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Abstract

Debugging application crashes is an expensive and time-taking process, relying
on the developer’s expertise, and requiring knowledge about the system. Over the
years, the research community has developed several automated approaches to ease
debugging. Among those approaches, search-based crash reproduction, which tries
to generate a test case capable of reproducing a given crash to make it observable to
the developers, solely based on the stack trace included in the crash report. We be-
lieve that this makes crash reproduction the perfect candidate to achieve end-to-end
crash fault localization. In this thesis, we explore and empirically evaluate the usage
of search-based crash reproduction combined with spectrum-based fault localization
on 50 real-world crashes. Starting from a crash report, we generate crash-reproducing
test cases and use them in conjunction with the existing or an automatically generated
unit test suite as input for spectrum-based fault localization. Our results show that,
although, hand-written test cases remain the most efficient in the general scenario,
automatically generated crash-reproducing test cases still reduce the number of state-
ments to be investigated by developers. Additionally, when considering the best-case
scenario where only crash-reproducing test cases covering the fault are evaluated, we
observe no statistically significant difference between the accuracy of fault localization
when using hand-written or automatically generated test cases. Our results confirm the
feasibility of end-to-end automated crash fault localization. The results also identify
new challenges for both automated test case generation and fault localization, as well
as when they are combined.
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Chapter 1

Introduction

Since the invention of software in the 19th century, the usages have been ever-increasing.
Nowadays, software programs are a fundamental part of our daily lives, as it is not only
employed in but also critical to many systems and facilities around the world.

Despite the significant effort spent on software testing and verification, software systems
still fail. A report by the Austrian software testing firm Tricentis estimated that software
errors in 2016 cost the world economy $1.1 trillion dollars and affected 4.4 billion people
worldwide [2]. To put that into perspective, software errors have affected more than half of
the world’s population [1], and the financial losses are more than the Netherlands’ GDP in
2019 [3].

When a failure is detected, for example, due to faulty behavior or an error message, a
developer has to debug the code and repair the program. Debugging the fault can be a time-
consuming and complicated task because often little information is available (e.g., a stack
trace, a core dump, or an error description by the end-user).

Often, when a failure is reported, the first step for a developer is to write a test case for
debugging [90]. These test cases reproduce the crash to make it observable to the developer
and check whether it is fixed after patching the source code. With the crash observable,
the second step is identifying the location of the underlying fault, also called fault localiza-
tion [85]. Fault localization has been a complicated, tedious, and prohibitively expensive
manual task [76], and given the size of today’s software systems, the job has become even
more tedious and time-consuming. The time spent, and thus the effectiveness of fault local-
ization, depends primarily on the developer’s experience and familiarity with the software
program. Over the years, researchers have produced various automated approaches to assist
developers in their debugging practices, including but not limited to search-based test case
generation [24, 25] and automated fault localization [65, 85].

When writing software programs in Java, the developer typically writes unit test cases to
verify the intended behavior of the methods and to detect faults do to changes in the soft-
ware. Instead of tediously writing unit test cases manually, researchers have developed
search-based test case generation approaches to generate them automatically.

These approaches often rely on a meta-heuristic optimizing algorithm [53] because of
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1. INTRODUCTION

the complexity of the search problem (i.e., the search space may contain infinitely many test
cases that could be generated). For instance, white-box search-based test case generation
approaches [33, 36, 60] utilize evolutionary algorithms. Commonly, these approaches have
the goal of maximizing the coverage of the generated tests suite, for example, line or branch
coverage [35], or the weak mutation score [36]. Furthermore, studies have shown that
the generated test suites using search-based test case generation, can reduce the debugging
effort [62] and can be used for real-bug detection [12].

In recent years, researchers developed other approaches focused on the debugging of soft-
ware failures. Among them, search-based crash reproduction approaches [30, 71] aim to
generate one or more test cases that can reproduce a crash. These test cases serve as a
basis for the debugging process, eliminating the step of creating a test case for debugging.
As these test cases are generated automatically, they reduce the debugging effort for the
developer.

Unlike other search-based test case generation approaches, crash reproduction does not
aim to maximize the coverage or mutation score. Instead, it aims at reproducing the se-
quence of executions that led to the crash. Empirical evaluation with developers demon-
strated the usefulness of crash-reproducing test cases to facilitate the debugging process
[71], resulting in more fixes in a shorter time. We argue that the debugging effort could be
further reduced by combining search-based crash reproduction with automated fault local-
ization.

The primary goal of automated fault localization is to reduce the debugging effort by iden-
tifying (potentially) faulty statements (or defective statements) in a program [85]. Over
the years, many approaches have been developed, of which the most popular technique is
spectrum-based fault localization [85]. Spectrum-based fault localization relies on coverage
information (the program spectrum) constructed from a set of passing and failing test cases.
Based on the program spectrum, the approach identifies potentially suspicious statements
that cause the underlying fault.

For the correct behavior of spectrum-based fault localization, the program spectrum
must contain at least one failing test case. Otherwise, there is no fault to detect, so applying
spectrum-based fault localization would be pointless. When a new failure is reported, it
is can be assumed that there is no failing test case available to detect the underlying fault.
Therefore, the developer first has to write a test case for debugging and thus has to under-
stand the failure to expose it, reducing the benefits of automated fault localization. In this
thesis, we use search-based crash reproduction to automate the definition of the test case for
debugging, restoring the full benefit of automated fault localization.

To determine the suspiciousness of a statement, spectrum-based fault localization is predi-
cated on a similarity coefficient to measure how close the execution pattern of a statement
is to the execution pattern of the failure (approximated by the failing test case(s)). A higher
similarity denotes a higher suspiciousness level for the statement.

Several similarity coefficients have been developed and evaluated in the field of auto-
mated fault localization [8, 9, 44, 84]. The advantage of spectrum-based fault localization is
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that it only relies on the coverage information of the available passing and failing test cases,
making it easy to integrate into existing testing and debugging infrastructures. The down-
side is the limited diagnostic accuracy as no optimum similarity coefficient can outperform
all the others [8, 89].

Recently, automated fault localization has also been used as a preliminary step of many
automated program repair approaches. The automated fault localization is used to identify
(potentially) faulty statements to repair [41, 58]. In such a setting, the developer typically
has to write a test case, which makes the fault observable before applying the program
repair approach. We suggest that this step can also be automated using crash reproduction
and propose to automatically locate the fault that causes the crash, opening a new path to
the full automation of end-to-end program repair [13].

This thesis marks the first step toward the full automation of end-to-end program repair [13],
by empirically evaluating the potential of combining search-based crash reproduction with
spectrum-based fault localization, and we name it Automated Crash Fault Localization.

For our evaluation, we use BOTSING [30], a search-based crash reproduction frame-
work, EVOSUITE [35], a search-based unit test generation framework, and GZOLTAR [21],
a spectrum-based fault localization framework. Following best practices [63], we use 50
real-world faults from DEFECTS4J [47] manifesting as crashes and previously used for
crash reproduction [72]. In particular, we (i) compare the performance of crash fault local-
ization using hand-written and automatically generated test cases; (ii) investigate if particu-
lar combinations of written and automatically generated test cases provide higher accuracy
when used with different coefficients for fault localization; and (iii) manually analyze and
compare hand-written and automatically generated test cases to identify factors influencing
spectrum-based fault localization accuracy.

The remaining structure of this thesis is as follows. In Chapter 2, we describe the back-
ground and related work on the topics: fault-localization, automated unit test case gener-
ation, and automated crash reproduction. Continuing on the state-of-the-art research, we
define and motivate our automated crash fault localization approach and describe our im-
plementation of this approach, in Chapter 3.

Subsequently, in Chapter 4, we describe the evaluation methodology to assess the effec-
tiveness of our approach described in the previous chapter. To conduct the evaluation, we
constructed components which assist us in obtaining the required datasets, in Chapter 5

In Chapter 6, we present the results from the evaluations that we have conducted on the
automated crash fault localization approach to assess its feasibility. Chapter 7 is dedicated
to discussing the results on our work, and we review the threats today validity. In Chapter 8,
we provide a summarizing conclusion and present our view on interesting future research
on the matter.
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Chapter 2

Background and related work

In this chapter, we introduce and discuss the research efforts that have been made within
the fields of fault localization, automated unit test case generation, and automated crash
reproduction.

2.1 Fault localization

Fault localization is the task of identifying the location of faults (i.e., localizing the de-
fective statement) in software programs. Traditional and manual techniques used for fault
localization are (i) program logging, (ii) assertions, (iii) breakpoints, and (iv) profiling.

When using program logging, a developer inserts log statements into the code to monitor
variable values and other state information [32]. The information can be examined by the
developer to diagnose the underlying fault by determining where the state of the program
reaches an unexpected value.

Assertions are predicates that have to be true during the correct execution of the pro-
gram. Developers add these predicates in the program as conditional statements that kill the
execution if the criteria are not met. The assertions can be used to detect incorrect program
behavior at runtime. [67]

To further inspect the program, breakpoints can be added to pause the program at a
specific point for an examination of the current state. The developer can gradually add
breakpoints, step the program line-by-line, or step into a method to further localize the
fault. Early studies use this approach to assist developers in localizing the bug while the
program is executed under the control of a symbolic debugger [29, 43].

Profiling is a form of runtime analysis to determine the performance of the program, us-
ing metrics such as execution time, memory usage, and method call counting. Commonly,
profiling is used to optimize the performance of the program. However, it can also be lever-
aged for fault localization, e.g., by detecting unexpected frequencies of different methods
[17], identifying memory leaks or code performance drops [42], and examining the side
effects of lazy evaluation [69].
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2. BACKGROUND AND RELATED WORK

The techniques described above are commonly manual and rely on the developer’s exper-
tise. Therefore, over the years, researchers have developed various approaches to automate
the task of fault localization. The primary goal of automated fault localization is to reduce
the debugging effort by identifying (potentially) faulty statements in the software program
[85]. This reduction is achieved by ranking the statements in the software program, based
on the suspicion that a statement is involved in the fault.

Wong et al. [85] classified these approaches into categories, including but not limited
to (i) spectrum-based, (ii) slice-based, (iii) state-based, and (iv) machine learning-based
approaches

Spectrum-based approaches

Spectrum-based fault localization, used in the approach proposed in this thesis, relies on
coverage information (a program spectrum) of a set of passing and failing test cases. A
program spectrum details the execution information of a program from a particular perspec-
tive. A widely used program spectrum is the Executable Statement Hit Spectrum (ESHS),
describing which statements have been executed at runtime. Usually, within spectrum-based
fault localization, the program spectrum is based on the execution information of the pro-
gram’s test suite. Depending on the approach, the program spectra are based on passing test
cases, failing test cases, or both.

Collofello et al. [28] suggested that the program spectra could be used for software fault
localization. The program spectrum can be used by comparing the spectrum of failed test
cases with the spectrum of successful test cases and analyzing the differences [6].

The goal of spectrum-based fault localization is to identify the statement with an execu-
tion pattern that is as close as possible to the failure pattern of all test cases [85]. Intuitively,
a statement is more suspicious when the execution pattern of the statement is more similar
to the failure pattern of all the failing test cases. For example, a statement that is only ex-
ecuted by a failing test case is likely to be part of the underlying fault. Conversely, if the
execution pattern of the statement is similar to the execution pattern of all successful test
cases, the statement is less likely to contain the bug.

The closeness level is quantified by a similarity coefficient, and the degree can be interpreted
as the suspiciousness level of the statement. Over the years, many similarity coefficients
have been proposed [8, 9, 44, 84]. Table 2.1 shows four of the best performing and well-
studied coefficients, together with their algebraic form. Pearson et al. [63] showed that
none of these four similarity coefficients provide a statistically significant difference over
the others when used for spectrum-based fault localization.

To better understand the concept of spectrum-based fault localization, we look at the exam-
ple, as shown in Table 2.2. The code snippet in column two contains a bug at Line 6, which
should be d = a / b (instead of d = b / a). Assume there exists two passing test cases
t1 and t2 with inputs a = 1,b = 1 and a = 2,b = 1, respectively, and one failing test case t3
with the input a = 1,b = 2. Columns three to five contain the statement coverage for each of
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2.1. Fault localization

Table 2.1: Similarity coefficients. For a given statement s, NF is the total number of failing
tests, NS is the total number of passing tests, NCF is the number of failing tests covering
s, NUF is the number of failing tests not covering s, NCS is the number of passing tests
covering s, and NUS is the number of passing tests not covering s.

Coefficient Algebraic Form

DSTAR? [84] S =
N⇤

CF
NUF +NCS

OCHIAI [8] S =
NCFp

NF ⇥ (NCF +NCS)

BARINEL [9] S = 1� NCS
NCS +NCF

TARANTULA [44] S =
NCF/NF

NCF/NF +NCS/NS

? - variable ⇤> 0, we use ⇤= 2 as it is the most explored [63].

the four test cases. The last column shows the suspiciousness level per statement calculated
using the TARANTULA coefficient.

