ground truth rather than matching the
vertices between truth and predicted one-to-one. It has been found, however,
that with the clip application, small errors induced in the annotation or aug-
mentation step cause the shortest vertices between prediction and truth not to
be the correct or symmetric counterpart. Therefore, the average over all these
distances will cause a wrong convergence. To remedy this, only the minimum
distance between the ADD measurement and ADD with the 180° rotated truth
model is taken. This gives a final metric in Equation 3.3 where x1m is the
mirrored point in X (horizontal) and Z (vertical) direction. An estimate is con-
sidered correct if the average point distance is smaller than 5 millimeters, which
is 10% of the diameter of the object.

ADD =
1

m

∑
x∈M

∥(Rx+ t)− (R̃x+ t̃)∥ (3.1)

ADD-S =
1

m

∑
x1∈M

min
x2∈M

∥(Rx1 + t)− (R̃x2 + t̃)∥ (3.2)

ADD-M =
1

m

∑
x1∈M

min
x∈{x1,x1m}

∥(Rx1 + t)− (R̃x+ t̃)∥ (3.3)

3.4 Pointcloud refinement

After the model has made a prediction from Section 3.3, the stereo cameras are
used as a validation of the prediction. The camera setup from Section 3.1.2
publishes a point cloud. This is a set of 3D points that show the depth of
the camera view. Picking out a plant extension clip from just this information
is a hard feat, and therefore additional information from the neural network
is used to focus a search attempt. Once a pose is returned from the neural
network, a 6x6x6 centimeter box is taken from this position, which is just larger
than the clip itself and uses all points within this box for an Iterative Closest
Point approach (ICP) [6]. This ICP algorithm iteratively matches two point
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Figure 3.6: Difference in the convergence between only the clip model
on a point cloud and the clip model with a stem. This figure shows
cumulative distances to the truth position and rotation of the clip.
Both run from the truth position and rotation as the initial (pre-
dicted) pose. Distance is taken as Euclidean distance and rotation as
Quaternion distance from Equation 4.1.

clouds so that the combined distance between the first point cloud, the source
frame, and the closest points in the second point cloud, the target frame, is
minimized. For the greenhouse application, a point cloud is converted from the
3D model from Section 3.3 with the addition of a piece of stem to help converge
to the correct vertical alignment. The clipper application does not need to find
clippers not attached to a stem, so this assumption of all clips having a stem can
be made. Without this stem, the round nature of the clip model causes large
rotational errors to occur when running the algorithm on a noisy point cloud,
as can be observed in Figure 3.6. The 3D model is positioned on the predicted
transformation of the neural network and acts as the target frame for the ICP.
The box point cloud is set as the source frame and is fitted onto the target
frame. After the algorithm converges to a solution, the inverse transformation
is applied to the output of the neural network prediction to reach the final
transformation of the clip.
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Chapter 4

Results

Using the design described in Chapter 3, a series of tests have been conducted
to determine the accuracy and confidence of the system. This chapter will first
examine the natural error of the camera system. Next, the neural network
live prediction, or inference for short, is put to the test to see how accurate
the initial guess’s overall position is. After this, these results are compared to
the Iterative Closest point approach that is run on the inference to view any
correlation between the two.

4.1 Test setup

To measure the performance of the methods described in Chapter 3, a controlled
test setup has been constructed that simulates the greenhouse setting. An im-
age is taken from multiple arm locations on which the truth transformation of
the clip is measured using the annotation ring and the inference. Lastly, an
ICP refinement is run on the inference transformation on the point cloud, as
described in Section 3.4. All measurements are transformed into a world frame
so that the measurements from different arm locations can be combined and
inconsistencies in the arm or camera can be spotted. The axis for rotation is
measured in quaternions as the distance between two rotations and can be cal-
culated using Equation 4.1, ranging between 0 (identical) and 1 (rotated 180 °).
Bm is the mirrored point in the X (horizontal) and Z (vertical) direction to keep
the symmetry of the clip into account. X, Y and Z define the location of the
world coordinate. Where X is the axis that runs along the greenhouse row, Z
is vertical, and Y is the depth from arm to plant. A top-down view of the set
setup can be seen in Figure 4.1.

