Communication in Goal Oriented Agents

Master’s Thesis

Wouter de Vries

Communication in Goal Oriented Agents

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

MEDIA AND KNOWLEDGE ENGINEERING

by

Wouter Adelbert de Vries
born in Leiderdorp, the Netherlands

]
TUDelft

Man-Machine Interaction Research Group
Department of Mediamatics
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www. ewi . tudel ft. nl

(© 2010 W.A. de Vries.

Communication in Goal Oriented Agents

Author: Wouter de Vries
Studentid: 1015842
Email: w. a. devri es@t udent . tudel ft.nl

Abstract

In this thesis the agent programming languagsGis extended with communication. FOIO&L we pur-
sue an implementation that has a well-founded theory asaggiroviding pragmatic programming constructs
for the programmer. Existing technologies are reviewedare their approaches. Many of these technolo-
gies have Speech-act theory as their theoretic base, a bpdn other technologies that do so. This led to
communication frameworks having vast and unclear perféumaets and lacking formal semantics.

This thesis goes back to the core of communication by reggr@dmmunication from a linguistic perspec-
tive. This approach inspires syntactical representatf@ommunication constructs and also leads the way to
specifying a formal semantics for those communication traots. This semantics does not have a receiver of
a message refer directly to the mental state of the senderather specifies how modelof that mental state
can be deduced from the communication. These mental modeisiplemented as language constructs which
the agent programmer can use to have the agents reason ladbetiefs and goals of other agents.

Finally the necessary middleware elements are implemémiethe GoAL interpreter to allow a system of
multiple agents to be distributed across multiple plat®onhosts.

Thesis Committee:

Chair: Prof. Dr. C.M. Jonker, Faculty EEMCS, TU Delft
University supervisor: Dr. K.V. Hindriks, Faculty EEMCSUTDelft
Committee Member: Dr. M.M. Dastani, Faculty of Science ddht University

Preface

As | start writing this last part of this document | cannotphélt reflect on the past period, and
especially the process of doing research and writing tlgisigh In much the same way as concerning
the subject matter | had moments where | couldn't see thestfdoe the trees, these moments where
equally present in the personal attitude towards the psodefeels like walking a path through a hilly
landscape, having a general idea of the direction to takartisvthe goal. Most of the time you see
the path in front of you, but sometimes you lose the path whalking in a valley, and you need to
climb some hill to reorient yourself.

| have seen a lot of valleys and hilltops during my graduagieriod, but | consider myself lucky
to have learned the landscape. Not only have my ‘pathfindkils been improved, | can also take
home the experience of making such a journey, and seeingitdh till the end, even when the valleys
and hills sometimes seemed to stretch as far as | could sae. itv®t for some essential guides that
repeatedly showed me where the path was, it might have bedricdhaver get to the goal.

There have been many guides in many forms, all of which havsingere gratitude, but a few |
would like to mention;

First of all, Koen | thank for the huge patience in supengsimy graduation. Whenever | once
again disappeared into some valley only to reappear sonedinité time later, we could always con-
tinue where | left off. Attimes it took some persuasion topke®e away from getting too philosophical
or getting lost in the detalils.

Tijmen, thanks for the company in our graduation room. Theeesal coffee breaks and chats
about whatnot were the kind of distraction that actuallyi fhe work spirit.

Finally 1 would like to thank Noor, for always being there fme. She always knew why | was
lost and gently showed me how to find the path again.

Wouter de Vries
Delft, the Netherlands
May 8, 2010

Contents

Preface iii
Contents \
List of Figures vii
1 Introduction 1
1.1 Examples of Multi-Agent Systems e 2
1.2 OVEIVIEW e e e e 7
2 Related Work 9
2.1 Introduction e e e 10
2.2 Speech-act Theory e 10
2.3 Existing Agent Communication Technologies 11
24 Conclusion 22
3 Semantics 25
3.1 Introduction 26
3.2 The effect of communicating e e 26
3.3 Mentalvs. socialagency e 28
3.4 Conditionsonthesender 29
35 Whatwecando e 30
3.6 Syntax and semantics of the communication language 31
3.7 Queryingmentalmodels e 33
3.8 Exampleusage e 33
3.9 Self-referential communication Lo oL 35
3.10 Conclusion e 35
4 Implementation 37
4.1 Introduction e 38
4.2 Extending the GAL grammar 38

CONTEN

TS

Vi

4.3 Mental models
4.4 COomMMUNICALION o o o e e e e e e e
45 Conclusion

5 Communication

5.1 Introduction e e
5.2 Multi-FAgent Systems e e
5.3 Communication e e
5.4 SendActionandMailbox e
5.5 Moods e
5.6 AgentSelectors e e
5.7 send action processing e
5.8 Example: The CoffeeDomain uu..
5.9 Conclusion e

6 Mental Models
6.1 Introduction e e
6.2 Programming with mailbox semantics
6.3 Modelsofmentalstates e .
6.4 Using mental models in@AL programso
6.5 Conclusion e

7 Distributed Multi-Agent Systems
7.1 Introduction L e
7.2 Requirements of a distributed agent system middleware
7.3 Existingtechnologies e
7.4 Design ofthe GAL middleware 0
7.5 Implementing the GAL Middleware
7.6 Conclusion

8 Conclusions and Future Work
8.1 Conclusion
8.2 Future Work e e

Bibliography

A Code listings

93
94
96

97

99

List of Figures

1.1 Examplestart-andgoalstate 5
1.2 Initial- and goal states for two-agent Blocks World epéarproblem 5
1.3 Actions taken bya; to achieveitsgoal oo, 5
1.4 Actions taken bya, to achieveitsgoal 6
15 ajsinformsa;ofitsgoal 6
1.6 Two agents performing a joint plantogether oL 6
1.7 4, holds the white block from 1 whil@; rearranged the other blocks 7
2.1 Example of a KQML message; agent joe asks the stocksstriell it the price of the
IBMStock e 11
2.2 FIPAreference model of an Agent Platform 13
2.3 FIPAinformsemanticmodel 14
2.4 An ACL message initiating request interaction 15
2.5 Example conversation, withinformingb aboutfactp 19
2.6 2APLSendaction. e 20
3.1 Johnand Mary CONVEISE i i i i e e e e e e e e e 27
3.2 Syntaxofthe mood operators 31
3.3 Anexample GAL Program it e e e e e e e e e 34
4.1 Theformatofa GAL programrule 38
4.2 Grammarconflict 40
4.3 Agent selector between operator and parentheses 40
4.4 Agent selector after parentheses, with'by” o oL 40
4.5 Agentselector before operator 40
4.6 A proposed syntax forthe agentselector 41
4.7 Grammar of thagent Sel ector 42
4.8 Grammarof mentalliteral 43
4.9 Grammar of theend action and theentenceMbod 43
4.10 Mood operatorsinthe mailbox e 45
4.11 Querying the mailbox for an indicative message oL 45

Vii

List of Figures List of Figures

viii

5.1 TheCoffeeMaker e 49
5.2 Aminimal MASTile 54
5.3 A MASfile for the coffee domain MAS 54
5.4 Amorecomplex MASTfile e 55
55 GOALMESSAgeE MOOAS v i e e e e e e 59
5.6 Syntaxofthesendaction 60
6.1 Coffee maker agent's perceptrules e 71
6.2 Example mental modelqueries e 73
6.3 Effect of resolving agent selector in a mental modelguer. 73
7.1 Interface for acceptingmessages e e e 82
7.2 Three ®AL platformsontwohosts, 84
7.3 Masfile for the coffee machines 86
7.4 Masfile forthedairyfarm e 86
7.5 Agentinterface extended with birth- and death handineghods 87
7.6 Agentmaker’s belief base after dairy farm is launched R - £

7.7 Launch and announcement of a new agent. First, theLGplatform Iaunches the new
agent (1). Thé&unt i meServi ceManager retrieves the list of agent names (2),(3). It then
determines the next globally unique nanmel(kcow3) and announces this agent name to

the existing agents (4). e 88
7.8 Action rule answering capability questions oo oL 89
7.9 Reusable actionrule versionof 7.8 L 89
7.10 Universal product-supplying actionrule 89
7.11 Mailbox cleaningrule e 90
A.l Coffee makeragent e 100
A.2 Coffee grinderagent e 101
A3 Milkcowagent e 102

Chapter 1

Introduction

1.1 Examples of Multi-Agent Systems Introduction

One of the properties characteristically ascribed to ligsht agents is their ability to interact.
Another is that they should be autonomous. One form of intEna between agents that respects
autonomy iscommunicationCommunication allows agents in a multi-agent system ttoparbetter
(i.e. more efficient, solving more problems) than they waltthe or together without interacting.

Using agents as a programming paradigm requires a way teedothese agent concepts into
software. Agent programming languages aim to provide tiagbrbetween concept and application.
Over the past decades, increased interest for agent tegie®lhas given rise to development of
agent programming languages (APLs) and frameworks. Wiliteesof these APLs focus on the
formal aspects of agents ([7],[1]), others aim to provideaspning framework ([2]). GAL is a Goal
Oriented Agent Language in which the agent is specified delaly in terms ofbeliefsandgoals
GoAL is currently being developed at the Delft University of Teclogy.

In this thesis | extend GAL with the ability for agents to communicate. To achieve thig
following questions are investigated:

1. What is minimally required to allow communication betwegents?
2. How easy can communication be used or applieddmGprograms?

As the name suggests,0&L agents are specified declaratively in terms of their goaldhieiV
communicating, it would be nice to do so based on the contdritseir mental states. From@L’'s
perspective, we would like to observe the following crigeior success for designing and specifying
an ACL:

1. The communication constructs should have a well-founded #ory. This includes a for-
mal semantics of the communicative acts. The importanceidi a theory lies in an agents
program’s verifiability.

2. The distinction between beliefs and goals should persist ithe communication. GOAL is
based on this distinction, and after receiving a messaggeamnt ahould be able to determine
whether the message conveyed a statement about the segdints deliefs or about its goals;
the receiving agent should be able to distinguish inforomei from motivational content.

3. Programming agents using the communication constructs shid be pragmatic, and pose
a small burden on the programmer. An agent programmer should not have to introduce
complexity or complicated constructs to make the agentswonicate.

When the informational and motivational parts of a messagebe distinguished this gives us an
insight into the mental state of the sender. With these aatated insights an agent can reason about
the mental state of other agents, even if that reasoningsistban anodelof the mental state of that
other agent. In this thesis | introduogental modelsThe concept, semantics and implementation are
described and accompanied by code examples demonstiagingisage.

1.1 Examples of Multi-Agent Systems

In single-agent systems and -environments, communicetioot really an issue, and such agents need
not consider other agents or their influence on the enviromraed the agent’s plans. In situations

Introduction 1.1 Examples of Multi-Agent Systems

where more than one agent operates in the same environnusveeyér, interaction between agents
may become beneficial or necessary for the execution of theidmal agent’s plans. It might be that
agents could carry out their plans individually, but if theyoperate, they could do it more efficiently.
On the other hand, it could be that the presence of anothert agth its own agenda will interfere
with the agent’s plan. Rosenschein and Zlotkin [14] idesdifét situations of two agents with respect
to their relative goals:

1. Thesymmetric cooperativeituation, in which both agents could execute their plansheir
own, but would both benefit from cooperating on those taskeyTboth welcome the other’s
presence.

2. Thesymmetric compromisstuation, in which both agents would rather execute thiginpon
their own, but are forced to deal with each other in order teltheir plans executed.

3. Thenon-symmetric cooperative/compromgeiation, in which one of the agents benefits from
the interaction, while the other is worse off interactingritworking alone.

4. Theconflictsituation, in which the goals of the agents contradict edlbrpi.e. the goal states
of both agents cannot be achieved simultaneously.

1.1.1 Rickety delivery

Suppose two package delivery agerms,and.4,, each have a package to deliver by a certain time
at a certain locatioh, which is just across a rickety rope bridge. Delivery ageats hold at most two
packages at any time. Carrying packages a certain distasca ¢ost o€ per package. The bridge is
only strong enough to hold one agent at a time.

Time constraints Suppose that as the agents stand at the beginning of thesptldage is no time
left for both agents to cross the bridge consecutively. @imsly, one agent could carry both their
packages across the bridge, thus achieving both their ¢ataks(their package being laby timet)

for them. This situation is aon-symmetric compromider the agent carrying the packages, and a
non-symmetric cooperatidior the agent not having to do work at all.

If the agents were to ignore each other, the first one to rdschbridge would cross it, deliver its
package and reach its goal state. But then the other agémtowvibe able to do so, leading to a global
utility that is sub-optimal.

The way the agents might interact could be as follows. Agenineets agenfi, at the start of
the bridge, who is about to cross it. Their individual plaos dchieving their goals lead them to a
deadlock. Agenta; would like the other to help it out, but it doesn’t know the etk goal or plan,
so it can't figure out what kind of plan will help them both tethgoals. 421 would like to inspect
4,'s goal base. But, being autonomous agents, that is nottljingassible. So,1 asks4, to share
the contents of it's goal base, and any beliefs it might hawgresponds that it's goal is to get it's
package to the other side of the bridge, at timé\so, it mentions that it is carrying one package.
Using this information,a, thinks of a plan, namelyr; taking both packages to the other side while
doing nothing itself (saving energy), anehjuestsa; to do so.4, agreesexplicitly, and thgoint plan
is executed.

1.1 Examples of Multi-Agent Systems Introduction

Weight constraints What if the two packages were sealed together in one comt@iréch has no
weight of its own). Either agent could carry the containethi® other side, to achieve its goal, which
has the side effect of achieving the other agent’s goal als Without coordination, both agents will
have their goals achieved, regardless of which agent ea®thie task. But they will both attempt to
execute the task themselves, since they have no idea thaihiileagent has the same (sub)goal.

But suppose carrying the container costs o if both agents would carry it together, coopera-
tively, it would each cost them only; so both agents are better off together than expected altne.
is an example of aymmetric cooperatigrboth agents welcome the other’s presence.

In this case, both agents would ask each other about thds,goal when they find out they have
mutual (sub)goals, they construct a joint plan of carryimg $ame container together.

Conflict Suppose now that the time constraint does exist, that ise fiseonly time for one agent
to cross the bridge, and that agents can carry at most onagacek a time. In this case there is no
sequence of actions that will bring about the combined gt f both agents; the agents are in
conflict The best they can do by communicating about this situasiaegotiation but that topic goes
beyond the scope of this document.

The rickety rope bridge examples have shown us that thersita@ions where cooperation is
beneficial for all agents involved, or for some agents ingdhor for the system of agents as a whole.

The communication in the above situations enabled the agerbme up with a joint plan that is
better (i.e. has a higher global utility) than the sum oftivadividual plans. In order to come up with
such a plan, agents must be aware of the goals of the othei(s)gerolved.

1.1.2 Slotted Blocks World

Let’s consider a simple domain in more detail. Consider &etalith blocks on it, that can each be
directly on the table, or on another block. There are a fimtewant of slots these stacks of blocks can
stand on. The state of the world can be described with a cotijumof predicates;

e CLEAR(A), meaning there is no block o\ whereA can be a block or the table.
e ON(B, C), meaning blockB is directly on top ofC, whereC can be a block or the table.

e AT(D, n), meaning bloclD is directly on the table in slat.

There exists only two basic actions agents in this domairpeaiorm:

e PICKUP(), meaning that the agent picks up the block that is on the tdpeostack in sloi.
This can only be performed if slotis not empty. The result is that the block is removed from
the stack and the agent is now carrying it.

e PUTDOWN(), meaning that the agent places the block it is holding orsthek (if any) in slot
i.

The cost of one such operation is 1. Agents can carry at mesblock at a time.
Typical start- and goal states are some arrangement ofdck&lusually all blocks being stacked
in a specific order.

Introduction 1.1 Examples of Multi-Agent Systems

Start state Goal state

C T L T C T dl
1 2 3 1 2

5B
3

Figure 1.1: Example start- and goal state

Initial State

G T == L[dl
1 2 3
Al’s goal . A2’s goal
C dEL dEL dl C dEL dEL dl
1 2 3 1 2 3

Figure 1.2: Initial- and goal states for two-agent Blocksrid@xample problem

Figure 1.1 shows an example of such a slotted blocks world.

Now let’s consider the following situation, illustrated Bygure 1.2. The initial state consists of
a white block, a black block, and two stacked gray blockgs goal is to have the black block on a
gray block on the table at slot 2, while,’s goal is to have the white block on a gray block on the
table at slot 1.

1: PICKUP(2); PUTDOWN(1); | 2: PICKUP(3); PUTDOWN(2); | 3: PICKUP(1); PUTDOWN(2);
m E S .
| | | |
L — "
! I
L] === [dl G T [T [dl L [T [dl
1 2 3 1 2 3 1 2 3

Figure 1.3: Actions taken by to achieve its goal

Suppose each agent operates on its own to achieve its goala1f-the associated actions are
depicted in Figure 1.3. Fom,, they are shown in Figure 1.4. In principle, these goals ateim

1.1 Examples of Multi-Agent Systems Introduction

1: PICKUP(1); PUTDOWN(2); | 2: PICKUP(3); PUTDOWN(1); | 3: PICKUP(2); PUTDOWN(1);
Ay Ay A

I ™~y

yani H |

| | | |

.WP 7 | L WP.WP 7 | B WP.WP dl
2

-
|
[—1 | —

71 L
1 3 1 2 3 1 2 3
Figure 1.4: Actions taken by, to achieve its goal
’\:’2’: 46N(black, gray.), AT(grag;; ;2\)\\
u 2 rl—n. u 2
1 2 3
Figure 1.5:4, informs 4 of its goal
A A2
1 i nf or n{ goal (ON(black grayy), AT(grayy, 2)))
2 request (PICKUP(1)
3 (picks up white block at }
4 | (rearranges blocks to match Figure 1.7
5 request (PUTDOWN(1)
6 (puts down the white block at 1L

Figure 1.6: Two agents performing a joint plan together

conflict, because there exists a (reachable) state in whath doals are satisfied (the union of the
goal states in Figure 1.2). However, a problem does arisa wieetwo agents perform their actions
concurrently on the same environment: when puts the black block on the white block, is
hindered in performing its first intended action, becausenthite block is no longer free. Removing
the black block from the white block will hinder;’s plan.

But if the agents were to share information about their gdhksy could deduce that they would
get in each other’s way if they don’t cooperate, and insteadotform a joint plan. This sharing of
information is done explicitly, by informing the other agerfione’s goals.

Let's see what such a conversation would look like. FiguBeshows the initial state, with agent
4, informing 4, about its goal. Figure 1.6 shows the agents communicatipgrform a joint plan.
41 asks, to hold the white block, while it arranges the other blocksthe process, it achieves'’s
goal, and whem, replaces the white block on the gray block atal's goal is also achieved.

Introduction 1.2 Overview

1 2 3

Figure 1.7:4, holds the white block from 1 while; rearranged the other blocks

1.1.3 Conclusion

From the example interactions above we have seen that thengoitation between agents involves
sending messages, eitheritéorm about some fact, or tiequestthat some action will be taken. The
emphases on the words inform and request are not coincidentagent Communication Languages
these kind of verbs are callggerformatives and are used as labels in the messages, to indicate the
type of communicative act the message is supposed to perf@ther types of performatives are
possible, as we will see when we explore the theory behindcspacts in the following chapter.

1.2 Overview

This thesis is outlined as follows.

In the following chapter | will review state of the art ageiemunication technologies. To pro-
vide theoretical background for most of these technolgdies chapter begins with a brief overview
of Speech-act theory. Then the technologies are revieweaaaduated for their potential use when
implementing communication in GAL.

In Chapter 3, the semantics of communication constructthiGoAL language are determined
and specified. This is done by regarding communication froth b theoretical as well as a practical
perspective.

Chapter 4 describes the implementation of these constridie choices made in determining
syntax are explained. The chapter then goes on to descebghtinges to GAL’s grammar and the
GOAL interpreter.

The following chapter elaborates on how the communicatioGd®AL works and how it can be
used. It explains the various programming constructs tfeitrdroduced and how these can be used
to program multiple cooperating agents. This is demoresirély building an example multi-agent
system.

Chapter 6 describes mental models in more detail. The umefslof mental models in program-
ming with multiple agents is explained and demonstratedxgreling the example multi-agent sys-
tem from Chapter 5 with the use of mental models.

In Chapter 7 the issues when distributing agents acrossreliff machines are discussed. The
GoAL interpreter is extended to allow agents to communicatesadnosts. The focus here is to limit
the impact this has on the burden of the programmer or theafiske GoAL platform.

Finally, the work done in this thesis is evaluated in the datiag chapter.

Chapter 2

Related Work

2.1 Introduction Related Work

2.1 Introduction

In the field of multi-agent systems, many agent communinatiameworks exist to support agent
programmers in developing multi-agent systems in whicimegeommunicate with each other.

In this chapter we will review several of these frameworkd explore how they relate to our ob-
jective of implementing communication for@dL. Because communication in most of these frame-
works is based on Speech-act theory, a brief review of tlé@srihis given in Section 2.2. Section 2.3
reviews state of the art agent technologies. At the end otlilapter the technologies and their use-
fulnesses for our purpose are evaluated.

2.2 Speech-act Theory

Speech-act theory is based on the idea that speech is amdcthat certain instances of speech
constitute additional acts being performed: an agent pes@ speech act to change the mental states
of other agents. Thus, speech acts are similar to “physalbns that change the state of the world,
except that they operate on mental states. The theory waslired by philosophers Austin and
Searle, but has enjoyed much attention from the computdtiaid. Searle identified [15] a category
of verbs whose “[...] utterance constitutes the perforreapicthe act named by the performative
expression in the sentence”. E.g. with the sentence “l imfgou that it is raining”, the utterance of
the sentence is called thicutionary act Thelocutionary forceis that which the speaker wishes to
achieve by performing the illocutionary act. In this casgoiming the hearer that it's raining. The
type of locutionary force is called thidocutionary force which is in this casenform. Though precise
definitions vary, these verbs are also calbetformatives

2.2.1 Performatives

There are other performative verbs, lileguest order, promiseanddeclare These are all performa-
tive verbs, because by speaking them the act they name tpexd. By saying, “l request you close
the door”, one hamade the requesBY saying, “I promise you I'll come and visit”, the promibas
been maderegardless if it was a sincere promise. Characterisficdiereby’ can be added to the
sentence without altering it's meaning: “I hereby decl&ie mall as opened”.

Not all verbs can be used performatively. Saying “I herebglwthe dishes” does not, unfortu-
nately, make it so that | have washed the dishes.

This last sentence gives an example of the case that somrecattonly be useplerformativelyif
the speaker of the sentence is generally recognized, éissthie authority) to perform the locutionary
act. The situation and position of the speaker can influehedlibcutionary force. Saying “The
meeting is adjourned” will only adjourn the meeting if saidthe chairman. If said by some normal
meeting attendant, it might be interpreted as an ‘informetpf performative, instead of an ‘adjourn’.

This distinction between types of performatives was diseddy Searle. He distinguished several
classes of communicative acts:

e Assertives By asserting a speaker commits itself to the truth of therssd.

e Commissives Through a commissive a speaker indicates that it is corachith perform the
action mentioned.

10

Related Work 2.3 Existing Agent Communication Technologies

e Declarations Declarations make the content of the declaration true énvbrld (e.g. war
being declared, two people being married).

e Directives. These are attempts to get the hearer to perform some action.

e Expressivesindicate the speaker’s emotional attitude toward some staffairs.

That which distinguishes these classes are the conditiodsruvhich they can be successfully per-
formed. These conditions apply to the mental states of thakay and hearer.

2.3 Existing Agent Communication Technologies

Coming from Distributed Computing, where communicatiors\alieady implemented by schemes as
CORBA, RMI, RPC etc. ACLs are similar but provide more beeailey handle propositions, rules
and actions as opposed to just objects without any semadlics an ACL message expresses a state
rather than a procedure or method. Also, an ACL doesn't ssgpoparticular underlying transport
mechanism or (usually) a knowledge representation larguag

2.3.1 KQML

Starting in 1990, the Knowledge Sharing Effort (KSE) depeld techniques and methodologies for
reusing and sharing knowledge. To standardize the repedganof knowledge, the KSE proposed
the Knowledge Interchange Format. KIF was meant agtanlingua a common language to rep-

resent the contents of a knowledge-base, which supportsahglation to and from different native

content languages [6][12]. This proposal encounterecisnib [8], because it tried to standardize too
much, which made it useless for most applications.

