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Effects of dissipation on the superfluid–Mott-insulator transition of photons
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We investigate the superfluid–Mott-insulator transition of a two-dimensional photon gas in a dye-filled optical
microcavity and in the presence of a periodic potential. We show that in the random-phase approximation the
effects of the dye molecules, which generally lead to dissipation in the photonic system, can be captured by two
dimensionless parameters that only depend on dye-specific properties. Within the mean-field approximation, we
demonstrate that one of these parameters decreases the size of the Mott lobes in the phase diagram. By considering
also Gaussian fluctuations, we show that the coupling with the dye molecules results in a finite lifetime of the
quasiparticle and quasihole excitations in the Mott lobes. Moreover, we show that there are number fluctuations
in the Mott lobes even at zero temperature and therefore that the true Mott-insulating state never exists if the
interactions with the dye are included.
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I. INTRODUCTION

In physics there are many theoretically predicted phenom-
ena that are hard to verify directly in experiments. This can
have several reasons, such as that predictions are outside the
limits of current devices or that other physics overshadows the
desired effect. In the latter category examples are the effects
of disorder on top of effects predicted for clean systems or a
combination of various kinds of interactions. Therefore, there
is a constant search for systems that exhibit interesting physics,
are relatively simple, and are described by few parameters of
which many are controllable experimentally.

A prime example of such a system is obtained by combining
cold atoms with an optical lattice. In this case there is almost
full control over the interactions between the atoms and over
the lattice structure. Therefore, there exists a broad variety of
experimental possibilities in these systems that demonstrate
many phenomena in condensed-matter physics (see, e.g.,
Refs. [1–9]). Nowadays, this research area is still very active.
One of the reasons is that cold fermionic atoms in an optical
lattice possibly are quantum simulators for high-temperature
superconductivity [10–12].

An interesting property of cold bosonic atoms in optical
lattices is that there is a so-called quantum phase transi-
tion [13]. By reducing the depth of the optical lattice the system
undergoes a transition from the Mott insulator, where each site
is filled with an equal and integer amount of particles and
number fluctuations are suppressed, to the superfluid phase
with a fluctuating number of atoms per site. This transition
was first observed experimentally by Greiner et al. [14] and
subsequently has been studied extensively both theoretically
and experimentally [15–23]. Although most studies focus on
the superfluid–Mott-insulator transition for cold atoms, this
phase transition is not restricted only to cold atomic gases.
For example, it also has been studied in systems consisting
of polaritons [24–30]. Furthermore, the transition has been
investigated in interacting photon gases in coupled dissipative
cavities [31–34].
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More recently, a new candidate for a system that can
display a superfluid–Mott-insulator transition has emerged,
namely, photons in a dye-filled optical microcavity. After the
first experiments, which are well described in terms of Bose-
Einstein condensation of weakly interacting photons [35], a
new experiment was recently proposed [36]. By periodically
varying the index of refraction of the dye inside the cavity,
an effective lattice potential for the photons can be induced.
Therefore, it is expected that the photons can also undergo this
superfluid–Mott-insulator phase transition. However, this sys-
tem is fundamentally different from the standard cold atomic
gases in optical lattices since the photons can be absorbed
and emitted by the dye molecules. Thus, the question arises
as to how this coupling affects the behavior of the photons in
this periodic potential and in particular the properties of the
quantum phase transition to the Mott insulator.

In this article we study the dissipation effects for a photonic
lattice in a dye-filled optical microcavity. Although we focus
here on photons, the results in this paper also apply to
other systems that have dissipation. First, in Sec. II we
introduce the general theory and express all quantities that
enter our theory in terms of experimentally known parameters.
Subsequently, we determine the effect of the molecules on
the Mott lobes in mean-field theory in Sec. III. We start
by considering a simplified model that neglects the fixed
longitudinal momentum of the photons and only considers
absorption and emission of photons with zero momentum. We
show that at the mean-field level the dye effects are captured
in one parameter γ that can be calculated analytically and
we express this parameter in experimentally known quantities.
Moreover, we show that incorporation of γ decreases the size
of the Mott lobes. Thereafter, we consider the model that
includes the fixed longitudinal momentum of the photons and
also the absorption and emission of photons with an arbitrary
momentum and we study the effect of these extensions on the
value of γ . In Sec. IV we go beyond mean-field theory and we
calculate in the random-phase approximation the excitations
inside the Mott lobes. We show that in this approximation the
dimensionless damping parameter αlat enters our model and
therefore the excitations acquire a finite lifetime. Moreover,
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we show that even at zero temperature there are now number
fluctuations inside the Mott lobes, which implies that the
true Mott-insulating phase no longer exists if the interactions
with the dye are taken into account. Finally, we end with a
conclusion and outlook in Sec. V.

II. PHOTONIC LATTICE IN A DYE-FILLED
MICROCAVITY

In this section we write down a model for a lattice of
photons in a dye-filled optical microcavity for the experimental
setup used in Refs. [35,37]. In the particular experimental
configuration the longitudinal momentum of the photons
is fixed and the photons behave equivalently to a massive
harmonically trapped Bose gas in two dimensions. Since the
photons interact with dye molecules, the imaginary-time action
that describes the photon system contains three parts. The part
that describes the photons reads

Sph[φ∗,φ] =
∫

�β

0
dτ

∫
dx φ∗(x,τ )

{
�

∂

∂τ
− �

2∇2

2m

+ V ext(x) − μ + 1

2
φ∗(x′,τ )V (x − x′)φ(x′,τ )

}

× φ(x,τ ), (1)

where μ is the chemical potential of the photons, m denotes
their effective mass, β = 1/kBT with T the temperature,
V (x − x′) is the interaction potential, and

V ext(x) = V0

∑
j

cos2(2πxj/λ) (2)

denotes the lattice potential with λ two times the lattice
spacing. In the following we are primarily interested in how
these photons are affected by the coupling to the molecules and
therefore we ignore the external harmonic potential that arises
due to the curvature of the cavity mirrors. We model the dye as
a two-level system with energy difference 
 and we introduce
the effective mass md to model the rovibrational structure of
the molecules. As is shown in Ref. [38], the value of this
effective mass can be tuned such that the correct experimental
results for the molecular absorption and emission spectra are
obtained. A different way to achieve this has been put forward
by Kirton and Keeling [39]. Hence, the molecular part of the
action reads