R∆(A,B) = min
b∈{B,Bm}

1− (Ax · bx +Ay · by +Az · bz +Aw · bw)2 (4.1)

Distance is calculated using Pythagoras from Equation 4.2

L∆(A,B) =
√

(Ax ·Bx)2 + (Ay ·By)2 + (Az ·Bz)2 (4.2)
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Figure 4.1: Top-down view of the test setup. The clip and ArUcO
board are placed in different positions and orientations per scene.
Measurements are taken from 10 arm positions, 5 from 340 mm, and
5 from 400 mm distance to the clip. Arm positions are evenly spaced
300 mm in the X direction, with the camera pointing at the clip.

4.2 Truth accuracy

As mentioned earlier, the arm takes measurements from multiple locations to
view the scenes from multiple angles. For these tests, the accuracy error of
the truth poses is measured. To do this, the ArUcO board from Figure 3.4 has
been taped off so that only two outside markers are visible; the board is then
placed horizontally. The distance between these two markers is 146 mm. Photos
are then taken from many arm positions so that the two markers are in view
of the camera. The position and Euclidean distance between the calculated
markers are plotted in Figure 4.2. What can be spotted in the scatter plots is
that there exists an error towards the back right side of the image of the camera
that reaches 10 mm, likely due to the camera calibration not being configured
perfectly. From these results, an expectation can be made that a prediction
from the network or ICP will be between -5 and 10 mm off other measurements
from different locations in the X and Y direction. Both the dataset and test
setup have used the same camera that introduces this error.
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Figure 4.2: Distance error of two ArUcO markers spaced 146 mm apart
placed on different positions, dots are placed on the average position
between the two markers. As the markers move further away (+Y)
and to the right (+X), the calculated distance differs from the true
distance.

Trained on < 6 mm Classification
ADD-S 0.026 0.996
ADD 0.304 0.995
ADD-M 0.353 0.995

Table 4.1: Prediction accuracy of the EfficientPose network trained on
the different loss functions. The first column shows the fraction of
the test set prediction with a distance lower than 6 mm according to
the ADD-M metric. Classification is calculated as mean Intersection
over Union (IoU)[24].

4.3 Model accuracy

The section will show the accuracy of the designed system for individual meas-
urements. First, the EfficientPose model has been trained using the three dif-
ferent loss metrics as described in Section 3.3. Some predictions on the test set
from the best-performing network are visualized in Figure 4.3. The dataset has
been split into an even training and test set, where the training set is 6-D and
color augmented for every epoch for a total of 500 epochs. The training was
performed on a system with a GTX 1080 Ti with 10 GB of VRAM. θ is a way to
scale up the neural network with a larger width, depth, and input size [4]. The
used system could not handle higher than θ = 0, so this number was chosen.
The network has been trained on three loss functions; ADD, ADD-S, and ADD-
M from Section 3.3.1. The results of the test set after training are displayed in
Table 4.1. The ADD-M metric returns the best network and will therefore be
used in the remainder of the tests on images not included in either train or test
set.

Figure 4.4 shows the spread of inference measurements to the true position of
the clip. The biggest difficulty for the neural network is to determine the depth
of the clip, with a mean of 12 mm from the true value and a standard deviation
of 22 mm, while directions X and Z show a significantly less spread with both
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Figure 4.3: The test set included clippers from different locations, with
different lighting conditions to evaluate the training methods. Blue
boxes indicate the prediction from the neural network, and green is
the true transformation.

mean within 2 mm and standard deviation of 7 and 3 mm respectively. The
ICP step after inference does improve the measurements of depth to a mean
of 7 mm and 13 mm standard deviation but worsens the X, and Z results.
Figure 4.6 shows the cumulative error of both inference and ICP distance to the
truth value. The average of the inference to truth and ICP to truth distance
is taken for the ICP measurement to view whether adding the ICP step results
in a lower distance per measurement. Only 30% of the attempts cause a fit
that complies with the requirements. What is noticeable is that the ICP can
not correct for rotational inaccuracies in the inference and is only marginally
better in positional accuracy. To gain a better understanding of where the ICP
approach is lacking, the clip rotation can be split up into X, Y, and Z axis,
which stand for Yaw, Pitch, and Roll, respectively. The distribution of points is
visualized in Figure 4.5. The horizontal axis tells the error of the inference, and
the vertical axis is that of the ICP. The error is mostly due to the Roll, which
is the axis that rotates around the metal rod from Section 1.3.1. The standard
deviation of this error is 48 for inference and 77 for ICP. A likely explanation
for this is the shape of the clip. While the clip is round at the front, it is not
always visible on the point cloud. Thus depending on the detail at the time the
point cloud is captured, the flat side of the model clip is fitted onto the front
side of the point cloud clip.