Sharing knowledge amongst autonomous entities implieguimes communication. To this end
the KSE group introduced the Knowledge Query and Manipafatianguage or ‘KQML, a com-
munication language and protocol for exchanging knowledfs meant to be a message-handling
protocol and a message format to support run-time knowletlggng among agents.

KQML specifies the syntax and semantics of messages. Figlsh@ws an example of a message
in KQML.

KQW Listing
1 (ask-one
2 : sender joe
3 :content (PRICE | BM ?pri ce)
4 :receiver stock-server
5 creply-with ibmstock
6 :language LPROLOG
7 ;ontology NYSE-TI CKS
8)

Figure 2.1: Example of a KQML message; agent joe asks thé-stoc
server to tell it the price of the IBM stock

11

2.3 Existing Agent Communication Technologies Related Work

12

The syntax of a KQML message is a LISP-style balanced pagsisthfeaturing a performative
label and several key/value pairs. KQML provides an extdasiet ofperformatives which iden-
tify the illocutionary forceof the message content. In this examplek- one is the performative.
Thecontent field contains the actual knowledge in the native knowledg®easentation language.
The contents of this field are independent from KQML and vieesg, with the exception that the
| anguage field should indicate which language is used there. Thisgntgmllows KQML to be used
in many situations, regardless of knowledge representddF, SQL, Prolog, XML, ...). The fact
that the message itself can be represented in any encodavgsat to be transferred across many
transportation media (TCP, SMTP, IIOP, ...). This makes KCividely applicable ACL.

The set of performatives given by KQML is neither minimal tised, instead it is meant to be
extended by anyone when the need arises. Itis up to the coitymplementing an agent system
to determine which performatives from the basic set are toadms, and to implement additional
performatives if necessary.

Communication Facilitators

Aside from the “normal” performatives identifying speeatis, KQML introduces a small set of per-
formatives which are used to describe meta-data regardaimtormation requirements and capabili-
ties. Also, a special class of agents is introduced, cafleddmmunication facilitatorsThese special
agents perform various communication services, likeifatiihg capability search, yellow pages, mes-
sage routing, etc. The motivation for the introduction @l agents is that agents from any source
should be able to join a network and be able to find their wayh@édocial environment of agents,
providing / advertising its capabilities and finding out abthose of other agents.

Conclusion

KQML specifies a communication language, its syntax and séiosa The KQML specification lists
43 reserved performatives, with their meanings. It alscésfexactly how new performatives should
be defined. The set of performatives is so extensive and entipat agent builders will be inclined
to define their own performatives. This de-standardizedathguage, which makes it harder to use in
a multi-vendor system.

Furthermore, the specification states that the performatafinitions make reference to either or
both the agent’s belief- or goal bases. However, the spatidit also states that the content of the
messages imaccessibldo the protocol. This complicates verification of the ageptogram.

2.3.2 FIPA and FIPA ACL

Having a common message format enabled agent developeeveoagents interact and exchange
information regardless of their native knowledge repreg@ns. However, it does not facilitate the
interoperability of agents, i.e. the ability of an agent society to operaté Wiéterogeneous agents.
Even with a common message format, agent designers ofatiffagent systems or other technologies
have no fixed specification of how to create or interpret thnessages.

Related Work 2.3 Existing Agent Communication Technologies

FIPA To address this issue, the Foundation for Intelligent Riay#gents (FIPA) was established.
Its goal is to promote agent based systems and -technolbgideveloping specifications and inter-
action protocols, especially in the agent communicatidd fie

Agent
N Agent Platform]
AMS @}‘——;7'

,,

Figure 2.2: FIPA reference model of an Agent Platform

The first specification published by FIPA described the bafarence model of an agent platform,
as shown in Figure 2.2, along with some special agents winichecessary for platform management.
An Agent Platform (AP) is the physical infrastructure in wiiagents can be deployed. An AP does
not bound the domain of the agent system, but is rather lindkeddegree of locality. Agents from
different APs may still interoperate with each other, ansltihe frameworks responsibility to facilitate
this in a transparent fashion, i.e. agents need not knowhghsbme other agent resides on the same
AP or not.

e TheAgent Management Systen{AMS) is a mandatory component of every AP. It contains a
directory of Agent identifiers which contain transport aslthes for agents registered with the
AP. The AMS offers white page services to other agents.

o Directory Facilitator s (DF) are optional agents that offer yellow page servicegher agents.
There may be more than one DF per AP, and they may be federated.

e The Agent Communication Channel(ACC) is the default communication method for agents
on different APs.

FIPAACL Agents communicate with each other by passing FIPA Agenti@onication Language
(ACL) messages. These messages consist of several messageefers. There are parameters for
specifying the type of communicative act (performativédje participants in the conversation, the
content of the message and the control of the conversation.

The transport mechanism used to transport the messages dstriny the FIPA standard, but it
does give precise syntax description for ACL message engediased on XML, text strings and
several other schemes, allowing for any implementing partamechanism.

FIPA ACL is inspired by and very similar to KQML, but with thenportant difference that FIPA
ACL provides a formal semantics for the language, sometthiagis seen as a shortcoming of KQML.

13

2.3 Existing Agent Communication Technologies Related Work

14

The semantics of FIPA ACL messages are formalized in theifsggg®n in terms of a commu-
nicative act'sfeasibility pre-condition(FP), and itsrational effect(RE). Let’s illustrate this with an
example nf or m8 semantic model.

< s/inform(r,$) >
FP:Bsd A —Bs(Bit, ¢ V Uit,9)
RE:B/¢

Figure 2.3: FIPA nf or msemantic model

Here,sis the sending agent,is the receiving agent, and the first line says thiatformsr that
¢ holds. Bjs,¢ means that ‘knows’ about the truth value af andU;is, ¢ means that is ‘uncertain’
about the truth value df, i.e. it has no knowledge of the truth valuedaf This precondition that the
receiver may not be uncertain about a fact in order to infdrabout that fact is counter-intuitive to
say the least. The reason that FIPA put this here is to ensuteairexclusiveness of the feasibility
preconditions among the communicative acts, when moredharcommunicative act might deliver
the same rational effect. When a sender would believe teatetteiver is uncertain abodit it would
send econf i r mtype communicative act, whose FFEg) A BU,§.

The feasibility precondition consists of two parts, thetfirging Bsd, stating that the sender be-
lieves that the proposition it informs the receiver aboutiboThis is called theincerity propertyand
relates to th&ricean maxim of Quality9]. The second part of the FRBs(Bis, ¢ VUi, §), represents
the Gricean maxim of Quantityi.e. the sender does not try to inform the receiver aboutttleat
the receiver already knows about. In fact, it states thas#reler should not adopt the intention to
inform the receiver about even if it thinksr is only uncertain about it. In that case, it should perform
another communicative act, lik®nf i rmordi sconfirm

The Rational Effect represents thlecutionary forceof the message. It is the reason for sending
of messages by the sender. If some agentf or ns another agent that a door is closed, then it
performs this communicative act because it wants the assacaction be done (the receiver being
informed about the state of the door). Depending’srtrust ins, r may adopt the belief that the door
is closed.

The receiver may, upon “hearing” this message, concludetieasender believed the proposition
at the time of sending, and also that the sender wishes te&eedo believe that proposition. It is
not, by this specificatiorrequiredto adopt the belief that holds.

Communicative acts The FIPA Communicative Act Library Specification (Specifica 00037)
lists all communicative acts (CAs). Some of them have redbpmative meaning, likenform, re-
quest agree while others exist to accommodate conversations, ndgtsaand messagingiopa-
gate, subscribe, propose, reject propgsdihe specification lists 22 performatives, of which royghl
half can be considered performatives in the speech-acésesisle the rest are either CAs to control
the conversation or for relaying messagemky, Propagate, Not Understojcbr are variants of other
CAs (Inform If, Inform Ref, Request Whene\ver

Interaction Protocols Besides specifying the abstract agent architecture and@hesyntax and
semantics, FIPA has also specified a number of Interactioto&uls (IP). These IPs are pre-agreed

Related Work 2.3 Existing Agent Communication Technologies

message exchange protocols for using ACL messages to hanmesoconversations. Example IPs are
the Contract-Net protocol and the well-known English- anddb Auctions. When an agent wishes to
initiate a specific type of interaction (e.g. requesting etioa), it can do so by setting ther ot ocol
field of the ACL message to a protocol token identifying theiséd, and assigning a globally unique
conversation-id to the interaction by setting the messagmiver sation-id field. Any receiving
participant may respond according to the protocol, or répdy the message wast - under st ood.

For the case of doing a request to open a door, let's look axamgle ACL message:

FI PA ACL
1 (request
2 : sender agent-1
3 ireceiver agent-2
4 : protocol fi pa-request
5 .conversation-id 3228kj hl H H 343
6 :cont ent "open(door)."
7 .l anguage PROLOG
8)

Figure 2.4: An ACL message initiatingr@quest interaction

In response to this requesgent - 2 mayagr ee to orr ef use the request. If the request has been
agreedagent - 2 should respond with either:

e afail ure message, indicating that it has failed to execute the réediestion, or

e ani nformdone orinformresul t, which are types ofnf or mmessages.

At any time during the interaction, the initiating agent nw@ancel the interaction by sending a
cancel message. At any time during the interaction, any partigigeagent may reply to a message
with anot - under st ood message, after which the interaction is terminated and etigre related to
the IP may be considered not to have had effect.

2.3.3 JADE

The FIPA organization laid the foundation for agent framesahat would allow agent developers
to easily and consistently design agent systems. The JagatApevelopment Environment (JADE)
is a Java based software framework that enables agent progres to develop agent applications
in compliance with the FIPA specifications for interopeealiitelligent multi-agent systems. It pro-
vides agent designers a set of tools, agents and systemgefior platform management, as well as a
comprehensive API which developers can use to implemeimtagent logic in the framework.

Framework architecture

To conform to the FIPA specifications, JADE comes with a nunabepecial agents that perform the
tasks described in Section 2.3.2, like an AMS, DF, and the A8ICthese agents are automatically
started when the agent platform is started. The agent ptatfan be distributed across multiple hosts.
Each host runs one Java Virtual Machine, containing one thagad per agent. AAgent Container

15

2.3 Existing Agent Communication Technologies Related Work

16

is responsible for one or more of these agents, managing ltfeecycles and dealing with all the
communication.

Communication

Communication between agents is done by constructingGltMessagebject and sending it to the
recipient. The way this sending is done depends on whereesemdl receiver are in the AP with
respect to each other, but is completely transparent togbata themselves. Several cases may be
distinguished:

e Agents in same container: The ACL message object is not',daritjust.clone(d.

e Agents in same AP, different container: ACL message obgeserialized and deserialized by
RMI.

e Agents in different AP: The ACLMessage object is transldted a character string and then
a remote method invocation on the remote platform’s ACC iggpeed using IIOP as mid-
dleware protocol. On the receiver side, the string is pabsayk into an ACLMessage object,
which is then further relayed to the correct agent using bwa method(s).

The ACLMessages are compliant with the FIPA ACL Messagec8ira Specification, and the
API provides constants for selecting any of the 22 FIPA ACLrBaunicative Acts.

Message delivery ACLMessages are delivered at the receiving agent by plataighe end of the
receiving agent's message queue. It is up to the behavjafrfsat agent to do either a non-blocking
recei ve, which will return the ACLMessage at the head of the messagee if any, or do a blocking
bl ocki ngRecei ve, which will block the behaviour until a message is availabléhe queue. Both
receive methods can takevassageTenpl at e, which works as a filter. Only ACLMessages that fit
the template will be returned by the methods. The templaienatch against any ACLMessage field.
This way, agents can have specific behaviours that handidaarcprotocol, for instance, or allow for
conversation tracking.

Agent Execution Model

As mentioned earlier, JADE agents run in a single Java threaid does not, however, restrict JADE
agents to single-threaded behaviour, due to its flexiblewgi@ model.

JADE agents are defined in terms B&haviours which are abstract Java classes that are part
of the JADE API. The Behaviour class has two methaatg,i on() which defines the task to be
performed, andone() which determines if the task is completed or not. By extegdire Behaviour
class and overriding these methods, one can implement ioeing\for the agent. While all agents
run concurrently in their Java thread, the behaviours ohement are selected by the JADE agent
by taking a behaviour from the ready queue and invokingdts on() method. The behaviour is
responsible for terminating its execution at some time, idadl that timedone() returns false it is
rescheduled for execution again. JADE agents scheduleltbbaviours within a single Java thread,
using round-robin, non preemptive scheduling.

JADE comes with special subclasses of Behaviour for comraskstsuch as sending and receiv-
ing messages, and for complex behaviours composed of simms.

Related Work 2.3 Existing Agent Communication Technologies

Conclusion

JADE has enjoyed much attention and interest from the wdkrlchati-agent systems, though not
for its orientation towards FIPA compliance or extensive afebundled protocols. The popularity
of JADE is mainly due to it being open source, available antilely maintained and developed
by a large community. Ihasrisen to be the de-facto standard agent framework, but vathes
practical complications. For one, JADE has adopted andamphted all FIPA performatives into
the ACLMessages, with the intention that they would be usdddicatespecificspeech acts, which
would help interoperability with other agent systems. Hesvethere are so many performatives that
have lost most of their intuitive meaning or have an uncleaaming, that many agent designers resort
to only usingi nf or ms, and putting their own meta-content constructs in: tent ent section. This
issue is more thoroughly discussed in Section 2.3.5.

Another issue with JADE'’s implementation of communicataas is that it claims to implement
the semantics of the CAs as specified by FIPA. However, thesefgcations refer to the mental state
of an agent, and JADE has no way of testing that mental statéh®contrary, JADE as a framework
deliberately separates itself from the inner workings ef éigents, leaving that domain to the agent
programmer. To illustrate this, let's again take a look ajufé 2.3. The FIPA ACL specifications
state that for an agent to perform iafiorm communicative act, the FP must hold. In this case, the FP
refers to the beliefs of both sending and receiving agemceSJIADE cannot test these conditions, it
cannot enforce FIPA ACL-compliant application of commuatige acts.

2.3.4 Jadex

Jadex[2] is an agent framework which provides a reasonigmerbased on the Belief-Desire-Intention
(BDI) model for describing behaviour. Jadex uses JADE aglleidare framework, and can thus be
seen as a reasoning engine-extension of the JADE platfosrsugh, from our point of view it does
not differ from JADE in terms of communication infrastructuand will therefore not be considered
or evaluated separately in this thesis.

2.3.5 Issues

When considering the above ACLs and middlewares, we camabgeat while KQML provides a
standardized language for agent communication, its fooubh® extensible set of performatives has
actually inadvertently reduced its acceptance and useo, Alespite the proposals and designs of
facilitating agents no widely accepted or supported platform has been implegdguroviding these
facilities.

To improve interoperability between agent systems FIPAddedized the set of performatives,
and provides a sort of formal semantics of these commumgatits. This extensive standardization
effort led to several implementations like FIPA-OS and aththe most used of which is JADE. JADE
provides all the platform components that FIPA specifiesafrdmework for agent development.

As a middleware for GAL, JADE could provide a means of agent communication andatéqrm
can provide the directory facilities and the agent managerumctions. There are some features of
JADE that when not used, do not cost any resources. This f#8E’s design philosophy of ‘pay as
you go’, meaning that you only pay runtime resources for gares that you use. However, since
JADE is based on FIPA and FIPA ACL, it inherits their probleasswell (see Section 2.3.2).

17

2.3 Existing Agent Communication Technologies Related Work

18

2.3.6 3APL

3APL is a language for programming cognitive agents withlatative goals. A 3APL agent has
beliefsandgoalsas mental attitudes and a basic seactionsthat it can execute when certain action-
specific pre-conditions become satisfied. A 3APL agent caprbgrammed by defining the agent’s
beliefs, basic actions, goals and practical reasoning.rule

Communication

Originally, 3APL was designed as a single-agent APL. Twgpsals have been made on extending
3APL with communication. The first proposal [11] distindugs two types of message exchange. The
first type is theinformation exchangewhile the other deals witiaking a requestFor each type, a
pair of communication primitives is introduced. For infation exchange they aregl | andask, for
making a request they areq andof f er. It is important to note that these communicative primgive
aresynchronougommunicative actions, which means that actual commuoitanly occurs when
two agents address each other. That is, communication kas tdace when one agent makes a
request (for information or action) and the other synchushoprovides it with an answer.

The approach discussed in [11] does not try to find computatiequivalents for speech acts,
nor do they integrate conversation policies in the semaiatithe communicative primitives. Rather,
they focus on the requirement that tleeeiverof a message should be able to derive an answer to a
question from that message. In the case of information exgahahis is done usindeduction and in
the case of requesting usiafpduction

The reason for this focus on the receiver is that an inhedblpm with defining semantics for
communication is the impossibility to predict the effectao€ommunicative act, without sacrificing
autonomy. Even FIPA only states that the receiver of afior m message is “entitled” to believe
its contents. The only assumptions the sender can really metording to the semantics given by
FIPA for instance, is that the receiver has received the agesand believes that the sender wishes to
inform the receiver about the contents. More formaByB; (1sB; ¢ A Bsp). It is exactly this issue that
complicates the verifiability of communicating agent sysge

Criticism on this synchronous view is given in [4] on the gnds that we cannot pair all perfor-
matives that should be synchronized. Some performativeba@ae several different performative acts
as response(r ee, r ef use) depending on the mental state of the receiver, while sonferpeatives
do not require or expect a response at all (one-wdpr).

Instead, an approach is proposed in [4] that is based on lasymaus communication and supports
modeling of FIPA-ACL performatives separately from the diag and receiving of the messages.
3APL agents send and receive messages to each other thifwmughplicit 3APL actionsSend and
Recei ve. The actions are FIPA compliant in that they incorporateniifiers for the message, the
sender, the receiver and a performative label indicatiegythe of communicative act. These actions
are part of the 3APL language, while the content of the messagn consist of beliefs, basic actions,
or goals. Messages are synchronously transported betivesemnder and receiver, but only by taking
the message and putting it in the receivensssage baseintil the receiver does Recei ve action.
The message base can be seen as a message buffer, wherengnooessages await reception by
the receiver. They exist as predicates in the foenei ved(i,a,B,p,d). At the sender’s side, upon
sending a message, a predicsgat (i,a,3,p,¢) is asserted in its message base. This ‘delivery-on-
demand’ reintroduces asynchrony on the agent level. Inrtbiation,i is a message identifieq

Related Work 2.3 Existing Agent Communication Technologies

identifies the sender of the messafadentifies the receivep is a keyword identifying the type of
communicative act (i.e. performative), afds the message content.

The messages are handled at the receiving agent by meart€alreasoning rules, that have a
logical formula that is tested against its message baseirutb’s head. This way, rules can be defined
that handle common protocol messages, likecquestwhich should be answered with agreeif the
requested action can be performed aetuseif not. A programmer can change this behaviour if
necessary by changing the practical reasoning rule, andefare message handling PR-rules for any
situation.

Example Let's explore an example to illustrate what happens whentagaforms agenb about
some factp. Figure 2.5 lists this conversation. Lefj, Z;, I'; be an agent's message base, belief
base, and goal base, respectively.

Sender Receiver
M =0,2=(p),l =(s) M=02=0T=0
M = (sen{1,a,b,inform¢)),Z = (¢), =0 | « = (receivedl,a b,inform¢)),Z =0, =0,
M = (sen{l,a b,inform ¢)), M = (receivedl,a b,inform,¢)),
2= <¢>7r 0 Z:<Za<¢>>7r:0

Figure 2.5: Example conversation, wahnforming b about factp

2.3.7 2APL

Whereas 3APL is mainly a research project, 2APL aims moreupplging a usable platform on
which agents programmed in the 2APL programming languagebeaxecuted and developed. The
platform is written in Java and relies on the JADE middlewareagent management, communication
and several tools that come with JADE, like the Remote MoimitpAgent, the message sniffer and
the introspector. Agents can run on different hosts and daineas each other conform the JADE
addressing scheme.
2APL programs
2APL programs consist of several sections:

e Beliefs and goals

e Basic actions

e Plans

e Practical Reasoning Rules

Beliefs and goals are expressed as Prolog facts. In the ¢agmls, the facts reflect a desired
state. Basic Actions specify the capabilities of the agent, can act on the agent’s belief base, the
external environment, or can test conditions on the bebsklor goal base. Also, Basic Actions can
update the agent’s goal base, by adopting or dropping a goal.

19

2.3 Existing Agent Communication Technologies Related Work

20

These Basic Actions are combined iians Plans can have an activation condition on the belief
base, and they can be partially or wholly atomically exeduiéhe plans can be dynamically generated
throughpractical reasoning ruleswhich can fire upon events such as an incoming message fian ot
agents, events from the external environment, or certdiorec

All this allows for complex plan generation and event hamglli

Communication
A Communication Action is a type of Basic Action through winian agent can send a message to
another agent. Such a send action has the following format:

2APL
Send(Recei ver, Performative, Language, Ontol ogy, Content)

Figure 2.6: 2APL Send action

Here,Recei ver is a JADE-style agent address. It can be a local name for amt #ugt resides
in the same agent container or a full name of the fooral nane@ost : port/ JADE. Perf or mati ve
specifies the speech act performed by this action, which eaani of the FIPA-ACL performatives.
The following parametersanguage andnt ol ogy can be used to provide meta information on the
content. These parameters are optional, because oftetsag#inassume a certain language and
ontology, so they are simply omitted. The final paramétert ent is a representation of the content
of the message.

Looking at the format of the send action in 3APL and 2APL we seme differences, which
are listed below. The main reason for these differencesais 3APL is a goal directed APL that
regarding communication adheres to the FIPA specificatidnish state that a message should con-
tainperfornmative, sender, recei ver andcont ent parameters, while 2APL is a more pragmatic
implementation of an APL platform.

1. 2APL syntax does not include a message identifiefThe purpose of a message identifier is
to distinguish one message (in the message base) from atiptiyeidentical other message.
Because 2APL is built on JADE, incoming messages wiltjbeuedat the receiving agent, not
pooledin a message base as in 3APL.

2. 2APL syntax does not include the sender’s identifierIn 2APL, message events are used as
triggers for message handling procedural rules. Thesdshene the fornmessage(Sender,
Performative, Language, Ontology, Content).

3. 3APL syntax does not mention language or ontologybecause 3APL specifies that the content
can be only beliefs, basic actions, or goals, so a choicerafuage or ontology would be
unnecessary.

Related Work 2.3 Existing Agent Communication Technologies

2.3.8 JASON

Jason is an implementation and extension of the programfaimguage AgentSpeak. It is designed
with the idea in mind that Jason agents should be able to canicate and cooperate on the knowledge
level, meaning that they can communicate in terms of thdiefse goals, and plans.

In Jason, mental states consisthafliefs facts which they perceive or deduce from other facts,
events in the environment for which they may hawent handlersandintentions which are goals
that are currently being pursued. This ‘BDI’ model has bemgeely used in the artificial agent field,
because modeling agents in this way provides the agentgroger with an intuitive link with how
humans are known to think and act. Also, because the acti/gglecting plans for action is separated
from the execution of the plans, BDI-agents have the alititpalance between different intentions,
so they do not over-commit themselves to plans that havethest use, and can as such be more
effective.

Jason agents are programmed in AgentSpeak, and consisbgfams. The first part contains
the agent’s initial beliefs and goals. In the second parathent'splansare defined. These plans are
‘recipes’ for how to act upon certain events in certain ctods. Plans have the following format:

Jason plan

<triggering effect>: <context> <- <body>

The<triggering effect> specifies for which events this plan is relevant. A plan iy@gplicable
for execution if the plan’sccont ext > is entailed by the agent’s beliefs. Thedy lists thebasic
actionsthat are to be performed when this plan is executed.

There is also an optional construct to be used in the belwd,ben annotation which captures the
sourceof the information. Itis a list of terms enclosed in squaradiets. Two sources are predefined,
per cept andsel f, but sources could be other agents, through communication.

