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Abstract 
Digital humans are emerging as autonomous agents in multiparty 
interactions, yet existing evaluation metrics largely ignore contex-
tual coordination dynamics. We introduce a unified, intervention-
driven framework for objective assessment of multiparty social 
behaviour in skeletal motion data, spanning three complementary 
dimensions: (1) synchrony via Cross-Recurrence Quantification 
Analysis, (2) temporal alignment via Multiscale Empirical Mode 
Decomposition–based Beat Consistency, and (3) structural simi-
larity via Soft Dynamic Time Warping. We validate metric sen-
sitivity through three theory-driven perturbations—gesture kine-
matic dampening, uniform speech–gesture delays, and prosodic 
pitch-variance reduction—applied to ≈ 145 30-second thin slices of 
group interactions from the DnD dataset. Mixed-effects analyses 
reveal predictable, joint-independent shifts: dampening increases 
CRQA determinism and reduces beat consistency, delays weaken 
cross-participant coupling, and pitch flattening elevates F0 Soft-
DTW costs. A complementary perception study (𝑁 = 27) compares 
judgments of full-video and skeleton-only renderings to quantify 
representation effects. Our three measures deliver orthogonal in-
sights into spatial structure, timing alignment, and behavioural 
variability. Thereby forming a robust toolkit for evaluating and 
refining socially intelligent agents. Code available on GitHub. 

CCS Concepts 
• Human-centered computing → Collaborative and social 
computing design and evaluation methods; • Computing 
methodologies → Artificial intelligence. 
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interpersonal synchrony; coordination; RQA; EMD; SoftDTW; hu-
man perception; social computing 
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1 Introduction 
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Figure 1: Overview of our evaluation framework. We use 
skeletal representations of natural interaction videos to en-
able precise, controlled interventions on kinematics and 
prosody. These modified embodiments are evaluated using a 
suite of objective metrics. We also a conduct a user study to 
gauge the effect of change in representations (video → skele-
ton). Interventions are applied only to skeletons, not to the 
original videos, allowing causal probing of metric sensitivity 
to theory-driven perturbations. 

Digital humans have already shown promise for applications 
within the education and mental healthcare domains, such as for 
evoking curiosity in classrooms [39], or eliciting more honest re-
sponses in clinical interviews compared to human interviewers [26]. 
In order to develop interactive digital humans to serve as autonomous 
agents in human-AI collaborative settings, it is crucial to have a con-
sistent and principled framework for evaluating these synthesised 
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behavioural artefacts within interactive social contexts. Crucially, 
what counts as “appropriate” behaviour depends on how it coordi-
nates with the other people in the scene—behaviour is meaningful 
only in context. In particular, real conversations unfold through fine-
grained synchrony: timing and kinematic alignment among partic-
ipants [18, 19, 27, 28]. Yet most metrics ignore these behavioural 
coordination dynamics. 

Recent advances in machine learning (ML) render digital hu-
mans with unprecedented near-photorealistic fidelity. Yet objective 
measures that reflect higher-order human perception remain miss-
ing [37], leaving us without a reliable framework for assessing 
social adeptness. Therefore, a crucial impediment to further devel-
oping ML techniques that enable human-like social dynamics is the 
absence of a reliable evaluation framework for assessing the quality 
and social adeptness of generated behaviours in digital humans. 

Evaluation of synthesised non-verbal behaviour is inherently 
challenging. One reason is the stochastic nature of behavioural 
responses: multiple valid responses are possible for the same social 
stimulus [30, 44, 52]. Moreover, our perception of the validity of 
those responses is highly subjective [37]. This challenge is com-
pounded by a mismatch between training objectives and perceptual 
criteria: the loss functions used to train generative models often 
optimize for metrics that do not align with how humans judge 
behavioural quality, meaning that the models may not be learning 
the very characteristics that drive social believability. 

There is still no gold-standard protocol for evaluating synthetic 
social behaviour. Subjective studies rely on ad-hoc questionnaires 
whose items are often collapsed into a single score or lack in-
ternal consistency [70], while “objective” work spans everything 
from mean-squared error to kinematic statistics such as accel-
eration and jerk [23, 37]. The two worlds rarely agree: metrics 
that look good to a computer frequently fail to match human 
judgements—an outcome starkly illustrated by the GENEA gesture-
generation challenge, where most automatic scores were uncorre-
lated with perceived human-likeness [72]. This mismatch reveals a 
deeper problem, we do not yet know which kinematic or synchrony 
patterns give rise to higher-order impressions like naturalness or 
rapport. Lacking that mapping, the community has no principled 
way to choose either the right metric or the diagnostic perturba-
tions needed to test it in perception studies. The situation is further 
complicated by the fact that nearly all existing metrics treat each 
actor in isolation and thus ignore the multiparty coordination that 
defines real conversation. 

Taken together, these gaps point to the need for a unified frame-
work that (i) respects the social context in which behaviour unfolds, 
(ii) is sensitive to multiparty coordination, and (iii) is validated 
through targeted interventions. Most existing metrics were de-
signed for single-actor motion or for speech-gesture appropriate-
ness in isolation [72]; they rarely ask whether the cues are coherent 
with the surrounding partners’ actions or with the agent’s social 
goals [37]. Even seemingly simple examples underscore the limita-
tion: a jump is meaningless in isolation, expressive during a dance, 
and disruptive in the middle of a group conversation—illustrating 
that social relevance is highly context-dependent [15]. Recent at-
tempts to incorporate context (e.g. [52] for facial reactions) are 
promising but remain modality-specific and do not generalise to 
whole-body, multiparty interaction. 

Most state-of-the-art behaviour-generation systems operate on 
skeletal motion data rather than generating full video. Joint ro-
tations or 3-D keypoints serve as the primary representation for 
training losses, diffusion steps, or transformer tokens. Consequently, 
evaluation must “speak the same language” as the models—otherwise, 
we risk optimising for signals that the evaluation metric cannot ac-
cess. The use of skeletal representations brings two key advantages. 
First, it removes appearance cues (faces, clothing, background) 
allowing us to isolate the kinematic features that underpin inter-
personal coordination. This makes controlled manipulations—such 
as damping hand velocity or delaying gesture onset—both tractable 
and visually coherent. Second, by presenting observers with the 
same skeleton-only embodiment that models generate, we can di-
rectly assess how well purely kinematic information maps to higher-
order perceptual measures such as human-likeness or conversation 
quality. This leads to our central question: Can objective metrics 
applied to skeletal motion capture the theory-driven kinematic pertur-
bations we introduce? Addressing this question helps clarify the lim-
its of skeleton-based evaluation and informs the design of metrics 
that are both aligned with model representations and perceptually 
meaningful. In this work, we contribute the following: 

(1) Design three controlled interventions that systematically 
perturb gesture kinematics, speech–gesture timing, and vo-
cal pitch. 

(2) Introduce a compact panel of cross-modal metrics for mul-
tiparty skeleton data. 

(3) Conduct an exploratory perception study comparing video 
recordings to skeletal embodiments to understand how repre-
sentation modality affects judgments of conversation quality 
and human likeness in group settings 

(4) Analyse the sensitivity of each metric to our interventions 
in natural group interaction. 

2 Related Work 

2.1 Generating Multiparty Social Behaviour 
Recent advances have turned to deep generative approaches for 
social behaviour synthesis. The synthesis of co-speech gesture gen-
eration, for instance, is notoriously challenging due to the highly 
idiosyncratic, non-repetitive nature of human gestures and their 
diverse communicative functions [37]. Nevertheless, the field has 
seen a surge of interest thanks to larger multimodal datasets and 
powerful models [37]. Modern methods can take various input 
modalities - e.g. speech audio, text transcripts, or other signals -
to drive gesture production [37]. For speech-to-motion generation, 
early deep-learning models ranged from recurrent networks and 
GANs to normalizing flows [2, 22]. More recently, diffusion mod-
els have gained prominence as social diffusion models for motion. 
Diffusion-based frameworks address the trade-off between motion 
quality and diversity that plagued earlier deterministic approaches. 
For example, Dabral et al. [10] introduced a denoising diffusion 
model to generate co-speech gestures, and Mughal et al. [32] ex-
tended this to a multi-modal conversational diffusion system that 
produces realistic listener and speaker gestures in coordination. 
These methods can produce a distribution of plausible motion se-
quences rather than a single deterministic gesture, better reflecting 
the variability of human behaviour. 
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Researchers have also begun exploring language-conditioned 
or speech-conditioned generation of full-body social behaviour. 
Speech-driven approaches such as Yoon et al. [71] learn an end-
to-end mapping from raw speech features (mel-spectrograms) to 
upper-body pose sequences for humanoid robots, optionally fusing 
speech text as an auxiliary cue. ZeroEGGS [14] remains speech-
audio conditioned, but adds zero-shot style control that can be keyed 
with a short example motion clip, yielding diverse gestures that syn-
chronize with the spoken signal. In contrast, text-to-motion frame-
works such as MotionCLIP [56] map natural-language prompts into 
a CLIP [43] aligned latent space to drive 3-D body motion. While 
the Human Motion Diffusion Model [57] can generate long, varied 
motions from textual action labels or free text. Most of these meth-
ods still target a single performer; the recent work of Sun et al. [53] 
moves a step further by jointly generating holistic 3-D motions for 
both a speaker and a listener in dyadic conversations, condition-
ing on audio and text and enforcing mutual influence between the 
two characters. In another line, social behaviour forecasting has 
emerged to predict how group interactions will unfold. Raman et al. 
[44] emphasize that individuals adapt their behaviour differently 
across groups depending on contextual factors like relationships 
and rapport. This stochastic forecasting of multiparty non-verbal 
cues (e.g. who will gesture or look at whom next) represents a 
forward-generative view of social behaviour. This progress sets the 
stage for evaluating how socially appropriate and human-like these 
generated behaviours truly are. 

