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Abstract

Digital humans are emerging as autonomous agents in multiparty
interactions, yet existing evaluation metrics largely ignore contex-
tual coordination dynamics. We introduce a unified, intervention-
driven framework for objective assessment of multiparty social
behaviour in skeletal motion data, spanning three complementary
dimensions: (1) synchrony via Cross-Recurrence Quantification
Analysis, (2) temporal alignment via Multiscale Empirical Mode
Decomposition-based Beat Consistency, and (3) structural simi-
larity via Soft Dynamic Time Warping. We validate metric sen-
sitivity through three theory-driven perturbations—gesture kine-
matic dampening, uniform speech-gesture delays, and prosodic
pitch-variance reduction—applied to =~ 145 30-second thin slices of
group interactions from the DnD dataset. Mixed-effects analyses
reveal predictable, joint-independent shifts: dampening increases
CRQA determinism and reduces beat consistency, delays weaken
cross-participant coupling, and pitch flattening elevates FO Soft-
DTW costs. A complementary perception study (N = 27) compares
judgments of full-video and skeleton-only renderings to quantify
representation effects. Our three measures deliver orthogonal in-
sights into spatial structure, timing alignment, and behavioural
variability. Thereby forming a robust toolkit for evaluating and
refining socially intelligent agents. Code available on GitHub.

CCS Concepts

« Human-centered computing — Collaborative and social
computing design and evaluation methods; « Computing
methodologies — Artificial intelligence.
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1 Introduction
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Figure 1: Overview of our evaluation framework. We use
skeletal representations of natural interaction videos to en-
able precise, controlled interventions on kinematics and
prosody. These modified embodiments are evaluated using a
suite of objective metrics. We also a conduct a user study to
gauge the effect of change in representations (video — skele-
ton). Interventions are applied only to skeletons, not to the
original videos, allowing causal probing of metric sensitivity
to theory-driven perturbations.

Digital humans have already shown promise for applications
within the education and mental healthcare domains, such as for
evoking curiosity in classrooms [39], or eliciting more honest re-
sponses in clinical interviews compared to human interviewers [26].
In order to develop interactive digital humans to serve as autonomous
agents in human-AlI collaborative settings, it is crucial to have a con-
sistent and principled framework for evaluating these synthesised
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behavioural artefacts within interactive social contexts. Crucially,
what counts as “appropriate” behaviour depends on how it coordi-
nates with the other people in the scene—behaviour is meaningful
only in context. In particular, real conversations unfold through fine-
grained synchrony: timing and kinematic alignment among partic-
ipants [18, 19, 27, 28]. Yet most metrics ignore these behavioural
coordination dynamics.

Recent advances in machine learning (ML) render digital hu-
mans with unprecedented near-photorealistic fidelity. Yet objective
measures that reflect higher-order human perception remain miss-
ing [37], leaving us without a reliable framework for assessing
social adeptness. Therefore, a crucial impediment to further devel-
oping ML techniques that enable human-like social dynamics is the
absence of a reliable evaluation framework for assessing the quality
and social adeptness of generated behaviours in digital humans.

Evaluation of synthesised non-verbal behaviour is inherently
challenging. One reason is the stochastic nature of behavioural
responses: multiple valid responses are possible for the same social
stimulus [30, 44, 52]. Moreover, our perception of the validity of
those responses is highly subjective [37]. This challenge is com-
pounded by a mismatch between training objectives and perceptual
criteria: the loss functions used to train generative models often
optimize for metrics that do not align with how humans judge
behavioural quality, meaning that the models may not be learning
the very characteristics that drive social believability.

There is still no gold-standard protocol for evaluating synthetic
social behaviour. Subjective studies rely on ad-hoc questionnaires
whose items are often collapsed into a single score or lack in-
ternal consistency [70], while “objective” work spans everything
from mean-squared error to kinematic statistics such as accel-
eration and jerk [23, 37]. The two worlds rarely agree: metrics
that look good to a computer frequently fail to match human
judgements—an outcome starkly illustrated by the GENEA gesture-
generation challenge, where most automatic scores were uncorre-
lated with perceived human-likeness [72]. This mismatch reveals a
deeper problem, we do not yet know which kinematic or synchrony
patterns give rise to higher-order impressions like naturalness or
rapport. Lacking that mapping, the community has no principled
way to choose either the right metric or the diagnostic perturba-
tions needed to test it in perception studies. The situation is further
complicated by the fact that nearly all existing metrics treat each
actor in isolation and thus ignore the multiparty coordination that
defines real conversation.

Taken together, these gaps point to the need for a unified frame-
work that (i) respects the social context in which behaviour unfolds,
(ii) is sensitive to multiparty coordination, and (iii) is validated
through targeted interventions. Most existing metrics were de-
signed for single-actor motion or for speech-gesture appropriate-
ness in isolation [72]; they rarely ask whether the cues are coherent
with the surrounding partners’ actions or with the agent’s social
goals [37]. Even seemingly simple examples underscore the limita-
tion: a jump is meaningless in isolation, expressive during a dance,
and disruptive in the middle of a group conversation—illustrating
that social relevance is highly context-dependent [15]. Recent at-
tempts to incorporate context (e.g. [52] for facial reactions) are
promising but remain modality-specific and do not generalise to
whole-body, multiparty interaction.
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Most state-of-the-art behaviour-generation systems operate on
skeletal motion data rather than generating full video. Joint ro-
tations or 3-D keypoints serve as the primary representation for
training losses, diffusion steps, or transformer tokens. Consequently,
evaluation must “speak the same language” as the models—otherwise,
we risk optimising for signals that the evaluation metric cannot ac-
cess. The use of skeletal representations brings two key advantages.
First, it removes appearance cues (faces, clothing, background)
allowing us to isolate the kinematic features that underpin inter-
personal coordination. This makes controlled manipulations—such
as damping hand velocity or delaying gesture onset—both tractable
and visually coherent. Second, by presenting observers with the
same skeleton-only embodiment that models generate, we can di-
rectly assess how well purely kinematic information maps to higher-
order perceptual measures such as human-likeness or conversation
quality. This leads to our central question: Can objective metrics
applied to skeletal motion capture the theory-driven kinematic pertur-
bations we introduce? Addressing this question helps clarify the lim-
its of skeleton-based evaluation and informs the design of metrics
that are both aligned with model representations and perceptually
meaningful. In this work, we contribute the following:

(1) Design three controlled interventions that systematically
perturb gesture kinematics, speech—gesture timing, and vo-
cal pitch.

(2) Introduce a compact panel of cross-modal metrics for mul-
tiparty skeleton data.

(3) Conduct an exploratory perception study comparing video
recordings to skeletal embodiments to understand how repre-
sentation modality affects judgments of conversation quality
and human likeness in group settings

(4) Analyse the sensitivity of each metric to our interventions
in natural group interaction.

2 Related Work
2.1 Generating Multiparty Social Behaviour

Recent advances have turned to deep generative approaches for
social behaviour synthesis. The synthesis of co-speech gesture gen-
eration, for instance, is notoriously challenging due to the highly
idiosyncratic, non-repetitive nature of human gestures and their
diverse communicative functions [37]. Nevertheless, the field has
seen a surge of interest thanks to larger multimodal datasets and
powerful models [37]. Modern methods can take various input
modalities - e.g. speech audio, text transcripts, or other signals -
to drive gesture production [37]. For speech-to-motion generation,
early deep-learning models ranged from recurrent networks and
GANSs to normalizing flows [2, 22]. More recently, diffusion mod-
els have gained prominence as social diffusion models for motion.
Diffusion-based frameworks address the trade-off between motion
quality and diversity that plagued earlier deterministic approaches.
For example, Dabral et al. [10] introduced a denoising diffusion
model to generate co-speech gestures, and Mughal et al. [32] ex-
tended this to a multi-modal conversational diffusion system that
produces realistic listener and speaker gestures in coordination.
These methods can produce a distribution of plausible motion se-
quences rather than a single deterministic gesture, better reflecting
the variability of human behaviour.
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Researchers have also begun exploring language-conditioned
or speech-conditioned generation of full-body social behaviour.
Speech-driven approaches such as Yoon et al. [71] learn an end-
to-end mapping from raw speech features (mel-spectrograms) to
upper-body pose sequences for humanoid robots, optionally fusing
speech text as an auxiliary cue. ZeroEGGS [14] remains speech-
audio conditioned, but adds zero-shot style control that can be keyed
with a short example motion clip, yielding diverse gestures that syn-
chronize with the spoken signal. In contrast, text-to-motion frame-
works such as MotionCLIP [56] map natural-language prompts into
a CLIP [43] aligned latent space to drive 3-D body motion. While
the Human Motion Diffusion Model [57] can generate long, varied
motions from textual action labels or free text. Most of these meth-
ods still target a single performer; the recent work of Sun et al. [53]
moves a step further by jointly generating holistic 3-D motions for
both a speaker and a listener in dyadic conversations, condition-
ing on audio and text and enforcing mutual influence between the
two characters. In another line, social behaviour forecasting has
emerged to predict how group interactions will unfold. Raman et al.
[44] emphasize that individuals adapt their behaviour differently
across groups depending on contextual factors like relationships
and rapport. This stochastic forecasting of multiparty non-verbal
cues (e.g. who will gesture or look at whom next) represents a
forward-generative view of social behaviour. This progress sets the
stage for evaluating how socially appropriate and human-like these
generated behaviours truly are.