Communication

A Jason agent can communicate with other agents by sendisgages using thimternal action
. send, with the following format:

Jason send action

.send(receiver, illocutionary_force, propositional _content)

recei ver is a label for an agent as defined in the multi-agent systéfrocut i onary _f or ce repre-
sents the type of performative for this message. The illonaty forces available in Jason atel |,
untel I ,achi eve, unachi eve, tel | How, unt el I How, askl f , askOne, askAl | andaskHow.

An interesting property of Jason agents is their ability & anly exchange beliefs and goals,
but also plans. This way agents can tell each ottmwv to act upon certain triggering events. The
*How performatives are used for this kind of communicati@achi eve andunachi eve are used to
request that the receiver achieve a certain state in thelwamrktops doing that, respectivetyel | and
untel | are used to indicate a sender’s intention to have the rede@leve the propositional content
to be true, or to stop believing the propositional conterigdrue, respectively.

Messages are sent and received asynchronously. Whenleemgessage is put in the receiver’'s
mailbox. At the beginning of the receiver’s reasoning cyolee message is selected from the mailbox

21

2.4 Conclusion Related Work

22

to be processed. This selection of messages is subject &r-aefnable function which determines
if a message isocially acceptableFor example, an agent may want to rejetedl message from
an agent that it does not trust. If a message passes thisdiuiitds then treated as an event, possibly
triggering plans in the agent’s reasoning process. Aniootsispecifying the source can be used here
to valuate a message in the social acceptability functioasart of the event trigger in the plan rule.
This way, an agent can handle information it perceivedfitiéflerently from information it received
from other agents.

Conclusion

While the illocutionary forces of the communication in Jasoe inspired by KQML, the set of perfor-
matives is relatively less extensive and complex comparehat of the KQML specification. There
are 9 performatives, and the semantic rules for interggeticeived messages with each of the perfor-
matives are given in [18]. A specific focus of Jason is to be édlcommunicate in terms of beliefs,
goals and plans.

2.4 Conclusion

As noted in the Introduction, when considering a commuiooahfrastructure for @AL, the follow-
ing criteria are observed:

1. The communication constructs should have a well-fouridedry.
2. The distinction between beliefs and goals should pdrsitte communication.

3. Programming agents using the communication constrbotdd be pragmatic, and pose a small
burden on the programmer.

Several agent platforms, frameworks and agent programraimtjcommunication languages were
reviewed. Some of these have a strong link with Speech-acrghand try to map the theory with
all its performatives onto an agent communication langua@éten, additional performatives are
introduced to facilitate meta-communication, such asiseswdiscovery, message routing etc.

The technologies we have reviewed in this section give uglanteal framework for commu-
nication, but most have issues concerning the formal vbiiifia of the programs when used in a
multi-agent environment. Going from KQML to FIPA (ACL), efts have been made to provide for-
mal semantics of the communication language, but theserdmsaefer to the beliefs and goals of
the sending agent, which is not realistic since there is nptavaénspect another agent's mental state
directly.

JADE provides a framework and platform for developing FIRApliant multi-agent systems.
The tools and the technical framework are powerful, and aeslun several other agent platforms.
But since the communication is based on the principles oAFtRalso inherits its issues with formal
verification.

All these technologies suffer from lack of formal semantarsd a performative set that is ambigu-
ous and vague which leads to misinterpretation by agengdess, thus defeating the interoperability
those technologies aim to facilitate.

Related Work 2.4 Conclusion

These problems were acknowledged within the field, and da@ facreasing demand for verifi-
able multi-agent systems, attempts have been made to adtess.

3APL and 2APL take a different approach at the implementatibthe communication process,
by modeling the FIPA-ACL performatives separate from thedgeg and receiving of messages. By
asynchronously sending messages via a message base, #gisgiof the communication primitives
allow for better formal verification. Jason tries to reduoe performative set, defining performatives
for sharing information (beliefs), goals, plans and askorgnformation.

These latter APLs have better theoretic foundations, bilitdst not formally specify what the
receiver of a message should actually do with it. Overaké¢hechnologies can give us a technical
framework for communication, but fail to satisfy our firsiterium of having a well founded theory.

Also, with the exception of 3APL, no ACL makes any distinatinetween beliefs and goals in the
communication. Propositional content is just packed in asage, and the programmer can apply an
appropriate label (performative) on it. But these labelarb relation to the semantics of the ACL
itself. Our second criterium is therefore not satisfied.

Often, because of too vast, vague and ambiguous perforersgte, agent programmers tend to im-
provise when using performatives, hampering interopétgalaind complicating the agent programs.
This is clearly not a pragmatic way of programming agent comication. Handling these situations
places a burden on the programmer, which violates criteBum

None of the ACLs that we reviewed in this chapter give us a &éaork for communication for
GoAL which has a formal semantics based on a well-founded thewtypeovides a pragmatic way
for agent programmers to have agents communicate the@féealnd goals.

This makes these technologies unsuitable for direct agijlic as a communication middleware
for GoAL, as they do not meet the criteria that were listed in Chapgardlreiterated at the top of this
section.

23

Chapter 3

Semantics

25

3.1 Introduction Semantics

26

3.1 Introduction

So, what is communication, in the context of agents? Comaation is the successful conveyance or
sharing of information. When we communicate, we want theohcommunication to have an effect
on the audience. For example, suppose | (the spegkeil you (the hearer) “It's raining.” (4).
From my point of view as speaker, | would like to believe thHe titterance of the sentence has an
effect on the hearer, namely that the hearer believes thahwias asserted.

In this chapter | discuss why the above is not a trivial matad how this causes a fundamental
problem with many existing agent communication languagiestead of a communication semantics
based on Speech-act theory, | introduce an alternativedappito agent communication, in which the
autonomy of the agents is respected, and is inspired byifitigs.

First, the objections to the conventional speech-act iedmpproach are discussed.

3.2 The effect of communicating
The effect of the act of uttering “It's raining” might be e@th(or any, or all) of these effects;

1. You come to believe that it is rainin@x¢
2. You come to believe that | believe that it is rainii@,Bsd
3. You come to believe that | had the intention to make youebelihat it is rainingBylsBr¢

4. Nothing. Or, more politically correct, ‘anything’.

The last effect in the list suggests that something is goimdnere. Indeed, we cannot strictly
assume that the first effect will actually happen; | may nateheonvinced you. So effect 1 is too
presumptuous.

Effect 2 is somewhat less gullible. It doesn't simply addp belief in whatever it is told, but
instead assumes that | believe what | say. This is not alwagfeaassumption. For example, when
I am lying, | do not believe what | say, so believing that | beé what | say would still be overly
credulous.

So let’s take another step backwards to effect 3. This is an eafer statement, assuming only
that one does things because one intends to do those thintjgs tase, ‘things’ refers to having you
believe the truth oh. But from my point of view, knowing that you believe that | émded to have
you believe that it's raining is of little direct use, unldsisust that you dasomethingwith that first
belief.

But that is exactly the issue with this kind of communicatidDan a speaker assume anything
about what a hearer does with this information? What actusdbpens when we utter a sentence?
Of course, the act of speech brings about more than just thwlkdgethat something has been said.
Exactly what it is that these speech acts do aside from thialities of being performed (uttered),
heard, etc, is the core topic of Communication Theory.

These issues mentioned in the above paragraphs were nisticatliral language communication
by philosopher Paul Grice [9], who studied the discreparetyvben what is meant by an utterer and
inferred by a hearer. Grice identified theoodsof utterances asonversational implicaturesa term

Semantics 3.2 The effect of communicating

roughly defined as ‘things that a hearer can make out fronwdnesomething was said rather than
what was said’. When John from Figure 3.1 utters “Mary, the sattristhe table.”, he does so in

‘The salt is on the table’ in three noods

1 John: “‘Mary, the salt is on the table.””’
2 John: ‘“Mary, is the salt on the table?’
3 John: ““Mary, 1'd like to see the salt on the table please!'’

Figure 3.1: John and Mary converse

an indicative mood. When he utters “Mary, I'd like to see th# sn the table please!”, it is in an
imperative mood.

Moods were also a subject of research for Robert Harnishid@p distinguished major from
minor moods. Examples of moods in the English language aliedtive, subjunctive, imperative,
infinitive, participles, expressives. He categorizes majoods as being:

=

. highly unrestricted in their productivity
2. central to communication
3. high in relative frequency of occurrence
4. common to most languages
He then identifies three major moods:

e declaratives

e imperatives

e interrogatives

Instead of ‘declarative’, we will use the term ‘indicativier the same mood. These moods correspond
to the moods of the sentences in Figure 3.1. In general, rssegecan be decomposed into

1. the part that represents the propositional content adéhéence. In these examples, that is “the
salt is on the table”. Grice calls this moodless elemens#r@ence radical

2. themood operatarwhich can be- for the indicative mood, ! for the imperative mood and ? for
the interrogative mood.

Both elements are combined to form a notatidR), wherex is a mood operator aridis a sentence
radical, for representing the meaning of sentences, angpisieed as follows. Suppodé is an
utterer, uttering in the direction of audien&e

1. U means-(¢) by utteringx if and only if U intendsA to thinkU thinks thatg.

2. U means (¢) by utteringx if and only ifU intends

27

3.3 Mental vs. social agency Semantics

28

i. Ato think thatU intends to bring abouj
ii. Atointend¢

3. U means @) by utteringx if and only if U intendsA to think thatU intends to know the truth
of ¢

This notation models utterances by isolating the senteadieal from the mood operator. Searle
([16], p47-50) also made this separation between what te tbed illocutionary force and the propo-
sitional content in his amendment of Grice’s account on Ntegrfor his own discussion of speech
acts. Searle expanded Grice’s definition of non-naturalningato account for convention in commu-
nication. Searle also uses a similar notation for modelpegsh acts.

This notation and Grice’s analysis of communication andveosational implicatures give us a
better basis for designing communication constructs fentgthan pure Speech-act theory. These
constructs are proposed in Section 3.6.

3.3 Mental vs. social agency

So far, the multi-agent architectures we have consideldubat (formal) semantics that emphasize
mental agencythe supposition that agents should be primarily undedstoderms of their mental
attitudes, such as beliefs, goals and intentions. This asiplon these mental concepts in the formal
semantics of agent communication languages was critidize8ingh ([17]), who argued that this
could not work for agents that aim to be both autonomous ateldgeneous, because it assumes
agents can read each other’'s minds. He argues that the $esrameceiving communicative acts refer
to the mental state of the sender, which is not accessiblerdrable in most practical applications.
Singh voices two major objections to this view:

1. Referring to the mental state of the sender leads to redag®nomy, both in design and exe-
cution of the agent programs.

2. Dialects and idiolects of the communication languagenfor

Instead, he suggests to approach agent communication terdgaration withsocial agency
which views agent communities ascietiesin which agents play differembles The rules for com-
munication between agents in a society are specified by tlo#ty’s protocol A protocol specifies
the commitments that an agent playing a certain role mustradio. For example, in an online book-
store society, an agent playing the role of a seller, mustf@a purchase of an item for the price that
it offered and was accepted.

Because the protocols are expressed in terms of these corant#, any agent’s compliance to
the protocol can be tested by observing that agent’s conuativé acts. This means that agents can
join societies and be accounted for their actions, withavirig to explain their internal workings.
The society of agents will be the enforcer of the protocolfiew for example, an agent asserts some
proposition, it is socially held to the truth of this assenti If it seems that the proposition was falsely
asserted, the offending agent can be regarded in the s@damtrustworthy. Singh envisions that
agent vendors will design protocols for specific applicgagi@nd that those protocols will evolve as
different agent developers contribute.

Semantics 3.4 Conditions on the sender

This suggestedocial semanticshould facilitate design autonomy, because the requiresragn
agents act not on the implementation (e.g. by imposing rhetdte conditions per communicative
act) but instead act on their behaviour. Execution auton@mygent’s freedom to choose its actions,
is also sustained by social semantics, because an agerttrigstiicted in its actions, as long as it
obeys the rules of the society and the behaviour dictatedhéypttotocols belonging to its roles. A
platform for managing societies and roles would be requiodtave multiple agents interoperate and
fulfill certain roles.

Our approach Our view on formal semantics of an agent communication laggdor GAL shares
the idea that it is not possible for one agent to directly éasmnother agent's mental state. We
suggest an approach that respects autonomy by not puttingahs¢ate conditions in the semantics of
communicative acts.

3.4 Conditions on the sender

Speech-act theory banks on the notion that communicatias ren that the speaker’s utterance is a
manifestation of its intention tohange the beliefef the hearer, and that the hearaggsognitionof
that intention from the utterance. The emphases lie on thakgy's intention on one hand, and the
hearer’s processing of the heard utterance on the other hand

Sincerity A key concept in speech acts is sincerity. The sincerity ofitd@rance is the degree in

which the perceived intention of the speaker matches itisgahéntention. The inability to, as hearer,
reliably inspect the speaker’'s mental state (and thustiotes), is inherit to communication. Or, seen
the other way around, it is the reason for communication.ifR@e were able to inspect each others
mental state, we could replace the whole concept of comratioitwith that of telepathy. But that is

not the case in the definition of agents, be it human or softwar

Conversational maxims The intention ofU is clear toA only if the utterance adheres to certain
conditions, callecconversational maximsGrice categorized these maxims into the following four
maxims:

1. Maxim of Quality . Do not say what you believe to be false, or for which you ladkcuate
evidence.

2. Maxim of Quantity . Be as informative as, but no more informative than, necgssa
3. Maxim of Relation. Be relevant to the topic.
4. Maxim of Manner. Avoid obscurity. Be concise.

These maxims can be seen as conversational principlesutienaes use in order to construct an
inferential bridge between what is meant and what is impliéfdU utters “The salt.”,H cannot
reasonably be expected to deduits intention to haveHd put the salt on the table; the maxim of
Quantity is violated. Similarly, stating that “The bus walitrive at 10:30 if whales are mammals.” to
inform H that the bus will arrive at 10:30 violates the maxim of Relati

29

3.5 What we can do Semantics

30

Perhaps the most important maxim is the maxim of Quality. h@(it observing this principle,
conversation would be rather cumbersomeJ fannot be obliged to adhere to the maxim of Quality,
then askindJ what time the bus arrives will be useless, because nothiagagtees thdtl actually
believes what he says. Note that we are not after the ‘urdéngth’, only what someone believes to
be true. When we ask someone for the arrival time of the busxpect that person to respect the
maxim of Quality and responid the best of his knowledge

Maxims for agents These maxims are as relevant for agent communication asifoah commu-
nication. When an agetit receives a message from sending adgittwill only think that Sbelieves
the contents of that message by virtue of the assumptiorStrestpects the conversational maxim of
Quality. There is no direct way to ensure this, especiallpss different agent builders, apart from
convention.

Assuming the maxim of Quality is respected, receiving agjamy also assume that

e receivedFronfa,commb,- (¢))) — ZaF ¢
e receivedFronfa,comnib,!(§))) = ZaFdAP T,
e receivedFronfla,comntb,2($))) — Za# ¢

Note that these assumptions do refer to the actual menteldaftthe sender, but since they are just
assumptions no technical ability to verify them is required

3.5 What we can do

Let's take a look at our example agents from Section 1.1. tfeioto resolve the conflict in their
combined goals, they communicate their beliefs and goalseel types of communicative acts are
used in this communication:

1. indicatives. These are statements about one’s own gelief

2. interrogatives. These are questions about a certainffaely should not be considered as direct
gueries on another agent’s belief base, but rather as rsgqodaform the speaker about a fact.

3. imperatives. These are statements about one’s own diag, these should not be considered
as direct insertions of goals into another agent’s goal Hagerather as an indication that the
speaker has that goal.

Informally, we can describe the semantics of these commatimcacts as follows. Suppogeis the
speaker an® is the hearer of the communicative act.

Indicative A assertsh. B hears this assertion, and can conclude g@hinks it) knowsd.

Interrogatives A queriesB about¢. B can conclude that did not know, or was uncertain of, the
truth of ¢.

Imperatives A states that it hag as element of its goal basB.can now conclude two factgs has¢
in its goal base, and does not believé. If Awould believe, it would no longer be a goal.

Semantics 3.6 Syntax and semantics of the communicatigndge

It is remarkable that none of these informal semantic dafimétdefine what the hearer should do
with the speaker (like replying to a query), except dedudamis about the speaker's mental state.
This conforms to the view that two autonomous agents camodt ihside each other’s mental state,
let alone change it. What waando is deduct an agent’s mental state from the communicatitgeita
performs.

Figure 3.1 showed three sentences uttered by John in tletidiref Mary. These sentences are in
an indicative, interrogative, and imperative mood, retipely. They all act on the same fact: “the salt
being on the table”. Let’s call that propositign Apart from the order of words, the most distinctive
feature indicating the mood of the sentence is the punciuatiarks at the end. We see here the use of
a period ‘.’ for the indicative sentence, a question “?’ mfarkthe query, and an exclamation mark ‘"
for the directive sentence. Using these punctuation sysriha formalized communication language,
we could communicaté in the three different moods by annotatifigwith either symbol. For the
period symbol we make a slight exception. In fact, we adogisgrmbols used by Pendlebury[13]; *’
for the indicative, ‘?’ for interrogative and ‘!’ for the ingrative mood.

3.6 Syntax and semantics of the communication language
One of our criteria for a communication implementation i0A& is that the communication language

should have a formal semantic definition. In order to spettift we must first formally define the
syntax.

msg = ¢ |2 !¢ (3.1)
comm = commiagt,msg (3.2
agt € Agent names (3.3)

Figure 3.2: Syntax of the mood operators

We have replaced the symbél ‘used by Grice to indicate the indicative mood by *’, as expéd
above. The symbols then match the semantics seen in Fidure 3.

Here we attempt to formally describe the semantics of thenconication primitives mentioned
above. Informally, upon receiving (or hearing) a messagegent updates its model of the sending
agent’'s mental state. To formalize this definition, we must fiive the definition of a mental state.

A differentiation is made betwedrasic mental stateandcomplex mental states

Definition 1 LetX C Lo be a belief base, anl C £g be a goal base. Thenlaasic mental statis
defined as

MB= (3T
Definition 2 A complex mental statis defined as
M =(Z,I,m)

31

3.6 Syntax and semantics of the communication language riema

where
m: Agent names- o/ B

is a function that maps agent names to (basic) mental states.

Definition 3 Anagentis defined as:
A= (a, M)

where a is a name.

Definition 4 A multi-agent system (mag a set of agents:
mas= {Ao,...,An}

with A; an agent whose name is unigue throughout the mas.

The structured operational semantics of the three comrativecacts are given by

A= (b2, ,mT) e masAam

mas— mas, jay U {A'}

A

where:
e A, =(b,Z,I",m M), i.e. an agent with name
e m(a) = (Z,,la), WwhereZ, andl , are the belief- and goal baseafrespectively.

The mapping functionm returns a mental state model of a given agent. It represems an agent
‘thinks’ another agent’s beliefs and goals are. This infation can of course be outdated and incon-
sistent with the modeled agent’s real beliefs and goals. réheiving agent can update its mental
model upon reception of a communicative act in a way thatssiileed below.

In the above operational semantios,is the updated mental state mapping of the receiving agent
as a result of a communication from agentcomb, ©¢). Here,® represents one of the three com-
munication symbols:,!,?. If m(a) = (24, a), then for each of these symbols, the semantics is given

by:

1. : (indicative) m'(a) = (Za @ ¢,Fa\{y € TMa|(Za®) E y}). If a assertsp, then the receiver
may assume that believesd, and thus also that it has no goal to achig¢veThe & operator
represents thiensert operation of the KRT. The model of the goal base is update@impving
any goals that are entailed by the new belief base. This isiatain mental state consistency;
an agent should not have a goal to achieve something tha¢#dy believes to be true.

2. ! (imperative) m'(a) = (Za© ¢,MaU{d}). If aindicates it wants the statie being reached,
then the receiver may assume thatoes not believe thdt is the case, and also thiis a goal
of a. The operator represents the KRTsl et e operatior.

1The semantics of the) operator should be nuanced in that it does not delete faatsate not entailed by the belief
base. l.e.Zo¢ =Zif ZF ¢.

32

Semantics 3.7 Querying mental models

3. ? (interrogative) m'(a) = (Z,© ¢,)L If a asks about some statementthe receiver can
assume that does not know the truth value ¢f or was not certain abodgt. If, up until now,
the receiver thought that did believe ¢, it updates its mental model af to reflect the new
information.

This semantics does not refer to theual mental state of the sender, nor does it define when a sender

should send a message or what a receiver should do with thentsrof a received message other

than simply record it in its mental model of the sending agéstis argued earlier in this document,

it is infeasible to make formal statements on the receivd® based on the mental state of the sender.
The semantics does make some implicit assumptions witkecegpthe sending agent’s behaviour.

For example, for the indicative mood, it is assumed thatéf does an assertion, it believes the contents

of that assertion itself. This is not a trivial assumptiont i3 based on conversational implicatures

that originate from philosophy, which was discussed andenexgblicit for the G®AL implementation

in Section 3.4.

3.7 Querying mental models

In order to inspect the mental models, additional belief gmal operators are introduced to the/&
language. These operators resemble the existing belief@aldoperators for querying the agent’s
own mental state. The model of another agent’s belief- ot baae is queried by specifying the
agent’s identifier as the first argument to the operator:

GOAL

1 bel (<agent identifier> <belief query>)
2 goal (<agent identifier> <goal query>)

The semantics of these operators are as follows:
Definition 5 Semantics of the belief model query operator:

bel (a¢) =trueiff Z,F¢d

Definition 6 Semantics of the goal model query operator:

goal (a,¢) =trueiffIyela:YEOAZE O

3.8 Example usage

An example program using the suggested approach for coneation is shown in Figure 3.3. The
program is a simplified version of a bomb-cleaning agent. Bafeaning agents operate in an envi-
ronment where bombs are located at specific locations. Nimement is partially observable, in the
sense that bombs can only be detected (sensed) in a certamditius around the agent. Agents have
the goal to remove all bombs from the (finite) environment lekipg them up and bringing them to
the trashcan which is located at a known fixed location. Agyeah hold only one bomb at a time.

33

3.8 Example usage Semantics

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

GOAL

know edge {
clean(X Y) :- not bonbAt(XY).
}

beliefs {
agent (b).
}

program {
% Ask the other agent to help us, if we have our hands full
if bel (bombAt (X Y), holding), a-goal (clean(X Y)) then send(b, !(clean(XY))).

% I nformthe other agent of bonb |ocations it doesn't seemto know about
if bel (bombAt (X Y)), not(bel (b, bonmbAt(X Y))) then send(b, :(bonmbAt(X Y))).

% Informthe other agent that it’s goal has been achieved
if goal (b, clean(X Y)), bel(clean(X Y)) then send(b, :(clean(XY))).

% 1f we know of no bomb location, query the other agent for one
if not bel (bombAt(_,_)) then send(b, ?(bombAt(X, Y))).

% 1f we have nothing better to do, help out the other agent
if not(goal (clean(_,_))), goal (b, clean(X Y)) then adopt(clean(XY)).
% O, adopt a goal using the other agent’'s beliefs
if not(goal (clean(_,_))), bel (b, bonmbAt(X Y)), not(goal (b, clean(X Y))) then adopt(clean(XY)).
% Or, adopt a goal using our own beliefs
if not(goal (clean(_,_))), bel (bombAt(X,Y)) then adopt(clean(X Y)).
}

actionspec {

pi ckup {
pre{ not(holding), bombAt(X Y), at(XY) }
post{ hol di ng, not(bonmbAt(X Y)) }
}
}

Figure 3.3: An example GAL program

For brevity and simplicity, we assume there are only two &gantive in the environment, with

similar programs that differ only in the names of the agehtgure 3.3 shows the program for agent

‘a.

Program rules and actions to bring the bomb to the trash@aomaitted. The first three program

rules handle outgoing communication. All three commumieadcts are being used in those rules:

¢ If we want something done, send a request (line 11). The eddaental model in agetis:

My = (Zaoclean(X,Y) ,Fadclean(X, Y))

e If we know something we think the other agent does not knowd s inform (lines 14 and

17). The updated mental model in agéens: a7, = (ZaPdcl ean(X, Y))

¢ If we want to have more information, query the other agentbfumb locations (line 20). The

34

updated mental model in agdnis: 47, = (Z;©cl ean(X Y))

Semantics 3.9 Self-referential communication

It should be noted that all sentences in the communicatimgraunded, and thés andYs above will
have been substituted.