The result of the spectrum-based fault localization is a sorted list of statements based
on the suspiciousness level in the last column. In this case, Line 5 and Line 6 are marked as
the most suspicious, which would be correct as the bug is caused by a fault in Line 6.

Table 2.2: Example of spectrum-based fault localization, where S is calculated using the
TARANTULA similarity coefficient (•= statement is executed by a test case)

# Statements Test t1 Test t2 Test t3 NCF NCS S
a = 1,b = 1 a = 2,b = 1 a = 1,b = 2

1. if (a > b) • • • 1 2 0.50
2. c = a + b • 0 1 0.00
3. d = a * b • 0 1 0.00
4. else 0 0 0.00
5. c = a - b • • 1 1 0.67
6. d = b / a • • 1 1 0.67
7. return c + d • • • 1 2 0.50

Passing Passing Failing

To apply spectrum-based fault localization to a program, the test suite for that program
must have the property that NF > 0 and NS > 0. Intuitively, if NF = 0, there is no fault in the
program. And if NS = 0, all the statements executed by the failing test case will be marked
suspicious, adding no additional information for the developer.

7



2. BACKGROUND AND RELATED WORK

Likewise, we can assume that for the defective statement holds that NCF > 0, as a defec-
tive statement should at least be executed by one failing test case. OCHIAI, BARINEL, and
TARANTULA are based on the fact that NCS +NCF > 0, which holds as NCF > 0. Similarly,
DSTAR assumes that for a defective statement NCS +NUF > 0. However, this assumption
does not always hold, as all the failing test cases might cover a statement (NUF = 0), and
in the same time, the statement is not covered by any passing test case (NCS = 0) (e.g., due
to the lack of test coverage). Intuitively, when NCF > 0 and NCS +NUF = 0, then the state-
ment should be the most suspicious of all. Nevertheless, in this case, DSTAR results in
an undefined suspiciousness level due to a division by zero. In the original paper [84], no
additional procedure has been defined to address this problem. In this thesis we will assume
that NCS +NUF � 0 and when NCS +NUF = 0 that the DSTAR coefficient is equal to zero.

Slice-based approaches

Program slicing is used to localize the fault by reducing the size of the program by increas-
ingly removing irrelevant parts of the program, such that the resulting program slice has the
same behavior as the original program concerning the fault. A program slice is created by
reducing the program to a slicing criterion, specifying a statement and a set of variables at
interest. A slicing criterion is a pair hs,V i, where s is a statement in the program, and V is
a subset of the program variables [77]. The program slice, given the slicing criterion hs,V i,
consists of the set of statements and predicates that directly or indirectly affect the variables
in V before the execution of s.

Weiser [77] proposed the first implementation of program slicing in 1978. The primary
purpose of program slicing is to reduce the program’s size, such that developers, unfamiliar
with the program, do not have to go through the whole program to patch the fault. The
concept is based on the assumption that a failure is due to an incorrect variable assignment,
and the fault must be found in the slice associated with the statements affecting the variable
value. Within the field of program slicing, there are three types of approaches: static slicing,
dynamic slicing, and execution slicing [85].

Static slicing, proposed by Weiser [77], is computed without considering a program’s input
[20]. A static slice contains the minimal set of the executable statements that affect the
variables in V up to the execution of s.

The problem of static slicing is that computing the minimal subset of statements is
undecidable [77]. In the original approach, the program slice is approximated by using the
program’s control-flow graph (CFG). Researchers have ever since been trying to improve
the approximation using different techniques. Ottenstein et al. [59] introduced static slicing
using the program dependence graph (PDG), leveraging the graph reachability. Recent static
slicing approaches have been applied to reduce the size of binary executable files [49] and
to optimize type checkers [74].

A disadvantage of static slicing is that the slice contains all the executable statements that
could affect the outcome, resulting in a slice containing statements that may be irrelevant
to the fault. Rather than reasoning which statements affect the variables at interest, dy-
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2.1. Fault localization

namic slicing utilizes the program’s execution behavior (typically using a failing execution).
Therefore, a developer does not only know what could have happened but can also see what
has happened. Dynamic slicing contains all the statements that affect the program outcome
concerning a particular input.

Korel et al. [50] proposed the notion of dynamic slicing, using dynamic analysis to
identify the statements that affect the variables of interest in a particular program execution.
As only one execution is taken into account, dynamic analysis can be considerably reduced
the size of the slice, making it easier to localize the faults. Over the years, additional
approaches have been proposed, including multiple-points dynamic slicing [92], scenario-
oriented dynamic slicing [66], and relevant slicing [40].

As collecting dynamic slices may consume a lot of time and space, execution slicing can
be used. Execution slicing is based on the data-flow of test cases, which can be used to
locate program faults [11]. An execution slice for a given test case contains the set of
statements executed by this test case. In other words, it extracts all the distinct statements
in the execution path of a given test case.

Various execution slicing debugging tools have been developed, for example, eXVan-
tage [79] and xSuds [10]. Agrawal et al. [11] used execution slicing by comparing the
execution slice of one failed and one passing test case. This approach has been extended by
using multiple passing and failing test cases [45, 82].

To compare the different slice-based approaches, Table 2.3 depicts an example program that
contains a bug at Line 7 (assuming that the line should be y = y * 2 * i). The slicing
criterion is defined as h7,yi. The static slice contains all the statements, which can affect the
outcome of the variable y. The dynamic slice contains the statements affecting the variable
y for a given test case (in the example a = 3). Finally, the execution slice contains the
statements executed by a given test case, so in this case, the statement executed for a = 3.

State-based approaches

The state of a program contains the variables and values at a particular point at runtime,
which can be utilized for fault localization. One way is through relative debugging [4],
where the current state is compared to a reference state that is known to be correct. Another
way is by comparing the program state of a passing test case with the program state of a
failing test case.

Relative debugging starts with the developer, who formulates a set of assertions about
critical data structures in the reference state and the execution state. These assertions specify
locations at which the state of both programs should be the same. The relative debugger is
then responsible for managing the execution of the two programs, validating the assertions,
and reporting any differences [4]. If a difference is reported, the developer isolates the
faulty code by recursively refining the assertions. Once the size of the isolated code is small
enough, manual debugging techniques can be used to locate the underlying fault. Research
has shown that relative debugging is a beneficial technique that allows developers to locate
faults in programs that have been modified or ported to other languages [5].
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2. BACKGROUND AND RELATED WORK

Table 2.3: The difference between static, dynamic and execution slicing for the program
with the bug y = y * 2 * i (•= statement is included in the slice). [85]

Static slice Dynamic slice Execution slice
for y for y with a = 3 for y with a = 3

1. input(a) • • •
2. int i = 2 • • •
3. int x = 0 •
4. int y = 1 • •
5. if (i < a) • • •
6. x = x + i •
7. y = y * i //bug • • •
8. else •
9. x = x - i

10. y = y / i •
11. return y • • •

Zeller et al. [91] proposed a technique called delta debugging, which compares the
states of passing and failing test cases. Instead of ranking the statement, delta debugging
determines the suspiciousness of variables in the program. The suspiciousness of a variable
is determined by replacing the value of a passing test case with the value of a failing test
case and checking whether it changes the outcome of the test case. Unless the same failure
is encountered, the variable is no longer considered suspicious.

Machine learning-based approaches

In the context of fault localization, machine learning is used to learn or deduce the location
of the bug based on the available data (i.e., the source code, code coverage, and the execution
results of test cases). The machine learning-based fault localization approaches [16, 37, 81,
83] have the same key processing steps, with possible additional pre- and post-processing.
Therefore, the machine learning-based fault localization approaches can be generalized as
follows:

1. Collect training dataset. The first step is to collect the needed training dataset. Com-
monly, the training dataset consists of the program spectrum for each test case and the
corresponding outcome (which is similar to spectrum-based fault localization). De-
pending on the approach, the training dataset is enriched with additional information,
such as the relation between test cases.

2. Train the machine learning model. Using the training dataset, the machine learning
model is trained and optimized, such that the model can predict the outcome of a test
case. For example, based on the statements executed by the test case.
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3. Rank suspicious statements. Based on the trained model, the statements in the pro-
gram are ranking, considering the suspiciousness. The suspiciousness is calculated
based on the results from the trained model.

Wong and Qi [81] proposed a back-propagation neural network (BPNN) fault localization
technique. Back-propagation neural networks have a simple structure, are easy to imple-
ment, and have been proven to be suitable for approximating complex non-linear functions
[81]. The input of the neural network is the executable statement hit spectrum, as used in
spectrum-based fault localization, and the output is whether the executed statement should
cause a failure or not. In other words, the BPNN is trying to estimate the execution outcome
(passing or failing) based on the statements that are executed. After the model training, the
suspicious level for each statement is calculated using virtual test cases (i.e., test cases
which execute only one statement).

When the program becomes larger, the number of statements involved in the fault local-
ization process increases. It is resulting in a large BPNN, which has been proven to be less
effective as well as computationally expensive [81]. To remedy this problem Wong and Qi
[81] added execution slicing to reduce the program size.

Originally the proposed method has been created for the programming language C.
However, the approach is independent of the development paradigm, so back-propagation
also works on Object-Oriented Programming Languages, such as Java [16]. Furthermore,
Ascari et al. [16] proposed an approach that uses Support Vector Machines with the same
goal and methodology.

In 2011, Wong et al. [83] proposed another approach based on Radial Basis Function
(RBF) networks, which uses the same input as output as the back-propagation neural net-
work. The advantage of the RBF is that it has a faster learning rate and is less prone to
paralysis and local minima.

Evaluation

Generally, a fault localization approach F takes as input a program P and a test suite T with
at least one failing test case. It produces a sorted list of statements, with s1 � . . .� sN , where
si denotes the suspicious level of statement i and N is the number of executable statements
in the program P. The effectiveness of the approach F is based on the percentage of the
program P that is needed to be examined by a developer before the defective statement d is
identified [85].

Researchers have developed multiple evaluation metrics to determine the diagnostic accu-
racy, these metrics are the EXPENSE score [44], the EXAM score [78], T-SCORE [51] and
the LIL [55].

The EXPENSE score, shown in Equation 2.1, calculates the percentage of the program
that does not need to be examined when the statements are ranked according to their sus-
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piciousness level. In Equation 2.1, n is the rank of the defective statement d in the fault
localization report and N is total number of statements in the program P.

Expense =
N �n

N
(2.1)

Wong et al. [78] proposed the most commonly used and accepted evaluation metric, the
EXAM score, which is also used in this thesis. The EXAM score, shown in Equation 2.2,
is similar to the EXPENSE score, the difference is that it calculates the percentage of code
which needs to be examined by the developer. In Equation 2.2, n is the rank of the defec-
tive statement d in the fault localization report and N is total number of statements in the
program P.

EXAM =
n
N

(2.2)

The T-SCORE, see Equation 2.3, is designed for non-statistical fault localization meth-
ods, which produce a small set of suspicious statements in a program. It estimates the
percentage of code a developer does not have to examine before identifying the defective
statement. The metric uses the program dependency graph (PDG) to compute a set of ver-
tices in the graph that must be examined to reach the defective statement. The smallest set
of vertices that includes the defective statement is called the dependency sphere (DS).

T-Score = 1� |DS|
|PDG| (2.3)

Locality Information Loss (LIL) [55] is an alternative evaluation metric, which uses a
measure of distribution divergence between the suspiciousness level’s distribution and the
perfect expected distribution. The advantage of the LIL metric is that it does not depend on
a ranked list of statements and can be applied to non-statistical models, making it suitable
for determining the effectiveness of a fault localization technique for automated program
repair [55].

2.2 Automated unit test case generation

Unit test cases are a type of test cases used in software testing. The primary goal of unit test
cases is to ensure that a component (i.e., a section of the program) meets its design, behaves
as intended, and to discover fault caused by future program changes.

Furthermore, the generated unit test cases can be used for debugging. When the un-
derlying fault of a crash is identified, the unit test cases allow the developer to eliminate
components by checking that the component is functioning as intended, concerning the
crash. The higher the code coverage, the quicker the developer can eliminate parts of the
code.

Researchers have introduced several automated test generation approaches, which allows
automatic generation of unit test cases according to predefined criteria [53]. For instance,
white-box search based test case generation approaches [33, 36, 60] rely on evolutionary
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algorithms to generate unit test cases. EVOSUITE [33] is a white-box search-based test case
generation approach for unit test case generation. The input for EVOSUITE is one or more
target classes in the program, and the output is a test suite maximizing a given test criterion
(e.g., line coverage, branch coverage, or weak mutation coverage).