2.2 Evaluation Techniques

Assessing generated social behaviour is challenging because it must
account for both physical realism and social meaning. Prior work
combines objective metrics such as joint position error, velocity
differences, and Fréchet Distance—with subjective human judg-
ments. Although kinematic measures capture low-level fidelity,
they often miss context: a gesture may closely match a reference
yet still feel awkward or inappropriate with respect to other conver-
sation partners. As a result, user studies remain the gold standard,
where participants rate naturalness, appropriateness, or human-
likeness of behaviours [21, 34], and instruments like the Godspeed
questionnaire gauge perceived personality and emotional impact
in human-robot interactions [4, 11]. For example, Neff et al. [34]
demonstrated that adding or altering gestures can change percep-
tions of an agent’s personality, but such studies are time-consuming
and hard to reproduce consistently.

A clear gap between objective and subjective metrics has been
identified. Wolfert et al. [70] reviewed evaluation practices for ges-
ture generation in embodied agents and noted a lack of reliable au-
tomatic metrics for social quality. Often, objective scores like mean
error or diversity have weak correlation with human judgments of
appropriateness or engagement. This gap has motivated work on
better proxies for social naturalness. One approach is to measure
interpersonal coordination signals. For example, interpersonal syn-
chrony is a desirable emergent quality in multi-party behaviour. Re-
searchers have quantified synchrony via movement correlation and
recurrence analyses — e.g. Shockley et al. [51] showed people’s body
sway becomes coupled when they are interacting smoothly. Recent
studies go further to link such measures with social outcomes: Riih-
lemann and Trujillo [48] found that more expressive hand gestures
can induce stronger physiological synchrony (skin conductance
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coupling) between storytellers and listeners, suggesting an objective
avenue to gauge a gesture’s social efficacy. Similarly, metrics from
dynamical systems like cross-recurrence quantification [65-67]
have been applied to evaluate the temporal coordination between
agents’ multimodal signals.

Context-dependent appropriateness recognizes that, rather than
a single “correct” response, an Al may produce multiple valid
behaviours for the same social cue [44]. The Multiple Appropri-
ate Facial Reaction Generation challenge [52] highlights this by
allowing diverse listener expressions and evaluating them with
context-sensitive metrics such as the rank correlation of generated
versus real facial features (FRCorr) and an expression-space dis-
tance (FRDist). While these measures move beyond pure visual
realism, they still compare only distributions of synthetic reac-
tions. Ultimately, the true test is whether people perceive multi-
party behaviours as natural and believable. Recent studies have
begun validating that higher synchrony scores align with greater
observer-rated rapport, or that an appropriateness metric predicts
user preference between gesture variants [31]. The field is rapidly
moving beyond low level fidelity measures toward social evaluation
criteria such as diversity, synchrony and context awareness, while
grounding these quantitative assessments in human judgments
through frameworks that combine signal analysis with subjective
evaluation of behaviour [37].

3 Methodology

We selected CRQA, multiscale beat consistency, and Soft-DTW be-
cause together they give a comprehensive, interpretable window
into the rich, dynamic structure of social behaviour that simpler
statistics miss. CRQA lets us quantify both linear and non-linear
synchrony—including transient entrainment and leader—follower
dynamics—by mapping when two participants’ state-space trajecto-
ries return to similar regions. The multiscale beat consistency score
homes in on the critical cross-modal timing between gesture and
speech at multiple temporal scales, capturing how co-speech ges-
tures tune prosodic perception and narrative flow. And Soft-DTW
provides a flexible, differentiable distance metric that aligns elastic
sequences—whether 3D gesture paths or FO contours—so we can
compare natural timing variations within and across individuals.
Crucially, these measures complement one another: CRQA pin-
points when and how long participants are coupled, beat consis-
tency captures precise cross-modal timing, and Soft-DTW quanti-
fies shape similarity under elastic alignment. Integrating them lets
us triangulate synchrony across phase, scale, and form for a robust,
multi-perspective characterization of social coordination.

3.1 Behavioural Measures

CRQA. Human social interactions unfold as complex, time-varying
sequences of movement, in which partners continuously adapt
to one another’s subtle kinematic cues. Traditional linear mea-
sures—like cross-correlation or coherence—capture only stationary,
time-lagged similarities and often miss the rich, non-stationary cou-
pling that underlies real-time synchrony. Cross-recurrence quan-
tification analysis (CRQA) overcomes these limitations by recon-
structing each participant’s state-space and then directly mapping
when and for how long their trajectories return to similar regions.
This makes CRQA uniquely sensitive to both linear and non-linear
coordination patterns, robust to noise and differences in signal scale,
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and capable of capturing transient episodes of entrainment that
standard methods overlook [65-67]. Moreover, by examining shifts
of the recurrence structures off the main diagonal, CRQA naturally
handles phase shifts and time lags in gestures—quantifying not
only whether two signals synchronize but also when one leads or
follows the other.

CRQA has been used for analysing social communication and
behavioural characteristics in general and in multi-person group
settings [7, 38, 51, 59, 66]. In our work, we are using CRQA to help
quantify synchrony within virtual social interactions. Specifically
we shall be making use of the recurrence rate (RR), % determinism
(%DET) and mean length of recurrence (MeanLR). Typically in a
recurrence analysis, the RR is fixed to a reasonable degree through
adjusting the recurrence radius (e.g. 2%) [65]. The recurrence ra-
dius defines the maximum distance allowed between two points
for them to be considered recurrent. While RR is adjusted to have a
certain variance, since it is fixed for the entire dataset it is a valu-
able output measure of CRQA; indicating the presence recurrences
(suggesting presence of attractors in state-space). %2DET quantifies
the proportion of recurrence points forming the diagonal of the
recurrence matrix, a higher %DET value implies a higher structure
within the two signals and therefore making it more predictable.

Multiscale Beat Consistency Between Speech and Gestures. It is
quite well known that human beat gestures are important co-speech
factors that tune the perception of prosodic information, narrative
structure, and affecting a much wider range of perceived social
dynamics [41, 42, 54, 63, 64]. Previous studies show that humans
perceive differences in the temporal relationships between beat
gestures and speech, while also affecting their speech perception
and memory [6, 24, 35, 60]. There is further biomechanical research
showing that beat gestures directly couple to the acoustics of the
voice through respiration [41, 42]. Given this important entan-
glement of gesture and speech on multiple functional levels it is
likely an important perceptual correlate of human(-like) social be-
haviour. To investigate this multi-scale gesture-speech coordination
we turn to empirical mode decomposition [46, 47]. Empirical Mode
Decomposition (EMD) is an adaptive time-frequency data analy-
sis method that decomposes a signal into a set of Intrinsic Mode
Functions (IMFs) representing different frequency components (i.e.,
different temporal scales), which have been used to characterize
speech [58, 68]. Unlike Fourier analysis, EMD makes no prior as-
sumptions about the data, enabling effective analysis of non-linear
and non-stationary signals by separating oscillatory modes dy-
namically as they change over time. Non-stationary frequency
compositions are naturally present in social behaviour obviating
predefined basis functions. EMD is therefore a good fit for studying
multi-modal signals, which in our case concerns an overall total
angular speed of hand-gesture-relevant joints (elbow and wrist
joints for left and right), and the smoothed amplitude envelope
for speech (following [58]). To measure the consistency of timing
between the different (EMD-derived) multimodal signals we utilize
the beat consistency score as provided in [25], whereby the tem-
poral alignment between signal onsets (i.e., beats) is calculated by
a guassian-weighted proximity score (1 = perfect synchrony) that
is normalized by the number of beats. Note that next to applica-
tion for between-modality within-person analysis, we also apply
our multiscale beat consistency metric for cross-person analysis
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(a) Raw video of the interaction.
Figure 2: Example snapshot of thin-slices from the DnD
Group Gesture dataset [32] shown to users in the percep-
tion study. (a) Video data from multiple cameras, and (b) the
skeletal representation of the group and a single member.

