
Communication in Goal Oriented Agents

Master’s Thesis

Wouter de Vries

Communication in Goal Oriented Agents

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

MEDIA AND KNOWLEDGE ENGINEERING

by

Wouter Adelbert de Vries
born in Leiderdorp, the Netherlands

Man-Machine Interaction Research Group
Department of Mediamatics

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c© 2010 W.A. de Vries.

Communication in Goal Oriented Agents

Author: Wouter de Vries
Student id: 1015842
Email: w.a.devries@student.tudelft.nl

Abstract

In this thesis the agent programming language GOAL is extended with communication. For GOAL we pur-
sue an implementation that has a well-founded theory as wellas providing pragmatic programming constructs
for the programmer. Existing technologies are reviewed to explore their approaches. Many of these technolo-
gies have Speech-act theory as their theoretic base, or build upon other technologies that do so. This led to
communication frameworks having vast and unclear performative sets and lacking formal semantics.

This thesis goes back to the core of communication by regarding communication from a linguistic perspec-
tive. This approach inspires syntactical representation of communication constructs and also leads the way to
specifying a formal semantics for those communication constructs. This semantics does not have a receiver of
a message refer directly to the mental state of the sender, but rather specifies how amodelof that mental state
can be deduced from the communication. These mental models are implemented as language constructs which
the agent programmer can use to have the agents reason about the beliefs and goals of other agents.

Finally the necessary middleware elements are implementedinto the GOAL interpreter to allow a system of
multiple agents to be distributed across multiple platforms or hosts.

Thesis Committee:

Chair: Prof. Dr. C.M. Jonker, Faculty EEMCS, TU Delft
University supervisor: Dr. K.V. Hindriks, Faculty EEMCS, TU Delft
Committee Member: Dr. M.M. Dastani, Faculty of Science, Utrecht University

Preface

As I start writing this last part of this document I cannot help but reflect on the past period, and
especially the process of doing research and writing this thesis. In much the same way as concerning
the subject matter I had moments where I couldn’t see the forest for the trees, these moments where
equally present in the personal attitude towards the process. It feels like walking a path through a hilly
landscape, having a general idea of the direction to take towards the goal. Most of the time you see
the path in front of you, but sometimes you lose the path when walking in a valley, and you need to
climb some hill to reorient yourself.

I have seen a lot of valleys and hilltops during my graduationperiod, but I consider myself lucky
to have learned the landscape. Not only have my ‘pathfinding’skills been improved, I can also take
home the experience of making such a journey, and seeing it through till the end, even when the valleys
and hills sometimes seemed to stretch as far as I could see. Were it not for some essential guides that
repeatedly showed me where the path was, it might have been hard to ever get to the goal.

There have been many guides in many forms, all of which have mysincere gratitude, but a few I
would like to mention;

First of all, Koen I thank for the huge patience in supervising my graduation. Whenever I once
again disappeared into some valley only to reappear some indefinite time later, we could always con-
tinue where I left off. At times it took some persuasion to keep me away from getting too philosophical
or getting lost in the details.

Tijmen, thanks for the company in our graduation room. The essential coffee breaks and chats
about whatnot were the kind of distraction that actually fuel the work spirit.

Finally I would like to thank Noor, for always being there forme. She always knew why I was
lost and gently showed me how to find the path again.

Wouter de Vries
Delft, the Netherlands

May 8, 2010

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Examples of Multi-Agent Systems 2
1.2 Overview . 7

2 Related Work 9
2.1 Introduction 10
2.2 Speech-act Theory 10
2.3 Existing Agent Communication Technologies 11
2.4 Conclusion .. 22

3 Semantics 25
3.1 Introduction 26
3.2 The effect of communicating 26
3.3 Mental vs. social agency 28
3.4 Conditions on the sender 29
3.5 What we can do .30
3.6 Syntax and semantics of the communication language 31
3.7 Querying mental models 33
3.8 Example usage .. 33
3.9 Self-referential communication 35
3.10 Conclusion .. . 35

4 Implementation 37
4.1 Introduction 38
4.2 Extending the GOAL grammar . 38

v

CONTENTS

4.3 Mental models .. 43
4.4 Communication .. . 44
4.5 Conclusion .. 46

5 Communication 47
5.1 Introduction 48
5.2 Multi-Agent Systems 48
5.3 Communication .. . 55
5.4 Send Action and Mailbox 55
5.5 Moods . 58
5.6 Agent Selectors 59
5.7 send action processing . 64
5.8 Example: The Coffee Domain 64
5.9 Conclusion .. 67

6 Mental Models 69
6.1 Introduction 70
6.2 Programming with mailbox semantics 70
6.3 Models of mental states 72
6.4 Using mental models in GOAL programs . 75
6.5 Conclusion .. 77

7 Distributed Multi-Agent Systems 79
7.1 Introduction 80
7.2 Requirements of a distributed agent system middleware 80
7.3 Existing technologies 81
7.4 Design of the GOAL middleware . 83
7.5 Implementing the GOAL Middleware . 84
7.6 Conclusion .. 91

8 Conclusions and Future Work 93
8.1 Conclusion .. 94
8.2 Future Work .. 96

Bibliography 97

A Code listings 99

vi

List of Figures

1.1 Example start- and goal state 5
1.2 Initial- and goal states for two-agent Blocks World example problem 5
1.3 Actions taken byA1 to achieve its goal . 5
1.4 Actions taken byA2 to achieve its goal . 6
1.5 A2 informsA1 of its goal . 6
1.6 Two agents performing a joint plan together 6
1.7 A2 holds the white block from 1 whileA1 rearranged the other blocks 7

2.1 Example of a KQML message; agent joe asks the stock-server to tell it the price of the
IBM stock . 11

2.2 FIPA reference model of an Agent Platform 13
2.3 FIPAinform semantic model . 14
2.4 An ACL message initiating arequest interaction . 15
2.5 Example conversation, witha informing b about factϕ 19
2.6 2APL Send action 20

3.1 John and Mary converse 27
3.2 Syntax of the mood operators 31
3.3 An example GOAL program . 34

4.1 The format of a GOAL program rule . 38
4.2 Grammar conflict 40
4.3 Agent selector between operator and parentheses 40
4.4 Agent selector after parentheses, with ‘by’ 40
4.5 Agent selector before operator 40
4.6 A proposed syntax for the agent selector 41
4.7 Grammar of theagentSelector . 42
4.8 Grammar of mental literal 43
4.9 Grammar of thesend action and thesentenceMood . 43
4.10 Mood operators in the mailbox 45
4.11 Querying the mailbox for an indicative message 45

vii

List of Figures List of Figures

5.1 The Coffee Maker 49
5.2 A minimal MAS file .. . 54
5.3 A MAS file for the coffee domain MAS 54
5.4 A more complex MAS file 55
5.5 GOAL message moods . 59
5.6 Syntax of thesend action . 60

6.1 Coffee maker agent’s percept rules 71
6.2 Example mental model queries 73
6.3 Effect of resolving agent selector in a mental model query 73

7.1 Interface for accepting messages 82
7.2 Three GOAL platforms on two hosts . 84
7.3 Mas file for the coffee machines 86
7.4 Mas file for the dairy farm 86
7.5 Agent interface extended with birth- and death handlingmethods 87
7.6 Agentmaker’s belief base after dairy farm is launched 87
7.7 Launch and announcement of a new agent. First, the GOAL platform launches the new

agent (1). TheRuntimeServiceManager retrieves the list of agent names (2),(3). It then
determines the next globally unique name (milkcow3) and announces this agent name to
the existing agents (4). 88

7.8 Action rule answering capability questions 89
7.9 Reusable action rule version of 7.8 89
7.10 Universal product-supplying action rule 89
7.11 Mailbox cleaning rule 90

A.1 Coffee maker agent 100
A.2 Coffee grinder agent 101
A.3 Milk cow agent 102

viii

Chapter 1

Introduction

1

1.1 Examples of Multi-Agent Systems Introduction

One of the properties characteristically ascribed to intelligent agents is their ability to interact.
Another is that they should be autonomous. One form of interaction between agents that respects
autonomy iscommunication. Communication allows agents in a multi-agent system to perform better
(i.e. more efficient, solving more problems) than they wouldalone or together without interacting.

Using agents as a programming paradigm requires a way to convert these agent concepts into
software. Agent programming languages aim to provide the bridge between concept and application.
Over the past decades, increased interest for agent technologies has given rise to development of
agent programming languages (APLs) and frameworks. While some of these APLs focus on the
formal aspects of agents ([7],[1]), others aim to provide a reasoning framework ([2]). GOAL is a Goal
Oriented Agent Language in which the agent is specified declaratively in terms ofbeliefsandgoals.
GOAL is currently being developed at the Delft University of Technology.

In this thesis I extend GOAL with the ability for agents to communicate. To achieve this,the
following questions are investigated:

1. What is minimally required to allow communication between agents?

2. How easy can communication be used or applied in GOAL programs?

As the name suggests, GOAL agents are specified declaratively in terms of their goals. When
communicating, it would be nice to do so based on the contentsof their mental states. From GOAL’s
perspective, we would like to observe the following criteria for success for designing and specifying
an ACL:

1. The communication constructs should have a well-founded theory. This includes a for-
mal semantics of the communicative acts. The importance of such a theory lies in an agents
program’s verifiability.

2. The distinction between beliefs and goals should persist inthe communication. GOAL is
based on this distinction, and after receiving a message an agent should be able to determine
whether the message conveyed a statement about the sending agent’s beliefs or about its goals;
the receiving agent should be able to distinguish informational from motivational content.

3. Programming agents using the communication constructs should be pragmatic, and pose
a small burden on the programmer. An agent programmer should not have to introduce
complexity or complicated constructs to make the agents communicate.

When the informational and motivational parts of a message can be distinguished this gives us an
insight into the mental state of the sender. With these accumulated insights an agent can reason about
the mental state of other agents, even if that reasoning is based on amodelof the mental state of that
other agent. In this thesis I introducemental models. The concept, semantics and implementation are
described and accompanied by code examples demonstrating their usage.

1.1 Examples of Multi-Agent Systems

In single-agent systems and -environments, communicationis not really an issue, and such agents need
not consider other agents or their influence on the environment and the agent’s plans. In situations

2

Introduction 1.1 Examples of Multi-Agent Systems

where more than one agent operates in the same environment, however, interaction between agents
may become beneficial or necessary for the execution of the individual agent’s plans. It might be that
agents could carry out their plans individually, but if theycooperate, they could do it more efficiently.
On the other hand, it could be that the presence of another agent with its own agenda will interfere
with the agent’s plan. Rosenschein and Zlotkin [14] identified 4 situations of two agents with respect
to their relative goals:

1. Thesymmetric cooperativesituation, in which both agents could execute their plans ontheir
own, but would both benefit from cooperating on those tasks. They both welcome the other’s
presence.

2. Thesymmetric compromisesituation, in which both agents would rather execute their plans on
their own, but are forced to deal with each other in order to have their plans executed.

3. Thenon-symmetric cooperative/compromisesituation, in which one of the agents benefits from
the interaction, while the other is worse off interacting than working alone.

4. Theconflictsituation, in which the goals of the agents contradict each other, i.e. the goal states
of both agents cannot be achieved simultaneously.

1.1.1 Rickety delivery

Suppose two package delivery agents,A1 andA2, each have a package to deliver by a certain timet,
at a certain locationl , which is just across a rickety rope bridge. Delivery agentscan hold at most two
packages at any time. Carrying packages a certain distance has a cost ofc per package. The bridge is
only strong enough to hold one agent at a time.

Time constraints Suppose that as the agents stand at the beginning of the bridge, there is no time
left for both agents to cross the bridge consecutively. Obviously, one agent could carry both their
packages across the bridge, thus achieving both their goal states (their package being atl by time t)
for them. This situation is anon-symmetric compromisefor the agent carrying the packages, and a
non-symmetric cooperationfor the agent not having to do work at all.

If the agents were to ignore each other, the first one to reach the bridge would cross it, deliver its
package and reach its goal state. But then the other agent will not be able to do so, leading to a global
utility that is sub-optimal.

The way the agents might interact could be as follows. AgentA1 meets agentA2 at the start of
the bridge, who is about to cross it. Their individual plans for achieving their goals lead them to a
deadlock. AgentA1 would like the other to help it out, but it doesn’t know the other’s goal or plan,
so it can’t figure out what kind of plan will help them both to their goals.A1 would like to inspect
A2’s goal base. But, being autonomous agents, that is not directly possible. So,A1 asksA2 to share
the contents of it’s goal base, and any beliefs it might have.A2 responds that it’s goal is to get it’s
package to the other side of the bridge, at timet. Also, it mentions that it is carrying one package.
Using this information,A2 thinks of a plan, namelyA1 taking both packages to the other side while
doing nothing itself (saving energy), andrequestsA1 to do so.A2 agreesexplicitly, and thejoint plan
is executed.

3

1.1 Examples of Multi-Agent Systems Introduction

Weight constraints What if the two packages were sealed together in one container (which has no
weight of its own). Either agent could carry the container tothe other side, to achieve its goal, which
has the side effect of achieving the other agent’s goal as well. Without coordination, both agents will
have their goals achieved, regardless of which agent executes the task. But they will both attempt to
execute the task themselves, since they have no idea that theother agent has the same (sub)goal.

But suppose carrying the container costs 2c, so if both agents would carry it together, coopera-
tively, it would each cost them onlyc, so both agents are better off together than expected alone.This
is an example of asymmetric cooperation; both agents welcome the other’s presence.

In this case, both agents would ask each other about their goals, and when they find out they have
mutual (sub)goals, they construct a joint plan of carrying the same container together.

Conflict Suppose now that the time constraint does exist, that is, there is only time for one agent
to cross the bridge, and that agents can carry at most one package at a time. In this case there is no
sequence of actions that will bring about the combined goal state of both agents; the agents are in
conflict. The best they can do by communicating about this situation isnegotiation, but that topic goes
beyond the scope of this document.

The rickety rope bridge examples have shown us that there aresituations where cooperation is
beneficial for all agents involved, or for some agents involved, or for the system of agents as a whole.

The communication in the above situations enabled the agents to come up with a joint plan that is
better (i.e. has a higher global utility) than the sum of their individual plans. In order to come up with
such a plan, agents must be aware of the goals of the other agent(s) involved.

1.1.2 Slotted Blocks World

Let’s consider a simple domain in more detail. Consider a table with blocks on it, that can each be
directly on the table, or on another block. There are a finite amount of slots these stacks of blocks can
stand on. The state of the world can be described with a conjunction of predicates;

• CLEAR(A), meaning there is no block onA, whereA can be a block or the table.

• ON(B, C), meaning blockB is directly on top ofC, whereC can be a block or the table.

• AT(D, n), meaning blockD is directly on the table in slotn.

There exists only two basic actions agents in this domain canperform:

• PICKUP(i), meaning that the agent picks up the block that is on the top of the stack in sloti.
This can only be performed if sloti is not empty. The result is that the block is removed from
the stack and the agent is now carrying it.

• PUTDOWN(i), meaning that the agent places the block it is holding on thestack (if any) in slot
i.

The cost of one such operation is 1. Agents can carry at most one block at a time.
Typical start- and goal states are some arrangement of the blocks, usually all blocks being stacked

in a specific order.

4

Introduction 1.1 Examples of Multi-Agent Systems

1 2 3

Start state

1 2 3

Goal state

Figure 1.1: Example start- and goal state

1 2 3

Initial State

1 2 3

A1’s goal

1 2 3

A2’s goal

Figure 1.2: Initial- and goal states for two-agent Blocks World example problem

Figure 1.1 shows an example of such a slotted blocks world.
Now let’s consider the following situation, illustrated byFigure 1.2. The initial state consists of

a white block, a black block, and two stacked gray blocks.A1’s goal is to have the black block on a
gray block on the table at slot 2, whileA2’s goal is to have the white block on a gray block on the
table at slot 1.

1 2 3

A1

1: PICKUP(2); PUTDOWN(1);

1 2 3

A1

2: PICKUP(3); PUTDOWN(2);

1 2 3

A1

3: PICKUP(1); PUTDOWN(2);

Figure 1.3: Actions taken byA1 to achieve its goal

Suppose each agent operates on its own to achieve its goal. For A1, the associated actions are
depicted in Figure 1.3. ForA2, they are shown in Figure 1.4. In principle, these goals are not in

5

1.1 Examples of Multi-Agent Systems Introduction

1 2 3

A2

1: PICKUP(1); PUTDOWN(2);

1 2 3

A2

2: PICKUP(3); PUTDOWN(1);

1 2 3

A2

3: PICKUP(2); PUTDOWN(1);

Figure 1.4: Actions taken byA2 to achieve its goal

1 2 3

A1 A2

Γ2: ON(black, grayx), AT(grayx, 2)

Figure 1.5:A2 informsA1 of its goal

A1 A2

1 inform(goal(ON(black,grayx), AT(grayx, 2)))
2 request(PICKUP(1))
3 〈 picks up white block at 1〉
4 〈 rearranges blocks to match Figure 1.7〉
5 request(PUTDOWN(1))
6 〈 puts down the white block at 1〉

Figure 1.6: Two agents performing a joint plan together

conflict, because there exists a (reachable) state in which both goals are satisfied (the union of the
goal states in Figure 1.2). However, a problem does arise when the two agents perform their actions
concurrently on the same environment: whenA1 puts the black block on the white block,A2 is
hindered in performing its first intended action, because the white block is no longer free. Removing
the black block from the white block will hinderA1’s plan.

But if the agents were to share information about their goals, they could deduce that they would
get in each other’s way if they don’t cooperate, and instead try to form a joint plan. This sharing of
information is done explicitly, by informing the other agent of one’s goals.

Let’s see what such a conversation would look like. Figure 1.5 shows the initial state, with agent
A2 informing A1 about its goal. Figure 1.6 shows the agents communicating toperform a joint plan.
A1 asksA2 to hold the white block, while it arranges the other blocks. In the process, it achievesA2’s
goal, and whenA2 replaces the white block on the gray block at 1,A1’s goal is also achieved.

6

Introduction 1.2 Overview

1 2 3

A2

Figure 1.7:A2 holds the white block from 1 whileA1 rearranged the other blocks

1.1.3 Conclusion

From the example interactions above we have seen that the communication between agents involves
sending messages, either toinform about some fact, or torequestthat some action will be taken. The
emphases on the words inform and request are not coincidental. In Agent Communication Languages,
these kind of verbs are calledperformatives, and are used as labels in the messages, to indicate the
type of communicative act the message is supposed to perform. Other types of performatives are
possible, as we will see when we explore the theory behind speech acts in the following chapter.

1.2 Overview

This thesis is outlined as follows.
In the following chapter I will review state of the art agent communication technologies. To pro-

vide theoretical background for most of these technologies, the chapter begins with a brief overview
of Speech-act theory. Then the technologies are reviewed and evaluated for their potential use when
implementing communication in GOAL.

In Chapter 3, the semantics of communication constructs forthe GOAL language are determined
and specified. This is done by regarding communication from both a theoretical as well as a practical
perspective.

Chapter 4 describes the implementation of these constructs. The choices made in determining
syntax are explained. The chapter then goes on to describe the changes to GOAL’s grammar and the
GOAL interpreter.

The following chapter elaborates on how the communication in GOAL works and how it can be
used. It explains the various programming constructs that are introduced and how these can be used
to program multiple cooperating agents. This is demonstrated by building an example multi-agent
system.

Chapter 6 describes mental models in more detail. The usefulness of mental models in program-
ming with multiple agents is explained and demonstrated by extending the example multi-agent sys-
tem from Chapter 5 with the use of mental models.

In Chapter 7 the issues when distributing agents across different machines are discussed. The
GOAL interpreter is extended to allow agents to communicate across hosts. The focus here is to limit
the impact this has on the burden of the programmer or the userof the GOAL platform.

Finally, the work done in this thesis is evaluated in the concluding chapter.

7

Chapter 2

Related Work

9

2.1 Introduction Related Work

2.1 Introduction

In the field of multi-agent systems, many agent communication frameworks exist to support agent
programmers in developing multi-agent systems in which agents communicate with each other.

In this chapter we will review several of these frameworks and explore how they relate to our ob-
jective of implementing communication for GOAL. Because communication in most of these frame-
works is based on Speech-act theory, a brief review of this theory is given in Section 2.2. Section 2.3
reviews state of the art agent technologies. At the end of thechapter the technologies and their use-
fulnesses for our purpose are evaluated.

2.2 Speech-act Theory

Speech-act theory is based on the idea that speech is an act, and that certain instances of speech
constitute additional acts being performed: an agent performs a speech act to change the mental states
of other agents. Thus, speech acts are similar to “physical”actions that change the state of the world,
except that they operate on mental states. The theory was introduced by philosophers Austin and
Searle, but has enjoyed much attention from the computational field. Searle identified [15] a category
of verbs whose “[. . .] utterance constitutes the performance of the act named by the performative
expression in the sentence”. E.g. with the sentence “I inform you that it is raining”, the utterance of
the sentence is called theillocutionary act. Thelocutionary forceis that which the speaker wishes to
achieve by performing the illocutionary act. In this case, informing the hearer that it’s raining. The
type of locutionary force is called theillocutionary force, which is in this caseinform. Though precise
definitions vary, these verbs are also calledperformatives.

2.2.1 Performatives

There are other performative verbs, likerequest, order, promiseanddeclare. These are all performa-
tive verbs, because by speaking them the act they name is performed. By saying, “I request you close
the door”, one hasmade the request. By saying, “I promise you I’ll come and visit”, the promisehas
been made, regardless if it was a sincere promise. Characteristically, ‘hereby’ can be added to the
sentence without altering it’s meaning: “I hereby declare this mall as opened”.

Not all verbs can be used performatively. Saying “I hereby wash the dishes” does not, unfortu-
nately, make it so that I have washed the dishes.

This last sentence gives an example of the case that some verbs can only be usedperformativelyif
the speaker of the sentence is generally recognized, (i.e. has the authority) to perform the locutionary
act. The situation and position of the speaker can influence the illocutionary force. Saying “The
meeting is adjourned” will only adjourn the meeting if said by the chairman. If said by some normal
meeting attendant, it might be interpreted as an ‘inform’ type of performative, instead of an ‘adjourn’.

This distinction between types of performatives was discussed by Searle. He distinguished several
classes of communicative acts:

• Assertives. By asserting a speaker commits itself to the truth of the asserted.

• Commissives. Through a commissive a speaker indicates that it is committed to perform the
action mentioned.

10

Related Work 2.3 Existing Agent Communication Technologies

• Declarations. Declarations make the content of the declaration true in the world (e.g. war
being declared, two people being married).

• Directives. These are attempts to get the hearer to perform some action.

• Expressivesindicate the speaker’s emotional attitude toward some state of affairs.

That which distinguishes these classes are the conditions under which they can be successfully per-
formed. These conditions apply to the mental states of the speaker and hearer.

2.3 Existing Agent Communication Technologies

Coming from Distributed Computing, where communication was already implemented by schemes as
CORBA, RMI, RPC etc. ACLs are similar but provide more because they handle propositions, rules
and actions as opposed to just objects without any semantics. And, an ACL message expresses a state
rather than a procedure or method. Also, an ACL doesn’t suppose a particular underlying transport
mechanism or (usually) a knowledge representation language.

2.3.1 KQML

Starting in 1990, the Knowledge Sharing Effort (KSE) developed techniques and methodologies for
reusing and sharing knowledge. To standardize the representation of knowledge, the KSE proposed
the Knowledge Interchange Format. KIF was meant as aninterlingua, a common language to rep-
resent the contents of a knowledge-base, which supports thetranslation to and from different native
content languages [6][12]. This proposal encountered criticism [8], because it tried to standardize too
much, which made it useless for most applications.

Sharing knowledge amongst autonomous entities implies / requires communication. To this end
the KSE group introduced the Knowledge Query and Manipulation Language or ‘KQML’, a com-
munication language and protocol for exchanging knowledge. It is meant to be a message-handling
protocol and a message format to support run-time knowledgesharing among agents.