2.2 Evaluation Techniques 
Assessing generated social behaviour is challenging because it must 
account for both physical realism and social meaning. Prior work 
combines objective metrics such as joint position error, velocity 
differences, and Fréchet Distance—with subjective human judg-
ments. Although kinematic measures capture low-level fidelity, 
they often miss context: a gesture may closely match a reference 
yet still feel awkward or inappropriate with respect to other conver-
sation partners. As a result, user studies remain the gold standard, 
where participants rate naturalness, appropriateness, or human-
likeness of behaviours [21, 34], and instruments like the Godspeed 
questionnaire gauge perceived personality and emotional impact 
in human–robot interactions [4, 11]. For example, Neff et al. [34] 
demonstrated that adding or altering gestures can change percep-
tions of an agent’s personality, but such studies are time-consuming 
and hard to reproduce consistently. 

A clear gap between objective and subjective metrics has been 
identified. Wolfert et al. [70] reviewed evaluation practices for ges-
ture generation in embodied agents and noted a lack of reliable au-
tomatic metrics for social quality. Often, objective scores like mean 
error or diversity have weak correlation with human judgments of 
appropriateness or engagement. This gap has motivated work on 
better proxies for social naturalness. One approach is to measure 
interpersonal coordination signals. For example, interpersonal syn-
chrony is a desirable emergent quality in multi-party behaviour. Re-
searchers have quantified synchrony via movement correlation and 
recurrence analyses – e.g. Shockley et al. [51] showed people’s body 
sway becomes coupled when they are interacting smoothly. Recent 
studies go further to link such measures with social outcomes: Rüh-
lemann and Trujillo [48] found that more expressive hand gestures 
can induce stronger physiological synchrony (skin conductance 

coupling) between storytellers and listeners, suggesting an objective 
avenue to gauge a gesture’s social efficacy. Similarly, metrics from 
dynamical systems like cross-recurrence quantification [65–67] 
have been applied to evaluate the temporal coordination between 
agents’ multimodal signals. 

Context-dependent appropriateness recognizes that, rather than 
a single “correct” response, an AI may produce multiple valid 
behaviours for the same social cue [44]. The Multiple Appropri-
ate Facial Reaction Generation challenge [52] highlights this by 
allowing diverse listener expressions and evaluating them with 
context-sensitive metrics such as the rank correlation of generated 
versus real facial features (FRCorr) and an expression-space dis-
tance (FRDist). While these measures move beyond pure visual 
realism, they still compare only distributions of synthetic reac-
tions. Ultimately, the true test is whether people perceive multi-
party behaviours as natural and believable. Recent studies have 
begun validating that higher synchrony scores align with greater 
observer-rated rapport, or that an appropriateness metric predicts 
user preference between gesture variants [31]. The field is rapidly 
moving beyond low level fidelity measures toward social evaluation 
criteria such as diversity, synchrony and context awareness, while 
grounding these quantitative assessments in human judgments 
through frameworks that combine signal analysis with subjective 
evaluation of behaviour [37]. 

3 Methodology 
We selected CRQA, multiscale beat consistency, and Soft-DTW be-
cause together they give a comprehensive, interpretable window 
into the rich, dynamic structure of social behaviour that simpler 
statistics miss. CRQA lets us quantify both linear and non-linear 
synchrony—including transient entrainment and leader–follower 
dynamics—by mapping when two participants’ state-space trajecto-
ries return to similar regions. The multiscale beat consistency score 
homes in on the critical cross-modal timing between gesture and 
speech at multiple temporal scales, capturing how co-speech ges-
tures tune prosodic perception and narrative flow. And Soft-DTW 
provides a flexible, differentiable distance metric that aligns elastic 
sequences—whether 3D gesture paths or F0 contours—so we can 
compare natural timing variations within and across individuals. 

Crucially, these measures complement one another: CRQA pin-
points when and how long participants are coupled, beat consis-
tency captures precise cross-modal timing, and Soft-DTW quanti-
fies shape similarity under elastic alignment. Integrating them lets 
us triangulate synchrony across phase, scale, and form for a robust, 
multi-perspective characterization of social coordination. 

3.1 Behavioural Measures 
CRQA. Human social interactions unfold as complex, time-varying 

sequences of movement, in which partners continuously adapt 
to one another’s subtle kinematic cues. Traditional linear mea-
sures—like cross-correlation or coherence—capture only stationary, 
time-lagged similarities and often miss the rich, non-stationary cou-
pling that underlies real-time synchrony. Cross-recurrence quan-
tification analysis (CRQA) overcomes these limitations by recon-
structing each participant’s state-space and then directly mapping 
when and for how long their trajectories return to similar regions. 
This makes CRQA uniquely sensitive to both linear and non-linear 
coordination patterns, robust to noise and differences in signal scale, 
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and capable of capturing transient episodes of entrainment that 
standard methods overlook [65–67]. Moreover, by examining shifts 
of the recurrence structures off the main diagonal, CRQA naturally 
handles phase shifts and time lags in gestures—quantifying not 
only whether two signals synchronize but also when one leads or 
follows the other. 

CRQA has been used for analysing social communication and 
behavioural characteristics in general and in multi-person group 
settings [7, 38, 51, 59, 66]. In our work, we are using CRQA to help 
quantify synchrony within virtual social interactions. Specifically 
we shall be making use of the recurrence rate (RR), % determinism 
(%DET) and mean length of recurrence (MeanLR). Typically in a 
recurrence analysis, the RR is fixed to a reasonable degree through 
adjusting the recurrence radius (e.g. 2%) [65]. The recurrence ra-
dius defines the maximum distance allowed between two points 
for them to be considered recurrent. While RR is adjusted to have a 
certain variance, since it is fixed for the entire dataset it is a valu-
able output measure of CRQA; indicating the presence recurrences 
(suggesting presence of attractors in state-space). %DET quantifies 
the proportion of recurrence points forming the diagonal of the 
recurrence matrix, a higher %DET value implies a higher structure 
within the two signals and therefore making it more predictable. 

Multiscale Beat Consistency Between Speech and Gestures. It is 
quite well known that human beat gestures are important co-speech 
factors that tune the perception of prosodic information, narrative 
structure, and affecting a much wider range of perceived social 
dynamics [41, 42, 54, 63, 64]. Previous studies show that humans 
perceive differences in the temporal relationships between beat 
gestures and speech, while also affecting their speech perception 
and memory [6, 24, 35, 60]. There is further biomechanical research 
showing that beat gestures directly couple to the acoustics of the 
voice through respiration [41, 42]. Given this important entan-
glement of gesture and speech on multiple functional levels it is 
likely an important perceptual correlate of human(-like) social be-
haviour. To investigate this multi-scale gesture-speech coordination 
we turn to empirical mode decomposition [46, 47]. Empirical Mode 
Decomposition (EMD) is an adaptive time-frequency data analy-
sis method that decomposes a signal into a set of Intrinsic Mode 
Functions (IMFs) representing different frequency components (i.e., 
different temporal scales), which have been used to characterize 
speech [58, 68]. Unlike Fourier analysis, EMD makes no prior as-
sumptions about the data, enabling effective analysis of non-linear 
and non-stationary signals by separating oscillatory modes dy-
namically as they change over time. Non-stationary frequency 
compositions are naturally present in social behaviour obviating 
predefined basis functions. EMD is therefore a good fit for studying 
multi-modal signals, which in our case concerns an overall total 
angular speed of hand-gesture-relevant joints (elbow and wrist 
joints for left and right), and the smoothed amplitude envelope 
for speech (following [58]). To measure the consistency of timing 
between the different (EMD-derived) multimodal signals we utilize 
the beat consistency score as provided in [25], whereby the tem-
poral alignment between signal onsets (i.e., beats) is calculated by 
a guassian-weighted proximity score (1 = perfect synchrony) that 
is normalized by the number of beats. Note that next to applica-
tion for between-modality within-person analysis, we also apply 
our multiscale beat consistency metric for cross-person analysis 

(a) Raw video of the interaction. (b) Skeletal representation. 
Figure 2: Example snapshot of thin-slices from the DnD 
Group Gesture dataset [32] shown to users in the percep-
tion study. (a) Video data from multiple cameras, and (b) the 
skeletal representation of the group and a single member. 

to assess social coordination (e.g., synchrony) patterns (which is 
known to be multiscale in nature too; e.g., [1, 5]). 