By communicating, these agents will have more knowledgeiathe environment, and perform
more efficient. When an agent is moving while holding a bonmio, @ncounters another bomb, it can
request the other agent to take up the task of removing itidieally speaking, the agent only notifies
the other agent that it has this goal, but when looking at thelevprogram (especially line 25), the
effect is the same.

3.9 Self-referential communication

Section 3.7 shows the syntax and semantics of the beliefgaaldoperators for querying threodels
of the mental states of other agents. The operation lookstlik conventional ‘local’ query of the
agent's own mental state, with the distinction that theyrafgon amodelof a mental state rather
than areal mental state.

But what exactly is the difference between those? TecHgjdhky are very similar. The imple-
mentation of a mental state model is identical to that of amamental state. The difference lies
in the addressing of a model. Since an agent can have meatalrsbdels of multiple agents, the
querying of a mental state model involves retrieving thétrigodel from the collection of models,
i.e. an array indexing, more than querying a normal mentaleho

Considering this, querying a normal mental state seemsldgecial case of querying a model. In
fact, we could generalize the querying by viewing queryimgawn mental state as a case of querying
the mental model of oneself. In other words, instead of qagryand maintaining) our own mental
state, we querga modelof our mental state, amongst the other models. This woutdietite the need
for storing our own mental state separately. The queryingdcbe done in the following manner
wheresel f is an alias for the agent’s own identifier:

GOAL

1 bel (self, bonbAt)

But how about updating our mental state? Since we no longéntaia a conventional mental
state, the update operaticaopt , dr op, i nsert anddel et e no longer apply. How do we, say, insert
a belief in our belief base, or adopt a goal? Fortunatelyptioposed constructs for communication
already provide this functionality. By ‘sending’ anf or mto ourselves, the communication handling
mechanism will update our model of our own belief base. Likewsending aequest will remove
the associated fact from the belief base, and add it to thidbgga. Removing a belief from the belief
base can be done by sendinguary.

This way, conventional belief- and goal bases are no longeded. Whether this approach is
desired depends on the burden it imposes on the agent progriam

3.10 Conclusion

To investigate the integration of communication suppoid IBoAL, we first determined which cri-
teria such a solution would have to satisfy. Special atbentias been given to the requirement of a

35

3.10 Conclusion Semantics

36

well-founded theory with high-level semantics. Also, tlsdusion should provide simple yet useful
primitives for the agent design.

In response to thmentalisticview of the techniques discussed in the previous chapteghSiro-
posed that since we cannot read each other’'s mind, we shaathd focus on the social commitments
agents make as a result of their communicative actionsaBominmitments are common knowledge,
since they can be tested by observing an agent’s (commivegactions. The problem here is that
the distinction between beliefs and goals, something wd f@eGoAL, disappears.

Because a fundamental characteristic of communicationaisytou have no guarantee that your
communicative act will have the intended effect on the h&sameental state, our suggested approach
for an ACL for GoAL is based on the idea that even if a speal@mnotassume anything about the
mental state of a hearer as a result of a communicative aeasitthe hearezan deduct the mental
state of the speaker, and keep an updated model of that sigeetital state. The semantics of the
mental models and querying them have been specified in thjsteh

A formal syntax and semantics are proposed as languagerectsstor 3 major communicative
acts: informing, querying and requesting, representetastinally by the symbols.*, *?" and ‘!,
respectively.

The example presented in Section 3.8 looks promising. Thenaanication primitives and men-
tal model querying constructs are the pragmatic, cleaistémi the programmer that we sought to
determine.

The following chapter describes the implementation of th@munication primitives and mental
models based on these semantics.

Chapter 4

Implementation

37

4.1 Introduction Implementation

38

4.1 Introduction

After having determined the requirements and the sematitieshanges to the@\L interpreter had

to be implemented. Because the preseoiGinterpreter was oriented around reasoning only about
the agent’s own beliefs and goals, changes were necesdag/@oAL grammar to allow GAL agent
programmers to express conditions in terms of beliefs aadsgaf other agents, and to perfosend
actions. Also, the interpreter had to be changed to accorataddeeping a mental model of each

known agent.
Summarizing, the following needed to be facilitated:

1. perform mental state queries on mental models of othetagseo some sort of model selection
construct is necessary

2. perform a send action, which is a reservedaG action, which will send some message in a
specific mood to a list of agents.

There are also several constraints that need to be obserdestermining a syntax for the above-
mentioned constructs.

1. Using the communication constructs shouldubeomplicated and intuitiveReading a GOAL
program which uses them should be reasonably easy to uadésithout knowing it's precise

semantics.

2. The grammar should Hdeackwards compatibJaneaning that any GOAL program which was
written without communication should still work as-is irethew interpreter.

3. The constructs shouklalow enough expressivity be useful in practice.

In this chapter | will elaborate on the implementation psscand describe the manner in which the
implementation was decided upon. First | will describe thaerges made to thed L grammar. Then
the process of changing the interpreter is discussed, aallyfinwill describe how communication

was realized.

4.2 Extending the GOAL grammar

The GoAL grammar defines the syntax ofo@L agent programs. It is the nature and defining char-
acteristic of ®AL programs that goals are defined declaratively, which makssssible to program
the reasoning of the agent in terms of the agent’s beliefsgaats. A GAL program rule therefore
has the general format as shown in Figure 4.1.
GOAL

1 if <nmental state condition> then <action>.

Figure 4.1: The format of a GAL program rule

Thisnental state condition is an expression of beliefs and goals that the agent hasom.G
there are four operators that can be used to query the mésut] s

Implementation 4.2 Extending th&0AL grammar

e bel()
goal($)

a-goa(¢)
goal-a¢)

Here, ¢ is an expression in the agent’s KR language. In this forniat,mental state condition
bel(¢) will be satisfiediff ¢ is entailed by the agent’s belief base. Now, as our goaledstate want
to be able to reason about the mental models of other agelnésefbre, we must be able to indicate
whichagent’s mental state should be queried, by annotating tmeafigeral with an agent selector.

4.2.1 Agent Selector

The agent selector represents a selection of agents thatthemmed agent knows about. The agent
itself can be part of that selection. Conceptually, it issadif agent expressions

a8 ={4E1,AE>2,...,AEn}
where4 £ is an agent expression. Such an agent expression can be theefollowing:
e An agent’s literal name. For exampleker .

e Avariable. This is a variable that needs to be substitutea siybstitution resulting from earlier
mental literal queries in the mental state condition.

e A quantor. Quantors are described in Section 5.6.1.

4.2.2 Annotating the mental literal

Since the ®AL language was inspired by logic programming, it is desirdblbave a syntax that
closely matches a syntax that is conventional in logic mogning, so a syntax like

bel(AS ¢)

would be a nice choice, whe#&Sis the agent selector, anfdthe KR expression. But, in order for
the grammar to be backwards compatible as our constrainttates, it should be possible to omit
the AS However, the parser then cannot differentiate betweerdbe withASand the case without
AS because the syntax @f might overlap that ofAS The mental literal on line 1 in Figure 4.2
shows a conventional local belief query for the factref act. Line 2 shows a belief query for the
fact sonef act in the mental model ofgent 1's mental state. But line 2 might just as well have
been a local belief query for the conjunction of fagtgnt 1 andsonef act. There are two possible
approaches to solve this problem:

1. surround théSwith delimiters

I'bel is used throughout this section to illustrate the &sifisyntax choice, but that issue holds for all four mentztist
operators

39

4.2 Extending th&0oAL grammar Implementation

GOAL

1 bel (somefact)
2 bel (agent1, somefact)

Figure 4.2: Grammar conflict

2. make the presence ASrequired, and in the case of a local query, e to indicate as much.

Approach 1 does not really solve the problem of conflictingtay with the syntax o, because
even with delimiters there is a possibility of overlap wille tsyntax ofp.

Approach 2 does not solve the problem because it violatésricrin 2; requiring something like
sel f for the local queries breaks code that is written for singlerd situations. Besides, it is counter-
intuitive to have to writesel f every time when you are just programming a single agent.

What if we moved théASoutside the parenthesis of the operator?

GOAL

bel [agent1, B, agent2](p)

Figure 4.3: Agent selector between operator and parerghese

This is better in terms of separation from the propositioc@itent. However, it still leaves a
reader ‘guessing’ after its semantics. There is no strongtive link which suggests “this looks like
the belief base ofigent 1, some variable age®andagent 2, are queried fop”. Moving the agent
selector to after the parentheses does read naturally, fegpiires something to link the operator and
GOAL

bel (p) [by agentl, B, agent2]

Figure 4.4: Agent selector after parentheses, with ‘by’

the agent selector. Prepositions from natural languagei or ‘of’ complicate programming and
the syntax, but leaving it out means losing the natural lietadeen the operator and the agent selector.
We could put the agent selector in front of the operator. Seraenples of this format are listed
in Figure 4.5. This reads somewhat naturally as a sententtedbrmsubj ect verb obj ect, the
GOAL

1 [agentl, B, agent2] bel(p)
2 agt:agentl, B, agent2 bel (p)
3 agentl, B, agent2 @bel (p)

Figure 4.5: Agent selector before operator

subject being the conjunction of agent expressions, tHehaing the operator and the object being the

40

Implementation 4.2 Extending th&0AL grammar

propositional content; “agentl, some agent B and ageni@vegp”. In the second version, tlagt :
makes it clear that agent expressions will follow, imprgythe readability. The syntax could benefit
from more coherency, so enclosing the agent expressionsakéts to form the agent selector, and
joining the agent selector with the operator with some sbebanector symbol improves readability.
The versions of lines 1 and 3 can be generally specified asrsiiowigure 4.6. In this syntax, the

GOAL

[agentl, B, agent?2].bel (p)

1

2

3 % (brackets are optional if agent selector has only one agent expression):
4 X. bel (p)

5 agent 3. a- goal (p)

6 all ot her.goal (p)

Figure 4.6: A proposed syntax for the agent selector

agent selector and connecting symbol can be easily omittédhvwould yield the semantics of a
local query. This makes the grammar backwards compatiatesfigng criterium 2. The ordering of
the language constructs resembles the natural languagessign of it's semantics, which helps to
satisfy criterium 1. It allows expressing statements alim@liefs and goals from mental models of
other agents, by using literal names, variables and guattannotate the operators, which satisfies
criterium 3.

4.2.3 Determining the annotation syntax preference

The syntax proposed in Figure 4.6 satisfies the criteria atedtearlier, but this does not mean we
have automatically determined the most optimal choice nfasy For some, the intuitiveness of the
syntax may depend on other factors than the natural langasgmgciation. For example, choosing
a period !’ as connector symbol establishes an intuitive link with €ibjOriented Programming.
Whether this is desirable is debatable, since it dependseoprbgrammer’s preference and program-
ming background. Similarly, some programmers might pre&aing the agent selector in a different
position.

Because such preferences do not follow from the above reagoalone, and because the pro-
grammer is so important in this decision, a small survey veaslacted to poll the preference of the
potential users.

Survey setup

The objective of the survey was to determine the prefererigeotential users of the GaL pro-
gramming language with respect to the syntax of a mental htpeey. The survey had the form of a
qualitative questionnaire, in which several potentiarsisgere asked to indicate their preferred syntax
of the mental model query. Three options for the locatiorhefagent selector were considered,;

A. bel (X, p)
B. X bel (p)

41

4.2 Extending th&0oAL grammar Implementation

42

C. bel [X] (p)

whereX represents the agent selector. For option 4.2.3 threentarid the connector symbol were
selected for consideration;

1. X bel (p)
2. X bel (p)
3. X@el (p)

Results The results from the questionnaire show a general preferem@ption B, mostly because
of the familiar OO-link. Option A was often seen as ambiguand C as incoherent and unclear.
Of the variants on option B, variant 1 was deemed most prelieralso because of its strong
association with the OO-style syntax of popular prograngémguages such as Java and C++.
From this survey it was decided to select the syntax as showigure 4.6 for the mental model

query.

4.2.4 Changing the grammar

Now that the syntaxes for the mental model queries andehe action have been determined, these
needed to be implemented in the&. grammar.

The existing grammar had to be changed in several placest, fienment al Literal was ex-
tended to accept an optioredent Sel ect or. Thisagent Sel ect or has the grammar shown in Fig-
ure 4.7.

G ammar
1 agent Sel ect or
5
3 agent Expr essi on
4 |
5 "[' agentExpression (', agentExpression)* ']’
6

Figure 4.7: Grammar of thagent Sel ect or

agent Expr essi on is one of the possible quantorSQVE, SOVEOTHER, ALL, ALLOTHER), SELF, a
variable, or a constant.

To ensure consistent handling of mental literals whetheagemt Sel ect or was given or not,
the parser automatically inserts apent Sel ect or with a single SELF agent Expressi on if no
agent Sel ect or is given for the mental literal. This follows the decided satics that if n@agent Sel ect or
is given, the query is performed on the agent’s own ment# gtestead of on a mental model.

The parser performs a semantic check to insure that indensisombinations afgent Expr essi ons
are not allowed. If a quantor is used, it can be the aiggnt Expr essi on in theagent Sel ect or .

Now, the agent Sel ector could be integrated into the grammars for thental Literal , as
shown in Figure 4.8.

Implementation 4.3 Mental models

G ammar
1 nental Literal
2
3 (agentSelector '.")? nental Atom
4 | NEGATI ON LBRACKET (agentSelector '.")? nental At om RBRACKET
5

Figure 4.8: Grammar of mental literal

Thesend action is a new type of internal action. It is added to the gremalongside the other
internal actions such aslopt , drop, i nsert anddel et e. The new (partial) grammar @fcti on is
given in Figure 4.9.

G ammar

action

. Il other internal actions

"send” ' (' destination = selector ',’ mood = sentenceMod

{ if (mod == null) { mood = SentenceMod. | NDI CATI VE; } }

{ PrologTermt = ParseProl ogConjunction();

9 act = new SendActi on(checkMessageDest i nation(destination), Prol ogDBFormula(t)); }
10 ny’

1)

12

13 sentenceMbod : ':’ e BVANE

1
2
3
4
5 |
6
7
8

Figure 4.9: Grammar of theend action and theent enceMod

Here it can be seen that if the sentenceMood is not given nifliedtive mood is automatically
assumed. This is conform the decision on backwards coniligtib

Also, a semantic check is made on the message destinatiaa.ciidtkMessageDest i nati on
insures that, in addition to the checks agent Sel ect or s mentioned above, the quant@3VE and
SOMEOTHER are not used. This is because sending a message to ‘soméiggehallowed.

4.3 Mental models

A mental model is like a mental state, but with one differerecenental state has a percept base and a
mailbox, which a mental model does not. Otherwise a mentaiafis just a mental state. Or, a mental
state is just a mental model, with an added percept base aittibmaln this view it was decided to
move all functionality concerning the belief base and thal dgmse from thé/kent al St at e class to
the newMent al Mbdel class. Thévent al St at e class will contain all methods and fields related to the
percept base and mailbox. It also holds a mapping of ageneési@tr i ngs) toMent al Model s.

Upon construction of an agent, and thus its mental staentgal Mdel is initialized and added
to the mapping ofent al Mbdel s under the agent’s own name. All operations onMbet al St at e

43

4.4 Communication Implementation

44

that affect or refer to the belief- or goal bases are forw@tdehe agent’s owivent al Model .

4.3.1 Performing a mental model query

The main method for performing a query of a mental literalhe mental state is altered to take the
agent Sel ect or into account. First, thegent Sel ect or is resolved. This means that thgent Sel ect or
is evaluated into a list of agent names. The list of currektipwn agent names and the name of
the running agent is passed to thesol ve method of theagent Sel ect or, which uses these data
to resolve the agent selector into a list of agent names. &ar ef theagent Expr essi ons in the
agent Sel ect or, ther esol ve method evaluates which names are to be added to the redidtirigor
each of the resulting agent names, the correspondingal Mdel is retrieved and the query of the
mental literal is performed on th&knt al Model . The result of one mental model query is substituted
in the query of the next, in much the same way as is done in thpiection of mental literals in a
mental state condition.

4.4 Communication

Communication, on the implementation level, involves thieding and receiving of messages. When
a send action is performed, &kssage object is constructed, which is a simple container object
containing the name of the sending agent, the name of th&irgeagent, the mood of the message
and the message content itself. Grad action execution may send messages to multiple agents. For
every agent that thagent Sel ect or resolved to, dakssage object is constructed and sent.

4.4.1 Sending

First, depending on the activated middleware,Nbgsage is appended to the receiving agent’s mes-
sage in queue. Then the sending agent’s mailbox is updatbdhve fact that this message was sent.
This involves inserting a fact into a database of a partickif@wledge representation language. This
fact has the fornsent (<reci pi ent >, <nmessage>). Here,<reci pi ent > is the name of the receiv-
ing agent. Themessage> must also contain the mood operator, but this poses a prodiammood
operator symbols used in thed@L language (', ‘!’ and ‘?’) are usually already part of the KR
language. Simply placing the mood operator symbol in fréth® message sentence, as is done in the
GoAL language will likely result in a parse error when insertihg fact in the mailbox. For example,
the 1’ symbol is used in the Prolog language as the ‘cut’ operaftbese syntax conflicts also exist
when querying the mailbox in the@\L code.

To avoid these syntax conflicts, instead of prepending times®l operator symbols to the message
sentence, the sentence is placed in a predicate that refgéise mood. For the imperative mood, this
isinp(..) and for the interrogative mood thisiisit (..). Sentences with an indicative mood do
not get a predicate like the imperative and interrogativeeseces do. So querying the mailbox for an
indicative message is done simply by not placing the seetana predicate. See Figure 4.11 for an
example.

Implementation 4.4 Communication

GOAL
1 program {
2 if bel(sent(grinder, ?canMake(grinder, _))) % This will not parse into
3 % proper Prol og
4 then adopt (handl eResponse(grinder)).
5
6
7 if bel(sent(grinder, int(canMake(grinder, _)))) % This does work
8 then adopt (handl eResponse(grinder)).
9}

Figure 4.10: Mood operators in the mailbox

GOAL

program {
if bel (agent(A), me(Me), not(sent(A canMake(M, [grounds])))
then send(A, :canMake(Me, [grounds])).
}

A WNPE

Figure 4.11: Querying the mailbox for an indicative message

4.4.2 Receiving

Messages are passed between agents asynchronously, énsleisat when an agent sends a message
to another agent, the receiving agent does notimmediateteps it into its mailbox. Communication

is therefore also non-blocking. Incomidgssage objects are placed in a message in queue. At
the beginning of an agent’s run cycle, the messages in theagesn queue are processed. This
processing consists of three steps:

1. If the receiving agent does not have a mental model for ¢neling agent, it creates one and
adds it to the mapping of agent names to mental models.

2. The mental model of the sending agent is retrieved fromrttapping and updated. The updat-
ing operations depend on the mood of the message.

3. The receiving agent’s mailbox is updated witheaei ved(..) fact in the same way as was
described for theent fact in the above section.

From this point onwards in the agent’s run cycle, the reckiveessages are available through
mailbox queries and mental model queries.

4.4.3 Optimization

For every message that is received, operations on the mmaotils are performed to insure that the
mental models reflect the best up to date view of the othertagmental state. There may be cases,
however, where an agent’s program contains no mental maggles. In such a case, the mental
models will never be referenced. It would therefore be uassary to maintain them. To save the

45

4.5 Conclusion Implementation

46

overhead of these updating operations they are only peeiifthe program contains at least one
mental model query. This is checked at parse time by the parse

4.5 Conclusion

The implementation of the communication constructs andiah@models involved changing the gram-
mar of the @®AL language as well as changing the/&. interpreter code.

The changes to the grammar required language design decisicanguage design decisions
are always difficult to make, because of their subjectiveirgat Therefore | conducted a survey to
determine the preferred syntax of the mental model querg r€bulting syntax preference was im-
plemented in the new grammar.

Mental models were implemented by restructuring the mestédé and the databases of an agent
in the interpreter code. To enable querying of mental modetaplemented routines for resolving
agent Sel ect or s and changed the way queries on mental literals are handled.

The send action was implemented as an internal action. For this timagyof the action was
added to the GAL grammar and the handling bEssage objects was integrated into the agent’s run
cycle handling. Also, automatic updates of the agent'stmaibnd mental models were implemented.

The fact that mental models are not referenced if an agerdgr@m contains no mental model
queries left room for optimization. This optimization wasalized by automatically disabling the
creation and updating procedures of mental models.

This implementation effort resulted in thab@L agent programs can make use of communication
using agent selectors and sentence moods, and use mentsnmrkason about the mental states of
other agents. Chapter 5 will discuss examples of commuaicanabled @AL programs.

Chapter 5

Communication

a7

5.1 Introduction Communication

48

5.1 Introduction

In a multi-agent system, it is useful for agents to commuriedoout their beliefs and goals. Agents
may have only a partial view on the environment, and by comaating, agents may inform each
other about parts they but other agents cannot perceivantdgeay also use communication to share
goals and coordinate the achievement of these goals.

This chapter will explain how communication works in the&. platform, and how to program
communicating @AL agents. First, the organization of a multi-agent system bgm of a MAS
file is explained. Next, the communication primitive and thendling of messages is discussed.
Sections 5.5 and 5.6 go into more detail on different typeme$sages and how to address other
agents. Finally, an example multi-agent system is predantdemonstrate usage of communication
to have agents coordinate their actions.

5.2 Multi-Agent Systems

GoaAL facilitates the development and execution of multipleAg agents. These agents may or may
not be associated with entities from the environment. Agiean be launched when the multi-agent
system is launched, or when an entity in the environmentiis.bo

Agents in a multi-agent system (MAS) can communicate wittheather. Communication is
essential in situations where agents have different rolésn@ed to delegate actions to appropriate
agents, or when agents with conflicting goals operate in dmeesenvironment space and need to
coordinate their actions to prevent deadlocks and ineffoi@ss.

This section explains how to define a MAS, and how to use congation in agent programs.

5.2.1 Example MAS

Throughout this chapter we will be exploring the conceptshafti-agent systems and communication
guided by an example MAS. This example MAS is described helow

Coffee domain

The Coffee domain is a multi agent system in which a coffeeanakd a coffee grinder work together
to brew a fresh cup of coffee. Optionally, a milk cow can pdavimilk for making a latte. To make
coffee the coffee maker needsterandcoffee groundslt has water, andoffee beansut notground
coffee. Grinding the beans is the task of the coffee grinddre coffee grinder needs beans, and
produces grounds. The programs of the coffee maker and ffeaprinder are listed in Figures A.1
and A.2, respectively.

The agents are designed in such a way that they know whickdrents are required for which
products. They know what they can make themselves, but they uhitially know what the other
agents can make. This is where communication comes in.

Figure 5.1 lists the agent program for the coffee maker agée¢ Figure A.1 for a version with
comments.

The knowledge section clearly reflects the agent’'s knovdeafgvhich ingredients are necessary
for which products. The beliefs section holds the agentiefsein what it can make. In this case, the

Communication 5.2 Multi-Agent Systems

GOAL
1 main: cof feeMaker {
2 know edge {
3 requi redFor (coffee, water).
4 requi redFor (cof fee, grounds).
5 requi redFor (espresso, coffee).
6 requi redFor (grounds, beans).
7
8 canMakelt (M P) :- canMake(M Prods), nenber(P, Prods).
9 1
10 beliefs {
11 have(water). have(beans).
12 canMake(maker, [coffee, espresso]).
13 }
14 goal s {
15 have(cof fee).
16 }
17 program {
18 if goal (have(P)) then make(P).
19 }
20 actionspec {
21 make(Prod) {
22 pre { forall(requiredFor(Prod, Req), have(Req)) }
23 post { have(Prod) }
24 }
25 }
26 perceptrul es {
27 if bel (agent(A), not(nme(A)), not(canMake(A, _))) then sendonce(A ?canMake(A _)).
28 if bel (me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prod))
29 then sendonce(A, :canMake(Me, Prod)).
30 if bel (received(Sender, canMake(Sender, Products))) then insert(canMake(Sender, Products))
31 + del ete(recei ved(Sender, canMake(Sender, Products))).
32
33 if bel (agent(A), received(A have(X))), not(bel (have(X))) then insert(have(X)).
34 if goal (have(P)), bel (requiredFor(P, R), not(have(R))),
35 bel (canMakel t (Me, R), ne(Me)) then adopt (have(R)).
36 if goal (have(P)), bel (requiredFor(P, R), not(have(R))),
37 bel (canMakel t (Maker, R), not(me(Maker))) then sendonce(Maker, !have(R)).
38 if bel (agent (Machine), received(Mchine, inmp(have(X))), have(X))
39 then sendonce(Machine, :have(X)).
40 }
41}

Figure 5.1: The Coffee Maker

49

5.2 Multi-Agent Systems Communication

50

maker can makesof f ee andespr esso. The goal section states this agent’'s mission: havoid ee.
Note that this describes a gasthte(cof f ee being available), not an action (like ‘makingf f ee”).
Also note that the perceptrules section contains all conication related action rules, meaning that
every round all instances of these action rules are exectitéd is discussed in Section 5.7.