(b) Skeletal representation.

to assess social coordination (e.g., synchrony) patterns (which is
known to be multiscale in nature too; e.g., [1, 5]).

Soft-DTW (SDTW). Both the 3D trajectories of a gesture and
the FO contour of speech exhibit rich temporal variability: one
person may linger on a hand-wave while another rushes through
it; a speaker may stretch or truncate a rising intonation depending
on turn-taking cues [69]. Soft-DTW lets us robustly match these
sequences, aligning corresponding sub-gestures or pitch accents
even when their durations differ. By focusing on the shape of the
motion or pitch contour, rather than rigid clock time, it captures
both intra-person consistency (e.g. before/after an intervention)
and inter-person coordination (e.g. speaker-listener synchrony).
Robust to brief tracking or pitch-tracking artifacts, Soft-DTW gives
us a stable, interpretable distance measure that reflects how closely
two behaviours (spatio-temporal signals) follow the same dynamic
pattern under natural timing shifts.

Soft-DTW extends classic Dynamic Time Warping by replacing
the hard minimum over warping paths with a “soft-min” controlled
by a smoothing parameter y [9]. For y > 0, the loss is differentiable
everywhere, making it compatible with gradient-based learning and
end-to-end modelling of social signals. As y grows, the alignment
aggregates more paths and becomes increasingly smooth (down-
weighting local misalignments); as y — 0, it converges to the exact
DTW cost. A lower Soft-DTW cost thus indicates tighter tempo-
ral similarity after accounting for elastic warping. In practice, we
exploit this metric both to compare 3D gesture trajectories, quanti-
fying how an intervention preserves or alters natural motion. We
also use it to measure how an induced pitch-variance intervention
departs from each speaker’s original FO contour. Beyond pairwise
comparisons, Soft-DTW supports clustering, anomaly detection,
and the computation of barycenters, enabling population-level anal-
yses of multimodal social behaviours.

3.2 Intervention Friendly Motion
Representation

For our analysis, we require datasets that capture authentic hu-
man social interactions in multiparty settings. We selected the
DnD Group Gesture dataset [32], which records groups of five
participants engaged in “Dungeons and Dragons” (DnD) game-
play sessions. This dataset is particularly valuable as it captures
naturalistic social dynamics occurring within a structured collabo-
rative activity, providing rich examples of spontaneous multimodal
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communication behaviours. The dataset provides RGB videos and
BVH! (Biovision Hierarchy) files that contain both skeletal structure
information and the corresponding motion capture data recorded
during gameplay. Each BVH file encodes a hierarchical representa-
tion of joint positions and rotations, allowing for precise tracking of
body movements across multiple participants simultaneously. This
skeletal representation offers several methodological advantages
over RGB video data for our research objectives. The dataset also
provides us with the audio files associated with each participant in
that session of DnD.

First, skeletal data (Figure 2b) enables us to perform controlled
interventions on specific motion parameters while preserving the
overall structural integrity of the movements. We can systematically
manipulate gesture timing, amplitude, or coordination patterns
between participants—interventions (Section 3.4) that would be
prohibitively complex or visually inconsistent if attempted on RGB
video. Second, the skeletal format provides a dimensionality reduc-
tion that focuses our analysis specifically on movement dynamics
rather than potentially confounding visual elements such as cloth-
ing, lighting, or facial expressions which is important for our chosen
subjective measures (Section 3.3). Finally, this representation facili-
tates quantitative analysis of spatio-temporal coordination patterns
between multiple participants, which is central to our investigation
of social signals in group settings.

Our pipeline processes BVH files to extract movement features
relevant to social coordination, applies systematic interventions to
these features, and then utilises the modified skeletal animations
for subsequent analysis. We use thin-slices [33], which requires
us to slice our movement and audio features into 30-second slices
yielding ~ 145 slices, upon which we apply interventions in order
to test our measures. This approach allows us to establish causal
relationships between specific movement or audio parameters and
perceived social dynamics within multiparty interactions.

3.3 Motivation for Subjective Measures

To assess perceptual differences between ground truth video record-
ings of participants in the DnD Dataset [32] to their skeletal embod-
iment derived from the BVH-based motion capture, we conduct a
perception study. The experimental design employed the Perceived
Conversation Quality framework [45] to measure conversation
quality factors, alongside a modified Artificial Social Agent Ques-
tionnaire [13] to help quantify the perceived human likeness of the
agents. This methodological approach allows us to control for and
account for potential perceptual shifts occurring when transitioning
from video recordings to skeletal representations.

Perceived Conversation Quality metrics provide quantifiable
measures for interpersonal relationships, the nature of interaction,
and equality of opportunity that is also expected to capture en-
gagement [45]. We selected this framework specifically because
conversational dynamics are primarily conveyed through motion
patterns and interactional timing, elements that should theoreti-
cally be preserved in skeletal representations despite the reduction
in visual information. Human likeness assessment, as operational-
ized by the Artificial Social Agent Questionnaire, complements
these metrics by evaluating how anthropomorphic features are

Thttps://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
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perceived across different embodiment conditions [13]. This dual
measurement approach allows us to examine both the quality of
the observed interactions and the extent to which the skeletal rep-
resentations preserve human-like qualities compared to the video
recordings. This dimension is particularly relevant as skeletal rep-
resentations strip away surface-level visual cues while preserving
motion dynamics, creating a controlled experimental condition to
isolate movement-based factors in human perception, providing
insight into which elements of human communication remain ro-
bust across different representation modalities. It is important to
note that we are interested in the perception (by an observer) of
conversation quality and human likeness rather than the anecdotal
experience of the participants themselves in terms of likeability,
sociality etc., which will be associated with in-group cues like
clothing. This further motivates our choice of instruments and
skeleton-representation for this exploratory study.

Our analysis focuses on the aspects of human behaviour that
pertain to interpersonal synchrony, individual synchrony patterns
(intra-personal) and distributional characteristics - taken together
these aspects provide a window into how human behaviour is holis-
tically perceived by others [3, 18, 19, 59, 62]. While interpersonal
synchrony captures the perceived dynamic, moment-to-moment
coordination between individuals, individual patterns reveal how
observers interpret consistent tendencies and unique characteris-
tics of each person. Distributional characteristics, in turn, provide
insight into how broader patterns of behaviour vary across people
and groups. The results of this study can be found in Section 4.1
and more details about the setup are available in the Appendix.

3.4 Interventions

Our study employs a series of targeted interventions designed to
manipulate specific aspects of behaviour in thin slices of group
interaction. These interventions allow us to examine how subtle
changes in behavioural elements affect our chosen metrics in Sec-
tion 3.1. The interventions broadly target: interpersonal synchrony,
self-synchrony, and distributional characteristics.

Movement Dampening. Gesture kinematics have been shown
to significantly influence social perception. Prior studies indicate
that the speed of gestural movements can modulate perceived per-
sonality traits such as extraversion [34, 36], while the accelera-
tion profiles of gestures impact how well gestures are perceived
to match accompanying speech [8, 29, 48, 49]. Additionally, larger
hand movement amplitudes have been associated with communica-
tive intent [11, 40, 48], suggesting that more expansive gestures con-
vey greater social engagement. Deshmukh et al. [11] demonstrated
that increases in both the speed and amplitude of gesturing lead
to higher ratings on the Godspeed questionnaire [4], particularly
along dimensions of perceived anthropomorphism and likeability.
Beyond these effects, recent work also shows that visual bodily sig-
nals, particularly from the upper body, play a crucial role in allow-
ing observers to anticipate conversational turn-taking events [55].
However, while these findings robustly link gesture kinematics to
social perceptions, they often stop short of specifying the exact
quantitative functions that help measure these effects. To systemat-
ically explore this space, we introduce a targeted manipulation of
gesture kinematics by dampening the movement of the hands and
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arms in the skeletal embodiment. By controlling movement magni-
tude in this way, we aim to causally assess the impact of gesture
intensity on multimodal coordination metrics. We hypothesize that
altering gesture kinematics will lead to measurable changes at both
the intra and inter personal levels. Specifically, we expect this inter-
vention to influence joint-level Recurrence Quantification Analysis
(RQA) within individuals, Cross-Recurrence Quantification Anal-
ysis (CRQA) between individuals, Soft Dynamic Time Warping
(Soft-DTW) distances between gesture trajectories across individ-
uals, and the Multiscale Beat Consistency between gestures and
speech within an individual and between individuals. We dampen
the movements of hands in the motion capture through the use of a
Gaussian filter, which effectively functions as a low pass filter and
thereby suppresses or dampens some of the hand movements and
gestures. We apply this one level up the kinematic chain in order
to ensure that the dampening occurs in the hands themselves. This
is required due to the way motion is represented in BVH files.