Smol[ψ
∗,ψ] =

∑
ρ∈{↑,↓}

∫
�β

0
dτ

∫
dy ψ∗

ρ (y,τ )

×
{

�
∂

∂τ
− �

2∇2

2md
+ Kρ − μρ

}
ψρ(y,τ ), (3)

where K↑ = 
, K↓ = 0, and μρ denotes the chemical poten-
tial of the excited- and ground-state molecules. Contrary to
the photon part, here the integration is over three-dimensional
space. From now on, we use the convention that x is a
two-dimensional vector and y is three dimensional. The last
part of the action consists of interaction terms between photons
and molecules and reads

Sc[ψ∗,ψ,φ∗,φ] = g

∫
�β

0
dτ

∫
dy{φ∗(y,τ )ψ∗

↓(y,τ )ψ↑(y,τ )

+ φ(y,τ )ψ∗
↑(y,τ )ψ↓(y,τ )}, (4)

with g a coupling constant. Furthermore, φ∗(y,τ ) is related to
the photon field φ∗(x,τ ) in Eq. (1) according to

φ(y,τ ) =
√

2/L sin(kγ z)φ(x,τ ). (5)

Here we assume that in one direction the photons are confined
by a box of length L with impenetrable barriers at either end.
Furthermore, in agreement with the experiments, we only take
into account a single longitudinal momentum kγ .

To make further progress, we expand the photonic fields in
Wannier functions as

φ(x,τ ) =
∑
n,i

an,i(τ )wn(x − xi), (6)

where an,i(τ ) and its complex conjugate respectively annihi-
lates or creates a photon in a Wannier state wn(x − xi) at lattice
site i and in the band with the band index n. Furthermore, the
molecular field is expanded as

ψρ(y,τ ) =
∑

p

bp,ρ(τ )
eip·y
√

V
, (7)

where bp,ρ(τ ) and b∗
p,ρ(τ ) annihilates or creates a molecule

with momentum p and internal state |ρ〉. Next we consider
the tight-binding limit, where each site can be seen as a
harmonic oscillator and the Wannier functions are known
exactly. Furthermore, we consider the limit where the photons
only occupy the lowest band n = 0. In this approximation the
three parts of the action can be simplified and by using the
result of Ref. [40] we obtain

Sph[a∗,a] = −
∫

�β

0
dτ

∑
i 
=j

a∗
i (τ )ti,j aj (τ )+

∫
�β

0
dτ

∑
i

a∗
i (τ )

×
{

�
∂

∂τ
+ εi − μ + U

2
|ai(τ )|2

}
ai(τ ), (8)

where εi is the energy at lattice site i, ti,j is the hopping
strength between sites i and j , and U is the on-site interaction
strength. The expression of these quantities in terms of
Wannier functions can be found in Ref. [40]. Since we consider
the tight-binding limit, we know the analytic expression for
w0(x − xi). It is given by

w0(x − xi) =
(

mω

π�

)1/2

exp{−mω(x − xi)
2/2�}, (9)

where m is the effective mass of the photon and ω is the
frequency of the harmonic potential at every site that can be
obtained by performing a Taylor expansion of Eq. (2). Hence,

ω = 2π

λ

√
2V0

m
. (10)

Note that the single-band approximation is only valid if
we have that both the thermal energy kBT and the on-site
interaction strength U are smaller than the on-site energy of
the photons �ω, i.e., kBT � �ω and U � �ω. Furthermore,

Smol[b
∗,b] =

∫
�β

0
dτ

∑
ρ,p

b∗
p,ρ(τ )

×
{

�
∂

∂τ
+ εp + Kρ − μρ

}
bp,ρ(τ ), (11)
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where εp = �
2p2/2md. Finally, the part that describes the in-

teraction between the photons and molecules can be rewritten
as

Sc[a∗,a,b∗,b] = i√
2AV

∫
�β

0
dτ

∑
i,k,k′,q

{gk,k′,ia
∗
i (τ )b∗

(k′,q),↓(τ )

× (b(k,q−),↑(τ ) − b(k,q+),↑(τ )) + g∗
k,k′,iai(τ )

× (b∗
(k,q−),↑(τ ) − b∗

(k,q+),↑(τ ))b(k′,q),↓(τ )},
(12)

where k and k′ are two dimensional and q± = q ± kγ . Above
and in the following, p is a three-dimensional momentum
vector and k is two dimensional. Furthermore,

gk,k′,j = g

∫
dx w0(x − xj )ei(k−k′)·x (13)

and by using Eq. (9),

gk,k′,j = gmei(k−k′)·xj −�(k−k′)2/2mω, (14)

with gm =
√

4g2π�/mω. The total action given by the sum
of Eqs. (1)–(12) describes the photon gas coupled to dye
molecules in a periodic lattice in the single-band approxi-
mation. All the parameters that enter in this theory are now
expressed in the experimentally tunable parameters λ and V0.

III. MEAN-FIELD THEORY

The model derived in the previous section is rather
complicated due to the fixed longitudinal momentum kγ and
the dependence of gk,k′,i on two independent momenta. To get
a better understanding of the physics involved in this system,
we first consider a simplified model that neglects both the
nonzero value of kγ and the nondiagonal coupling in gk,k′,i .
We return to the effects of these approximations in Sec. III B.

A. Toy model

We consider a toy model consisting of photons and
molecules, where the molecules can only absorb and emit
photons with very small momenta compared to the typical
molecular momenta. Thus, we consider a model with Sph[a∗,a]
and Smol[b∗,b] given by respectively Eqs. (8) and (11) and
Sc[a∗,a,b∗,b] is changed into

Sc[a∗,a,b∗,b] = gm√
A

√
V

∫
�β

0
dτ

∑
i,p

{a∗
i (τ )b∗

p,↓(τ )bp,↑(τ )

+ ai(τ )b∗
p,↑(τ )bp,↓(τ )}. (15)

Now, we use a mean-field approach to calculate the phase
diagram of the photons. Therefore, we introduce the order
parameter ψ = 〈ai(τ )〉. However, due to the coupling with
the molecules, an expectation value of ai(τ ) will also induce
a nonzero value for φp = 〈b∗

p,↑(τ )bp,↓(τ )〉. Physically this
implies that the molecules are forced into a linear superposition
of its internal states. In the language of magnetism this means
that the pseudospin of the molecules gets also a component in
the x-y plane.

