

2030

Reduce emissions by at least 55%

2040

70-80% reduction in emissions

2050

net-zero emissions and climate neutrality

Research Framework

Early Design Phase

Efficiently and Economically

Clear Objective Definition

Optimal Solution Selection

Risk Minimization

The critical role of project developers and end users

Early Design Phase Project Developers

Energy Performance

Payback Periods
Increased property value

Phase

Unawareness Energy Savings

Rental-cost factors

Various Technological Solutions

Financial pay-offs Required levels of renovation

Successful

renovation project

Reality of a

renovation project

Reality of a renovation project

Early Design Decision-Making Inefficiencies

Stakeholder
Misalignment and
Information Asymmetry

Stakeholder
Misalignment and
Information Asymmetry

Need for Standardized and Adaptive Tools

Main research question

How can the decision-making process in the early design phase of energy

renovations in residential buildings be improved to enable project

developers to make efficient decisions that consider environmental,

economic, and social factors?

Core Objective

decision-making framework

3

4

Novelty

Integration process

Boundary Conditions

Methodological Constraints

Automation & Computation

Input & Output
Constraints

Economic

Social

Environmental

EC_C1_Investment Cost

S_C5_Renovation Duration

EN_C8_Heating Demand

EC_C2_Operational Cost

S_C6_Renovation Nuisance

EN_C9_Cooling Demand

EC_C3_Payback Period

S_C7_Energy Affordability Index (EAI)

EN_C10_Embodied Carbon

EC_C4_Net Present Value

EN_C11_Share of Renewable energy generation

4

Building Envelope

Building Systems/Services

Wall and/or roof
insulation
Energy-efficient
windows
Fixed/adjustable
shading

Heating upgrade

Upgraded Ventilation

Renewables addition

2

3

4

Main Principle Definition

Building Envelope

Building Systems/Services

Wall and/or roof
insulation
Energy-efficient
windows
Fixed/adjustable
shading

Heating upgrade

Upgraded Ventilation

Renewables addition

Building Envelope Upgrade Heating System Upgrade

Advanced Ventilation

Renewable Energy Integration

L

2

3

4

CATEGORY

AVAILABLE

OPTIONS

Building Envelope

Building Systems/Services

MAIN PRINCIPLE

Building Envelope Upgrade

•

Insulation(Façade and/or Roof)

External/Internal EPS, Wood fiber, PIR

2. Window Replacement

DB + AL /Wood frame TG + AL/Wood Framed

3. Shading

Solar Blinds(adjustable)

Heating System Upgrade

District Heating
Heat pump

Advanced Ventilation

Natural Inlet and
Mechanical Exhaust
(Type C)
Mechanical Inlet and
Mechanical Exhaust
(Type D)

Renewable Energy Integration

PV (electricity)
PVT (electricity + hot
water)
BIPV(optional)

Upgrade

Heating System Upgrade

Advanced Ventilation

Renewable energy

integration

27

General Workflow

Detailed Workflow

OUTPUT

Conceptual Framework

1

)

3

4

Creating the Tool's Database

Rijksdienst voor Ondernemend Nederland

OUTPUT

Conceptual Framework

1

2

3

4

Creating the Tool's Database

Rijksdienst voor Ondernemend Nederland

OUTPUT

Conceptual Framework

1

2

3

4

Creating the Tool's Database

Rijksdienst voor Ondernemend Nederland

OUTPUT

Conceptual Framework

1

7

3

4

Creating the Tool's Database

Rijksdienst voor Ondernemend Nederland

OUTPUT

Conceptual Framework

1

3

4

Creating the Tool's Database

Rijksdienst voor Ondernemend Nederland

OUTPUT

Conceptual Framework

1

2

3

4

Creating the Tool's Database

Rijksdienst voor Ondernemend Nederland

4

Creating the Tool's Database

Rijksdienst voor Ondernemend Nederland

OUTPUT

Conceptual Framework

1

2

3

4

Step 1: Inputs

Building geometry:

total floor area, number of floors, height, area quantities, apartment quantities

Envelope performance:

U-values of walls, roof, windows, etc.

System type:

heating/cooling/ventilation systems

Location/climate zone

Financial Data:

Loan Percentage, Interest Rate, Investment Evaluation Period etc.

Like this!

OUTPUT

Conceptual Framework

1

)

3

4

Step 1: Inputs

Building geometry:

total floor area, number of floors, height, area quantities, apartment quantities

Envelope performance:

U-values of walls, roof, windows, etc.

System type:

heating/cooling/ventilation systems

Location/climate zone

Financial Data:

Loan Percentage, Interest Rate, Investment Evaluation Period etc.

Conceptual Framework

3

.