Speech-Gesture Delay. We introduce delays in speech onset, which
could also be seen as delays in response times between individu-
als, to disrupt the natural temporal alignment between gestures
and speech. Prior work by Ter Bekke et al. [54] found that, on av-
erage, gestures preceded their semantically corresponding words
by approximately 0.724 (o = +0.730) seconds during free-form
conversation, providing a useful estimate for the typical temporal
lag between modalities. Additionally, they reported shorter-range
dependencies between gesture strokes and prosodically accented
speech events, such as pitch accents, indicating that multiple levels
of fine-grained coordination exist in natural communication. For
the purposes of our intervention, we focus on the longer-range
dependency observed during free-form conversation, as it better
reflects the spontaneous, multiparty social settings captured in
the DnD Group Gesture dataset [32]. Due to the impracticality of
manually identifying and adjusting individual gesture-speech align-
ments for each participant, we instead apply a uniform delay of
0.724 + o, across each individual’s entire audio track. While this
approach sacrifices fine-grained specificity, it provides a systematic
perturbation that allows us to examine whether disrupting speech-
gesture synchrony globally affects perceived social coordination.
By introducing this misalignment, we hypothesize that self and
interpersonal beat consistency will be degraded.

Voice Pitch Variance Reduction. Previous research has demon-
strated that vocal information plays a crucial role in shaping lis-
teners’ perceptions of speaker traits such as confidence and social
dominance [16, 17]. In particular, Guyer et al. [17] showed that
manipulating a speaker’s pitch can significantly alter perceived
confidence levels: lowering the fundamental frequency (F0) by 20
Hz led to higher confidence ratings, while raising it by 120 Hz had
the opposite effect. These findings highlight that even relatively
small perturbations in prosodic features can meaningfully influ-
ence social evaluations. Motivated by these insights, we introduce
a pitch variance reduction intervention in our analysis. Specifi-
cally, we constrain the F0 trajectories of speakers within a limited
range around their mean FO0, effectively reducing prosodic variabil-
ity without altering the overall verbal content. This manipulation
enables us to isolate the role of vocal expressivity in multimodal
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Figure 3: PCQ and ASAQ ratings from a control experiment
between the baseline videos and the stick representations of
humans from the video. The control experiment is done to
show the possible effect of changing the representation from

videos to the stick skeleton.

social coordination. To quantify the impact of pitch variance re-
duction, we compute the Soft-DTW distance between the original
and altered FO streams for each thin-slice segment. Soft-DTW is
particularly well-suited for this task as it allows for flexible, dif-
ferentiable alignment between sequences, making it sensitive to
subtle changes in prosodic contours. We hypothesize that reducing
pitch variability will disrupt natural prosodic dynamics, leading to
measurable changes in Soft-DTW distances.

4 Experiments

Table 1: LMEM results predicting CRQA %DET. Dampening
strength at 10. Complete table in Appendix.

Predictor Coef. p-value 95% CI
Intercept -0.093 0.000 -0.134 -0.052
Condition: Dampened 0.115 0.000 0.073 0.157
Group Variance 0.301

Table 2: LMEM results predicting CRQA MeanLR. Dampening
strength at 10. Complete table in Appendix.

Predictor Coef. p-value 95% CI
Intercept -0.169 0.000 -0.210 -0.128
Condition: Dampened ~ 0.451 0.000 0.410 0.492
Group Variance 0.334
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(a) CRQA %DET of an individual
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versation partners.

CRQA - Cross Person
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(b) CRQA MeanLR of an indi-
vidual averaged against all other
conversation partners.

Figure 4: Figure shows the CRQA Average %DET and MeanLR
in the gesture signal of each individual. The dampened mo-
tion leads to more predictable motion.

Beat Consistency - Cross Person
Motion Dampening
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Base
Intervened
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(a) Beat Consistency of an indi-
vidual averaged against all oth-
ers when gestures are dampened.

Beat Consistency - Cross Person
Audio Delay Intervention

Condition

Base
Intervened

Beat Consistency

Strength

(b) Beat Consistency of an indi-
vidual averaged against all oth-
ers with gesture onset delay.

Figure 5: Figure shows the cross-modal inter-person beat
consistency. Averaged against all conversation partners.

Table 3: LMEM predicting inter-person Soft-DTW distances.
Dampening strength at 10. Complete table in Appendix.

Predictor Coef. p-value 95% CI
Intercept 0.323 0.000 0.272 0.373
Condition: Intervened  -0.637 0.000 -0.688 -0.586
Group Variance 0.376

4.1 Exploratory Perception Study

In order to quantify the change in perception that is caused by
changing representations (video — stick skeletons), we presented
thirteen 30-second thin-slices to 27 participants. Each clip was
shown to an average of ~ 3.0 participants who filled out the
ASAQ [13] and PCQ [45] instruments. Figure 3 shows the perceived
changes between the video and stick skeleton representations as
ratings received on the ASAQ and PCQ instruments. There is a
change in the ASAQ ratings indicating that subjects found that
stick representations to be less “human-like” in appearance (Mean
(video — stick figure) = 0.51, SD = 0.67, t(27) = 4.07, p < .001). While
the change in PCQ reflects lower quality of perceived conversations
(Mean (video — stick figure) = 0.34, SD = 0.47, t(27) = 3.89, p < .001).
Both measures show a change likely due to the skeletal representa-
tions missing articulations not afforded in the representation such
as facial expressions.
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(a) Inter-person SDTW distances (b) Intra-person SDTW distances
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hence reduces the alignment

cost recorded by SDTW.

Figure 6: Figure shows SoftDTW distances calculated between
ground-truth data and the manipulated variations.

4.2 Movement Dampening

For analysing the intra and inter person effects we rely on lin-
ear mixed-effects models (LMEM), with the implementation from
statsmodels [50]. Here we mainly talk about the first strength level
that yields a significant change in metrics, however all strength
levels (o > 10) yield a p < 0.05. Detailed LMEM summary tables
can be found in the Appendix. It should be noted that, despite high
variability in the data, the linear mixed-effects model identifies a
consistent effect after accounting for subject-level differences. The
LMEM shows that the Dampened condition raised %DET for the
Right-Hand by 0.0.026 (p < .001). A similar increase was observed
for the Left-Hand. Similarly, MeanLR for the Right-Hand increased
by 1.56 units in the Dampened condition (p < .001). Left-Hand is
raised by ~ 1.2 units under intervention. Dampening also consis-
tently lowers beat consistency for strength > 20 across all people
with the mean (0.54) decreasing by 0.06. LMEM summary tables
for the intra-person RQA and Beat Consistency are available in
the Appendix. For analysing the effect between pairs of people,
we make use of CRQA (Figure 4), Beat Consistency (Figure 5) and
SoftDTW (Figure 6a). Table 16 shows the CRQA %DET is substan-
tially increased for the hands. Introducing dampening raised %DET
for Right-Hand by 0.115 (p < .001) and boosted Left-Hand by an
even larger 0.241 (0.115 + 0.126, p < .001). Similarly, dampening
raised the Mean Length of the Right-Hand by 0.451 units (p < .001)
and, after accounting for a small interaction (—0.059), the Left-
Hand by =~ 0.392 units. Beat Consistency was also lowered between
all individuals compared to the baseline as shown in Figure 5a.
The intervention increased SDTW distance: across all joints, the
Dampened condition was =~ 0.6 units lower than non-intervened
(p < .001) as shown in Table 3, indicating that the variability in
movement has gone down. Thus, the intervention produced a con-
sistent, joint-independent reduction in movement variability (due
to smoothing), which was detected by Soft-DTW.

Table 4: LMEM predicting inter-person Beat Consistency for
motion dampening strength of 10.

Predictor Coef. p-value 95% CI
Intercept 0.559 0.000 0.546 0.571
Condition: Intervened ~ 0.013 0.030 0.001 0.025
Group Variance 0.021
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Table 5: LMEM predicting inter-person Beat Consistency for
the audio delay manipulation. Delay set to 0.25s.