KQML specifies the syntax and semantics of messages. Figure 2.1 shows an example of a message
in KQML.

KQML Listing

1 (ask-one
2 :sender joe
3 :content (PRICE IBM ?price)
4 :receiver stock-server
5 :reply-with ibm-stock
6 :language LPROLOG
7 :ontology NYSE-TICKS
8)

Figure 2.1: Example of a KQML message; agent joe asks the stock-
server to tell it the price of the IBM stock

11

2.3 Existing Agent Communication Technologies Related Work

The syntax of a KQML message is a LISP-style balanced parenthesis, featuring a performative
label and several key/value pairs. KQML provides an extensible set ofperformatives, which iden-
tify the illocutionary forceof the message content. In this example,ask-one is the performative.
The content field contains the actual knowledge in the native knowledge representation language.
The contents of this field are independent from KQML and vice versa, with the exception that the
language field should indicate which language is used there. This property allows KQML to be used
in many situations, regardless of knowledge representation (KIF, SQL, Prolog, XML, . . .). The fact
that the message itself can be represented in any encoding allows it to be transferred across many
transportation media (TCP, SMTP, IIOP, . . .). This makes KQML a widely applicable ACL.

The set of performatives given by KQML is neither minimal norfixed, instead it is meant to be
extended by anyone when the need arises. It is up to the community implementing an agent system
to determine which performatives from the basic set are to beused, and to implement additional
performatives if necessary.

Communication Facilitators

Aside from the “normal” performatives identifying speech-acts, KQML introduces a small set of per-
formatives which are used to describe meta-data regarding the information requirements and capabili-
ties. Also, a special class of agents is introduced, called thecommunication facilitators. These special
agents perform various communication services, like facilitating capability search, yellow pages, mes-
sage routing, etc. The motivation for the introduction of these agents is that agents from any source
should be able to join a network and be able to find their way in the social environment of agents,
providing / advertising its capabilities and finding out about those of other agents.

Conclusion

KQML specifies a communication language, its syntax and semantics. The KQML specification lists
43 reserved performatives, with their meanings. It also defines exactly how new performatives should
be defined. The set of performatives is so extensive and complex that agent builders will be inclined
to define their own performatives. This de-standardizes thelanguage, which makes it harder to use in
a multi-vendor system.

Furthermore, the specification states that the performative definitions make reference to either or
both the agent’s belief- or goal bases. However, the specification also states that the content of the
messages isinaccessibleto the protocol. This complicates verification of the agent’s program.

2.3.2 FIPA and FIPA ACL

Having a common message format enabled agent developers to have agents interact and exchange
information regardless of their native knowledge representations. However, it does not facilitate the
interoperability of agents, i.e. the ability of an agent society to operate with heterogeneous agents.
Even with a common message format, agent designers of different agent systems or other technologies
have no fixed specification of how to create or interpret thosemessages.

12

Related Work 2.3 Existing Agent Communication Technologies

FIPA To address this issue, the Foundation for Intelligent Physical Agents (FIPA) was established.
Its goal is to promote agent based systems and -technologiesby developing specifications and inter-
action protocols, especially in the agent communication field.

Software

Agent

Internal Platform Message Transport

AMS DF ACC

Agent Platform

Figure 2.2: FIPA reference model of an Agent Platform

The first specification published by FIPA described the basicreference model of an agent platform,
as shown in Figure 2.2, along with some special agents which are necessary for platform management.
An Agent Platform (AP) is the physical infrastructure in which agents can be deployed. An AP does
not bound the domain of the agent system, but is rather linkedto a degree of locality. Agents from
different APs may still interoperate with each other, and itis the frameworks responsibility to facilitate
this in a transparent fashion, i.e. agents need not know whether some other agent resides on the same
AP or not.

• TheAgent Management System(AMS) is a mandatory component of every AP. It contains a
directory of Agent identifiers which contain transport addresses for agents registered with the
AP. The AMS offers white page services to other agents.

• Directory Facilitator s (DF) are optional agents that offer yellow page services toother agents.
There may be more than one DF per AP, and they may be federated.

• TheAgent Communication Channel(ACC) is the default communication method for agents
on different APs.

FIPA ACL Agents communicate with each other by passing FIPA Agent Communication Language
(ACL) messages. These messages consist of several message parameters. There are parameters for
specifying the type of communicative act (performative), the participants in the conversation, the
content of the message and the control of the conversation.

The transport mechanism used to transport the messages is not set by the FIPA standard, but it
does give precise syntax description for ACL message encodings based on XML, text strings and
several other schemes, allowing for any implementing transport mechanism.

FIPA ACL is inspired by and very similar to KQML, but with the important difference that FIPA
ACL provides a formal semantics for the language, somethingthat is seen as a shortcoming of KQML.

13

2.3 Existing Agent Communication Technologies Related Work

The semantics of FIPA ACL messages are formalized in the specification in terms of a commu-
nicative act’sfeasibility pre-condition(FP), and itsrational effect(RE). Let’s illustrate this with an
exampleinforms semantic model.

< s, in f orm(r,ϕ) >

FP:Bsϕ∧¬Bs(Bi f r ϕ∨Ui f r ϕ)
RE: Brϕ

Figure 2.3: FIPAinform semantic model

Here,s is the sending agent,r is the receiving agent, and the first line says thats informs r that
ϕ holds. Bi f r ϕ means thatr ‘knows’ about the truth value ofϕ andUi f r ϕ means thatr is ‘uncertain’
about the truth value ofϕ, i.e. it has no knowledge of the truth value ofϕ. This precondition that the
receiver may not be uncertain about a fact in order to inform it about that fact is counter-intuitive to
say the least. The reason that FIPA put this here is to ensure mutual exclusiveness of the feasibility
preconditions among the communicative acts, when more thanone communicative act might deliver
the same rational effect. When a sender would believe that the receiver is uncertain aboutϕ, it would
send aconfirm type communicative act, whose FP isBsϕ∧BsUrϕ.

The feasibility precondition consists of two parts, the first beingBsϕ, stating that the sender be-
lieves that the proposition it informs the receiver about holds. This is called thesincerity property, and
relates to theGricean maxim of Quality[9]. The second part of the FP,¬Bs(Bi f r ϕ∨Ui f r ϕ), represents
the Gricean maxim of Quantity, i.e. the sender does not try to inform the receiver about a fact that
the receiver already knows about. In fact, it states that thesender should not adopt the intention to
inform the receiver aboutϕ even if it thinksr is only uncertain about it. In that case, it should perform
another communicative act, likeconfirm or disconfirm.

The Rational Effect represents theillocutionary forceof the message. It is the reason for sending
of messages by the sender. If some agents informs another agentr that a door is closed, then it
performs this communicative act because it wants the associated action be done (the receiver being
informed about the state of the door). Depending onr ’s trust ins, r may adopt the belief that the door
is closed.

The receiver may, upon “hearing” this message, conclude that the sender believed the proposition
at the time of sending, and also that the sender wishes the receiver to believe that proposition. It is
not, by this specification,requiredto adopt the belief thatϕ holds.

Communicative acts The FIPA Communicative Act Library Specification (Specification 00037)
lists all communicative acts (CAs). Some of them have real performative meaning, likeinform, re-
quest, agree, while others exist to accommodate conversations, negotiations and messaging (propa-
gate, subscribe, propose, reject proposal). The specification lists 22 performatives, of which roughly
half can be considered performatives in the speech-act sense, while the rest are either CAs to control
the conversation or for relaying messages (Proxy, Propagate, Not Understood), or are variants of other
CAs (Inform If, Inform Ref, Request Whenever).

Interaction Protocols Besides specifying the abstract agent architecture and theACL syntax and
semantics, FIPA has also specified a number of Interaction Protocols (IP). These IPs are pre-agreed

14

Related Work 2.3 Existing Agent Communication Technologies

message exchange protocols for using ACL messages to have complex conversations. Example IPs are
the Contract-Net protocol and the well-known English- and Dutch Auctions. When an agent wishes to
initiate a specific type of interaction (e.g. requesting an action), it can do so by setting the:protocol
field of the ACL message to a protocol token identifying the IPused, and assigning a globally unique
conversation-id to the interaction by setting the message’s conversation-id field. Any receiving
participant may respond according to the protocol, or replythat the message wasnot-understood.

For the case of doing a request to open a door, let’s look at an example ACL message:

FIPA ACL

1 (request
2 :sender agent-1
3 :receiver agent-2
4 :protocol fipa-request
5 :conversation-id 3228kjhIHIHI343
6 :content "open(door)."
7 :language PROLOG
8)

Figure 2.4: An ACL message initiating arequest interaction

In response to this request,agent-2 mayagree to orrefuse the request. If the request has been
agreed,agent-2 should respond with either:

• afailure message, indicating that it has failed to execute the requested action, or

• aninform-done or inform-result, which are types ofinform messages.

At any time during the interaction, the initiating agent maycancel the interaction by sending a
cancel message. At any time during the interaction, any participating agent may reply to a message
with anot-understood message, after which the interaction is terminated and any actions related to
the IP may be considered not to have had effect.

2.3.3 JADE

The FIPA organization laid the foundation for agent frameworks that would allow agent developers
to easily and consistently design agent systems. The Java Agent Development Environment (JADE)
is a Java based software framework that enables agent programmers to develop agent applications
in compliance with the FIPA specifications for interoperable intelligent multi-agent systems. It pro-
vides agent designers a set of tools, agents and systems for agent platform management, as well as a
comprehensive API which developers can use to implement their agent logic in the framework.

Framework architecture

To conform to the FIPA specifications, JADE comes with a number of special agents that perform the
tasks described in Section 2.3.2, like an AMS, DF, and the ACC. All these agents are automatically
started when the agent platform is started. The agent platform can be distributed across multiple hosts.
Each host runs one Java Virtual Machine, containing one Javathread per agent. AnAgent Container

15

2.3 Existing Agent Communication Technologies Related Work

is responsible for one or more of these agents, managing their life cycles and dealing with all the
communication.

Communication

Communication between agents is done by constructing anACLMessageobject and sending it to the
recipient. The way this sending is done depends on where sender and receiver are in the AP with
respect to each other, but is completely transparent to the agents themselves. Several cases may be
distinguished:

• Agents in same container: The ACL message object is not ‘sent’, but just .clone()d.

• Agents in same AP, different container: ACL message object is serialized and deserialized by
RMI.

• Agents in different AP: The ACLMessage object is translatedinto a character string and then
a remote method invocation on the remote platform’s ACC is performed using IIOP as mid-
dleware protocol. On the receiver side, the string is parsedback into an ACLMessage object,
which is then further relayed to the correct agent using the above method(s).

The ACLMessages are compliant with the FIPA ACL Message Structure Specification, and the
API provides constants for selecting any of the 22 FIPA ACL Communicative Acts.

Message delivery ACLMessages are delivered at the receiving agent by placingit at the end of the
receiving agent’s message queue. It is up to the behaviour(s) of that agent to do either a non-blocking
receive, which will return the ACLMessage at the head of the message queue, if any, or do a blocking
blockingReceive, which will block the behaviour until a message is availablein the queue. Both
receive methods can take aMessageTemplate, which works as a filter. Only ACLMessages that fit
the template will be returned by the methods. The template can match against any ACLMessage field.
This way, agents can have specific behaviours that handle a certain protocol, for instance, or allow for
conversation tracking.

Agent Execution Model

As mentioned earlier, JADE agents run in a single Java thread. This does not, however, restrict JADE
agents to single-threaded behaviour, due to its flexible execution model.

JADE agents are defined in terms ofBehaviours, which are abstract Java classes that are part
of the JADE API. The Behaviour class has two methods,action() which defines the task to be
performed, anddone() which determines if the task is completed or not. By extending the Behaviour
class and overriding these methods, one can implement behaviours for the agent. While all agents
run concurrently in their Java thread, the behaviours of each agent are selected by the JADE agent
by taking a behaviour from the ready queue and invoking itsaction() method. The behaviour is
responsible for terminating its execution at some time, andif at that timedone() returns false it is
rescheduled for execution again. JADE agents schedule their behaviours within a single Java thread,
using round-robin, non preemptive scheduling.

JADE comes with special subclasses of Behaviour for common tasks such as sending and receiv-
ing messages, and for complex behaviours composed of simpler ones.

16

Related Work 2.3 Existing Agent Communication Technologies

Conclusion

JADE has enjoyed much attention and interest from the world of multi-agent systems, though not
for its orientation towards FIPA compliance or extensive set of bundled protocols. The popularity
of JADE is mainly due to it being open source, available and actively maintained and developed
by a large community. Ithas risen to be the de-facto standard agent framework, but with some
practical complications. For one, JADE has adopted and implemented all FIPA performatives into
the ACLMessages, with the intention that they would be used to indicatespecificspeech acts, which
would help interoperability with other agent systems. However, there are so many performatives that
have lost most of their intuitive meaning or have an unclear meaning, that many agent designers resort
to only usinginforms, and putting their own meta-content constructs in the:content section. This
issue is more thoroughly discussed in Section 2.3.5.

Another issue with JADE’s implementation of communicativeacts is that it claims to implement
the semantics of the CAs as specified by FIPA. However, these specifications refer to the mental state
of an agent, and JADE has no way of testing that mental state. On the contrary, JADE as a framework
deliberately separates itself from the inner workings of the agents, leaving that domain to the agent
programmer. To illustrate this, let’s again take a look at Figure 2.3. The FIPA ACL specifications
state that for an agent to perform aninform communicative act, the FP must hold. In this case, the FP
refers to the beliefs of both sending and receiving agent. Since JADE cannot test these conditions, it
cannot enforce FIPA ACL-compliant application of communicative acts.

2.3.4 Jadex

Jadex[2] is an agent framework which provides a reasoning engine based on the Belief-Desire-Intention
(BDI) model for describing behaviour. Jadex uses JADE as middleware framework, and can thus be
seen as a reasoning engine-extension of the JADE platform. As such, from our point of view it does
not differ from JADE in terms of communication infrastructure and will therefore not be considered
or evaluated separately in this thesis.

2.3.5 Issues

When considering the above ACLs and middlewares, we can observe that while KQML provides a
standardized language for agent communication, its focus on the extensible set of performatives has
actually inadvertently reduced its acceptance and use. Also, despite the proposals and designs of
facilitating agents, no widely accepted or supported platform has been implemented providing these
facilities.

To improve interoperability between agent systems FIPA standardized the set of performatives,
and provides a sort of formal semantics of these communicative acts. This extensive standardization
effort led to several implementations like FIPA-OS and others, the most used of which is JADE. JADE
provides all the platform components that FIPA specifies anda framework for agent development.

As a middleware for GOAL, JADE could provide a means of agent communication and its platform
can provide the directory facilities and the agent management functions. There are some features of
JADE that when not used, do not cost any resources. This fits inJADE’s design philosophy of ‘pay as
you go’, meaning that you only pay runtime resources for the features that you use. However, since
JADE is based on FIPA and FIPA ACL, it inherits their problemsas well (see Section 2.3.2).

17

2.3 Existing Agent Communication Technologies Related Work

2.3.6 3APL

3APL is a language for programming cognitive agents with declarative goals. A 3APL agent has
beliefsandgoalsas mental attitudes and a basic set ofactionsthat it can execute when certain action-
specific pre-conditions become satisfied. A 3APL agent can beprogrammed by defining the agent’s
beliefs, basic actions, goals and practical reasoning rules.

Communication

Originally, 3APL was designed as a single-agent APL. Two proposals have been made on extending
3APL with communication. The first proposal [11] distinguishes two types of message exchange. The
first type is theinformation exchange, while the other deals withmaking a request. For each type, a
pair of communication primitives is introduced. For information exchange they are,tell andask, for
making a request they arereq andoffer. It is important to note that these communicative primitives
aresynchronouscommunicative actions, which means that actual communication only occurs when
two agents address each other. That is, communication has taken place when one agent makes a
request (for information or action) and the other synchronously provides it with an answer.

The approach discussed in [11] does not try to find computational equivalents for speech acts,
nor do they integrate conversation policies in the semantics of the communicative primitives. Rather,
they focus on the requirement that thereceiverof a message should be able to derive an answer to a
question from that message. In the case of information exchange, this is done usingdeduction, and in
the case of requesting usingabduction.

The reason for this focus on the receiver is that an inherit problem with defining semantics for
communication is the impossibility to predict the effect ofa communicative act, without sacrificing
autonomy. Even FIPA only states that the receiver of aninform message is “entitled” to believe
its contents. The only assumptions the sender can really make according to the semantics given by
FIPA for instance, is that the receiver has received the message and believes that the sender wishes to
inform the receiver about the contents. More formally;BsBr(IsBrϕ∧Bsϕ). It is exactly this issue that
complicates the verifiability of communicating agent systems.

Criticism on this synchronous view is given in [4] on the grounds that we cannot pair all perfor-
matives that should be synchronized. Some performatives can have several different performative acts
as response (agree, refuse) depending on the mental state of the receiver, while some performatives
do not require or expect a response at all (one-wayinform).

Instead, an approach is proposed in [4] that is based on asynchronous communication and supports
modeling of FIPA-ACL performatives separately from the sending and receiving of the messages.
3APL agents send and receive messages to each other through the explicit 3APL actionsSend and
Receive. The actions are FIPA compliant in that they incorporate identifiers for the message, the
sender, the receiver and a performative label indicating the type of communicative act. These actions
are part of the 3APL language, while the content of the messages can consist of beliefs, basic actions,
or goals. Messages are synchronously transported between the sender and receiver, but only by taking
the message and putting it in the receiver’smessage base, until the receiver does aReceive action.
The message base can be seen as a message buffer, where incoming messages await reception by
the receiver. They exist as predicates in the formreceived(i,α,β,ρ,ϕ). At the sender’s side, upon
sending a message, a predicatesent(i,α,β,ρ,ϕ) is asserted in its message base. This ‘delivery-on-
demand’ reintroduces asynchrony on the agent level. In thisnotation, i is a message identifier,α

18

Related Work 2.3 Existing Agent Communication Technologies

identifies the sender of the message,β identifies the receiver,ρ is a keyword identifying the type of
communicative act (i.e. performative), andϕ is the message content.

The messages are handled at the receiving agent by means of practical reasoning rules, that have a
logical formula that is tested against its message base in the rule’s head. This way, rules can be defined
that handle common protocol messages, like arequestwhich should be answered with anagreeif the
requested action can be performed or arefuseif not. A programmer can change this behaviour if
necessary by changing the practical reasoning rule, and candefine message handling PR-rules for any
situation.

Example Let’s explore an example to illustrate what happens when agent a informs agentb about
some factϕ. Figure 2.5 lists this conversation. LetM i, Σi , Γi be an agenti’s message base, belief
base, and goal base, respectively.

Sender Receiver
M = /0,Σ = 〈ϕ〉,Γ = 〈s〉 M = /0,Σ = /0,Γ = /0

M = 〈sent(1,a,b, in f orm,ϕ)〉,Σ = 〈ϕ〉,Γ = /0 M = 〈received(1,a,b, in f orm,ϕ)〉,Σ = /0,Γ = /0,
M = 〈sent(1,a,b, in f orm,ϕ)〉, M = 〈received(1,a,b, in f orm,ϕ)〉,

Σ = 〈ϕ〉,Γ = /0 Σ = 〈Σa〈ϕ〉〉,Γ = /0

Figure 2.5: Example conversation, witha informing b about factϕ

2.3.7 2APL

Whereas 3APL is mainly a research project, 2APL aims more at supplying a usable platform on
which agents programmed in the 2APL programming language can be executed and developed. The
platform is written in Java and relies on the JADE middlewarefor agent management, communication
and several tools that come with JADE, like the Remote Monitoring Agent, the message sniffer and
the introspector. Agents can run on different hosts and can address each other conform the JADE
addressing scheme.

2APL programs

2APL programs consist of several sections:

• Beliefs and goals

• Basic actions

• Plans

• Practical Reasoning Rules

Beliefs and goals are expressed as Prolog facts. In the case of goals, the facts reflect a desired
state. Basic Actions specify the capabilities of the agent,and can act on the agent’s belief base, the
external environment, or can test conditions on the belief base or goal base. Also, Basic Actions can
update the agent’s goal base, by adopting or dropping a goal.

19

2.3 Existing Agent Communication Technologies Related Work

These Basic Actions are combined intoplans. Plans can have an activation condition on the belief
base, and they can be partially or wholly atomically executed. The plans can be dynamically generated
throughpractical reasoning rules, which can fire upon events such as an incoming message from other
agents, events from the external environment, or certain actions.

All this allows for complex plan generation and event handling.

Communication

A Communication Action is a type of Basic Action through which an agent can send a message to
another agent. Such a send action has the following format:

2APL

Send(Receiver, Performative, Language, Ontology, Content)

Figure 2.6: 2APL Send action

Here,Receiver is a JADE-style agent address. It can be a local name for an agent that resides
in the same agent container or a full name of the formlocalname@host:port/JADE. Performative
specifies the speech act performed by this action, which can be any of the FIPA-ACL performatives.
The following parametersLanguage andOntology can be used to provide meta information on the
content. These parameters are optional, because often agents will assume a certain language and
ontology, so they are simply omitted. The final parameterContent is a representation of the content
of the message.

Looking at the format of the send action in 3APL and 2APL we seesome differences, which
are listed below. The main reason for these differences is that 3APL is a goal directed APL that
regarding communication adheres to the FIPA specificationswhich state that a message should con-
tain performative, sender, receiver andcontent parameters, while 2APL is a more pragmatic
implementation of an APL platform.

1. 2APL syntax does not include a message identifier. The purpose of a message identifier is
to distinguish one message (in the message base) from a potentially identical other message.
Because 2APL is built on JADE, incoming messages will bequeuedat the receiving agent, not
pooledin a message base as in 3APL.

2. 2APL syntax does not include the sender’s identifier. In 2APL, message events are used as
triggers for message handling procedural rules. These events have the formmessage(Sender,
Performative, Language, Ontology, Content).

3. 3APL syntax does not mention language or ontology, because 3APL specifies that the content
can be only beliefs, basic actions, or goals, so a choice of language or ontology would be
unnecessary.

20

Related Work 2.3 Existing Agent Communication Technologies

2.3.8 JASON

Jason is an implementation and extension of the programminglanguage AgentSpeak. It is designed
with the idea in mind that Jason agents should be able to communicate and cooperate on the knowledge
level, meaning that they can communicate in terms of their beliefs, goals, and plans.

In Jason, mental states consist ofbeliefs, facts which they perceive or deduce from other facts,
events in the environment for which they may haveevent handlers, and intentions, which are goals
that are currently being pursued. This ‘BDI’ model has been eagerly used in the artificial agent field,
because modeling agents in this way provides the agent programmer with an intuitive link with how
humans are known to think and act. Also, because the activityof selecting plans for action is separated
from the execution of the plans, BDI-agents have the abilityto balance between different intentions,
so they do not over-commit themselves to plans that have losttheir use, and can as such be more
effective.

Jason agents are programmed in AgentSpeak, and consist of two parts. The first part contains
the agent’s initial beliefs and goals. In the second part theagent’splansare defined. These plans are
‘recipes’ for how to act upon certain events in certain conditions. Plans have the following format:

Jason plan

1 <triggering effect> : <context> <- <body>

The<triggering effect> specifies for which events this plan is relevant. A plan is only applicable
for execution if the plan’s<context> is entailed by the agent’s beliefs. Thebody lists thebasic
actionsthat are to be performed when this plan is executed.

There is also an optional construct to be used in the belief base, an annotation which captures the
sourceof the information. It is a list of terms enclosed in square brackets. Two sources are predefined,
percept andself, but sources could be other agents, through communication.

Communication

A Jason agent can communicate with other agents by sending messages using theinternal action
.send, with the following format:

Jason send action

1 .send(receiver, illocutionary_force, propositional_content)

receiver is a label for an agent as defined in the multi-agent system.illocutionary force repre-
sents the type of performative for this message. The illocutionary forces available in Jason are:tell,
untell,achieve, unachieve, tellHow, untellHow, askIf, askOne, askAll andaskHow.