Soft-DTW (SDTW). Both the 3D trajectories of a gesture and 
the F0 contour of speech exhibit rich temporal variability: one 
person may linger on a hand-wave while another rushes through 
it; a speaker may stretch or truncate a rising intonation depending 
on turn-taking cues [69]. Soft-DTW lets us robustly match these 
sequences, aligning corresponding sub-gestures or pitch accents 
even when their durations differ. By focusing on the shape of the 
motion or pitch contour, rather than rigid clock time, it captures 
both intra-person consistency (e.g. before/after an intervention) 
and inter-person coordination (e.g. speaker–listener synchrony). 
Robust to brief tracking or pitch-tracking artifacts, Soft-DTW gives 
us a stable, interpretable distance measure that reflects how closely 
two behaviours (spatio-temporal signals) follow the same dynamic 
pattern under natural timing shifts. 

Soft-DTW extends classic Dynamic Time Warping by replacing 
the hard minimum over warping paths with a “soft-min” controlled 
by a smoothing parameter 𝛾 [9]. For 𝛾 > 0, the loss is differentiable 
everywhere, making it compatible with gradient-based learning and 
end-to-end modelling of social signals. As 𝛾 grows, the alignment 
aggregates more paths and becomes increasingly smooth (down-
weighting local misalignments); as 𝛾 → 0, it converges to the exact 
DTW cost. A lower Soft-DTW cost thus indicates tighter tempo-
ral similarity after accounting for elastic warping. In practice, we 
exploit this metric both to compare 3D gesture trajectories, quanti-
fying how an intervention preserves or alters natural motion. We 
also use it to measure how an induced pitch-variance intervention 
departs from each speaker’s original F0 contour. Beyond pairwise 
comparisons, Soft-DTW supports clustering, anomaly detection, 
and the computation of barycenters, enabling population-level anal-
yses of multimodal social behaviours. 

3.2 Intervention Friendly Motion 
Representation 

For our analysis, we require datasets that capture authentic hu-
man social interactions in multiparty settings. We selected the 
DnD Group Gesture dataset [32], which records groups of five 
participants engaged in “Dungeons and Dragons” (DnD) game-
play sessions. This dataset is particularly valuable as it captures 
naturalistic social dynamics occurring within a structured collabo-
rative activity, providing rich examples of spontaneous multimodal 
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communication behaviours. The dataset provides RGB videos and 
BVH1 (Biovision Hierarchy) files that contain both skeletal structure 
information and the corresponding motion capture data recorded 
during gameplay. Each BVH file encodes a hierarchical representa-
tion of joint positions and rotations, allowing for precise tracking of 
body movements across multiple participants simultaneously. This 
skeletal representation offers several methodological advantages 
over RGB video data for our research objectives. The dataset also 
provides us with the audio files associated with each participant in 
that session of DnD. 

First, skeletal data (Figure 2b) enables us to perform controlled 
interventions on specific motion parameters while preserving the 
overall structural integrity of the movements. We can systematically 
manipulate gesture timing, amplitude, or coordination patterns 
between participants—interventions (Section 3.4) that would be 
prohibitively complex or visually inconsistent if attempted on RGB 
video. Second, the skeletal format provides a dimensionality reduc-
tion that focuses our analysis specifically on movement dynamics 
rather than potentially confounding visual elements such as cloth-
ing, lighting, or facial expressions which is important for our chosen 
subjective measures (Section 3.3). Finally, this representation facili-
tates quantitative analysis of spatio-temporal coordination patterns 
between multiple participants, which is central to our investigation 
of social signals in group settings. 

Our pipeline processes BVH files to extract movement features 
relevant to social coordination, applies systematic interventions to 
these features, and then utilises the modified skeletal animations 
for subsequent analysis. We use thin-slices [33], which requires 
us to slice our movement and audio features into 30-second slices 
yielding ≈ 145 slices, upon which we apply interventions in order 
to test our measures. This approach allows us to establish causal 
relationships between specific movement or audio parameters and 
perceived social dynamics within multiparty interactions. 

3.3 Motivation for Subjective Measures 
To assess perceptual differences between ground truth video record-
ings of participants in the DnD Dataset [32] to their skeletal embod-
iment derived from the BVH-based motion capture, we conduct a 
perception study. The experimental design employed the Perceived 
Conversation Quality framework [45] to measure conversation 
quality factors, alongside a modified Artificial Social Agent Ques-
tionnaire [13] to help quantify the perceived human likeness of the 
agents. This methodological approach allows us to control for and 
account for potential perceptual shifts occurring when transitioning 
from video recordings to skeletal representations. 

Perceived Conversation Quality metrics provide quantifiable 
measures for interpersonal relationships, the nature of interaction, 
and equality of opportunity that is also expected to capture en-
gagement [45]. We selected this framework specifically because 
conversational dynamics are primarily conveyed through motion 
patterns and interactional timing, elements that should theoreti-
cally be preserved in skeletal representations despite the reduction 
in visual information. Human likeness assessment, as operational-
ized by the Artificial Social Agent Questionnaire, complements 
these metrics by evaluating how anthropomorphic features are 

1https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html 

perceived across different embodiment conditions [13]. This dual 
measurement approach allows us to examine both the quality of 
the observed interactions and the extent to which the skeletal rep-
resentations preserve human-like qualities compared to the video 
recordings. This dimension is particularly relevant as skeletal rep-
resentations strip away surface-level visual cues while preserving 
motion dynamics, creating a controlled experimental condition to 
isolate movement-based factors in human perception, providing 
insight into which elements of human communication remain ro-
bust across different representation modalities. It is important to 
note that we are interested in the perception (by an observer) of 
conversation quality and human likeness rather than the anecdotal 
experience of the participants themselves in terms of likeability, 
sociality etc., which will be associated with in-group cues like 
clothing. This further motivates our choice of instruments and 
skeleton-representation for this exploratory study. 

Our analysis focuses on the aspects of human behaviour that 
pertain to interpersonal synchrony, individual synchrony patterns 
(intra-personal) and distributional characteristics - taken together 
these aspects provide a window into how human behaviour is holis-
tically perceived by others [3, 18, 19, 59, 62]. While interpersonal 
synchrony captures the perceived dynamic, moment-to-moment 
coordination between individuals, individual patterns reveal how 
observers interpret consistent tendencies and unique characteris-
tics of each person. Distributional characteristics, in turn, provide 
insight into how broader patterns of behaviour vary across people 
and groups. The results of this study can be found in Section 4.1 
and more details about the setup are available in the Appendix. 

3.4 Interventions 
Our study employs a series of targeted interventions designed to 
manipulate specific aspects of behaviour in thin slices of group 
interaction. These interventions allow us to examine how subtle 
changes in behavioural elements affect our chosen metrics in Sec-
tion 3.1. The interventions broadly target: interpersonal synchrony, 
self-synchrony, and distributional characteristics. 