In the end we are only interested in the photons and
therefore we want to calculate φp as a function of ψ . Since

Sph[a∗,a] is irrelevant for this calculation, we first only
consider Sc[a∗,a,b∗,b] and Smol[b∗,b]. Up to linear order in
the fluctuations, Sc[a∗,a,b∗,b] is given by

Sc[a∗,a,b∗,b] = − 2g̃mNsψ

∫
�β

0
dτ

∑
p

φp

+ g̃m

∫
�β

0
dτ

∑
i,p

φp[ai(τ ) + a∗
i (τ )]

+ g̃mNsψ

∫
�β

0
dτ

∑
p

{b∗
p,↓(τ )bp,↑(τ )

+ b∗
p,↑(τ )bp,↓(τ )}, (16)

where g̃m = gm/
√

A
√

V , Ns is the number of lattice sites, and
without loss of generality we assume that both ψ and φp are
real.

We focus on the last part of the right-hand side of Eq. (16) to
obtain an expression for φp. By using a Matsubara expansion
we can write for the part of the action that depends on the
molecular fields b↑ and b↓,

SMF[b∗,b] =
∑
p,n

u∗
p,n

[
G−1

↑ g̃mNsψ

g̃mNsψ G−1
↓

]
up,n, (17)

where G−1
ρ = −i�ωn + εp + Kρ − μρ and

up,n =
[
bp,n,↑
bp,n,↓

]
. (18)

Now we perform a unitary transformation to diagonalize the
action. Thus, we define

vp,n =
[
βp,n,↑
βp,n,↓

]
=

[
cos(θ ) − sin(θ )
sin(θ ) cos(θ )

] [
bp,n,↑
bp,n,↓

]
. (19)

Rewriting the action in terms of vp,n diagonalizes the action
on the diagonal −i�ωn + εp + 
/2 − λ± and

λ± = [
μ↓ + μ↑ ∓

√
(
 − 
μ)2 + 4g̃2

mN2
s ψ2

]
/2. (20)

Moreover,

sin(2θ ) = 2g̃mNsψ√
(
 − 
μ)2 + 4g̃2

mN2
s ψ2

,

(21)

cos(2θ ) = 
 − 
μ√
(
 − 
μ)2 + 4g̃2

mN2
s ψ2

.

Here we define 
μ = μ↑ − μ↓. Furthermore, since
〈β∗

↓,p(τ )β↑,p(τ )〉 = 〈β↓,p(τ )β∗
↑,p(τ )〉 = 0, we obtain

φp = 〈b∗
p,↓(τ )bp,↑(τ )〉

= g̃mNsψ√
(
 − 
μ)2 + 4g̃2

mN2
s ψ2

×{NMB(εp + 
/2 − λ+) − NMB(εp + 
/2 − λ−)},
(22)

where we again considered the Maxwell-Boltzmann limit as
the system is at room temperature. As already mentioned, this
equation explicitly shows that ψ 
= 0 also implies a nonzero
value of φp.
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In order to further investigate the properties of the photons,
we substitute this result into the action in Eq. (16). To compare
with results for standard Hubbard models as in, for example,
Ref. [40], we switch to the Hamiltonian formalism. In the
thermodynamic limit the effective Hamiltonian that describes
the photons in the mean-field approximation is now given by

Ĥ eff = ztψ2Ns[1 + 2γ ] + U

2

∑
i

n̂i(n̂i − 1)

− ztψ[1 + γ ]
∑

i

(âi + â
†
i ) − μ

∑
i

n̂i , (23)

where we only consider tunneling between nearest neighbors,
z is the number of nearest neighbors, n̂i = â

†
i âi is the photon-

number operator, and

γ = g̃m

zt

∑
p

φp

= g2
m

zt

P (
μ)


μ − 


(
md

md,real

)3/2

nsnmol. (24)

Here P (
μ) denotes the polarization of the molecules as
defined in Ref. [38], md,real is the real mass of the dye
molecules, and nmol equals the density of molecules. Further-
more, ns = Ns/A is the density of sites. Moreover, note that
γ > 0 as the polarization P (
μ) and 
μ − 
 have the same
sign for all values of 
μ. Moreover, recall that we modeled
the molecules as a two-level system with an effective mass and
therefore the ratio md/md,real appears in the final result.

By introducing Ū = U/zt and μ̄ = μ/zt , we define Ĥ eff =
zt

∑
i Ĥi and the Hamiltonian Ĥi at each site i as

Ĥi = Ū

2
n̂i(n̂i − 1) + ψ2[1 + 2γ ]

− μ̄n̂i − ψ[1 + γ ](âi + â
†
i ). (25)

To calculate the phase diagram of the photons in the dye-filled
cavity, we use the usual Landau theory for second-order phase
transitions. Hence, we write the energy of the ground state as

Eg(ψ) = a0(g,Ū ,μ̄) + a2(g,Ū ,μ̄)ψ2 + O(ψ4) (26)

and we minimize this energy. The corresponding value of
ψ determines the phase of the system. For a2(g,Ū ,μ̄) � 0,
ψ = 0 and the system is inside a Mott lobe. Differently, for
a2(g,Ū ,μ̄) < 0 we have that ψ 
= 0 and the photons are in the
superfluid phase. This distinction becomes clear if we consider
the ground state of the system. At the level of mean-field
theory, the ground state inside the Mott lobe is a state with a
well-defined number of particles at each site. Therefore, we
obtain ψ = 〈âi〉 = 0 as the states with a different number of
photons per site are orthogonal. Furthermore, in the superfluid
phase the number of particles per site is not sharply defined.
Thus, the ground state is a linear superposition of number
states and therefore ψ 
= 0.