An interesting property of Jason agents is their ability to not only exchange beliefs and goals,
but also plans. This way agents can tell each otherhow to act upon certain triggering events. The
*How performatives are used for this kind of communication.achieve andunachieve are used to
request that the receiver achieve a certain state in the world, or stops doing that, respectively.tell and
untell are used to indicate a sender’s intention to have the receiver believe the propositional content
to be true, or to stop believing the propositional content tobe true, respectively.

Messages are sent and received asynchronously. When sent, the message is put in the receiver’s
mailbox. At the beginning of the receiver’s reasoning cycle, one message is selected from the mailbox

21

2.4 Conclusion Related Work

to be processed. This selection of messages is subject to a user-definable function which determines
if a message issocially acceptable. For example, an agent may want to reject atell message from
an agent that it does not trust. If a message passes this function it is then treated as an event, possibly
triggering plans in the agent’s reasoning process. Annotations specifying the source can be used here
to valuate a message in the social acceptability function, or as part of the event trigger in the plan rule.
This way, an agent can handle information it perceived itself differently from information it received
from other agents.

Conclusion

While the illocutionary forces of the communication in Jason are inspired by KQML, the set of perfor-
matives is relatively less extensive and complex compared to that of the KQML specification. There
are 9 performatives, and the semantic rules for interpreting received messages with each of the perfor-
matives are given in [18]. A specific focus of Jason is to be able to communicate in terms of beliefs,
goals and plans.

2.4 Conclusion

As noted in the Introduction, when considering a communication infrastructure for GOAL, the follow-
ing criteria are observed:

1. The communication constructs should have a well-foundedtheory.

2. The distinction between beliefs and goals should persistin the communication.

3. Programming agents using the communication constructs should be pragmatic, and pose a small
burden on the programmer.

Several agent platforms, frameworks and agent programming- and communication languages were
reviewed. Some of these have a strong link with Speech-act theory, and try to map the theory with
all its performatives onto an agent communication language. Often, additional performatives are
introduced to facilitate meta-communication, such as services discovery, message routing etc.

The technologies we have reviewed in this section give us a technical framework for commu-
nication, but most have issues concerning the formal verifiability of the programs when used in a
multi-agent environment. Going from KQML to FIPA (ACL), efforts have been made to provide for-
mal semantics of the communication language, but these semantics refer to the beliefs and goals of
the sending agent, which is not realistic since there is no way to inspect another agent’s mental state
directly.

JADE provides a framework and platform for developing FIPA compliant multi-agent systems.
The tools and the technical framework are powerful, and are used in several other agent platforms.
But since the communication is based on the principles of FIPA, it also inherits its issues with formal
verification.

All these technologies suffer from lack of formal semantics, and a performative set that is ambigu-
ous and vague which leads to misinterpretation by agent designers, thus defeating the interoperability
those technologies aim to facilitate.

22

Related Work 2.4 Conclusion

These problems were acknowledged within the field, and due toan increasing demand for verifi-
able multi-agent systems, attempts have been made to address them.

3APL and 2APL take a different approach at the implementation of the communication process,
by modeling the FIPA-ACL performatives separate from the sending and receiving of messages. By
asynchronously sending messages via a message base, the semantics of the communication primitives
allow for better formal verification. Jason tries to reduce the performative set, defining performatives
for sharing information (beliefs), goals, plans and askingfor information.

These latter APLs have better theoretic foundations, but still do not formally specify what the
receiver of a message should actually do with it. Overall these technologies can give us a technical
framework for communication, but fail to satisfy our first criterium of having a well founded theory.

Also, with the exception of 3APL, no ACL makes any distinction between beliefs and goals in the
communication. Propositional content is just packed in a message, and the programmer can apply an
appropriate label (performative) on it. But these labels bear no relation to the semantics of the ACL
itself. Our second criterium is therefore not satisfied.

Often, because of too vast, vague and ambiguous performative sets, agent programmers tend to im-
provise when using performatives, hampering interoperability and complicating the agent programs.
This is clearly not a pragmatic way of programming agent communication. Handling these situations
places a burden on the programmer, which violates criterium3.

None of the ACLs that we reviewed in this chapter give us a framework for communication for
GOAL which has a formal semantics based on a well-founded theory and provides a pragmatic way
for agent programmers to have agents communicate their beliefs and goals.

This makes these technologies unsuitable for direct application as a communication middleware
for GOAL, as they do not meet the criteria that were listed in Chapter 1and reiterated at the top of this
section.

23

Chapter 3

Semantics

25

3.1 Introduction Semantics

3.1 Introduction

So, what is communication, in the context of agents? Communication is the successful conveyance or
sharing of information. When we communicate, we want the actof communication to have an effect
on the audience. For example, suppose I (the speaker,s) tell you (the hearer,h) “It’s raining.” (ϕ).
From my point of view as speaker, I would like to believe that the utterance of the sentence has an
effect on the hearer, namely that the hearer believes that which was asserted.

In this chapter I discuss why the above is not a trivial matter, and how this causes a fundamental
problem with many existing agent communication languages.Instead of a communication semantics
based on Speech-act theory, I introduce an alternative approach to agent communication, in which the
autonomy of the agents is respected, and is inspired by linguistics.

First, the objections to the conventional speech-act inspired approach are discussed.

3.2 The effect of communicating

The effect of the act of uttering “It’s raining” might be either (or any, or all) of these effects;

1. You come to believe that it is raining:Bhϕ

2. You come to believe that I believe that it is raining:BhBsϕ

3. You come to believe that I had the intention to make you believe that it is raining:BhIsBhϕ

4. Nothing. Or, more politically correct, ‘anything’.

The last effect in the list suggests that something is going on here. Indeed, we cannot strictly
assume that the first effect will actually happen; I may not have convinced you. So effect 1 is too
presumptuous.

Effect 2 is somewhat less gullible. It doesn’t simply adopt the belief in whatever it is told, but
instead assumes that I believe what I say. This is not always asafe assumption. For example, when
I am lying, I do not believe what I say, so believing that I believe what I say would still be overly
credulous.

So let’s take another step backwards to effect 3. This is an even safer statement, assuming only
that one does things because one intends to do those things. In this case, ‘things’ refers to having you
believe the truth ofϕ. But from my point of view, knowing that you believe that I intended to have
you believe that it’s raining is of little direct use, unlessI trust that you dosomethingwith that first
belief.

But that is exactly the issue with this kind of communication. Can a speaker assume anything
about what a hearer does with this information? What actually happens when we utter a sentence?
Of course, the act of speech brings about more than just the knowledgethat something has been said.
Exactly what it is that these speech acts do aside from the trivialities of being performed (uttered),
heard, etc, is the core topic of Communication Theory.

These issues mentioned in the above paragraphs were noticedin natural language communication
by philosopher Paul Grice [9], who studied the discrepancy between what is meant by an utterer and
inferred by a hearer. Grice identified themoodsof utterances asconversational implicatures, a term

26

Semantics 3.2 The effect of communicating

roughly defined as ‘things that a hearer can make out from theway something was said rather than
what was said’. When John from Figure 3.1 utters “Mary, the salt ison the table.”, he does so in

‘The salt is on the table’ in three moods

1 John: ‘‘Mary, the salt is on the table.’’
2 John: ‘‘Mary, is the salt on the table?’’
3 John: ‘‘Mary, I’d like to see the salt on the table please!’’

Figure 3.1: John and Mary converse

an indicative mood. When he utters “Mary, I’d like to see the salt on the table please!”, it is in an
imperative mood.

Moods were also a subject of research for Robert Harnish[10], who distinguished major from
minor moods. Examples of moods in the English language are indicative, subjunctive, imperative,
infinitive, participles, expressives. He categorizes major moods as being:

1. highly unrestricted in their productivity

2. central to communication

3. high in relative frequency of occurrence

4. common to most languages

He then identifies three major moods:

• declaratives

• imperatives

• interrogatives

Instead of ‘declarative’, we will use the term ‘indicative’for the same mood. These moods correspond
to the moods of the sentences in Figure 3.1. In general, sentences can be decomposed into

1. the part that represents the propositional content of thesentence. In these examples, that is “the
salt is on the table”. Grice calls this moodless element thesentence radical.

2. themood operator, which can be⊢ for the indicative mood, ! for the imperative mood and ? for
the interrogative mood.

Both elements are combined to form a notation⋆(R), where⋆ is a mood operator andR is a sentence
radical, for representing the meaning of sentences, and is explained as follows. SupposeU is an
utterer, uttering in the direction of audienceA.

1. U means⊢(ϕ) by utteringx if and only if U intendsA to thinkU thinks thatϕ.

2. U means !(ϕ) by utteringx if and only ifU intends

27

3.3 Mental vs. social agency Semantics

i. A to think thatU intends to bring aboutϕ
ii. A to intendϕ

3. U means ?(ϕ) by utteringx if and only if U intendsA to think thatU intends to know the truth
of ϕ

This notation models utterances by isolating the sentence radical from the mood operator. Searle
([16], p47-50) also made this separation between what he calls the illocutionary force and the propo-
sitional content in his amendment of Grice’s account on Meaning, for his own discussion of speech
acts. Searle expanded Grice’s definition of non-natural meaning to account for convention in commu-
nication. Searle also uses a similar notation for modeling speech acts.

This notation and Grice’s analysis of communication and conversational implicatures give us a
better basis for designing communication constructs for agents than pure Speech-act theory. These
constructs are proposed in Section 3.6.

3.3 Mental vs. social agency

So far, the multi-agent architectures we have considered all have (formal) semantics that emphasize
mental agency, the supposition that agents should be primarily understood in terms of their mental
attitudes, such as beliefs, goals and intentions. This emphasis on these mental concepts in the formal
semantics of agent communication languages was criticizedby Singh ([17]), who argued that this
could not work for agents that aim to be both autonomous and heterogeneous, because it assumes
agents can read each other’s minds. He argues that the semantics of receiving communicative acts refer
to the mental state of the sender, which is not accessible or verifiable in most practical applications.

Singh voices two major objections to this view:

1. Referring to the mental state of the sender leads to reduced autonomy, both in design and exe-
cution of the agent programs.

2. Dialects and idiolects of the communication language form.

Instead, he suggests to approach agent communication and interoperation withsocial agency,
which views agent communities associeties, in which agents play differentroles. The rules for com-
munication between agents in a society are specified by that society’s protocol. A protocol specifies
the commitments that an agent playing a certain role must adhere to. For example, in an online book-
store society, an agent playing the role of a seller, must accept a purchase of an item for the price that
it offered and was accepted.

Because the protocols are expressed in terms of these commitments, any agent’s compliance to
the protocol can be tested by observing that agent’s communicative acts. This means that agents can
join societies and be accounted for their actions, without having to explain their internal workings.
The society of agents will be the enforcer of the protocols. When, for example, an agent asserts some
proposition, it is socially held to the truth of this assertion. If it seems that the proposition was falsely
asserted, the offending agent can be regarded in the societyas untrustworthy. Singh envisions that
agent vendors will design protocols for specific applications and that those protocols will evolve as
different agent developers contribute.

28

Semantics 3.4 Conditions on the sender

This suggestedsocial semanticsshould facilitate design autonomy, because the requirements of
agents act not on the implementation (e.g. by imposing mental state conditions per communicative
act) but instead act on their behaviour. Execution autonomy, an agent’s freedom to choose its actions,
is also sustained by social semantics, because an agent is not restricted in its actions, as long as it
obeys the rules of the society and the behaviour dictated by the protocols belonging to its roles. A
platform for managing societies and roles would be requiredto have multiple agents interoperate and
fulfill certain roles.

Our approach Our view on formal semantics of an agent communication language for GOAL shares
the idea that it is not possible for one agent to directly inspect another agent’s mental state. We
suggest an approach that respects autonomy by not putting mental state conditions in the semantics of
communicative acts.

3.4 Conditions on the sender

Speech-act theory banks on the notion that communication relies on that the speaker’s utterance is a
manifestation of its intention tochange the beliefsof the hearer, and that the hearer’srecognitionof
that intention from the utterance. The emphases lie on the speaker’s intention on one hand, and the
hearer’s processing of the heard utterance on the other hand.

Sincerity A key concept in speech acts is sincerity. The sincerity of anutterance is the degree in
which the perceived intention of the speaker matches it’s actual intention. The inability to, as hearer,
reliably inspect the speaker’s mental state (and thus intentions), is inherit to communication. Or, seen
the other way around, it is the reason for communication. Forif we were able to inspect each others
mental state, we could replace the whole concept of communication with that of telepathy. But that is
not the case in the definition of agents, be it human or software.

Conversational maxims The intention ofU is clear toA only if the utterance adheres to certain
conditions, calledconversational maxims. Grice categorized these maxims into the following four
maxims:

1. Maxim of Quality . Do not say what you believe to be false, or for which you lack adequate
evidence.

2. Maxim of Quantity . Be as informative as, but no more informative than, necessary.

3. Maxim of Relation. Be relevant to the topic.

4. Maxim of Manner . Avoid obscurity. Be concise.

These maxims can be seen as conversational principles that audiences use in order to construct an
inferential bridge between what is meant and what is implied. If U utters “The salt.”,H cannot
reasonably be expected to deduceU ’s intention to haveH put the salt on the table; the maxim of
Quantity is violated. Similarly, stating that “The bus willarrive at 10:30 if whales are mammals.” to
inform H that the bus will arrive at 10:30 violates the maxim of Relation.

29

3.5 What we can do Semantics

Perhaps the most important maxim is the maxim of Quality. Without observing this principle,
conversation would be rather cumbersome. IfU cannot be obliged to adhere to the maxim of Quality,
then askingU what time the bus arrives will be useless, because nothing guarantees thatU actually
believes what he says. Note that we are not after the ‘universal truth’, only what someone believes to
be true. When we ask someone for the arrival time of the bus, weexpect that person to respect the
maxim of Quality and respondto the best of his knowledge.

Maxims for agents These maxims are as relevant for agent communication as for human commu-
nication. When an agentA receives a message from sending agentS, it will only think that Sbelieves
the contents of that message by virtue of the assumption thatS respects the conversational maxim of
Quality. There is no direct way to ensure this, especially across different agent builders, apart from
convention.

Assuming the maxim of Quality is respected, receiving agents may also assume that

• receivedFrom(a,comm(b,⊢ (ϕ))) → Σa � ϕ

• receivedFrom(a,comm(b, !(ϕ))) → Σa 2 ϕ∧ϕ ∈ Γa

• receivedFrom(a,comm(b,?(ϕ))) → Σa 2 ϕ

Note that these assumptions do refer to the actual mental state of the sender, but since they are just
assumptions no technical ability to verify them is required.

3.5 What we can do

Let’s take a look at our example agents from Section 1.1. In order to resolve the conflict in their
combined goals, they communicate their beliefs and goals. Three types of communicative acts are
used in this communication:

1. indicatives. These are statements about one’s own beliefs.

2. interrogatives. These are questions about a certain fact. They should not be considered as direct
queries on another agent’s belief base, but rather as requests to inform the speaker about a fact.

3. imperatives. These are statements about one’s own goals.Again, these should not be considered
as direct insertions of goals into another agent’s goal base, but rather as an indication that the
speaker has that goal.

Informally, we can describe the semantics of these communicative acts as follows. SupposeA is the
speaker andB is the hearer of the communicative act.

Indicative A assertsϕ. B hears this assertion, and can conclude thatA (thinks it) knowsϕ.

Interrogatives A queriesB aboutϕ. B can conclude thatA did not know, or was uncertain of, the
truth of ϕ.

Imperatives A states that it hasϕ as element of its goal base.B can now conclude two facts:A hasϕ
in its goal base, andA does not believeϕ. If A would believeϕ, it would no longer be a goal.

30

Semantics 3.6 Syntax and semantics of the communication language

It is remarkable that none of these informal semantic definitions define what the hearer should do
with the speaker (like replying to a query), except deducingfacts about the speaker’s mental state.
This conforms to the view that two autonomous agents cannot look inside each other’s mental state,
let alone change it. What wecando is deduct an agent’s mental state from the communicative acts it
performs.

Figure 3.1 showed three sentences uttered by John in the direction of Mary. These sentences are in
an indicative, interrogative, and imperative mood, respectively. They all act on the same fact: “the salt
being on the table”. Let’s call that propositionϕ. Apart from the order of words, the most distinctive
feature indicating the mood of the sentence is the punctuation marks at the end. We see here the use of
a period ‘.’ for the indicative sentence, a question ‘?’ markfor the query, and an exclamation mark ‘!’
for the directive sentence. Using these punctuation symbols in a formalized communication language,
we could communicateϕ in the three different moods by annotatingϕ with either symbol. For the
period symbol we make a slight exception. In fact, we adopt the symbols used by Pendlebury[13]; ‘:’
for the indicative, ‘?’ for interrogative and ‘!’ for the imperative mood.

3.6 Syntax and semantics of the communication language

One of our criteria for a communication implementation in GOAL is that the communication language
should have a formal semantic definition. In order to specifythat we must first formally define the
syntax.

msg ::= : ϕ | ?ϕ | !ϕ (3.1)

comm ::= comm(agt,msg) (3.2)

agt ∈ Agent names (3.3)

Figure 3.2: Syntax of the mood operators

We have replaced the symbol ‘⊢’ used by Grice to indicate the indicative mood by ‘:’, as explained
above. The symbols then match the semantics seen in Figure 3.1.

Here we attempt to formally describe the semantics of the communication primitives mentioned
above. Informally, upon receiving (or hearing) a message, an agent updates its model of the sending
agent’s mental state. To formalize this definition, we must first give the definition of a mental state.

A differentiation is made betweenbasic mental statesandcomplex mental states

Definition 1 Let Σ ⊆ L0 be a belief base, andΓ ⊆ L0 be a goal base. Then abasic mental stateis
defined as

M
B = 〈Σ,Γ〉

Definition 2 A complex mental stateis defined as

M
C = 〈Σ,Γ,m〉

31

3.6 Syntax and semantics of the communication language Semantics

where
m : Agent names→M B

is a function that maps agent names to (basic) mental states.

Definition 3 Anagentis defined as:
A = 〈a,M C,Π〉

where a is a name.

Definition 4 A multi-agent system (mas)is a set of agents:

mas= {A0, . . . ,An}

with Ai an agent whose name is unique throughout the mas.

The structured operational semantics of the three communicative acts are given by

A = 〈b,Σ,Γ,m,Π〉 ∈ mas,Aa
com(b,⊙ϕ)
−−−−−−→ A′

a

mas→ mas\{A}∪{A′}

where:

• A′
a = 〈b,Σ,Γ,m′,Π〉, i.e. an agent with nameb.

• m(a) = 〈Σa,Γa〉, whereΣa andΓa are the belief- and goal base ofa, respectively.

The mapping functionm returns a mental state model of a given agent. It represents what an agent
‘thinks’ another agent’s beliefs and goals are. This information can of course be outdated and incon-
sistent with the modeled agent’s real beliefs and goals. Thereceiving agent can update its mental
model upon reception of a communicative act in a way that is described below.

In the above operational semantics,m′ is the updated mental state mapping of the receiving agent
as a result of a communication from agenta: com(b,⊙ϕ). Here,⊙ represents one of the three com-
munication symbols: :, !,?. If m(a) = 〈Σa,Γa〉, then for each of these symbols, the semantics is given
by:

1. : (indicative) m′(a) = 〈Σa ⊕ϕ,Γa \ {γ ∈ Γa|〈Σa ⊕ϕ〉 � γ}〉. If a assertsϕ, then the receiver
may assume thata believesϕ, and thus also that it has no goal to achieveϕ. The⊕ operator
represents theinsert operation of the KRT. The model of the goal base is updated by removing
any goals that are entailed by the new belief base. This is to maintain mental state consistency;
an agent should not have a goal to achieve something that it already believes to be true.

2. ! (imperative) m′(a) = 〈Σa ⊖ϕ,Γa∪{ϕ}〉. If a indicates it wants the stateϕ being reached,
then the receiver may assume thata does not believe thatϕ is the case, and also thatϕ is a goal
of a. The⊖ operator represents the KRT’sdelete operation1.

1The semantics of the⊖ operator should be nuanced in that it does not delete facts that are not entailed by the belief
base. I.e.:Σ⊖ϕ = Σ i f Σ 2 ϕ.

32

Semantics 3.7 Querying mental models

3. ? (interrogative) m′(a) = 〈Σa ⊖ϕ,Γa〉
1. If a asks about some statementϕ, the receiver can

assume thata does not know the truth value ofϕ, or was not certain aboutϕ. If, up until now,
the receiver thought thata did believeϕ, it updates its mental model ofa to reflect the new
information.

This semantics does not refer to theactualmental state of the sender, nor does it define when a sender
should send a message or what a receiver should do with the contents of a received message other
than simply record it in its mental model of the sending agent. As is argued earlier in this document,
it is infeasible to make formal statements on the receiver side based on the mental state of the sender.

The semantics does make some implicit assumptions with respect to the sending agent’s behaviour.
For example, for the indicative mood, it is assumed that if one does an assertion, it believes the contents
of that assertion itself. This is not a trivial assumption, but is based on conversational implicatures
that originate from philosophy, which was discussed and made explicit for the GOAL implementation
in Section 3.4.

3.7 Querying mental models

In order to inspect the mental models, additional belief andgoal operators are introduced to the GOAL

language. These operators resemble the existing belief andgoal operators for querying the agent’s
own mental state. The model of another agent’s belief- or goal base is queried by specifying the
agent’s identifier as the first argument to the operator:

GOAL

1 bel(<agent identifier>, <belief query>)
2 goal(<agent identifier>, <goal query>)

The semantics of these operators are as follows:

Definition 5 Semantics of the belief model query operator:

bel(a,ϕ)= true i f f Σa � ϕ

Definition 6 Semantics of the goal model query operator:

goal(a,ϕ)= true i f f ∃γ ∈ Γa : γ � ϕ∧Σa 2 ϕ

3.8 Example usage

An example program using the suggested approach for communication is shown in Figure 3.3. The
program is a simplified version of a bomb-cleaning agent. Bomb-cleaning agents operate in an envi-
ronment where bombs are located at specific locations. The environment is partially observable, in the
sense that bombs can only be detected (sensed) in a certain finite radius around the agent. Agents have
the goal to remove all bombs from the (finite) environment by picking them up and bringing them to
the trashcan which is located at a known fixed location. Agents can hold only one bomb at a time.

33

3.8 Example usage Semantics

GOAL

1 knowledge {
2 clean(X,Y) :- not bombAt(X,Y).
3 }
4
5 beliefs {
6 agent(b).
7 }
8
9 program {

10 % Ask the other agent to help us, if we have our hands full
11 if bel(bombAt(X,Y), holding), a-goal(clean(X, Y)) then send(b, !(clean(X,Y))).
12
13 % Inform the other agent of bomb locations it doesn’t seem to know about
14 if bel(bombAt(X,Y)), not(bel(b, bombAt(X,Y))) then send(b, :(bombAt(X,Y))).
15
16 % Inform the other agent that it’s goal has been achieved
17 if goal(b, clean(X,Y)), bel(clean(X,Y)) then send(b, :(clean(X,Y))).
18
19 % If we know of no bomb location, query the other agent for one
20 if not bel(bombAt(_,_)) then send(b, ?(bombAt(X, Y))).
21
22 % If we have nothing better to do, help out the other agent
23 if not(goal(clean(_,_))), goal(b, clean(X,Y)) then adopt(clean(X,Y)).
24 % Or, adopt a goal using the other agent’s beliefs
25 if not(goal(clean(_,_))), bel(b, bombAt(X,Y)), not(goal(b, clean(X,Y))) then adopt(clean(X,Y)).
26 % Or, adopt a goal using our own beliefs
27 if not(goal(clean(_,_))), bel(bombAt(X,Y)) then adopt(clean(X,Y)).
28 }
29
30 actionspec {
31
32 pickup {
33 pre{ not(holding), bombAt(X,Y), at(X,Y) }
34 post{ holding, not(bombAt(X,Y)) }
35 }
36 }

Figure 3.3: An example GOAL program

For brevity and simplicity, we assume there are only two agents active in the environment, with
similar programs that differ only in the names of the agents.Figure 3.3 shows the program for agent
‘a’.