Movement Dampening. Gesture kinematics have been shown 
to significantly influence social perception. Prior studies indicate 
that the speed of gestural movements can modulate perceived per-
sonality traits such as extraversion [34, 36], while the accelera-
tion profiles of gestures impact how well gestures are perceived 
to match accompanying speech [8, 29, 48, 49]. Additionally, larger 
hand movement amplitudes have been associated with communica-
tive intent [11, 40, 48], suggesting that more expansive gestures con-
vey greater social engagement. Deshmukh et al. [11] demonstrated 
that increases in both the speed and amplitude of gesturing lead 
to higher ratings on the Godspeed questionnaire [4], particularly 
along dimensions of perceived anthropomorphism and likeability. 
Beyond these effects, recent work also shows that visual bodily sig-
nals, particularly from the upper body, play a crucial role in allow-
ing observers to anticipate conversational turn-taking events [55]. 
However, while these findings robustly link gesture kinematics to 
social perceptions, they often stop short of specifying the exact 
quantitative functions that help measure these effects. To systemat-
ically explore this space, we introduce a targeted manipulation of 
gesture kinematics by dampening the movement of the hands and 
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arms in the skeletal embodiment. By controlling movement magni-
tude in this way, we aim to causally assess the impact of gesture 
intensity on multimodal coordination metrics. We hypothesize that 
altering gesture kinematics will lead to measurable changes at both 
the intra and inter personal levels. Specifically, we expect this inter-
vention to influence joint-level Recurrence Quantification Analysis 
(RQA) within individuals, Cross-Recurrence Quantification Anal-
ysis (CRQA) between individuals, Soft Dynamic Time Warping 
(Soft-DTW) distances between gesture trajectories across individ-
uals, and the Multiscale Beat Consistency between gestures and 
speech within an individual and between individuals. We dampen 
the movements of hands in the motion capture through the use of a 
Gaussian filter, which effectively functions as a low pass filter and 
thereby suppresses or dampens some of the hand movements and 
gestures. We apply this one level up the kinematic chain in order 
to ensure that the dampening occurs in the hands themselves. This 
is required due to the way motion is represented in BVH files. 

Speech-Gesture Delay. We introduce delays in speech onset, which 
could also be seen as delays in response times between individu-
als, to disrupt the natural temporal alignment between gestures 
and speech. Prior work by Ter Bekke et al. [54] found that, on av-
erage, gestures preceded their semantically corresponding words 
by approximately 0.724 (𝜎 = ±0.730) seconds during free-form 
conversation, providing a useful estimate for the typical temporal 
lag between modalities. Additionally, they reported shorter-range 
dependencies between gesture strokes and prosodically accented 
speech events, such as pitch accents, indicating that multiple levels 
of fine-grained coordination exist in natural communication. For 
the purposes of our intervention, we focus on the longer-range 
dependency observed during free-form conversation, as it better 
reflects the spontaneous, multiparty social settings captured in 
the DnD Group Gesture dataset [32]. Due to the impracticality of 
manually identifying and adjusting individual gesture-speech align-
ments for each participant, we instead apply a uniform delay of 
0.724 + 𝜎 , across each individual’s entire audio track. While this 
approach sacrifices fine-grained specificity, it provides a systematic 
perturbation that allows us to examine whether disrupting speech-
gesture synchrony globally affects perceived social coordination. 
By introducing this misalignment, we hypothesize that self and 
interpersonal beat consistency will be degraded. 

Voice Pitch Variance Reduction. Previous research has demon-
strated that vocal information plays a crucial role in shaping lis-
teners’ perceptions of speaker traits such as confidence and social 
dominance [16, 17]. In particular, Guyer et al. [17] showed that 
manipulating a speaker’s pitch can significantly alter perceived 
confidence levels: lowering the fundamental frequency (F0) by 20 
Hz led to higher confidence ratings, while raising it by 120 Hz had 
the opposite effect. These findings highlight that even relatively 
small perturbations in prosodic features can meaningfully influ-
ence social evaluations. Motivated by these insights, we introduce 
a pitch variance reduction intervention in our analysis. Specifi-
cally, we constrain the F0 trajectories of speakers within a limited 
range around their mean F0, effectively reducing prosodic variabil-
ity without altering the overall verbal content. This manipulation 
enables us to isolate the role of vocal expressivity in multimodal 
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Figure 3: PCQ and ASAQ ratings from a control experiment 
between the baseline videos and the stick representations of 
humans from the video. The control experiment is done to 
show the possible effect of changing the representation from 
videos to the stick skeleton. 

social coordination. To quantify the impact of pitch variance re-
duction, we compute the Soft-DTW distance between the original 
and altered F0 streams for each thin-slice segment. Soft-DTW is 
particularly well-suited for this task as it allows for flexible, dif-
ferentiable alignment between sequences, making it sensitive to 
subtle changes in prosodic contours. We hypothesize that reducing 
pitch variability will disrupt natural prosodic dynamics, leading to 
measurable changes in Soft-DTW distances. 

4 Experiments 

Table 1: LMEM results predicting CRQA %DET. Dampening 
strength at 10. Complete table in Appendix. 

Predictor Coef. p-value 95% CI 

Intercept -0.093 0.000 -0.134 -0.052 
Condition: Dampened 0.115 0.000 0.073 0.157 
Group Variance 0.301 

Table 2: LMEM results predicting CRQA MeanLR. Dampening 
strength at 10. Complete table in Appendix. 

Predictor Coef. p-value 95% CI 

Intercept -0.169 0.000 -0.210 -0.128 
Condition: Dampened 0.451 0.000 0.410 0.492 
Group Variance 0.334 
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Figure 4: Figure shows the CRQA Average %DET and MeanLR 
in the gesture signal of each individual. The dampened mo-
tion leads to more predictable motion. 
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Figure 5: Figure shows the cross-modal inter-person beat 
consistency. Averaged against all conversation partners. 

Table 3: LMEM predicting inter-person Soft-DTW distances. 
Dampening strength at 10. Complete table in Appendix. 

Predictor Coef. p-value 95% CI 

Intercept 0.323 0.000 0.272 0.373 
Condition: Intervened -0.637 0.000 -0.688 -0.586 
Group Variance 0.376 

4.1 Exploratory Perception Study 
In order to quantify the change in perception that is caused by 
changing representations (video → stick skeletons), we presented 
thirteen 30-second thin-slices to 27 participants. Each clip was 
shown to an average of ∼ 3.0 participants who filled out the 
ASAQ [13] and PCQ [45] instruments. Figure 3 shows the perceived 
changes between the video and stick skeleton representations as 
ratings received on the ASAQ and PCQ instruments. There is a 
change in the ASAQ ratings indicating that subjects found that 
stick representations to be less “human-like” in appearance (Mean 
(video − stick figure) = 0.51, SD = 0.67, t(27) = 4.07, p < .001). While 
the change in PCQ reflects lower quality of perceived conversations 
(Mean (video − stick figure) = 0.34, SD = 0.47, t(27) = 3.89, p < .001). 
Both measures show a change likely due to the skeletal representa-
tions missing articulations not afforded in the representation such 
as facial expressions. 
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Figure 6: Figure shows SoftDTW distances calculated between 
ground-truth data and the manipulated variations. 

4.2 Movement Dampening 
For analysing the intra and inter person effects we rely on lin-
ear mixed-effects models (LMEM), with the implementation from 
statsmodels [50]. Here we mainly talk about the first strength level 
that yields a significant change in metrics, however all strength 
levels (𝜎 ≥ 10) yield a 𝑝 < 0.05. Detailed LMEM summary tables 
can be found in the Appendix. It should be noted that, despite high 
variability in the data, the linear mixed-effects model identifies a 
consistent effect after accounting for subject-level differences. The 
LMEM shows that the Dampened condition raised %DET for the 
Right-Hand by 0.0.026 (𝑝 < .001). A similar increase was observed 
for the Left-Hand. Similarly, MeanLR for the Right-Hand increased 
by 1.56 units in the Dampened condition (𝑝 < .001). Left-Hand is 
raised by ≈ 1.2 units under intervention. Dampening also consis-
tently lowers beat consistency for strength ≥ 20 across all people 
with the mean (0.54) decreasing by 0.06. LMEM summary tables 
for the intra-person RQA and Beat Consistency are available in 
the Appendix. For analysing the effect between pairs of people, 
we make use of CRQA (Figure 4), Beat Consistency (Figure 5) and 
SoftDTW (Figure 6a). Table 16 shows the CRQA %DET is substan-
tially increased for the hands. Introducing dampening raised %DET 
for Right-Hand by 0.115 (𝑝 < .001) and boosted Left-Hand by an 
even larger 0.241 (0.115 + 0.126, 𝑝 < .001). Similarly, dampening 
raised the Mean Length of the Right-Hand by 0.451 units (𝑝 < .001) 
and, after accounting for a small interaction (−0.059), the Left-
Hand by ≈ 0.392 units. Beat Consistency was also lowered between 
all individuals compared to the baseline as shown in Figure 5a. 
The intervention increased SDTW distance: across all joints, the 
Dampened condition was ≈ 0.6 units lower than non-intervened 
(𝑝 < .001) as shown in Table 3, indicating that the variability in 
movement has gone down. Thus, the intervention produced a con-
sistent, joint-independent reduction in movement variability (due 
to smoothing), which was detected by Soft-DTW. 