Previous studies confirmed that EVOSUITE can generate test cases with high code cov-
erage [36, 61], real-bug detection power [12], reduce debugging costs [62], and complement
hand-written test cases [25]. Besides that, EVOSUITE has been used in the context of au-
tomated fault localization [22, 64]. Campos et al. [22] proposed a search-based algorithm
to reduce the entropy of the diagnostics ranking. They empirically established that the
approach reduced the number of statements marked as potentially suspicious (hence, the
developer has to examine less code).

Perez et al. [64] showed that the diagnostic accuracy of the automated fault localization
approach depends on the quality of the test suite. Therefore, Perez et al. introduced a metric
[65], called DDU, to quantify the quality of the test suite based on the density, diversity, and
uniqueness. The higher the DDU metric, the better the diagnostic accuracy of the automated
fault localization approach.

2.3 Automated crash reproduction

As mentioned before, the first step for the developer is usually to write a test case for debug-
ging when a new crash is reported (or at least, derive the input that reproduces the crash).
Finding these inputs can be a time consuming and tedious task [52]. Researchers have pro-
posed various automated techniques to generate tests that reproduce the target crashes. The
collective name for these techniques is called automated crash reproduction.

To generate these test cases, crash reproduction approaches leverage either runtime data
[15, 18, 23, 27, 38, 56, 68, 73] or stack traces [19, 26, 57, 71, 88], and either use a record-
replay or a post-failure approach.

Record-replay approaches

Record-replay crash reproduction uses software or hardware instrumentation and monitor-
ing to record and observe the runtime data at the moment of failure. The developer can
replay the recorded data and so be used to identify the underlying fault [15, 23, 56]. This
makes these approaches efficient and easy to use, as the developer can rollback to the state
of the program before and after the crash. Therefore, the developer can quickly observe the
crash.

Over the years many record-replay approaches have been developed, including RE-
CRASH [15], BUGNET [56], JRAPTURE [73], SYMCRASH [23], and MOTIF [38]. These
approaches all record runtime data to enable the developer to replay the state of the pro-
gram. Compared to the other approaches, SYMCRASH uses a selective recording approach
that only monitors the important and complex methods to reduce instrumentation overhead.
Moreover, MOTIF uses crowdsourced data to analyze recurrent patterns in crash data, mak-
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ing it more efficient [38], under the assumption that crashes from different programs have
the same characteristics.

However, the disadvantages of record-replay approaches are the decrease in the overall
performance [68], due to the overhead caused by the instrumentation, and the privacy risk
due to the possible collection of sensitive data [26].

Post-failure approaches

Since using runtime data raises multiple difficulties, post-failure approaches are more suit-
able for general use. Post-failure approaches replicate the crash by utilizing data that is
available after the crash. The most commonly available data are stack traces, as they are
easily collected using bug tracking systems (e.g., JIRA or trac) or can be extracted from log
files. However, most post-failure approaches require additional data as input besides the
stack traces (e.g., core dumps, software models, existing test suite, or class invariants) [26].
Examples of post-failure approaches are STAR [26], JCHARMING [57], and MUCRASH
[88]. STAR and JCHARMING both use a combination of stack traces and model check-
ing to generate a crash-reproducing test case, whereas MUCRASH generates a test case by
mutating existing test case until the crash is detected.

Stack trace-based post-failure approaches are a subset of post-failure approaches that
solely rely on stack traces as a source of information. This advantage makes these ap-
proaches easy to integrate into existing software systems and do not acquire additional
steps for the developer (i.e., no additional data is required). Soltani et al. [71] showed that
search-based crash reproduction approaches relying on a single objective guided genetic
algorithm, outperform all other stack trace-based approaches in terms of crash reproduction
ratio (i.e., can reproduce more crashes). In addition, Soltani et al. [71] confirmed that the
generated test cases are useful for automated debugging and manual debugging.

In the guided genetic algorithm, a population of candidate test cases evolves towards a crash-
reproducing test case. Each candidate test case is a sequence of executable statements in the
program under test. The initial population of test cases is created by generating random test
cases, which at least call one of the methods in the stack trace. The evolution is an iterative
process of which the population in each iteration is called a generation. In each generation,
the fitness of each test case is evaluated using a fitness function. A fitness function quantifies
how close a given candidate is to the global optimal. In the case of crash reproduction, the
fitness function defines the similarity of the stack trace generated by the test case compared
to the original stack trace. The fitness function can be extended with additional heuristics
to improve the quality of the test cases. The fitter candidates are stochastically selected
and recombined to generate new candidate solutions (called off-spring) and form the new
generation. The new generation is then used in the next iteration of the genetic algorithm.
Commonly, the algorithm is terminated when either a satisfactory fitness is reached or after
a maximum number of iterations.

A more extensive evaluation by Soltani et al. [72], demonstrated the ability of search-
based crash reproduction approaches to reproduce complex crashes. The approach defines
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a fitness function (called Crash Distance) using three heuristics to guide the search process:
(i) line coverage checks whether the generated test case covers the line of code where the
exception is propagated; (ii) exception coverage indicates if the generated test case throws
the same type of exception as the given stack trace; and (iii) stack trace similarity compares
the similarity of the original stack trace with the one produced by the test.

BOTSING [31] is an open-source and well-tested framework for search-based crash repro-
duction, and it implements the Crash Distance fitness function, along with other new tech-
niques improving it. The input of BOTSING is a stack trace and one of the frames in the
stack trace (i.e., one of the lines indicating the class and method where the exception propa-
gated) as the target frame. Then, it generates one or multiple unit test cases, which tests the
class in the target frame and (when executed) causes a crash producing the identical stack
trace. For example, providing the stack trace of Listing 2.1 and target frame 3 (Line 3) to
BOTSING, it generates a unit test for the class DocumentContentDisplayer throwing a
NullPointerException propagating trough the same first three frames of the stack trace.

One of the crash reproduction approaches implemented in BOTSING uses two helper
objectives. Along with Crash Distance, the algorithm uses the heuristics Method Sequence
Diversity and Test Length, transforming it into a multi-object search problem. The Method
Sequence Diversity heuristic enables BOTSING to reproduce multiple crash-reproducing test
cases, which are diverse in the method calls sequences. Moreover, the Test Length ensures
that BOTSING does not generate huge test cases.

A recent study [31] shows that algorithms relying on the two helper objectives increase
the ability to reproduce crashes, hence increasing the crash reproduction ratio. Moreover, by
utilizing this multi-objective approach, BOTSING can produce multiple crash-reproducing
test cases, which are diverse in the method calls sequences, for a single given crash.

Listing 2.1: XWIKI-13303 crash stack trace [72]
0 java.lang.NullPointerException
1 at [...]. XWikiDocument.getXDOM (...)
2 at [...]. DocumentContentDisplayer.getContent (...)
3 at [...]. DocumentContentDisplayer.display ([...]:248)
4 at [...]. DocumentContentDisplayer.display ([...])
5 at [...]. DefaultDocumentDisplayer.display ([...])
6 ...

Test cases generated by BOTSING can be directly used for automated fault localization,
as the generated test case ensures a crash will happen that includes the target frame in its
stack trace. However, the choice of the target frame for crash reproduction can impact the
outcome of automated fault localization.

For example, assume that the defective statements are located in frame 2 of the stack
trace in Listing 2.1 (i.e., the fault is in getDisplayName). When reproducing this crash
with the target frame set to 1, BOTSING will generate a unit test for the class XWikiDo-
cument that throws a NullPointerException with a stack containing only the first frame
(from line 0 to 1 in Listing 2.1). Although this generated test case fails (e.g., if it does not
respect a precondition of the method getXDOM), it might not cover the fault. In practice,
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the developer cannot know beforehand if a crash-reproducing test case covers a fault or
not, as it would mean that the developer already knows what the fault is and would not
need fault localization in the first place. For this reason, previous researches recommended
reproducing higher frames to cover the underlying fault [26, 71].
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Chapter 3

Automated crash fault localization

In this chapter, we present a motivational example demonstrating the usefulness of auto-
mated crash fault localization. Furthermore, we provide the details of our approach.

3.1 Motivation

The program under test, depicted in Table 3.1, shows a code snippet of the method count-
Matches with the coverage of the different test cases ht1, . . . , t4i that are written by the
developer. The method counts the occurrence of a letter in the a sentence while ignoring
the case. However, the method contains a bug: the counter is incremented by 2 if the
character in the string is the uppercase equivalent of the search character (see Line 7). Line
7 should then be count += 1.

Of the four hand-written test cases ht1, . . . , t4i, t4 is the only failing test cases, as it
executed the defective statement on Line 7. To localize the fault, the developer could ap-
ply spectrum-based fault localization, since there is a failing test case. When applying
spectrum-based fault localization, it does indeed identify the defective statement, as Line 7
is the only statement executed by a failing test case. Using this information, the developer
can quickly find the defective statement and patch the buggy method.

With the program patched, the test suite green, it is time to ship the code into produc-
tion. Once in production, a user enters the input combination (null, ‘a’) which causes
a NullPointerException, thrown at Line 3. By logging the exceptions, the developer
gains insight into the fact that there is an error in the program, due to unexpected input.
Spectrum-based fault localization cannot be applied to debug the fault because there is no
failing test case among the existing test cases.

To apply spectrum-based fault localization, the developer has to write a debugging test
case exposing the crash. This requires the developer to understand the underlying cause of
the crash and, therefore, find the bug first. Consequently, spectrum-based fault localization
loses its primary purpose, which is to reduce the debugging effort, when applied to a newly
reported crash.
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Table 3.1: Example program with coverage of the hand-written test cases (ht1, . . . , t4i) and
a crash-reproducing test case t 0 (• = covered by the test case)

# Statements t1 t2 t3 t4 t 0

1. countMatches(String sentence, char letter)

2. int count = 0; • • • • •
3. for (char idx : sentence.toArray()) • • • • •
4. if (idx.isCapital()) • • • •
5. idx = idx.toLowerCase(); • •
6. if (letter == idx) • •
7. count += 2 //bug •
8. else • •
9. if (letter == idx) • •
10. count += 1; •
11. return count; • • • •

To restore the primary purpose, we argue that search-based crash reproduction (simply
called crash reproduction) could automate the task of writing the debugging test case. The
debugging test case would fail, by reproducing the crash, on the current codebase. In our
example of Table 3.1, the crash-reproducing test case t 0 has been generated using crash re-
production. With the failing crash-reproducing test case, spectrum-based fault localization
can be used again. In this case, applying spectrum-based fault localization with the ad-
ditional crash-reproducing test case would identify Line 2 and 3 as potentially faulty. We
consider this an accurate diagnosis because the patch would be a null-check at the beginning
of the method.

3.2 Approach

Figure 3.1 depicts an overview of the Automated Crash Fault Localization (ACFL) approach
we propose. The approach consist of three components: crash reproduction, unit test gen-
eration and fault localization, of which unit test generation is an optional component.

On the left side of the diagram the required input is shown, i.e., the program, the test-suite,
and crash report. The primary reason for these inputs is that they are easy to obtain and do
not require additional effort from the developer (i.e., it is not necessary to define additional
information).

The program is the code of the software program where the crash originated from.
Depending on the techniques used for crash reproduction, fault localization and unit test
generation, the program should be the source code, the compiled code, or both. If there is
a test suite for the program, then this test suite is input for the automated fault localization
process. For non-static approaches, the test suite should most likely be provided in compiled
form. The crash report contains a description of the crash, depending on the approach, the
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Figure 3.1: Automated Crash Fault Localization (ACFL) approach

format of the crash report may differ (e.g., a core dump or a stack trace).
The output of the approach is a fault localization report, depicted on the right side of the

diagram. Generally, the fault localization report ranks the statements in the program under
test based on their suspiciousness towards the crash fault.

In the first step 1�, the crash report is combined with the program under test to generate one
or multiple crash-reproducing test cases. The generated test cases should fail on execution,
as most fault localization approaches [85] depend on failing test cases. In the second step
2�, the failing crash-reproducing test cases and the existing test suite are combined in the

fault localization process to write the fault localization report. As an alternative to the
existing test suite, generated test cases can be used, adding the step 1b� to the approach. This
is relevant when, for example, specific parts of the program are not sufficiently tested. In
this case, it is recommended to generate a test suite with a sufficient level of coverage, as
Perez et al. [64] showed that the density of the test suite influences the diagnostic accuracy
of fault localization.

3.3 Implementation

In the previous section, we defined the general approach of automated crash fault localiza-
tion. We follow this by describing our implementation of the ACFL approach.

In the first step 1�, crash-reproducing test cases should be generated. Researchers have
developed various techniques depending either on runtime data [15, 18, 23, 27, 38, 56, 68,
73] or stack traces [19, 26, 57, 71, 88].

To reduce the debugging effort as much as possible, we decided to use a crash reproduc-
tion approach that solely employs stack traces, as stack traces can be easily obtained and do
not cause a decrease in performance or are a privacy risk.

