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ABSTRACT 

Use of DXA-measured aBMD is the common method to predict osteoporotic hip fractures in 

clinical settings. However, taking only the changes in aBMD into consideration is not enough 

to explain the whole variety of low energy fractures. It is deemed essential to develop 

alternative methods that also reflect the influence of other parameters (e.g. shape of the 

anatomical structure, load conditions), which are known to be associated with fracture. 

Development of subject specific FE models is a powerful instrument for investigating bone 

strength in vivo and, thus, for estimating the risk of fracture. As the mentioned alternative 

methods need to be adaptable to clinical settings while also being accurate and sufficiently 

fast for specific tasks, e.g. estimation of proximal femur fracture load, the main aim of this 

study was to develop a framework that is adaptable to clinical uses and has room for 

improvement. The presented semi-automatic framework covers development of patient 

specific FE models based on DXA to predict proximal femur fracture load. Information on the 

proximal femur shape of individuals were directly derived from DXA by Active Appearance 

Models (AAM), which detects the object of interest by fitting statistical shape models to the 

new set of images. To build up AAM, a training data set of DXA scans of 70 proximal femurs 

was used. Furthermore, 17 DXA scans of the proximal femurs that had been not included in 

the training set were used as test samples, on which the FE models were developed. To 

evaluate the effect of segmentation in prediction of proximal femur fracture load, two 

different cases were considered: proximal femurs that had been segmented using AAM and 

the same samples with manual segmentation. In order to evaluate the accuracy of AAM, 

leave-one-out experiments were conducted which provided a point-to-curve error of 1.2470 ± 

0.6505 (mm) (with 95% confidence). On the other hand, point-to-curve error in segmentation 

of 17 proximal femurs that were used in the FE analyses was computed as 1.4169 ± 0.7499 

(mm) (with 95% confidence). Taking all of the 17 proximal femur samples into account, the 
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fracture loads were estimated to be 3870.9 ± 932.83 (N) for manual segmentation case and 

3804.2 ± 850.11 (N) for segmentation case using AAM. A strong correlation was observed 

between these estimated failure loads (R
2 

=0.8197). On the other hand, it was noticed that 

even small errors (e.g. 1.06 mm) in segmentation process might result in larger errors (e.g. 

24.1%) in the prediction of fracture load.  

This work presents the first results obtained with the created framework, which is found to 

perform sufficiently well compared to its equivalents and is easily adaptable to clinical 

settings. However, considering the load prediction sensitivity to segmentation, further 

improvement in the accuracy of the segmentation process is believed to be a vital step for 

future studies. Such a development might be valuable for the prediction accuracy of proximal 

femur fracture risk. 

 

KEY WORDS: Osteoporosis, Active Appearance Models, Finite Element Analysis, Proximal 

Femur, Proximal Femur Fracture Load 
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1. Introduction 

 

Every year, more than 8.9 million osteoporotic fractures occur around the world with one 

third taking place in Europe and resulting in 2 million disability-adjusted years (DALYs) 

(Strom, Borgstrom et al. 2011). Osteoporotic fractures, whose prevalence increases with age, 

mostly occur at hip, spine and distal forearm (Roberts, Pacheco et al. 2010). Among these, hip 

fractures are the most serious as they necessitate hospitalization and surgical intervention. To 

lessen their occurrences, early identification of individuals, who are at high risk of developing 

fracture, is essential. Since by designation of individuals in advance, fracture prevention 

strategies (e. g. use of drug that increases bone density) can be followed (Naylor, McCloskey 

et al. 2013).  

In order to diagnose osteoporosis and to predict fractures, several densitometric techniques 

(e.g. dual-energy x-ray absorptiometry - DXA, quantitative computed tomography - QCT) 

that enable evaluation of the quantity and quality of the bone, have been developed 

(Lochmuller, Zeller et al. 1998, Strom, Borgstrom et al. 2011). Among these techniques, 

DXA that measures the bone mass per unit area (areal bone mineral density, aBMD, g/cm
2 

) is 

the most widely used in clinical settings (Whitmarsh, Fritscher et al. 2012).   

Although use of aBMD measured with DXA is adequate to diagnose osteoporosis,  it is not 

possible to explain the whole variety of low energy (e. g. fall from standing height or less) 

fractures by changes in aBMD (Vaananen, Jurvelin et al. 2012). This is due to the fact that 

bone mass is not the only parameter which affects the bone strength; there are many other 

factors (e. g. shape of the anatomical structure, loading conditions) that should be considered 

in fracture assessments (Testi, Viceconti et al. 2002, Naylor, McCloskey et al. 2013). With the 

intent of improving the fracture risk estimation of the densitometric techniques, several 

attempts have been made to develop methods that can take other risk factors (e. g. shape of 

the anatomical structure) into consideration (Keyak, Rossi et al. 1998). One of the endeavors 
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to evaluate fracture risk is the development of subject-specific finite element (FE) models 

(Schileo, Taddei et al. 2008). These models are powerful tools to predict the bone strength in 

vivo, since they include information about the shape of the bone, bone tissue material 

properties and the external loading conditions. To develop subject-specific FE models, images 

that are acquired by various imaging modalities (e. g. CT, MRI for 3D models; DXA for 2D 

models) can directly be used (Poelert, Valstar et al. 2013). With the aim of generating FE 

models from images, objects of interests need to be segmented. Thus, segmentation process is 

one of the essential steps of subject-specific FE model generation. The segmentation 

procedure should be accurate enough to obtain realistic information on the shape of the 

interested structure, consequently to get more representative FE models. Besides, to decrease 

the time consumed on the preparation of FE models, segmentation process should be fast and 

should require less user interaction. 