To investigate the phase transition we determine a2(g,Ū ,μ̄)
by following Ref. [40] and perform second-order pertur-
bation theory. Therefore, we split the Hamiltonian in an
exactly solvable part Ĥ0 and a perturbation ψ[1 + γ ]V̂ . In

this case

Ĥ0 = Ū

2
n̂i(n̂i − 1) + ψ2[1 + 2γ ] − μ̄n̂i (27)

and

V̂ = (âi + â
†
i ). (28)

In perturbation theory the second-order correction to the
energy reads

E(2)
g = ψ2[1 + γ ]2

∑
n
=g

|〈n|V̂ |g〉|2

E
(0)
g − E

(0)
n

, (29)

where |n〉 is the state with n particles and for n = g this state
is the ground state. Furthermore, E(0)

n is the energy of the state
|n〉 with respect to the exactly solvable Hamiltonian Ĥ0. Again
analogous to Ref. [40], we obtain

a2(g,Ū ,μ̄) = [1 + γ ]2

(
g

Ū (g − 1) − μ̄
+ g + 1

μ̄ − Ūg

)

+ 1 + 2γ (30)

for Ū (g − 1) < μ̄ < Ūg. The boundary of the Mott lobes can
be found by solving a2(g,Ū ,μ̄±) = 0 for μ̄±. We find

μ̄± = 1

2
[(2g − 1)Ū − 1/�]

± 1

2�

√
1 + Ū�(Ū� − 4g − 2), (31)

where � = (1 + 2γ )/(1 + γ )2 < 1. In Fig. 1 we present a plot
of the two branches of Eq. (31) for several values of γ . We ob-
tain that for increasing γ , the size of the Mott lobes decreases.
Physically this makes sense as the absorption and emission of
photons by the molecules effectively increases the hopping of
photons between different lattice sites. Furthermore, we note
that for increasing number of particles in the ground state the
effect of γ also increases. Moreover, the smallest Ū for each
Mott lobe is equal to

Ūc = [2g + 1 +
√

(2g + 1)2 − 1]/� = Ūc,0/�, (32)

g = 3

g = 2

g = 1

20

40

60

80

0

-

20 010 15 255 U-

FIG. 1. Phase diagram of the Bose-Hubbard Hamiltonian with
the photon-molecule interaction parameter γ . From bottom to top, the
three contributions are for, respectively, one, two, or three particles
per site. The solid, dashed, and dotted lines are for γ = 0, 1/2,
and 1.
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with Ūc,0 the result obtained in Ref. [40] for γ = 0 and
correspondingly � = 1.

To estimate the value of γ , we want to express this
coefficient in terms of the experimental parameters λ and V0.
As mentioned before, λ is twice the lattice spacing and V0 is
the depth of the lattice potential. From Eq. (24) it follows that
we have to find an expression for t . From Ref. [41] we obtain

t̃ = 4Ṽ
3/4

0

π1/4

(
�th

λ

)1/2

exp

{
−2

(
λ

�th

)(
Ṽ0

π

)1/2}
. (33)

Here �th = (2π�
2/mkBT )1/2 is the thermal de Broglie

wavelength, Ṽ0 = V0/kBT , and t̃ = t/kBT . For the two-
dimensional squared periodic potential considered here, we
take ns = 4/λ2 and z = 4. Hence,

γ = 1

4π1/4

(
�th

λ

)1/2 1

Ṽ
5/4

0

exp

{
2

(
λ

�th

)(
Ṽ0

π

)1/2}

× g2β2P (
μ)

β(
μ − 
)

(
meff

mreal

)3/2

nmol. (34)

In Fig. 2 we use this expression for γ to illustrate the phase
diagram for β|
μ − 
| < 1 and z = 4. For these chemical
potentials we can approximate P (
μ)/β(
μ − 
) � 1/2
and for other quantities such as g, md, and md,real we take
the numerical values as found in Ref. [38].

B. Photon model

Up to now we only considered the terms with diagonal
coupling in momentum space and we neglected the fixed
momentum kγ of the photon in the longitudinal direction. In the

1 2 3 4
0

20

40

60

80

100

λ/Λth

V
k BT

/
0

0

FIG. 2. Plot of the values of γ in terms of the experimental
parameters V0 and λ. We used nmol = 9 × 1023 m−3, T = 300 K,
and β|
μ − 
| < 1. Furthermore, �th is the thermal de Broglie
wavelength. On the right-hand side of the solid line γ > 1/2 and the
corrections to the Mott lobes are important. To the left of the solid
line γ < 1/2 and the effect of the photon-molecule coupling γ on
the Mott lobes is small. Finally, these results are only valid if thermal
fluctuations are small kBT � �ω or 4πV0/kBT � (λ/�th)2.

following we consider the effect of these approximations on
the phase diagram presented in the previous section. Therefore,
here we consider the full action consisting of the sum of
Eqs. (8)–(12). In accordance with the previous calculation,
we define 〈b∗

(k′,q),↓(τ )b(k,q−),↑(τ )〉 = φk,k′,q− and 〈ai〉 = ψ . The
expectation value of the molecular fields that depend on q+ are
denoted by φk,k′,q+ .

Now we perform a mean-field approximation and we
calculate φk,k′,pz as a function of ψ . Therefore, we consider
Smol[b∗,b] and

Sc[a∗,a,b∗,b] = iNsψ√
2AV

∫
�β

0
dτ

∑
k,G,q

gG{b∗
(k+G,q),↓(τ )

× [b(k,q−),↑(τ ) − b(k,q+),↑(τ )]

+ [b∗
(k,q−),↑(τ ) − b∗

(k,q+),↑(τ )]b(k+G,q),↓(τ )},
(35)

where without loss of generality we again assume that ψ is real.
Furthermore, we perform the summation over the lattice sites.
After this summation the coupling constant gk,k′,i , given by
Eq. (14), only depends on a two-dimensional reciprocal lattice
vector G. Here we consider Eq. (2) and therefore we have a
cubic lattice with lattices sites (nλ/2 − λ/4,mλ/2 − λ/4) with
n and m integers. Therefore, G = 4πn/λ with n = (nx,ny) and
nx and ny integers. Hence,

gG = gm exp

{
−2

λ̃

(
π

Ṽ0

)1/2(
n2

x + n2
y

)}
, (36)

where λ̃ = λ/�th and Ṽ0 = V0/kBT .
To calculate φk,k′,q we in principle have to invert an infinite-

dimensional matrix. However, we are generally interested in
the phase transition and therefore we only need to calculate the
inverse of this infinite-dimensional matrix up to linear order in
ψ . Since all the off-diagonal terms of this infinite-dimensional
matrix are already linear in ψ , we obtain up to linear order in
ψ ,

φk,k+G,q+

= −iNsψgG√
2AV

× NMB[ε(k,q+) − μ↑+
] − NMB[ε(k+G,q) − μ↓]

ε(k,q+) − ε(k + G,q) + 
 − 
μ
,

(37)

where we consider the classical limit. We again combine the
effects of the molecules in the parameter γ , which in this case
reads

γ = ns

ztV

∑
k,nx ,ny ,q

g2
m exp

{
−4

λ̃

(
π

Ṽ0

)1/2(
n2

x + n2
y

)}

× NMB[ε(k,q+) − μ↑ + 
] − NMB[ε(k + G,q) − μ↓]


μ − 
 + ε(k + G,q) − ε(k,q+)
,

(38)

where we used that the contributions of both φk,k+G,q+ and
φk,k+G,q− are the same. Note that for kγ = 0 and if we only
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FIG. 3. Plot of the values of γ for the complete photon model
and the simplified model in terms of the experimental parameters V0

and λ. The simplified model is represented by the solid line and the
full model is depicted by the dashed line. On the right-hand side of
both lines γ > 1/2 and the Mott lobes are noticeably affected by the
photon-molecule coupling. In this plot we take �th � 1.6 × 10−6 m
and the numerical values for the other parameters and the conditions
are the same as given below Fig. 2.

consider nx = ny = 0, we recover our previous result from the
simplified model.