Many approaches solely rely on stack traces, as described in Section 2.3. Soltani et al.
[71] showed that the search-based crash reproduction approach using the Crash Distance
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fitness function outperforms all other stack trace-based methods in terms of crash reproduc-
tion ratio. The test cases generated by this approach are also useful for manual debugging,
allowing the developer to identify the defective statement with the fault localization report.
Therefore, we decided to use BOTSING [31], a search-based crash reproduction framework
which implements the Crash Distance fitness function, to generate the crash-reproducing
test cases.

An automated fault localization approach is required in step 2� to generate the fault localiza-
tion report. As shown by Wong et al. [85], there are many different approaches, including
the slicing-based, spectrum-based, state-based, and machine learning-based approaches.

Out of these four approaches, we deem slicing-based and state-based fault localization
unfit. Slicing-based approaches, because most slices are lengthy and hard to understand
[80], making them inefficient for fault localization. State-based approaches, because it re-
quires a correct reference state [4] or it requires iterative feedback by the developer [91].

Both spectrum-based and machine learning-based approaches fit our requirements for
the automated crash fault localization approach. However, we decided to use spectrum-
based fault localization as more research has been conducted in that field than in the field of
machine learning-based fault localization [85].

Spectrum-based fault localization approaches rely on a similarity coefficient. Pearson et
al. [63] showed no significant difference between the best-studied coefficients. Also, these
similarity coefficients have not been tested using automated crash-reproducing test cases.
Therefore, GZOLTAR [21] will be used as the spectrum-based fault localization framework,
as it includes over 20 similarity coefficient.

The unit test generation in step 1b�, optionally used when there is little or no test coverage
available, is performed by EVOSUITE [33], as it is the best open-source search-based unit
test generation tool available [48, 54, 61].

Additionally, previous studies confirmed that EVOSUITE can generate test cases with
high code coverage [36, 61], real-bug detection [12], and reduce debugging costs [62].
Besides that, EVOSUITE has been used in the context of automated fault localization [22,
64].

To sum up, we rely on BOTSING [31], an open-source crash reproduction framework, for
generating the crash-reproducing test cases. The fault localization is executed by GZOLTAR
[21], an open-source spectrum-based fault localization tool used in other evaluations provid-
ing over 20 similarity coefficients [63]. The alternative step to generate unit test cases relies
on EVOSUITE [33], the best open-source search-based unit test generation tool available
[48, 54, 61].
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Chapter 4

Evaluation

In this chapter, we define the research questions and the methodology to evaluate the pro-
posed automated crash fault localization approach in Chapter 3. We start with defining the
research questions and their aim. We then describe the used evaluation metrics, the dataset
and the test suites used, after which we will focus on the data analysis to evaluate the results.

4.1 Research questions

To evaluate the effectiveness of automated crash fault localization compared to the manual
crash fault localization using hand-written test cases for debugging. In this case, we assume
that the performance of the manual localization of the crash error is the thing to improve or
at least match. Therefore, we formulate the following research questions:

RQ1: How does automated crash fault localization perform in comparison to manual crash
fault localization in terms of accuracy when BOTSING generates one or more crash-
reproducing test cases?

With RQ1, we aim at evaluating to what extent automated crash fault localization is feasible
in the general scenario when using automated crash reproduction compared to hand-written
test cases. In the general scenario, we compare all the crash-reproducing test cases gener-
ated by BOTSING.

However, as mentioned in Section 2.3, BOTSING requires a target frame for which the test
case is generated. The crash-reproducing test case will simulate the propagation of the
exception, as in the given stack trace up to that target frame level. There is no guarantee
that this propagation is not an expected behavior of the (target) class (e.g., if an (implicit)
precondition is not respected). From a fault localization perspective, this means that the
(failing) crash-reproducing test cases introduce noise in the program spectra. These test
cases do not fail due to the underlying bug. Ideally, in such cases, BOTSING should be
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aimed at generating crash-reproducing tests for a higher frame. In practice, however, it is
not known in advance which frames should be targeted.

In our second research question, we address this concern by looking at the best-case sce-
nario in which BOTSING only generates a crash-reproducing test case that triggers the un-
derlying bug.

RQ2: How does automated crash fault localization perform in comparison to manual crash
fault localization in terms of accuracy when BOTSING generates one or more crash-
reproducing test cases covering the fault?

Finally, our last research question aims at understanding the opportunities and challenges
of automated crash fault localization and identify the strengths and weaknesses of the auto-
matically generated crash-reproducing test cases.

RQ3: Which factors influence the performance and applicability of automated crash fault
localization?

4.2 Evaluation metrics
In literature, most automated fault localization techniques are evaluated on artificial faults
created by mutating the source code of a program. Generally, only one statement in the
code is modified to create a bug in the code. Therefore, the standard technique to evaluate
an automated fault localization approach F is based on a program P with one defective
statement d [63] (see Section 2.1). The fault localization technique T outputs a ranking of
the statements in P ordered by their suspiciousness level towards the crash. The diagnostic
accuracy is then computed based on the rank of the defective statement d. The most popular
evaluation metric is the EXAM score [78] (see Equation 2.2).

However, to apply this metric to real-world faults, we should extend the standard methodol-
ogy as proposed by Pearson et al. [63]. As we perform our evaluation on real-world faults
we have to account for ties in the suspiciousness level, multi-statement faults, and faults of
omission.

Ties in suspiciousness level The standard methodology assumes that each statement in
the ranking has a unique suspiciousness level [63]. However, in real-world problems, the
possibility exists that two separate code blocks or statements have the same suspiciousness
level. We assume that the sort function used to order statement arbitrarily breaks these ties.
Therefore, when multiple statements have the same suspiciousness level, the statements are
given the same rank.

Multi-statement faults A multi-statement fault is a fault for which the fix spans multiple
statements. It is estimated that 76% [47] of the real-world faults are multi-statement faults.
In this case, the program P contains multiple defective statements d.
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We assume that any of the defective statements needs to be localized to understand
the underlying cause of the crash. Therefore, if a program P contains multiple defective
statements, then the EXAM score is based on the defective statement with the highest
suspiciousness level.

Faults of omission A fault of omission is a fault for which the patch consists of adding
new statements rather than modifying or deleting existing ones. So, the faulty program P
contains no defective statement d, but some statements are missing. In this case, it is not
straightforward which statement should be identified to localize the fault.

Pearson et al. [63] has defined a methodology and dataset to address this problem and
determine which statements should be reported. In case of a fault of omission, we do not
speak of the defective statement, but instead, call them candidate statements because these
statements are not necessarily defective.

As a general rule, the candidate statements for a fault of omission are the executable dec-
larations before and after the location where the new statements are to be inserted. For
example, in Listing 4.1, the candidate statements are the statements that can be executed
directly before and directly after the location of the patch.

Listing 4.1: Candidate statements in case of if-else [63]
0 public void exampleIfElse() {
1 if (expression) {
2 beforeStatement(); < candidate statement
3 } else {
4 beforeStatement(); < candidate statement
5 }
6 // patch
7 afterStatement(); < candidate statement
8 }

However, in some cases, additional statements are included, for example in Listing 4.2. In
this case, all the possible statements before and after the patch localization are included in
the set of candidate statements because it is not possible to determine in advance which of
these statements will influence the program outcome.

Listing 4.2: Candidate statements in case of initializer block [63]
0 public void exampleInitializerBlock() {
1 map = new HashMap(); < candidate statement
2 map.put(k1, v1); < candidate statement
3 // patch
4 map.put(k3, v3); < candidate statement
5 map.put(k4, v4); < candidate statement
6 return map; < candidate statement
7 }
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4.3 Dataset

We make use of the DEFECTS4J [47] dataset (version 1.5.0), which consists out of 435 real
faults from 6 open source projects: JFREECHART, GOOGLE CLOSURE, APACHE COM-
MONS LANG, APACHE COMMONS MATH, MOCKITO and JODA-TIME. For each fault,
DEFECTS4J provides a faulty and a fixed version of the program together with a minimized
patch that represents the isolated bug fix. The minimized patch indicates which statements
in the code should be reported by the fault localization approach. Besides the different
versions of the program, there is also a hand-written test suite available including a bug
triggering test case (that fails in the faulty version).

For the evaluation, we use 50 real-world faults from the DEFECTS4J [47], which have
previously been used for crash reproduction [72]. In addition, we use the JCRASHPACK
[72] dataset and the fault localization dataset by Pearson et al. [63].

The JCRASHPACK dataset extends the DEFECTS4J dataset by supplying the required
data needed for crash reproduction, including the crash stack traces and a list of reproducible
frames. Pearson et al.’s fault localization dataset contains additional information needed
that is for fault localization, such as a list of defective and candidate statements and the
statement-lines-of-code for each of the DEFECTS4J programs.

4.4 Test suites

For each target frame of each crash, we consider five different test suites: (i) the hand-
written passing test suite (Manpass

+), provided by DEFECTS4J; (ii) the hand-written failing
test suite (Manfail

+), also provided by DEFECTS4J; (iii) a test suite containing a single crash-
reproducing test case (Botfail

1), generated by BOTSING; (iv) a test suite containing multiple
crash-reproducing test cases (Botfail

+), also generated by BOTSING; and (v) a generated test
suite (Evopass

+) with unit test cases generated by EVOSUITE. Figure 4.1 depicts an overview
of the considered test suites for the evaluation.
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Figure 4.1: Test suites used for the evaluation (the color green indicates that a test case is
passing, red indicates a failing test case).
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4.4. Test suites

Hand-written test suites (Manpass
+and Manfail

+)

The hand-written test suites are extracted from the DEFECTS4J dataset. For the evaluation,
we split the test suite for each program in a test suite containing the relevant passing test
cases (Manpass

+) and a test suite comprising the relevant failing test cases (Manfail
+).

To avoid the executing of the whole test suite, we filter the existing test suite and only use
the relevant test cases. A test case is relevant for a fault if it executes at least one class listed
in the crash stack trace.

DEFECTS4J also provides a list of relevant test cases, which are the test cases that
execute at least one of the modified classes (i.e., classes that are changed in the patch).
However, we argue that the provided list is not exhaustive and cannot be used as-is. First,
because it only contains the test cases of the modified classes and no unit test cases for all
the classes listed in the stack trace. And second, because in practice, the set of modified
classes are unknown in advance.

Therefore, we define the following methodology for obtaining the relevant test cases
from the DEFECTS4J whole test suite:

(i) Each test case in the test suite is executed.

(ii) For each of the test cases, the JVM ClassLoader is used to determine which classes
are loaded and, therefore, executed by the test case.

(iii) If one of the loaded classes is in the crash stack trace, the test case will be marked as
a relevant test case.

After that, each test case is executed on the faulty version of the DEFECTS4J program
to obtain the relevant passing test cases from the relevant test cases.

Obtaining the relevant failing test cases is a lot easier, as DEFECTS4J provides a list of fault
triggering test cases. These test cases have the properties that they fail before the fix and
pass after the repair, and the test case failure is not random and does not dependent on the
test execution order.

Crash-reproducing test cases (Botfail
1and Botfail

+)

To generate the crash-reproducing test cases, we executed BOTSING with a time budget of
3 minutes, three search objectives, and using the SPEA2 multi-objective evolutionary algo-
rithm [31]. The algorithm uses the main objective Crash Distance and the two secondary
objectives Test Length and Method Sequence Diversity. All the other parameters are left to
their default value.

For each frame of each stack trace, we ran two rounds of BOTSING, producing two
test suites Botfail

1and Botfail
+. In the former, BOTSING stops after finding the first crash-

reproducing test case (i.e., the test suite consists out of a single crash-reproducing test case).
In the latter, BOTSING continues the search process after the first crash-reproducing test
case and stops after the time budget runs out (i.e., the test suite consists out of multiple

25



4. EVALUATION

crash-reproducing test cases). BOTSING is based on a meta-heuristic optimizing algorithm,
so there is no guarantee that a crash-reproducing test case is generated on the first run.
Therefore, we give BOTSING a maximum of 15 attempts to generate a crash-reproducing
test case.

Automatically generated unit test suites (Evopass
+)

For the generation of the unit test cases, we use EVOSUITE with the default parameters,
also used in a previous study by Shamshiri et al. [70]. Shamshiri et al. used EVOSUITE
with the Whole Test Suite fitness function [34] and a time budget of 1 minute.

Similar to the Manpass
+, we only generate unit test cases for the relevant classes. So, for

each crash, we target all the distinct classes appearing in the stack trace, resulting in a test
suite per crash.