The coffee domain assumes the following, for simplicitygkes:

1. Resources (likeat er, beans, gr ounds andcof f ee) cannot be depleted.

2. The agents share the resources in the sense that if onehages resource, all agents do. But
there is no environment, so agents carpmteivechanges in available resources; they have to
communicate this. For example if the coffee grinder majkesinds, it will thereafter believe
have(grounds), but the coffeanakerwill not have this belief until it gets informed about it.

5.2.2 MAS Files

A multi-agent QAL system needs to be specified by means MAS file A MAS file in GoOAL

is a recipe for running a multi-agent system. It specifiesciligents should be launched when the
multi-agent system is launched and whicbh A& source files should be used to initialize those agents.
GoaL allows for the possibility that multiple agents instargiat single ®@AL agent file. Various
features are available to facilitate this. In a MAS file one easociate multiple agent names with
a single ®AL file. Each agent name additionally can be supplied with afigiptional arguments.
These options include the number of instances of an agahtaited by#nr, that should be launched.
This option is available to facilitate the launching of lkangumbers of agents without also having to
specify large numbers of different agent names.

A MAS file is a recipe for executing a multi-agent system. TheaG interpreter uses these files
to launch a multi-agent system and an environment. A MAS fileud provide the information to
locate the relevant files that are needed to run a multi-agystem and the associated environment.
A MAS file has the following format:

Communication 5.2 Multi-Agent Systems

masprogram = [envdestagentfiles launchpolicy
envdesc = environment: path.
path := any valid path to afile in quotation marks
agentfiles = agentfiles: { agentfile{, agentfilg* }
agentfile = path[agentparam.
agentparams = [nameparan | [langparam] |

[nameparam langparam| |
[langparam, nameparanj

nameparam = name =id

langparam ::= language =id

launchpolicy = launchpolicy: { { launch | launchrule}* }

launch = launch agentbasenam@gentnumbdr: agentref.
agentbasename = x| id

agentnumber = [numbef
launchrule = whenentitydesao launch
entitydesc = [nameparan] | [typeparam | [maxparan |

[nameparam typeparam | [typeparam nameparanj |
[maxparam, typeparam | [typeparam, maxparam

typeparam = type =id
maxparam = max =number
id := and identifier starting with a lower-case letter
num = anatural number

A MAS program consists of three sections:
1. anenvironment descriptioeection that defines the connection to one environmentféut,
2. a section ohgent fileghat defines a list of GAL-files, and

3. alaunch policysection that defines a policy how and when to instantiatatageom the ®AL-
files.

An environment description defines a connection to one enmient interface. That environment
interface is supposed to be a jar file that conforms with'EIS
Example:

environment: "elevator.jar" .

The agent files define the set ob@L-files that are to be used. Those&. -files are then refer-
enced by the agents. You can simply define@aGfile like this:

agentfiles: {
"el evat oragent . goal " .

}

1Environment Interface Standard

51

5.2 Multi-Agent Systems Communication

52

The reference label for the agents would therebevat or agent , which is the file name without its
file extension. However you can define the reference labelsgdiuby usingagent parametersYou
can also define the knowledge representation language #yishere is an example:

agentfiles: {
"el evatoragent 1. goal " [l anguage=swi prol og, name=fi | el]
"el evat oragent 2. goal " [l anguage=pddl , name=fi | e2]

}

This defines two agent files. The first is referenced by thel laidee1 and uses SWIProlog as KR
language. The second is referenced blyel and uses PDDi.

The final section contains tHaunch policy The launch policy consists of a list E#unchesand
launch rules A launch is applied before running the MAS and instantiagsnts that do not have a
connection to the environment. An example:

| aunchpol i cy {
launch elevator:filel .
}

This launches a single agent and uses the agent file thatiteldibyf i | el. It also uses the identifier
el evat or as the base name for the generation of unique agent namesalf@lso instantiate several
agents with one launch:

| aunchpol i cy {
launch elevator[3]:filel .
}

This launch would instantiate three agents. The agent naroekl beel evat or, el evat or 1, and
el evat or 2.

A launch rule on the other hand is applied to instantiate amegr agents when the environment
contains an entity that is not associated with an agenteaafree entity This happens when the
environment initializes a new elevator carriage, for exe@mp launch rule is triggered by the creation
of an entity in the environment. Special conditions can l#eddn the type of event or trigger. This
is a very simple launch rule:

| aunchpol i cy {
when entity@nv do |aunch elevator:filel .
}

Its interpretation is: when there is a free entity create genawith the base nanw evat or from
fil el and associate it with the entity.
You can also do something useful with the base name:

| aunchpol i cy {
when entity@nv do launch *:filel .
}

2pDDL support is under development and is not yet available

Communication 5.2 Multi-Agent Systems

The asterisk means that the name of the entity as providetidogrivironment is used as the base
name for the agent.
Of course you can also instantiate several agents:

| aunchpol i cy {
when entity@nv do |aunch elevator[3]:filel .
}

This would instantiate three agents and associate themon#hrand the same entity. So if the entity
would perceive something, all three agents would receiaegbrcept. If any of those agents performs
an environment action, it will be performed by that entity.

Launch rules can be conditional on the type, amount and néihe entity/entities:

| aunchpolicy {
when [type=typel] @nv do |aunch elevator:filel
}

This would only launch an agent, when the type of the newyeistitypel.
You can also restrict the amount of instantiated agents:

| aunchpolicy {
when [type=typel, max=20] @nv do | aunch elevator:filel .
}

This launch rule would only be applied at most 20 times.
There is also a name parameter:

| aunchpolicy {
when [nanme=el evat or 1] @nv do | aunch el evator:filel .

}

This would only be applied if the new entity has the naghevat or 1.

5.2.3 Automaticagent and e fact generation

In many practical multi-agent situations, the agents that@be launched in the MAS and their names
are not known during programming, but are determined in t&Nle, as described in Section 5.2.2.
Also, in some MASSs, agents may come and go dynamically duttieglifetime of a MAS. It is
therefore not always possible or practical to hard code tlosvk agents in the belief base.

Instead, @AL automatically inserts thesmgent facts in the belief base whenever a new agent
enters the MAS, and upon launch of an agent, it populates éhief lbase with aragent fact for
each existing agent (including itself). An agent program(ntan thus assume that, at any time,
bel (agent (X)) will result in a substitution fok of each existing agent.

To give an agent knowledge of its own name and thus the albditistinguish itself from the
other agents amongst thgent facts, a speciate fact is inserted into its belief base. It has the form
me(<agent name>) where<agent nane> is the name of the agent, as determined by the launch policy.

53

5.2 Multi-Agent Systems Communication

It is therefore not necessary to specify or maintain a lisexa$ting agents, or to hard code the
agent’s name in the program.

Unless an agent wants to actively ignore some agent, it issemwdel et e agent facts from the
belief base, and should therefore be avoided.

5.2.4 Example MAS file

A minimal MAS file without environment would look like Figu&2. This would start a MAS without
GoAL MAS file

1 agentfiles {
"agent.goal ".

}

launchpolicy {
| aunch agent 1: agent .

}

2
3
4
5
6
7

Figure 5.2: A minimal MAS file

an environment, with one agent nanmeggnt 1 whose agent program is loaded from filgent . goal .
This agent’s belief base will contain the following facts:

beliefs {
. %other facts
agent (agent1).
me(agent 1).

}

A MAS file for the coffee domain would be as shown in Figure 5.3
GoAL MAS file

1 agentfiles {
2 "cof f eemaker . goal ".
"cof f eegri nder. goal ".

}

| 'aunch maker: cof f eemaker .

3

4

5

6 launchpolicy {
7

8 |aunch grinder: cof f eegrinder.
9

}

Figure 5.3: A MAS file for the coffee domain MAS

After launch of the agents, the coffee maker’s belief baselavimok like this:

beliefs {
have(water). have(beans).
canMake(maker, [coffee, espresso]).

54

Communication 5.3 Communication

agent (naker).
agent (grinder).
me(meker) .

A more complex situation is given in Figure 5.4.

GoAL MAS file
environment: "environments/el evatorenv.jar”.

1
2
3 agentfiles {

4 "goal agent s/ el evat oragent. goal " [nane=el evatorfile] .
5 "goal agent s/ managi ngagent . goal " [name=nanagerfile] .
6

7

8

launchpol i cy {

9 | aunch manager: managerfile .

10 when [type=car, max=1] @nv do |aunch el evatorl:elevatorfile .
11 when [type=car, max=1] @nv do | aunch el evator2:elevatorfile .
12 when [type=car, max=1] @nv do |aunch el evator3:elevatorfile .
13 }

Figure 5.4: A more complex MAS file

This example uses relative paths to the files and labels ¢oaete those files. One elevator agent
will be launched and associated with each entity in the envirent of typecar (at most three times).
After all three elevator agents have been launched, theflisise okl evat or 2 will look like

beliefs {

. %other facts
agent (manager) .
agent (el evatorl).
agent (el evator2).
agent (el evator3).
me(el evator2).

5.3 Communication

Communication in the current implementation cb&. is based on a simple “mailbox semantics”.
Messages received are stored in an agent’s mailbox and maspected by the agent by means
of queries on special, reserved predicatest (agentmsg andr ecei ved(agentmsg whereagent
denotes the agent the message has been sent to or receiveddspectively, anthsgdenotes the
content of the message expressed in a knowledge représengtguage.

5.4 Send Action and Mailbox

The actionsend(Agent Name, Poslitconj) is a built-in action to sendbosl it conj to the agent
with givenAgent Narre. Posl i t conj is a conjunction of positive literalsgent Nane is an atom with

55

5.4 Send Action and Mailbox Communication

56

the name of the agent as specified in the MAS file. Messagehd#vatbeen sent are placed in the
mailbox of the sending agent, as a predicate of the foent (Agent Name, Poslitconj) (note the

‘t " at the end oBent). The message is sent over the selected middleware to thet tagent, and after
arrival the message is placed there in the foroei ved(Sender Agent Nanme, Poslitconj) where
Sender Agent Nare is the name of the agent that sent the message. Depending aniddleware
and distance between the agents, there may be delays inrived af the message. In the current
implementation of @AL messages are supposed to always arrive.

5.4.1 Thesend action

To illustrate the working of theend action, let's consider a simple example multi-agent system
sisting of two agentdridge andgroceryplanner Agentfridge is aware of it's contents and will notify
the groceryplannerwhenever some product is about to run out. Gheceryplannemwill periodically
compile a shopping list. At some point, the fridge may hawe out of milk, and takes appropriate
action:

program {

if bel (amountLeft(mlk, 0)) then send(groceryplanner, amountleft(mlk, 0)).

At the beginning of its action cycle, trgroceryplanneragent gets the following fact inserted in its
message base.

recei ved(fridge, amountlLeft(nilk, 0)).

The received messages can be inspected by meanstadi ttoperator. In other words, if an agent
has received a messalyefrom sendefS, thenbel (recei ved(S M)) will be true; the agent believes
it has received the message. This also holddéb(sent (R, M)), whereR is the recipient of the
message. This way, tiggoceryplannercan act on the received message:

program {

if bel(received(fridge, amountLeft(mlk, 0))) then adopt(buy(mlk)).

5.4.2 Mailbox management

In contrast with the percept base, mailboxes are not emptiaimatically. This means that once a
message is sent or received, that fact will remain in the amggsdase, even after execution of the
above program rule. The consequence of this is that the néghacycle, thdridge may again select
the shown program rule, sending the same message agaimmyever. Also, thgroceryplanner
will keep selecting this program rule.

We have to take action to prevent this. There may be someameses in which it is preferred
to leave the message in in the mailbox, for example if the agEssontains some message counter, so

Communication 5.4 Send Action and Mailbox

you can review the whole message history. Otherwise it isiplEsthat a new message containing the
same content sent to the same recipient will not be seen ag massage. So, we need to remove the
recei ved when we process them. For this an internal action is adddtetadtion rule.

if bel(received(fridge, anountLeft(mlk, 0)))
then adopt (buy(mlk)) + delete(received(fridge, amountLeft(mlk, 0))).

If the fridge sends this message only once, this program rule will be teelemly once.
The coffee maker agent from Section 5.2 also gives an exaofies:

% process information fromother agents on what they can nake
if bel (received(Sender, canMake(Sender, Products)))
then insert(canMake(Sender, Products)) + del ete(received(Sender, canMake(Sender, Products)))

The logic is slightly different for the sender, because ivguld remove thesent fact it would
lose the belief that it has already notified tpeceryplanner and send the message again. Instead it
can use this information to prevent repeatedly sendingdheegnessage:

if bel (amountLeft(mlk, 0), not(sent(groceryplanner, ampuntLeft(mlk, 0))))
then send(grocerypl anner, amountlLeft(nilk, 0)).

The sendonce action

Because the above leads to verbose programmirapLGoffers a variant of thesend action; the
sendonce action. The syntax is the same as thas@fd, but the semantics are such that the message
is sent only if there is neent fact for that message (and receiver(s)) in the mailbox. it

if bel (agent(A), fact(P)) then sendonce(A, fact(P)).

%if some machine seems to need a product, tell it we have it
i f bel (agent (Machine), received(Machine, inp(have(P))), have(P))
then sendonce(Machi ne, have(P)).

is short for

if bel (agent(A), fact(P), not(sent(A, fact(P)))) then send(A fact(P)).

%if some machine seems to need a product, tell it we have it
if bel (agent (Machine), received(Machine, inp(have(P))),
have(P), not(sent(Machine, have(P)))) then send(Machine, have(P)).

This means that if theent fact is deleted from the mailbox, the message may hencebmtbent
again by thesendonce action.

57

5.5 Moods Communication

58

5.4.3 Variables

In GOAL programs, the use of variables is essential to writing éffe@gents. Variables can be used
in messages as expected. For example, a more generic vefsi@fridge's program rule would be

if bel (amountLeft(P, N, N < 2, not(sent(groceryplanner, anmountLeft(P, N))))
then send(grocerypl anner, amountLeft(P, N)).

Note that this will eventually send one message for evenyevafN whereN < 2.
Recipients and senders can also be variables in the mestialcsindition. Example:

% This isn't an argunment; it's just contradiction!
%- No it isn't.
if bel(received(X, fact)) then send(X not(fact)).

% http://en.wkipedia.org/wki/Mrco_Pol o_(gane)
if bel(received(X, marco)) then send(X, polo).

This is especially useful in situations where you don’t kneho will send the agent messages, as
with the coffee domain example:

% answer any question about what this agent can nake
if bel (me(Me), received(A int(canMake(Me, _))), canMake(Me, Prods))
then sendonce(A, canMake(Me, Prods)).

For any agenA it has received a question from, it will answer its question.

Closed actions

In order for any action in GAL to be selected for execution, that action must be closednimga
that all variables in the action must be bound after evatnadif the mental state condition. As a
consequencanessagemust be closed as well, in order to make the action executable

5.5 Moods

GOAL agents are goal-oriented agents who have their goals sgkdiiclaratively. Up until now all
examples have shown communication of an agdogliefs Every message was a statement about the
sender’s beliefs regarding the content. GivenAt's goal-orientedness, it would be useful to be able
to not only communicate in terms of beliefs but also in terfngaals This way GOAL agents can tell
other agents that they have a certain goal.

In natural language communication, suchpeech acts often performed byttering a sentence
in a certainmood This mood can béndicative (‘The time is 2 o’clock’), expressivg‘Hurray!!’),
declarative('l hereby declare the meeting adjourned’).

In GOAL, the execution of theend action is theuttering the message content is teentence
The moodis indicated by prefixing the message content with@od operatar GoAL distinguishes
three moods listed in Figure 5.5.

Communication 5.6 Agent Selectors

| Mood | operator| example | NL meaning \
INDICATIVE : ;armount Left (nilk, 0) “I've run out of milk.”
DECLARATIVE ! I'status(door, closed) | “l wantthe door to be closed!
INTERROGATIVE ? ?anmount Left(milk,) “How much milk is left?”

Figure 5.5: ®AL message moods

In the case of the indicative mood the mood operator is optiom other words, in absence of
a mood operator, the indicative mood is assumed. That mbeahslit examples in Section 5.4 were
implicitly in the indicative mood.

Using these mood operators 0&L agents can be moredaLish in their communication. For
example, if the coffee maker or coffee grinder needs a resdiormake something but hasn't have it,
it can inform an agent that it believe®eshave it that it needs it:

%if we need a product but don't have it, notify an agent that does have that we need it.
if goal (have(P)), bel (requiredFor(P, R), not(have(R)), canMakelt(Mker, R)) then send(Maker, !have(P)).

Now for the receiving side of the communication. Moods of sages in the mailbox are rep-
resented as predicates, allowing for logic programming. iAperative is represented by thep
predicate, an interrogative mood by th& predicate. There is no predicate for the indicative mood
in the mailbox. Using these mood predicates, we can inspeatiailbox for messages of a specific
type. For example, to handle a message like the one abovetli@eoffee maker, the coffee grinder
can use this action rule:

%if some agent needs sonething we can make, adopt the goal to meke it
if bel(received(_, inp(have(P))), nme(Me), canMakelt(Me, P)) then adopt(have(P)).

The coffee grinder will grind beans for whichever agent rseem, and another rule will make sure
the correct agent is notified of the availability of the réisigi grounds, so heredon't careis used in
place of the sender parameter.

The previous section mentioned that messages must be cld$emte is one exception, which
concerns interrogative type messages. These messagékeaopdn questions, like, for example,
“What time is it?” or “What is Ben's age?”. These cannot berespnted by a closed sentence.
Instead, alon’t carecan be used to indicate the unknown component. For example:

if not(bel (timeNow(_))) then send(clock, ?tinmeNow(_)).
if not(bel (age(ben, _))) then send(ben, ?age(ben, _)).

% ask each agent what they can nake
if bel (agent(A), not(me(A)), not(canMake(A, _))) then sendonce(A, ?canMake(A _)).

5.6 Agent Selectors

In many MASs agents may find themselves communicating wignsgnvhose name they do not know
beforehand. For example, the MAS might have launched 106tag&ho communicate with each

59

5.6 Agent Selectors Communication

other, using thegent [100] : fil el syntax. Or if a message needs to be multicast or broadcast to
multiple receivers. For these cases a more flexible way afesdihg messages is needed.

5.6.1 send action syntax

Thesend action allows more dynamic addressing schemes than jusigiaet name, by means of an
agent selectorThe syntax of theend action and this agent selector is shown in Figure 5.6.

The first parameter to theend action (agent name in the previous sections) is calledgent
selector An agent selector specifies which agents are selectedridirgpa message to. It consists of
one or moreagent expressia, surrounded by square brackets. The square brackets canitbed if
there is only one agent expression.

Some examples of agent selectors:

% agent name
send(agent2, theFact).

% variabl e (Prolog)
send(Agt, theFact).

% message to the agent itself
send(sel f, theFact).

% mul tiple recipients
send([agent1, agent2, self, Agt], theFact).

% usi ng quant or

%if we don't know anyone who can make our required resource, broadcast our need

if goal (have(P)), bel (requiredFor(P, R), not(have(R)), not(canMakelt(_, R)))
then send(all other, !have(P)).

sendaction = send (agentselector [moodoperatdr Poslitcon)
moodoperator = < |!]?
agentselector := agentexpressioh

quantor| [quantor] |
[agentexpressioh, agentexpressioft]
agentexpression = label| variable| self
quantor all | allother

Figure 5.6: Syntax of theend action

Agent Name

The agent name is the simplest type of agent expressionhwiechave already seen in Sections 5.4
and 5.5. It consists of the name of the receiving agent. IKiRdanguage of the agent is Prolog, the
agent name must start with a lowercase letter.

Example:

60

0N O WN R

e o
g~ wWNEFE OO

Communication 5.6 Agent Selectors

send(alice, :hello).

% using the square brackets to address nultiple agents for one nessage
send([alice, bob, charlie], :hello).

If the agent name refers to an agent that does not exist in th8,Mr has died, or is otherwise
unaddressable, the message will silently be sent anywasreTib no feedback confirming or discon-
firming that an agent has received the message. Only a replperception of expected behaviour of
the receiving agent, or the absence of an expected replyordinra or disconfirm the reception of the
message.

Variables

A variable type agent expression allows a dynamic way ofifprg the message recipient. Some-
times the recipient depends on the agent’s beliefs or goala previous conversations. The variable
agent expression consists of a variable in the agent’s K§ukage. If the KR language is Prolog, this
means it must start with an uppercase letter. This variallldoe resolved when the program rule’s
mental state condition is evaluated. This means that theéahstate conditiormust bind all variables
that are used in the agent selector. If an agent sector agntabound variables at the time of action
selection, the action will be deemed inapplicable.

Example:
GOAL

beliefs {
agent (j ohn).
agent (mary).
}
goal s {
i nfornmed(john, fact(f)).
}
program {
if bel (agent (X)), goal (hold(gold)), not(bel(sent(_, 'hold(_)))) then send(X, !hold(gold)).

if goal (informed(Agent, fact(F))) then send(Agent, :fact(F)).
% This will never be selected:

if bel (sonething) then send(Agent, :sonething).
}

In this example, the program rule on line 9 contains the t#&iX, which has two possible sub-
stitutions: [X/ j ohn, X/ mary]. This results in there being twaptionsfor the action:send(j ohn,

'hol d(gol d)) andsend(mary, !hol d(gold)). The agent’s action selection engine will select only
one option for execution. This means that variables resolemeagent name, and are therefore not
suited for multicasting messages.

Quantors

Quantors are a special type of agent expression. They tafisigseserved keyword. There are three
possible quantorsal |, al | ot her andsel f. When thesend action is performed, the quantor is
expanded to a set of agent names, in the following way:

61

5.6 Agent Selectors Communication

62

e al | will expand to all names of agents currently present in tHieblease of the agent (includ-
ing the name of the sending agent itself).

e al | ot her will expand to all names of agents currently present in theSywith the exception
of the sending agent’'s name.

e sel f will resolve to the sending agent’s name. So usiagf , an agent can send a message to
itself.

Sending a message addressed using a quantor will not negldt quantor being put literally in the
mailbox. Rather, the actual agent names that the quantoivessto are substituted, andent (. .)
fact is inserted for every agent addressed by the quantois Hids consequences for querying the
mailbox using quantors. It is possible to test if a messageblean sent tal | agents, for example,
by doing

if bel(not(sent(all, fact))) then send(all, fact).

This will execute if the message has not been sent to all agbatsending agent believes to exist,
so all substitutions oK in bel (agent (X)) . This means that after sending of the original message,
if new agents would join the MAS, this substitution would oba (i.e. agent (X) facts would be
added). Thus the above mental state condition would agasatisfied, because the message had not
been sent to all agents. The semantics ofalHeandal | ot her quantors in belief queries reflect the
situationat the time of querying

This is illustrated in the following code fragment, in whitte nai | box. . section reflects the
mailbox contents at this time.

beliefs {
agent (maker).
agent (grinder).
agent (auxi | l'iarygrinder).
me(maker) .

% the new agent that just joined the MAS
agent (newagent) .

mai | box {
sent (grinder, inp(have(grounds))).
sent (auxi |l liarygrinder, inp(have(grounds))).
}
program {
%w |l execute again:
if bel(not(sent(allother, inmp(have(grounds))))) then send(allother, !have(grounds)).