To determine γ we have to evaluate a sum over an infinite
number of terms. However, by performing a numerical analysis
we obtain that the contribution rapidly decreases for increasing
nx and ny . Therefore, it suffices to only take into account the
terms where both nx � 1 and ny � 1. Since γ depends on

μ, we obtain a different phase diagram for every value of

μ. However, although there are quantitative differences, the
qualitative results of the calculations are not dependent on
the precise value of 
μ. Therefore, in comparison with the
previous calculation, we again take β|
 − 
μ| < 1.

In Fig. 3 we show a comparison between the values of γ

in the thermodynamic limit as a function of the experimental
parameters V0 and λ for the full photon model discussed here
and the simplified model used previously. As can be seen from
the figure, both results are qualitatively the same. However,
quantitatively there are some differences between both results.
The largest difference occurs for relatively small values of
V0. Namely, for V0/kBT < 2 the full photon model results in
a larger region where the value of γ is relatively small. For
larger V0 both results are remarkably close and the full model
has only a marginally larger region where the effects of the
molecule coupling are important.

IV. NUMBER FLUCTUATIONS INSIDE THE MOTT LOBES

In the previous section we constructed a self-consistent
mean-field theory to investigate the effect of the photon-
molecule coupling on the phase diagram of the photonic lattice
in a dye-filled optical microcavity. However, to obtain more
information about the physics in the Mott lobes, we have to go
beyond mean-field theory and also include fluctuations. Since

the theory in the previous section cannot easily be generalized
to describe these fluctuations, we now use functional methods
instead of the operator methods used previously. This has
the advantage that it is relatively straightforward to include
fluctuations at zero temperature.

Similar to the approach in Ref. [38], we integrate out the
molecules and expand up to second order in the coupling
constant g. Thus, we obtain

S[a∗,a] =
∫

�β

0
dτ

∑
i

a∗
i (τ )

(
�

∂

∂τ
− μ

)
ai(τ )

+ U

2

∫
�β

0
dτ

∑
i

a∗
i (τ )a∗

i (τ )ai(τ )ai(τ )

−
∫

�β

0
dτ

∫
dτ ′ ∑

i,j

a∗
i (τ )G−1

i,j (τ − τ ′)aj (τ ′),

(39)

with

G−1
i,j (τ − τ ′) = ti,j δ(τ − τ ′) − ��i,j (τ − τ ′) (40)

and

��i,j (τ − τ ′) = 1

AV

∑
k,k′,pz

gk,k′,ig
∗
k,k′,jG↓(τ ′ − τ,k′,pz)

× G↑(τ − τ ′,k,pz + kγ ). (41)

Here the coupling constant gk,k′,i is defined in Eq. (14)
and Gσ (τ ′ − τ,k′,pz) denotes the Green’s function of the
excited- or ground-state molecules. From these expressions
we obtain that the interaction with the molecules is an
additional mechanism for the photons to hop between different
lattice sites. Since ��i,i(τ − τ ′) 
= 0, the interaction with the
molecules also contributes to the on-site Green’s function
of the photons. To decouple the hopping term we perform
a Hubbard-Stratonovich transformation to the action and we
write

S[a,a∗,ψ∗,ψ] = S[a∗,a]

+
∫

�β

0
dτ

∫
�β

0
dτ ′ ∑

i,j

[a∗
i (τ ) − ψ∗

i (τ )]

× G−1
i,j (τ − τ ′)[aj (τ ′) − ψj (τ ′)], (42)

where ψi(τ ) is the complex order-parameter field. Following
the procedure described in Ref. [40], we calculate the action
up to second order in ψ and obtain

S(2)[ψ∗,ψ] =
∫

�β

0
dτ

∫
�β

0
dτ ′ ∑

i,j

ψ∗
i (τ )G−1

i,j (τ − τ ′)ψj (τ ′)

− 1

�

∫
�β

0
dτ

∫
�β

0
dτ ′

∫
�β

0
dτ ′′

∫
�β

0
dτ ′′′

×
∑

i,j,i ′,j ′
ψ∗

i (τ )G−1
i,j ′(τ − τ ′′′)〈aj ′ (τ ′′′)a∗

i ′(τ
′′)〉0

× G−1
i ′,j (τ ′′ − τ ′)ψj (τ ′). (43)
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Here 〈· · · 〉0 denotes the expectation value with respect to the
action in Eq. (42) for G−1

i,j (τ − τ ′) = 0. Now we separately
calculate the first and second part of this action. First, we
define

ψi(τ ) = 1√
�βNs

∑
k,n

ψk,ne
i(k·xi−ωnτ ), (44)

where k only runs over the first Brillouin zone. We substitute
the Fourier expansions of ψi(τ ) and ��i,j (τ − τ ′) and again
we take tij equal to t for nearest neighbors and zero otherwise.
By performing the integrations over τ and τ ′, we obtain

∫
�β

0
dτ

∫
�β

0
dτ ′ ∑

i,j

ψ∗
i (τ )G−1

i,j (τ − τ ′)ψj (τ ′)

= −
∑
k,n

G−1
m (k,iωn)ψ∗

k,nψk,n, (45)

where

G−1
m (k,iωn) = εk + 16π�

mλ2ω
��(k,kγ ,iωn). (46)

Here we use that we are inside a Mott lobe where ω is
sufficiently large and therefore we use the approximation that
|gk,k′,i |2 = |gm|2. Note that if we perform the Wick rotation
to real frequencies in ��(k,kγ ,iωn), we obtain the retarded
self-energy as calculated in Ref. [38]. Furthermore, the lattice
dispersion εk is given by

εk = −2t

2∑
j=1

cos(kjλ/2). (47)

Similar to the calculation in the previous section, the peri-
odicity of the photons induces the introduction of reciprocal
lattice vectors for the molecules. The incorporation of these
vectors gives additional contributions that are off-diagonal in
momentum space. However, especially inside the Mott lobes
these contributions are small. Since in this section we only
consider that part of the phase diagram, these contributions
are neglected throughout the rest of this section.