Non-deterministic test cases

The test suites generated by BOTSING and EVOSUITE come with specific scaffolding,
which ensures that each test case in the test suite is always executed in the same state to
avoid non-deterministic test cases (which could lead to flaky test cases). Unfortunately,
due to compatibility issues with GZOLTAR, we had to remove the scaffolding from the
generated test cases. To compensate for the possibility that a test case might become non-
deterministic, we add a step to identify and remove the non-deterministic test case by com-
paring the test case’s output before and after the scaffolding has been removed. If the output
of the test case is different, then the test case will be removed.

Undeclared exception thrown

Furthermore, EVOSUITE can generate passing test cases that create an expected undeclared
exception. In this case, EVOSUITE surrounds the test case in a try-catch block to ensure that
the test case succeeds. However, the possibility exists that a generated test case reproduces
the crash [71]. This may cause interference in the automated fault localization approach
because a crash triggering execution path will be labeled as passing. For this reason, we
have decided to remove all test cases covering an undeclared exception.

For example, the test case generated by EVOSUITE for LANG-16b shown in Listing 4.3.
In this example, the input "-0x" generated by EVOSUITE is a possible input that will trigger
the underlying bug causing the crash.

Listing 4.3: Undeclared exception generated by EVOSUITE

0 @Test(timeout = 4000)
1 public void test052() throws Throwable {
2 // Undeclared exception!
3 try {
4 NumberUtils.createInteger("-0x")
5 fail("Expecting exception: NumberFormatException")
6 } catch (NumberFormatException e) {
7 verifyException("org.apache.commons.lang.math.NumberUtils", e);
8 }
9 }
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In the same case, BOTSING can generate a crash-reproducing test case that throws an ex-
ception. When the thrown exception is not an undeclared exception, it is surrounded by
a try-catch block making it a passing test case. For example, the test case generated for
LANG-16b with target frame 1 shown in Listing 4.4. In this case, we assume that the gener-
ated test cases should indeed fail. Therefore, we only remove the try-catch block instead of
the entire test case.

Listing 4.4: Exception generated by BOTSING for LANG-16b
0 @Test(timeout = 4000)
1 public void test0() throws Throwable {
2 try {
3 NumberUtils.createNumber("hnQfuK+F\"w>3%jyxr")
4 fail("Expecting exception: NumberFormatException")
5 } catch (NumberFormatException e) {
6 verifyException("org.apache.commons.lang.math.NumberUtils", e);
7 }
8 }

4.4.1 Configurations

In our evaluation, we combine the various test suites into five different combinations. Each
configuration persists out of one set of failing test cases, which expose the crash, and one
set of passing test cases. Table 4.1 depicts an overview of the different configurations.

Table 4.1: Five configurations used for the evaluation.

Configuration Description

Manfail
+-Manpass

+ Contains only hand-written test cases, for both the crash exposing
test cases as well as the relevant passing test cases.

Botfail
1-Manpass

+ Contains one failing generated crash-reproducing test case and the
hand-written relevant passing test cases.

Botfail
+-Manpass

+ Contains multiple failing generated crash-reproducing test cases
and the hand-written relevant passing test cases.

Botfail
1-Evopass

+ Contains one failing crash-reproducing test case and the automati-
cally generated passing unit test cases.

Botfail
+-Evopass

+ Contains multiple failing crash-reproducing test cases and the auto-
matically generated passing unit test cases.

4.5 Data analysis

Since BOTSING can only target one frame at the time and can reproduce multiple frames
of some stack traces, it means that BOTSING can make a crash-reproducing test case for
98 frames for the 50 crashes under test. Besides that, we want to compare the four sim-
ilarity coefficients from Table 2.1. As a result, we end up with 98⇥ 5⇥ 4 = 1960 data
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4. EVALUATION

points. Hereafter, we focus on the statistical analysis used to answer the different research
questions, defined in Section 4.1.

For that, we compare the different combinations based on their EXAM scores. To do so,
we use the Vargha-Delaney [75] statistics (Â12) to examine the effect size between two
combinations. If the value Â12 is lower than 0.5 for a pair of combinations (A,B), then
the combination A reduces the EXAM score, and the opposite applies when the value is
higher than 0.5. Additionally, to determine the significance of the effect sizes, we use the
non-parametric Wilcoxon Rank Sum test, with a = 0.05 for the Type I error.

For RQ.1, we compare the diagnostic accuracy of the combinations shown in Table 4.1.
Therefore we make a pairwise comparison between the different combinations, following
the tournament ranking procedure, proposed by Pearson et al. [63]. The tournament ranking
is calculated by comparing the pairwise EXAM scores, awarding 1 point to the winner if
it has statistically significantly better (p-value  0.05 and Â12 < 0.5) EXAM score, and
ranking the configurations by the number of points.

For RQ.2, we repeat this comparison, but we limit ourselves to the test suites that con-
tain at least one failing test case that covers the fault.

For RQ.3, we manually investigate the results of the automated crash fault localization ap-
proach to identify the potential factors influencing the diagnostic accuracy. For the analysis,
we categorized the different combinations into three sets based on their performance in the
automated crash fault localization process.

Category I Executions where crash-reproducing test cases generated by BOTSING per-
formed better than the hand-written test cases exposing the bug,
i.e., (Botfail > Manfail

+)

Category II Executions where the performance of crash-reproducing test cases generated
by BOTSING performed similar to the the hand-written test cases exposing
the bug, i.e., (Botfail = Manfail

+)

Category III Executions where the hand-written test cases exposing the bug performed
better than the crash-reproducing test cases generated by BOTSING,
i.e., (Botfail < Manfail

+)
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Chapter 5

Tooling

In this chapter, we describe the components developed for the evaluation. First, we start
with a motivation for the approach used to develop the components, followed by a descrip-
tion of each individual component’s functionality. The source code of these components is
available at Github1.

5.1 Motivation

In Chapter 4, we described the evaluation methodology to answer our research questions.
To perform the defined evaluations, we developed tools to automate the process and to make
it easily reproducible.

First, we build a dataset of the different test suites used for the evaluation, consisting of
hand-written test cases (Manpass

+, Manfail
+), crash-reproducing test cases (Botfail

1, Botfail
+),

and automatically generated unit test cases (Evopass
+).

For the Manpass
+ and Manfail

+ test suites, we extract the test cases from the DEFECTS4J
dataset. Secondly, the Botfail

1 and Botfail
+ test suites, we generate the test cases using

BOTSING with the defined configuration. Lastly, the Evopass
+ test suite, we generate the

test cases using EVOSUITE with the configurations as defined in Section 4.4.

For each of these tasks, we developed a separate component, in order to keep the code
understandable as each component has a single responsibility and to simplify the repetition
or to redo parts of the evaluation. Thanks to the modular setup, the research can easily be
extended with other test suites or another fault localization approach, as not every part has
to be remade.

Figure 5.1 depicts an overview of the components used to obtain the test suites dataset.
Three components are used for this task: the DEFECTS4J test case extractor 1�, the BOTS-
ING test case generator 2�, and the EVOSUITE unit test case generator 3�.

1https://github.com/svenpopping/acfl-replication-package
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The DEFECTS4J test case extractor is used to obtain the relevant passing and failing test
cases from a DEFECTS4J project. The test suite and the crash report are used to determine
the relevant test cases. The BOTSING test case generator is used to generate the single and
multiple crash-reproducing test cases that reproduce the given crash report. The EVOSUITE
unit test case generator is used to generate the unit test covering the relevant classes from
the crash report.
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Figure 5.1: Components used to obtain the test suites dataset.

With the dataset complete, we can apply fault localization to each of the five combinations
(see Table 4.1). To execute one of the combinations, we use the components as depicted in
Figure 5.2. In the first step 1�, we run GZOLTAR to apply spectrum-based fault localiza-
tion, using the different similarity coefficients, to generate the four fault localization reports
(i.e., one for each similarity coefficient). In the second step 2�, we run post-processing
to extract all the required information for the evaluation from the fault localization reports
(e.g., exam scores, crash coverage, or program spectra).
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Figure 5.2: Components to obtain the 1960 data points from the dataset.
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5.2. DEFECTS4J test case extractor

The execution of the different combinations is orchestrated by a script, which auto-
matically executes all the possibilities to obtain the 1960 data points needed for the data
analysis.

5.2 DEFECTS4J test case extractor

The first step in the dataset collection (see Figure 5.1) is to extract the relevant hand-
written passing and failing test cases from the DEFECTS4J project under test. For this,
we created a DOCKER container called defects4j-extractor. The flowchart of the
defects4j-extractor is shown in Figure 5.3.
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Figure 5.3: Flowchart of the DEFECTS4J test cases extraction process.

The input 1� of the defects4j-extractor is the project id and the bug id of a DE-
FECTS4J project and the output 7� is a folder containing all the relevant passing and failing
test cases.

In the first checkout & compile step 2�, the fixed version of the DEFECTS4J project is
checked out and compiled using the DEFECTS4J command-line interface (CLI). The fixed
version of the project is used to ensure that all the relevant test classes can be executed
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without failing in the next phase. Furthermore, it exposes the test cases that fail in the fixed
version, which presumably trigger another bug or defect in the project.

In the relevant passing test cases step 3�, the relevant passing test cases are extracted from
the existing test suite. First, the list of all the test cases is generated, using the DEFECTS4J
CLI. To determine the relevant test cases, each test case is executed using the monitor.test
command provided by the DEFECTS4J CLI, which returns the list of classes covered by the
test case. If one of the covered classes is in the stack trace corresponding to the crash, the
whole test class is listed as relevant, as it is more convenient to copy the whole test class
instead of copying a single test case.

After all the test cases are labeled, the relevant passing test classes are copied to the
directory test-pass/. However, the copied test classes may contain failing test cases.
Therefore, in step 4�, the faulty version of the project is checked out and compiled. In step
5�, each test class is executed on the faulty version of the project, and any failing test cases

are listed in the EXCLUDE TEST CASES file. The EXCLUDE TEST CASES file can later be used
to exclude these test cases from the automated fault localization, to ensure that only the
passing hand-written test cases are executed.

At last, in step 6�, the relevant failing test cases are extracted. The DEFECTS4J CLI can
export different version-specific properties, including a list of test cases that trigger the bug.
The test classes containing these test cases are copied to the test-fail/ directory. The bug
triggering test cases are listed in the INCLUDE TEST CASES such that only these test cases
can be included in the automated fault localization.

To execute the defects4j-extractor, there are two required inputs: the project id for
a specific project and the bug id for a specific bug of the DEFECTS4J project. An exam-
ple command to run the defects4j-extractor is shown in Listing 5.1, which extracts
the relevant passing and failing test cases from LANG-19b and stores them in the current
directory.

Listing 5.1: Example command to run the defect4j-extractor container
0 docker run
1 -e PROJECT_ID=Lang
2 -e BUG_ID=9
3 -v $(pwd)/tests -pass:/opt/runner/results/tests -pass
4 -v $(pwd)/tests -fail:/opt/runner/results/tests -fail
5 defect4j -extractor:latest

After the successful execution of the defects4j-extractor, the results are stored in the
following files and directories:

tests-pass/ containing test classes with at least one relevant passing test case.

tests-pass/EXCLUDE TEST CASES containing a line for each failing test cases in the format
className#testMethod. The test cases in this file should be excluded from fault
localization to ensure only passing test cases are executed.
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5.3. BOTSING test case generator

tests-fail/ containing test classes with at least one relevant failing test case.

tests-fail/INCLUDE TEST CASES containing a line for each bug triggering test cases in the
format className#testMethod. The test cases in this file should be included in
fault localization to ensure that the bug triggering test cases are executed.

5.3 BOTSING test case generator

The purpose of this component is to automate the crash reproduction process for the projects
in the DEFECTS4J dataset. The component generates a single crash-reproducing test case or
multiple crash-reproducing test cases for a given DEFECTS4J project and a target frame. For
this component, we created a DOCKER container called botsing-generator, the flowchart
of the container is shown in Figure 5.4.
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Figure 5.4: Flowchart of the BOTSING test cases generator.

The input 1� of the botsing-generator is the project id and the bug id of a DE-
FECTS4J project. Together with the target frame, the max retries, indicating the max-
imum number of retries if botsing fails to generate a test case the first time, and the flag
multiple, indicating whether or not multiple crash-reproducing test cases should be gen-
erated.

The output 4� is a folder containing the crash-reproducing test suite and a folder con-
taining the logs of the latest BOTSING execution.

In the checkout & compile step 2�, the faulty version of the DEFECTS4J project is checked
out and compiled using the DEFECTS4J CLI. The faulty version is used to enable BOTSING
to generate the crash-reproducing test cases in the next step.

In the generate crash-reproducing test case 3� step, BOTSING generates a test class con-
taining one or multiple test cases depending on the sign of the multiple flag.
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Since BOTSING is based on a meta-heuristic optimization algorithm relying on random-
ness, it is possible that in the one run, BOTSING can not generate a solution. Still, in another
run, BOTSING can find a solution. Therefore, if no solution has been found (determined by
the fitness value in the logs), BOTSING is rerun until the maximum number of retries has
been reached.