}

5.6.2 Theagent and ne facts

In the previous section we have seen the use of variableseint aglectors, and how such a variable
must be bound in the agent selector. In the example in thabedbe belief base was populated with
2agent (..) facts, holding the names of the agents that agent believesish Using this ‘list’ of
agents, program rules can be constructed that send a mdesagents that satisfy some criterium.
For example, a way to send a request only to agents that atrisptcould be;

Communication 5.6 Agent Selectors

if bel (agent(X), not(busy(X))) then send(X, !swept(floor)).

Theagent (X) is crucial here, to get a substitution set ¥pbecauseaot (busy(X)) does not yield a
substitution set foK by itself.

Theagent sandne

So theagent fact allows us to select a subset of all existing agents dycedly An advantage of
this is that it makes it possible to write ‘dynamic’ agentgnams, meaning we can writsne GOAL
program for a MAS with multiple identical agents.

Let's reiterate the last example snippet:

if bel (agent(X), not(busy(X))) then send(X, !swept(floor)).

This will select one agent that is not busy, and skesmkpt (f1 oor) to it. Recall that aragent
fact is inserted for every existing ageiricluding the agent itself Consequently, the agent whose
program rule is given here, may sehslept (f| oor) to itself, as it is one of thagent (X) s. This
may not be the intended behaviour. Suppose the behaviouldshe that it only sends this imperative
to otheragents. We cannot usél ot her as agent selector, because, while it excludes the agelfit itse
from the recipient list, it indiscriminately sends the naggstoall other agents, ignoring the selection
we made in the mental state condition.

We need another way to distinguish betwesher agents and hi s agent. For this purpose,
a speciahe(..) factis inserted in an agent's belief base upon launch. ktifpe the name of the
agent. So, taking the example MAS from Figure 5.4, afterdawfel evat or 2, its belief base consist
of the following facts:

agent (manager) .
agent (el evatorl).
agent (el evator2).
agent (el evator3).
me(el evator2).

Now the elevator program can include a rule that sends a gessany other elevator agent, like so:

if bel (agent(Agt), me(Me), not(Agt=Me), not(Agt=nmnager)) then send(Agt, !service(sonefloor)).

The whole point of this is that this program rule works for mvelevator agent and so it is not
necessary to make ad@L program file for each agent in which the agents would be namxalicily 3.
Also, if the naming scheme or the number of the elevator ageete to be changed, the agent program
would not have to be altered; only the MAS file would.

In the case of the coffee domain agents, it means that theecoffaker and the coffee grinder,
which are both machines that can make something out of samyettan have very similar programs,
sharing action rules for production and capability expiora

Swith exception of theranager , but here we assume this to be a special agent that alwaykisamme. If there were
moremanager s, the belief clause would contaie! (manager (Myr), not (Agt =Myr))

63

5.7send action processing Communication

64

5.7 send action processing

Action rules containing aend(once) action can be placed in the program rules section, which we
have done so far, but also in the percept rules section. Thieseva actions are selected and executed
differs between these sections. These differences amdiarére discussed below.

In the program rules The first strategy is placing the action rule in the prografessection, as
we have done so far. Let’s take a look at an example:

if goal (have(X)), bel (agent(A)) then sendonce(A, !have(X)).

Suppose there are three agents, and the agent has ortege(ati | k) . The action selection mecha-

nism will pool three options of this action to choose fromd@ecution for this round, oreend action

for each agent. Only one will be selected and executed. Nexid, only two options are pooled, etc.
It will take at least three rounds to notify all agents of tloalg To send this message to all agents

at once we can use tla| oral | ot her agent selectors. But when we want to filter the agents to

which the message will be sent we cannot do this.

In the percept rules Percept rules are similar to program rules except for twieihces;
1. they cannot contain environment actions
2. all options of all percept rules are all executed everydou

The second item is consequential for message sending. Hxéple action rule from the above
paragraph was placed in the percept rule section, all thygens would be executed in one round, so
all three agents would be notified at the same time.

In many cases, it makes more sense to handle communicatéoway that all possible messages
are sent at once in stead of one per round. Often, the comationids a task that needs to be done,
but should not interfere with the selection of an environtraation. Examples of such communica-
tion tasks are answering incoming interrogatives, naidyggents of our goals and beliefs proactively,
relaying messages, but also tasks that do not involve sgti#e handling incoming indicatives (in-
serting the content in the belief base).

5.8 Example: The Coffee Domain

In Section 5.2.1 the coffee domain was introduced. In thisize the workings of the coffee maker
and coffee grinder are analyzed in more detail.

As mentioned before, the agents coordinate their actiom®inymunicating in several ways which
are discussed below.

Capability exploration

The agents know what they can make themselves. This is erpegsas beliefs in the agent program.
For the coffee maker, this look like:

Communication 5.8 Example: The Coffee Domain

beliefs {

canMake(maker, [coffee, espresso]).

}

To find out what the other agents can make, the following aatites are used in the program:

% ask each agent what they can make
if bel (agent(A), not(nme(A)), not(canMake(A, _)), not(sent(A int(canMake(A _)))))
then send(A, ?canMake(A, _)).

% answer any question about what this agent can nake
if bel (me(Me), received(A int(canMake(Me, _)), canMake(Me, Prods))
then send(A, :canMake(Me, Prods)) + delete(received(A int(canMake(Me, _)))).

% process answers from other agents
if bel (received(Sender, canMake(Sender, Products)))
then insert(canvake(Sender, Products)) + delete(received(Sender, canMake(Sender, Products))).

The first rule checks if there is an agénbther than this agent, for whom this agent does not have
any belief of what it can make, and to whom this agent has meady sent ainterrogativeto query
it. If this is the case, send anterrogativemessage to ask which products that agecdn make. Note
thatnot (me(A)) preventsA being bound to this agent, which would otherwise result ia #gent
asking itself what it can make. In this situation that woutd happen, becaus®t (canMake(A, -))
has the same effect, since this agent has a belief of what ine&ke (e.gbel (ne(M), canMake(M,

-)) istrue). Also recall that after execution oand action, asent fact is inserted in the mailbox.

The second rule handles such incoming interrogatives. okdan the mailbox for received in-
terrogative messages asking what this agent can make. likgdp the sender with amdicative
message, indicating what it can make. Also, it removes tbeived message from the mailbox. This
prevents this rule from being triggered repeatedly.

Finally these indicatives are handled in the third rule. Talbox is queried for receiveiddica-
tive messages, containing the information about who makes \Wstch a message exists, insert the
information as a fact in the belief base. Also, the receivegsage is removed from the mailbox to
prevent repeated execution of this program rule for thissags.

Production delegation

The coffee maker needs ground beans (grounds) to make cbifei cannot grind beans. But once
it has found out that the coffee grindean grind beans into coffee grounds, using the above pro-
gram rules, it can request the grinder to make grounds byirsgiitcan imperativemessage. This is
represented more generically in the following action rule:

% When we cannot make sone product, try to find a maker for it
if goal (have(P)), bel (requiredFor(P, R), not(have(R))), bel(canMakelt(Maker, R), not(me(Mker)))
then send(Maker, !have(R)).

When this agent has a goal to make some pro8dot which it needs a requiremeRtwhich it
doesn't have, and it knows of a makerRyfit sends an imperative message to that maker. The message

65

5.8 Example: The Coffee Domain Communication

66

content id have(R) (the Rwill be bound to some product at this point), indicating ttii$ agent has
a goal tohave R.

When such an imperative message is received by an agente@ardritake the requested product,
it can adopt a goal to make it so:

if bel(received(A inp(have(P))), nme(Me), canMakelt(Me, P))
then adopt (have(P)).

Note that we did not remove the message from the mailbox. i$tiecause this agent needs a record
of who requested what. If we would remove the message, tlennation that an agent requested a
product would have to be persisted by some other means.

Status updates

Once a product has been made for some other agent that equitteat agent should be informed
that the required product is ready. Agents in the Coffee Dorda not ‘give’ each other products or
perceive that products are available, so they rely on congation to inform each other about that.

if bel (received(A, inp(have(P))), have(P))
then send(A :have(P)) + delete(received(A inp(have(P)))).

Now wedo remove the received message, because we have completdligdhéime case.

On the receiving side of this message, reception of suchdicetive messagehave(P) does not
automatically result in the belief by this agent thave(P) is true. This insertion of the belief must
be done explicitl§.

% update beliefs with those of others (believe what they believe)
if bel (received(A, have(P)))
then insert(have(P)) + delete(received(A have(P))).

Pro-active inform

At any time, it may be the case that an agent sees an oppgrtariitform an other agent about some
fact if it thinks this agent would want to know that, withowibg asked. This may happen if it believes
the other agent has some goal but it believes that this geadlh@ady been achieved. It can then help
the other agent by sending an indicative message that thetgéa is achieved.

In the coffee domain example, if one machine believes thatten machine needs some product,
and ithasthat product available, then it will inform that agent oftffeect:

%if some machine seems to need a product, tell it we have it
if bel (received(Mchine, inp(have(X))), bel (have(X), not(sent(Mchine, have(X))))
then send(Machine, :have(X)).

4This is where we make a leap of faith. The other agent inditiggéelief inhave(P) . The only reason we copy this
belief is because we trust that other agent.

Communication 5.9 Conclusion

The milk cow

The coffee domain example has a coffee maker and a coffedegrisuppose we now also want to
make lattes. A latte is coffee with milk. To provide the mikk,cow joins the scene. The cow is
empathic enough that it makes milk whenever it believesgbateone needs it. The source code for
them | kcowagent is listed in Figure A.3.

The generic way in which theaker andgri nder agents were written has the effect that they need
very little adjustment to start interacting with thiel kcow. First, themaker 's beliefs are changed to
reflect its new capability to makeat t e, and the recipe fdrat t e is added to its knowledge:

beliefs {

.c;a.nlvake(maker, [coffee, espresso, latte]).
E(novw edge {

.ré;qui redFor(latte, mlk).

requiredFor (latte, coffee).

}

Then, the capability exploration routines will find out thlaé mi | kcow agent can make the required

m | k. Note that thegent (m | kcow) fact will be added to the belief base automatically. §hiender

needs nani | k, and them | kcow needs n@r ounds, so adjustment of thegr i nder is not necessary.
Finally, to add theni | kcow to the MAS, the MAS file is changed to include the new agent:

agentfiles {
"cof f eemaker. goal ".
"cof f eegrinder. goal ".
“m | kcow. goal ".

}

| aunchpol i cy {
launch maker: cof f eemaker.
|aunch grinder: cof f eegrinder.
launch mi | kcow m | kcow.

5.9 Conclusion

In this chapter | discussed how communication ioA& works from the programmer’s perspective.
First, an example multi-agent system was introduced.

Multi-agent systems are specified by MAS files, which definéchvtagents are to be launched
and how many, and what the names of the agents are. Each agemasically gets alagent fact
inserted in its belief base for each agent in the MAS, and fact to indicate the agent’s own name.
This way agents can refer to other agents and themselvesiinGbAL programs.

Communication is done by executingsend internal action and follows a ‘mailbox semantics’,
very similar to the communication semantics of 2APL [5]; #emt message is placed in the sending
agent’s mailbox as aent fact, and in the receiving agent’s mailbox asezei ved fact. Messages

67

5.9 Conclusion Communication

68

are addressed by means of agent selectors, which offer atatidynamic ways of selecting a subset
of all agents in the MAS.

Because the mailbox holds no temporal information, some aeds to be taken when querying
the messages in the mailbox to prevent unintended repestedt®n of action rules. Best practices
in dealing with these situations are presented. To addressnanon pattern in these dealings, the
sendonce action is introduced, which does whsnd does but only if the message in question was
not already sent to the same agents.

Finally the usage of the communication constructs predeint¢his chapter is demonstrated by
implementing two agents of the example coffee domain. Ustliegpresented communication con-
structs, a multi-agent system of communicating agents egrdgrammed.

Chapter 6

Mental Models

69

6.1 Introduction Mental Models

70

6.1 Introduction

In Chapter 3 it was argued that sinceo@. is a declarative goal-oriented programming language,
communication should also be programmable in a declargted-oriented manner. This means that
agents should not only be able to communicate in terms af biediefs but also in terms of their goals.

Chapter 5 describes howdaL agents can communicate their beliefs and goals. But théomail
semantics for handling incoming communication leaves rémrmmprovement in terms of ease of pro-
gramming. The mailbox semantics requires the programmactigely process incoming messages
and update the agent’s mental state accordingly. Whileoffess flexibility, it requires programming
effort on a low level of abstraction.

On a higher level of abstraction, more information can beaex¢d from the messages. Since the
incoming messages convey information about the menta sfahe sender, a receiving agent could
directly derive facts about that mental state based omitredand thecontentof the message. Instead
of directly adopting the content of the message into the owntal state, the receiving agent can use
these derived facts to automatically construct a modeleftlental state of the sending agent.

In this chaptemental modelsre explored in detail. Mental models are models of the nhetdte
of another agent. These models are constructed and maidthin observing incoming messages
from other agents. The mental models can then be used by &m: geyogrammer) to reason about
the beliefs and goals of another agent, in a similar fashéoaneagent queries its own mental state.

First the issues with programmingd&L agents using mailbox semantics are investigated in the
following section. Next the semantics of the mental modelrgus laid out and the agent selector
is extended with two new quantors. In Section 6.2 the progreng paradigm is demonstrated by
rewriting the example Coffee Domain agents to use the newtahamdel semantics. Finally, the
effect of using mental models on the programming effort ed@ated in the concluding section.

6.2 Programming with mailbox semantics

Let's take another look at the programs of the agents fronCibifee Domain. Figure 6.1 lists the
per ceptrul es section of thevaker agent.

We see that apart from those on lines 16-21, all percept qulesy the mailbox to see if an agent
has stated anything about its beliefs or goals. The genattdrp can be described as follows:

“If the mailbox contains a received message frépprocess its content according to its mood,
then remove it from the mailbox.”

There are several issues with this pattern:

1. To prevent repeatedly executing the same rule after aagedsas been received, either the
recei ved fact has to be deleted from the mailbox, or it has to be testeetiver the intended
action was already performed.

The first solution requires an explicit extra action in thieruAnother disadvantage is that it
prevents other rules from acting on this received message.

The second solution, testing if the action was already perdal, involves testing if the state that
would be achieved by the action is already achieved. Te#tisgs not always directly possible,
for example in the case of an action on the environment thes dot have a perceivable effect.

Mental Models 6.2 Programming with mailbox semantics

GOAL

perceptrul es {
% capabi ity exploration:

1
2
3
4 % ask each agent what they can make

5 if bel (agent(A), not(me(A)), not(canMake(A, _))) then sendonce(A, ?canMake(A _)).
6 % answer any question about what this agent can nake

7 if bel (me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prod))

8 then sendonce(A, :canMake(Me, Prod)).

9 % process answers from other agents

10 if bel (received(Sender, canMake(Sender, Products)))

11 then insert(canMake(Sender, Products))

12 + del ete(recei ved(Sender, canMake(Sender, Products))).

13

14 % update beliefs with those of others (believe what they believe)

15 if bel (agent(A), received(A have(X))), not(bel (have(X))) then insert(have(X)).
16

17 %I f we need sone ingredient, see if we can make it ourselves

18 if goal (have(P)), bel (requiredFor(P, R), not(have(R))),

19 bel (canMakelt (Me, R), ne(Me)) then adopt (have(R)).

20 %else try to find a maker for it

21 if goal (have(P)), bel (requiredFor(P, R), not(have(R))),

22 bel (canMakel t (Maker, R), not(ne(Maker))) then sendonce(Maker, !have(R)).
23

24 %if some machine seens to need a product, tell it we have it

25 if bel (agent (Machine), received(Machine, inp(have(X))), have(X))

26 then sendonce(Machi ne, :have(X)).

27 }

Figure 6.1: Coffee maker agent’s percept rules

2. Thesent andr ecei ved facts in the mailbox contain no temporal information. Thisans that
it is possible that an incoming message contradicts areeadceived message. For example,
suppose an agent receives from some agent the messggand then at a later time receives
from that same agent the messag¢’. One could conclude that the sending agent no longer
believesd. But both messages are present in the mailbox, so a rule likaks for indicative
messages will still find the first message, which representautdated state.

Again, a solution is to make sure that at the end of an agamt'sycle, allr ecei ved facts are
processed and deleted from the mailbox.

3. The extra actions needed to handle these situations destitindant looking code. See for
example the rule on lines 10-12 in Figure 6.1.

These issues show that the programmer has to make choieedireghow to keep the view on the
other agents consistent, and how to make sure that ruleseh@acdming messages gracefully, i.e. do
not infinitely repeat. The mailbox semantics, while flexjlitgce the programmer towards imperative
style programming to handle these issues. This is undésjriabcause the GaL language promotes
a declarative style of programming. The goals and belieEnadgent are specified declaratively, and
the mental state conditions in the percept- and action arespecified by belief- and goal operators.
To maintain this paradigm, mental models are introduced.

71

6.3 Models of mental states Mental Models

72

Mental models are models of the mental states of other agieatsan agent knows of, and are
automatically updated using incoming communication. Tdenaprogrammer can query these men-
tal models in a similar way to querying the agent’s own mestate. Because mental models are
automatically updated, the agent programmer no longersngecbnstantly check the consistency of
the information it keeps on the beliefs and goals of othentsyel he syntax of a mental model query
is intuitive and closely resembles that of a normal mentikstjuery, which improves readability of
the GOAL code.

6.3 Models of mental states
A mental model is is a model of a mental state:
Ma = <za, ra>

wherea is the name of the agent whose mental state is modEleda belief base an is a goal
base. Notice that, contrary to an agent's own mental statenessage bases, percept bases, or any
other kind of database are present. The mental model of ant agmlels beliefs and goals.

6.3.1 Initialization

Every agent maintains a mapping of agent names to mentallsadtlan new agent becomes known

to an existing agent, a mental model is initialized and adddide mapping. This can happen when the
agent platform informs the existing agent of the launchtlipiof the new agent, if the agent platform

is configured to do so. In any case the existing agent willdlide a mental model when it receives a
message from an agent whom it doesn’t know yet.

6.3.2 Querying

The objective of maintaining models of the mental statesloéoagents is to be able to reason about
those mental states, i.e. about the beliefs and goals of thgsnts. An agent would like to be able
to query the mental state of an agent, but since this is natifesdirectly ([19]), themodelof the
mental state is queried instead. For the sake of intuitiegiamming, the programmer’s interface for
querying mental models closely resembles that for quertfisgagent’s own mental state.

The format of a mental model query literal is:

<agentselectar.<queryoperator- (<propositional content)

Here, thequeryoperatoris one ofbel , a- goal , goal or goal - a, andpropositional contenis the
actual query. So far this is the same as for querying the &gamh mental state. The difference lies
in theagentselectarThis agentselector specifies the agent(s) whose mentalnsa be queried. It
is an extension of the agent selector used for specifyingdbipients of a message, as described in
Section 5.6.1. It's syntax is the same as given in Figure 5.6.

The examples given in Figure 6.2 illustrate some uses of gle@taselector in querying mental
models. Recall from Section 5.6.1 that upon evaluationssa action, the agent selector is resolved
to a list of agent names, using the agent base. Similarlyy epaluation of the mental state condition

Mental Models 6.3 Models of mental states

GOAL
if agent2.goal (have(beans)), bel (have(beans)) then giveTo(agent2, beans).

1
2
3 if bel(agent(A)), A bel(canMake(A, Products)), not(bel (canMake(A, _)))
4 then insert(canMake(A, Prods)).
5
6

if allother.bel (shapeOWrld(flat)) then insert(shapeCVorld(flat)).

Figure 6.2: Example mental model queries

of an action rule, the agent selector of each mental litenasolved. The mental literal is then queried
on the mental model of each of the resulting agents. Varibinldings are passed along each query
of a mental model, in the same way as happens with individwadtat literals. In fact, the effect of
resolving an agent selector can be seen as ‘expanding’ 81 aglector into a conjunction of mental
model queries of single agents. See Figure 6.3.

GOAL

1 beliefs {

2 %Gven that the agent knows the followi ng agents:
3 agent(alice). agent(bob). agent(charlie).

4 nme(charlie).
5

6

7

8

program {

% The fol | owing query:

if allother.bel (shapeOWorld(S)) then insert(shapeOWrld(S)).
9
10 % WIIl be resolved as
11 if [alice, bob].bel (shapeOWrld(S)) then insert(shapeOWrld(S)).
12
13 % Wich will expanded to
14 if alice.bel (shapeOfWrld(S)), bob.bel (shapeCf Wrld(S))
15 then insert(shapeOWrld(S)).
16 }

Figure 6.3: Effect of resolving agent selector in a mentaiebquery

If (charlie believes thathl i ce believes thashapeOWrl d(flat), then after querying the
mental model ofl i ce the substitution sdt[S/ fl at]] is passed to the next mental literal, in which
each substitution is applied to the database formula béfierquery is performed. In the example this
means that the queghapeO Wr | d(fl at) is performed on the mental model loéb. If bob does
not believeshapeO Wor | d(f 1 at), the mental state condition fails.

Variables

Just as with agent selectorssiend actions, variable-type agent expressions must be bouhe &tte
of evaluation. This is the reason that the mental litérdlel (. .) on line 3 in Figure 6.2 is preceded
by bel (agent (A)), to get a binding of every agent nameAto

73

6.3 Models of mental states Mental Models

Extra quantors: sone and soneot her

In addition to the quantors that are used in agent selectorshe send action, sel f, all and
al | ot her, two additional quantors are allowed for use in mental moderies;

e sone: if anymental model yields a result to the query, that result isrnetdl.

e someot her: if a mental model ofany otheragent yields a result to the query, that result is
returned.

This can be used when we want to checkaméother) agent believes something or has some goal.
Just likeal | andal | ot her, these quantors may not be used in combination with othettagres-
sions in one agent selector. This is because agent selsawrsag some, al] or[X, soneot her]

are ambiguous and confusing.

6.3.3 Updating

A mental model represents the beliefs and goals of anothemtadviental models are updated au-
tomatically by means of conversational implicatures (s&y Based on the mood and content of an
incoming message. By analyzing such an incoming messaggdated state of the modeled mental
state of the sending agent can be deduced.

For example, if agentaker receives the message

I have(beans).

from agenfyri nder, maker may conclude thairi nder has a goal thave(beans), and thus update
its mental model ofr i nder with this goal. But the fact thajr i nder has a goal thave(beans) im-
plies that it does not believaave(beans) , else the goal would already have been achieved, according
to its beliefs!

In general, suppose an agdltreceives a messadg, ¢) from sending agens. Here,p is the
mood and} is the propositional content. The mental modeSai(s is updated tav g as follows:

e if Lis INDICATIVE: &= (Zs®9,[sO)
e if Lis INTERROGATIVE: ¢ = (35S ¢,Ts)
e if pis INDICATIVE: &= (Zs0¢,[s®)
After every update of a belief base, the goal base of that ahembdel is updated so that it stays

consistent with the belief base. This process of updatiagrtntal model is described in more detalil
in Section 3.6.

IActual facts or the receiving agent’s own beliefs are inatet here; the purpose of the mental modehisdelingthe
mental state of an agent.

74

Mental Models 6.4 Using mental models iBOAL programs

6.3.4 Mental state as a mental model

The agent selector for mental model queries allows the usleesfel f quantor. In thesend action,
the semantics are that the message is sent to the senderitseéntal model querying it means that
the own mental state (which is nothaode) is queried. In fact, all mental literals without any agent
selector get an implicéel f set as agent selector. So

if bel (weather(sunny)) then goTo(beach).

is interpreted as

if self.bel (weather(sunny)) then goTo(beach).

6.4 Using mental models in ®AL programs

Taking the example of the Coffee Domain from Chapter 5, weregise the programs to make use of
mental models.

Capability exploration To find out what the other agents can make, the following peneges are
used in the program:

% ask each agent what they can nake
if bel (agent(A), not(canMake(A, _)) then sendonce(A, ?canMake(A, _)).

% answer any question about what this agent can make
if bel (me(Me), received(A, int(canMake(Me, _)), canMake(Me, Prods))
then send(A :canMake(Me, Prods)) + delete(received(A int(canMake(Me, _)))).