After these tests were concluded, an investigation into the effect of the error
in the annotated dataset was done. The work of EfficientPose [4] mentioned
that using 6-D augmentation introduces a small error, but the added data out-
weighed the performance that this error introduced. As the Clipper is a small
but detailed object, a small error could have a large impact on a converging
solution of the EfficientPose network. Table 4.2 shows the difference between
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Figure 4.4: Accuracy over the inference location with regards to the
truth location at the center. Point color is determined by the ac-
curacy of the rotational distance to the truth value; darker is better.
Inference variance and deviation are shown on the boxplot.

With 6-D aug. Without 6-D aug.
ADD-M 0.353 0.450
Translation Error Mean (mm) 9.728 8.031
Translation Error Std (mm) 8.868 8.034
Rotation Error Mean (degrees) 14.16 6.821
Rotation Error Std (degrees) 14.15 5.630

Table 4.2: Accuracy of networks trained with ADD-M metric with and
without 6-D augmentation on the training set.

a network trained with and without 6-D augmented images. The error that is
introduced causes large effects on the rotational accuracy.

These results have shown that errors introduced in the system, whether that
to be in the annotation data, or used during execution of the system, have a
large impact on the final prediction of the clip position and orientation. The
fact that the clip is relatively small and round in comparison to objects that
are presented in the BOP datasets, Since 6-D augmentation causes such a large
impact on prediction while other objects do not suffer from this. It goes to show
that an extra level of accuracy is required when it comes to annotating the data.
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Figure 4.5: Accuracy over the inference location with regards to the
truth rotation at the center in Roll, Pitch, and Yaw. Point color is de-
termined by the total quaternion distance; darker is better. Inference
variance and deviation are shown on the boxplot.

Figure 4.6: Accumulative accuracy of the Rotation (left), Position
(middle) and total (right) measured to the true pose of both in-
ference and an Iterative Closest Point computed with the inference
transformation as starting point.
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Chapter 5

Conclusions

This paper has conducted a feasibility study on effectively locating and orienting
a clip for automating the plant extension process using the Clipper system,
described in Section 1.3.1. To achieve this, a neural network that takes in an
image and returns the position and orientation of objects has been trained on
a custom dataset that does not require manual annotations. This annotation
method uses a board of ArUcO positional markers and registers the position
of the clip transformation based on a second set ArUcO markers. Using this
methodology, three thousand annotations can be generated in a couple of days.
A neural network has been used to predict the rotation and position of a clip in
3D. Due to the symmetric properties of the clip, different loss functions to train
the neural network on have been tried and compared, where a custom one-to-
one mirrored minimum function (ADD-M) returned the best-performing neural
network. After this, the neural network was tested in a controlled greenhouse
setup. As an extra refinement and validation step, a stereo camera has been
used to perform an ICP algorithm, Section 3.4. For the study to succeed, the
system’s prediction accuracy must fall within the positional requirements of 14,
30, and 5mm for the X, Y, and Z directions, respectively. The system must also
not exceed 15 degrees for X and Y and 5 degrees for Z. While the system does
not meet these requirements at the moment, the results mentioned in Chapter 4
provide insight into why the system in its current state is not accurate enough.
This chapter will discuss the weak and strong points in the pipeline and conclude
on the feasibility of the chosen methodology.

5.1 Location

The system is able to detect the clip object very consistently with a 99.97%
mean Intersection over Union (IoU), making false classifications an infrequent
occurrence. In terms of positional accuracy, the network achieves mean values of
2, 2, and 12 millimeters for X, Z, and Y, respectively. These numbers are within
the requirements, although many measurements still lie outside the allowed
offset due to a large deviation. One explanation for this large deviation can be
due to an incorrectly calibrated camera. As seen from the results in Figure 4.2,
a small error is introduced in the annotations of the dataset. This error is
worsened with the additional transformation from the ArUcO board to the clip,

27



which causes the error to be irregular depending on the position of both the
ArUcO board and the clip. It is then understandable that the prediction does
not converge to an offset but rather spreads around the center.