Table 4: LMEM predicting inter-person Beat Consistency for 
motion dampening strength of 10. 
Predictor Coef. p-value 95% CI 

Intercept 0.559 0.000 0.546 0.571 
Condition: Intervened 0.013 0.030 0.001 0.025 
Group Variance 0.021 
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Table 5: LMEM predicting inter-person Beat Consistency for 
the audio delay manipulation. Delay set to 0.25s. 
Predictor Coef. p-value 95% CI 

Intercept 0.565 0.000 0.552 0.578 
Condition: Intervened -0.004 0.041 -0.008 -0.000 
Group Variance 0.047 

4.3 Speech-Gesture Delays 
We assess the intervention using our Beat Consistency measure 
(figures of the intra-person case made available in the Appendix). 
In the intra-person scenario dampened gestures yield slightly lower 
consistency scores, although an LMEM indicates the manipulation’s 
effect is not strong enough. This is consistent for all delay values 
(see Appendix for detailed LMEM tables) for the intra-person case. 
In the cross-person scenario, against a baseline mean of 0.565 with 
a delay of 0.25s, the intervention produces a modest decrease of 
0.004 (𝑝 < 0.05) units as shown in Table 42. The remaining strengths 
do not reach significance, potentially due to sparse and uneven 
onsets per slice. The complete set of LMEM summary tables is 
available in the Appendix. 

4.4 Vocal Pitch Variance 
When Soft-DTW is applied to two identical F0 contours, the optimal 
warping path hugs the main diagonal and the resulting distance 
is essentially zero; any deviation from that diagonal reflects tem-
poral or spectral differences and increases the cost. In our data, 
comparing each speaker’s unaltered contour with itself produced 
distances at (or numerically indistinguishable from) zero, whereas 
comparing the pitch-manipulated contour with its unaltered coun-
terpart yielded markedly higher values, consistent with a substan-
tial prosodic change. Because the baseline distribution is degenerate 
at zero and therefore violates the assumptions of linear-mixed mod-
elling, we evaluated the effect with a paired Wilcoxon signed-rank 
test, which confirmed a reliable increase in Soft-DTW distance 
(𝑊 = 1732, 𝑝 < 0.001). An error plot and a summary table for 
various intervention strengths are available in the Appendix for 
the interested reader. 

5 Discussion and Conclusion 
Our three intervention families demonstrate that distinct, theo-
retically motivated metrics reveal complementary facets of multi-
party social behaviour. Dampening the kinematics of the hands and 
arms produced more internally predictable gestures (RQA %DET 
and MeanLR), increased inter-agent gestural synchrony (CRQA 
%DET) and compressed spatial variability (Soft-DTW), yet simul-
taneously weakened speech-gesture coupling (Beat Consistency). 
Introducing a uniform 1.4s audio delay only marginally affected 
self beat-alignment but reliably lowered cross-person Beat Consis-
tency, indicating that temporal mis-alignment degrades group-level 
coordination before it is noticeable within an individual. Flattening 
prosodic pitch variance left motion untouched but sharply increased 
Soft-DTW distances between original and altered F0 contours, con-
firming the measure’s sensitivity to subtle prosodic changes. Across 
all manipulations the hands proved the most responsive modality: 
they drove the largest gains in predictability under dampening and 

showed the clearest correspondence in objective changes , under-
scoring their central role in signalling social engagement. 

We observe that dampening movement inflates coordination met-
rics—yielding higher CRQA %Determinism and mean line lengths 
and lower DTW distances (e.g., [12, 61]). This follows from the 
mechanics of these measures since they track co-occurrence in 
temporal dynamics. Since relative stillness is a common listening 
behaviour it constitutes a stable attractor. By reducing a speaker’s 
movement, their kinematics align more with listeners’ idling. How-
ever there is a risk of conflating idle synchrony with genuine dy-
namic coordination, which will also relate differently with social 
perceptions. Our sanity check warns that metrics often taken to 
index rapport (e.g., [12, 61]) may simply reflect shared idle attrac-
tors or phases, since they merely reflect recurrence around any 
stable pattern. For example, Kodama et al. [20] found that people 
who cannot see each other exhibit stronger head-movement “co-
ordination” (via CRQA max line length and recurrence rate) than 
those in view—our analysis shows that it is risky to conclude that 
not seeing each other during conversation enhances synchrony 
or coordination between head movements, as it may actually be 
rooted in reduced or dampened movements. Further, checks are 
therefore needed to differentiate between dynamic coordination 
versus co-occurence of idling moments in conversation. 

Overall, our results show that no single metric can fully assess 
social believability. Instead, a small suite of measures: dynamical 
structure via RQA/CRQA, cross-modal timing via Beat Consistency, 
and distributional similarity via Soft-DTW—provides complemen-
tary, diagnostic insights. Because each metric is sensitive to the 
specific property it targets, behaviour generation systems can treat 
them as a “palette”. For example, impose a minimum %DET to 
preserve gestural structure, enforce beat-alignment thresholds to 
ensure audio-motion coherence, or monitor Soft-DTW to prevent 
over-smoothed motion. The consistent cross-group effects and min-
imal random-intercept variance in our models also suggest these 
measures are robust to individual differences, making them well 
suited for large-scale automated evaluation. Future work should 
incorporate head-pose and facial recurrence metrics to close the re-
maining gap in perceived realism, and explore whether integrating 
this metric suite into the training loop can steer generators toward 
truly socially coherent digital humans. 

6 Safe and Responsible Innovation Statement 
Digital humans and socially interactive agents promise transfor-
mative advances in education and healthcare, yet also pose ethical 
and societal challenges. Here, we link objective, low-level measures 
of multi-party social behaviour to high-level subjective percep-
tions—cautiously warning against any manipulative use of inferred 
human responses. To minimize methodological bias and foster trans-
parency, we applied diverse interventional perturbations and ran 
an exploratory perception study on our motion representations. Fi-
nally, to ensure privacy and GDPR compliance, we used anonymized 
skeletal data (stripping faces, clothing, and backgrounds) under ap-
provals from our university’s Data Steward and Human Research 
Ethics Committee. 
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Figure 7: Figure shows the RQA Average DET and Mean 
Length in the gesture signal within each individual. The 
dampened motion leads to more predictable motion. 

Figure 7 shows the average %DET per person. The joints on which 
this analysis was run are: LeftHand, LeftArm, RightHand and RightArm. 
This analysis was done to capture the synchrony or coordination 
in the gestures of the same person. The LMEM (summary in Ta-
ble 6) shows that the Dampened condition raised %DET for the 
Right-Hand by 0.033 (𝑝 < .001). The same increase was observed 
for the Left-Hand. Similarly, MeanLR (Table 11) for the Right-Hand 
increased by 2.1 units in the Dampened condition (𝑝 < .001). Left-
Hand started 0.6 units shorter yet still gained ≈ 1.8 units under 
intervention. 
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Figure 9: Figure shows the cross-modal self beat consistency 
of each individual against the manipulated data. 

Figure 9 shows the Beat Consistency scores of each individual. 
Although the LMEM results in the main paper show that the ma-
nipulations effect is not strong enough, the error plots do show a 
slight difference in the means. 

C Intra-person Pitch Variance SDTW 

(a) Soft-DTW Alignment Path be-
tween two F0 contours, one orig-
inal and one manipulated. 

(b) Soft-DTW distances of F0 
streams per-person compared 
against the unaltered F0. 

Figure 10: Figure shows the cross-modal self beat consistency 
of each individual against the manipulated data. 

Figure 10a shows an instance of an alignment matrix between two 
F0 contours. It calculated between an original F0 contour and an 
intervened one. For a perfect alignment, the diagonal should have 
as little deviations as possible which is not the case when using an 
intervened F0 contour. However, applying SDTW on the original 
unaltered F0 contour yields a distance of zero as is evidenced in 
Figure 10b 

D Qualtrics Setup 

Figure 11: Interface with the video shown to users. 
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Figure 12: Interface with the questions shown to users. 

For our perception study, we used Qualtrics2 platform. We setup the 
ASAQ [13] and PCQ [45]. Since ASAQ is geared towards human-
robot interaction (HRI), we slightly modify the question so that 
they hold semantic relevance in our case (e.g. HRI centric questions 
to refer to humans instead as the agents). Figure 11 shows the a 
thin slice of the group interaction from multiple angles. Before we 
ask for the ratings the subject is shown a thin slice which they can 
replay as many times as they like after which they’re asked to rate 
as seen in Figure 12. Before the users start rating they’re given an 
instruction: 

Sample instruction shown to the participants of the 
user study: 
Please use the set of questions below to indicate your per-
ception of the extent that the group’s behaviors appear to be 
that of real humans, as seen in the video. Each interaction 
aspect in the below questionnaire should be rated using a 
seven-point likert scale (strongly disagree (-3) to strongly 
agree (3)). Read the questions carefully before answering. 