Step 2: Multi-Criteria Weighting and Prioritization

Economic \in

Social

Predefined Weights Adjustable Weights

Environmental 🖇

Step 2: Multi-Criteria Weighting and Prioritization Calculated Criteria Weights

Predefined Weights

Housing Association Perspective

Step 3: User Customization

Table of Available Renovation Measures per Main Principle						
Show/Hide Available Renovation Measures						
Main Principle	Subcategory	Renovation Measure	Specifications			
	Wall Insulation	EPS Wood Fiber	External/Internal Location			
	Roof Insulation	PIR Wood Fiber	Internal Location			
Building Envelope Upgrade	Openings	double glazing + aluminum frame double glazing + wood frame Triple glazing + aluminum frame Triple glazing + wood frame				
	Shading	Solar Blinds (adjustable)				
Heating System Upgrade	Heating System	District Heating connection Heatpump				
Advanced Ventilation	Ventilation Type	Simple Mechanical Ventilation (Type C)-Central More efficient Mechanical Ventilation (Type D)-Central				
	PV	Regular PV panels	on the roof assuming 70% coverage			
Renewable Energy Integration	PVT	PVT Panels	on the roof			
	BIPV	BIPV (both facades)	on facades (both facades) assuming 70% coverage			

Step 4: Surrogate Model

Step 4: Surrogate Model

Output of Surrogate Model-Quantified Results Table

Scenarios	EC_C1_ Investmen t Cost	EC_C2_ Operation al Cost	EC_C3_ Payback Period	EC_C4_ Net Present Value	S_C6_ Renovatio n Duration	S_C7_ Renovatio n Nuisance	S_C6_ Energy Affordabili ty Index (EAI)	EN_C8_ Heating Demand	EN_C9_ Cooling Demand	EN_C10_ Embodied Carbon	EN_C11_ Share of Renewabl e energy generation
S1	€	€	Years	€	Weeks	Level	%	kWh/y	kWh/y	kg CO2 eq.	kWh/y
S2	€	€	Years	€	Weeks	Level	%	kWh/y	kWh/y	kg CO2 eq.	kWh/y
•••						•••	•••	•••	•••		
Sn	€	€	Years	€	weeks	level	%	kWh/y	kWh/y	kg CO2 eq.	kWh/y

Step 5: Output and Decision Support

Existing Drawings & Technical Properties

general 3D Model

One unit modelling including technical properties

OUTPUT

Application

1

2

3

4

Building geometry:

total floor area, number of floors, height, area quantities, apartment quantities

Envelope performance:

U-values of walls, roof, windows, etc.

System type:

heating/cooling/ventilation systems

Location/climate zone

Financial Data:

Loan Percentage, Interest Rate, Investment Evaluation Period etc.

Application

1

2

3

4

housing association

Criteria	Final Weights	Specifications		
C1	44%	EC_C1_investment cost		
C2	13%	EC_C2_Operational cost		
C ₃	33%	EC_C3_payback period		
C4	10%	EC_C4_NPV		
C ₅	59%	S_C5_renovation duration		
C6	28%	S_C6_Renovation Nuisance		
C ₇	13%	S_C7_energy affordability index (EAI)		
C8	39%	EN_C8_heating demand		
C9	33%	EN_C9_cooling demand		
C10	9%	EN_C10_embodied carbon		
C ₁₁	18%	EN_C11_share of renewable energy generation		

Weights from Housing Association's perspective

NPUTS PROCESS OUTPUT Application 1 2 -

What affects the results?
Sensitivity Analysis

Ranking of Scenario

OUTPUT

Application

1

2

3

4

Input Parameters Change

Weighting

Electricity Price

Financial Data

Pricing Strategy

OUTPUT

Application

1

2

 \mathbf{H}

Scenario 156: External Wall Insulation with EPS + Internal Roof Insulation with PIR +

Scenario 157: External Wall Insulation with EPS + Internal Roof Insulation with PIR +

Scenario 158: External Wall Insulation with EPS + Internal Roof Insulation with Wood

Scenario 159: External Wall Insulation with EPS + Internal Roof Insulation with Wood

Minimal

25

Window Replacement with Triple Glazing (Aluminum Frame)

Window Replacement with Triple Glazing (Wooden Frame)

Level of Intervention:

Subsidy percentage (%):

Fiber + Window Replacement with Double Glazing (Aluminum Frame)

Scenario Generation

45

Subsidy percentage (%):

Selected Scenarios

Item	Scenario
S1.1	Insulation->wall->external->EPS, Insulation >roof->internal->PIR-> double glazing + aluminum frame
S1.2	Insulation->wall->external->Wood Fiber, Insulation->roof->internal->Wood Fiber-> triple glazing + aluminum frame
S2.1	Insulation->wall->external->EPS, Insulation >roof->internal->PIR, -> double glazing + aluminum frame ->District Heating Connection
S2.2	Insulation->wall->external->Wood Fiber, Insulation->roof->internal->Wood Fiber, -> triple glazing + aluminum frame ->District Heating Connection
S3.1	District Heating Connection-> More efficient Mechanical Ventilation (Type D)-Central-> Insulation->wall->external->EPS, Insulation >roof->internal->PIR-> double glazing + aluminum frame
S3.2	District Heating Connection-> Simple Mechanical Ventilation (Type C)-Central -> Insulation->wall->internal->PIR, Insulation >roof->internal->PIR-> double glazing + timber frame
S4.1	Insulation->wall->external->EPS, Insulation >roof->internal->PIR-> triple glazing + timber frame ->District Heating Connection->Regular PV Panels
S4.2	Insulation->wall->internal->Wood Fiber, Insulation->roof->internal->Wood Fiber-> double glazing + aluminum frame ->District Heating Connection->Regular PV Panels