The calculation of the second term of Eq. (43) is more
involved. However, we only consider the zero-temperature
case and therefore we can use some results from Ref. [40].
Similarly, we obtain

〈aj ′ (τ )a∗
i ′(τ

′)〉0 = δi ′,j ′ 〈ai ′ (τ )a∗
i ′ (τ

′)〉0, (48)

with

〈ai(τ )a∗
i (τ ′)〉0 = �(τ − τ ′)(g + 1)e(μ−gU )(τ−τ ′)/�

+ �(τ ′ − τ )ge(μ−(g−1)U )(τ−τ ′)/�. (49)

Again, by only taking into account nearest-neighbor hopping
we can evaluate the second term of Eq. (43) explicitly. By
using Eqs. (40), (41), (44), and (49), we can perform the
integration over imaginary time and summations over lattice
sites. Combining this result with Eq. (45), we find

S(2)[ψ∗,ψ] = −�

∑
k,n

ψ∗
k,nG

−1(k,iωn)ψk,n, (50)

where the inverse Green’s function obeys

�G−1(k,iωn) = G−1
m (k,iωn)

{
1 + G−1

m (k,iωn)

×
(

g + 1

−i�ωn − μ + gU

+ g

i�ωn + μ − (g − 1)U

)}
. (51)

As the quadratic coefficient a2(g,μ,U ) of the Landau free
energy coincides with −�G−1(0,0)/zt , this expression allows
us to compare this theory with the result from the previous
section. By using the expression for the self-energy in
Ref. [38], we obtain

−�G−1(0,0)/zt

= (1 + γ )

[
1 + (1 + γ )

{
g

Ū (g − 1) − μ̄
+ g + 1

μ̄ − Ūg

}]
.

(52)

Since in this approach we do not take into account the
nonzero expectation value of 〈b∗

p′,↓(τ )bp,↑(τ )〉, we arrive
at a slightly different coefficient a2(g,μ,U ) as found in
Eq. (30). Both mean-field theories are, however, qualitatively
the same as they lead to shrinking Mott lobes for increasing
values for γ . Although the exact position of the phase
boundary of the Mott lobes is slightly different, we expect
that inside these loops both approaches are equivalent as in
this region of the phase diagram the expectation value of the
photon annihilation operator and therefore 〈b∗

p′,↓(τ )bp,↑(τ )〉 is
zero.

A. Quasiparticle excitations

We use the theory that includes the Gaussian fluctu-
ations to obtain 〈ai(τ )a∗

i ′(τ
′)〉 and thereby calculate the

quasihole and quasiparticle excitations in the Mott lobes.
To obtain a relation between this correlator of photon
operators and the correlator of the Hubbard-Stratonovich
fields 〈ψ∗

i (τ )ψj (τ ′)〉, we add sources Ji(τ ) and J ∗
i (τ )

that couple to ai(τ ) and a∗
i (τ ). Instead of the Hubbard-

Stratonovich transformation used in Eq. (42), we now
add

∫
�β

0
dτ

∫
�β

0
dτ ′ ∑

i,j

{a∗
i (τ ) − ψ∗

i (τ ) + [J · G]i(τ )}

× G−1
i,j (τ − τ ′){aj (τ ′) − ψj (τ ′)[G · J ]j (τ ′)} (53)

to the action in Eq. (39). Here we introduce shorthand notation
for the convolution

[J · G]i(τ ) =
∑

i ′

∫
dτ ′′

�J ∗
i ′ (τ

′′)Gi ′,i(τ
′′ − τ ). (54)

By differentiation of the partition function with respect to the
currents, we obtain

〈a∗
i (τ )aj (τ ′)〉 = 〈ψ∗

i (τ )ψj (τ ′)〉 − �Gi,j (τ − τ ′). (55)
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Denoting the Fourier transform of 〈a∗
i (τ )aj (τ ′)〉 by Gph(k,iωn), we therefore find that

−1

�
Gph(k,iωn) =

(
g + 1

−i�ωn − μ + gU
+ g

i�ωn + μ − (g − 1)U

)

×
{

1 + G−1
m (k,iωn)

(
g + 1

−i�ωn − μ + gU
+ g

i�ωn + μ − (g − 1)U

)}−1

. (56)

The excitations of the photons in the Mott lobes correspond to the zeros of this inverse Green’s function Gph(k,�), where we
perform an analytic continuation iωn → �.

Note that for large interactions U the excitations are also at large frequencies. At these large frequencies the self-energy
vanishes and we obtain the usual results. However, for intermediate U for which we are inside a Mott lobe and the excitations
are still at relatively small frequencies, the self-energy is important. In the following we ignore the real part of the self-energy
since this part, to a good approximation, only results in a shift of dispersions.

By assuming that the excitation are at relatively small energies, we can approximate ��+(k,kγ ,�) � −iα��. Here α is the
small dimensionless damping parameter we calculated in previous work [38]. Up to linear order in α, we obtain

��±
k = (1 − iαlat)�ω±

k − i

2
αlat

(
U + μ ± (2g2 − 1)U 2 − U [εk + μ(1 + 2g)] − εkμ

�ω+
k − �ω−

k

)
, (57)

where αlat = 8π�α/mωλ2. Furthermore, �ω+
k and �ω−

k denote
the quasiparticle and quasihole excitations as calculated in
Ref. [40].