5.2 Rotation

Another likely effect of the error embedded in the camera is the bad rotation.
While the rotation that was taken from the ArUcO markers had no significant
enough error, the irregular location difference caused the neural network not to
converge properly. This could be especially seen in training with the ADD-S
metric, which can cope with all types of symmetry in an object. In theory, the
ADD-S metric should perform as well as the ADD-M metric, which is specifically
designed for the symmetric properties of the clip. Both keep the symmetry
properties in mind, something the ADD metric does not do. However, the
neural network always converged on a solution that had the Clipper on its side
on the ADD-S metric since the closest point distance (rather than one-to-one
distance) in this position and orientation was the lowest with the errors. While
the other metrics did not have this specific problem, rotational features that do
not match between annotations on similar locations could cause a less general
solution.

5.3 ICP verification

Apart from the neural network, the ICP verification was meant to confirm the
neural network prediction of the location and orientation. While in 30% of
cases, this approach worked well, most observations on the point cloud lacked
the detail necessary to fit the Clipper 3D model onto the point cloud successfully
on the Y rotational axis. For this reason, using ICP refinement to validate a
prediction is not recommended with the current depth estimation accuracy on
the point cloud.

5.4 Final verdict

It is apparent that objects with such small sizes, like the Clipper, require a
high-precision dataset to be able to determine the position and rotation of a
Clipper consistently and within the requirements to be able to grab a clip in
a greenhouse setting. At the current state, the setup cannot be deployed in
the greenhouse due to inaccurate knowledge of the surroundings. The size and
shape of the clip on the close distances found in a greenhouse setup require
higher accuracy than objects the neural networks are tested on. Therefore, the
feasibility of detecting and positioning a Clipper in the plant extension process
can only be reached with more accurate data, both for the annotation pipeline
and point cloud from the camera. The methods in this design show promising
improving results but are not ready for deployment in a greenhouse at its current
state.
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Chapter 6

Future Work

As already mentioned in Chapter 5, the current state of the designed system does
not reach the requirements for the end-effector to grab the Clipper consistently.
This chapter will discuss the future work that can be done to improve this system
and make it feasible to use in a greenhouse. Most importantly, the camera’s
intrinsics need to be improved to reduce the error in the dataset and make
the neural network converge to a better solution. Either through a different
camera or recalibration and testing again. As a requirement, the network should
perform the same when trained using the ADD-M and ADD-S loss functions.
Other options can also be explored to achieve a more accurate prediction.

One of these options is to explore 3D rendering of scenes as discussed earlier in
Section 2.2.4 to generate additional data for the network. This data does not
fall victim to a measurement error as the translation from camera to Clipper is
extremely precise. With this extra data, other neural networks that utilize this
data can also be explored and tried. In terms of point cloud approaches, further
analysis can be conducted to validate and refine a prediction of the network.
During testing, some viewing angles of the clip did show enough detail and

accuracy to be able to converge consistently to a good solution like those used in
Figure 3.6. This can be used to position the arm to a point that is optimal for the
point cloud. Another option to explore is the use of a different camera system.
As discussed in Section 3.1.2, a Time of Flight camera may work better than the
stereo camera that has been chosen. It would be interesting to find the difference
in accuracy and detail in the greenhouse setting. Luxonis, the company behind
the modular components for the camera, is developing more products, such as a
Time-of-Flight sensor and a pre-configured short-range stereo camera utilizing
two color global shutter cameras.
When the desired accuracy has been reached, the next step in the Clip exten-

sion process involves path planning to the grab position, avoiding any obstacles
along the way. Testing the end-effector in the greenhouse would preferably be
done with a mechanical design, as the current design is very elongated, making
it difficult to maneuver between plants without hitting any plants. The envir-
onmental analysis was conducted in a greenhouse that uses the Hook & Wire
method explained in Section 1.1.1. Therefore, no data has been gathered on the
rotation angles of the clips when the plant grows. This information is useful
when designing a new end-effector to determine the positions and angles it must
reach in order to grab all possible orientations of the clip.
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