Program rules and actions to bring the bomb to the trashcan are omitted. The first three program
rules handle outgoing communication. All three communicative acts are being used in those rules:

• If we want something done, send a request (line 11). The updated mental model in agentb is:
M

′
a = 〈Σa⊖clean(X,Y),Γa⊕clean(X,Y)〉

• If we know something we think the other agent does not know, send an inform (lines 14 and
17). The updated mental model in agentb is: M ′

a = 〈Σa⊕clean(X,Y)〉

• If we want to have more information, query the other agent forbomb locations (line 20). The
updated mental model in agentb is: M ′

a = 〈Σa⊖clean(X,Y)〉

34

Semantics 3.9 Self-referential communication

It should be noted that all sentences in the communications are grounded, and theXs andYs above will
have been substituted.

By communicating, these agents will have more knowledge about the environment, and perform
more efficient. When an agent is moving while holding a bomb, and encounters another bomb, it can
request the other agent to take up the task of removing it. Technically speaking, the agent only notifies
the other agent that it has this goal, but when looking at the whole program (especially line 25), the
effect is the same.

3.9 Self-referential communication

Section 3.7 shows the syntax and semantics of the belief- andgoal operators for querying themodels
of the mental states of other agents. The operation looks like the conventional ‘local’ query of the
agent’s own mental state, with the distinction that they operate on amodelof a mental state rather
than areal mental state.

But what exactly is the difference between those? Technically, they are very similar. The imple-
mentation of a mental state model is identical to that of a normal mental state. The difference lies
in the addressing of a model. Since an agent can have mental state models of multiple agents, the
querying of a mental state model involves retrieving the right model from the collection of models,
i.e. an array indexing, more than querying a normal mental model.

Considering this, querying a normal mental state seems likea special case of querying a model. In
fact, we could generalize the querying by viewing querying the own mental state as a case of querying
the mental model of oneself. In other words, instead of querying (and maintaining) our own mental
state, we querya modelof our mental state, amongst the other models. This would eliminate the need
for storing our own mental state separately. The querying could be done in the following manner
whereself is an alias for the agent’s own identifier:

GOAL

1 bel(self, bombAt)

But how about updating our mental state? Since we no longer maintain a conventional mental
state, the update operationsadopt, drop, insert anddelete no longer apply. How do we, say, insert
a belief in our belief base, or adopt a goal? Fortunately, theproposed constructs for communication
already provide this functionality. By ‘sending’ aninform to ourselves, the communication handling
mechanism will update our model of our own belief base. Likewise, sending arequest will remove
the associated fact from the belief base, and add it to the goal base. Removing a belief from the belief
base can be done by sending aquery.

This way, conventional belief- and goal bases are no longer needed. Whether this approach is
desired depends on the burden it imposes on the agent programmer.

3.10 Conclusion

To investigate the integration of communication support into GOAL, we first determined which cri-
teria such a solution would have to satisfy. Special attention has been given to the requirement of a

35

3.10 Conclusion Semantics

well-founded theory with high-level semantics. Also, the solution should provide simple yet useful
primitives for the agent design.

In response to thementalisticview of the techniques discussed in the previous chapter, Singh pro-
posed that since we cannot read each other’s mind, we should instead focus on the social commitments
agents make as a result of their communicative actions. Social commitments are common knowledge,
since they can be tested by observing an agent’s (communicative) actions. The problem here is that
the distinction between beliefs and goals, something we need for GOAL, disappears.

Because a fundamental characteristic of communication is that you have no guarantee that your
communicative act will have the intended effect on the hearer’s mental state, our suggested approach
for an ACL for GOAL is based on the idea that even if a speakercannotassume anything about the
mental state of a hearer as a result of a communicative act, atleast the hearercandeduct the mental
state of the speaker, and keep an updated model of that agent’s mental state. The semantics of the
mental models and querying them have been specified in this chapter.

A formal syntax and semantics are proposed as language constructs for 3 major communicative
acts: informing, querying and requesting, represented syntactically by the symbols ‘:’, ‘ ?’ and ‘!’,
respectively.

The example presented in Section 3.8 looks promising. The communication primitives and men-
tal model querying constructs are the pragmatic, clear tools for the programmer that we sought to
determine.

The following chapter describes the implementation of the communication primitives and mental
models based on these semantics.

36

Chapter 4

Implementation

37

4.1 Introduction Implementation

4.1 Introduction

After having determined the requirements and the semantics, the changes to the GOAL interpreter had
to be implemented. Because the present GOAL interpreter was oriented around reasoning only about
the agent’s own beliefs and goals, changes were necessary inthe GOAL grammar to allow GOAL agent
programmers to express conditions in terms of beliefs and goals of other agents, and to performsend
actions. Also, the interpreter had to be changed to accommodate keeping a mental model of each
known agent.

Summarizing, the following needed to be facilitated:

1. perform mental state queries on mental models of other agents, so some sort of model selection
construct is necessary

2. perform a send action, which is a reserved GOAL action, which will send some message in a
specific mood to a list of agents.

There are also several constraints that need to be observed in determining a syntax for the above-
mentioned constructs.

1. Using the communication constructs should beuncomplicated and intuitive. Reading a GOAL
program which uses them should be reasonably easy to understand without knowing it’s precise
semantics.

2. The grammar should bebackwards compatible, meaning that any GOAL program which was
written without communication should still work as-is in the new interpreter.

3. The constructs shouldallow enough expressivityto be useful in practice.

In this chapter I will elaborate on the implementation process and describe the manner in which the
implementation was decided upon. First I will describe the changes made to the GOAL grammar. Then
the process of changing the interpreter is discussed, and finally I will describe how communication
was realized.

4.2 Extending the GOAL grammar

The GOAL grammar defines the syntax of GOAL agent programs. It is the nature and defining char-
acteristic of GOAL programs that goals are defined declaratively, which makes it possible to program
the reasoning of the agent in terms of the agent’s beliefs andgoals. A GOAL program rule therefore
has the general format as shown in Figure 4.1.

GOAL

1 if <mental state condition> then <action>.

Figure 4.1: The format of a GOAL program rule

Thismental state condition is an expression of beliefs and goals that the agent has. In GOAL

there are four operators that can be used to query the mental state;

38

Implementation 4.2 Extending theGOAL grammar

• bel(ϕ)

• goal(ϕ)

• a-goal(ϕ)

• goal-a(ϕ)

Here,ϕ is an expression in the agent’s KR language. In this format, the mental state condition
bel(ϕ) will be satisfiediff ϕ is entailed by the agent’s belief base. Now, as our goals stated, we want
to be able to reason about the mental models of other agents. Therefore, we must be able to indicate
whichagent’s mental state should be queried, by annotating the mental literal with an agent selector.

4.2.1 Agent Selector

The agent selector represents a selection of agents that theprogrammed agent knows about. The agent
itself can be part of that selection. Conceptually, it is a list ofagent expressions:

A S = {A E 1,A E 2, . . . ,A E n}

whereA E is an agent expression. Such an agent expression can be one ofthe following:

• An agent’s literal name. For example,maker.

• A variable. This is a variable that needs to be substituted bya substitution resulting from earlier
mental literal queries in the mental state condition.

• A quantor. Quantors are described in Section 5.6.1.

4.2.2 Annotating the mental literal

Since the GOAL language was inspired by logic programming, it is desirableto have a syntax that
closely matches a syntax that is conventional in logic programming, so a syntax like1

bel(AS,ϕ)

would be a nice choice, whereAS is the agent selector, andϕ the KR expression. But, in order for
the grammar to be backwards compatible as our constraint 2 dictates, it should be possible to omit
theAS. However, the parser then cannot differentiate between thecase withASand the case without
AS, because the syntax ofϕ might overlap that ofAS. The mental literal on line 1 in Figure 4.2
shows a conventional local belief query for the factsomefact. Line 2 shows a belief query for the
fact somefact in the mental model ofagent1’s mental state. But line 2 might just as well have
been a local belief query for the conjunction of factsagent1 andsomefact. There are two possible
approaches to solve this problem:

1. surround theASwith delimiters
1‘bel’ is used throughout this section to illustrate the issue of syntax choice, but that issue holds for all four mental state

operators

39

4.2 Extending theGOAL grammar Implementation

GOAL

1 bel(somefact)
2 bel(agent1, somefact)

Figure 4.2: Grammar conflict

2. make the presence ofASrequired, and in the case of a local query, useself to indicate as much.

Approach 1 does not really solve the problem of conflicting syntax with the syntax ofϕ, because
even with delimiters there is a possibility of overlap with the syntax ofϕ.

Approach 2 does not solve the problem because it violates criterium 2; requiring something like
self for the local queries breaks code that is written for single agent situations. Besides, it is counter-
intuitive to have to writeself every time when you are just programming a single agent.

What if we moved theASoutside the parenthesis of the operator?
GOAL

bel[agent1, B, agent2](p)

Figure 4.3: Agent selector between operator and parentheses

This is better in terms of separation from the propositionalcontent. However, it still leaves a
reader ‘guessing’ after its semantics. There is no strong intuitive link which suggests “this looks like
the belief base ofagent1, some variable agentB andagent2, are queried forp”. Moving the agent
selector to after the parentheses does read naturally, but it requires something to link the operator and

GOAL

bel(p) [by agent1, B, agent2]

Figure 4.4: Agent selector after parentheses, with ‘by’

the agent selector. Prepositions from natural language like ‘by’ or ‘of’ complicate programming and
the syntax, but leaving it out means losing the natural link between the operator and the agent selector.

We could put the agent selector in front of the operator. Someexamples of this format are listed
in Figure 4.5. This reads somewhat naturally as a sentence ofthe formsubject verb object, the

GOAL

1 [agent1, B, agent2] bel(p)
2 agt:agent1, B, agent2 bel(p)
3 agent1, B, agent2 @ bel(p)

Figure 4.5: Agent selector before operator

subject being the conjunction of agent expressions, the verb being the operator and the object being the

40

Implementation 4.2 Extending theGOAL grammar

propositional content; “agent1, some agent B and agent2 believe p”. In the second version, theagt:
makes it clear that agent expressions will follow, improving the readability. The syntax could benefit
from more coherency, so enclosing the agent expressions in brackets to form the agent selector, and
joining the agent selector with the operator with some sort of connector symbol improves readability.
The versions of lines 1 and 3 can be generally specified as shown in Figure 4.6. In this syntax, the

GOAL

1 [agent1, B, agent2].bel(p)
2
3 % (brackets are optional if agent selector has only one agent expression):
4 X.bel(p)
5 agent3.a-goal(p)
6 allother.goal(p)

Figure 4.6: A proposed syntax for the agent selector

agent selector and connecting symbol can be easily omitted which would yield the semantics of a
local query. This makes the grammar backwards compatible, satisfying criterium 2. The ordering of
the language constructs resembles the natural language expression of it’s semantics, which helps to
satisfy criterium 1. It allows expressing statements aboutbeliefs and goals from mental models of
other agents, by using literal names, variables and quantors to annotate the operators, which satisfies
criterium 3.

4.2.3 Determining the annotation syntax preference

The syntax proposed in Figure 4.6 satisfies the criteria we stated earlier, but this does not mean we
have automatically determined the most optimal choice of syntax. For some, the intuitiveness of the
syntax may depend on other factors than the natural languageassociation. For example, choosing
a period ‘.’ as connector symbol establishes an intuitive link with Object Oriented Programming.
Whether this is desirable is debatable, since it depends on the programmer’s preference and program-
ming background. Similarly, some programmers might preferhaving the agent selector in a different
position.

Because such preferences do not follow from the above reasonings alone, and because the pro-
grammer is so important in this decision, a small survey was conducted to poll the preference of the
potential users.

Survey setup

The objective of the survey was to determine the preference of potential users of the GOAL pro-
gramming language with respect to the syntax of a mental model query. The survey had the form of a
qualitative questionnaire, in which several potential users were asked to indicate their preferred syntax
of the mental model query. Three options for the location of the agent selector were considered;

A. bel(X, p)

B. X.bel(p)

41

4.2 Extending theGOAL grammar Implementation

C. bel[X](p)

whereX represents the agent selector. For option 4.2.3 three variants of the connector symbol were
selected for consideration;

1. X.bel(p)

2. X:bel(p)

3. X@bel(p)

Results The results from the questionnaire show a general preference for option B, mostly because
of the familiar OO-link. Option A was often seen as ambiguousand C as incoherent and unclear.

Of the variants on option B, variant 1 was deemed most preferable, also because of its strong
association with the OO-style syntax of popular programming languages such as Java and C++.

From this survey it was decided to select the syntax as shown in Figure 4.6 for the mental model
query.

4.2.4 Changing the grammar

Now that the syntaxes for the mental model queries and thesend action have been determined, these
needed to be implemented in the GOAL grammar.

The existing grammar had to be changed in several places. First, thementalLiteral was ex-
tended to accept an optionalagentSelector. ThisagentSelector has the grammar shown in Fig-
ure 4.7.

Grammar

1 agentSelector
2 :
3 agentExpression
4 |
5 ’[’ agentExpression (’,’ agentExpression)* ’]’
6 ;

Figure 4.7: Grammar of theagentSelector

agentExpression is one of the possible quantors (SOME, SOMEOTHER, ALL, ALLOTHER), SELF, a
variable, or a constant.

To ensure consistent handling of mental literals whether anagentSelector was given or not,
the parser automatically inserts anagentSelector with a singleSELF agentExpression if no
agentSelector is given for the mental literal. This follows the decided semantics that if noagentSelector
is given, the query is performed on the agent’s own mental state in stead of on a mental model.

The parser performs a semantic check to insure that inconsistent combinations ofagentExpressions
are not allowed. If a quantor is used, it can be the onlyagentExpression in theagentSelector.

Now, the agentSelector could be integrated into the grammars for thementalLiteral, as
shown in Figure 4.8.

42

Implementation 4.3 Mental models

Grammar

1 mentalLiteral
2 :
3 (agentSelector ’.’)? mentalAtom
4 | NEGATION LBRACKET (agentSelector ’.’)? mentalAtom RBRACKET
5 ;

Figure 4.8: Grammar of mental literal

Thesend action is a new type of internal action. It is added to the grammar alongside the other
internal actions such asadopt, drop, insert anddelete. The new (partial) grammar ofaction is
given in Figure 4.9.

Grammar

1 action
2 :
3 (
4 ... // other internal actions
5 |
6 ’send’ ’(’ destination = selector ’,’ mood = sentenceMood
7 { if (mood == null) { mood = SentenceMood.INDICATIVE; } }
8 { PrologTerm t = ParsePrologConjunction();
9 act = new SendAction(checkMessageDestination(destination),PrologDBFormula(t)); }

10 ’)’
11)
12
13 sentenceMood : ’:’ | ’!’ | ’?’ ;

Figure 4.9: Grammar of thesend action and thesentenceMood

Here it can be seen that if the sentenceMood is not given, the indicative mood is automatically
assumed. This is conform the decision on backwards compatibility.

Also, a semantic check is made on the message destination. This checkMessageDestination
insures that, in addition to the checks onagentSelectors mentioned above, the quantorsSOME and
SOMEOTHER are not used. This is because sending a message to ‘some’ agent is not allowed.

4.3 Mental models

A mental model is like a mental state, but with one difference: a mental state has a percept base and a
mailbox, which a mental model does not. Otherwise a mental model is just a mental state. Or, a mental
state is just a mental model, with an added percept base and mailbox. In this view it was decided to
move all functionality concerning the belief base and the goal base from theMentalState class to
the newMentalModel class. TheMentalState class will contain all methods and fields related to the
percept base and mailbox. It also holds a mapping of agent names (Strings) toMentalModels.

Upon construction of an agent, and thus its mental state, aMentalModel is initialized and added
to the mapping ofMentalModels under the agent’s own name. All operations on theMentalState

43

4.4 Communication Implementation

that affect or refer to the belief- or goal bases are forwarded to the agent’s ownMentalModel.

4.3.1 Performing a mental model query

The main method for performing a query of a mental literal in the mental state is altered to take the
agentSelector into account. First, theagentSelector is resolved. This means that theagentSelector
is evaluated into a list of agent names. The list of currentlyknown agent names and the name of
the running agent is passed to theresolve method of theagentSelector, which uses these data
to resolve the agent selector into a list of agent names. For each of theagentExpressions in the
agentSelector, theresolve method evaluates which names are to be added to the resultinglist. For
each of the resulting agent names, the correspondingMentalModel is retrieved and the query of the
mental literal is performed on thatMentalModel. The result of one mental model query is substituted
in the query of the next, in much the same way as is done in the conjunction of mental literals in a
mental state condition.

4.4 Communication

Communication, on the implementation level, involves the sending and receiving of messages. When
a send action is performed, aMessage object is constructed, which is a simple container object
containing the name of the sending agent, the name of the receiving agent, the mood of the message
and the message content itself. Onesend action execution may send messages to multiple agents. For
every agent that theagentSelector resolved to, aMessage object is constructed and sent.

4.4.1 Sending

First, depending on the activated middleware, theMessage is appended to the receiving agent’s mes-
sage in queue. Then the sending agent’s mailbox is updated with the fact that this message was sent.
This involves inserting a fact into a database of a particular knowledge representation language. This
fact has the formsent(<recipient>, <message>). Here,<recipient> is the name of the receiv-
ing agent. The<message> must also contain the mood operator, but this poses a problem. The mood
operator symbols used in the GOAL language (‘:’, ‘ !’ and ‘?’) are usually already part of the KR
language. Simply placing the mood operator symbol in front of the message sentence, as is done in the
GOAL language will likely result in a parse error when inserting the fact in the mailbox. For example,
the ‘!’ symbol is used in the Prolog language as the ‘cut’ operator.These syntax conflicts also exist
when querying the mailbox in the GOAL code.

To avoid these syntax conflicts, instead of prepending thesemood operator symbols to the message
sentence, the sentence is placed in a predicate that represents the mood. For the imperative mood, this
is imp(..) and for the interrogative mood this isint(..). Sentences with an indicative mood do
not get a predicate like the imperative and interrogative sentences do. So querying the mailbox for an
indicative message is done simply by not placing the sentence in a predicate. See Figure 4.11 for an
example.

44

Implementation 4.4 Communication

GOAL

1 program {
2 if bel(sent(grinder, ?canMake(grinder, _))) % This will not parse into
3 % proper Prolog
4 then adopt(handleResponse(grinder)).
5
6
7 if bel(sent(grinder, int(canMake(grinder, _)))) % This does work
8 then adopt(handleResponse(grinder)).
9 }

Figure 4.10: Mood operators in the mailbox

GOAL

1 program {
2 if bel(agent(A), me(Me), not(sent(A, canMake(Me, [grounds])))
3 then send(A, :canMake(Me, [grounds])).
4 }

Figure 4.11: Querying the mailbox for an indicative message

4.4.2 Receiving

Messages are passed between agents asynchronously, in the sense that when an agent sends a message
to another agent, the receiving agent does not immediately process it into its mailbox. Communication
is therefore also non-blocking. IncomingMessage objects are placed in a message in queue. At
the beginning of an agent’s run cycle, the messages in the message in queue are processed. This
processing consists of three steps:

1. If the receiving agent does not have a mental model for the sending agent, it creates one and
adds it to the mapping of agent names to mental models.

2. The mental model of the sending agent is retrieved from this mapping and updated. The updat-
ing operations depend on the mood of the message.

3. The receiving agent’s mailbox is updated with areceived(..) fact in the same way as was
described for thesent fact in the above section.

From this point onwards in the agent’s run cycle, the received messages are available through
mailbox queries and mental model queries.

4.4.3 Optimization

For every message that is received, operations on the mentalmodels are performed to insure that the
mental models reflect the best up to date view of the other agent’s mental state. There may be cases,
however, where an agent’s program contains no mental model queries. In such a case, the mental
models will never be referenced. It would therefore be unnecessary to maintain them. To save the

45

4.5 Conclusion Implementation

overhead of these updating operations they are only performed if the program contains at least one
mental model query. This is checked at parse time by the parser.

4.5 Conclusion

The implementation of the communication constructs and mental models involved changing the gram-
mar of the GOAL language as well as changing the GOAL interpreter code.

The changes to the grammar required language design decisions. Language design decisions
are always difficult to make, because of their subjective nature. Therefore I conducted a survey to
determine the preferred syntax of the mental model query. The resulting syntax preference was im-
plemented in the new grammar.

Mental models were implemented by restructuring the mentalstate and the databases of an agent
in the interpreter code. To enable querying of mental models, I implemented routines for resolving
agentSelectors and changed the way queries on mental literals are handled.

The send action was implemented as an internal action. For this the syntax of the action was
added to the GOAL grammar and the handling ofMessage objects was integrated into the agent’s run
cycle handling. Also, automatic updates of the agent’s mailbox and mental models were implemented.

The fact that mental models are not referenced if an agent’s program contains no mental model
queries left room for optimization. This optimization was realized by automatically disabling the
creation and updating procedures of mental models.

This implementation effort resulted in that GOAL agent programs can make use of communication
using agent selectors and sentence moods, and use mental models to reason about the mental states of
other agents. Chapter 5 will discuss examples of communication-enabled GOAL programs.

46

Chapter 5

Communication

47

5.1 Introduction Communication

5.1 Introduction

In a multi-agent system, it is useful for agents to communicate about their beliefs and goals. Agents
may have only a partial view on the environment, and by communicating, agents may inform each
other about parts they but other agents cannot perceive. Agents may also use communication to share
goals and coordinate the achievement of these goals.

This chapter will explain how communication works in the GOAL platform, and how to program
communicating GOAL agents. First, the organization of a multi-agent system by means of a MAS
file is explained. Next, the communication primitive and thehandling of messages is discussed.
Sections 5.5 and 5.6 go into more detail on different types ofmessages and how to address other
agents. Finally, an example multi-agent system is presented to demonstrate usage of communication
to have agents coordinate their actions.

5.2 Multi-Agent Systems

GOAL facilitates the development and execution of multiple GOAL agents. These agents may or may
not be associated with entities from the environment. Agents can be launched when the multi-agent
system is launched, or when an entity in the environment is born.

Agents in a multi-agent system (MAS) can communicate with each other. Communication is
essential in situations where agents have different roles and need to delegate actions to appropriate
agents, or when agents with conflicting goals operate in the same environment space and need to
coordinate their actions to prevent deadlocks and inefficiencies.

This section explains how to define a MAS, and how to use communication in agent programs.

5.2.1 Example MAS

Throughout this chapter we will be exploring the concepts ofmulti-agent systems and communication
guided by an example MAS. This example MAS is described below.

Coffee domain

The Coffee domain is a multi agent system in which a coffee maker and a coffee grinder work together
to brew a fresh cup of coffee. Optionally, a milk cow can provide milk for making a latte. To make
coffee the coffee maker needswaterandcoffee grounds. It has water, andcoffee beans, but notground
coffee. Grinding the beans is the task of the coffee grinder.The coffee grinder needs beans, and
produces grounds. The programs of the coffee maker and the coffee grinder are listed in Figures A.1
and A.2, respectively.

The agents are designed in such a way that they know which ingredients are required for which
products. They know what they can make themselves, but they don’t initially know what the other
agents can make. This is where communication comes in.

Figure 5.1 lists the agent program for the coffee maker agent. See Figure A.1 for a version with
comments.