% process answers from other agents
if bel (received(Sender, canMake(Sender, Products)))
then insert(canvake(Sender, Products)) + delete(received(Sender, canMake(Sender, Products))).

The first rule can inspect the mental model of the variableayto see if it (believes it) can make
anything:

% ask each agent what they can make
if bel (agent(A)), not(A bel (canMake(A, _))) then sendonce(A, ?canMake(A _)).

Depending on the rest of the program, we can now opt to nobparthe third rule of the above
snippet. l.e. instead of believing what other agents bejieimply look at what they believe. This
would also be possible with mailbox semantics, but the codeladvget rather unmaintainable. Also,
it would require that the programmer makes a consistentyol how to maintain the mailbox.

The second rule can use a mental model query to check if an dges not know what this agent
can make, and thus send this information to that agent:

% answer any question about what this agent can nake
if bel (me(Me), canMake(Me, Prods), agent(A)), A bel(not(canMake(Me, _)))

75

6.4 Using mental models iBOAL programs Mental Models

76

The third action rule can be replaced with

if bel (agent(A)), A bel(canMake(A, Products)), not(bel (canMake(A, _))) then
insert(canMake(A, Products)).

Alternatively, this action rule can be completely removed a

bel (agent (A)), A. bel (canMake(A, Prods)), bel (menber(grounds, Prods))

can be used wherever the agent wants to test which agent dagnuands, for example.

Production delegation For production delegation, tlggi nder agent has the following action rule:

%if some agent needs grounds, then adopt the goal to make it
if bel(received(_, inp(have(grounds)))) then adopt(have(grounds))
+ del ete(received(_, inmp(have(grounds)))).

This rule can be replaced with one that uses mental models:

%if some agent needs grounds, then adopt the goal to make it
i f soneot her. goal (have(grounds)) then adopt (have(grounds)).

Here we see the use of tkeneot her quantor. If any other agent has a goalhve(gr ounds),
adopt that same goal.

Status updates When one agent has a product that it knows another agent,rietalls that agent
that it has the product:

%if some machine seems to need a product, tell it we have it
if bel (agent (Machine), received(Mchine, inp(have(X))),
have(X)) then sendonce(Machine, :have(X)).

Thereceived(..) part of the mental state condition can be replaced with aahemdel query:

%if some machine seems to need a product, tell it we have it
i f bel (agent(Machine)), Machine. goal (have(X)), bel (have(X))
then sendonce(Machine, :have(X)).

Here the rule reads more intuitively; “if a machine has a godiave X and | have X then tell that
machine that | have X”.

On the receiving side, this information was processed byethat copied the beliefs from any
received indicative message:

% update beliefs with those of others (believe what they believe)
if bel (agent(A), received(A have(X))), not(bel (have(X))) then insert(have(X)).

Mental Models 6.5 Conclusion

This is a perfect example of how mental model queries candwga program. In the mailbox
semantics situation, the indicative message is manuallygssed and the fact is inserted in the agent’s
own belief base. At that point, the source of the statemébatitfave(X)) is lost. Using mental models,
we can completely remove the above action rule, becauseathésfalready automatically reflected
in the mental model of the sending agent. Thus, whereverieffiglery is made to see if this agent
believeshave(X) (bel (have(X))), that can be replaced with a query that checlifagent believes
have(X) : sone. bel (have(X)).

Consistency So far we have replaced checking the mailbox by querying ahenodels. This al-
ready improves readability, but there is another impordaivintage of using mental model queries to
guess an agent’s mental state. Consistency between gabliebefs, and updates thereof are not au-
tomatically done for the mailbox contents. Mental modelwéwer, always reflect the latest consistent
mental state, as far as the receiving agent could possilay kry observing communication.

This means that in a situation where an agent sends the needsag(beans), indicating that
(it believes) it hadeans, and later sends the messagave(beans), because theeans have run out
and are needed again, the mental model of the sender is didaltyaupdated by adding the goal to
have(beans) to the mental model’'s goal base and removing that fact framtbntal model’s belief
base. Because the order of reception of messages is notamaihtn the mailbox, it is somewhat
difficult to determine what the current mental state of thedse is. When using only the mailbox
semantics, every incoming message should be checkedfatsn@tion processed and deleted every
round to maintain a consistent view of the sending agentatahestate. The mental model of the
sending agent on the other hand is automatically updateder fAfocessing the second incoming
message, the fabtive(beans) is retracted from the belief base and added to the goal base.

6.5 Conclusion

In this chapter the agents from the example multi-agentegydtave been rewritten by replacing
gueries on the mailbox by mental model queries. In one oopaairule could be completely removed,
because its function is already implemented in the mentalatso

The shift from mailbox semantics to mental models resultsade that has a more declarative,
goal- and belief-oriented nature compared to the messageted mailbox semantics.

Mental models are automatically kept consistent with tloeikeed communication, and therefore
provide a robust way of maintaining a model of another agaméntal state. When using only the
mailbox semantics, a programmer would have to ensure thsigtent view of another agent’s beliefs
and goals through complicated program rules.

The use of mental model queries can significantly improveakidity of programs and makes it
much easier to reason about the beliefs and goals of othetsagkn Chapter 5 we have reasoned
about other agent’s mental states by inspecting the maitiookents, and manually processing the
messages. Mental models provide a consistent and opaqgrapnmer’s interface to those operations.
It liberates the programmer from having to deduce facts aeubeliefs and goals of others, because
these deductions are done automatically and are accetsiblegh the mental model queries.

77

Chapter 7

Distributed Multi-Agent Systems

79

7.1 Introduction Distributed Multi-Agent Systems

80

7.1 Introduction

In a distributed agent world, on the computational levegrdag can run on different hosts. More than
one agent can run on a single host of course. The hosts mayrvtrgir physical location, or they
may be heterogeneous in their hardware configuration (erdpedded system vs. supercomputer).
The reason for distributing agents across different hospedds on the application, but are usually
related to:

1. load-balancing When agents perform or are responsible for heavy computtivork, dis-
tributing them across hosts can benefit from parallelisnsome cases, the agents will be the
per-host managers of the operation, and handle the comatigmicof data and results with
some aggregator.

2. local operations In some situations, agents can operate the specific ddvaégertin on. This
is the case in robatics, or in embedded agents. In a realddbzation of the Coffee Domain
example introduced in Chapter 5, a sophisticated, intedrebffee maker could be controlled
by the coffee maker agent and the coffee grinder agent.

On the conceptual (agent) level, agents usually do not re&dadw that they run on different hosts.
The agent programmer should not need to be concerned abauhkagents are distributed and if
they end up communicating across hosts or not. In other woheésdistribution of agents is not a
matter of agent programming.

For the QAL platform, such distribution of agents should also be pdssilbhe objective is to
provide a way for agents to communicate with other agentstig run on a different GAL platform,
on a different host. The fact that the agents are distribstenild have the least possible impact on
the agent’s programs. Preferably, the agent programs doesat to be changed at all to move from a
non-distributed setup to a distributed setup.

In this chapter the options for implementing this functiityaare explored. First the existing
technologies in the field are surveyed. Then an implememtéiproposed and implemented. Finally,
the implementation is evaluated.

7.2 Requirements of a distributed agent system middleware

For the G®AL system, the main goal is to allow agents to transmit a messag®ther agent. There is
no need for conversation tracking, mobility (the ability fments to move from one host to another),
or integrated remote debugging. An implementation of a ieiddre should not introduce too much
complexity into the @AL platform. Therefore, we aim for a minimal implementatiorashiddleware
that satisfies the following criteria:

1. When an agent sends a message, the message should appeaeagiver's mailbox.

2. Agents can address each other in communication usingatihesifrom thegent () facts.

3. The effort to configure a GAL platform to be part of a distributed MAS should be minimal.
4.

The effort of launching the agents of a MAS distributedoasrmultiple hosts or GaL plat-
forms should be low.

Distributed Multi-Agent Systems 7.3 Existing technologies

From these criteria sub-criteria follow, as we will see ia temainder of this chapter.

7.3 Existing technologies

In the field of agent programming, many technologies exatphovide some sort of interface between
the agents and the communication layer. The purpose is@gntr abstract all or most of the inherit
complexities that come with distributed computing.

7.3.1 Agent middlewares

In this subsection we explore agent frameworks such as JAHd AgentScape[3]. These frame-
works aim to provide a means to build a distributed multirdggystem.

JADE JADE tries to simplify development of FIPA[7] compliant amg by providing a set of sys-
tem services and agents. It hides from the agent buildergpects that are not a part of the agents
or the agent application, such as message transport, egcadd parsing of the messages and agent
life-cycles. See Section 2.3.3 for a detailed descriptibthe JADE framework. The JADE frame-
work provides a set of service agents, that are specifiedeiFifRA specifications. These agents are
a Directory Facilitator (DF), an Agent Management SysterM&\ and an Agent Communication
Channel (ACC). These agents are used in controlling thecyitde of agents (AMS), registration of
and searching for agent services (DF) and communicatiomdagt agents (ACC). The ACC handles
all communication between agents, and transparently tselee most efficient transport mechanism;
communication between agents on the same platform is dang egent signaling and direct pass-
ing of Java objects, while communication between agentsifeereht platforms relies on Java RMI
(see next subsection). Agents each run in an own Java tHratdl|lows agent programmers to im-
plement multi-threaded behaviour through the implemeéntadf Behavi our s which are scheduled
cooperatively per agent.

JADE specifically aims at FIPA compliance and interopeitgbdf agents.

AgentScape AgentScape is a middleware layer that supports large-sgglet systems. It has a ‘less
is more’ philosophy, in that it attempts to provide only taasechanisms that are required to operate
a large-scale agent system, while preserving the freedoagint developers to implement their own
agent model. AgentScape does not impose a specific agent,molilee JADE. It uses XML-RPC for
communication between agents and interaction witlh@kupServicea lookup service. AgentScape
agents are started in their own Java thread to allow contuesescution.

7.3.2 Java RMI

Java’'s Remote Method Invocation (RMI) is not a middlewand, @technology that is a feature of
Java. It allows objects to invoke methods on other objeds fitn on a different JVM (that may
run on a different host). When such a call is made, the argtsradithe method are marshalled at
the caller’'s end, sent over the network and unmarshalledeatdllee’s end. The return value of the
method is again marshalled, sent and unmarshalled. Alhaegtitypes and return value types should
be serializable.

81

7.3 Existing technologies Distributed Multi-Agent Systems

82

RMI can be seen as a kind of client-server model implemantatiClients call methods on a
server, which is a remote object. Remote objects can redistenselves in a registry using a label.
Client objects can then look up this label in the registry lbdatn a reference to the remote object.
Any host that has remote objects should run an RMI regis$ritia not possible, for security reasons,
to bind an object in a registry that is not on the local hosta%tient should at least know on which
host the remote object lives.

The methods that can be called on a remote object are spdaiféedinterface that extends from
java.rm . Renot e. For example, a time service can be specified with this iatexf

public interface TimeService extends java.rm.Renote {
public java.util.Date getTime() throws java.rm .RenmoteException;

}

An implementation of theli neServi ce should extendni cast Renot eChj ect and of course
implement theTi meSer vi ce interface.

To invoke a method on a remote object, a client looks up thetembject in the remote registry.
Instead of getting the complete remote object, a so cafledis returned. This stub has the same
interface as the remote object, and handles the call sutlit ikamarshalled and sent to the remote
object, and returns the result to the caller.

Java RMI as middleware

RMI provides a mechanism for objects on different JVMs orthits communicate with each other on
the object level. When we regard the agents of@aG platform as remote objects, communication
of messages between agents could be realized by specifiythgnglementing a simple interface like
the following: When an agent wants to send a message to aremjbat, it can look up that agent by

Java

inport java.rm . Renote;
inport goal . m ddl ewar e. Message;

/1 Accepts a message and puts it in the agent’s nmessage in queue.

1

2

3

4 public interface Agentlnterface extends Rempote {

5

6 public void accept Message(Message m) throws RenoteException;
7

Figure 7.1: Interface for accepting messages

its agent name in the registry and callatept Message method.

7.3.3 TCP/IP Sockets

Both Java RMI and the XML-RPC implementation of AgentScaglg on TCP/IP sockets for com-
munication across JVMs or hosts.

For communication between threads on different JVMs ordhdatling back to a low level im-
plementation is always an option. In that case, an impleatiemnt needs to take care of the opening

Distributed Multi-Agent Systems 7.4 Design of @eAL middleware

and closing of sockets, buffered input- and output streana@magement of open/available ports and
continuous listening for new incoming connections.

7.3.4 Conclusion

While agent frameworks such as JADE and AgentScape providi-featured environment for dis-
tributing agents and having them communicate, they usumlbose a certain agent model (JADE’s
behaviour$ or execution model (JADE and AgentScape run one threadgmsith This is restrictive
when attempting to integrate the framework within theAg interpreter, and adds to its complexity.

To provide the minimal yet sufficient functionality for conumication of agents in a distributed
setup, a lightweight implementation using Java RMI is chose

7.4 Design of the ®AL middleware

For GoAL an approach is chosen where a distributed MAS can consigfesits. which are launched
on different G®AL platform. A GoAL platform is one instance of thed@L interpreter, with usually
the GoaL IDE GUI, but optionally only running the stand-alone versidn this text it is assumed
the user runs the GUI. The user can launch one MAS file at a ten€spAL platform. Per ®AL
platform the user sets the name of the host that runs theat@&unL platform. This central platform
is a special one in that it maintains the central registrygefrds in the whole distributed MAS. In the
case of multiple @AL platforms on that host, the first one to launch a MAS will beigieste itself
as central platform, and subsequent platforms will autarally detect the existing registry.

A simple event-based updating mechanism ensures thatealt@igemain up-to-date with respect
to the list of agents in the global MAS. When a user of @aAG platform launches a MAS file, all
agents in that MAS file are launched according to the laundibyp(see Section 5.2.2). These agents
are then registered and announced in the global MAS. Thahsniat all existing agents become
aware of the newly launched agents. All newly launched agerg also made aware of the existing
agents. The agents launched on one platform are not visilderdrollable in another platform, but
from the perspective of an agent there are no platform orbmstdaries; to the agents it looks as if
they all live on the same platform. Whenever the user killagent or a (local) MAS, all other agents
are notified of the death of these agents. Those remainingsagamove the existence of the deceased
agents from their beliefs and remove corresponding meralets.

Agents communicate by obtaining a reference to the regpaigrent from the central registry, and
sending the message to that agent. The message is bufféhedrateiving agent in a message queue
until the beginning of that agent’'s next run cycle. All magssin the message in queue are then
processed and placed in the agent’s mailbox and the mentilmof the respective sending agents
are updated. From this point onwards the agent can reasan tilgocommunication, either through
the mailbox or the mental models.

Environments GoOAL offers support for connecting to an environment. An envinent can spawn
entities for which, according to the launch policy specifiethe MAS file, GOAL agents are launched.
Communication between agents is then no different fromithaton without an environment. How-
ever, there are also percepts and actions which are to be goiveted between the environment and

83

7.5 Implementing th&oaL Middleware Distributed Multi-Agent Systems

84

host 1 host 2
GOAL Pf GOAL Pf GOAL Pf
maker milkcow milkcowl
[milkcou] [milkcowt]

grinderl

registerAgent ()

lRMIControllerl lRMIControllerl RMIController
7T
‘ ~ .
bindOl ! \\P{nd()
'RMI Registry ~<
****** (- ProxyBinder

bind()

registerAgent () registerAgent ()

proxyBind OO

Figure 7.2: Three GAL platforms on two hosts

the agents. Environments and implementing support foribliged participation of agents in an en-
vironment is outside the scope of this thesis. When impldimghis support, one has to determine
at runtime which ®@AL platform should launch an agent, since multipleAt platforms may have
launch policies that could launch that agent.

7.5 Implementing the GoAL Middleware

Inter-agent communication is implemented by means of Refdethod Invocation where the sending
agent's Java object invokes a method on the receiving agésia object, passing tiessage object
as a method parameter. In terms of Java objects, the sendebandewed as the client and the
receiver as the server. To be able to send and receive messhgégent class implements the
interface as listed in Figure 7.1. But first, the sending agewst obtain a reference to the remote
object implementing the receiving agent.

7.5.1 TheRM Controll er

All G oAL platforms perform their RMI-related operations viaRih Cont r ol | er object. This object
provides an interface between the&. platform and the RMI operations. It transparently handles
binding, unbinding, lookup and listing of agents, regasdlef whether the central RMI registry runs
on the local host or on a remote host. It is initialized with ttost name or IP address of the host that
runs the @AL platform that has initialized the RMI registry. If the hostme or IP address refers to
the local host, th&M Control | er checks if an RMI registry already exists on the local hoshdf,

it will launch it, together with thér oxyBi nder service that is discussed in Section 7.5.2.

Distributed Multi-Agent Systems 7.5 Implementing@ws L Middleware

7.5.2 Registration and lookup of agents

Since agents in a distributed MAS can be launched on diffeB@nL platforms, and agents them-
selves are not aware of this distribution, some mechanisst beumade available that allows a sending
agent to obtain the reference to the receiving agent in dodeall itsaccept Message method. The
RMI Registry binds names to remote objects. A reference &ete object (a stub) can then be ob-
tained by looking up the name of the object in the registryje@is can only be registered in a registry
on the same host it runs on, so to get a reference to this olbfectegistry of the host that object
runs on must be contacted to perform a lookup of the objeatse This implies that the client must
know on which host the server is located. A sort of centrdlipeating service is therefore required.
It would be most efficient if objects could be registered ire @entral RMI registry, and all clients
could find all servers in that single known RMI registry. Bv&oAL platform would then only need
to know the hostname (and port) of the central registry.

Due to security restrictions of RMI, binding and unbinding @bject in a remote registry is not
allowed, so the above solution is not applicable. To soliggloblem, binding in the remote registry
is done indirectly via @&r oxyBi nder object. ThisProxyBi nder is a remote object that has a com-
monly known name, so aRM Cont rol | er s can look it up. Exactly one instance of this object lives
on the same host as the registry and is bound in it to that cartlyntkmown name. It implements the
proxyBi nd andpr oxyUnbi nd methods, which call the respective method on the local trggesliow-
ing objects to bind and unbind themselves with a name in #gwgisiry by proxy. Thé®r oxyBi nder
then registers the server object in the registry. Thallowed, because the& oxyBi nder resides on
the same host as the registry. This process is illustrat&tyimre 7.2.

When an agent is launched, itso@L platform checks whether the central RMI registry resides
on the local host. If so, it uses the standard RMI methodsrid bie agent object in the registry.
If the RMI registry resides on some other host, a lookup iggpered to obtain a reference to the
ProxyBi nder. The agent and its name are then passed tprttvey Bi nd method of thé’r oxyBi nder .
TheProxyBi nder then binds the agent to its name in the registry. Unbinds exfepmed in a similar
way.

Lookups can always be performed directly on the registry @mdot require the aid of a proxy
like the Pr oxyBi nder .

It should be noted that whenever a remote object (i.e., atbtijat extendsni cast Renot e(hj ect)
is passed as an argument — or returned as a return value ofoseremethod invocation, the whole
object is not marshalled, but rather the stub belonging & tibject. This considerably reduces
communication payload when passing these remote objecten\ibr example a GAL platform’s
RM Control | er registers an agent using theoxyBi nd method of the (remoté)r oxyBi nder it calls
proxyBi nd(agent . get Nane(), agent). The RMI system automatically replaces #hyent object
with an instance ofgent _St ub, which holds all information to reference th&gent object. When-
ever in this text is spoken of ‘passing an agent to a remotecthijt is assumed that RMI handles
this.

7.5.3 Agent/MAS lifecycles

In a dynamic distributed multi-agent system, the agenthiénsystem may have been launched on
different GoAL platforms. Suppose we want to extend the Coffee Domain \kghproduction of

85

7.5 Implementing th&oaL Middleware Distributed Multi-Agent Systems

lattes. The coffee maker agent can produce lattes, whiakiresgjcoffee (which it can make itself),
and milk. Milk is produced by milk cows. Previously, a milkwavas added to the MAS file. Now we
take a more distributed approach. Suppose there is notjestawv, but many, and they live not near
the coffee maker and coffee grinder, but on a dairy farm. Tdiggydarm is launched on a different
GoAL platform that runs on a different host from that of the coffeachines. There is no way to
launch a MAS — or individual agents — on a remote&x platform from another GAL platform.

A MAS can only be launched locally, i.e. by selecting a MAS fildhe GoaL IDE of the platform
the MAS should be launched on. In order to distribute the gever two separate @L platforms,
two separate MAS files thus need to be constructed.

Cof f ee machi nes

1 agentfiles {

2 "cof feemaker.goal .
3 "coffeegrinder.goal".
4}

5 launchpolicy {
6 launch maker: cof f eemaker.

7 launch grinder: coffeegrinder.
8

}

Figure 7.3: Mas file for the coffee machines

Dairy farm

agentfiles {
“m | kcow. goal ".
}
| aunchpolicy {
launch milkcow 5]: m | kcow.

}

o g~ WNPE

Figure 7.4: Mas file for the dairy farm

Let's consider the example of the Coffee Domain, where thiy darm is a system ofri | kcow
agents which will produce milk for the coffee machines. Théydfarm gets a separate MAS file
from thenmaker andgri nder agents. The MAS file of the dairy farm launches 5 agents ofytpe t
m | kcow. Suppose now that the coffee machine MAS file is first launared GoAL platform that
is set up to start the RMI registry. Once the agents are ladjcthey are aware of each other’s
existence through thagent (. .) facts that are inserted in their respective belief bases tgpach,
as discussed in Section 5.6.2. Of course, these agentstaavaie of anyr | kcow agents, because
they do not yet exist.

Now when another GAL platform that is set up to connect to the host of the aboveioresd
platform launches the dairy farm MAS file, fimé | kcow agents are launched. These agents are also
bound in the central RMI registry, by the process descrilme&action 7.5.2. This binding in the
registry does not make all agents in the MAS aware of the nemtagr vice versa. It is technically
possible to implement a pull model in which each agent getdish of agents from the registry via
theRM Control | er’s get Al | Agent Nanes at the beginning of its run cycle, and then update its own

86

Distributed Multi-Agent Systems 7.5 Implementing@ws L Middleware

agent base accordingly. However, this is rather expensiueg it requires communication with the
registry every round of every agent, while changes in thenalig occur not so often compared to
the run cycle frequency. Instead a push model is chosen,ewdi@mnges in the agent list (births and
deaths) are propagated to all agents. Also, when an agemirished, the list of existing agents is
obtained from the registry via tHéM Cont rol | er and used to insedgent (..) facts into the new
agent’s belief base. To allow addL platform to inform a remote agent that a new agent has been
born or has died, the interface from Figure 7.1 is extendeshawn in Figure 7.5.

Java
1 inport java.rm.Renote;
2 inport goal.m ddl eware. Message;
3
4 public interface Agentlnterface extends Rempte {
5 /'l Accepts a message and puts it in the agent’s nmessage in queue.
6 public void accept Message(Message m) throws RenoteException;
-
8 /1 Adds the agent to the agent base and constructs a nental nodel.
9 public void handl eAgentBi rth(String agent Nane) throws RenoteExcepti on;
10
11 /1 Renoves the agent fromthe agent base and renoves the nental nodel.
12 public void handl eAgent Deat h(String agent Nane) throws RenoteExcepti on;
13 }

Figure 7.5: Agent interface extended with birth- and deahdfing
methods

Now, when each agent of the dairy farm is launched, itg\Gplatform notifies each agent already
present in the MAS (theaker , gri nder and any already thusfar launch@dcows) of the birth of this
new agent by calling theand| eAgent Bi rt h method on those existing agents. After launch of all five
m | kcows, agentraker’s belief base will look like Figure 7.6. When an agent or a ptete GoAL

GOAL
1 beliefs {
2 agent (meker).
3 ne(meker).
4 agent(grinder).
5 agent(mlkcow).
6 agent(mlkcowl).
7 agent(mlkcow?).
8 agent(mlkcows).
9 agent(mlkcowd).
10
11 ... %other beliefs
12 }

Figure 7.6: Agentraker’s belief base after dairy farm is launched

platform is killed, the remaining agents are notified in aalagous way. If for example the dairy
farm is closed, alin | kcow agents are first killed. For eveny | kcow, all remaining agents have their
handl eAgent Deat h(mi | kcownanme) method invoked. This results in that thgent (mi | kcow. .)