Application

1

2

3

Application

S3.2

- District Heating Connection
- Simple mechanical ventilation type C
- Internal PIR Wall and Roof Insulation
- Double glazing with timber frame

S3.2A1

- District Heating Connection
- Simple mechanical ventilation type C
- Internal PIR Wall and Roof Insulation
- Double glazing with timber frame

S4.1A2

- **District Heating Connection**
- External EPS Wall and Internal PIR Roof Insulation
- Triple glazing with timber frame
- Regular PV Panels

2/8 DISQUALIFIED

Negative NPV

Application

1

2

3

4

S3.1B1

- District Heating Connection
- More efficient mechanical ventilation type D
- External EPS Wall and Internal PIR Roof Insulation
- Double glazing with aluminum frame

S3.2B2

- District Heating Connection
- More efficient mechanical ventilation type C
- Internal PIR Wall and Roof Insulation
- Double glazing with timber frame

1/8 DISQUALIFIED

SAME BUT

3/8

DISQUALIFIED

INPUTS

Financial Data

PROCESS

OUTPUT

Application

1

2

3

Z

%

S3.1C1

- District Heating Connection
- More efficient mechanical ventilation type D
- External EPS Wall and Internal PIR Roof Insulation
- Double glazing with aluminum frame

S3.1C2.1

S3.2C2.2

S3.2C3.1

S3.2C3.2

2/8 DISQUALIFIED

0/8 DISQUALIFIED

3/8 DISQUALIFIED

3/8 DISQUALIFIED

0/8 DISQUALIFIED

INPUTS

PROCESS

OUTPUT

Application

1

2

3

S3.1D1

- District Heating Connection
- More efficient mechanical ventilation type D
- External EPS Wall and Internal PIR Roof Insulation
- Double glazing with aluminum frame

1/8 DISQUALIFIED

Scenario	Pi	Rank
S3.2	0.826	3
S3.2A1	0.791	7
S4.1A2	0.688	11
S3.1B1	0.790	8
S3.2B2	0.804	6
S3.1C1	0.789	9
S3.1C2.1	0.788	10
S3.2C2.2	0.828	1
S3.2C3.1	0.827	2
S3.2C3.2	0.821	4
S3.1D1	0.805	5

INPUTS - PROCESS - OUTPUT - Application - 1 - 2 - 3 - 4

Pi<0.7 🛇

How I know that the results are correct?

Manual Calculations

Some weeks

So what affects the results?

Financial Data

Pricing Strategy

So what affects the results?

So what affects the results?

Which Criteria affect the results?

EC_C4_Net Present Value

EN_C8_Heating Demand

EN_C11_Share of Renewable energy generation

Application

1

2

3

4

So what is the best solution for this case study?

S3.2

- District Heating Connection
- Simple mechanical ventilation type C
- Internal PIR Wall and Roof Insulation
- Double glazing with timber frame

Pi=0.827

9.8% Savings in Heating Demand

+33.6% in Energy Demand-Energy Bill

Application

1

2

3

4

So what is the best solution for this case study?

S3.2

IRR=7.89%

WACC=7.6%

Do I have to renovate?

INPUTS PROCESS OUTPUT Application 1 2 3 4

What is next?

Early Design
Phase

Design
Phase

Construction
Phase

Phase

Phase

End of Life
Phase

Application INPUTS PROCESS

What is next?

INPUTS - PROCESS - OUTPUT - Application - 1 - 2 - 3 - 4

Should we apply this scenario to similar typology?

NO

INPUTS PROCESS OUTPUT Application 1 2 3 4

What should we do?

And now the fun part!

Let's Introduce

User Guidance Workflow

Did I make it?

How can the decision-making process in the early design phase of energy renovations in residential buildings be improved to enable project developers to make efficient decisions that consider environmental, economic, and social factors?

Did I make it?

Limited Focus on Alternative

Evaluation

Fragmentation Across Phases

Narrow Scope of Decision Criteria

Complexity and Usability

Lack of Customizability

Focus on Alternatives Evaluation

Holistic Support Across Early Phases

Multi-Criteria Evaluation Framework

Intuitive and User-Friendly Design

Customizability and Adaptability

Did I make it?

BEFORE

Weeks

AFTER

15 minutes

What's next?

Expand

Real time data

Software

AI & ML

Pilots