The knowledge section clearly reflects the agent’s knowledge of which ingredients are necessary
for which products. The beliefs section holds the agent’s beliefs in what it can make. In this case, the

48

Communication 5.2 Multi-Agent Systems

GOAL

1 main: coffeeMaker {
2 knowledge {
3 requiredFor(coffee, water).
4 requiredFor(coffee, grounds).
5 requiredFor(espresso, coffee).
6 requiredFor(grounds, beans).
7
8 canMakeIt(M, P) :- canMake(M, Prods), member(P, Prods).
9 }

10 beliefs {
11 have(water). have(beans).
12 canMake(maker, [coffee, espresso]).
13 }
14 goals {
15 have(coffee).
16 }
17 program {
18 if goal(have(P)) then make(P).
19 }
20 actionspec {
21 make(Prod) {
22 pre { forall(requiredFor(Prod, Req), have(Req)) }
23 post { have(Prod) }
24 }
25 }
26 perceptrules {
27 if bel(agent(A), not(me(A)), not(canMake(A, _))) then sendonce(A, ?canMake(A, _)).
28 if bel(me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prod))
29 then sendonce(A, :canMake(Me, Prod)).
30 if bel(received(Sender, canMake(Sender, Products))) then insert(canMake(Sender, Products))
31 + delete(received(Sender, canMake(Sender, Products))).
32
33 if bel(agent(A), received(A, have(X))), not(bel(have(X))) then insert(have(X)).
34 if goal(have(P)), bel(requiredFor(P, R), not(have(R))),
35 bel(canMakeIt(Me, R), me(Me)) then adopt(have(R)).
36 if goal(have(P)), bel(requiredFor(P, R), not(have(R))),
37 bel(canMakeIt(Maker, R), not(me(Maker))) then sendonce(Maker, !have(R)).
38 if bel(agent(Machine), received(Machine, imp(have(X))), have(X))
39 then sendonce(Machine, :have(X)).
40 }
41 }

Figure 5.1: The Coffee Maker

49

5.2 Multi-Agent Systems Communication

maker can makecoffee andespresso. The goal section states this agent’s mission: havingcoffee.
Note that this describes a goalstate(coffee being available), not an action (like ‘makingcoffee’).
Also note that the perceptrules section contains all communication related action rules, meaning that
every round all instances of these action rules are executed. This is discussed in Section 5.7.

The coffee domain assumes the following, for simplicity’s sake:

1. Resources (likewater, beans, grounds andcoffee) cannot be depleted.

2. The agents share the resources in the sense that if one agent has a resource, all agents do. But
there is no environment, so agents cannotperceivechanges in available resources; they have to
communicate this. For example if the coffee grinder makesgrounds, it will thereafter believe
have(grounds), but the coffeemakerwill not have this belief until it gets informed about it.

5.2.2 MAS Files

A multi-agent GOAL system needs to be specified by means of aMAS file. A MAS file in GOAL

is a recipe for running a multi-agent system. It specifies which agents should be launched when the
multi-agent system is launched and which GOAL source files should be used to initialize those agents.
GOAL allows for the possibility that multiple agents instantiate a single GOAL agent file. Various
features are available to facilitate this. In a MAS file one can associate multiple agent names with
a single GOAL file. Each agent name additionally can be supplied with a listof optional arguments.
These options include the number of instances of an agent, indicated by#nr, that should be launched.
This option is available to facilitate the launching of large numbers of agents without also having to
specify large numbers of different agent names.

A MAS file is a recipe for executing a multi-agent system. The GOAL interpreter uses these files
to launch a multi-agent system and an environment. A MAS file should provide the information to
locate the relevant files that are needed to run a multi-agentsystem and the associated environment.
A MAS file has the following format:

50

Communication 5.2 Multi-Agent Systems

masprogram ::= [envdesc] agentfiles launchpolicy
envdesc ::= environment: path .

path ::= any valid path to a file in quotation marks
agentfiles ::= agentfiles:{ agentfile{, agentfile}∗ }
agentfile ::= path [agentparams] .

agentparams ::= [nameparam] | [langparam] |
[nameparam, langparam] |
[langparam, nameparam]

nameparam ::= name = id
langparam ::= language =id

launchpolicy ::= launchpolicy: { { launch | launchrule}∗ }
launch ::= launch agentbasename[agentnumber] : agentref .

agentbasename ::= ∗ | id
agentnumber ::= [number]

launchrule ::= whenentitydescdo launch
entitydesc ::= [nameparam] | [typeparam] | [maxparam] |

[nameparam, typeparam] | [typeparam, nameparam] |
[maxparam, typeparam] | [typeparam, maxparam]

typeparam ::= type = id
maxparam ::= max = number

id ::= and identifier starting with a lower-case letter
num ::= a natural number

A MAS program consists of three sections:

1. anenvironment description-section that defines the connection to one environment interface,

2. a section ofagent filesthat defines a list of GOAL-files, and

3. alaunch policy-section that defines a policy how and when to instantiate agents from the GOAL-
files.

An environment description defines a connection to one environment interface. That environment
interface is supposed to be a jar file that conforms with EIS1.

Example:

environment: "elevator.jar" .

The agent files define the set of GOAL-files that are to be used. Those GOAL-files are then refer-
enced by the agents. You can simply define a GOAL-file like this:

agentfiles: {
"elevatoragent.goal" .

}

1Environment Interface Standard

51

5.2 Multi-Agent Systems Communication

The reference label for the agents would then beelevatoragent, which is the file name without its
file extension. However you can define the reference label yourself by usingagent parameters. You
can also define the knowledge representation language this way. Here is an example:

agentfiles: {
"elevatoragent1.goal" [language=swiprolog,name=file1] .
"elevatoragent2.goal" [language=pddl,name=file2] .

}

This defines two agent files. The first is referenced by the label file1 and uses SWIProlog as KR
language. The second is referenced byfile1 and uses PDDL2.

The final section contains thelaunch policy. The launch policy consists of a list oflaunchesand
launch rules. A launch is applied before running the MAS and instantiatesagents that do not have a
connection to the environment. An example:

launchpolicy {
launch elevator:file1 .

}

This launches a single agent and uses the agent file that is labelled byfile1. It also uses the identifier
elevator as the base name for the generation of unique agent names. Youcan also instantiate several
agents with one launch:

launchpolicy {
launch elevator[3]:file1 .

}

This launch would instantiate three agents. The agent nameswould beelevator, elevator1, and
elevator2.

A launch rule on the other hand is applied to instantiate an agent or agents when the environment
contains an entity that is not associated with an agent, called afree entity. This happens when the
environment initializes a new elevator carriage, for example. A launch rule is triggered by the creation
of an entity in the environment. Special conditions can be added on the type of event or trigger. This
is a very simple launch rule:

launchpolicy {
when entity@env do launch elevator:file1 .

}

Its interpretation is: when there is a free entity create an agent with the base nameelevator from
file1 and associate it with the entity.

You can also do something useful with the base name:

launchpolicy {
when entity@env do launch *:file1 .

}

2PDDL support is under development and is not yet available

52

Communication 5.2 Multi-Agent Systems

The asterisk means that the name of the entity as provided by the environment is used as the base
name for the agent.

Of course you can also instantiate several agents:

launchpolicy {
when entity@env do launch elevator[3]:file1 .

}

This would instantiate three agents and associate them withone and the same entity. So if the entity
would perceive something, all three agents would receive that percept. If any of those agents performs
an environment action, it will be performed by that entity.

Launch rules can be conditional on the type, amount and name of the entity/entities:

launchpolicy {
when [type=type1]@env do launch elevator:file1 .

}

This would only launch an agent, when the type of the new entity is type1.
You can also restrict the amount of instantiated agents:

launchpolicy {
when [type=type1,max=20]@env do launch elevator:file1 .

}

This launch rule would only be applied at most 20 times.
There is also a name parameter:

launchpolicy {
when [name=elevator1]@env do launch elevator:file1 .

}

This would only be applied if the new entity has the nameelevator1.

5.2.3 Automaticagent and me fact generation

In many practical multi-agent situations, the agents that are to be launched in the MAS and their names
are not known during programming, but are determined in the MAS file, as described in Section 5.2.2.
Also, in some MASs, agents may come and go dynamically duringthe lifetime of a MAS. It is
therefore not always possible or practical to hard code the known agents in the belief base.

Instead, GOAL automatically inserts theseagent facts in the belief base whenever a new agent
enters the MAS, and upon launch of an agent, it populates the belief base with anagent fact for
each existing agent (including itself). An agent program(mer) can thus assume that, at any time,
bel(agent(X)) will result in a substitution forX of each existing agent.

To give an agent knowledge of its own name and thus the abilityto distinguish itself from the
other agents amongst theagent facts, a specialme fact is inserted into its belief base. It has the form
me(<agentname>) where<agentname> is the name of the agent, as determined by the launch policy.

53

5.2 Multi-Agent Systems Communication

It is therefore not necessary to specify or maintain a list ofexisting agents, or to hard code the
agent’s name in the program.

Unless an agent wants to actively ignore some agent, it is unwise todelete agent facts from the
belief base, and should therefore be avoided.

5.2.4 Example MAS file

A minimal MAS file without environment would look like Figure5.2. This would start a MAS without
GOAL MAS file

1 agentfiles {
2 "agent.goal".
3 }
4
5 launchpolicy {
6 launch agent1:agent.
7 }

Figure 5.2: A minimal MAS file

an environment, with one agent namedagent1 whose agent program is loaded from fileagent.goal.
This agent’s belief base will contain the following facts:

beliefs {
... % other facts
agent(agent1).
me(agent1).

}

A MAS file for the coffee domain would be as shown in Figure 5.3
GOAL MAS file

1 agentfiles {
2 "coffeemaker.goal".
3 "coffeegrinder.goal".
4 }
5
6 launchpolicy {
7 launch maker:coffeemaker.
8 launch grinder:coffeegrinder.
9 }

Figure 5.3: A MAS file for the coffee domain MAS

After launch of the agents, the coffee maker’s belief base would look like this:

beliefs {
have(water). have(beans).
canMake(maker, [coffee, espresso]).

54

Communication 5.3 Communication

agent(maker).
agent(grinder).
me(maker).

}

A more complex situation is given in Figure 5.4.
GOAL MAS file

1 environment: "environments/elevatorenv.jar".
2
3 agentfiles {
4 "goalagents/elevatoragent.goal" [name=elevatorfile] .
5 "goalagents/managingagent.goal" [name=managerfile] .
6 }
7
8 launchpolicy {
9 launch manager:managerfile .

10 when [type=car,max=1]@env do launch elevator1:elevatorfile .
11 when [type=car,max=1]@env do launch elevator2:elevatorfile .
12 when [type=car,max=1]@env do launch elevator3:elevatorfile .
13 }

Figure 5.4: A more complex MAS file

This example uses relative paths to the files and labels to reference those files. One elevator agent
will be launched and associated with each entity in the environment of typecar (at most three times).

After all three elevator agents have been launched, the belief base ofelevator2 will look like

beliefs {
... % other facts
agent(manager).
agent(elevator1).
agent(elevator2).
agent(elevator3).
me(elevator2).

}

5.3 Communication

Communication in the current implementation of GOAL is based on a simple “mailbox semantics”.
Messages received are stored in an agent’s mailbox and may beinspected by the agent by means
of queries on special, reserved predicatessent(agent,msg) andreceived(agent,msg) whereagent
denotes the agent the message has been sent to or received from, respectively, andmsgdenotes the
content of the message expressed in a knowledge representation language.

5.4 Send Action and Mailbox

The actionsend(AgentName, Poslitconj) is a built-in action to sendPoslitconj to the agent
with givenAgentName. Poslitconj is a conjunction of positive literals.AgentName is an atom with

55

5.4 Send Action and Mailbox Communication

the name of the agent as specified in the MAS file. Messages thathave been sent are placed in the
mailbox of the sending agent, as a predicate of the formsent(AgentName, Poslitconj) (note the
‘t’ at the end ofsent). The message is sent over the selected middleware to the target agent, and after
arrival the message is placed there in the formreceived(SenderAgentName, Poslitconj) where
SenderAgentName is the name of the agent that sent the message. Depending on the middleware
and distance between the agents, there may be delays in the arrival of the message. In the current
implementation of GOAL messages are supposed to always arrive.

5.4.1 Thesend action

To illustrate the working of thesend action, let’s consider a simple example multi-agent systemcon-
sisting of two agents,fridgeandgroceryplanner. Agentfridge is aware of it’s contents and will notify
thegroceryplannerwhenever some product is about to run out. Thegroceryplannerwill periodically
compile a shopping list. At some point, the fridge may have run out of milk, and takes appropriate
action:

program {
...
if bel(amountLeft(milk, 0)) then send(groceryplanner, amountLeft(milk, 0)).
...

}

At the beginning of its action cycle, thegroceryplanneragent gets the following fact inserted in its
message base.

received(fridge, amountLeft(milk, 0)).

The received messages can be inspected by means of thebel operator. In other words, if an agent
has received a messageM from senderS, thenbel(received(S, M)) will be true; the agent believes
it has received the message. This also holds forbel(sent(R, M)), whereR is the recipient of the
message. This way, thegroceryplannercan act on the received message:

program {
...
if bel(received(fridge, amountLeft(milk, 0))) then adopt(buy(milk)).

}

5.4.2 Mailbox management

In contrast with the percept base, mailboxes are not emptiedautomatically. This means that once a
message is sent or received, that fact will remain in the message base, even after execution of the
above program rule. The consequence of this is that the next action cycle, thefridge may again select
the shown program rule, sending the same message again, overand over. Also, thegroceryplanner
will keep selecting this program rule.

We have to take action to prevent this. There may be some special cases in which it is preferred
to leave the message in in the mailbox, for example if the message contains some message counter, so

56

Communication 5.4 Send Action and Mailbox

you can review the whole message history. Otherwise it is possible that a new message containing the
same content sent to the same recipient will not be seen as a new message. So, we need to remove the
received when we process them. For this an internal action is added to the action rule.

if bel(received(fridge, amountLeft(milk, 0)))
then adopt(buy(milk)) + delete(received(fridge, amountLeft(milk, 0))).

If the fridge sends this message only once, this program rule will be selected only once.
The coffee maker agent from Section 5.2 also gives an exampleof this:

% process information from other agents on what they can make
if bel(received(Sender, canMake(Sender, Products)))

then insert(canMake(Sender, Products)) + delete(received(Sender, canMake(Sender, Products)))

The logic is slightly different for the sender, because if itwould remove thesent fact it would
lose the belief that it has already notified thegroceryplanner, and send the message again. Instead it
can use this information to prevent repeatedly sending the same message:

if bel(amountLeft(milk, 0), not(sent(groceryplanner, amountLeft(milk, 0))))
then send(groceryplanner, amountLeft(milk, 0)).

The sendonce action

Because the above leads to verbose programming, GOAL offers a variant of thesend action; the
sendonce action. The syntax is the same as that ofsend, but the semantics are such that the message
is sent only if there is nosent fact for that message (and receiver(s)) in the mailbox. Writing

if bel(agent(A), fact(P)) then sendonce(A, fact(P)).

% if some machine seems to need a product, tell it we have it
if bel(agent(Machine), received(Machine, imp(have(P))), have(P))

then sendonce(Machine, have(P)).

is short for

if bel(agent(A), fact(P), not(sent(A, fact(P)))) then send(A, fact(P)).

% if some machine seems to need a product, tell it we have it
if bel(agent(Machine), received(Machine, imp(have(P))),

have(P), not(sent(Machine, have(P)))) then send(Machine, have(P)).

This means that if thesent fact is deleted from the mailbox, the message may henceforthbe sent
again by thesendonce action.

57

5.5 Moods Communication

5.4.3 Variables

In GOAL programs, the use of variables is essential to writing effective agents. Variables can be used
in messages as expected. For example, a more generic versionof the fridge’s program rule would be

if bel(amountLeft(P, N), N < 2, not(sent(groceryplanner, amountLeft(P, N))))
then send(groceryplanner, amountLeft(P, N)).

Note that this will eventually send one message for every value ofN whereN < 2.
Recipients and senders can also be variables in the mental state condition. Example:

% This isn’t an argument; it’s just contradiction!
% - No it isn’t.
if bel(received(X, fact)) then send(X, not(fact)).

% http://en.wikipedia.org/wiki/Marco_Polo_(game)
if bel(received(X, marco)) then send(X, polo).

This is especially useful in situations where you don’t knowwho will send the agent messages, as
with the coffee domain example:

% answer any question about what this agent can make
if bel(me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prods))

then sendonce(A, canMake(Me, Prods)).

For any agentA it has received a question from, it will answer its question.

Closed actions

In order for any action in GOAL to be selected for execution, that action must be closed, meaning
that all variables in the action must be bound after evaluation of the mental state condition. As a
consequence,messagesmust be closed as well, in order to make the action executable.

5.5 Moods

GOAL agents are goal-oriented agents who have their goals specified declaratively. Up until now all
examples have shown communication of an agent’sbeliefs. Every message was a statement about the
sender’s beliefs regarding the content. Given GOAL’s goal-orientedness, it would be useful to be able
to not only communicate in terms of beliefs but also in terms of goals. This way GOAL agents can tell
other agents that they have a certain goal.

In natural language communication, such aspeech actis often performed byuttering a sentence
in a certainmood. This mood can beindicative (‘The time is 2 o’clock’), expressive(‘Hurray!!’),
declarative(‘I hereby declare the meeting adjourned’).

In GOAL, the execution of thesend action is theuttering, the message content is thesentence.
Themoodis indicated by prefixing the message content with amood operator. GOAL distinguishes
three moods listed in Figure 5.5.

58

Communication 5.6 Agent Selectors

Mood operator example NL meaning

INDICATIVE : :amountLeft(milk, 0) “I’ve run out of milk.”
DECLARATIVE ! !status(door, closed) “I want the door to be closed!”
INTERROGATIVE ? ?amountLeft(milk,) “How much milk is left?”

Figure 5.5: GOAL message moods

In the case of the indicative mood the mood operator is optional. In other words, in absence of
a mood operator, the indicative mood is assumed. That means that all examples in Section 5.4 were
implicitly in the indicative mood.

Using these mood operators, GOAL agents can be more GOALish in their communication. For
example, if the coffee maker or coffee grinder needs a resource to make something but hasn’t have it,
it can inform an agent that it believesdoeshave it that it needs it:

% if we need a product but don’t have it, notify an agent that does have that we need it.
if goal(have(P)), bel(requiredFor(P, R), not(have(R)), canMakeIt(Maker, R)) then send(Maker, !have(P)).

Now for the receiving side of the communication. Moods of messages in the mailbox are rep-
resented as predicates, allowing for logic programming. Animperative is represented by theimp
predicate, an interrogative mood by theint predicate. There is no predicate for the indicative mood
in the mailbox. Using these mood predicates, we can inspect the mailbox for messages of a specific
type. For example, to handle a message like the one above fromthe coffee maker, the coffee grinder
can use this action rule:

% if some agent needs something we can make, adopt the goal to make it
if bel(received(_, imp(have(P))), me(Me), canMakeIt(Me, P)) then adopt(have(P)).

The coffee grinder will grind beans for whichever agent needs them, and another rule will make sure
the correct agent is notified of the availability of the resulting grounds, so here adon’t careis used in
place of the sender parameter.

The previous section mentioned that messages must be closed. There is one exception, which
concerns interrogative type messages. These messages are like open questions, like, for example,
“What time is it?” or “What is Ben’s age?”. These cannot be represented by a closed sentence.
Instead, adon’t carecan be used to indicate the unknown component. For example:

if not(bel(timeNow(_))) then send(clock, ?timeNow(_)).

if not(bel(age(ben, _))) then send(ben, ?age(ben, _)).

% ask each agent what they can make
if bel(agent(A), not(me(A)), not(canMake(A, _))) then sendonce(A, ?canMake(A, _)).

5.6 Agent Selectors

In many MASs agents may find themselves communicating with agents whose name they do not know
beforehand. For example, the MAS might have launched 100 agents, who communicate with each

59

5.6 Agent Selectors Communication

other, using theagent[100]:file1 syntax. Or if a message needs to be multicast or broadcast to
multiple receivers. For these cases a more flexible way of addressing messages is needed.

5.6.1 send action syntax

Thesend action allows more dynamic addressing schemes than just theagent name, by means of an
agent selector. The syntax of thesend action and this agent selector is shown in Figure 5.6.

The first parameter to thesend action (agent name in the previous sections) is called anagent
selector. An agent selector specifies which agents are selected for sending a message to. It consists of
one or moreagent expressions, surrounded by square brackets. The square brackets can beomitted if
there is only one agent expression.

Some examples of agent selectors:

% agent name
send(agent2, theFact).

% variable (Prolog)
send(Agt, theFact).

% message to the agent itself
send(self, theFact).

% multiple recipients
send([agent1, agent2, self, Agt], theFact).

% using quantor
% if we don’t know anyone who can make our required resource, broadcast our need
if goal(have(P)), bel(requiredFor(P, R), not(have(R)), not(canMakeIt(_, R)))

then send(allother, !have(P)).

sendaction ::= send (agentselector, [moodoperator] Poslitconj)
moodoperator ::= : | ! | ?
agentselector ::= agentexpression|

quantor| [quantor] |
[agentexpression[, agentexpression]*]

agentexpression ::= label | variable | self
quantor ::= all | allother

Figure 5.6: Syntax of thesend action

Agent Name

The agent name is the simplest type of agent expression, which we have already seen in Sections 5.4
and 5.5. It consists of the name of the receiving agent. If theKR language of the agent is Prolog, the
agent name must start with a lowercase letter.

Example:

60

Communication 5.6 Agent Selectors

send(alice, :hello).

% using the square brackets to address multiple agents for one message
send([alice, bob, charlie], :hello).

If the agent name refers to an agent that does not exist in the MAS, or has died, or is otherwise
unaddressable, the message will silently be sent anyway. There is no feedback confirming or discon-
firming that an agent has received the message. Only a reply, the perception of expected behaviour of
the receiving agent, or the absence of an expected reply can confirm or disconfirm the reception of the
message.

Variables

A variable type agent expression allows a dynamic way of specifying the message recipient. Some-
times the recipient depends on the agent’s beliefs or goals or on previous conversations. The variable
agent expression consists of a variable in the agent’s KR language. If the KR language is Prolog, this
means it must start with an uppercase letter. This variable will be resolved when the program rule’s
mental state condition is evaluated. This means that the mental state conditionmust bind all variables
that are used in the agent selector. If an agent sector contains unbound variables at the time of action
selection, the action will be deemed inapplicable.

Example:
GOAL

1 beliefs {
2 agent(john).
3 agent(mary).
4 }
5 goals {
6 informed(john, fact(f)).
7 }
8 program {
9 if bel(agent(X)), goal(hold(gold)), not(bel(sent(_, !hold(_)))) then send(X, !hold(gold)).

10
11 if goal(informed(Agent, fact(F))) then send(Agent, :fact(F)).
12
13 % This will never be selected:
14 if bel(something) then send(Agent, :something).
15 }

In this example, the program rule on line 9 contains the variable X, which has two possible sub-
stitutions: [X/john, X/mary]. This results in there being twooptionsfor the action:send(john,
!hold(gold)) andsend(mary, !hold(gold)). The agent’s action selection engine will select only
one option for execution. This means that variables resolveto oneagent name, and are therefore not
suited for multicasting messages.

Quantors

Quantors are a special type of agent expression. They consist of a reserved keyword. There are three
possible quantors:all, allother and self. When thesend action is performed, the quantor is
expanded to a set of agent names, in the following way:

61

5.6 Agent Selectors Communication

• all will expand to all names of agents currently present in the belief base of the agent (includ-
ing the name of the sending agent itself).

• allotherwill expand to all names of agents currently present in the MAS, with the exception
of the sending agent’s name.

• self will resolve to the sending agent’s name. So usingself, an agent can send a message to
itself.

Sending a message addressed using a quantor will not result in the quantor being put literally in the
mailbox. Rather, the actual agent names that the quantor resolves to are substituted, and asent(..)
fact is inserted for every agent addressed by the quantor. This has consequences for querying the
mailbox using quantors. It is possible to test if a message has been sent toall agents, for example,
by doing

if bel(not(sent(all, fact))) then send(all, fact).

This will execute if the message has not been sent to all agents the sending agent believes to exist,
so all substitutions ofX in bel(agent(X)). This means that after sending of the original message,
if new agents would join the MAS, this substitution would change (i.e. agent(X) facts would be
added). Thus the above mental state condition would again besatisfied, because the message had not
been sent to all agents. The semantics of theall andallother quantors in belief queries reflect the
situationat the time of querying.