Moreover, we can also calculate the spectral function that
is defined as

ρph(k,�) = − 1

π�
Im[Gph(k,�)]. (58)

In Fig. 4 we show a plot of the spectral function of the photons
inside the g = 1 Mott lobe for k = 0. The spectral function has
two peaks, one around the quasihole excitations and the other
located at the quasiparticle dispersion. Due to the interaction
of the photons with the molecules, the peaks are broadened.
The width of the peaks is determined by the value of αlat

and the larger this parameter the broader the peaks become.
Furthermore, due to the approximation of the self-energy, the
sum rule is modified and reads∫

d(��)ρph(k,�) = 1

1 + α2
lat

, (59)
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FIG. 4. (Color online) Plot of the spectral function of the photons
ρph(k,�̄) inside the g = 1 Mott lobe as a function of �̄ = �/zt for
k = 0, U/zt = 11, μ/zt = 5, and αlat = 10−2. The incorporation of
the photon-molecule coupling broadens the peaks that are located at
the quasihole and quasiparticle excitations.

which is the same sum rule as already encountered in Ref. [38].
Thus, for relatively small αlat the sum rule is to a very good
approximation satisfied. Note that we can exactly satisfy
the sum rule by taking the full energy dependence of the
self-energy into account and not using only its low-energy
approximation.

B. Number fluctuations

Apart from the excitations and the spectral function inside
the Mott lobes, we can also use the presented theory to
calculate the number fluctuations. For a Bose gas in an optical
lattice that is described by the Bose-Hubbard model, the
true Mott insulator state only exists at zero temperature as
at this temperature the number fluctuations inside the Mott
lobes vanish. However, for nonzero temperatures thermal
fluctuations always induce number fluctuations and strictly
speaking there is no Mott insulator. As we show next, in
this system of photons in a dye-filled microcavity even at
zero temperature the number of photons in the Mott lobes
fluctuates. Therefore, for the photons in the dye-filled optical
microcavity the true Mott-insulating state does not exist due
to the fluctuations induced by the absorption and emission of
photons by the dye molecules.

To calculate the number of photons inside the Mott
lobes, we first determine the thermodynamic potential. After
the Hubbard-Stratonovich transformation that decouples the
hopping term, the thermodynamic potential consist of two
separate parts. The exactly solvable part is given by the
eigenvalue of the Hamiltonian Ĥ0 in Eq. (27) with ψ = 0.
The other part is described by Eq. (50) and the contribution to
the thermodynamic potential can be calculated by integrating
out ψ in the Gaussian approximation. Hence,

� = NsE0 + 1

β
Tr[ln(−�βG−1)], (60)

where the inverse Green’s function G−1 is defined in Eq. (51)
and E0 is the energy of the Hamiltonian in the Mott lobe with
g photons. Thus,

E0 = 1
2Ug(g − 1) − μg. (61)
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Note that the thermodynamic potential also has a contribution
from the fact that we change the partition function if we simply
add a complete square to the action.

Namely, by performing the Hubbard-Stratonovich trans-
formation we should multiply exactly with one and therefore
the thermodynamic potential has an additional contribution
that depends on the self-energy induced by the molecules
and the hopping parameter. However, both do not have
an explicit dependence on the chemical potential of the
photons. Therefore, if we calculate densities by taking a partial
derivative of the thermodynamic potential with respect to this
chemical potential, this additional contribution has no effect.

Thus the number of photons per site in the Mott lobe is
given by

n = − 1

Ns

∂�

∂μ

= g − 1

βNs

∑
k,n

G(k,iωn)
∂G−1(k,iωn)

∂μ
. (62)

In this expression we cannot simply perform the sum over
Matsubara frequencies analytically since the self-energy has a
nontrivial imaginary part. Therefore, we define

ρml(k,�) = − 1

π
Im

[
G(k,�+)

∂G−1(k,�+)

∂μ

]
, (63)

where �+ = � + iε with ε > 0 infinitesimally small. In Fig. 5
we show a typical plot of this spectral function. This function
contains four different contributions. There are two δ peaks at
� = −(μ − (g − 1)U )/� and � = −(μ − gU )/� and there
are contributions at the quasiparticle and quasihole excitations
that are broadened by the photon-molecule coupling.

By using the definition of ρml(k,�), we can rewrite

n = g + 1

Ns

∑
k

∫ ∞

−∞
d(��)NBE(��)ρml(k,�). (64)
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FIG. 5. (Color online) Plot of the spectral function ρml(k,�̄)
inside the g = 1 Mott lobe as a function of �̄ = �/zt for k = 0,
U/zt = 11, μ/zt = 5, and αlat � 10−2. The spectral function has
a δ-peak contribution at � = −μ and −μ + gU . Furthermore, the
nonzero value of α broadens the contributions that are located at the
quasihole and quasiparticle excitations.

Here NBE(��) denotes the Bose-Einstein distribution function.
Here and in the following we consider the photon gas at
zero temperature and only consider quantum fluctuations. This
amounts to calculating

n = g − λ2

4

∫
BZ

dk
(2π )2

∫ 0

−∞
d(��)ρml(k,�), (65)

where we only integrate the momenta over the first Brillouin
zone. Recall that we consider a square lattice with spacing
λ/2 and therefore the momenta run from −2π/λ to 2π/λ.
Since in the low-energy approximation of the self-energy we
obtain ultraviolet divergences, we consider the full expression
of the self-energy as obtained in Ref. [38] and numerically
evaluate the integrals. However, in the following we still use
the parameter αlat to compare between results for different
values of the self-energy.

As an example, we now take λ/�th = 1 and V0/kBT = 30
such that βzt � 0.3. Furthermore, we calculate the number of
photons for different values of the self-energy, which can be
obtained, for example, by changing the density of molecules
or changing the detuning. Moreover, these expressions are
only valid in the Mott lobes and therefore the values of μ̄

are restricted. In agreement with this theory, we use the phase
boundaries as calculated by solving �G−1(0,0)/zt = 0, where
�G−1(0,0)/zt is defined in Eq. (52).

In Fig. 6(a) we show the average number of photons in the
g = 1 Mott lobe at zero temperature for several values of αlat.
We observe that inside the Mott lobe the average number of
photons is not constant and therefore the true Mott insulator
never exists if the interactions with the dye molecules are
included. Furthermore, for increasing values of αlat there are
two effects. First, the range of μ̄ for which the photons are
in the g = 1 Mott lobe decreases as larger values of αlat also
correspond to larger values of γ . Moreover, the differences
between the number of photons for different values of μ̄

inside the plateau become larger, i.e., the slope of the plateau
increases. This slope is related to the fluctuations in the average
number of photons, namely,

δn :=
√

〈n̂2〉 − 〈n̂〉2 =
(

∂n

∂(βμ)

)1/2

=
(

κ

zt

)1/2

, (66)

where we define κ = ∂n/∂(βμ̄) as the compressibility.
To obtain the number fluctuations due to quantum fluctua-

tions, we first consider the density as given by Eq. (64) and we
take the derivative with respect to βμ̄. Then we only consider
quantum fluctuations by neglecting the Bose-Einstein distribu-
tion function of the photons and only integrating over negative
frequencies. These number fluctuations are shown in Fig. 6(b).
We observe that for increasing values of αlat the number fluc-
tuations increase. Moreover, for a fixed value of αlat we obtain
that the number fluctuations increase closer to the phase bound-
ary. Intuitively, this is because deeper in the Mott lobe, on
average, the fluctuations in the number of photons decreases.