Predictor Coef. p-value 95% CI
Intercept 0.565 0.000 0.552 0.578
Condition: Intervened ~ -0.004 0.041 -0.008 -0.000
Group Variance 0.047

4.3 Speech-Gesture Delays

We assess the intervention using our Beat Consistency measure
(figures of the intra-person case made available in the Appendix).
In the intra-person scenario dampened gestures yield slightly lower
consistency scores, although an LMEM indicates the manipulation’s
effect is not strong enough. This is consistent for all delay values
(see Appendix for detailed LMEM tables) for the intra-person case.
In the cross-person scenario, against a baseline mean of 0.565 with
a delay of 0.25s, the intervention produces a modest decrease of
0.004 (p < 0.05) units as shown in Table 42. The remaining strengths
do not reach significance, potentially due to sparse and uneven
onsets per slice. The complete set of LMEM summary tables is
available in the Appendix.

4.4 Vocal Pitch Variance

When Soft-DTW is applied to two identical FO contours, the optimal
warping path hugs the main diagonal and the resulting distance
is essentially zero; any deviation from that diagonal reflects tem-
poral or spectral differences and increases the cost. In our data,
comparing each speaker’s unaltered contour with itself produced
distances at (or numerically indistinguishable from) zero, whereas
comparing the pitch-manipulated contour with its unaltered coun-
terpart yielded markedly higher values, consistent with a substan-
tial prosodic change. Because the baseline distribution is degenerate
at zero and therefore violates the assumptions of linear-mixed mod-
elling, we evaluated the effect with a paired Wilcoxon signed-rank
test, which confirmed a reliable increase in Soft-DTW distance
(W = 1732, p < 0.001). An error plot and a summary table for
various intervention strengths are available in the Appendix for
the interested reader.

5 Discussion and Conclusion

Our three intervention families demonstrate that distinct, theo-
retically motivated metrics reveal complementary facets of multi-
party social behaviour. Dampening the kinematics of the hands and
arms produced more internally predictable gestures (RQA %DET
and MeanLR), increased inter-agent gestural synchrony (CRQA
%DET) and compressed spatial variability (Soft-DTW), yet simul-
taneously weakened speech-gesture coupling (Beat Consistency).
Introducing a uniform 1.4s audio delay only marginally affected
self beat-alignment but reliably lowered cross-person Beat Consis-
tency, indicating that temporal mis-alignment degrades group-level
coordination before it is noticeable within an individual. Flattening
prosodic pitch variance left motion untouched but sharply increased
Soft-DTW distances between original and altered FO contours, con-
firming the measure’s sensitivity to subtle prosodic changes. Across
all manipulations the hands proved the most responsive modality:
they drove the largest gains in predictability under dampening and
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showed the clearest correspondence in objective changes , under-
scoring their central role in signalling social engagement.

We observe that dampening movement inflates coordination met-
rics—yielding higher CRQA %Determinism and mean line lengths
and lower DTW distances (e.g., [12, 61]). This follows from the
mechanics of these measures since they track co-occurrence in
temporal dynamics. Since relative stillness is a common listening
behaviour it constitutes a stable attractor. By reducing a speaker’s
movement, their kinematics align more with listeners’ idling. How-
ever there is a risk of conflating idle synchrony with genuine dy-
namic coordination, which will also relate differently with social
perceptions. Our sanity check warns that metrics often taken to
index rapport (e.g., [12, 61]) may simply reflect shared idle attrac-
tors or phases, since they merely reflect recurrence around any
stable pattern. For example, Kodama et al. [20] found that people
who cannot see each other exhibit stronger head-movement “co-
ordination” (via CRQA max line length and recurrence rate) than
those in view—our analysis shows that it is risky to conclude that
not seeing each other during conversation enhances synchrony
or coordination between head movements, as it may actually be
rooted in reduced or dampened movements. Further, checks are
therefore needed to differentiate between dynamic coordination
versus co-occurence of idling moments in conversation.

Overall, our results show that no single metric can fully assess
social believability. Instead, a small suite of measures: dynamical
structure via RQA/CRQA, cross-modal timing via Beat Consistency,
and distributional similarity via Soft-DTW—provides complemen-
tary, diagnostic insights. Because each metric is sensitive to the
specific property it targets, behaviour generation systems can treat
them as a “palette”. For example, impose a minimum %DET to
preserve gestural structure, enforce beat-alignment thresholds to
ensure audio-motion coherence, or monitor Soft-DTW to prevent
over-smoothed motion. The consistent cross-group effects and min-
imal random-intercept variance in our models also suggest these
measures are robust to individual differences, making them well
suited for large-scale automated evaluation. Future work should
incorporate head-pose and facial recurrence metrics to close the re-
maining gap in perceived realism, and explore whether integrating
this metric suite into the training loop can steer generators toward
truly socially coherent digital humans.

6 Safe and Responsible Innovation Statement

Digital humans and socially interactive agents promise transfor-
mative advances in education and healthcare, yet also pose ethical
and societal challenges. Here, we link objective, low-level measures
of multi-party social behaviour to high-level subjective percep-
tions—cautiously warning against any manipulative use of inferred
human responses. To minimize methodological bias and foster trans-
parency, we applied diverse interventional perturbations and ran
an exploratory perception study on our motion representations. Fi-
nally, to ensure privacy and GDPR compliance, we used anonymized
skeletal data (stripping faces, clothing, and backgrounds) under ap-
provals from our university’s Data Steward and Human Research
Ethics Committee.
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A Intra-person RQA

Mean Length - No Intervention vs Dampened

Determinism - No Intervention vs Dampened
Within Individual

Within Individual
Condition Condition

Base Base
Itervened Intorvened

Determinism
Mean Length

Persons Persons

(a) RQA Average %DET in an in- (b) RQA Average Mean Length in
dividual. an individual.

Figure 7: Figure shows the RQA Average DET and Mean
Length in the gesture signal within each individual. The
dampened motion leads to more predictable motion.

Figure 7 shows the average %DET per person. The joints on which

this analysis was run are: LeftHand, LeftArm, RightHand and RightArm.

This analysis was done to capture the synchrony or coordination
in the gestures of the same person. The LMEM (summary in Ta-
ble 6) shows that the Dampened condition raised %DET for the
Right-Hand by 0.033 (p < .001). The same increase was observed
for the Left-Hand. Similarly, MeanLR (Table 11) for the Right-Hand
increased by 2.1 units in the Dampened condition (p < .001). Left-
Hand started 0.6 units shorter yet still gained ~ 1.8 units under
intervention.

Amount of Slices Spoken In

45
Person
83 A oA
B
eC
J
oL

Figure 8: Count of slices a person has spoken in (DnD Session

1).

B Intra-person Beat Consistency

Beat Consistency - Individual
Motion Dampened

Beat Consistency - Individual
Y
Condition Condition
Base Base

Intervened Intervened

Beat Consistency
Beat Consistency

Persons Persons

(b) Beat Consistency of an indi-
vidual with a gesture onset delay.

(a) Beat Consistency of an indi-
vidual with dampened gestures.
Figure 9: Figure shows the cross-modal self beat consistency
of each individual against the manipulated data.
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Figure 9 shows the Beat Consistency scores of each individual.
Although the LMEM results in the main paper show that the ma-
nipulations effect is not strong enough, the error plots do show a
slight difference in the means.

C Intra-person Pitch Variance SDTW

No Intervention vs Pitch Variance Reduction
Soft-DTW Alignment

7 [
Los s

06 -

v

02 g

00

Persons.

Normalized - SORDTW Distancs

(a) Soft-DTW Alignment Path be-
tween two FO contours, one orig-
inal and one manipulated.
Figure 10: Figure shows the cross-modal self beat consistency
of each individual against the manipulated data.

(b) Soft-DTW distances of FO
streams per-person compared
against the unaltered FO.

Figure 10a shows an instance of an alignment matrix between two
FO contours. It calculated between an original FO contour and an
intervened one. For a perfect alignment, the diagonal should have
as little deviations as possible which is not the case when using an
intervened FO contour. However, applying SDTW on the original
unaltered FO contour yields a distance of zero as is evidenced in
Figure 10b

D Qualtrics Setup

Please watch the video in fullscreen mode carefully before you
continue.

Figure 11: Interface with the video shown to users.
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Table 7: LMEM for predicting RQA DET (Within Individual).
Dampening strength at 20.