Table 6: LMEM for predicting RQA DET (Within Individual). 
Dampening strength at 10. 
Predictor Coef. p-value 95% CI 

Intercept 0.929 0.000 0.924 0.933 
Condition: Intervened 0.026 0.000 0.021 0.030 
Joint (vs Right Hand): Left Arm 0.030 0.000 0.025 0.035 
Joint (vs Right Hand): Left Hand -0.014 0.000 -0.018 -0.009 
Joint (vs Right Hand): Right Arm 0.030 0.000 0.025 0.035 
Intervened × Left Arm -0.026 0.000 -0.032 -0.019 
Intervened × Left Hand 0.001 0.882 -0.006 0.007 
Intervened × Right Arm -0.026 0.000 -0.032 -0.019 
Group Variance 0.000 

2https://www.qualtrics.com/ 

Table 7: LMEM for predicting RQA DET (Within Individual). 
Dampening strength at 20. 
Predictor Coef. p-value 95% CI 

Intercept 0.929 0.000 0.925 0.933 
Condition: Intervened 0.033 0.000 0.028 0.038 
Joint (vs Right Hand): Left Arm 0.030 0.000 0.026 0.035 
Joint (vs Right Hand): Left Hand -0.014 0.000 -0.018 -0.009 
Joint (vs Right Hand): Right Arm 0.030 0.000 0.025 0.035 
Intervened × Left Arm -0.033 0.000 -0.040 -0.027 
Intervened × Left Hand 0.003 0.386 -0.004 0.009 
Intervened × Right Arm -0.033 0.000 -0.040 -0.027 
Group Variance 0.000 

Table 8: LMEM for predicting RQA DET (Within Individual). 
Dampening strength at 30. 
Predictor Coef. p-value 95% CI 

Intercept 0.929 0.000 0.925 0.933 
Condition: Intervened 0.036 0.000 0.032 0.041 
Joint (vs Right Hand): Left Arm 0.030 0.000 0.026 0.035 
Joint (vs Right Hand): Left Hand -0.014 0.000 -0.018 -0.009 
Joint (vs Right Hand): Right Arm 0.030 0.000 0.025 0.035 
Intervened × Left Arm -0.036 0.000 -0.043 -0.030 
Intervened × Left Hand 0.004 0.194 -0.002 0.011 
Intervened × Right Arm -0.036 0.000 -0.043 -0.030 
Group Variance 0.000 

Table 9: LMEM for predicting RQA DET (Within Individual). 
Dampening strength at 40. 
Predictor Coef. p-value 95% CI 

Intercept 0.929 0.000 0.925 0.933 
Condition: Intervened 0.038 0.000 0.034 0.043 
Joint (vs Right Hand): Left Arm 0.030 0.000 0.026 0.035 
Joint (vs Right Hand): Left Hand -0.014 0.000 -0.018 -0.009 
Joint (vs Right Hand): Right Arm 0.030 0.000 0.025 0.034 
Intervened × Left Arm -0.038 0.000 -0.044 -0.032 
Intervened × Left Hand 0.005 0.140 -0.002 0.011 
Intervened × Right Arm -0.038 0.000 -0.044 -0.032 
Group Variance 0.000 

Table 10: LMEM for predicting RQA DET (Within Individual). 
Dampening strength at 50. 
Predictor Coef. p-value 95% CI 

Intercept 0.929 0.000 0.925 0.933 
Condition: Intervened 0.039 0.000 0.035 0.044 
Joint (vs Right Hand): Left Arm 0.030 0.000 0.026 0.035 
Joint (vs Right Hand): Left Hand -0.014 0.000 -0.018 -0.009 
Joint (vs Right Hand): Right Arm 0.030 0.000 0.025 0.034 
Intervened × Left Arm -0.039 0.000 -0.046 -0.033 
Intervened × Left Hand 0.005 0.099 -0.001 0.012 
Intervened × Right Arm -0.039 0.000 -0.046 -0.033 
Group Variance 0.000 
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Table 11: LMEM for predicting RQA Mean Line Length 
(Within Individual). Dampening strength at 10. 
Predictor Coef. p-value 95% CI 

Intercept 5.717 0.000 5.479 5.955 
Condition: Intervened 1.564 0.000 1.304 1.825 
Joint (vs Right Hand): Left Arm 1.179 0.000 0.918 1.439 
Joint (vs Right Hand): Left Hand -0.600 0.000 -0.860 -0.339 
Joint (vs Right Hand): Right Arm 1.256 0.000 0.996 1.517 
Intervened × Left Arm -1.564 0.000 -1.933 -1.195 
Intervened × Left Hand -0.328 0.081 -0.696 0.041 
Intervened × Right Arm -1.564 0.000 -1.933 -1.196 
Group Variance 0.859 

Table 12: LMEM for predicting RQA Mean Line Length 
(Within Individual). Dampening strength at 20. 
Predictor Coef. p-value 95% CI 

Intercept 5.717 0.000 5.473 5.961 
Condition: Intervened 2.136 0.000 1.872 2.401 
Joint (vs Right Hand): Left Arm 1.179 0.000 0.914 1.443 
Joint (vs Right Hand): Left Hand -0.600 0.000 -0.864 -0.335 
Joint (vs Right Hand): Right Arm 1.256 0.000 0.992 1.521 
Intervened × Left Arm -2.136 0.000 -2.511 -1.762 
Intervened × Left Hand -0.312 0.103 -0.686 0.063 
Intervened × Right Arm -2.137 0.000 -2.511 -1.762 
Group Variance 0.928 

Table 13: LMEM for predicting RQA Mean Line Length 
(Within Individual). Dampening strength at 30. 
Predictor Coef. p-value 95% CI 

Intercept 5.717 0.000 5.468 5.966 
Condition: Intervened 2.553 0.000 2.283 2.822 
Joint (vs Right Hand): Left Arm 1.179 0.000 0.909 1.448 
Joint (vs Right Hand): Left Hand -0.600 0.000 -0.869 -0.330 
Joint (vs Right Hand): Right Arm 1.256 0.000 0.987 1.526 
Intervened × Left Arm -2.552 0.000 -2.933 -2.171 
Intervened × Left Hand -0.315 0.105 -0.696 0.066 
Intervened × Right Arm -2.553 0.000 -2.934 -2.172 
Group Variance 0.967 

Table 14: LMEM for predicting RQA Mean Line Length 
(Within Individual). Dampening strength at 40. 
Predictor Coef. p-value 95% CI 

Intercept 5.717 0.000 5.464 5.969 
Condition: Intervened 2.834 0.000 2.560 3.107 
Joint (vs Right Hand): Left Arm 1.179 0.000 0.905 1.452 
Joint (vs Right Hand): Left Hand -0.600 0.000 -0.873 -0.326 
Joint (vs Right Hand): Right Arm 1.256 0.000 0.983 1.530 
Intervened × Left Arm -2.833 0.000 -3.220 -2.447 
Intervened × Left Hand -0.308 0.118 -0.695 0.078 
Intervened × Right Arm -2.834 0.000 -3.220 -2.447 
Group Variance 0.994 

Table 15: LMEM for predicting RQA Mean Line Length 
(Within Individual). Dampening strength at 50. 
Predictor Coef. p-value 95% CI 

Intercept 5.737 0.000 5.482 5.992 
Condition: Intervened 3.034 0.000 2.763 3.306 
Joint (vs Right Hand): Left Arm 1.179 0.000 0.907 1.451 
Joint (vs Right Hand): Left Hand -0.600 0.000 -0.872 -0.327 
Joint (vs Right Hand): Right Arm 1.256 0.000 0.984 1.528 
Intervened × Left Arm -3.034 0.000 -3.419 -2.649 
Intervened × Left Hand -0.334 0.088 -0.719 0.050 
Intervened × Right Arm -3.035 0.000 -3.419 -2.650 
Group Variance 1.062 

Table 16: LMEM results predicting CRQA %DET. Dampening 
strength at 10. 
Predictor Coef. p-value 95% CI 

Intercept -0.093 0.000 -0.134 -0.052 
Condition: Dampened 0.115 0.000 0.073 0.157 
Joint (vs Right Hand): Left Arm 0.180 0.000 0.137 0.222 
Joint (vs Right Hand): Right Arm 0.199 0.000 0.157 0.242 
Joint (vs Right Hand): Left Hand -0.186 0.000 -0.228 -0.143 
Dampened × Left Arm -0.115 0.000 -0.175 -0.055 
Dampened × Right Arm -0.115 0.000 -0.175 -0.055 
Dampened × Left Hand 0.126 0.000 0.066 0.186 
Group Variance 0.301 

Table 17: LMEM results predicting CRQA Determinism, with 
fixed effects for condition, joint, and their interaction. 