This is illustrated in the following code fragment, in whichthe mailbox.. section reflects the
mailbox contents at this time.

beliefs {
agent(maker).
agent(grinder).
agent(auxilliarygrinder).
me(maker).

% the new agent that just joined the MAS
agent(newagent).

}
mailbox {
sent(grinder, imp(have(grounds))).
sent(auxilliarygrinder, imp(have(grounds))).

}
program {
% will execute again:
if bel(not(sent(allother, imp(have(grounds))))) then send(allother, !have(grounds)).

}

5.6.2 Theagent and me facts

In the previous section we have seen the use of variables in agent selectors, and how such a variable
must be bound in the agent selector. In the example in that section the belief base was populated with
2 agent(..) facts, holding the names of the agents that agent believes toexist. Using this ‘list’ of
agents, program rules can be constructed that send a messageto agents that satisfy some criterium.
For example, a way to send a request only to agents that are notbusy could be;

62

Communication 5.6 Agent Selectors

if bel(agent(X), not(busy(X))) then send(X, !swept(floor)).

Theagent(X) is crucial here, to get a substitution set forX, becausenot(busy(X)) does not yield a
substitution set forX by itself.

The agents andme

So theagent fact allows us to select a subset of all existing agents dynamically. An advantage of
this is that it makes it possible to write ‘dynamic’ agent programs, meaning we can writeoneGOAL

program for a MAS with multiple identical agents.
Let’s reiterate the last example snippet:

if bel(agent(X), not(busy(X))) then send(X, !swept(floor)).

This will select one agent that is not busy, and send!swept(floor) to it. Recall that anagent
fact is inserted for every existing agent,including the agent itself. Consequently, the agent whose
program rule is given here, may send!swept(floor) to itself, as it is one of theagent(X)s. This
may not be the intended behaviour. Suppose the behaviour should be that it only sends this imperative
to otheragents. We cannot useallother as agent selector, because, while it excludes the agent itself
from the recipient list, it indiscriminately sends the message toall other agents, ignoring the selection
we made in the mental state condition.

We need another way to distinguish betweenother agents andthis agent. For this purpose,
a specialme(..) fact is inserted in an agent’s belief base upon launch. It specifies the name of the
agent. So, taking the example MAS from Figure 5.4, after launch ofelevator2, its belief base consist
of the following facts:

agent(manager).
agent(elevator1).
agent(elevator2).
agent(elevator3).
me(elevator2).

Now the elevator program can include a rule that sends a message to any other elevator agent, like so:

if bel(agent(Agt), me(Me), not(Agt=Me), not(Agt=manager)) then send(Agt, !service(somefloor)).

The whole point of this is that this program rule works for every elevator agent and so it is not
necessary to make a GOAL program file for each agent in which the agents would be named explicitly3.
Also, if the naming scheme or the number of the elevator agents were to be changed, the agent program
would not have to be altered; only the MAS file would.

In the case of the coffee domain agents, it means that the coffee maker and the coffee grinder,
which are both machines that can make something out of something, can have very similar programs,
sharing action rules for production and capability exploration.

3with exception of themanager, but here we assume this to be a special agent that always has this name. If there were
moremanagers, the belief clause would containbel(manager(Mgr), not(Agt=Mgr))

63

5.7send action processing Communication

5.7 send action processing

Action rules containing asend(once) action can be placed in the program rules section, which we
have done so far, but also in the percept rules section. The way send actions are selected and executed
differs between these sections. These differences and criteria are discussed below.

In the program rules The first strategy is placing the action rule in the program rules section, as
we have done so far. Let’s take a look at an example:

if goal(have(X)), bel(agent(A)) then sendonce(A, !have(X)).

Suppose there are three agents, and the agent has one goalhave(milk). The action selection mecha-
nism will pool three options of this action to choose from forexecution for this round, onesend action
for each agent. Only one will be selected and executed. Next round, only two options are pooled, etc.

It will take at least three rounds to notify all agents of the goal. To send this message to all agents
at once we can use theall or allother agent selectors. But when we want to filter the agents to
which the message will be sent we cannot do this.

In the percept rules Percept rules are similar to program rules except for two differences;

1. they cannot contain environment actions

2. all options of all percept rules are all executed every round

The second item is consequential for message sending. If theexample action rule from the above
paragraph was placed in the percept rule section, all three options would be executed in one round, so
all three agents would be notified at the same time.

In many cases, it makes more sense to handle communication ina way that all possible messages
are sent at once in stead of one per round. Often, the communication is a task that needs to be done,
but should not interfere with the selection of an environment action. Examples of such communica-
tion tasks are answering incoming interrogatives, notifying agents of our goals and beliefs proactively,
relaying messages, but also tasks that do not involve sending like handling incoming indicatives (in-
serting the content in the belief base).

5.8 Example: The Coffee Domain

In Section 5.2.1 the coffee domain was introduced. In this section the workings of the coffee maker
and coffee grinder are analyzed in more detail.

As mentioned before, the agents coordinate their actions bycommunicating in several ways which
are discussed below.

Capability exploration

The agents know what they can make themselves. This is represented as beliefs in the agent program.
For the coffee maker, this look like:

64

Communication 5.8 Example: The Coffee Domain

beliefs {
...
canMake(maker, [coffee, espresso]).

}

To find out what the other agents can make, the following action rules are used in the program:

% ask each agent what they can make
if bel(agent(A), not(me(A)), not(canMake(A, _)), not(sent(A, int(canMake(A, _)))))

then send(A, ?canMake(A, _)).

% answer any question about what this agent can make
if bel(me(Me), received(A, int(canMake(Me, _)), canMake(Me, Prods))

then send(A, :canMake(Me, Prods)) + delete(received(A, int(canMake(Me, _)))).

% process answers from other agents
if bel(received(Sender, canMake(Sender, Products)))

then insert(canMake(Sender, Products)) + delete(received(Sender, canMake(Sender, Products))).

The first rule checks if there is an agentA, other than this agent, for whom this agent does not have
any belief of what it can make, and to whom this agent has not already sent aninterrogativeto query
it. If this is the case, send aninterrogativemessage to ask which products that agentA can make. Note
that not(me(A)) preventsA being bound to this agent, which would otherwise result in this agent
asking itself what it can make. In this situation that would not happen, becausenot(canMake(A,))
has the same effect, since this agent has a belief of what it can make (e.g.bel(me(Me), canMake(Me,
)) is true). Also recall that after execution of asend action, asent fact is inserted in the mailbox.

The second rule handles such incoming interrogatives. It looks in the mailbox for received in-
terrogative messages asking what this agent can make. It replies to the sender with anindicative
message, indicating what it can make. Also, it removes the received message from the mailbox. This
prevents this rule from being triggered repeatedly.

Finally these indicatives are handled in the third rule. Themailbox is queried for receivedindica-
tive messages, containing the information about who makes what.If such a message exists, insert the
information as a fact in the belief base. Also, the received message is removed from the mailbox to
prevent repeated execution of this program rule for this message.

Production delegation

The coffee maker needs ground beans (grounds) to make coffee, but it cannot grind beans. But once
it has found out that the coffee grindercan grind beans into coffee grounds, using the above pro-
gram rules, it can request the grinder to make grounds by sending it an imperativemessage. This is
represented more generically in the following action rule:

% When we cannot make some product, try to find a maker for it
if goal(have(P)), bel(requiredFor(P, R), not(have(R))), bel(canMakeIt(Maker, R), not(me(Maker)))

then send(Maker, !have(R)).

When this agent has a goal to make some productP for which it needs a requirementR which it
doesn’t have, and it knows of a maker ofR, it sends an imperative message to that maker. The message

65

5.8 Example: The Coffee Domain Communication

content is!have(R) (theR will be bound to some product at this point), indicating thatthis agent has
a goal tohave R.

When such an imperative message is received by an agent and itcan make the requested product,
it can adopt a goal to make it so:

if bel(received(A, imp(have(P))), me(Me), canMakeIt(Me, P))
then adopt(have(P)).

Note that we did not remove the message from the mailbox. Thisis because this agent needs a record
of who requested what. If we would remove the message, the information that an agent requested a
product would have to be persisted by some other means.

Status updates

Once a product has been made for some other agent that requires it, that agent should be informed
that the required product is ready. Agents in the Coffee Domain do not ‘give’ each other products or
perceive that products are available, so they rely on communication to inform each other about that.

if bel(received(A, imp(have(P))), have(P))
then send(A, :have(P)) + delete(received(A, imp(have(P)))).

Now wedo remove the received message, because we have completely handled the case.
On the receiving side of this message, reception of such an indicative message:have(P) does not

automatically result in the belief by this agent thathave(P) is true. This insertion of the belief must
be done explicitly4.

% update beliefs with those of others (believe what they believe)
if bel(received(A, have(P)))

then insert(have(P)) + delete(received(A, have(P))).

Pro-active inform

At any time, it may be the case that an agent sees an opportunity to inform an other agent about some
fact if it thinks this agent would want to know that, without being asked. This may happen if it believes
the other agent has some goal but it believes that this goal has already been achieved. It can then help
the other agent by sending an indicative message that the goal state is achieved.

In the coffee domain example, if one machine believes that another machine needs some product,
and ithasthat product available, then it will inform that agent of that fact:

% if some machine seems to need a product, tell it we have it
if bel(received(Machine, imp(have(X))), bel(have(X), not(sent(Machine, have(X))))

then send(Machine, :have(X)).

4This is where we make a leap of faith. The other agent indicated its belief inhave(P). The only reason we copy this
belief is because we trust that other agent.

66

Communication 5.9 Conclusion

The milk cow

The coffee domain example has a coffee maker and a coffee grinder. Suppose we now also want to
make lattes. A latte is coffee with milk. To provide the milk,a cow joins the scene. The cow is
empathic enough that it makes milk whenever it believes thatsomeone needs it. The source code for
themilkcow agent is listed in Figure A.3.

The generic way in which themaker andgrinder agents were written has the effect that they need
very little adjustment to start interacting with themilkcow. First, themaker’s beliefs are changed to
reflect its new capability to makelatte, and the recipe forlatte is added to its knowledge:

beliefs {
...
canMake(maker, [coffee, espresso, latte]).

}
knowledge {
...
requiredFor(latte, milk).
requiredFor(latte, coffee).

}

Then, the capability exploration routines will find out thatthemilkcow agent can make the required
milk. Note that theagent(milkcow) fact will be added to the belief base automatically. Thegrinder
needs nomilk, and themilkcow needs nogrounds, so adjustment of thegrinder is not necessary.

Finally, to add themilkcow to the MAS, the MAS file is changed to include the new agent:

agentfiles {
"coffeemaker.goal".
"coffeegrinder.goal".
"milkcow.goal".

}

launchpolicy {
launch maker:coffeemaker.
launch grinder:coffeegrinder.
launch milkcow:milkcow.

}

5.9 Conclusion

In this chapter I discussed how communication in GOAL works from the programmer’s perspective.
First, an example multi-agent system was introduced.

Multi-agent systems are specified by MAS files, which define which agents are to be launched
and how many, and what the names of the agents are. Each agent automatically gets anagent fact
inserted in its belief base for each agent in the MAS, and ame fact to indicate the agent’s own name.
This way agents can refer to other agents and themselves in their GOAL programs.

Communication is done by executing asend internal action and follows a ‘mailbox semantics’,
very similar to the communication semantics of 2APL [5]; thesent message is placed in the sending
agent’s mailbox as asent fact, and in the receiving agent’s mailbox as areceived fact. Messages

67

5.9 Conclusion Communication

are addressed by means of agent selectors, which offer static and dynamic ways of selecting a subset
of all agents in the MAS.

Because the mailbox holds no temporal information, some care needs to be taken when querying
the messages in the mailbox to prevent unintended repeated execution of action rules. Best practices
in dealing with these situations are presented. To address acommon pattern in these dealings, the
sendonce action is introduced, which does whatsend does but only if the message in question was
not already sent to the same agents.

Finally the usage of the communication constructs presented in this chapter is demonstrated by
implementing two agents of the example coffee domain. Usingthe presented communication con-
structs, a multi-agent system of communicating agents can be programmed.

68

Chapter 6

Mental Models

69

6.1 Introduction Mental Models

6.1 Introduction

In Chapter 3 it was argued that since GOAL is a declarative goal-oriented programming language,
communication should also be programmable in a declarativegoal-oriented manner. This means that
agents should not only be able to communicate in terms of their beliefs but also in terms of their goals.

Chapter 5 describes how GOAL agents can communicate their beliefs and goals. But the mailbox
semantics for handling incoming communication leaves roomfor improvement in terms of ease of pro-
gramming. The mailbox semantics requires the programmer toactively process incoming messages
and update the agent’s mental state accordingly. While thisoffers flexibility, it requires programming
effort on a low level of abstraction.

On a higher level of abstraction, more information can be extracted from the messages. Since the
incoming messages convey information about the mental state of the sender, a receiving agent could
directly derive facts about that mental state based on themoodand thecontentof the message. Instead
of directly adopting the content of the message into the own mental state, the receiving agent can use
these derived facts to automatically construct a model of the mental state of the sending agent.

In this chaptermental modelsare explored in detail. Mental models are models of the mental state
of another agent. These models are constructed and maintained by observing incoming messages
from other agents. The mental models can then be used by the agent (programmer) to reason about
the beliefs and goals of another agent, in a similar fashion as an agent queries its own mental state.

First the issues with programming GOAL agents using mailbox semantics are investigated in the
following section. Next the semantics of the mental model query is laid out and the agent selector
is extended with two new quantors. In Section 6.2 the programming paradigm is demonstrated by
rewriting the example Coffee Domain agents to use the new mental model semantics. Finally, the
effect of using mental models on the programming effort is evaluated in the concluding section.

6.2 Programming with mailbox semantics

Let’s take another look at the programs of the agents from theCoffee Domain. Figure 6.1 lists the
perceptrules section of themaker agent.

We see that apart from those on lines 16-21, all percept rulesquery the mailbox to see if an agent
has stated anything about its beliefs or goals. The general pattern can be described as follows:

“If the mailbox contains a received message fromS, process its content according to its mood,
then remove it from the mailbox.”

There are several issues with this pattern:

1. To prevent repeatedly executing the same rule after a message has been received, either the
received fact has to be deleted from the mailbox, or it has to be tested whether the intended
action was already performed.

The first solution requires an explicit extra action in the rule. Another disadvantage is that it
prevents other rules from acting on this received message.

The second solution, testing if the action was already performed, involves testing if the state that
would be achieved by the action is already achieved. Testingthis is not always directly possible,
for example in the case of an action on the environment that does not have a perceivable effect.

70

Mental Models 6.2 Programming with mailbox semantics

GOAL

1 perceptrules {
2 % capability exploration:
3
4 % ask each agent what they can make
5 if bel(agent(A), not(me(A)), not(canMake(A, _))) then sendonce(A, ?canMake(A, _)).
6 % answer any question about what this agent can make
7 if bel(me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prod))
8 then sendonce(A, :canMake(Me, Prod)).
9 % process answers from other agents

10 if bel(received(Sender, canMake(Sender, Products)))
11 then insert(canMake(Sender, Products))
12 + delete(received(Sender, canMake(Sender, Products))).
13
14 % update beliefs with those of others (believe what they believe)
15 if bel(agent(A), received(A, have(X))), not(bel(have(X))) then insert(have(X)).
16
17 % If we need some ingredient, see if we can make it ourselves
18 if goal(have(P)), bel(requiredFor(P, R), not(have(R))),
19 bel(canMakeIt(Me, R), me(Me)) then adopt(have(R)).
20 % else try to find a maker for it
21 if goal(have(P)), bel(requiredFor(P, R), not(have(R))),
22 bel(canMakeIt(Maker, R), not(me(Maker))) then sendonce(Maker, !have(R)).
23
24 % if some machine seems to need a product, tell it we have it
25 if bel(agent(Machine), received(Machine, imp(have(X))), have(X))
26 then sendonce(Machine, :have(X)).
27 }

Figure 6.1: Coffee maker agent’s percept rules

2. Thesent andreceived facts in the mailbox contain no temporal information. This means that
it is possible that an incoming message contradicts an earlier received message. For example,
suppose an agent receives from some agent the message ‘:ϕ’, and then at a later time receives
from that same agent the message ‘!ϕ’. One could conclude that the sending agent no longer
believesϕ. But both messages are present in the mailbox, so a rule that checks for indicative
messages will still find the first message, which represents an outdated state.

Again, a solution is to make sure that at the end of an agent’s run cycle, allreceived facts are
processed and deleted from the mailbox.

3. The extra actions needed to handle these situations lead to redundant looking code. See for
example the rule on lines 10-12 in Figure 6.1.

These issues show that the programmer has to make choices regarding how to keep the view on the
other agents consistent, and how to make sure that rules handle incoming messages gracefully, i.e. do
not infinitely repeat. The mailbox semantics, while flexible, force the programmer towards imperative
style programming to handle these issues. This is undesirable, because the GOAL language promotes
a declarative style of programming. The goals and beliefs ofan agent are specified declaratively, and
the mental state conditions in the percept- and action rulesare specified by belief- and goal operators.
To maintain this paradigm, mental models are introduced.

71

6.3 Models of mental states Mental Models

Mental models are models of the mental states of other agentsthat an agent knows of, and are
automatically updated using incoming communication. The agent programmer can query these men-
tal models in a similar way to querying the agent’s own mentalstate. Because mental models are
automatically updated, the agent programmer no longer needs to constantly check the consistency of
the information it keeps on the beliefs and goals of other agents. The syntax of a mental model query
is intuitive and closely resembles that of a normal mental state query, which improves readability of
the GOAL code.

6.3 Models of mental states

A mental model is is a model of a mental state:

M a = 〈Σa,Γa〉

wherea is the name of the agent whose mental state is modeled,Σ is a belief base andΓ is a goal
base. Notice that, contrary to an agent’s own mental state, no message bases, percept bases, or any
other kind of database are present. The mental model of an agent models beliefs and goals.

6.3.1 Initialization

Every agent maintains a mapping of agent names to mental models. If an new agent becomes known
to an existing agent, a mental model is initialized and addedto the mapping. This can happen when the
agent platform informs the existing agent of the launch (birth) of the new agent, if the agent platform
is configured to do so. In any case the existing agent will initialize a mental model when it receives a
message from an agent whom it doesn’t know yet.

6.3.2 Querying

The objective of maintaining models of the mental states of other agents is to be able to reason about
those mental states, i.e. about the beliefs and goals of those agents. An agent would like to be able
to query the mental state of an agent, but since this is not possible directly ([19]), themodelof the
mental state is queried instead. For the sake of intuitive programming, the programmer’s interface for
querying mental models closely resembles that for queryingthe agent’s own mental state.

The format of a mental model query literal is:

<agentselector>.<queryoperator> (<propositional content>)

Here, thequeryoperatoris one ofbel, a-goal, goal or goal-a, andpropositional contentis the
actual query. So far this is the same as for querying the agent’s own mental state. The difference lies
in theagentselector. This agentselector specifies the agent(s) whose mental model is to be queried. It
is an extension of the agent selector used for specifying therecipients of a message, as described in
Section 5.6.1. It’s syntax is the same as given in Figure 5.6.

The examples given in Figure 6.2 illustrate some uses of the agent selector in querying mental
models. Recall from Section 5.6.1 that upon evaluation of asend action, the agent selector is resolved
to a list of agent names, using the agent base. Similarly, upon evaluation of the mental state condition

72

Mental Models 6.3 Models of mental states

GOAL

1 if agent2.goal(have(beans)), bel(have(beans)) then giveTo(agent2, beans).
2
3 if bel(agent(A)), A.bel(canMake(A, Products)), not(bel(canMake(A, _)))
4 then insert(canMake(A, Prods)).
5
6 if allother.bel(shapeOfWorld(flat)) then insert(shapeOfWorld(flat)).

Figure 6.2: Example mental model queries

of an action rule, the agent selector of each mental literal is resolved. The mental literal is then queried
on the mental model of each of the resulting agents. Variablebindings are passed along each query
of a mental model, in the same way as happens with individual mental literals. In fact, the effect of
resolving an agent selector can be seen as ‘expanding’ the agent selector into a conjunction of mental
model queries of single agents. See Figure 6.3.

GOAL

1 beliefs {
2 % Given that the agent knows the following agents:
3 agent(alice). agent(bob). agent(charlie).
4 me(charlie).
5 }
6 program {
7 % The following query:
8 if allother.bel(shapeOfWorld(S)) then insert(shapeOfWorld(S)).
9

10 % Will be resolved as
11 if [alice, bob].bel(shapeOfWorld(S)) then insert(shapeOfWorld(S)).
12
13 % Which will expanded to
14 if alice.bel(shapeOfWorld(S)), bob.bel(shapeOfWorld(S))
15 then insert(shapeOfWorld(S)).
16 }

Figure 6.3: Effect of resolving agent selector in a mental model query

If (charlie believes that)alice believes thatshapeOfWorld(flat), then after querying the
mental model ofalice the substitution set[[S/flat]] is passed to the next mental literal, in which
each substitution is applied to the database formula beforethe query is performed. In the example this
means that the queryshapeOfWorld(flat) is performed on the mental model ofbob. If bob does
not believeshapeOfWorld(flat), the mental state condition fails.

Variables

Just as with agent selectors insend actions, variable-type agent expressions must be bound at the time
of evaluation. This is the reason that the mental literalA.bel(..) on line 3 in Figure 6.2 is preceded
by bel(agent(A)), to get a binding of every agent name toA.

73

6.3 Models of mental states Mental Models

Extra quantors: some and someother

In addition to the quantors that are used in agent selectors for the send action, self, all and
allother, two additional quantors are allowed for use in mental modelqueries;

• some: if anymental model yields a result to the query, that result is returned.

• someother: if a mental model ofany otheragent yields a result to the query, that result is
returned.

This can be used when we want to check ifsome(other) agent believes something or has some goal.
Just likeall andallother, these quantors may not be used in combination with other agent expres-
sions in one agent selector. This is because agent selectorssuch as[some, all] or [X, someother]
are ambiguous and confusing.

6.3.3 Updating

A mental model represents the beliefs and goals of another agent. Mental models are updated au-
tomatically by means of conversational implicatures (see 3.2) based on the mood and content of an
incoming message. By analyzing such an incoming message, anupdated state of the modeled mental
state of the sending agent can be deduced.

For example, if agentmaker receives the message

!have(beans).

from agentgrinder, maker may conclude thatgrinder has a goal tohave(beans), and thus update
its mental model ofgrinder with this goal. But the fact thatgrinder has a goal tohave(beans) im-
plies that it does not believehave(beans), else the goal would already have been achieved, according
to its beliefs.1

In general, suppose an agentR receives a message〈µ,ϕ〉 from sending agentS. Here,µ is the
mood andϕ is the propositional content. The mental model ofSM S is updated toM ′

S as follows:

• if µ is INDICATIVE: M ′
S = 〈ΣS⊕ϕ,ΓS⊖ϕ〉

• if µ is INTERROGATIVE:M ′
S = 〈ΣS⊖ϕ,ΓS〉

• if µ is INDICATIVE: M ′
S = 〈ΣS⊖ϕ,ΓS⊕ϕ〉

After every update of a belief base, the goal base of that mental model is updated so that it stays
consistent with the belief base. This process of updating the mental model is described in more detail
in Section 3.6.

1Actual facts or the receiving agent’s own beliefs are irrelevant here; the purpose of the mental model ismodelingthe
mental state of an agent.

74

Mental Models 6.4 Using mental models inGOAL programs

6.3.4 Mental state as a mental model

The agent selector for mental model queries allows the use oftheself quantor. In thesend action,
the semantics are that the message is sent to the sender itself. In mental model querying it means that
the own mental state (which is not amodel) is queried. In fact, all mental literals without any agent
selector get an implicitself set as agent selector. So

if bel(weather(sunny)) then goTo(beach).

is interpreted as

if self.bel(weather(sunny)) then goTo(beach).

6.4 Using mental models in GOAL programs

Taking the example of the Coffee Domain from Chapter 5, we canrevise the programs to make use of
mental models.