The aim of this study was to develop a fast and automated (i.e. semi-automatic) frame work to 

estimate the risk of proximal femur fracture. The process mainly covers the use of Active 

Appearance Model (AAM) (Cootes, Edwards et al. 1998) which is a wide known method for 

segmentation technique based on deformable models, and the 2D FE modeling of the 

segmented proximal femur. In the methods section, the different steps taken in the framework 

(Figure 1) are presented. Afterwards, in the results section, outputs of leave-out-experiments 

that were conducted for evaluation of AAM’s performance in segmentation and of 2D FE 

analyses are given. Finally, in the discussion section, the results of the study will be evaluated 

and recommendations to further develop the framework will be given. 
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Figure 1: Main Framework to predict proximal femur fracture load. 

 

2. Materials and Methods 

 

The framework to predict proximal femur fracture load is composed of two main steps: 

segmentation of proximal femurs from DXA scans by using AAM and the development of 

subject–specific FE models. In order to search images and to take out the objects of interest 

(i.e. proximal femur), the generation of AAM is required. On the other hand, to evaluate the 

FE analyses, post-processing is necessary.  

In the following subsections; the general information about the data (i.e. DXA scans of 

osteoporotic patients) used within the study, the steps involved in development of AAM 

(generation of statistical shape model, statistical texture model and of combined appearance 

model), in segmentation of proximal femur and in development of FE model (meshing, 

assignment of material, loads and boundary conditions) are presented. In addition, the 

methods to evaluate the performance of AAM in segmentation and the FE model to predict 

proximal femur fracture are explained. 

Development of 

FE Model 
DXA SCANS 

Segmentation 

using AAM 

Generation of  

Active  

 Appearance 

 Models (AAM) 

Postprocessing 

of FEA 

Statistical Shape Model 

Statistical Texture Model 

Combined Appearance 

Model 

Meshing 

Material  

Loads & Boundary 

Conditions 



7 

 

Through all the steps, MatLab programming environment (The MathWorks Inc., USA) was 

used. Moreover, the FEA software Abaqus 6.13 (Dassault Systèmes Simulia Corp., USA) was 

used to generate mesh on segmented proximal femurs and employed as solver. 

2.1. Data 

Anonymous DXA scans (Lunar Prodigy, GE Healthcare - USA) of 151 osteoporotic patients 

were gathered from the Erasmus Medical Center (Rotterdam, The Netherlands). Some DXA 

scans were excluded when proximal femurs were not adequately imaged (e. g. scans including 

foreign objects such as buttons), and when the patients received implants. Following the 

elimination, DXA scans of 87 osteoporotic patients remained and a single hip image (left or 

right femur) for each subject was retrieved from these scans. Furthermore, 87 DXA scans 

were randomly divided into two groups; one including 70 DXA scans and one with 17 DXA 

scans. The first group is composed of the DXA scans of patients (56 Female and 14 Male) 

with an average age of 61.5 ± 12.6 years and this set was used in AAM generation. On the 

other hand, the second group that covers DXA scans of patients (12 Female and 5 Male) with 

an average of 61.82 ± 10.7 years was used in segmentation procedure, thus, in the 

development of FE models to predict hip fracture load.  

2.2. Statistical Model  

The generated statistical model was based on Active Appearance Model (Cootes, Edwards et 

al. 1998). This model basically captures the shape and texture (i.e. the pixel intensities across 

the object, thus the aBMD distribution) variations within a studied population. As the main 

aim of the statistical models is to reflect variations, the model needs to be trained with a 

number of examples of the object of interest (i.e. proximal femur) (Bryan, Nair et al. 2009). 

The basic steps involved in the development of AAM from 70 DXA scans of proximal femurs 

are: generation of statistical shape model, of statistical texture model and unification of these 

models into one complete and compact model: combined appearance model. These steps will 
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briefly be presented in the following subsections. On the other hand, detailed information on 

the main methods is given in Appendix I. For AAM generation, the current framework 

adopted the general approach, which can be found in MATLAB File Exchange, developed by 

Dirk-Jan Kroon.  

2.1.1. Statistical Shape Model 

The procedure for generation of statistical shape models is mainly composed of shape 

representation and statistical analysis of the shape data. With the intent of representing shapes 

of proximal femurs, the most generic method that requires definition of a set of points 

(landmarks) was used (Heimann and Meinzer 2009). Before going through the definition of a 

set of points, image contrast enhancement is performed to improve pictorial information of 

the DXA scans for better visual interpretation (Figure 2). To enhance the image contrast, the 

Min-Max filter method described by Westerweel was used (Westerweel 1993) (see Appendix 

I for further information).  