Predictor Coef. p-value 95% CI 

Intercept -0.110 0.000 -0.151 -0.069 
Condition: Dampened 0.175 0.000 0.132 0.218 
Joint (vs Right Hand): Left Arm 0.180 0.000 0.137 0.223 
Joint (vs Right Hand): Left Hand -0.186 0.000 -0.229 -0.143 
Joint (vs Right Hand): Right Arm 0.200 0.000 0.157 0.243 
Dampened × Left Arm -0.175 0.000 -0.236 -0.114 
Dampened × Left Hand 0.142 0.000 0.082 0.203 
Dampened × Right Arm -0.175 0.000 -0.236 -0.114 
Group Variance 0.283 

Table 18: LMEM results predicting CRQA Determinism with 
fixed effects for condition, joint, and their interaction. 

Predictor Coef. p-value 95% CI 

Intercept -0.111 0.000 -0.151 -0.070 
Condition: Dampened 0.175 0.000 0.132 0.218 
Joint (vs Right Hand): Left Hand -0.183 0.000 -0.226 -0.140 
Joint (vs Right Hand): Left Arm 0.177 0.000 0.134 0.220 
Joint (vs Right Hand): Right Arm 0.196 0.000 0.153 0.240 
Dampened × Left Hand 0.154 0.000 0.093 0.215 
Dampened × Left Arm -0.175 0.000 -0.236 -0.114 
Dampened × Right Arm -0.175 0.000 -0.236 -0.114 
Group Variance 0.274 
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Table 19: LMEM results predicting CRQA Determinism with 
fixed effects for condition, joint, and their interaction. 

Predictor Coef. p-value 95% CI 

Intercept -0.118 0.000 -0.159 -0.077 
Condition: Dampened 0.220 0.000 0.177 0.264 
Joint (vs Right Hand): Right Arm 0.199 0.000 0.156 0.242 
Joint (vs Right Hand): Left Arm 0.180 0.000 0.137 0.223 
Joint (vs Right Hand): Left Hand -0.186 0.000 -0.229 -0.143 
Dampened × Right Arm -0.220 0.000 -0.282 -0.159 
Dampened × Left Arm -0.220 0.000 -0.281 -0.159 
Dampened × Left Hand 0.117 0.000 0.056 0.178 
Group Variance 0.273 

Table 20: LMEM results predicting CRQA Determinism with 
fixed effects for condition, joint, and their interaction. 

Predictor Coef. p-value 95% CI 

Intercept -0.201 0.000 -0.241 -0.161 
Condition: Dampened 0.460 0.000 0.417 0.503 
Joint (vs Right Hand): Left Arm 0.244 0.000 0.201 0.287 
Joint (vs Right Hand): Right Arm 0.273 0.000 0.230 0.316 
Joint (vs Right Hand): Left Hand -0.258 0.000 -0.302 -0.215 
Dampened × Left Arm -0.460 0.000 -0.521 -0.399 
Dampened × Right Arm -0.460 0.000 -0.521 -0.399 
Dampened × Left Hand 0.170 0.000 0.109 0.231 
Group Variance 0.246 

Table 21: LMEM results predicting CRQA MeanLR. Dampen-
ing strength at 10. 
Predictor Coef. p-value 95% CI 

Intercept -0.169 0.000 -0.210 -0.128 
Condition: Dampened 0.451 0.000 0.410 0.492 
Joint (vs Right Hand): Left Arm 0.204 0.000 0.163 0.245 
Joint (vs Right Hand): Left Hand -0.172 0.000 -0.213 -0.131 
Joint (vs Right Hand): Right Arm 0.222 0.000 0.181 0.263 
Dampened × Left Arm -0.451 0.000 -0.509 -0.393 
Dampened × Left Hand -0.059 0.046 -0.117 -0.001 
Dampened × Right Arm -0.451 0.000 -0.509 -0.393 
Group Variance 0.334 

Table 22: LMEM results predicting CRQA Mean Length with 
fixed effects for condition, joint, and their interaction. 

Predictor Coef. p-value 95% CI 

Intercept -0.210 0.000 -0.251 -0.170 
Condition: Dampened 0.646 0.000 0.605 0.688 
Joint (vs Right Hand): Left Arm 0.197 0.000 0.156 0.238 
Joint (vs Right Hand): Right Arm 0.214 0.000 0.173 0.255 
Joint (vs Right Hand): Left Hand -0.166 0.000 -0.207 -0.125 
Dampened × Left Arm -0.646 0.000 -0.704 -0.588 
Dampened × Right Arm -0.646 0.000 -0.704 -0.589 
Dampened × Left Hand -0.100 0.001 -0.158 -0.042 
Group Variance 0.311 

Table 23: LMEM results predicting CRQA MeanLR. Dampen-
ing strength at 30. 
Predictor Coef. p-value 95% CI 

Intercept -0.233 0.000 -0.273 -0.193 
Condition: Dampened 0.754 0.000 0.713 0.795 
Joint (vs Right Hand): Left Hand -0.160 0.000 -0.201 -0.119 
Joint (vs Right Hand): Right Arm 0.207 0.000 0.166 0.248 
Joint (vs Right Hand): Left Arm 0.190 0.000 0.149 0.231 
Dampened × Left Hand -0.117 0.000 -0.175 -0.059 
Dampened × Right Arm -0.754 0.000 -0.812 -0.696 
Dampened × Left Arm -0.754 0.000 -0.812 -0.696 
Group Variance 0.296 

Table 24: LMEM results predicting CRQA MeanLR. Dampen-
ing strength at 40. 
Predictor Coef. p-value 95% CI 

Intercept -0.246 0.000 -0.285 -0.206 
Condition: Dampened 0.809 0.000 0.768 0.849 
Joint (vs Right Hand): Right Arm 0.202 0.000 0.161 0.243 
Joint (vs Right Hand): Left Arm 0.185 0.000 0.145 0.226 
Joint (vs Right Hand): Left Hand -0.156 0.000 -0.197 -0.115 
Dampened × Right Arm -0.809 0.000 -0.866 -0.751 
Dampened × Left Arm -0.809 0.000 -0.866 -0.751 
Dampened × Left Hand -0.115 0.000 -0.173 -0.057 
Group Variance 0.290 

Table 25: LMEM results predicting CRQA MeanLR. Dampen-
ing strength at 50. 
Predictor Coef. p-value 95% CI 

Intercept -0.238 0.000 -0.277 -0.198 
Condition: Dampened 0.853 0.000 0.814 0.893 
Joint (vs Right Hand): Left Arm 0.160 0.000 0.121 0.200 
Joint (vs Right Hand): Right Arm 0.186 0.000 0.146 0.226 
Joint (vs Right Hand): Left Hand -0.212 0.000 -0.251 -0.172 
Dampened × Left Arm -0.853 0.000 -0.909 -0.797 
Dampened × Right Arm -0.853 0.000 -0.909 -0.797 
Dampened × Left Hand -0.075 0.009 -0.132 -0.019 
Group Variance 0.305 

Table 26: LMEM predicting intra-person Beat Consistency 
for the motion dampening manipulation; strength of 10. 
Predictor Coef. p-value 95% CI 

Intercept 0.543 0.000 0.518 0.568 
Condition: Intervened -0.018 0.273 -0.049 0.014 
Group Variance 0.000 

Table 27: LMEM predicting intra-person Beat Consistency 
for the motion dampening manipulation; strength of 20 

Predictor Coef. p-value 95% CI 

Intercept 0.544 0.000 0.520 0.567 
Condition: Intervened -0.064 0.000 -0.095 -0.032 
Group Variance 0.000 
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Table 28: LMEM predicting intra-person Beat Consistency 
for the motion dampening manipulation; strength of 30 

Predictor Coef. p-value 95% CI 

Intercept 0.544 0.000 0.521 0.566 
Condition: Intervened -0.098 0.000 -0.129 -0.066 
Group Variance 0.000 

Table 29: LMEM predicting intra-person Beat Consistency 
for the motion dampening manipulation; strength of 40 

Predictor Coef. p-value 95% CI 

Intercept 0.543 0.000 0.519 0.567 
Condition: Intervened -0.142 0.000 -0.174 -0.111 
Group Variance 0.000 

Table 30: LMEM predicting intra-person Beat Consistency 
for the motion dampening manipulation; strength of 50. 