Capability exploration To find out what the other agents can make, the following percept rules are
used in the program:

% ask each agent what they can make
if bel(agent(A), not(canMake(A, _)) then sendonce(A, ?canMake(A, _)).

% answer any question about what this agent can make
if bel(me(Me), received(A, int(canMake(Me, _)), canMake(Me, Prods))

then send(A, :canMake(Me, Prods)) + delete(received(A, int(canMake(Me, _)))).

% process answers from other agents
if bel(received(Sender, canMake(Sender, Products)))

then insert(canMake(Sender, Products)) + delete(received(Sender, canMake(Sender, Products))).

The first rule can inspect the mental model of the variable agent A to see if it (believes it) can make
anything:

% ask each agent what they can make
if bel(agent(A)), not(A.bel(canMake(A,_))) then sendonce(A, ?canMake(A,_)).

Depending on the rest of the program, we can now opt to not perform the third rule of the above
snippet. I.e. instead of believing what other agents believe, simply look at what they believe. This
would also be possible with mailbox semantics, but the code would get rather unmaintainable. Also,
it would require that the programmer makes a consistent policy on how to maintain the mailbox.

The second rule can use a mental model query to check if an agent does not know what this agent
can make, and thus send this information to that agent:

% answer any question about what this agent can make
if bel(me(Me), canMake(Me, Prods), agent(A)), A.bel(not(canMake(Me, _)))

75

6.4 Using mental models inGOAL programs Mental Models

The third action rule can be replaced with

if bel(agent(A)), A.bel(canMake(A, Products)), not(bel(canMake(A, _))) then
insert(canMake(A, Products)).

Alternatively, this action rule can be completely removed and

bel(agent(A)), A.bel(canMake(A, Prods)), bel(member(grounds, Prods))

can be used wherever the agent wants to test which agent can makegrounds, for example.

Production delegation For production delegation, thegrinder agent has the following action rule:

% if some agent needs grounds, then adopt the goal to make it
if bel(received(_, imp(have(grounds)))) then adopt(have(grounds))
+ delete(received(_, imp(have(grounds)))).

This rule can be replaced with one that uses mental models:

% if some agent needs grounds, then adopt the goal to make it
if someother.goal(have(grounds)) then adopt(have(grounds)).

Here we see the use of thesomeother quantor. If any other agent has a goal tohave(grounds),
adopt that same goal.

Status updates When one agent has a product that it knows another agent needs, it tells that agent
that it has the product:

% if some machine seems to need a product, tell it we have it
if bel(agent(Machine), received(Machine, imp(have(X))),

have(X)) then sendonce(Machine, :have(X)).

Thereceived(..) part of the mental state condition can be replaced with a mental model query:

% if some machine seems to need a product, tell it we have it
if bel(agent(Machine)), Machine.goal(have(X)), bel(have(X))

then sendonce(Machine, :have(X)).

Here the rule reads more intuitively; “if a machine has a goalto have X and I have X then tell that
machine that I have X”.

On the receiving side, this information was processed by a rule that copied the beliefs from any
received indicative message:

% update beliefs with those of others (believe what they believe)
if bel(agent(A), received(A, have(X))), not(bel(have(X))) then insert(have(X)).

76

Mental Models 6.5 Conclusion

This is a perfect example of how mental model queries can improve a program. In the mailbox
semantics situation, the indicative message is manually processed and the fact is inserted in the agent’s
own belief base. At that point, the source of the statement (thathave(X)) is lost. Using mental models,
we can completely remove the above action rule, because the fact is already automatically reflected
in the mental model of the sending agent. Thus, wherever a belief query is made to see if this agent
believeshave(X) (bel(have(X))), that can be replaced with a query that checks ifanyagent believes
have(X): some.bel(have(X)).

Consistency So far we have replaced checking the mailbox by querying mental models. This al-
ready improves readability, but there is another importantadvantage of using mental model queries to
guess an agent’s mental state. Consistency between goals and beliefs, and updates thereof are not au-
tomatically done for the mailbox contents. Mental models however, always reflect the latest consistent
mental state, as far as the receiving agent could possibly know by observing communication.

This means that in a situation where an agent sends the message :have(beans), indicating that
(it believes) it hasbeans, and later sends the message!have(beans), because thebeans have run out
and are needed again, the mental model of the sender is automatically updated by adding the goal to
have(beans) to the mental model’s goal base and removing that fact from the mental model’s belief
base. Because the order of reception of messages is not maintained in the mailbox, it is somewhat
difficult to determine what the current mental state of the sender is. When using only the mailbox
semantics, every incoming message should be checked, its information processed and deleted every
round to maintain a consistent view of the sending agent’s mental state. The mental model of the
sending agent on the other hand is automatically updated. After processing the second incoming
message, the facthave(beans) is retracted from the belief base and added to the goal base.

6.5 Conclusion

In this chapter the agents from the example multi-agent system have been rewritten by replacing
queries on the mailbox by mental model queries. In one occasion, a rule could be completely removed,
because its function is already implemented in the mental models.

The shift from mailbox semantics to mental models results incode that has a more declarative,
goal- and belief-oriented nature compared to the message-oriented mailbox semantics.

Mental models are automatically kept consistent with the received communication, and therefore
provide a robust way of maintaining a model of another agent’s mental state. When using only the
mailbox semantics, a programmer would have to ensure this consistent view of another agent’s beliefs
and goals through complicated program rules.

The use of mental model queries can significantly improve readability of programs and makes it
much easier to reason about the beliefs and goals of other agents. In Chapter 5 we have reasoned
about other agent’s mental states by inspecting the mailboxcontents, and manually processing the
messages. Mental models provide a consistent and opaque programmer’s interface to those operations.
It liberates the programmer from having to deduce facts about the beliefs and goals of others, because
these deductions are done automatically and are accessiblethrough the mental model queries.

77

Chapter 7

Distributed Multi-Agent Systems

79

7.1 Introduction Distributed Multi-Agent Systems

7.1 Introduction

In a distributed agent world, on the computational level, agents can run on different hosts. More than
one agent can run on a single host of course. The hosts may varyin their physical location, or they
may be heterogeneous in their hardware configuration (e.g. embedded system vs. supercomputer).
The reason for distributing agents across different hosts depends on the application, but are usually
related to:

1. load-balancing. When agents perform or are responsible for heavy computational work, dis-
tributing them across hosts can benefit from parallelism. Insome cases, the agents will be the
per-host managers of the operation, and handle the communication of data and results with
some aggregator.

2. local operations. In some situations, agents can operate the specific device they run on. This
is the case in robotics, or in embedded agents. In a real-liferealization of the Coffee Domain
example introduced in Chapter 5, a sophisticated, integrated coffee maker could be controlled
by the coffee maker agent and the coffee grinder agent.

On the conceptual (agent) level, agents usually do not need to know that they run on different hosts.
The agent programmer should not need to be concerned about how the agents are distributed and if
they end up communicating across hosts or not. In other words, the distribution of agents is not a
matter of agent programming.

For the GOAL platform, such distribution of agents should also be possible. The objective is to
provide a way for agents to communicate with other agents that may run on a different GOAL platform,
on a different host. The fact that the agents are distributedshould have the least possible impact on
the agent’s programs. Preferably, the agent programs do notneed to be changed at all to move from a
non-distributed setup to a distributed setup.

In this chapter the options for implementing this functionality are explored. First the existing
technologies in the field are surveyed. Then an implementation is proposed and implemented. Finally,
the implementation is evaluated.

7.2 Requirements of a distributed agent system middleware

For the GOAL system, the main goal is to allow agents to transmit a messageto another agent. There is
no need for conversation tracking, mobility (the ability for agents to move from one host to another),
or integrated remote debugging. An implementation of a middleware should not introduce too much
complexity into the GOAL platform. Therefore, we aim for a minimal implementation ofa middleware
that satisfies the following criteria:

1. When an agent sends a message, the message should appear inthe receiver’s mailbox.

2. Agents can address each other in communication using the names from theagent() facts.

3. The effort to configure a GOAL platform to be part of a distributed MAS should be minimal.

4. The effort of launching the agents of a MAS distributed across multiple hosts or GOAL plat-
forms should be low.

80

Distributed Multi-Agent Systems 7.3 Existing technologies

From these criteria sub-criteria follow, as we will see in the remainder of this chapter.

7.3 Existing technologies

In the field of agent programming, many technologies exist that provide some sort of interface between
the agents and the communication layer. The purpose is generally to abstract all or most of the inherit
complexities that come with distributed computing.

7.3.1 Agent middlewares

In this subsection we explore agent frameworks such as JADE[1] and AgentScape[3]. These frame-
works aim to provide a means to build a distributed multi-agent system.

JADE JADE tries to simplify development of FIPA[7] compliant agents by providing a set of sys-
tem services and agents. It hides from the agent builder the aspects that are not a part of the agents
or the agent application, such as message transport, encoding and parsing of the messages and agent
life-cycles. See Section 2.3.3 for a detailed description of the JADE framework. The JADE frame-
work provides a set of service agents, that are specified by the FIPA specifications. These agents are
a Directory Facilitator (DF), an Agent Management System (AMS) and an Agent Communication
Channel (ACC). These agents are used in controlling the life-cycle of agents (AMS), registration of
and searching for agent services (DF) and communication between agents (ACC). The ACC handles
all communication between agents, and transparently selects the most efficient transport mechanism;
communication between agents on the same platform is done using event signaling and direct pass-
ing of Java objects, while communication between agents on different platforms relies on Java RMI
(see next subsection). Agents each run in an own Java thread,but allows agent programmers to im-
plement multi-threaded behaviour through the implementation of Behaviours which are scheduled
cooperatively per agent.

JADE specifically aims at FIPA compliance and interoperability of agents.

AgentScape AgentScape is a middleware layer that supports large-scaleagent systems. It has a ‘less
is more’ philosophy, in that it attempts to provide only those mechanisms that are required to operate
a large-scale agent system, while preserving the freedom for agent developers to implement their own
agent model. AgentScape does not impose a specific agent model, unlike JADE. It uses XML-RPC for
communication between agents and interaction with aLookupService, a lookup service. AgentScape
agents are started in their own Java thread to allow concurrent execution.

7.3.2 Java RMI

Java’s Remote Method Invocation (RMI) is not a middleware, but a technology that is a feature of
Java. It allows objects to invoke methods on other objects that run on a different JVM (that may
run on a different host). When such a call is made, the arguments of the method are marshalled at
the caller’s end, sent over the network and unmarshalled at the callee’s end. The return value of the
method is again marshalled, sent and unmarshalled. All argument types and return value types should
be serializable.

81

7.3 Existing technologies Distributed Multi-Agent Systems

RMI can be seen as a kind of client-server model implementation. Clients call methods on a
server, which is a remote object. Remote objects can register themselves in a registry using a label.
Client objects can then look up this label in the registry to obtain a reference to the remote object.
Any host that has remote objects should run an RMI registry, as it is not possible, for security reasons,
to bind an object in a registry that is not on the local host. Soa client should at least know on which
host the remote object lives.

The methods that can be called on a remote object are specifiedin an interface that extends from
java.rmi.Remote. For example, a time service can be specified with this interface:

public interface TimeService extends java.rmi.Remote {
public java.util.Date getTime() throws java.rmi.RemoteException;

}

An implementation of theTimeService should extendUnicastRemoteObject and of course
implement theTimeService interface.

To invoke a method on a remote object, a client looks up the remote object in the remote registry.
Instead of getting the complete remote object, a so calledstub is returned. This stub has the same
interface as the remote object, and handles the call such that it is marshalled and sent to the remote
object, and returns the result to the caller.

Java RMI as middleware

RMI provides a mechanism for objects on different JVMs or hosts to communicate with each other on
the object level. When we regard the agents of a GOAL platform as remote objects, communication
of messages between agents could be realized by specifying and implementing a simple interface like
the following: When an agent wants to send a message to another agent, it can look up that agent by

Java

1 import java.rmi.Remote;
2 import goal.middleware.Message;
3
4 public interface AgentInterface extends Remote {
5 // Accepts a message and puts it in the agent’s message in queue.
6 public void acceptMessage(Message m) throws RemoteException;
7 }

Figure 7.1: Interface for accepting messages

its agent name in the registry and call itsacceptMessage method.

7.3.3 TCP/IP Sockets

Both Java RMI and the XML-RPC implementation of AgentScape rely on TCP/IP sockets for com-
munication across JVMs or hosts.

For communication between threads on different JVMs or hosts, falling back to a low level im-
plementation is always an option. In that case, an implementation needs to take care of the opening

82

Distributed Multi-Agent Systems 7.4 Design of theGOAL middleware

and closing of sockets, buffered input- and output streams,management of open/available ports and
continuous listening for new incoming connections.

7.3.4 Conclusion

While agent frameworks such as JADE and AgentScape provide afull-featured environment for dis-
tributing agents and having them communicate, they usuallyimpose a certain agent model (JADE’s
behaviours) or execution model (JADE and AgentScape run one thread per agent). This is restrictive
when attempting to integrate the framework within the GOAL interpreter, and adds to its complexity.

To provide the minimal yet sufficient functionality for communication of agents in a distributed
setup, a lightweight implementation using Java RMI is chosen.

7.4 Design of the GOAL middleware

For GOAL an approach is chosen where a distributed MAS can consist of agents which are launched
on different GOAL platform. A GOAL platform is one instance of the GOAL interpreter, with usually
the GOAL IDE GUI, but optionally only running the stand-alone version. In this text it is assumed
the user runs the GUI. The user can launch one MAS file at a time per GOAL platform. Per GOAL

platform the user sets the name of the host that runs the central GOAL platform. This central platform
is a special one in that it maintains the central registry of agents in the whole distributed MAS. In the
case of multiple GOAL platforms on that host, the first one to launch a MAS will be designate itself
as central platform, and subsequent platforms will automatically detect the existing registry.

A simple event-based updating mechanism ensures that all agents remain up-to-date with respect
to the list of agents in the global MAS. When a user of a GOAL platform launches a MAS file, all
agents in that MAS file are launched according to the launch policy (see Section 5.2.2). These agents
are then registered and announced in the global MAS. That means that all existing agents become
aware of the newly launched agents. All newly launched agents are also made aware of the existing
agents. The agents launched on one platform are not visible or controllable in another platform, but
from the perspective of an agent there are no platform or hostboundaries; to the agents it looks as if
they all live on the same platform. Whenever the user kills anagent or a (local) MAS, all other agents
are notified of the death of these agents. Those remaining agents remove the existence of the deceased
agents from their beliefs and remove corresponding mental models.

Agents communicate by obtaining a reference to the receiving agent from the central registry, and
sending the message to that agent. The message is buffered atthe receiving agent in a message queue
until the beginning of that agent’s next run cycle. All messages in the message in queue are then
processed and placed in the agent’s mailbox and the mental models of the respective sending agents
are updated. From this point onwards the agent can reason about the communication, either through
the mailbox or the mental models.

Environments GOAL offers support for connecting to an environment. An environment can spawn
entities for which, according to the launch policy specifiedin the MAS file, GOAL agents are launched.
Communication between agents is then no different from the situation without an environment. How-
ever, there are also percepts and actions which are to be communicated between the environment and

83

7.5 Implementing theGOAL Middleware Distributed Multi-Agent Systems

host 1

GOAL Pf

RMIController

RMI Registry

bind()

GOAL Pf

RMIController

maker

grinder

registerAgent()

milkcow

registerAgent()

bind()

ProxyBinder

bind()

host 2

GOAL Pf

RMIController

milkcow1

registerAgent()

proxyBind()

Figure 7.2: Three GOAL platforms on two hosts

the agents. Environments and implementing support for distributed participation of agents in an en-
vironment is outside the scope of this thesis. When implementing this support, one has to determine
at runtime which GOAL platform should launch an agent, since multiple GOAL platforms may have
launch policies that could launch that agent.

7.5 Implementing the GOAL Middleware

Inter-agent communication is implemented by means of Remote Method Invocation where the sending
agent’s Java object invokes a method on the receiving agent’s Java object, passing theMessage object
as a method parameter. In terms of Java objects, the sender may be viewed as the client and the
receiver as the server. To be able to send and receive messages, theAgent class implements the
interface as listed in Figure 7.1. But first, the sending agent must obtain a reference to the remote
object implementing the receiving agent.

7.5.1 TheRMIController

All G OAL platforms perform their RMI-related operations via anRMIController object. This object
provides an interface between the GOAL platform and the RMI operations. It transparently handles
binding, unbinding, lookup and listing of agents, regardless of whether the central RMI registry runs
on the local host or on a remote host. It is initialized with the host name or IP address of the host that
runs the GOAL platform that has initialized the RMI registry. If the host name or IP address refers to
the local host, theRMIController checks if an RMI registry already exists on the local host. Ifnot,
it will launch it, together with theProxyBinder service that is discussed in Section 7.5.2.

84

Distributed Multi-Agent Systems 7.5 Implementing theGOAL Middleware

7.5.2 Registration and lookup of agents

Since agents in a distributed MAS can be launched on different GOAL platforms, and agents them-
selves are not aware of this distribution, some mechanism must be made available that allows a sending
agent to obtain the reference to the receiving agent in orderto call itsacceptMessage method. The
RMI Registry binds names to remote objects. A reference to a remote object (a stub) can then be ob-
tained by looking up the name of the object in the registry. Objects can only be registered in a registry
on the same host it runs on, so to get a reference to this object, the registry of the host that object
runs on must be contacted to perform a lookup of the object’s name. This implies that the client must
know on which host the server is located. A sort of centralized locating service is therefore required.
It would be most efficient if objects could be registered in one central RMI registry, and all clients
could find all servers in that single known RMI registry. Every GOAL platform would then only need
to know the hostname (and port) of the central registry.

Due to security restrictions of RMI, binding and unbinding an object in a remote registry is not
allowed, so the above solution is not applicable. To solve this problem, binding in the remote registry
is done indirectly via aProxyBinder object. ThisProxyBinder is a remote object that has a com-
monly known name, so allRMIControllers can look it up. Exactly one instance of this object lives
on the same host as the registry and is bound in it to that commonly known name. It implements the
proxyBind andproxyUnbind methods, which call the respective method on the local registry, allow-
ing objects to bind and unbind themselves with a name in that registry by proxy. TheProxyBinder
then registers the server object in the registry. Thisis allowed, because theProxyBinder resides on
the same host as the registry. This process is illustrated inFigure 7.2.

When an agent is launched, its GOAL platform checks whether the central RMI registry resides
on the local host. If so, it uses the standard RMI methods to bind the agent object in the registry.
If the RMI registry resides on some other host, a lookup is performed to obtain a reference to the
ProxyBinder. The agent and its name are then passed to theproxyBind method of theProxyBinder.
TheProxyBinder then binds the agent to its name in the registry. Unbinds are performed in a similar
way.

Lookups can always be performed directly on the registry anddo not require the aid of a proxy
like theProxyBinder.

It should be noted that whenever a remote object (i.e., an object that extendsUnicastRemoteObject)
is passed as an argument — or returned as a return value of a remote method invocation, the whole
object is not marshalled, but rather the stub belonging to that object. This considerably reduces
communication payload when passing these remote objects. When for example a GOAL platform’s
RMIController registers an agent using theproxyBind method of the (remote)ProxyBinder it calls
proxyBind(agent.getName(), agent). The RMI system automatically replaces theAgent object
with an instance ofAgent Stub, which holds all information to reference thatAgent object. When-
ever in this text is spoken of ‘passing an agent to a remote object’, it is assumed that RMI handles
this.

7.5.3 Agent/MAS lifecycles

In a dynamic distributed multi-agent system, the agents in the system may have been launched on
different GOAL platforms. Suppose we want to extend the Coffee Domain with the production of

85

7.5 Implementing theGOAL Middleware Distributed Multi-Agent Systems

lattes. The coffee maker agent can produce lattes, which requires coffee (which it can make itself),
and milk. Milk is produced by milk cows. Previously, a milk cow was added to the MAS file. Now we
take a more distributed approach. Suppose there is not just one cow, but many, and they live not near
the coffee maker and coffee grinder, but on a dairy farm. The dairy farm is launched on a different
GOAL platform that runs on a different host from that of the coffeemachines. There is no way to
launch a MAS — or individual agents — on a remote GOAL platform from another GOAL platform.
A MAS can only be launched locally, i.e. by selecting a MAS filein the GOAL IDE of the platform
the MAS should be launched on. In order to distribute the agents over two separate GOAL platforms,
two separate MAS files thus need to be constructed.

Coffee machines

1 agentfiles {
2 "coffeemaker.goal".
3 "coffeegrinder.goal".
4 }
5 launchpolicy {
6 launch maker:coffeemaker.
7 launch grinder:coffeegrinder.
8 }

Figure 7.3: Mas file for the coffee machines

Dairy farm

1 agentfiles {
2 "milkcow.goal".
3 }
4 launchpolicy {
5 launch milkcow[5]:milkcow.
6 }

Figure 7.4: Mas file for the dairy farm

Let’s consider the example of the Coffee Domain, where the dairy farm is a system ofmilkcow
agents which will produce milk for the coffee machines. The dairy farm gets a separate MAS file
from themaker andgrinder agents. The MAS file of the dairy farm launches 5 agents of the type
milkcow. Suppose now that the coffee machine MAS file is first launchedon a GOAL platform that
is set up to start the RMI registry. Once the agents are launched, they are aware of each other’s
existence through theagent(..) facts that are inserted in their respective belief bases upon launch,
as discussed in Section 5.6.2. Of course, these agents are not aware of anymilkcow agents, because
they do not yet exist.

Now when another GOAL platform that is set up to connect to the host of the abovementioned
platform launches the dairy farm MAS file, fivemilkcow agents are launched. These agents are also
bound in the central RMI registry, by the process described in Section 7.5.2. This binding in the
registry does not make all agents in the MAS aware of the new agents or vice versa. It is technically
possible to implement a pull model in which each agent gets the list of agents from the registry via
theRMIController’s getAllAgentNames at the beginning of its run cycle, and then update its own

86

Distributed Multi-Agent Systems 7.5 Implementing theGOAL Middleware

agent base accordingly. However, this is rather expensive,since it requires communication with the
registry every round of every agent, while changes in the agent list occur not so often compared to
the run cycle frequency. Instead a push model is chosen, where changes in the agent list (births and
deaths) are propagated to all agents. Also, when an agent is launched, the list of existing agents is
obtained from the registry via theRMIController and used to insertagent(..) facts into the new
agent’s belief base. To allow a GOAL platform to inform a remote agent that a new agent has been
born or has died, the interface from Figure 7.1 is extended asshown in Figure 7.5.

Java

1 import java.rmi.Remote;
2 import goal.middleware.Message;
3
4 public interface AgentInterface extends Remote {
5 // Accepts a message and puts it in the agent’s message in queue.
6 public void acceptMessage(Message m) throws RemoteException;
7
8 // Adds the agent to the agent base and constructs a mental model.
9 public void handleAgentBirth(String agentName) throws RemoteException;

10
11 // Removes the agent from the agent base and removes the mental model.
12 public void handleAgentDeath(String agentName) throws RemoteException;
13 }

Figure 7.5: Agent interface extended with birth- and death handling
methods

Now, when each agent of the dairy farm is launched, its GOAL platform notifies each agent already
present in the MAS (themaker, grinder and any already thusfar launchedmikcows) of the birth of this
new agent by calling thehandleAgentBirth method on those existing agents. After launch of all five
milkcows, agentmaker’s belief base will look like Figure 7.6. When an agent or a complete GOAL

GOAL

1 beliefs {
2 agent(maker).
3 me(maker).
4 agent(grinder).
5 agent(milkcow).
6 agent(milkcow1).
7 agent(milkcow2).
8 agent(milkcow3).
9 agent(milkcow4).

10
11 ... % other beliefs
12 }

Figure 7.6: Agentmaker’s belief base after dairy farm is launched

platform is killed, the remaining agents are notified in an analogous way. If for example the dairy
farm is closed, allmilkcow agents are first killed. For everymilkcow, all remaining agents have their
handleAgentDeath(milkcowname) method invoked. This results in that theagent(milkcow..)