To obtain more information about how the value of αlat

affects the number fluctuations, we determine the minimal
value of δn for different values of αlat. The results of this
numerical calculation are shown in Fig. 7. We observe that for
small values of αlat, to a very good approximation δn ∝ √

αlat.
If αlat is larger than roughly 10−2, this relation is no longer
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FIG. 6. (Color online) (a) Average number of photons n and (b) corresponding number fluctuation δn at zero temperature in the g = 1
Mott lobe as a function of μ/zt for k = 0, λ/�th = 1, V0/kBT = 30, zt/kBT � 0.3, and U/zt = 11. The solid, dashed, and dotted curves
correspond to αlat � 9.8 × 10−2, 4.9 × 10−2, and 1.6 × 10−2. Since increasing the value of αlat also increases the value of γ , the range of μ̄

where the photons are inside the g = 1 Mott lobe decreases for increasing αlat. Moreover, the number fluctuation become larger if the value of
αlat increases.

valid and the effect of αlat on the number fluctuations is larger.
We also performed the same calculation for U/zt = 14 and
obtained similar results for the scaling of δn.

Although the average number of photons inside a Mott
lobe varies, the system is for all practical purposes still a
Mott insulator if these number fluctuations are small. To
distinguish this region from the regime where the fluctuations
are large enough to destroy the Mott insulator, we use our
definition of the compressibility. A true Mott insulator is
incompressible and this corresponds to κ = 0 or δn = 0.
However, we anticipate that for δn < 1/2 it is still possible to
make a distinction between different Mott lobes and therefore
we consider this regime practically as the Mott insulator. As
can be seen in Fig. 6(b), this condition is satisfied for relatively
large αlat, even up to values of 10−1. Thus, in most cases the
photons are to a good approximation still in the Mott-insulating
phase. Moreover, note that these number fluctuations at zero
temperature imply that the transition from a superfluid to a

-2.5-5.5 -4.4 -3.5
-4

-3

-2

-1

ln
(δ

n)

ln(α    )lat

FIG. 7. (Color online) Minimal value of the number fluctuation
ln(δn) as a function of ln(αlat) at zero temperature in the g = 1 Mott
lobe for λ/�th = 1, V0/kBT = 30, zt/kBT � 0.3, and U/zt = 11.
The points represent values of μ̄ for which the minimum in the number
fluctuations is determined numerically. The solid line is a fit through
the first points of a line with slope 0.5. For αlat smaller than roughly
10−2, we find good agreement with the numerical points.

Mott insulator is a crossover instead of a quantum phase tran-
sition as is the case for cold bosonic atoms in an optical lattice.

V. CONCLUSION AND OUTLOOK

In this paper we have investigated the effects of the dye
molecules on the superfluid–Mott-insulator phase transition of
photons in a dye-filled optical microcavity. First, we derived
expressions for the relevant parameters of our theory in terms
of the experimental quantities. Then we considered a simplified
model that neglects the fixed longitudinal momentum of the
photons and only takes into account absorption and emission
of photons with zero momentum. We have shown that at
the mean-field theory level the effect of the photon-molecule
coupling can be captured in a single dimensionless parameter
γ . By performing a self-consistent mean-field theory, we have
found that a nonzero expectation value of the annihilation
operator of the photons induces coherence between different
internal molecular states. We have demonstrated that incorpo-
ration of γ decreases the size of the Mott lobes. We considered
the full model that includes the fixed longitudinal momentum
and takes into account absorption and emission of photons with
nonzero momentum and have found generally good agreement
between the values of γ for this full model and simplified
model. However, for small lattice potential depths V0 in the
full model there is a larger range of lattice spacings where the
value γ is smaller.

Moreover, by first integrating out the molecules we calcu-
lated both the excitations and the number fluctuations inside
the Mott lobes at zero temperature. We obtained that the
quasiparticle and quasihole excitations in this system have
a finite lifetime, which is visible in the finite width of both
contributions in the spectral function. We have demonstrated
that the coupling between the photons and dye molecules
results in nonzero number fluctuations at zero temperature
and therefore, strictly speaking, the Mott insulator does not
exist. However, we have shown that for the most relevant
values of αlat, the compressibility is sufficiently small and the
system is to a good approximation still in the Mott-insulating
state. Subsequently, we obtained that for a relatively small
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coupling the number fluctuations scale with the square root of
the dimensionless damping parameter αlat.

For future research it would be interesting to investigate
which regions are accessible in experiments. From Ref. [36]
we know that for the lattice potential typical lattice spacings
in the micron regime are expected. Since this is of the same
order as discussed in this work, we expect that for sufficiently
deep lattice potentials the coupling with the molecules is
important and could prevent the system from being inside
a Mott lobe. For example, it is interesting to compare the state
of the photons for different molecular densities, detunings,
or other dye-specific properties. Furthermore, we have found
that in the superfluid phase of the photons the molecules are
in a superposition of different internal states. Although our
calculation does not incorporate the full rovibrational structure
of the molecules, we expect that this phenomenon is also
present in the experiment. Therefore, it would be interesting
to measure and investigate the behavior of the molecules if the
photons are in the superfluid phase.

Except for these experimental options, there are also some
possibilities for future theoretical work. First of all, in the

experimental system there is a harmonic trapping potential and
for qualitative agreement this should be taken into account. In a
first approximation this can be incorporated in the local-density
approximation. Moreover, the presented theory beyond mean
field only takes into account the effect of Gaussian fluctuations
at zero temperature. However, in the current experiment the
photons are at room temperature. In analogy with the first-order
correlation functions and phase fluctuations of a Bose-Einstein
condensate of photons under similar conditions, we expect
that the thermal fluctuations are also very important [42].
Finally, we note that the presented formalism is potentially also
useful to describe the effects of relaxation on the superfluid to
insulator transition in quantum magnets [43].
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