 

Figure 2: Application of Min-Max filter on an original DXA scan to enhance image contrast 

for better visual interpretation. 

Following the contrast enhancement of images, a total number of 70 landmarks were 

manually placed along the contour of proximal femurs. As the lesser trochanter was not 

visible on numerous images, the lesser trochanter region was not considered (Figure 3).  
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Figure 3: 70 landmarks were placed along the contour of proximal femur. 

Subsequently, coordinates of all points were concatenated into a vector, x that represents the 

shape: 

( )1 1,..., , ,...,
T

n nx x y y=x   (1) 

The annotation procedure was repeated for each image of the training data, i.e. 70 DXA scans. 

During this process, care was taken to place all the points of a shape in a corresponding 

manner with those of the other remaining images of the training dataset.  

In order to obtain true shape representation, all the shapes were aligned in a common 

coordinate system (Figure 4) by using the Generalized Procrustes Analysis (GPA) (Goodall 

1991). Translational effects were removed by positioning all the shapes in such a way that 

their centroids were at the origin (Pegg, Mellon et al. 2012) . The scaling  and the rotational 

effects were removed by using the method described by Du et al. and Arun et al., respectively 

(Arun, Huang et al. 1987, Du, Zheng et al. 2007) (see Appendix I).  
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Figure 4: Alignment of 70 proximal femur shapes into a common coordinate frame. 

After alignment of all the shapes into a common coordinate system, the intra-class shape 

variation was extracted by performing Principal Component Analysis (PCA) (Jolliffe 2005). 

The principal modes of variation (eigenvectors), Φs, and their respective variances 

(eigenvalues), λs, were found by performing singular value decomposition (SVD) on the 

aligned data (Heimann and Meinzer 2009). Subsequently, a shape instance can be described 

by adding contributions of the most important modes of variation to the mean shape: 

s s
= +x x bΦΦΦΦ  (2) 

where, bs is a set of shape parameters and Фs represents the matrix of ordered eigenvectors. 

Figure 5 shows the mean shape and the deformation of the mean shape using the first three 

modes of variation of the shape model.  

 

Alignment
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Figure 5: Mean shape and mean shape deformation using the first three modes of variation of 

the shape model. 

To determine how many modes to be retained, the number of modes was increased until the 

ratio of the accumulated variance to the total variance, r, reaches 0.98 (Heimann and Meinzer 

2009). 98% of the shape variation can be modeled with 16 modes (Figure 6). On the other 

hand, an important issue when generating a shape using Eq. 2 is to limit its variation to obtain 

plausible shapes. Therefore, vector bs, which contains the shape model parameters, has to be 

confined within a certain range (Heimann and Meinzer 2009). A common approach to 

generate shapes similar to those found in the original training dataset was considered by 

limiting the model parameters as following: 

   3 3
i i i

bλ λ− ≤ ≤   (3) 
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Figure 6: Shape eigenvalues in descending order. 

2.1.1. Statistical Models of Texture 

With the aim of building the statistical models of texture as described by Cootes et al. 

(Cootes, Edwards et al. 2001), there are three main steps to be followed. These steps include 

the capture of pixel information, the normalization of the data to discard the global 

illumination effects and the modeling of the normalized texture variation (Stegmann 2000). In 

order to capture texture information (i.e. pixel intensities across the proximal femur), a piece-

wise affine warp based on the Delaunay triangulation was used (Stegmann 2000) (see 

Appendix I). Each training example was warped to the mean shape. In this way, the spurious 

texture variations that might rise due to shape differences were removed (Cootes and Taylor 

2004). The intensity information from the shape normalized image was sampled using bilinear 

interpolation (see Appendix I) to form a texture vector, g. Afterwards, the texture vector was 

normalized according to Cootes et al. (Cootes, Edwards et al. 2001): 

  

( )g

norm

g

µ

σ

−
=

g 1
g   

  (4) 

where, 1 is a unit vector, µg and σg
2 

are respectively the mean and variance of elements of a 

texture vector, g. Following the normalization of texture data, as in the case of statistical 
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Mode 1 
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Mode 3 

shape models, the texture variation was extracted by applying PCA to the texture data. In a 

similar manner to shape instance generation, a texture instance can be created by deforming 

the mean texture by a linear combination of eigenvectors (Stegmann 2000): 

   g g= +g g bΦΦΦΦ  (5) 

where bg is a set of texture parameters and Фg represents the matrix of ordered eigenvectors. 

Within the study, as the deformable model might favor to remain inside the proximal femur 

(less accurate fit of the bone shape), the method described by Stegmann was used to deal with 

this problem (Stegmann 2000) (see Appendix I). Referring to the method, an extra region that 

was in the neighborhood of the proximal femur was included. 

Figure 7 shows the mean texture and the deformation of the mean texture using the first three 

modes of variation of the texture model. By using 50 modes, 98% of the texture could be 

explained (Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Mean texture and mean texture deformation using the first three modes of variation 

of the texture model. 
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Figure 8: Texture eigenvalues in descending order. 