87

7.5 Implementing theGOAL Middleware Distributed Multi-Agent Systems

facts are deleted from the belief base, and the corresponding mental model removed. This way, an
agent knows that ifagent(A) is the case, then that agentA exists and can be communicated with.

Name clashes The possibility exists that a second instance of the dairy farm is launched. This would
cause the GOAL platform to attempt to register those newmilkcows with the registry. When the GOAL

platform selects the namesmilkcow, milkcow1, . . . ,milkcow4, this results in a name clash with the
existingmilkcows.

To prevent name clashes from occurring, the GOAL platform’s naming mechanism, as described
in Section 5.2.2, is adapted to take into account the names ofall existing agents in the MAS when
constructing unique names. This means that if there are already fivemilkcows in the MAS, launching
a second instance of the dairy farm will yield five agents withnamesmilkcow5 till milkcow9.

To accomplish this, every time the GOAL platform launches an agent, it retrieves the list of existing
agents (globally) from theRMIController, which in turn gets it directly from the RMI registry.1 A
unique name is then determined for the new agent. Figure 7.7 illustrates this process.

GOAL Platform

GOAL Platform

GOAL Platform

RMI Registry

RuntimeServiceManager

RMIController

(1) launchAgent(milkcow)

(2) getAllAgentNames()

(3) getList()

grinder

maker

milkcow2

milkcow1

milkcow

(4) handleAgentBirth(milkcow3)

(4) handleAgentBirth(milkcow3)

Figure 7.7: Launch and announcement of a new agent. First, the GOAL platform launches the new
agent (1). TheRuntimeServiceManager retrieves the list of agent names (2),(3). It then determines
the next globally unique name (milkcow3) and announces this agent name to the existing agents (4).

1TheRMIController removes names of objects in the RMI registry that are not agents, like ‘ProxyBinder’, from this
list.

88

Distributed Multi-Agent Systems 7.5 Implementing theGOAL Middleware

Relaunching agents Another issue arises when the dairy farm is launched again after closing it.
Announcements of the newmilkcows are done as normal and after themilkcows are all launched,
agentmaker’s belief base again looks like Figure 7.6. The problem is that the mailboxes contain facts
about sent and received messages relating to theold milkcows. So an action rule that once asks an
agent what itcanMake for example, using thesendonce action, will not do so again for the new agent
with the same name, even though that agent may have differentcapabilities. Similarly, the agent that
answers such a question using the program rule from Figure 7.8 will send that answer only once.

GOAL

1 if bel(me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prods))
2 then sendonce(A, :canMake(Me, Prods)).

Figure 7.8: Action rule answering capability questions

If the agent that posed the question gets killed and relaunched with the same name, it will not
know the answer (any more), and per its program it will pose the question again. However, the
receiving agent will not notice any change in the mailbox, because the factreceived(sender,
int(canMake(Me,))) that gets inserted in the mailbox was already there. The answer was al-
ready sent, so thesendonce action will not send the indicative message again. This is not the desired
behaviour, because the newly launched agent will not get therequested information this way.

One possibility is to not allow the reuse of agent names, so names are unique over the entire life
span of the MAS. But this also prevents the relaunch of special agents that have a well-known name.

Instead an approach is chosen in which the programmer can take these situations into account by
altering the mailbox handling action rules. In the example from Figure 7.8, if we want this agent to
answer all subsequent questions from the same agent(name),we can replacesendonce with send,
and remove thereceived(..) fact from the mailbox after sending the response. This is listed in
Figure 7.9.

GOAL

1 if bel(me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prods))
2 then send(A, :canMake(Me, Prods)) + delete(received(A, int(canMake(Me, _)))).

Figure 7.9: Reusable action rule version of 7.8

A more challenging issue is found in another action rule of the milkcow, listed in Figure 7.10.
This universal rule checks if an agent has a goal tohave a product, and this agent believes it has that

GOAL

1 % if some machine seems to need a product, tell it we have it
2 if bel(agent(Machine), not(me(Machine))), Machine.goal(have(X)),
3 bel(have(X)) then sendonce(Machine, :have(X)).

Figure 7.10: Universal product-supplying action rule

89

7.5 Implementing theGOAL Middleware Distributed Multi-Agent Systems

product, it informs the former agent of that fact. The problem is illustrated by the following sequence
of events:

1. agentmaker has a goal tohave(milk)

2. agentmaker sends!have(milk) to milkcow, which then believesmaker.goal(milk).

3. themilkcow sends:have(milk) to maker, once.

4. themaker is relaunched.milkcow deletes its mental model ofmaker and initializes a new one
for the relaunchedmaker.

5. steps 1 and 2 are taken again.

6. the mental state condition of the action rule in Figure 7.10 is satisfied, butsent(maker,
have(milk)) is also believed bymilkcow, so thesendonce action is not executed again.

So the problem is thatmilkcow already acted on the fact thatmaker has a goal tohave(milk). The
newly received imperative does not change anything formilkcow, which thinks it has already acted.
What we want is that upon receiving a new imperative, the ‘lock’ on thesendonce is released. The
fact preventing thesendonce from executing is that the agent already hassent(...). The solution
therefore is an action rule, or a percept rule, that deletes thissent fact from the mailbox when such an
imperative is received. See Figure 7.11. The imperative itself should also be deleted from the mailbox

GOAL

1 if bel(received(A, imp(have(P))))
2 then delete(sent(A, have(P))) + delete(received(A, imp(have(P)))).

Figure 7.11: Mailbox cleaning rule

to prevent repeated execution of this rule, leading to repeated execution of thesendonce action.

7.5.4 Synchronization

In every (distributed) system where concurrent processes interact there is the issue of synchronizing
those interactions. In GOAL, the interaction is performed through the passing of messages. Since
agents in different GOAL platforms run concurrently, this may present problems whenone agent tries
to deliver a message in another agent while that receiving agent is performing operations on its mental
state at the same time.

To minimize concurrent access to an agent’s resources, messages are not directly inserted into
the mailbox upon delivery, but are buffered in a message in queue. At the beginning of the receiving
agent’s run cycle, it processes all messages in this queue and performs the corresponding operations
on its mailbox and respective mental models. All access to the message in queue is synchronized by
means of a JavaSynchronizedList, which synchronizes concurrent access to it.

90

Distributed Multi-Agent Systems 7.6 Conclusion

7.6 Conclusion

In this chapter the requirements and criteria for a middleware implementation for the GOAL platform
were investigated. To provide a minimal set of features, an implementation of middleware func-
tionality was made, based on Java RMI. While restrictions onbinding and unbinding agents in the
RMI registry made the introduction of aProxyBinder necessary, the implementation was relatively
straightforward. The resulting RMI-based middleware is capable of handling the sending of messages
across hosts, and the transparent registration and referencing of agents. Also, situations where agents
are killed or relaunched were investigated and taken into account in the middleware implementation.

Investigations into the effect of distributing agents across GOAL platforms on the execution of the
whole MAS led to the conclusion that in certain situations, aslight change of how messages are dealt
with in the GOAL code is sometimes needed to deal with the relaunching of agents. These changes
relate to the mailbox paradigm, and are intuitive when one thinks about the mailbox contents.

To investigate and demonstrate the impact of distribution on the GOAL programs, the Coffee
Domain example was taken and distributed across two GOAL platforms. The concurrent execution of
agents did not present any problems for the agents. A minor adaptation of the mailbox handling was
necessary to account for relaunching of other agents, and then to continue to function for those newly
relaunched agents, but all in all the increased burden on theprogrammer resulting from distribution
was marginal. Also, the effort to setup and launch a MAS distributed amounted to splitting a MAS
file into multiple MAS files, and launching each of those on a separate GOAL platform. Each of those
platforms needed to be configured only with the name or IP address of the host on which the GOAL

platform with the central RMI registry was started.

91

Chapter 8

Conclusions and Future Work

93

8.1 Conclusion Conclusions and Future Work

8.1 Conclusion

In this thesis the agent programming language GOAL has been extended with communication. The
aim was to provide pragmatic, usable communication constructs to the programmer while building on
a well-founded theoretic base which would allow to define a formal semantics for the communication.

To get an idea of the work that was already done in the field and evaluate their use for this work,
several state of the art agent technologies were reviewed. Two main concerns with respect to these
technologies were identified: having a vast and ambiguous performative set, and lack of a formal
semantics.

In this thesis I have followed the approach of Jason in reducing the performative set. The com-
munication constructs that were introduced allow an agent to express statements about its beliefs and
goals in one of three possible moods. These moods are the major moods as identified by Harnish,
and inspired by Grice’s work on conversational implicatures, were selected for their usefulness in
communication between GOAL agents.

The semantics of the communication constructs respects thenotion that agents cannot directly
inspect each other’s mental state. Therefore, the semantics does not refer to another agent’s beliefs
or goals. Instead, Grice’s notion of conversational implicatures was taken as a theoretic basis to
determine whatcanbe inferred from incoming communication.

These inferred facts were used to construct mental models, which modelthe mental state of the
other agent. These mental models are updated automaticallyupon receipt of a message, based on its
mood and content. Programming constructs were added to the GOAL language to query the mental
models. Using these mental model queries, agents can reasonabout the mental states of other agents.
It is important to note here that the mental states of other agents are not queried, but only an agent’s
modelof another agent’s mental state.

Because physical distribution of agents of a multi-agent system is sometimes desirable or required,
a middleware mechanism was added to the GOAL interpreter. While middleware technologies exist,
these often impose restrictions on the agent model or on the execution model. To provide a minimal
yet sufficient middleware for GOAL, a lightweight implementation was made using Java RMI. This
implementation allows a user to launch different MAS files ondifferent GOAL platforms, while having
to configure each platform with only the hostname of the central platform.

In certain situations, a slight change of how messages are dealt with in the GOAL code is some-
times needed to deal with the relaunching of agents. These changes relate to the mailbox paradigm,
and are intuitive when one thinks about the mailbox contents. Mental models are automatically re-
moved and created as agents are stopped or launched, respectively. All in al the distribution of agents
does not pose a burden on the programmer, i.e. the programmerdoes not have to take into account in
the GOAL programs how and where the agents are distributed.

The aim of this thesis was to investigate two main questions:

1. What is minimally required to allow communication between agents?

2. How easy can communication be used or applied in GOAL agents?

To make communication between agents possible the agent programming language needs to provide
programming constructs to allow the programmer to control this. Communication is seen as the

94

Conclusions and Future Work 8.1 Conclusion

sending of messages from one agent to another, so asend action is necessary. Agents need a way to
address the messages to (other) agents. To this end, agent selectors were introduced. These messages
need to be referenced by agents, sosent andreceived facts are kept in a message base. Thismailbox
semanticswas implemented for GOAL.

The ease of use of the communication constructs was investigated by building a multi-agent sys-
tem of agents that cooperate by communicating. The effort showed that programming communicating
agents in GOAL is possible using the mailbox semantics. Some measures needed to be taken to control
action rules that may repeat indefinitely after having received or sent a message. Thesendonce action
extended the semantics of thesend action to facilitate these situations.

In cases where agents in a MAS may be stopped and then relaunched with the same name, and
other agents believe (based on the contents of their mailboxes) that they have already interacted with
these relaunched agents, some measures needed to be taken inthe GOAL code to make sure that these
interactions are started again. Other than that, the distribution of agents is completely transparent to
the GOAL programmer.

We want GOAL agents to be able to communicate in terms of the contents of their mental states. In
designing and specifying communication for GOAL, the following criteria were observed:

The communication constructs should have a well-founded theory

An important property of agent programs is their verifiability. To verify an agent program, the pro-
gramming language needs to have a formal semantics. Adding communication to the language adds
to the complexity of the formal semantics. Some agent technologies or standards attempt to provide a
formal semantics for an ACL, but refer to the mental state of other agents in this semantics. Because
of an agent’s autonomy this cannot be verified and therefore the semantics is flawed. The approach
taken in this thesis agrees with Singh’s view that agents cannot inspect each other’s mental state. Our
semantics defines what a receiver of a message caninfer about the mental state of the sender based
on conversational implicatures. These inferences are aggregated in a mental model. The semantics
makes no reference to the mental state of the other agent.

The distinction between beliefs and goals should persist inthe communication

Since GOAL is a goal-oriented agent programming language, in which agents are programmed in
terms of their beliefs and goals, it is desirable that they communicate in those terms. In other words,
when one agent communicates its goal to do something or a belief in something, the receiving agent
should recognize that communication as the sending agent’sgoal or belief, respectively. The mood
operators implemented in the GOAL language allow an agent to express statements about their beliefs
or goals by sending a message in a specific mood. The receivingagent can infer the sending agent’s
beliefs and goals from the mood and the propositional content of the message. The mood operators
thus maintain the distinction between beliefs and goals in the communication.

95

8.2 Future Work Conclusions and Future Work

Programming agents using the communication constructs should be pragmatic, and pose a
small burden on the programmer

Using the communication constructs, the agents of a multi-agent system were implemented. The
send action as communication primitive provides the main interface. The agent selectors give an
intuitive and flexible way to address the messages to a set of agents. When using mailbox semantics,
the messages could be queried from the mailbox. The mailbox semantics is intuitive, but requires
some management from the programmer’s part. Thesendonce action takes care of some of that
management which reduces the burden on the programmer and increases readability. Making use of
the mental model queries further improves readability and intuitiveness of reasoning about the mental
states of other agents.

Aside from specific situations, the distribution of agents in a MAS across multiple GOAL plat-
forms on the same or different hosts does not affect the agentprograms.

The effort of this thesis resulted in a pragmatic, usable implementation of communication in the
GOAL agent programming language. Though a minimal implementation was aspired, it provides
sufficient tools to program a multi-agent system of communicating and cooperating agents in a clear
and pragmatic way, while providing a formal semantics of thecommunication constructs.

8.2 Future Work

Though the focus of this thesis was on enabling GOAL agents to communicate, some additional func-
tionalities are worth implementing. One of these is an increased integration of the implemented mid-
dleware into the GOAL IDE. Tools that monitor and inspect agents that run on other GOAL platforms
can be added. Remote launching and stopping agents togetherwith these tools could facilitate man-
aging a distributed multi-agent system.

Another is an improved integration of the middleware with the Environment Interface so that
percepts and actions can be sent from an environment to agents on another host and vice versa (see
Section 7.4). This would be interesting for use in simulatedgames, where two teams compete and
each team is started on its own GOAL platform.

The work in this thesis mostly focused on providing the programming constructs to the program-
mer. On one side, of course, care was taken to ensure that the communication operations do not
reduce the performance of the interpreted agent programs. On the other side, the performance bene-
fits of having agents cooperate while running in parallel (ondifferent machines) on multiple platform
as opposed to running sequentially on one platform have not yet been measured. A testing framework
could give insights in how distribution of agents effects the overall performance of the multi-agent
system.

96

Bibliography

[1] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood, editors.Developing Multi-Agent
Systems with JADE. Number 15 in Agent Technology. John Wiley & Sons, Ltd., 2007.

[2] Lars Braubach, Er Pokahr, and Winfried Lamersdorf. Jadex: A BDI agent system combining
middleware and reasoning. InCh. of Software Agent-Based Applications, Platforms and Devel-
opment Kits, pages 143–168. Birkhaeuser, 2005.

[3] F. M. T. Brazier, M. Warnier, M. A. Oey, and R. J. Timmer. Agentscape tutorial, November
2008. Tutorial Given at the University of Bath and D-CIS labs, Delft.

[4] M. Dastani, J. van der Ham, and F. Dignum. Communication for goal directed agents, 2003.

[5] Mehdi Dastani. 2APL: a practical agent programming language. Journal Autonomous Agents
and Multi-Agent Systems, 16(3):214–248, 2008.

[6] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Communication Lan-
guage. In N. Adam, B. Bhargava, and Y. Yesha, editors,Proceedings of the 3rd International
Conference on Information and Knowledge Management (CIKM’94), pages 456–463, Gaithers-
burg, MD, USA, 1994. ACM Press.

[7] Foundation for Intelligent Physical Agents.www.fipa.org.

[8] Matthew L. Ginsberg. Knowledge interchange format: thekif of death.AI Magazine, 12:57–63,
1991.

[9] Richard Grandy and Richard Warner. Paul grice. In EdwardN. Zalta, editor,The Stanford
Encyclopedia of Philosophy. Fall 2008.

[10] Robert M. Harnish. Mood, meaning and speech acts. InFoundations of Speech Act Theory:
Philosophical and Linguistic Perspectives, pages 407–459. Routledge, 1994.

[11] Koen V. Hindriks, Frank S. de Boer, Wiebe ven der Hoek, and John-Jules Ch. Meyer. Seman-
tics of communicating agents based on deduction and abduction. In Frank Dignum and Mark
Greaves, editors,Issues in Agent Communication, pages 63–79. Springer-Verlag: Heidelberg,
Germany, 2000.

97

BIBLIOGRAPHY

[12] Yannis Labrou and Tim Finin. A semantics approach for kqml a general purpose communication
language for software agents. InCIKM ’94: Proceedings of the third international conference
on Information and knowledge management, pages 447–455, New York, NY, USA, 1994. ACM.

[13] Michael Pendlebury. Against the Power of Force: Reflections on the Meaning of Mood.Mind,
95(379):361–372, 1986.

[14] Jeffrey S. Rosenschein and Gilad Zlotkin.Rules of encounter: designing conventions for auto-
mated negotiation among computers. MIT Press, Cambridge, MA, USA, 1994.

[15] J. R. Searle. Speech acts. 1969.

[16] John R. Searle.Speech Acts: An Essay in the Philosophy of Language. Cambridge University
Press, January 1970.

[17] Munindar P. Singh. Agent Communication Languages: Rethinking the Principles.Computer,
31(12):40–47, 1998.

[18] R. Vieira, A. F. Moreira, M. Wooldridge, and R. H. Bordini. On the formal semantics of speech-
act based communication in an agent-oriented programming language. 2007.

[19] Michael Wooldridge. Semantic issues in the verification of agent communication languages.
Autonomous Agents and Multi-Agent Systems, 3, 1999.

98

Appendix A

Code listings

99

Code listings

GOAL

1 % This agent represents the coffee machine. It’s function is to supply a user
2 % with nice steaming fresh cups of coffee. It knows how to make coffee and
3 % espresso. It will communicate to find out who can make what. Notice that the
4 % program and perceptrules sections contain no constants, only variables.
5
6 % In fact, the program,perceptrules and actionspec implement a machine capable
7 % of making certain products, if it has all required ingredients, and finding
8 % producers of ingredients it cannot make itself.
9

10 main: coffeeMaker {
11 knowledge {
12 requiredFor(coffee, water).
13 requiredFor(coffee, grounds).
14 requiredFor(espresso, coffee).
15 requiredFor(grounds, beans).
16
17 canMakeIt(M, P) :- canMake(M, Prods), member(P, Prods).
18 }
19 beliefs {
20 have(water). have(beans).
21 canMake(maker, [coffee, espresso]).
22 }
23 goals {
24 have(latte).
25 }
26 program {
27 % if we need to make something, then make it (the action’s precondition
28 % checks if we have what it takes, literally)
29 if goal(have(P)) then make(P).
30 }
31 actionspec {
32 make(Prod) {
33 pre { forall(requiredFor(Prod, Req), have(Req)) }
34 post { have(Prod) }
35 }
36 }
37 perceptrules {
38 % capability exploration:
39
40 % ask each agent what they can make
41 if bel(agent(A), not(me(A)), not(canMake(A, _))) then sendonce(A, ?canMake(A, _)).
42 % answer any question about what this agent can make
43 if bel(me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prod))
44 then sendonce(A, :canMake(Me, Prod)).
45 % process answers from other agents
46 if bel(received(Sender, canMake(Sender, Products))) then insert(canMake(Sender, Products))
47 + delete(received(Sender, canMake(Sender, Products))).
48
49 % update beliefs with those of others (believe what they believe)
50 if bel(agent(A), received(A, have(X))), not(bel(have(X))) then insert(have(X)).
51
52 % If we need some ingredient, see if we can make it ourselves
53 if goal(have(P)), bel(requiredFor(P, R), not(have(R))),
54 bel(canMakeIt(Me, R), me(Me)) then adopt(have(R)).
55 % else try to find a maker for it
56 if goal(have(P)), bel(requiredFor(P, R), not(have(R))),
57 bel(canMakeIt(Maker, R), not(me(Maker))) then sendonce(Maker, !have(R)).
58
59 % if some machine seems to need a product, tell it we have it
60 if bel(agent(Machine), received(Machine, imp(have(X))), have(X))
61 then sendonce(Machine, :have(X)).
62 }
63 }

Figure A.1: Coffee maker agent

100

Code listings

GOAL

1 % The Coffee Grinder is an agent capable of grinding coffee beans into grounds.
2 % For making grounds it needs coffee beans. Whenever it needs beans it will
3 % announce as much by sending an imperative "!have(beans)" to allother agents.
4
5 main: coffeegrinder {
6
7 knowledge {
8 requiredFor(grounds, beans).
9 canMakeIt(M, P) :- canMake(M, Prods), member(P, Prods).

10 }
11 beliefs {
12 canMake(grinder, [grounds]).
13 }
14 goals {}
15 program {
16 % if we need to make something, then make it (the action’s precondition
17 % checks if we have what it takes, literally)
18 if goal(have(P)) then make(P).
19 }
20 actionspec {
21 make(Prod) {
22 pre { forall(requiredFor(Prod, Req), have(Req)) }
23 post { have(Prod) }
24 }
25 }
26 perceptrules {
27 % capability exploration:
28
29 % ask each agent what they can make
30 if bel(agent(A), not(me(A)), not(canMake(A, _)))
31 then sendonce(A, ?canMake(A, _)).
32 % answer any question about what this agent can make
33 if bel(me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prod))
34 then sendonce(A, :canMake(Me, Prod)).
35 % process answers from other agents
36 if bel(received(Sender, canMake(Sender, Products)))
37 then insert(canMake(Sender, Products))
38 + delete(received(Sender, canMake(Sender, Products))).
39
40 % update beliefs with those of others (believe what they believe)
41 if bel(agent(A), received(A, have(X))), not(bel(have(X))) then insert(have(X)).
42
43 % if we want to make grounds, but have no beans, announce that we need beans
44 if goal(have(P)), bel(requiredFor(P, R), not(have(R)), me(Me), not(canMakeIt(Me, R)))
45 then sendonce(allother, !have(R)).
46
47 % if some agent needs grounds, then adopt the goal to make it
48 if bel(received(_, imp(have(grounds)))) then adopt(have(grounds))
49 + delete(received(_, imp(have(grounds)))).
50
51 % if some machine seems to need a product, tell it we have it
52 if bel(agent(Machine), received(Machine, imp(have(X))),
53 have(X)) then sendonce(Machine, :have(X)).
54 }
55 }

Figure A.2: Coffee grinder agent

101

Code listings

GOAL

1 % The milkcow is the milk cow of the coffee making process. Its primary function
2 % is to produce milk. It doesn’t participate in capability deliberations,
3 % except that it answers questions about what it can make. The cow will make
4 % milk whenever someone needs it, and notify that one when it is made.
5
6 main: milkcow {
7 beliefs {}
8
9 goals {}

10
11 program {
12 % be a helpful cow, see to other’s needs in milk
13 if bel(received(_, imp(have(milk))), not(have(milk)))
14 then make(milk).
15 }
16
17 actionspec {
18 make(Prod) {
19 pre { Prod=milk }
20 post { have(Prod) }
21 }
22 }
23
24 perceptrules {
25 % (No capability exploration. Cows are generally not that interested
26 % in what others can make)
27
28 % if some machine seems to need a product, tell it we have it
29 if bel(agent(Machine), received(Machine, imp(have(X))), have(X))
30 then sendonce(Machine, :have(X)).
31
32 % answer any question about what this agent can make
33 if bel(me(Me), received(A, int(canMake(Me, _))))
34 then sendonce(A, :canMake(Me, [milk])).
35 }
36 }

Figure A.3: Milk cow agent

102