Furthermore, BOTSING relies on the test case minimization algorithm of EVOSUITE.
Sometimes it happens that BOTSING generates a crash-reproducing test case, but the test
case is minimized to an empty test case. In such a case, BOTSING is also rerun until the
maximum number of retries has been reached.

To run the botsing-generator, the inputs, as described above, must be provided through
the environment variables of the DOCKER container. An example command to run the
botsing-generator is shown in Listing 5.2, which generates multiple crash-reproducing
test cases for LANG-19b and target frame 4. The results are stored the results in the current
directory.

Listing 5.2: Example command to run the botsing-generator container
0 docker run
1 -e PROJECT_ID=Lang
2 -e BUG_ID=9
3 -e TARGET_FRAME=4
4 -e MAX_RETRIES=15
5 -e MULTIPLE=true
6 -v $(pwd)/tests -botsing:/opt/runner/results
7 botsing -generator:latest

After the successful execution of the botsing-generator, the results are stored in the
following directories:

tests-botsing/ containing the crash-reproducing test class with one or multiple test cases,
depending on the mode (single or multiple). For each test class, there is a file con-
taining the test classes itself (denoted by className ESTest), and a file containing
the EVOSUITE scaffolding (denoted by className scaffolding ESTest).

tests-botsing/logs containing the logs of the latest BOTSING execution.

5.4 EVOSUITE unit test case generator

The purpose of this component is to automate the generation of unit test cases for the
projects in the DEFECTS4J dataset. The component generates a test class for each dis-
tinct class in the stack trace corresponding to the crash. For this component, we created a
DOCKER container called evosuite-generator. The flowchart of the container is shown
in Figure 5.5.
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Figure 5.5: Flowchart of the EVOSUITE unit test cases generator.

The input 1� of the evosuite-generator is the project id and the bug id of a DE-
FECTS4J project and the output 4� is a folder containing a test class for each distinct class
in the corresponding stack trace.

In the checkout & compile step 2�, the faulty version of the DEFECTS4J project is checked
out and compiled using the DEFECTS4J CLI. The faulty version is used, as in practice, this
will be the only version available.

In the generate unit test case 3� step, a list of relevant classes is constructed for the DE-
FECTS4J bug. A class is considered relevant if the class is in one of the frames in the stack
trace and is part of the DEFECTS4J project. Afterward, EVOSUITE is executed to generate
a unit test class for each of the classes in the list. EVOSUITE is executed using its default
settings, as provided by the documentation.

To run the evosuite-generator, the inputs, as described above, must be provided through
the environment variables of the DOCKER container. An example command to run the
evosuite-generator is shown in Listing 5.3, which generates the unit test classes for
LANG-19b and stores the results in the current directory.

Listing 5.3: Example command to run the evosuite-generator container
0 docker run
1 -e PROJECT_ID=Lang
2 -e BUG_ID=9
3 -v $(pwd)/tests -evosuite:/opt/runner/results
4 evosuite -generator:latest

After the successful execution of the evosuite-generator, the results are stored in the
following directories:

tests-evosuite/ containing the unit test classes relevant for the given DEFECTS4J project.
For each test class, a file containing the test classes itself (denoted by className -
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ESTest), and a file containing the EVOSUITE scaffolding (denoted by className -
scaffolding ESTest).

5.5 Test suites post-processing

As mentioned in Section 4.4, the generated test classes by BOTSING and EVOSUITE are not
immediately compatible with GZOLTAR, the fault localization framework.

Therefore, we have to prepare the test classes for the fault localization part of the evaluation.
This implies that, for the BOTSING test suites, the scaffolding and that any try-catch blocks
will be removed from the test suites. Furthermore, the name of the test classes will be
renamed such that they include the word BOTSING. This action is taken because the name
of the test classes generated by BOTSING and EVOSUITE are identical for the same class,
resulting in the fact that the one overrides the other test class when inserted into GZOLTAR.

For the EVOSUITE unit test classes holds that the scaffolding and the test cases throwing
an undeclared exception will be removed. Also, the name of the test classes will be renamed,
such that the filename includes the word EVOSUITE.

5.6 GZOLTAR fault localization runner

The purpose of this component is to apply fault localization to the different combinations of
test suites, as discussed in Section 4.4. As mentioned earlier, we rely on the fault localization
framework called GZOLTAR [21].

Figure 5.6 depicts the workflow of the GZOLTAR framework. The workflow consists of
four steps, which must be carried out one after the other.

The first step 1� is to list all the test cases in the project and determine its type (either
JUnit or TestNG). After that, the GZOLTAR instrumentation is added to the project, in step
2�. The instrumentation, comprising several APIs, enables GZOLTAR to track the coverage

of the test cases throughout the project. Using the list of test cases from step 1� and the
instrumentation from step 2�, in step 3� all test cases are executed in isolation so that the
program spectrum can be constructed and saved in a serialized object. In step 4�, the fault
localization report is constructed using one of the implemented similarity coefficients. Since
the program spectrum is saved, it is possible to repeat step 4� using different similarity
coefficients, without having to go through steps 1�, 2�, and 3� again.

LiVW WeVW
meWhodV

1

InVWall 
inVWUXmennWaion

2

RXn each WeVW 
caVe in iVolaWion

3

CUeaWe
faXlW locali]aWion

UeSoUW

4

Figure 5.6: Flowchart of the fault localization process using GZOLTAR

36



5.6. GZOLTAR fault localization runner

After the execution of GZOLTAR, the fault localization reports are stored in the following
files:

<formula>.ranking.csv containing the ranking of the statements in the project, sorted by
their suspiciousness level. <formula> is the name of the formula, for example,
when using the TARANTULA coefficient, the filename is tarantula.ranking.csv.

matrix.txt containing the program spectrum matrix, where each row represents a test case
and its outcome, and each column represents a statement (1 means that a test case
covered a line of code, 0 otherwise).

tests.csv a list of all test cases and its outcome, runtime in nanoseconds, and the stack
trace (in case of a failing test case).

spectra.csv a list of all lines of code executed by a test case. Each row follows the following
format: className#methodName(methodParameters):lineNumber

To automate the evaluation process, we extended the original workflow and created a DOCKER
container around it. For this component, we created a DOCKER container called gzoltar-
runner, the flowchart of the container is shown in Figure 5.7.
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Figure 5.7: Flowchart of the GZOLTAR runner.

The input 1� is the project id and bug id of a DEFECTS4J project. Together with a
directory containing passing test cases (test-pass/) and a directory containing failing test
cases (test-fail/).
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5. TOOLING

In the checkout & compile step 2�, the faulty version of the DEFECTS4J projects is
checked out and compiled using the DEFECTS4J CLI. The faulty version is used, as in
practice, this will be the only version available.

Using the faulty version and the directory containing the passing test cases, a list of
the passing test cases is generated, in step 3�. Similar to the original GZOLTAR workflow,
the list is created by compiling the test cases and using the listTestMethods command
provided in the GZOLTAR CLI. However, only the test cases in the directory test-pass/
are indexed, and the test cases in the EXCLUDE TEST CASES are removed from this list.

After that, in step 4�, the failing test cases are compiled, and the test cases listed in the
INCLUDE TEST CASES file are added to the list of passing test cases. So there is a list of all
the test cases used in the fault localization process.

Then step 5�, in which, first, the compiled project and the compiled test cases are col-
lected in one directory. Second, the GZOLTAR instrumentation is added to all the classes
in the directory, followed by the execution of each test case in isolation (as in the original
workflow). In addition to the original workflow, after the execution of the test cases, the
logs are checked to ensure everything went as expected (i.e., every passing test case has
passed, and every failing test case has failed).

Using the serialized object from step 5�, the fault localization reports are generated for
the four similarity coefficients in Table 2.1, in step 6�. After the generation of the fault
localization reports, some unnecessary files are removed, including the serialized object
(which can become quite large).

In the second to last step 7�, the post-processing of the fault localization reports is
executed. As the project and test cases are combined in one directory, the reports also
include the test statements (i.e., test case lines of code). The test statements are removed
from the reports because they have nothing to do with the crash.

The output 8�, are the fault localization reports (one for each similarity coefficient) and
some statistical information about the fault localization process.

To run the gzoltar-runner, the inputs, as described above, must be provided through
the environment variables of the DOCKER container. An example command to run the
gzoltar-runner is shown in Listing 5.4, which drafts the fault localizations reports for
LANG-19b, using the passing test cases from the directory <path-to-passing-tests> and
the failing test cases from the directory <path-to-failing-tests>, and stores the results
in the current directory.

Listing 5.4: Example command to run the gzoltar-runner container
0 docker run
1 -e PROJECT_ID=Lang
2 -e BUG_ID=9
3 -v <path -to-passing -tests >:/opt/runner/tests -pass
4 -v <path -to-failing -tests >:/opt/runner/tests -fail
5 -v $(pwd)/results:/opt/runner/results/sfl/txt
6 gzoltar -runner:latest
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5.7. Fault localization post-processing

After the successful execution of the gzoltar-runner, the results are stored in the files
from the original workflow and in the following files:

barinel.ranking.csv, dstar.ranking.csv, ochiai.ranking.csv,tarantula.ranking.csv contain-
ing the ranking of the statements in the project, sorted by their suspiciousness level,
calculated using the BARINEL, DSTAR, OCHIAI and TARANTULA coefficient, re-
spectively.

gzoltar.tests containing a list of all the test cases used in the fault localization process.

logs run-test-methods.log containing the outcome of all the test cases. If a test case fails,
the logs contain also the produced stack trace.

5.7 Fault localization post-processing
After all the results have been collected, we applied post-processing on the dataset. To ob-
tain the EXAM scores and to double-verify whether every combination has been executed
correctly.

For the EXAM scores, we first constructed the ranking of the statements, based on the
extended evaluation methodology described in Section 4.2. We also sanitized the ranking
by removing non-executable statements and the statements with a suspiciousness level of
zero. With the ranking and the defective statements from the fault localization dataset (by
Pearson et al. [63]), we computed the EXAM scores for each of the combination of test
suites.

To determine whether or not the crash-reproducing test case has covered the defective
statement (and therefore covered the fault), we looked at the EXAM score. When the
EXAM score could not be calculated, it meant that the defective statement had not been
executed. We can say this with certainty because the ranking only contains only the state-
ments that have been executed by at least one failing test case (otherwise, the suspiciousness
level would be higher than zero).

Using the logs provided by each component, we could verify that every combination has
been executed correctly. We also manually checked that every component had been cor-
rectly executed because, in some cases, the failing test case failed (checked in the gzoltar-
runner), but it is due to another reason than the expected one (e.g., a missing library or the
wrong system timezone).
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Chapter 6

Results

In this chapter, we discuss the results of the evaluation, following the methodology de-
scribed in Chapter 4 and using the tooling described in Chapter 5.

Before answering the defined research questions by looking into the general scenario, the
best-case scenario, and the influencing factors, we have to look into the crash-reproducing
test cases generated by BOTSING. As described in Section 4.5, we used in total 98 frames
from 50 DEFECTS4J crashes.

Due to the fact that BOTSING’s algorithm relies on randomness, BOTSING was not able
to generate non-empty crash-reproducing test suites for all 98 frames in the dataset. Ta-
ble 6.1 reports how many test suites could be generated out of the 98 target frames from the
50 DEFECTS4J projects under test. For instance, single-BOTSING (Botfail

1) generated 83
non-empty test suites (i.e., containing one crash-reproducing test case) out of the 98 target
frames, and multiple-BOTSING (Botfail

+) produced 85 non-empty test suites (i.e., contain-
ing at least one crash-reproducing test case). After the removal of the flaky test cases (due
to the removal of the EVOSUITE scaffolding), we ended up with 80 non-empty Botfail

1 test
suites and 84 non-empty Botfail

+ test suites.

Out of the 80 non-empty Botfail
1 test suites, 51 contain a crash-reproducing test case

that executes the defective statements. For the 84 non-empty Botfail
+ test suites holds that

65 contain a crash-reproducing test case that executes the defective statements.

Table 6.1: Number of crashes for which BOTSING could generate a crash-reproducing test
suite contain one (Botfail

1) or multiple (Botfail
+) crash-reproducing test cases

Botfail
1 Botfail

+

Crashes 50 50
Total number of target frames 98 98
Non-empty test suites generated by BOTSING 83 85

of which contain flaky crash-reproducing tests 3 1
of which execute the defective statement 51 65

41



6. RESULTS

Interestingly, the number of non-empty test suites for Botfail
1 and Botfail

+ are not equal,
which is counter-intuitive. One would expect that if BOTSING can generate a non-empty
test suite with multiple crash-reproducing test cases, it would also be possible to generate a
non-empty test suite with a single crash-reproducing test case.