2.1.2. Combined Appearance Model 

With the aim of obtaining one complete compact model, the shape and texture models that 

were briefly presented, were unified (see Appendix I) (Cootes and Taylor 2004). Briefly, for 

each example of the training set, the shape and texture parameters were concatenated into a 

vector, b. The PCA, as in the case of statistical shape models, was applied on the data 

resulting in a further model: 

   c
=b cΦΦΦΦ  (6) 

where Фc represents the matrix of ordered eigenvectors and c is a set of parameters that 

control both the shape and texture of the model. As the combined model parameters are 

related to those of the shape model and of the texture model, these parameters can be found 

and can be substituted in Eq. 2 and 4 to generate new shape and texture instance (see 

Appendix I) (Whitmarsh, Humbert et al. 2011). On the other hand, 98% of the combined 

variation can be modeled with 44 parameters (Figure 9).  
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Figure 9: Combined appearance eigenvalues in descending order. 

2.3. Search Algorithm 

The main aim at building up AAM was to use it in DXA image search to detect the proximal 

femur. The search process can simply be considered as an optimization problem. In order to 

match the model to the image, the set of parameters that refer to the position and the shape 

should be found in such a way that the cost function, quality of the fit, is optimized (Cootes et 

al., 2004). AAM mainly takes the error between the model texture and image texture into 

account to evaluate the quality of fit (see Appendix I). During the search of images, the 

combined model parameters and pose parameters are estimated in such a way that the error is 

minimized. As there are quite a number of parameters (model and pose parameters) that 

should be adjusted during fitting, the optimization problem is high-dimensional. It is a known 

fact that solving high-dimensional problems are computationally expensive. In order to lessen 

the complexity of the problem, Cootes et al. had proposed the use of a-priori knowledge on 

properly adjusting the parameters during search (Cootes, Edwards et al. 2001). Within the 

study, the method described by Cootes et al., was used to lessen the complexity of problem. 

This method allows one to correct parameters during fitting. The details on getting a priori 
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knowledge and using it during matching of the model to the object is described in Appendix I. 

Briefly, the presented approach assumes that there is a linear relationship between the 

parameter updates (combined model and pose parameters), δp, and the texture residuals, r(p), 

over the entire search (Heimann and Meinzer 2009, Kroon 2011): 

   Rδ = −p r(p)  (7) 

where, R is the derivative matrix. This was computed at the training time and used to correct 

parameters during matching. On the other hand, another important issue was the initialization 

of the search process. As the AAM search is one of the local search methods , it initially 

necessitates for a rough estimation of the correct solution (Heimann and Meinzer 2009). In 

this study, a rough estimation was supplied by positioning the mean shape close to the 

proximal femur.  

2.4.  Evaluation of AAM 

In order to assess how well the developed AAM will perform, leave-one-out experiments 

were conducted on all training sets (70 DXA scans). With respect to these experiments, AAM 

were generated using all the training examples, but each time leaving one of the examples out. 

Following the generation of AAM, the model was fit to the missed out example. This 

procedure was repeated for all the training images. The segmentation error was found for each 

image by comparing the segmented shape to the corresponding known ground truth (i.e. same 

proximal femur that was manually segmented). The point-to-curve error (Stegmann 2000) 

was recorded for each image of the training set. On the other hand, in order to further evaluate 

the performance of AAM in segmentation, a point-to-curve error was computed considering 

the segmentation of 17 proximal femur samples that had not been included in the training set. 

These 17 proximal femur samples were used in development of finite element models. The 

point-to-curve error was found by comparing the proximal femurs segmented using AAM to 

their related known ground truth. Furthermore, to find out whether it is worthy to use AAM in 
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segmentation of proximal femurs, inter-observer reliability in manual segmentation was 

checked by asking three other users to put landmarks along the contours of 10 randomly 

selected proximal femurs. These were chosen from the set used in FE analyses. The proximal 

femur contours that were manually segmented by each user, were compared with their 

corresponding known ground truth (i.e. proximal femurs that had been manually segmented 

by the author). 

2.5. Generation of Subject – Specific FE Models 

With the aim of developing subject-specific FE models, information on the specific geometry, 

on the bone tissue material properties and on the loading conditions of individuals need to be 

supplied (Poelert, Valstar et al. 2013). With respect to specific geometry, the information was 

directly derived from the DXA scans by segmenting the proximal femur of each individual 

with the method described above. Afterwards, mesh was generated on the segmented bone. 

Proper material properties, loads and boundary conditions were assigned to the segmented 

bone. In the following subsections, the details of meshing procedure, definition of material 

properties, loads and boundary conditions and assignments of these to the segmented bone, 

are presented in detail.  

2.5.1. Meshing  

To generate mesh on the segmented bone, the extracted geometry information was sent to the 

FEA software Abaqus 6.13. Using the meshing tools of the software, bone model was 

discretized with the element type of CPS6M (6 node modified plane stress element). Before 

going through the FE analyses of 17 proximal femurs that were not involved in the training 

phase of AAM, mesh convergence test was performed by using one of the segmented bones. 