Predictor Coef. p-value 95% CI 

Intercept 0.544 0.000 0.521 0.567 
Condition: Intervened -0.196 0.000 -0.228 -0.165 
Group Variance 0.000 

Table 31: LMEM predicting intra-person Beat Consistency 
for the audio delay manipulation; delay set at 0.15s. 
Predictor Coef. p-value 95% CI 

Intercept 0.544 0.000 0.521 0.566 
Condition: Intervened 0.004 0.780 -0.027 0.036 
Group Variance 0.000 

Table 32: LMEM predicting intra-person Beat Consistency 
for the audio delay manipulation; delay set at 0.25s. 
Predictor Coef. p-value 95% CI 

Intercept 0.544 0.000 0.508 0.579 
Condition: Intervened 0.009 0.580 -0.022 0.040 
Group Variance 0.000 

Table 33: LMEM predicting intra-person Beat Consistency 
for the audio delay manipulation; delay set at 0.50s. 
Predictor Coef. p-value 95% CI 

Intercept 0.544 0.000 0.520 0.567 
Condition: Intervened -0.009 0.561 -0.041 0.022 
Group Variance 0.000 

Table 34: LMEM predicting intra-person Beat Consistency 
for the audio delay manipulation; delay set at 0.75s. 
Predictor Coef. p-value 95% CI 

Intercept 0.544 0.000 0.517 0.570 
Condition: Intervened -0.005 0.756 -0.036 0.026 
Group Variance 0.000 

Table 35: LMEM predicting intra-person Beat Consistency 
for the audio delay manipulation; delay set at 1.40s. 
Predictor Coef. p-value 95% CI 

Intercept 0.544 0.000 0.521 0.567 
Condition: Intervened -0.007 0.671 -0.038 0.024 
Group Variance 0.000 

Table 36: LMEM predicting inter-person Beat Consistency 
for motion dampening strength of 10. 
Predictor Coef. p-value 95% CI 

Intercept 0.559 0.000 0.546 0.571 
Condition: Intervened 0.013 0.030 0.001 0.025 
Group Variance 0.021 

Table 37: LMEM predicting inter-person Beat Consistency 
for motion dampening strength of 20. 
Predictor Coef. p-value 95% CI 

Intercept 0.564 0.000 0.552 0.576 
Condition: Intervened -0.049 0.000 -0.062 -0.036 
Group Variance 0.019 

Table 38: LMEM predicting inter-person Beat Consistency 
for motion dampening strength of 30. 
Predictor Coef. p-value 95% CI 

Intercept 0.558 0.000 0.545 0.571 
Condition: Intervened -0.089 0.000 -0.102 -0.075 
Group Variance 0.019 

Table 39: LMEM predicting inter-person Beat Consistency 
for motion dampening strength of 40. 
Predictor Coef. p-value 95% CI 

Intercept 0.557 0.000 0.544 0.569 
Condition: Intervened -0.150 0.000 -0.164 -0.137 
Group Variance 0.018 

Table 40: LMEM predicting inter-person Beat Consistency 
for motion dampening strength of 50. 
Predictor Coef. p-value 95% CI 

Intercept 0.572 0.000 0.560 0.585 
Condition: Intervened -0.203 0.000 -0.217 -0.189 
Group Variance 0.016 

Table 41: LMEM predicting inter-person Beat Consistency 
for the audio delay manipulation. Delay strength at 0.15s. 
Predictor Coef. p-value 95% CI 

Intercept 0.569 0.000 0.556 0.581 
Condition: Intervened 0.001 0.458 -0.002 0.004 
Group Variance 0.045 
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Table 42: LMEM predicting inter-person Beat Consistency 
for the audio delay manipulation. Delay set to 0.25s. 
Predictor Coef. p-value 95% CI 

Intercept 0.565 0.000 0.552 0.578 
Condition: Intervened -0.004 0.041 -0.008 -0.000 
Group Variance 0.047 

Table 43: LMEM predicting inter-person Beat Consistency 
for the audio delay manipulation. Delay set at 0.50s 
Predictor Coef. p-value 95% CI 

Intercept 0.573 0.000 0.560 0.585 
Condition: Intervened 0.003 0.198 -0.002 0.008 
Group Variance 0.044 

Table 44: LMEM predicting inter-person Beat Consistency 
for the audio delay manipulation. Delay set at 0.75s. 
Predictor Coef. p-value 95% CI 

Intercept 0.571 0.000 0.559 0.583 
Condition: Intervened -0.003 0.422 -0.009 0.004 
Group Variance 0.039 

Table 45: LMEM predicting inter-person Beat Consistency 
for the audio delay manipulation. Delay set at 1.4s. 
Predictor Coef. p-value 95% CI 

Intercept 0.565 0.000 0.553 0.577 
Condition: Intervened -0.008 0.090 -0.017 0.001 
Group Variance 0.029 

Table 46: LMEM predicting inter-person Soft-DTW distances. 
Dampening strength at 10. 
Predictor Coef. p-value 95% CI 

Intercept 0.323 0.000 0.272 0.373 
Condition: Intervened -0.637 0.000 -0.688 -0.586 
Joint (vs Right Hand): Left Arm -0.059 0.023 -0.110 -0.008 
Joint (vs Right Hand): Left Hand -0.003 0.906 -0.054 0.048 
Joint (vs Right Hand): Right Arm -0.047 0.073 -0.097 0.004 
Intervened × Left Arm 0.012 0.741 -0.060 0.084 
Intervened × Left Hand 0.028 0.450 -0.044 0.100 
Intervened × Right Arm -0.002 0.946 -0.074 0.069 
Group Variance 0.376 

Table 47: LMEM predicting inter-person Soft-DTW distances. 
Dampening strength at 20. 
Predictor Coef. p-value 95% CI 

Intercept 0.320 0.000 0.269 0.371 
Condition: Intervened -0.647 0.000 -0.698 -0.595 
Joint (vs Right Hand): Left Arm -0.059 0.026 -0.110 -0.007 
Joint (vs Right Hand): Left Hand -0.003 0.908 -0.055 0.049 
Joint (vs Right Hand): Right Arm -0.046 0.078 -0.098 0.005 
Intervened × Left Arm 0.026 0.485 -0.047 0.099 
Intervened × Left Hand 0.054 0.145 -0.019 0.127 
Intervened × Right Arm 0.011 0.758 -0.061 0.084 
Group Variance 0.368 

Table 48: LMEM predicting inter-person Soft-DTW distances. 
Dampening strength at 30. 
Predictor Coef. p-value 95% CI 

Intercept 0.314 0.000 0.263 0.365 
Condition: Intervened -0.631 0.000 -0.683 -0.579 
Joint (vs Right Hand): Left Arm -0.058 0.028 -0.110 -0.006 
Joint (vs Right Hand): Left Hand -0.003 0.910 -0.055 0.049 
Joint (vs Right Hand): Right Arm -0.046 0.083 -0.098 0.006 
Intervened × Left Arm 0.016 0.673 -0.058 0.089 
Intervened × Left Hand 0.067 0.077 -0.007 0.140 
Intervened × Right Arm 0.001 0.969 -0.072 0.075 
Group Variance 0.360 

Table 49: LMEM predicting inter-person Soft-DTW distances. 
Dampening strength at 40. 
Predictor Coef. p-value 95% CI 

Intercept 0.307 0.000 0.257 0.358 
Condition: Intervened -0.605 0.000 -0.657 -0.552 
Joint (vs Right Hand): Left Arm -0.058 0.031 -0.111 -0.005 
Joint (vs Right Hand): Left Hand -0.003 0.911 -0.056 0.050 
Joint (vs Right Hand): Right Arm -0.046 0.087 -0.098 0.007 
Intervened × Left Arm -0.006 0.875 -0.080 0.068 
Intervened × Left Hand 0.063 0.098 -0.012 0.137 
Intervened × Right Arm -0.020 0.594 -0.095 0.054 
Group Variance 0.355 

Table 50: LMEM predicting inter-person Soft-DTW distances. 
Dampening strength at 50. 
Predictor Coef. p-value 95% CI 

Intercept 0.303 0.000 0.252 0.353 
Condition: Intervened -0.575 0.000 -0.627 -0.522 
Joint (vs Right Hand): Left Arm -0.054 0.042 -0.106 -0.002 
Joint (vs Right Hand): Left Hand -0.004 0.894 -0.056 0.049 
Joint (vs Right Hand): Right Arm -0.042 0.112 -0.094 0.010 
Intervened × Left Arm -0.025 0.506 -0.099 0.049 
Intervened × Left Hand 0.058 0.124 -0.016 0.132 
Intervened × Right Arm -0.039 0.299 -0.113 0.035 
Group Variance 0.353 

Table 51: Results of statistical comparison across varying 
pitch range limits. 

Limit/± Hz W-value P-value 

140 5974 <0.05 
120 5934 <0.05 
100 5630 <0.05 
80 4161 <0.05 
40 3972 <0.05 
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