However, it most likely has to do with the fact that the multiple-BOTSING does twice
as much generation and evaluation within the same search budget of 180 seconds. We have
not been able to explain the reason for this adequately, as single- and multiple-BOTSING are
executed using the same amount of resources (2 CPUs and 5 GB memory, enforced by the
DOCKER runtime options).

6.1 General scenario

After removing the flaky test cases, we have 80 non-empty test suites, common to Botfail
1

and Botfail
+, that can be used to fairly compare the results for all the configurations and

hence to answer RQ1.

RQ1: How does automated crash fault localization perform in comparison to manual crash
fault localization in terms of accuracy when BOTSING generates one or more crash-
reproducing test cases?

As described in Section 4.2, the evaluation metric used to determine the diagnostics accu-
racy of a fault localization approaches is the EXAM score. Recall that a lower EXAM
score represents better performance because it calculates the percentage of statements be-
fore examining the faulty statement.

Figure 6.1 depicts the boxplots for EXAM scores of the 80 test suites for the different con-
figurations and coefficients. The means of the EXAM scores for each of the combinations
of configurations and coefficients are reported in Table 6.2.

The hand-written test cases (Manfail
+-Manpass

+) achieve the best EXAM score for each
of the similarity coefficients compared to the EXAM scores of the automated crash fault
localization configurations (see Figure 6.1a and Table 6.2). Overall, the hand-written test
cases (Manfail

+-Manpass
+) with the OCHIAI coefficient achieves the best EXAM score (see

Table 6.2).

Table 6.2: The mean EXAM of the 80 different test suite combinations, common to
Botfail

1and Botfail
+.

Configurations BARINEL DSTAR OCHIAI TARANTULA

Manfail
+-Manpass

+ 0.0031 0.2149 0.0027 0.0029
Botfail

1-Manpass
+ 0.3647 0.5395 0.3647 0.3647

Botfail
+-Manpass

+ 0.2418 0.3777 0.2402 0.2399
Botfail

1-Evopass
+ 0.3647 0.5766 0.3647 0.3647

Botfail
+-Evopass

+ 0.2422 0.4145 0.2399 0.2403
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6.1. General scenario

(a) Manfail
+-Manpass

+

(b) Botfail
1-Manpass

+ (c) Botfail
+-Manpass

+

(d) Botfail
1-Evopass

+ (e) Botfail
+-Evopass

+

Figure 6.1: Representation of the EXAM score for the 80 test suites, common to Botfail
1and

Botfail
+, with a failing crash-reproducing test case (general scenario)
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6. RESULTS

Interestingly, the Manfail
+-Manpass

+ configuration with the DSTAR coefficient has quite a
poor performance compared to the other similarity coefficients. This decline in performance
is caused by the fact that of the 80 executions, 17 achieved an EXAM score of 1.0.

After a manual analysis, we found that this is due to a problem in the way the DSTAR
coefficient uses the program spectra, as explained in Section 2.1. That means that the sum
of failing test cases not covering the fault and the number of passing test cases covering
the fault is zero, making the DSTAR coefficient unsuitable for the test cases used. This
problem occurred not only in the hand-written test suite but in all test suites in our dataset.
Consequently, the DSTAR coefficient performs the worst of all the similarity coefficients
for each of the configurations. We decided to keep the EXAM scores of 1.0 as a penalty
for such a case.

From Figure 6.1 and Table 6.2, it can be observed that, for the Botfail
1-Manpass

+ and the
Botfail

1-Evopass
+ configuration, the best EXAM score is obtained using the BARINEL, the

TARANTULA or the OCHIAI coefficient (see Figures 6.1b and 6.1d). The best EXAM score
for the Botfail

+-Manpass
+ configuration is achieved by the TARANTULA coefficient (see Fig-

ure 6.1c), but the differences with the OCHIAI and the BARINEL coefficients are small
(see Table 6.2). Botfail

+-Evopass
+ has almost the same performance compared to Botfail

+-
Manpass

+, only achieved by using the OCHIAI coefficient (see Figure 6.1e), but the differ-
ence with the TARANTULA coefficient is small.

Figures 6.1b, 6.1c, 6.1d, and 6.1e and Table 6.2 indicate that the automated configurations
using multiple crash-reproducing test cases (Botfail

+) perform better than the configurations
using a single crash-reproducing test case (Botfail

1). Besides that, for all the automated crash
fault localization configurations holds that the similarity coefficients OCHIAI and TARAN-
TULA give the best result, with BARINEL a close second.

6.1.1 Pairwise ranking

Table 6.3 shows the results of the pairwise tournament ranking of the different combinations
of configurations and coefficients, as described in Section 4.5, for the general scenario. The
rank is created by comparing the pairwise EXAM scores, awarding 1 point to the winner if
it performs statistically significantly better (p-value  0.05 and Â12 < 0.5).

From Table 6.3, we can conceive that the hand-written test suite combinations (Manfail
+-

Manpass
+) win to a large extent. However, the manual combination with DSTAR is better in

only half of the cases compared to the other manual combinations.

Furthermore, for the automated crash fault localization approach, we can observe that us-
ing multiple crash-reproducing test cases (Botfail

+) works better than using a single crash-
reproducing test case (Botfail

1). As the Botfail
+ configurations win in 25 of the executions

and the Botfail
1 only win in 7 executions. This confirms our observation from the boxplots

in Figure 6.1 and the results from Table 6.2.
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6.1. General scenario

Table 6.3: Ranking of the all 80 different test suite combinations of Configuration and
Coefficient. Better than denotes the number of times for which the combination is signifi-
cantly better than another combinations. The avg. Â12 gives the average effect size of the
configuration.

Configuration Coefficient Better than avg. Â12

1 Manfail
+-Manpass

+ OCHIAI 16 0.30
2 Manfail

+-Manpass
+ TARANTULA 16 0.30

3 Manfail
+-Manpass

+ BARINEL 16 0.31
4 Manfail

+-Manpass
+ DSTAR 8 0.37

5 Botfail
+-Evopass

+ OCHIAI 4 0.37
6 Botfail

+-Evopass
+ TARANTULA 4 0.37

7 Botfail
+-Manpass

+ OCHIAI 3 0.36
8 Botfail

+-Manpass
+ TARANTULA 3 0.36

9 Botfail
+-Evopass

+ BARINEL 2 0.36
10 Botfail

+-Manpass
+ BARINEL 2 0.37

11 Botfail
1-Evopass

+ BARINEL 2 0.39
12 Botfail

1-Evopass
+ OCHIAI 2 0.39

13 Botfail
1-Evopass

+ TARANTULA 2 0.39
14 Botfail

+-Manpass
+ BARINEL 2 0.40

15 Botfail
+-Manpass

+ OCHIAI 2 0.40
16 Botfail

+-Manpass
+ TARANTULA 2 0.40

17 Botfail
+-Manpass

+ DSTAR 1 0.41

Also, the observation for the similarity coefficients holds, as OCHIAI and TARANTULA
tie in the best performing coefficient for the automated crash fault localization approach.
Followed by the BARINEL, which wins at least once for each of the combinations, and at
last, DSTAR has only one win for the Botfail

+-Manpass
+ combination.

Our results confirm that there is no significant difference between the four similarity co-
efficients when applied to real-world faults using hand-written test cases, as shown by
Pearson et al. [63]. None of the similarity coefficient using hand-written test suite com-
bination (Manfail

+-Manpass
+), wins against the other hand-written test suite combinations

(i.e., p-value > 0.05).

6.1.2 Summary

In general, the hand-written test cases (Manfail
+-Manpass

+) perform better than the auto-
mated crash fault localization configurations. One of the reasons is that a generated crash-
reproducing test case gives no guarantee that the test case actually triggers the underlying
fault. For example, when the bug is located in frames higher than the reproduced frame.

For the automated crash fault localization configurations, the similarity coefficients OCHIAI
or TARANTULA in combination with a test suite containing multiple crash-reproducing test
cases (Botfail

+) gives the best results.
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6. RESULTS

6.2 Best-case scenario

As recorded in Table 6.1, BOTSING could generate 51 (out of 80) test suites for Botfail
1

and 65 (out of 84) test suites for Botfail
+ for different target frames. For these test suites, at

least one crash-reproducing test case covers one of the defective statements. For answering
RQ.2, we focus on these 51 test suites, common to Botfail

1and Botfail
+.

RQ2: How does automated crash fault localization perform in comparison to manual crash
fault localization in terms of accuracy when BOTSING generates one or more crash-
reproducing test cases covering the fault?

Figure 6.2 depicts the EXAM score of the 51 test suites for the different configurations and
coefficient. One thing that springs to mind is the performance of the automated crash fault
localization configurations, which improved compared to the performance in the general
scenario (see Figure 6.1). As suspected, a part of the poor performance of automated crash
fault localization configurations can be explained by the fact that there is no guarantee that
the crash-reproducing test cases cover the fault.

On average, OCHIAI is the best performing similarity coefficient for the Manfail
+-Manpass

+

configurations, as shown in Table 6.4. For the Botfail
+-Manpass

+ configurations, using the
TARANTULA or the OCHIAI coefficient, achieve a better mean EXAM score. The best
performance is achieved using the Botfail

+-Evopass
+ configuration in combination with the

OCHIAI similarity coefficient. Similar to the general scenario, for the Botfail
1-Manpass

+ and
the Botfail

1-Evopass
+ configurations holds that the best EXAM score is achieved by either

using the BARINEL, the OCHIAI or the TARANTULA coefficient.

Table 6.4: The average EXAM of the 51 different non-empty test suite combinations.

Configurations BARINEL DSTAR OCHIAI TARANTULA

Manfail
+-Manpass

+ 0.0039 0.2776 0.0034 0.0036
Botfail

1-Manpass
+ 0.0035 0.2776 0.0035 0.0035

Botfail
+-Manpass

+ 0.0064 0.2188 0.0032 0.0031
Botfail

1-Evopass
+ 0.0035 0.3359 0.0035 0.0035

Botfail
+-Evopass

+ 0.0071 0.2768 0.0030 0.0038

The latter can be explained by looking into the formulas of the three similarity coefficients.
For both single crash-reproducing configurations (Botfail

1), it holds that NF = 1 as there is
only the failing crash-reproducing test case. Using the assumption defined in Section 2.1
(for a defective statement NCF > 0), we can conclude that for a defective statement, in the
single crash-reproducing configurations, it must be that NCF = 1 and NUF = 0. When we
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6.2. Best-case scenario

(a) Manfail
+-Manpass

+

(b) Botfail
1-Manpass

+ (c) Botfail
+-Manpass

+

(d) Botfail
1-Evopass

+ (e) Botfail
+-Evopass

+

Figure 6.2: EXAM score for the 51 test suites with a failing crash-reproducing test case
triggering the bug (best-case scenario)
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6. RESULTS

apply the values to the three similarity coefficients, we get that:

OCHIAI =
NCFp

NF ⇥ (NCF +NCS)
=

1p
1⇥ (1+NCS)

=
1p

1+NCS

BARINEL = 1� NCS

NCS +NCF
= 1� NCS

NCS +1
=

1
1+NCS

TARANTULA =
NCF/NF

NCF/NF +NCS/NS
=

1/1
1/1+NCS/NS

=
1

1+NCS/NS

From this, we can deduce that these three similarity coefficients are mathematically
similar and show the same behavior (i.e., all the formulas are only dependent on NCS given
that NS is fixed for all the defective statements) when applied to a program containing a
single failing test case. This results in the fact that the ranking of the statements for all these
coefficients is the same, and therefore, the EXAM score is the same.

Comparing the different similarity coefficient from Figures 6.2b and 6.2c, we see that using
Manpass

+ in combination with Botfail
1 or Botfail

+ perform statistically better (p-value 0.05)
when using the OCHIAI (Â12 = 0.331) or TARANTULA (Â12 = 0.342) coefficient than the
DSTAR coefficient.

The BARINEL coefficient, in combination with the single crash-reproducing configura-
tions (Botfail

1) (Â12 = 0.331), also achieves a statistically significant difference towards the
same configurations using the DSTAR coefficient.

When only considering the non-empty test suites that have the guarantee that they cover the
fault, we see that no combination of similarity coefficients outperforms the others, except
for the DSTAR coefficient.

Also, we do not discern any statistical difference (i.e., p-values > 0.05)) when a given
similarity coefficient is used in combination with the hand-written test cases configuration
(Manfail

+-Manpass
+) or any other automated crash-reproducing configurations.

6.2.1 Pairwise ranking

Table 6.5 shows the results of the pairwise tournament ranking of the different combinations
of configurations and coefficients, as described in Section 4.5, for the best-case scenario.

From Table 6.5, we can observe that the DSTAR coefficient is performing the worst of all
the coefficients, as it does not perform better than any of the other combinations.