This test was necessary to be sure of obtaining mesh independent FE analyses results. Within 

the scope of mesh convergence study, two different cases were considered. In the first case, 

the spatial material distribution was not included. The same homogenous material parameters 
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were assigned to each element (E=6000MPa, ν=0.3) (Scholz, Hoffmann et al. 2013). In the 

second case, non-uniform distribution of material properties within the proximal femur was 

taken into consideration. To reach the goal, the material properties were defined with respect 

to gray values derived from the part of the original DXA image that had remained inside the 

segmented proximal femur (see Material assignment section). Defined material parameters 

were assigned to each element. During the mesh convergence study, mesh density was 

increased six times. The total number of elements and of nodes for each mesh refinement, are 

presented in Table 1. 

 Table 1: Total number of nodes and elements for each mesh refinements. 

Mesh Total Number of Nodes Total Number of Elements 

Mesh 1 1144 533 

Mesh 2 4297 2070 

Mesh 3 15215 7458 

Mesh 4 18519 9094 

Mesh 5 26008 12807 

Mesh 6 57980 28695 

Mesh 7 88229 43748 

Five different elements were defined in coarsest mesh (Figure 10). The correspondent ones 

were determined for each mesh refinement. 

 

 Figure 10: Five elements (red triangles) that were defined in the coarsest mesh. 
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The convergence was assessed based on the Von Mises stress (at element centroid) and the 

displacement (at nodes attached to the interested element) values. After evaluating the results 

of the mesh convergence study (see Results section), mesh density (i.e. Mesh 6) that would be 

used throughout the FE analyses of 17 proximal femurs was defined.  

2.5.2. Material Assignments 

The steps involved in material definition and assignment are described in detail, in Appendix 

II. Briefly, the centroid of each mesh element was found. For each element, a search region 

was defined. Using this region, the search area in the original DXA scan to find which pixels 

were staying within the mesh element, was narrowed.  The gray values of pixels that remained 

inside the element were averaged. The mean gray value was used to calculate aBMD (Figure 

11). Afterwards, aBMD was converted to volumetric BMD (vBMD) by using the subject-

specific thickness of proximal femur (see Appendix II)  and the apparent density in a manner 

described by Schileo et al. (Schileo, Taddei et al. 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Original DXA scan (left) and definition of aBMD (g/cm
2
) and Elasticity Modulus 

(MPa) using pixel intensities. 
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The material properties were defined by using empirical equations that relate the apparent 

density to elasticity modulus (Figure 11). The density-elasticity relationship (Table 2) that 

had been described by Morgan et al. (Morgan, Bayraktar et al. 2003) was preferred, since it 

was found to be best among the commonly used empirical equations to describe material 

properties in FE models (Scholz, Hoffmann et al. 2013).  

Table 2: Equations used to define elasticity modulus, E (MPa), compressive strength, Sc 

(MPa) and tensile strength, St (MPa) from apparent density (g/cm
3
). 

Relationship Density Range Reference 

   E=15010 papp
2.18

     papp ≤ 0.280 g/cm
3 

Morgan et al. 

       E=6850 papp
1.49

     papp >0.280 g/cm
3
  

Sc=85.5 papp
2.26

 papp ≤ 0.355 g/cm
3
  

Sc=38.5 papp
1.48

 papp >0.355 g/cm
3
  

St=50.1 papp
2.04

 papp ≤ 0.355 g/cm
3
  

St=22.6 papp
1.26

 papp >0.355 g/cm
3
  

2.5.3. Assignments of Loads and Boundary Conditions 

The loads and boundary conditions were defined to simulate a fall on the greater trochanter 

(Figure 12) (Naylor, McCloskey et al. 2013). The impact force defined with respect to body 

weight and height of individual (see Appendix II), was applied to the greater trochanter. In the 

meantime, the femoral head and the distal shaft were constrained in one direction (i.e. x 

direction) and in both directions (i.e. x and y directions), respectively. 
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Figure 12: Force was applied on the greater trochanter. The femoral head was constrained in 

x direction, while the distal shaft was restricted in x-y directions. 

 

2.5.4. Post Processing of FE analyses  

To predict the proximal femur fracture load, stress based failure criterion (i.e. distortional 

energy that is also known as Von Mises stress) was used. A factor of failure was computed at 

the centroid of each element, in a similar way that had been presented by Keyak et al. (Keyak, 

Rossi et al. 1998): 

   
Von Mises Stress at element centroid (computed the FE model)

FOF =
Compressive strenght of element (derived from DXA scan)

 (8) 

The element which had a FOF value greater than one was assumed to be failed. Considering 

the fact that failure of few elements does not really represent fracture of the whole bone, the 

failure load was defined as the load which causes failure of contiguous elements with an area 

of 25 mm
2
 (Naylor, McCloskey et al. 2013). To determine the failure load, the post-

processing code was written in such a way that it starts searching for failed contiguous 

elements with an area of 25 mm
2
 at the one-tenth of the impact force. If there is no such an 

area with the defined criterion, the FOF value was decreased with a factor β and the search 
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procedure started again. When the described criterion was satisfied, the failure load was 

calculated using the β value and taking the linearity of the developed FE model into 

consideration: 

   
One tenth of  the peak impact force

Predicted Fracture Load =
β

 (9) 

2.6.  Evaluation of FEA 

To assess the effect of segmentation error in prediction of proximal femur fracture load, two 

different FE models were compared with each other. First, patient-specific FE model was 

developed based on known ground truth (i.e. proximal femur that had been manually 

segmented), while the second one was built up based on the proximal femur that had been 

segmented using AAM. During the evaluation process, 17 proximal femurs that had not been 

involved in the training phase of AAM and were used in the generation of FE models. A total 

of 34 FE analyses (17 analyses for manual segmentation and 17 analyses for segmentation 

using AAM) were performed. Based on the analyses, failure load was determined for each FE 

model (see Results section). 