87

7.5 Implementing th&oaL Middleware Distributed Multi-Agent Systems

88

facts are deleted from the belief base, and the correspgmdental model removed. This way, an
agent knows that iigent (A) is the case, then that agekéxists and can be communicated with.

Name clashes The possibility exists that a second instance of the daim fa launched. This would
cause the GAL platform to attempt to register those nein kcows with the registry. When the @L
platform selects the names| kcow, nmi | kcowd, ...,m | kcowd, this results in a name clash with the
existingmi | kcows.

To prevent name clashes from occurring, theAt platform’s naming mechanism, as described
in Section 5.2.2, is adapted to take into account the name# ekisting agents in the MAS when
constructing unigue names. This means that if there aradyriiveni | kcows in the MAS, launching
a second instance of the dairy farm will yield five agents wiimesri | kcowb till mi | kcowd.

To accomplish this, every time theddL platform launches an agent, it retrieves the list of exgstin
agents (globally) from th&M Cont rol | er, which in turn gets it directly from the RMI registty A
unique name is then determined for the new agent. Figurdlistrates this process.

GOAL Platform ‘

GOAL Platform

(1) launchAgent (milkcow) (4) handleAgentBirth(milkcow3)

’ RuntimeServiceManager F<

GOAL Platform ‘

(2) getAllAgentNames () andteAgentBirth(milkcow3)
’RMIController‘

(3) getList)

Figure 7.7: Launch and announcement of a new agent. FissiGtnL platform launches the new
agent (1). Thdunt i neServi ceManager retrieves the list of agent names (2),(3). It then determine
the next globally uniqgue namei(l kcow3) and announces this agent name to the existing agents (4).

1TheRM Control | er removes names of objects in the RMI registry that are nottagkke ‘Pr oxyBi nder’, from this
list.

Distributed Multi-Agent Systems 7.5 Implementing@ws L Middleware

Relaunching agents Another issue arises when the dairy farm is launched agaém elosing it.
Announcements of the nem | kcows are done as normal and after the kcows are all launched,
agentraker's belief base again looks like Figure 7.6. The problem is tina mailboxes contain facts
about sent and received messages relating toldhei | kcows. So an action rule that once asks an
agent what itanMake for example, using theendonce action, will not do so again for the new agent
with the same name, even though that agent may have diffeapatbilities. Similarly, the agent that
answers such a question using the program rule from Fig8revil.send that answer only once.

GOoAL
1 if bel(me(Me), received(A, int(canMake(Me, _))), canMake(Me, Prods))
2 then sendonce(A, :canMake(Me, Prods)).

Figure 7.8: Action rule answering capability questions

If the agent that posed the question gets killed and reladhebith the same name, it will not
know the answer (any more), and per its program it will pose dhestion again. However, the
receiving agent will not notice any change in the mailbox¢aase the factecei ved(sender,

i nt (canMake(Me, _))) that gets inserted in the mailbox was already there. The emsws al-
ready sent, so theendonce action will not send the indicative message again. This ighedesired
behaviour, because the newly launched agent will not geteitpgested information this way.

One possibility is to not allow the reuse of agent names, soesaare unique over the entire life
span of the MAS. But this also prevents the relaunch of spagents that have a well-known name.

Instead an approach is chosen in which the programmer carthiake situations into account by
altering the mailbox handling action rules. In the exampberf Figure 7.8, if we want this agent to
answer all subsequent questions from the same agent(nameagn replaceendonce with send,
and remove theeceived(..) fact from the mailbox after sending the response. This tedisn
Figure 7.9.

GOAL
1 if bel(me(M), received(A, int(canMake(Me, _))), canMake(Me, Prods))
2 then send(A, :canMake(Me, Prods)) + delete(received(A int(canMake(Me, _)))).

Figure 7.9: Reusable action rule version of 7.8

A more challenging issue is found in another action rule efrtihl kcow, listed in Figure 7.10.
This universal rule checks if an agent has a godlaee a product, and this agent believes it has that

GOAL
1 %if some machine seens to need a product, tell it we have it
2 if bel (agent(Machine), not(me(Machine))), Machine.goal (have(X)),
3 bel (have(X)) then sendonce(Machine, :have(X)).

Figure 7.10: Universal product-supplying action rule

89

7.5 Implementing th&oaL Middleware Distributed Multi-Agent Systems

90

product, it informs the former agent of that fact. The prabis illustrated by the following sequence
of events:

1. agentraker has a goal thave(m | k)
2. agentraker sendd have(ni | k) tom | kcow, which then believesaker . goal (m | k).
3. theni | kcowsends have(m | k) tomaker, once

4. thenmaker is relaunchedm | kcow deletes its mental model abker and initializes a new one
for the relauncheduaker .

5. steps 1 and 2 are taken again.

6. the mental state condition of the action rule in FigureQ7d satisfied, busent (maker,
have(mi | k)) is also believed byi | kcow, so thesendonce action is not executed again.

So the problem is thati | kcow already acted on the fact thaiker has a goal tdvave(ni | k). The
newly received imperative does not change anythingrfbkcow, which thinks it has already acted.
What we want is that upon receiving a new imperative, thek’len the sendonce is released. The
fact preventing theendonce from executing is that the agent already kast (. ..). The solution
therefore is an action rule, or a percept rule, that deléissént fact from the mailbox when such an
imperative is received. See Figure 7.11. The imperatiedfishould also be deleted from the mailbox

GOAL

1 if bel(received(A inmp(have(P))))
2 then del ete(sent (A have(P))) + delete(received(A, inp(have(P)))).

Figure 7.11: Mailbox cleaning rule
to prevent repeated execution of this rule, leading to rigeaxecution of theendonce action.

7.5.4 Synchronization

In every (distributed) system where concurrent procestesaict there is the issue of synchronizing
those interactions. In GaL, the interaction is performed through the passing of messa&ince
agents in different @AL platforms run concurrently, this may present problems wdrenagent tries
to deliver a message in another agent while that receiviegtdg performing operations on its mental
state at the same time.

To minimize concurrent access to an agent’s resources,agessare not directly inserted into
the mailbox upon delivery, but are buffered in a message @uguAt the beginning of the receiving
agent’s run cycle, it processes all messages in this qualipexforms the corresponding operations
on its mailbox and respective mental models. All accessdartbssage in queue is synchronized by
means of a Javaynchr oni zedLi st , which synchronizes concurrent access to it.

Distributed Multi-Agent Systems 7.6 Conclusion

7.6 Conclusion

In this chapter the requirements and criteria for a middtevimplementation for the GaL platform
were investigated. To provide a minimal set of features, mplementation of middleware func-
tionality was made, based on Java RMI. While restrictionimding and unbinding agents in the
RMI registry made the introduction of Rt oxyBi nder necessary, the implementation was relatively
straightforward. The resulting RMI-based middleware jgatde of handling the sending of messages
across hosts, and the transparent registration and refegeof agents. Also, situations where agents
are killed or relaunched were investigated and taken intowaa in the middleware implementation.

Investigations into the effect of distributing agents asr@AL platforms on the execution of the
whole MAS led to the conclusion that in certain situationslight change of how messages are dealt
with in the GoAL code is sometimes needed to deal with the relaunching otsag&hese changes
relate to the mailbox paradigm, and are intuitive when oivkghabout the mailbox contents.

To investigate and demonstrate the impact of distributionttee GoAL programs, the Coffee
Domain example was taken and distributed across twalGplatforms. The concurrent execution of
agents did not present any problems for the agents. A miregtaton of the mailbox handling was
necessary to account for relaunching of other agents, amdtthcontinue to function for those newly
relaunched agents, but all in all the increased burden opribgrammer resulting from distribution
was marginal. Also, the effort to setup and launch a MAS ithisted amounted to splitting a MAS
file into multiple MAS files, and launching each of those on pesate ®AL platform. Each of those
platforms needed to be configured only with the name or IPesddof the host on which thedaL
platform with the central RMI registry was started.

91

Chapter 8

Conclusions and Future Work

93

8.1 Conclusion Conclusions and Future Work

94

8.1 Conclusion

In this thesis the agent programming languageaG has been extended with communication. The
aim was to provide pragmatic, usable communication cocisttio the programmer while building on
a well-founded theoretic base which would allow to definerenfl semantics for the communication.

To get an idea of the work that was already done in the field aalliate their use for this work,
several state of the art agent technologies were reviewem. main concerns with respect to these
technologies were identified: having a vast and ambiguou®npeative set, and lack of a formal
semantics.

In this thesis | have followed the approach of Jason in redytie performative set. The com-
munication constructs that were introduced allow an ageakpress statements about its beliefs and
goals in one of three possible moods. These moods are the majmds as identified by Harnish,
and inspired by Grice's work on conversational implicagireere selected for their usefulness in
communication between@\L agents.

The semantics of the communication constructs respectadtien that agents cannot directly
inspect each other's mental state. Therefore, the sersathties not refer to another agent’s beliefs
or goals. Instead, Grice’s notion of conversational ingilices was taken as a theoretic basis to
determine whatanbe inferred from incoming communication.

These inferred facts were used to construct mental modélishwnodelthe mental state of the
other agent. These mental models are updated automatigadly receipt of a message, based on its
mood and content. Programming constructs were added to ¢iae. Gnguage to query the mental
models. Using these mental model queries, agents can rabsonhthe mental states of other agents.
It is important to note here that the mental states of othentsgare not queried, but only an agent’s
modelof another agent’'s mental state.

Because physical distribution of agents of a multi-agestesy is sometimes desirable or required,
a middleware mechanism was added to th@AG interpreter. While middleware technologies exist,
these often impose restrictions on the agent model or onxaeugon model. To provide a minimal
yet sufficient middleware for GAL, a lightweight implementation was made using Java RMI. This
implementation allows a user to launch different MAS filegldferent GoAL platforms, while having
to configure each platform with only the hosthame of the egiplatform.

In certain situations, a slight change of how messages alewith in the GoAL code is some-
times needed to deal with the relaunching of agents. Thesegels relate to the mailbox paradigm,
and are intuitive when one thinks about the mailbox conteltental models are automatically re-
moved and created as agents are stopped or launched, ineslgedil in al the distribution of agents
does not pose a burden on the programmer, i.e. the progradoasmot have to take into account in
the GoAL programs how and where the agents are distributed.

The aim of this thesis was to investigate two main questions:
1. What is minimally required to allow communication between agents?

2. How easy can communication be used or applied in GAL agents?

To make communication between agents possible the agegrapnming language needs to provide
programming constructs to allow the programmer to contn@.t Communication is seen as the

Conclusions and Future Work 8.1 Conclusion

sending of messages from one agent to another,ssadaction is necessary. Agents need a way to
address the messages to (other) agents. To this end, atpmosewere introduced. These messages
need to be referenced by agentsseot andr ecei ved facts are kept in a message base. Tingglbox
semanticsvas implemented for GAL.

The ease of use of the communication constructs was ine¢stidy building a multi-agent sys-
tem of agents that cooperate by communicating. The effos/el that programming communicating
agents in @AL is possible using the mailbox semantics. Some measuresahézte taken to control
action rules that may repeat indefinitely after having nesior sent a message. T¢@ndonce action
extended the semantics of thend action to facilitate these situations.

In cases where agents in a MAS may be stopped and then rekimdth the same name, and
other agents believe (based on the contents of their ma#f)dkat they have already interacted with
these relaunched agents, some measures needed to be tHie@imL code to make sure that these
interactions are started again. Other than that, the loligton of agents is completely transparent to
the GOAL programmer.

We want QAL agents to be able to communicate in terms of the contentsofriental states. In
designing and specifying communication foo&L, the following criteria were observed:

The communication constructs should have a well-founded #ory

An important property of agent programs is their verifiaiiliTo verify an agent program, the pro-
gramming language needs to have a formal semantics. Addimgneinication to the language adds
to the complexity of the formal semantics. Some agent tdolgies or standards attempt to provide a
formal semantics for an ACL, but refer to the mental statetbéoagents in this semantics. Because
of an agent’s autonomy this cannot be verified and therefes¢mantics is flawed. The approach
taken in this thesis agrees with Singh’s view that agenta@anspect each other’'s mental state. Our
semantics defines what a receiver of a messagenfanabout the mental state of the sender based
on conversational implicatures. These inferences areeggtgd in a mental model. The semantics
makes no reference to the mental state of the other agent.

The distinction between beliefs and goals should persist ithe communication

Since QAL is a goal-oriented agent programming language, in whichntagare programmed in
terms of their beliefs and goals, it is desirable that thaymwnicate in those terms. In other words,
when one agent communicates its goal to do something or ef ielsomething, the receiving agent
should recognize that communication as the sending aggodlkor belief, respectively. The mood
operators implemented in thedaL language allow an agent to express statements about thiefisbe
or goals by sending a message in a specific mood. The receig@gt can infer the sending agent’s
beliefs and goals from the mood and the propositional cortbthe message. The mood operators
thus maintain the distinction between beliefs and goaleéncommunication.

95

8.2 Future Work Conclusions and Future Work

96

Programming agents using the communication constructs shutd be pragmatic, and pose a
small burden on the programmer

Using the communication constructs, the agents of a mgéinasystem were implemented. The
send action as communication primitive provides the main irgeef. The agent selectors give an
intuitive and flexible way to address the messages to a sefenits. When using mailbox semantics,
the messages could be queried from the mailbox. The mailbmastics is intuitive, but requires
some management from the programmer’s part. Jérlonce action takes care of some of that
management which reduces the burden on the programmer eredi$es readability. Making use of
the mental model queries further improves readability amditiveness of reasoning about the mental
states of other agents.

Aside from specific situations, the distribution of agemtsiMAS across multiple GAL plat-
forms on the same or different hosts does not affect the ggegtams.

The effort of this thesis resulted in a pragmatic, usablelémgntation of communication in the
GoAL agent programming language. Though a minimal implememtatias aspired, it provides
sufficient tools to program a multi-agent system of commatirigy and cooperating agents in a clear
and pragmatic way, while providing a formal semantics ofdbemunication constructs.

8.2 Future Work

Though the focus of this thesis was on enablingAG agents to communicate, some additional func-
tionalities are worth implementing. One of these is an iaseel integration of the implemented mid-
dleware into the GAL IDE. Tools that monitor and inspect agents that run on othesGplatforms
can be added. Remote launching and stopping agents togdgthehese tools could facilitate man-
aging a distributed multi-agent system.

Another is an improved integration of the middleware witke tBnvironment Interface so that
percepts and actions can be sent from an environment tosageranother host and vice versa (see
Section 7.4). This would be interesting for use in simulajathes, where two teams compete and
each team is started on its owroGL platform.

The work in this thesis mostly focused on providing the pangming constructs to the program-
mer. On one side, of course, care was taken to ensure thabthmenication operations do not
reduce the performance of the interpreted agent programghé&other side, the performance bene-
fits of having agents cooperate while running in paralleldiferent machines) on multiple platform
as opposed to running sequentially on one platform haveetdigen measured. A testing framework
could give insights in how distribution of agents effecte thverall performance of the multi-agent
system.

[1]

[2]

[3]

[4]
[5]

[6]

[7]
[8]

[9]

[10]

[11]

Bibliography

Fabio Bellifemine, Giovanni Caire, and Dominic Greerotp editors.Developing Multi-Agent
Systems with JADENumber 15 in Agent Technology. John Wiley & Sons, Ltd., 2007

Lars Braubach, Er Pokahr, and Winfried Lamersdorf. 3adeBDI agent system combining
middleware and reasoning. ©h. of Software Agent-Based Applications, Platforms andeDe
opment Kitspages 143-168. Birkhaeuser, 2005.

F. M. T. Brazier, M. Warnier, M. A. Oey, and R. J. Timmer. égscape tutorial, November
2008. Tutorial Given at the University of Bath and D-CIS labslft.

M. Dastani, J. van der Ham, and F. Dignum. Communicat@gbal directed agents, 2003.

Mehdi Dastani. 2APL: a practical agent programming laage. Journal Autonomous Agents
and Multi-Agent System&6(3):214—-248, 2008.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as &gent Communication Lan-
guage. In N. Adam, B. Bhargava, and Y. Yesha, editBreceedings of the 3rd International
Conference on Information and Knowledge Management (C84dlpages 456-463, Gaithers-
burg, MD, USA, 1994. ACM Press.

Foundation for Intelligent Physical Agentaww. f i pa. or g.

Matthew L. Ginsberg. Knowledge interchange format: kifef death. Al Magazing 12:57—-63,
1991.

Richard Grandy and Richard Warner. Paul grice. In EdwdrdZalta, editor,The Stanford
Encyclopedia of Philosophyrall 2008.

Robert M. Harnish. Mood, meaning and speech actsFoundations of Speech Act Theory:
Philosophical and Linguistic Perspectivgsages 407—459. Routledge, 1994.

Koen V. Hindriks, Frank S. de Boer, Wiebe ven der Hoeld dahn-Jules Ch. Meyer. Seman-
tics of communicating agents based on deduction and aleducth Frank Dignum and Mark
Greaves, editordssues in Agent Communicatiopages 63—79. Springer-Verlag: Heidelberg,
Germany, 2000.

97

BIBLIOGRAPHY

98

[12] Yannis Labrou and Tim Finin. A semantics approach fankg general purpose communication
language for software agents. GiKM '94: Proceedings of the third international conferenc
on Information and knowledge managemeaiges 447-455, New York, NY, USA, 1994. ACM.

[13] Michael Pendlebury. Against the Power of Force: Reitest on the Meaning of MoodMind,
95(379):361-372, 1986.

[14] Jeffrey S. Rosenschein and Gilad ZlotkiRules of encounter: designing conventions for auto-
mated negotiation among computeMIT Press, Cambridge, MA, USA, 1994.

[15] J. R. Searle. Speech acts. 1969.

[16] John R. SearleSpeech Acts: An Essay in the Philosophy of Langu&gmbridge University
Press, January 1970.

[17] Munindar P. Singh. Agent Communication Languages:hiR&tng the Principles.Computer
31(12):40-47, 1998.

[18] R. Vieira, A. F. Moreira, M. Wooldridge, and R. H. BordlirOn the formal semantics of speech-
act based communication in an agent-oriented programramguige. 2007.

[19] Michael Wooldridge. Semantic issues in the verificatmf agent communication languages.
Autonomous Agents and Multi-Agent Syste3n4999.

Appendix A

Code listings

99

Code listings

100

© 00 ~NO U WN PP

ol
No b WNERE O

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

GOAL

% This agent represents the coffee machine. It's function is to supply a user
%w th nice steam ng fresh cups of coffee. It knows how to make cof fee and

% espresso. It will communicate to find out who can make what. Notice that the
% program and perceptrul es sections contain no constants, only variables.

% In fact, the program perceptrules and actionspec inplenent a nachine capabl e
% of making certain products, if it has all required ingredients, and finding
% producers of ingredients it cannot make itself.

mai n: cof f eeMaker {
know edge {

requi redFor

requi redFor

requi redFor

requi redFor

coffee, water).
coffee, grounds).
espresso, coffee).
grounds, beans).

—_—

canMakelt (M P) :- canMake(M Prods), nenber(P, Prods).

}

beliefs {
have(water). have(beans).
canMake(maker, [coffee, espresso]).

}

goal s {
have(latte).

}

program {
%if we need to make sonething, then make it (the action’s precondition
% checks if we have what it takes, literally)
if goal (have(P)) then make(P).

}

actionspec {
make(Prod) {
pre { forall(requiredFor(Prod, Req), have(Req)) }
post { have(Prod) }
}
1
perceptrul es {
% capabi l ity exploration:

% ask each agent what they can nake
if bel (agent(A), not(nme(A)), not(canMake(A, _))) then sendonce(A ?canMake(A _)).
% answer any question about what this agent can nake
if bel (me(Me), received(A int(canMake(Me, _))), canMake(Me, Prod))
then sendonce(A, :canMake(Me, Prod)).
% process answers from other agents

if bel (received(Sender, canMake(Sender, Products))) then insert(canMake(Sender, Products))

+ del ete(recei ved(Sender, canMake(Sender, Products))).

% update beliefs with those of others (believe what they believe)
if bel (agent(A), received(A have(X))), not(bel (have(X))) then insert(have(X)).

% 1f we need sone ingredient, see if we can make it ourselves
if goal (have(P)), bel (requiredFor(P, R), not(have(R))),
bel (canMakel t (Me, R), ne(Me)) then adopt (have(R)).
%else try to find a maker for it
if goal (have(P)), bel (requiredFor(P, R), not(have(R))),
bel (canMakel t (Maker, R), not(me(Maker))) then sendonce(Maker, !have(R)).

%if some machine seems to need a product, tell it we have it

if bel (agent (Machine), received(Mchine, inmp(have(X))), have(X))
then sendonce(Machine, :have(X)).

}

Figure A.1: Coffee maker agent

Code listings

GOAL
1 % The Coffee Grinder is an agent capable of grinding coffee beans into grounds.
2 % For making grounds it needs coffee beans. Whenever it needs beans it will
3 % announce as much by sending an inperative "!have(beans)" to allother agents.
4
5 main: cof feegrinder {
6
7 know edge {
8 requi redFor (grounds, beans).
9 canMakelt (M P) :- canMake(M Prods), nenber(P, Prods).
10 }
11 beliefs {
12 canMake(grinder, [grounds]).
13
14 goals {}
15 program {
16 %if we need to make sonething, then make it (the action’s precondition
17 % checks if we have what it takes, literally)
18 if goal (have(P)) then make(P).
19 }
20 actionspec {
21 make(Prod) {
22 pre { forall(requiredFor(Prod, Req), have(Req)) }
23 post { have(Prod) }
24 }
25 }
26 perceptrul es {
27 % capabi l ity exploration:
28
29 % ask each agent what they can make
30 if bel (agent(A), not(ne(A)), not(canMake(A _)))
31 then sendonce(A, ?canMake(A _)).
32 % answer any question about what this agent can nake
33 if bel (me(Me), received(A int(canMake(Me, _))), canMake(Me, Prod))
34 then sendonce(A, :canMake(Me, Prod)).
35 % process answers from other agents
36 if bel (received(Sender, canMake(Sender, Products)))
37 then insert(canMake(Sender, Products))
38 + del ete(recei ved(Sender, canMake(Sender, Products))).
39
40 % update beliefs with those of others (believe what they believe)
41 if bel (agent(A), received(A have(X))), not(bel (have(X))) then insert(have(X)).
42
43 %if we want to make grounds, but have no beans, announce that we need beans
44 if goal (have(P)), bel (requiredFor(P, R), not(have(R)), ne(Me), not(canMakelt(M, R)))
45 then sendonce(al | other, !'have(R)).
46
47 %if some agent needs grounds, then adopt the goal to meke it
48 if bel (received(_, inp(have(grounds)))) then adopt(have(grounds))
49 + del ete(recei ved(_, inmp(have(grounds)))).
50
51 %if some machine seens to need a product, tell it we have it
52 i f bel (agent (Machine), received(Machine, inp(have(X))),
53 have(X)) then sendonce(Machine, :have(X)).
54 }
55 }

Figure A.2: Coffee grinder agent

101

Code listings

102

© 00 ~NO U~ WN P

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

GOoAL
% The milkcow is the mlk cow of the coffee making process. Its primary function
%is to produce mlk. It doesn't participate in capability deliberations,
% except that it answers questions about what it can make. The cow will nake
% m | k whenever soneone needs it, and notify that one when it is made.
main: mlkcow {
beliefs {}
goal s {}
program {
% be a hel pful cow, see to other’s needs in mlk
if bel (received(_, inp(have(mlk))), not(have(mlk)))
then make(mlKk).
}
actionspec {
make(Prod) {
pre { Prod=mlk }
post { have(Prod) }
}
}
perceptrul es {
% (No capability exploration. Cows are generally not that interested
%in what others can nake)
%if some machine seems to need a product, tell it we have it
if bel (agent(Machine), received(Machine, inp(have(X))), have(X))
then sendonce(Machine, :have(X)).
% answer any question about what this agent can make
if bel (me(Me), received(A, int(canMake(Me,))))
then sendonce(A, :canMake(Me, [milk])).
}
}

Figure A.3: Milk cow agent