Predictor Coef. p-value 95% CI
3 4 ":gi(t:';zr ; 3 Intercept 0.929 0.000 0.925 0.933
stongly -2 slightly  nor  slightly 2 strongly Condition: Intervened 0.033 0.000 0.028 0.038
i T Joint (vs Right Hand): Left Arm  0.030  0.000  0.026  0.035
UL Joint (vs Right Hand): Left Hand ~ -0.014  0.000  -0.018  -0.009
gonsiglent O O O O O O O Joint (vs Right Hand): Right Arm  0.030  0.000  0.025  0.035
people. Intervened x Left Arm -0.033 0.000 -0.040  -0.027
Intervened x Left Hand 0.003 0.386 -0.004 0.009
Intervened x Right Arm -0.033 0.000 -0.040  -0.027
Group Variance 0.000
Figure 12: Interface with the questions shown to users. Table 8: LMEM for predicting RQA DET (Within Individual).
Dampening strength at 30.
For our perception study, we used Qualtrics? platform. We setup the Predictor Coef. p-value 95% CI
ASAQ [13] and PCQ [45]. Since ASAQ is geared towards human- Intercept 0929  0.000 0925 0933
robot interaction (HRI), we slightly modify the question so that Condition: Intervened 0.036 0.000 0.032 0.041
they hold semantic relevance in our case (e.g. HRI centric questions Joint (vs Right Hand): Left Arm  0.030 0.000 0.026 0.035
to refer to humans instead as the agents). Figure 11 shows the a Joint (vs Right Hand): Left Hand ~ -0.014 ~ 0.000  -0.018  -0.009
thin slice of the group interaction from multiple angles. Before we Joint (vs Right Hand): Right Arm ~ 0.030 ~ 0.000 ~ 0.025  0.035
ask for the ratings the subject is shown a thin slice which they can Intervened x Left Arm -0.036  0.000  -0.043  -0.030
replay as many times as they like after which they’re asked to rate Intervened L?ft Hand 0.004 0194 -0.002  0.011
as seen in Figure 12. Before the users start rating they’re given an Intervened x Right Arm -0.0360.000 -0.043  -0.030
. . Group Variance 0.000
instruction:
Sample instruction shown to the participants of the
user study: Table 9: LMEM for predicting RQA DET (Within Individual).
Please use the set of questions below to indicate your per- Dampening strength at 40.
ception of the extent that the group’s behaviors appear to be Predi Cool. ooval p
that of real humans, as seen in the video. Each interaction redictor oel. p-value 5%
aspect in the below questionnaire should be rated using a Intercept 0.929 0000 0925 0933
seven-point likert scale (strongly disagree (-3) to strongly Condition: Intervened 0.038 0000 0034  0.043

Joint (vs Right Hand): Left Arm 0.030 0.000 0.026 0.035
Joint (vs Right Hand): Left Hand ~ -0.014 0.000 -0.018  -0.009
Joint (vs Right Hand): Right Arm  0.030 0.000 0.025 0.034

agree (3)). Read the questions carefully before answering.

Intervened x Left Arm -0.038 0.000 -0.044 -0.032
Table 6: LMEM for predicting RQA DET (Within Individual). Intervened x Left Hand 0.005 0.140  -0.002  0.011
Dampening strength at 10. Intervened x Right Arm -0.038  0.000  -0.044  -0.032
Predictor Coef. p-value 95% CI Group Variance 0-000
Intercept 0.929 0.000 0.924 0.933
Condition: Intervened 0.026 0.000 0.021 0.030
Joint (vs Right Hand): Left Arm  0.030 0.000 0.025 0.035 Table 10: LMEM for predicting RQA DET (Within Individual).
Joint (vs Right Hand): Left Hand  -0.014 ~ 0.000  -0.018  -0.009 Dampening strength at 50.
Joint (vs Right Hand): Right Arm  0.030 0.000 0.025 0.035 .
Intervenedgx Left Arm ¢ -0.026 0000  -0.032  -0.019 Predictor Coef. p-value 957 C1
Intervened x Left Hand 0.001 0.882 -0.006 0.007 Intercept 0.929 0.000 0.925 0.933
Intervened x Right Arm -0.026 0.000 -0.032  -0.019 Condition: Intervened 0.039 0.000 0.035 0.044
Group Variance 0.000 Joint (vs Right Hand): Left Arm 0.030 0.000 0.026 0.035
— Joint (vs Right Hand): Left Hand ~ -0.014 0.000 -0.018  -0.009
Zhttps://www.qualtrics.com/ Joint (vs Right Hand): Right Arm  0.030 0.000 0.025 0.034
Intervened x Left Arm -0.039 0.000 -0.046 -0.033
Intervened x Left Hand 0.005 0.099 -0.001 0.012
Intervened x Right Arm -0.039 0.000 -0.046 -0.033
Group Variance 0.000
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Table 11: LMEM for predicting RQA Mean Line Length Table 15: LMEM for predicting RQA Mean Line Length

(Within Individual). Dampening strength at 10. (Within Individual). Dampening strength at 50.

Predictor Coef. p-value 95% CI Predictor Coef. p-value 95% CI
Intercept 5.717 0.000 5.479 5.955 Intercept 5.737 0.000 5.482 5.992
Condition: Intervened 1.564 0.000 1.304 1.825 Condition: Intervened 3.034 0.000 2.763 3.306
Joint (vs Right Hand): Left Arm 1.179 0.000 0.918 1.439 Joint (vs Right Hand): Left Arm 1.179 0.000 0.907 1.451
Joint (vs Right Hand): Left Hand ~ -0.600 0.000 -0.860  -0.339 Joint (vs Right Hand): Left Hand ~ -0.600 0.000 -0.872  -0.327
Joint (vs Right Hand): Right Arm  1.256 0.000 0.996 1.517 Joint (vs Right Hand): Right Arm  1.256 0.000 0.984 1.528
Intervened x Left Arm -1.564 0.000 -1.933  -1.195 Intervened x Left Arm -3.034 0.000 -3419  -2.649
Intervened x Left Hand -0.328 0.081 -0.696 0.041 Intervened x Left Hand -0.334 0.088 -0.719 0.050
Intervened x Right Arm -1.564 0.000 -1.933  -1.196 Intervened x Right Arm -3.035 0.000 -3.419  -2.650
Group Variance 0.859 Group Variance 1.062

Table 12: LMEM for predicting RQA Mean Line Length Table 16: LMEM results predicting CRQA %DET. Dampening

(Within Individual). Dampening strength at 20. strength at 10.

Predictor Coef. p-value 95% CI Predictor Coef. p-value 95% CI
Intercept 5.717 0.000 5.473 5.961 Intercept -0.093 0.000 -0.134 -0.052
Condition: Intervened 2.136 0.000 1.872 2.401 Condition: Dampened 0.115 0.000 0.073 0.157
Joint (vs Right Hand): Left Arm 1.179 0.000 0.914 1.443 Joint (vs Right Hand): Left Arm 0.180 0.000 0.137 0.222
Joint (vs Right Hand): Left Hand ~ -0.600 0.000 -0.864 -0.335 Joint (vs Right Hand): Right Arm  0.199 0.000 0.157 0.242
Joint (vs Right Hand): Right Arm  1.256 0.000 0.992 1.521 Joint (vs Right Hand): Left Hand ~ -0.186 0.000 -0.228  -0.143
Intervened x Left Arm -2.136 0.000 -2.511  -1.762 Dampened x Left Arm -0.115 0.000 -0.175  -0.055
Intervened = Left Hand -0.312 0.103 -0.686 0.063 Dampened = Right Arm -0.115 0.000 -0.175  -0.055
Intervened x Right Arm -2.137 0.000 -2.511  -1.762 Dampened x Left Hand 0.126 0.000 0.066 0.186
Group Variance 0.928 Group Variance 0.301

Table 13: LMEM for predicting RQA Mean Line Length Table 17: LMEM results predicting CRQA Determinism, with
(Within Individual). Dampening strength at 30. fixed effects for condition, joint, and their interaction.
Predictor Coef. p-value 95% CI Predictor Coef. p-value 95% CI
Intercept 5.717 0.000 5.468 5.966 Intercept -0.110 0.000 -0.151 -0.069
Condition: Intervened 2.553 0.000 2.283 2.822 Condition: Dampened 0.175 0.000 0.132 0.218
Joint (vs Right Hand): Left Arm 1.179 0.000 0.909 1.448 Joint (vs Right Hand): Left Arm 0.180 0.000 0.137 0.223
Joint (vs Right Hand): Left Hand ~ -0.600 0.000 -0.869  -0.330 Joint (vs Right Hand): Left Hand ~ -0.186 0.000 -0.229  -0.143
Joint (vs Right Hand): Right Arm  1.256 0.000 0.987 1.526 Joint (vs Right Hand): Right Arm  0.200 0.000 0.157 0.243
Intervened x Left Arm -2.552 0.000 -2.933  -2.171 Dampened x Left Arm -0.175 0.000 -0.236  -0.114
Intervened x Left Hand -0.315 0.105 -0.696 0.066 Dampened x Left Hand 0.142 0.000 0.082 0.203
Intervened x Right Arm -2.553 0.000 -2.934  -2.172 Dampened = Right Arm -0.175 0.000 -0.236  -0.114
Group Variance 0.967 Group Variance 0.283