3. RESULTS 

As mentioned, following the generation of AAM from a training set, an essential step is to 

evaluate the performance of segmentation. Based on the leave-one-out experiments, 

conducted with a set of 70 DXA scans, the mean point-to-curve error was found to be 1.2470 

± 0.6505 (mm) (with 95% confidence), over 70 DXA images. Figure 13 depicts the frequency 

of errors for each experiment.  
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Figure 13: Frequency of point-to-curve errors in leave–one-out experiments. 

Figure 14 presents the point-to-curve errors, distributed within the proximal femur. It should 

be noted that segmentation is less accurate at the femur head and at the greater trochanter 

compared to other regions. 

 

 

 

 

 

 

 

 

Figure 14: The mean (left) and a standard deviation (right) of error for each landmark. 
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materials distribution within the proximal femur) were considered, mesh convergence study 

results are given for both cases. Figure 15-16 and Figure 17-18 represent Von Mises stress, 

displacements for uniform and non-uniform material distribution cases, respectively. 

 

Figure 15: Von Mises Stress (MPa) at various mesh densities for uniform material 

distribution. 

  

Figure 16: Displacements at various mesh densities for uniform material distribution. 
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Figure 17: Von Mises Stress (MPa) at various mesh densities for non-uniform material 

distribution. 

 

 

Figure 18: Displacements at various mesh densities for non-uniform material distribution. 
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Considering Von Mises stress results of uniform material distribution case, the relative error 

between the first (533 elements) and the second (2070 elements) mesh densities is 12%, while 

between the third (7458 elements) and the fourth (9094 elements) mesh densities is close to 

4%. The relative errors for further mesh refinements are less than 4%. Furthermore, taking 

displacements for uniform material distribution into account, the relative error between the 

first two mesh densities is %5. The relative displacement error becomes less than 2% 

following the third mesh refinement. As in the Von Mises stress results of the case with 

uniform material distribution, the relative error remains under 4% after the third mesh 

refinement. Although relative displacement errors are moderately high compared to those of 

the uniform case, relative errors remain to be less than 3% after the third mesh refinement. 

Based on the relative errors and the time required for FE analyses, the sixth mesh density 

(28695 elements) was chosen and used throughout the study.  

Furthermore, in order to evaluate the influence of segmentation error on the calculated 

proximal femur fracture load, point to curve errors were computed for each AAM-segmented 

17 proximal femurs and compared with the known ground truth. Error was found to be 1.4169 

± 0.7499 (mm) (with 95% confidence) in all 17 proximal femurs. Figure 19 visualizes the 

distribution of point-to-curve errors in each comparison.  

Moreover, to evaluate the distribution of errors within the proximal femur, Figure 20 presents 

the mean and a standard deviation of error for each landmark of the shape model. Based on 

this figure, as in the leave-one-out experiments, segmentation is seen to be less accurate at the 

femur head. On the other hand, considering the manual segmentations of 10 randomly chosen 

proximal femurs by three other students, point to curve error was found to be 1.0354 ± 0.4771 

(mm). 
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Figure 19: Frequency of point-to-curve errors for 17 proximal femur samples based on which 

FE models would be developed. 

 

 

 

 

 

 

 

 

 

 

Figure 20: The mean (left) and a standard deviation (right) of error for each landmark. 
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Concerning the post-processing of the FE analyses, the proximal femur fracture load was 

estimated as 3870.9 ± 932.83 (N) and 3804.2 ± 850.11 (N) for 17 proximal femurs that had 

been manually segmented and for the same samples segmented using AAM, respectively. The 

relative error between two different segmentation cases was found to be 8.8 ± 6.5 (%). To 

investigate the correlation between the estimated fracture load in manual segmentation and in 

the case of using AAM, a simple linear regression on the failure loads FMAN vs. FAAM was 

performed (Figure 21). In figure, the coefficient of determination, R
2
 together with the 

regression line equation are indicated. Based on the regression analysis, FAAM shows a strong 

correlation (R
2 

=0.8197) with FMAN.  

 

Figure 21: Predicted fracture load in manual segmentation, FMAN vs. fracture load in the case 

of using AAM, FAAM. 
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Moreover, Figure 22 illustrates the distribution of Von Mises stress and the factor of failure 

(FOF) within one of the proximal femur samples that has relative failure load error close to 

the mean. These distributions were obtained at the predicted fracture load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Distribution of Von Mises (top left, for manual segmentation; top right, for 

segmentation using AAM) and of FOF (bottom left, for manual segmentation; bottom right, 

for segmentation using AAM) within one of the proximal femur samples that has relative 

failure load error close to the mean. 
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Based on the FOF distributions, the most frequent failure areas (i.e. failed elements with a 

contiguous area of 25 mm
2
) were found to be located at the superolateral part of the femoral 

neck. Furthermore, to find out whether the relative failure load errors are correlated with 

segmentation errors, correlation coefficient was computed. The scatter plot of segmentation 

error vs. relative failure load errors is given in Figure 23. No significant correlation was found 

(r=0.1414 and p=0.5883).  