Table 14: LMEM for predicting RQA Mean Line Length Table 18: LMEM results predicting CRQA Determinism with
(Within Individual). Dampening strength at 40. fixed effects for condition, joint, and their interaction.
Predictor Coef. p-value 95% CI Predictor Coef. p-value 95% CI
Intercept 5.717 0.000 5.464 5.969 Intercept -0.111 0.000 -0.151 -0.070
Condition: Intervened 2.834 0.000 2.560 3.107 Condition: Dampened 0.175 0.000 0.132 0.218
Joint (vs Right Hand): Left Arm 1.179 0.000 0.905 1.452 Joint (vs Right Hand): Left Hand ~ -0.183 0.000 -0.226  -0.140
Joint (vs Right Hand): Left Hand ~ -0.600 0.000 -0.873  -0.326 Joint (vs Right Hand): Left Arm 0.177 0.000 0.134 0.220
Joint (vs Right Hand): Right Arm  1.256 0.000 0.983 1.530 Joint (vs Right Hand): Right Arm  0.196 0.000 0.153 0.240
Intervened x Left Arm -2.833 0.000 -3.220 -2.447 Dampened x Left Hand 0.154 0.000 0.093 0.215
Intervened x Left Hand -0.308 0.118 -0.695 0.078 Dampened x Left Arm -0.175 0.000 -0.236  -0.114
Intervened x Right Arm -2.834 0.000 -3.220 -2.447 Dampened x Right Arm -0.175 0.000 -0.236  -0.114
Group Variance 0.994 Group Variance 0.274
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Table 19: LMEM results predicting CRQA Determinism with
fixed effects for condition, joint, and their interaction.

Shirekar et al.

Table 23: LMEM results predicting CRQA MeanLR. Dampen-

ing strength at 30.

Predictor Coef. p-value 95% CI Predictor Coef. p-value 95% CI
Intercept -0.118 0.000 -0.159 -0.077 Intercept -0.233 0.000 -0.273 -0.193
Condition: Dampened 0.220 0.000 0.177 0.264 Condition: Dampened 0.754 0.000 0.713 0.795
Joint (vs Right Hand): Right Arm  0.199 0.000 0.156 0.242 Joint (vs Right Hand): Left Hand ~ -0.160 0.000 -0.201 -0.119
Joint (vs Right Hand): Left Arm 0.180 0.000 0.137 0.223 Joint (vs Right Hand): Right Arm  0.207 0.000 0.166 0.248
Joint (vs Right Hand): Left Hand ~ -0.186 0.000 -0.229  -0.143 Joint (vs Right Hand): Left Arm 0.190 0.000 0.149 0.231
Dampened x Right Arm -0.220 0.000 -0.282  -0.159 Dampened x Left Hand -0.117 0.000 -0.175  -0.059
Dampened x Left Arm -0.220 0.000 -0.281  -0.159 Dampened x Right Arm -0.754 0.000 -0.812  -0.696
Dampened x Left Hand 0.117 0.000 0.056 0.178 Dampened x Left Arm -0.754 0.000 -0.812  -0.696
Group Variance 0.273 Group Variance 0.296

Table 20: LMEM results predicting CRQA Determinism with
fixed effects for condition, joint, and their interaction.

Predictor Coef. p-value 95% CI
Intercept -0.201 0.000 -0.241 -0.161
Condition: Dampened 0.460 0.000 0.417 0.503
Joint (vs Right Hand): Left Arm 0.244 0.000 0.201 0.287
Joint (vs Right Hand): Right Arm  0.273 0.000 0.230 0.316
Joint (vs Right Hand): Left Hand ~ -0.258 0.000 -0.302  -0.215
Dampened x Left Arm -0.460 0.000 -0.521  -0.399
Dampened x Right Arm -0.460 0.000 -0.521 -0.399
Dampened x Left Hand 0.170 0.000 0.109 0.231
Group Variance 0.246

Table 21: LMEM results predicting CRQA MeanLR. Dampen-

ing strength at 10.

Predictor Coef. p-value 95% CI
Intercept -0.169 0.000 -0.210 -0.128
Condition: Dampened 0.451 0.000 0.410 0.492
Joint (vs Right Hand): Left Arm 0.204 0.000 0.163 0.245
Joint (vs Right Hand): Left Hand ~ -0.172 0.000 -0.213 -0.131
Joint (vs Right Hand): Right Arm  0.222 0.000 0.181 0.263
Dampened x Left Arm -0.451 0.000 -0.509  -0.393
Dampened x Left Hand -0.059 0.046 -0.117  -0.001
Dampened x Right Arm -0.451 0.000 -0.509 -0.393
Group Variance 0.334

Table 22: LMEM results predicting CRQA Mean Length with

fixed effects for condition, joint, and their interaction.

Predictor Coef. p-value 95% CI
Intercept -0.210 0.000 -0.251 -0.170
Condition: Dampened 0.646 0.000 0.605 0.638
Joint (vs Right Hand): Left Arm 0.197 0.000 0.156 0.238
Joint (vs Right Hand): Right Arm  0.214 0.000 0.173 0.255
Joint (vs Right Hand): Left Hand ~ -0.166 0.000 -0.207  -0.125
Dampened x Left Arm -0.646 0.000 -0.704 -0.588
Dampened x Right Arm -0.646 0.000 -0.704  -0.589
Dampened x Left Hand -0.100 0.001 -0.158  -0.042
Group Variance 0.311
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Table 24: LMEM results predicting CRQA MeanLR. Dampen-

ing strength at 40.

Predictor Coef. p-value 95% CI
Intercept -0.246 0.000 -0.285 -0.206
Condition: Dampened 0.809 0.000 0.768 0.849
Joint (vs Right Hand): Right Arm  0.202 0.000 0.161 0.243
Joint (vs Right Hand): Left Arm 0.185 0.000 0.145 0.226
Joint (vs Right Hand): Left Hand ~ -0.156 0.000 -0.197  -0.115
Dampened x Right Arm -0.809 0.000 -0.866 -0.751
Dampened x Left Arm -0.809 0.000 -0.866  -0.751
Dampened x Left Hand -0.115 0.000 -0.173 -0.057
Group Variance 0.290

Table 25: LMEM results predicting CRQA MeanLR. Dampen-

ing strength at 50.

Predictor Coef. p-value 95% CI
Intercept -0.238 0.000 -0.277 -0.198
Condition: Dampened 0.853 0.000 0.814 0.893
Joint (vs Right Hand): Left Arm 0.160 0.000 0.121 0.200
Joint (vs Right Hand): Right Arm  0.186 0.000 0.146 0.226
Joint (vs Right Hand): Left Hand ~ -0.212 0.000 -0.251 -0.172
Dampened x Left Arm -0.853 0.000 -0.909  -0.797
Dampened x Right Arm -0.853 0.000 -0.909 -0.797
Dampened x Left Hand -0.075 0.009 -0.132  -0.019
Group Variance 0.305

Table 26: LMEM predicting intra-person Beat Consistency
for the motion dampening manipulation; strength of 10.

Predictor Coef. p-value 95% CI
Intercept 0.543 0.000 0.518 0.568
Condition: Intervened -0.018 0.273 -0.049 0.014
Group Variance 0.000

Table 27: LMEM predicting intra-person Beat Consistency
for the motion dampening manipulation; strength of 20

Predictor Coef. p-value 95% CI
Intercept 0.544 0.000 0.520 0.567
Condition: Intervened -0.064 0.000 -0.095 -0.032
Group Variance 0.000
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Table 28: LMEM predicting intra-person Beat Consistency
for the motion dampening manipulation; strength of 30
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Table 35: LMEM predicting intra-person Beat Consistency
for the audio delay manipulation; delay set at 1.40s.

Predictor Coef. p-value 95% CI Predictor Coef. p-value 95% CI
Intercept 0.544 0.000 0.521 0.566 Intercept 0.544 0.000 0.521 0.567
Condition: Intervened -0.098 0.000 -0.129 -0.066 Condition: Intervened -0.007 0.671 -0.038 0.024
Group Variance 0.000 Group Variance 0.000

Table 29: LMEM predicting intra-person Beat Consistency
for the motion dampening manipulation; strength of 40

Table 36: LMEM predicting inter-person Beat Consistency
for motion dampening strength of 10.

Predictor Coef. p-value 95% CI Predictor Coef. p-value 95% CI
Intercept 0.543 0.000 0.519 0.567 Intercept 0.559 0.000 0.546 0.571
Condition: Intervened -0.142 0.000 -0.174 -0.111 Condition: Intervened 0.013 0.030 0.001 0.025
Group Variance 0.000 Group Variance 0.021

Table 30: LMEM predicting intra-person Beat Consistency
for the motion dampening manipulation; strength of 50.

Table 37: LMEM predicting inter-person Beat Consistency
for motion dampening strength of 20.

Predictor Coef. p-value 95% CI Predictor Coef. p-value 95% CI
Intercept 0.544 0.000 0.521 0.567 Intercept 0.564 0.000 0.552 0.576
Condition: Intervened -0.196 0.000 -0.228 -0.165 Condition: Intervened ~ -0.049 0.000 -0.062 -0.036
Group Variance 0.000 Group Variance 0.019

Table 31: LMEM predicting intra-person Beat Consistency
for the audio delay manipulation; delay set at 0.15s.

Predictor Coef. p-value 95% CI
Intercept 0.544 0.000 0.521 0.566
Condition: Intervened 0.004 0.780 -0.027 0.036
Group Variance 0.000

Table 32: LMEM predicting intra-person Beat Consistency
for the audio delay manipulation; delay set at 0.25s.

Predictor Coef. p-value 95% CI
Intercept 0.544 0.000 0.508 0.579
Condition: Intervened 0.009 0.580 -0.022 0.040
Group Variance 0.000

Table 33: LMEM predicting intra-person Beat Consistency
for the audio delay manipulation; delay set at 0.50s.

Predictor Coef. p-value 95% CI
Intercept 0.544 0.000 0.520 0.567
Condition: Intervened -0.009 0.561 -0.041 0.022
Group Variance 0.000

Table 34: LMEM predicting intra-person Beat Consistency
for the audio delay manipulation; delay set at 0.75s.

Predictor Coef. p-value 95% CI
Intercept 0.544 0.000 0.517 0.570
Condition: Intervened -0.005 0.756 -0.036 0.026
Group Variance 0.000

Table 38: LMEM predicting inter-person Beat Consistency
for motion dampening strength of 30.

Predictor Coef. p-value 95% CI
Intercept 0.558 0.000 0.545 0.571
Condition: Intervened  -0.089 0.000 -0.102 -0.075
Group Variance 0.019

Table 39: LMEM predicting inter-person Beat Consistency
for motion dampening strength of 40.

Predictor Coef. p-value 95% CI
Intercept 0.557 0.000 0.544 0.569
Condition: Intervened -0.150 0.000 -0.164 -0.137
Group Variance 0.018

Table 40: LMEM predicting inter-person Beat Consistency
for motion dampening strength of 50.

Predictor Coef. p-value 95% CI
Intercept 0.572 0.000 0.560 0.585
Condition: Intervened ~ -0.203 0.000 -0.217 -0.189
Group Variance 0.016

Table 41: LMEM predicting inter-person Beat Consistency
for the audio delay manipulation. Delay strength at 0.15s.

Predictor Coef. p-value 95% CI
Intercept 0.569 0.000 0.556 0.581
Condition: Intervened 0.001 0.458 -0.002 0.004

Group Variance 0.045
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Table 42: LMEM predicting inter-person Beat Consistency
for the audio delay manipulation. Delay set to 0.25s.

Shirekar et al.

Table 48: LMEM predicting inter-person Soft-DTW distances.
Dampening strength at 30.

Predictor Coef. p-value 95% CI Predictor Coef. p-value 95% CI

Intercept 0.565 0.000 0.552 0.578 Intercept 0.314 0.000 0.263 0.365
Condition: Intervened ~ -0.004 0.041 -0.008 -0.000 Condition: Intervened -0.631 0.000 -0.683 -0.579
Group Variance 0.047 Joint (vs Right Hand): Left Arm  -0.058 0.028 -0.110  -0.006

Table 43: LMEM predicting inter-person Beat Consistency
for the audio delay manipulation. Delay set at 0.50s

Predictor Coef. p-value 95% CI
Intercept 0.573 0.000 0.560 0.585
Condition: Intervened 0.003 0.198 -0.002 0.008
Group Variance 0.044

Table 44: LMEM predicting inter-person Beat Consistency
for the audio delay manipulation. Delay set at 0.75s.

Predictor Coef. p-value 95% CI
Intercept 0.571 0.000 0.559 0.583
Condition: Intervened ~ -0.003 0.422 -0.009 0.004
Group Variance 0.039

Table 45: LMEM predicting inter-person Beat Consistency
for the audio delay manipulation. Delay set at 1.4s.

Predictor Coef. p-value 95% CI
Intercept 0.565 0.000 0.553 0.577
Condition: Intervened ~ -0.008 0.090 -0.017 0.001
Group Variance 0.029

Table 46: LMEM predicting inter-person Soft-DTW distances.
Dampening strength at 10.

Predictor Coef. p-value 95% CI
Intercept 0.323 0.000 0.272 0.373
Condition: Intervened -0.637 0.000 -0.688  -0.586

Joint (vs Right Hand): Left Arm -0.059 0.023 -0.110 -0.008
Joint (vs Right Hand): Left Hand ~ -0.003 0.906 -0.054 0.048
Joint (vs Right Hand): Right Arm  -0.047 0.073 -0.097 0.004

Intervened x Left Arm 0.012 0.741 -0.060 0.084
Intervened x Left Hand 0.028 0.450 -0.044 0.100
Intervened x Right Arm -0.002 0.946 -0.074 0.069
Group Variance 0.376

Table 47: LMEM predicting inter-person Soft-DTW distances.
Dampening strength at 20.

Predictor Coef. p-value 95% CI
Intercept 0.320 0.000 0.269 0.371
Condition: Intervened -0.647 0.000 -0.698  -0.595

Joint (vs Right Hand): Left Arm  -0.059 0.026 -0.110  -0.007
Joint (vs Right Hand): Left Hand ~ -0.003 0.908 -0.055 0.049
Joint (vs Right Hand): Right Arm  -0.046 0.078 -0.098 0.005

Intervened x Left Arm 0.026 0.485 -0.047 0.099
Intervened x Left Hand 0.054 0.145 -0.019 0.127
Intervened x Right Arm 0.011 0.758 -0.061 0.084
Group Variance 0.368
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Joint (vs Right Hand): Left Hand ~ -0.003 0.910 -0.055 0.049
Joint (vs Right Hand): Right Arm  -0.046 0.083 -0.098 0.006

Intervened x Left Arm 0.016 0.673 -0.058 0.089
Intervened x Left Hand 0.067 0.077 -0.007 0.140
Intervened x Right Arm 0.001 0.969 -0.072 0.075
Group Variance 0.360

Table 49: LMEM predicting inter-person Soft-DTW distances.
Dampening strength at 40.

Predictor Coef. p-value 95% CI
Intercept 0.307 0.000 0.257 0.358
Condition: Intervened -0.605 0.000 -0.657 -0.552

Joint (vs Right Hand): Left Arm  -0.058 0.031 -0.111 -0.005
Joint (vs Right Hand): Left Hand ~ -0.003 0.911 -0.056 0.050
Joint (vs Right Hand): Right Arm  -0.046 0.087 -0.098 0.007

Intervened x Left Arm -0.006 0.875 -0.080 0.068
Intervened x Left Hand 0.063 0.098 -0.012 0.137
Intervened x Right Arm -0.020 0.594 -0.095 0.054
Group Variance 0.355

Table 50: LMEM predicting inter-person Soft-DTW distances.
Dampening strength at 50.

Predictor Coef. p-value 95% CI
Intercept 0.303 0.000 0.252 0.353
Condition: Intervened -0.575 0.000 -0.627  -0.522

Joint (vs Right Hand): Left Arm -0.054 0.042 -0.106 -0.002
Joint (vs Right Hand): Left Hand ~ -0.004 0.894 -0.056 0.049
Joint (vs Right Hand): Right Arm  -0.042 0.112 -0.094 0.010

Intervened x Left Arm -0.025 0.506 -0.099 0.049
Intervened x Left Hand 0.058 0.124 -0.016 0.132
Intervened x Right Arm -0.039 0.299 -0.113 0.035
Group Variance 0.353

Table 51: Results of statistical comparison across varying
pitch range limits.

Limit/+ Hz W-value P-value
140 5974 <0.05
120 5934 <0.05
100 5630 <0.05
80 4161 <0.05
40 3972 <0.05
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