 

Figure 23: Relative fracture load errors vs. point-to-curve segmentation errors. 

Moreover, point-to-curve errors were investigated considering four distinct regions of 

proximal femur: shaft, trochanter, neck and head. Figure 24 depicts the scatter plots of 

relative failure load error in function of segmentation errors at the mentioned regions for all 

17 proximal femurs. No correlation was observed between relative fracture load error and 

segmentation errors.  
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Figure 24: Relative fracture load errors vs. point-to-curve errors at Shaft (top left), at 

Trochanter (top right), at Neck (bottom left), at Head (bottom right). 

4. DISCUSSION 

As previously mentioned, use of DXA-measured aBMD is a common method to predict 

osteoporotic hip fractures in clinical settings. However, taking only the changes in aBMD into 

consideration is not enough to explain all low energy fractures (Vaananen, Isaksson et al. 

2011). Therefore, it is essential to develop alternative methods that also consider the influence 

of other parameters (e.g. shape of the anatomical structure, load conditions), which are known 

to be associated with fracture. Development of FE models is a powerful tool to investigate the 
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strength of the bone in vivo and, thus, to estimate risk of fracture. Numerous FE models of 

proximal femurs had been generated based on QCT images (Cody, Gross et al. 1999, Keyak 

and Falkinstein 2003, Wirtz, Pandorf et al. 2003). However, QCT imaging technique is 

associated with high costs and high radiation doses for patients (Whitmarsh, Humbert et al. 

2011). Therefore, it becomes essential to keep DXA as the standard imaging modality in the 

building of FE models. On the other hand, the main goal in development of alternative 

methods is to make them adaptable to clinical settings. Accordingly, the proposed methods 

need to be accurate and sufficiently fast for specific tasks, e.g. estimation of proximal femur 

fracture load. Within this study, the main aim was to develop a framework that covers the 

generation of subject specific FE models of proximal femurs based on DXA images. As FE 

model creation requires knowledge on the shape of the proximal femurs of individuals, 

segmentation process plays an important role for deriving the information directly from the 

images. Although Active Shape Models (ASM) is more widely used to search images to 

detect object of interest (Heimann and Meinzer 2009), within this study AAM approach was 

preferred for segmentation task. The main reason to choose AAM was to get familiar with this 

method, as it provides several benefits. Like ASM, following a proper initialization, 

segmentation of proximal femur using AAM can be realized within a few seconds. On the 

other hand, similar to ASM, AAM based framework can be used by any person who is not an 

expert in image analysis (Stegmann 2000). Moreover, as AAM can capture both the texture 

(i.e. intensities across the object of interest, thus distribution of bone densities) and the shape 

variations within a studied population and can be extended to 3D in straightforward manner 

(Kroon 2011),  it is also be used in the reconstruction of 3D shape and spatial distribution of 

bone densities from DXA (Whitmarsh, Humbert et al. 2011). Afterwards, 3D patient-specific 

FE models, naturally more accurate in the prediction of proximal femur fracture loads 

compared to 2D FE models, can be generated based on reconstructed proximal femurs. 
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Leaving advantages and possible applications of AAM aside, performance of the AAM was 

evaluated by conducting leave-one-out experiments. Based on results, point-to-curve error 

was found to be 1.2470 ± 0.6505 (mm) (with 95% confidence). On the other hand, point-to-

curve error in segmentation of 17 proximal femurs that were used in FE analyses was 

computed as 1.4169 ± 0.7499 (mm) (with 95% confidence). The segmentation errors were 

compared with those of the study conducted by Lindner et al. (Lindner, Thiagarajah et al. 

2013), who built a fully automatic system based on the improved standard ASM in order to 

detect proximal femur in anteroposterior pelvic radiographs. The model was trained using 839 

images and was tested on 266 images. Based on the results, mean point to curve error was 

found to be less than 0.9 mm (for 99% of images) and less than 3.3 mm (for 100% of images) 

(Lindner, Thiagarajah et al. 2013). Although the training sets and the methods used for 

segmentation purpose are different and it is not possible to compare the errors directly with 

each other, their proposed method is seen to be more accurate. However, referring to the 

maximum point-to-curve error, lower values (i.e. 2.1 mm for leave-one-out experiments and 2 

mm in segmentation of 17 proximal femurs) were obtained compared to those (i.e. 3.3 mm) 

indicated in the study of Lindner et al. (Lindner, Thiagarajah et al. 2013).  Additionally, to 

evaluate the performance of generated AAM in segmentation, inter-observer reliability in 

manual segmentation was tested. Based on the test, point-to-curve error was found to be 

1.0354 ± 0.4771 (mm). Comparing this error with those of in 17 proximal femur 

segmentation, it can be indicated that AAM based segmentation is worthy to be improved and 

used for derivation of proximal femur from DXA. 

One of the drawbacks of the created framework within this study is the need for user 

interaction to initialize the segmentation process. This might lead to have intra and inter 

operator errors. To handle this, Lindner et al. developed the fully automatic segmentation 

process (Lindner, Thiagarajah et al. 2013). Like in the study of Lindner et al., AAM based 
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segmentation procedure can be made fully automatic in future studies. Furthermore, as the 

effectiveness of statistical models comes from the modes of variation involved in the training 

data set, incorporation of more training examples in generation of the AAM might be useful 

to increase the accuracy of the proposed method. Moreover, to speed up the model generation 

phase and to improve the segmentation accuracy, canonical correlation analysis as described 

by Donner et al. can be used for construction of the derivative matrix R (Donner, Reiter et al. 

2006, Heimann and Meinzer 2009). This approach had found to be more accurate in 

prediction of parameter updates compared to the numeric differentiation as it had been applied 

in this study. It had also been indicated that this method decreases the time consumed in 

training of AAM, by requiring fewer training examples. 

Considering FE analyses results, estimated fracture loads for FE models which had been 

manually segmented and had been derived from DXA using AAM, were found to be 3870.9 ± 

932.83 (N) and 3804.2 ± 850.11 (N) respectively. Referring to the study of Naylor et al., 

fracture loads were estimated to be 1820 N (ranging between 1265, 2648 N) for women with 

prevalent osteoporotic fractures and 2614 N (ranging between 1793, 3435) for women with 

non-fracture (Naylor, McCloskey et al. 2013). Furthermore, according to Amir et al., femoral 

strength had been indicated to be around 2500 N (2577.7 ± 1172.2 N) in women and 3200 N 

(3217.4 ± 1270.9 N) in men with prevalent osteoporotic fractures, while to be around 4000 N 

(3866.9 ± 1186.6 N) for women and 4600 N (4602.0 ± 1287.4) in men with non-fracture 

(Amin, Kopperdhal et al. 2011). Estimated proximal femur fracture loads, in this study, 

remains within the failure load ranges that were presented by Amin et al. (Amin, Kopperdhal 

et al. 2011). On the other hand, estimated fracture loads for both segmentation cases were 

higher compared to those of the study of Naylor et al. (Naylor, McCloskey et al. 2013). The 

difference might result in from the differences of data set used in the studies. In their study, 

(Naylor, McCloskey et al. 2013), only women with a mean age of 82 years (ranging between 
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75 and 95 years) were considered. However, within this study, although the sample size is 

small, the data set included men and women with an average age of 61.82 ± 10.7 years. As it 

had been indicated by Lochmüller et al., although no significant changes in bone strength 

were observed in men, the failure loads decreased in females with an increasing age 

(Lochmuller, Zeller et al. 1998). Furthermore, failure loads in men were found to be higher 

compared to those of in women (Lochmuller, Zeller et al. 1998, Amin, Kopperdhal et al. 

2011). These studies might explain the root cause for the difference in estimated fracture 

loads with Naylor et al. (Naylor, McCloskey et al. 2013). 

No correlation was observed between segmentation errors and relative failure load errors by 

taking the whole proximal femur and four different regions (i.e. neck, trochanter, shaft and 

head) into account. The resulting segmentation errors do not provide the necessary insight 

about the implications of the error on the geometry and thus, the strength of the femur. 

Therefore, it is believed that some specific geometrical measures (e.g. femoral neck axis 

length) would be beneficial in order to evaluate the effects of segmentation errors in 

prediction of proximal femur fracture load.  Although no correlation was examined, it was 

noticed that even small errors (e.g. 1.06 mm) in segmentation process might result in larger 

errors (e.g. 24.1%) in prediction of fracture load. Even if the aim of the study and the methods 

used in this study are quite different from those of the study conducted by Väänänen et al. 

(Vaananen, Isaksson et al. 2011), the observations are in agreement. Väänänen et al. indicated 

that small errors in 3D shape reconstruction shape of proximal bone from a 2D BMD image 

leaded in larger errors in mechanical parameters (e.g. Von Mises stress). Considering this fact, 

it becomes essential to improve more the accuracy of the AAM based segmentation process, 

in future studies. 

Within this study, during the definition and assignment of material properties, grouping of 

materials were not considered. However, defining material groups, thus reducing number of 
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material labels determined for each mesh element, the time required for FE analyses can be 

lessened. For material group definition, approach that had been described by Taddei et al. 

(Taddei, Pancanti et al. 2004) can be adapted.  

In conclusion, created framework has room for improvement and is suitable to be used in 

clinical settings. It is relatively fast and requires user interaction only at the initialization of 

segmentation process. However, the initialization of search process might become error-prone 

and time consuming when AAM is applied to a large scale data. Therefore, it is better to make 

the framework fully automatic in this regard.  

Moreover, before its use in clinical settings, additional work is needed to verify the 

performance of the developed method. With this purpose, a long term study would be useful 

which allows to estimate the proximal fracture load based on developed FE analyses and also 

to compare the outcome with clinical data. In future studies, large scale long term data set will 

be included in both developments of AAM, and of FE models.  

Additionally, a different framework that aims for the generation of 3D patient specific FE 

models from DXA scans would be useful in order to increase the accuracy of predictions.  
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