Furthermore, we can see that no combination significantly outperforms the others (ex-
cept DSTAR), as all the combinations have the same number of wins. Only the performance
of the Botfail

+-Manpass
+ and Botfail

+-Evopass
+ with BARINEL is a bit lower (1 victory vs. 5

victories), but this difference is not statistically significant.
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6.3. Influencing factors

Table 6.5: Ranking of the 51 different test suite combinations of Configuration and Coeffi-
cient. Better than denotes the number of times for which the combinations is significantly
better than another combinations. The avg. Â12 gives the average effect size of the config-
uration.

Configuration Coefficient Better than avg. Â12

1 Botfail
1-Evopass

+ BARINEL 5 0.32
2 Botfail

1-Evopass
+ OCHIAI 5 0.32

3 Botfail
1-Evopass

+ TARANTULA 5 0.32
4 Botfail

+-Evopass
+ OCHIAI 5 0.33

5 Botfail
+-Manpass

+ OCHIAI 5 0.34
6 Botfail

1-Manpass
+ BARINEL 5 0.35

7 Botfail
1-Manpass

+ OCHIAI 5 0.35
8 Botfail

1-Manpass
+ TARANTULA 5 0.35

9 Botfail
+-Evopass

+ TARANTULA 5 0.35
10 Manfail

+-Manpass
+ OCHIAI 5 0.35

11 Botfail
+-Manpass

+ TARANTULA 5 0.36
12 Manfail

+-Manpass
+ TARANTULA 5 0.36

13 Manfail
+-Manpass

+ BARINEL 5 0.37
14 Botfail

+-Evopass
+ BARINEL 1 0.37

15 Botfail
+-Manpass

+ BARINEL 1 0.38

6.2.2 Summary

In the best-case scenario, we observe no statistically significant difference between the auto-
mated crash fault localization configurations (Botfail

1-Manpass
+, Botfail

+-Manpass
+, Botfail

1-
Evopass

+, Botfail
+-Evopass

+) and the hand-written test cases (Manfail
+-Manpass

+), which was
there in the general scenario. No combination of configuration and similarity coefficient
beats the other combinations.

Our findings show that using the OCHIAI or the TARANTULA coefficients results in the
best EXAM score. However, when using a single crash-reproducing test case (Botfail

1), it
does not matter which of the coefficients is used (except DSTAR), because in this case, the
coefficients are mathematically similar and only dependent on NCS.

Finally, the results suggest that the DSTAR coefficient might not be suitable for the
usage in automated crash fault localization.

6.3 Influencing factors

Finally to answer RQ3, we identified the factors that influence the diagnostic accuracy of
the automated crash fault localization approach, we categorized the executions in Botfail >
Manfail

+, Botfail = Manfail
+, and Botfail < Manfail

+, as described in Section 4.5.

RQ3: Which factors influence the performance and applicability of automated crash fault
localization?
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6. RESULTS

For each category, we manually investigated potential factors influencing spectrum-based
fault localization accuracy by identifying the strengths and weaknesses of the automatically
generated crash-reproducing test cases. Hereafter, we provide the identified factor for each
category with a representative example.

6.3.1 Purified test cases (Botfail > Manfail
+)

According to existing literature [7, 65, 87], the number of assert statements per test case
influences the diagnostic accuracy of spectrum-based fault localization approaches. In par-
ticular, when a test case contains multiple assert statements in which the same method is
executed multiple times (e.g., Listing 6.1).

Listing 6.1: An example of non-purified test cases
0 public void test00() {
1 assertTrue(isValidPhoneNumber("06-12345678"));
2 assertTrue(isValidPhoneNumber("0031612345678"));
3 assertTrue(isValidPhoneNumber("+31612345678"));
4 }

If a test case contains multiple assertions and one of them fails, then spectrum-based fault lo-
calization cannot distinguish the failing execution path from the non-failing ones (e.g., when
the second assert statement fails). This phenomenon, the whole execution path is labeled as
failing, causing a decline in diagnostic accuracy. In their work, Xuan and Monperrus [87]
showed that purified test cases, i.e., test cases containing one assert statement executing one
method can positively influence spectrum-based fault localization performance (e.g., List-
ing 6.2) because the spectrum-based fault localization approach can better distinguish the
execution paths (failing or passing). Also, when using purified test cases, all the assertions
will be executed instead of the assertions until one fails, which provides more information.

Listing 6.2: An example of purified test cases
0 public void test00() {
1 assertTrue(isValidPhoneNumber("06-12345678"));
2 }
3
4 public void test01() {
5 assertTrue(isValidPhoneNumber("0031612345678"));
6 }
7
8 public void test02() {
9 assertTrue(isValidPhoneNumber("+31612345678"));

10 }

We observe that for several automated crash fault localization configurations (Botfail) have a
better performance than the hand-written configuration (Manfail

+-Manpass
+) when the hand-

written test cases are not purified test cases. In these configurations, the hand-written failing
test cases (Manfail

+) contain several assert statements, executing the same method several
times (i.e., having the format as shown in Listing 6.1).
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For instance, one of the hand-written crash exposing test cases for LANG-19b is shown
in Listing 6.3. This test case fails because the input used in Line 4 triggers the underlying
fault. In this case, execution paths of the first, second, and third execution of the translate
method will be marked as failing in the program spectrum. However, the inputs used in the
first and second executions are valid, which may introduce noise to the fault localization
process. Due to the non-purified test cases, the possibility arises that a non-defective state-
ment is innocently suspected of being defective due to a bug triggering execution in the
same test case.

Listing 6.3: Handwritten failing test case of LANG-19b
0 public void testOutOfBounds() {
1 NumericEntityUnescaper neu = new NumericEntityUnescaper();
2 assertEquals("Test &", neu.translate("Test &"));
3 assertEquals("Test &#", neu.translate("Test &#"));
4 assertEquals("Test &#x", neu.translate("Test &#x"));
5 assertEquals("Test &#X", neu.translate("Test &#X"));
6 }

This effect (i.e., non-purified test cases) does not appear in the crash-reproducing test cases
since BOTSING generates only one failing execution per test case, so in a way, there is only
one assertion. Therefore, for each crash-reproducing test case, only one execution path
is labeled as failing. This leads to the increase of the diagnostic accuracy for the crash-
reproducing test cases (Botfail) compared to the Manfail

+-Manpass
+ configuration.

6.3.2 Input data (Botfail = Manfail
+)

For 69% of the crashes that produce a small stack trace ( 2 frames), the diagnostic accu-
racy when using Botfail test suites is equal to or better than when using Manfail

+ test suites.
The primary reason seems to be the low number of parameters of the faulty methods be-
cause the small crashes generally involve smaller methods (e.g., helper methods). In this
case, BOTSING can achieve a high branch coverage (thanks to the additional method se-
quence diversity objective), resulting in more effective test cases for spectrum-based fault
localization.

However, after inspecting the Botfail and the Manfail
+ test suites, we noticed a difference in

the input values used to trigger the crash. The smaller crashes are mostly due to unexpected
input values that are assumed to never happen by the developers of the method (and yet, it
happened due to an edge case in the system).

For example, LANG-1b contains the createNumber() method, which does not handle large
hexadecimal numbers correctly. The method uses the length of the hexadecimal string to de-
termine whether the hexadecimal string should create a Integer, a Long, or a BigInteger.
However, the method of using the string length can determine into which object the number
should fit is incorrect. As the cut-off point between an Integer and a Long is between the
8-digit hexadecimal numbers "0x7FFFFFFF" and "0x80000000". Therefore, in the faulty
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version of the program, the hexadecimal string "0x80000000" is parsed into an Integer
object, which causes the crash.

Looking at the spectrum-based fault localization performances of Botfail
+-Manpass

+ and
Botfail

+-Evopass
+ combinations, we see that they are comparable to the performance of

Manfail
+-Manpass

+ with an EXAM score of 0.00035. However, when inspecting the crash-
reproducing test cases, we observed that the inputs generated by BOTSING are not similar
to the ones used in hand-written test cases (i.e., these inputs all start with "0x" or "-0x").
Most of the inputs generated by BOTSING are random strings such as "S/VZ9k’&" and
"4j8cvkguH". These random string cause stack trace similar to the stack trace caused by
using the input "0x80000000", both inputs cause a parsing exception (whether or not for
completely different reasons).

Those results bring an interesting insight into the crash-reproducing test cases generated
using BOTSING. Although such test cases with random input strings would appear to be of
little help for developers, they can still be used to identify the faulty statement accurately
using spectrum-based fault localization.

6.3.3 Target frame selection (Botfail < Manfail
+).

In addition to the first two factors, we notice that the target frame of a crash stack trace for
which test cases are generated influences the spectrum-based fault localization diagnostic
accuracy.

For example, for the crash TIME-5b with a stack trace consisting of 3 frames and a fault
located in the method of the third frame (i.e., the defective frame is the last frame in the
stack trace). From the 3 frames, BOTSING can generate crash-reproducing test cases for the
second (frame 2) and the third (frame 3). In general, BOTSING can directly call the target
method in the test case (e.g., when the target method is public) and indirectly (e.g., when
the target method is not visible or is invoked by another method called in the test case).

When applying BOTSING on TIME-5b with the target frame is set to 2, only 80% of the
crash-reproducing test cases call the target method of frame 2. The other 20% cover frame
2 by calling the same method as the one indicated in frame 3, so essentially, it is a crash-
reproducing test case for target frame 3. These crash-reproducing test cases combined with
unit test cases generated by EVOSUITE (Botfail

+-Evopass
+) result in an EXAM score of

0.03329.
However, when directly targeting frame 3, we observe a significant improvement of the

EXAM score (0.00022) for the same configuration (i.e., Botfail
+-Evopass

+). The primary
factor behind this improvement is the change in the ratio of test cases directly invoking
the faulty method of frame 3 (100%). In other words, when targeting frame 2, the test
cases directly invoking the target method of frame 2 add noise to the program spectrum. In
principle, these crash-reproducing test cases cause execution paths, which are likely to be
correct (i.e., BOTSING violates a precondition), to be marked as faulty.
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Figure 6.3: Distribution of EXAM score when using the OCHIAI coefficient with the dif-
ferent test suites generated by BOTSING. The reproduced frames indicate the percentage of
the frames reproduced by the generated test suite.

This trend is confirmed when looking at the EXAM score of the combination using the
Botfail test suites. Figure 6.3 depicts the distribution of EXAM scores when using the
OCHIAI coefficient in combination with the Botfail test suites. The best EXAM score is
accomplished when using test suites generated for the highest frames in the stack trace.
Those results suggest that when using BOTSING, one should target the highest possible
frame in order to cover as many methods as possible. This confirms previous observations
made by related research on manual fault identification using automated crash reproduction
[26, 71].

6.3.4 Summary

Various factors linked to the crash-reproducing test cases influence the efficiency of auto-
mated fault localization. The purified nature of the crash-reproducing tests generated by
BOTSING is beneficial as long as the target frame is not below the defective frame. Since
this cannot be determined beforehand, one should always aim at the highest frame when
using BOTSING. Results show that the form of the input data is not relevant for spectrum-
based fault localization as long as it triggers the crash.

53





Chapter 7

Discussion

In this chapter, we discuss the results found in the empirical evaluation conducted found in
the previous chapter using the methodology as described in Chapter 4 and the tooling from
Chapter 6. At last, we focus on the threads of validity for our empirical evaluation.

7.1 Similarity coefficients

In the evaluation, we compared four of the best-studied similarity coefficients. Figure 6.2
presents the EXAM score distribution of the corresponding test suites for the different con-
figurations. Among the different coefficients, the DSTAR coefficient performs worst. This
contradicts the results reported by Pearson et al. [63], showing that there is no significant
difference between DSTAR and OCHIAI and TARANTULA when evaluated on real-world
faults.

Through manual analysis, we identified that the poor performance could be traced back to
an (implicit) assumption made by the researcher behind the DSTAR coefficient (see Sec-
tion 2.1). If a statement is executed by all the failing test cases (NUF = 0), and if there is
no passing test case executing the statement (NCS = 0), then the DSTAR formula becomes
invalid (i.e., DSTAR = NCF/0). This occurred in 11 (out of 50) crashes when using hand-
written test cases (Manfail

+-Manpass
+).

We conjecture that the different existing similarity coefficients make the same (implicit)
assumption that a (potentially) faulty statement is at least covered by one passing test case.
We base this conjecture on the dataset used to create and evaluate these similarity coeffi-
cients. The four coefficients have been previously evaluated primarily using the Siemens
benchmark set [8, 9, 44, 84]. This benchmark set contains test suites which all satisfy the
property that each branch in the program is covered by at least 30 test cases [9]. This prop-
erty supports our hypothesis because each statement in the program is covered at least once
by a successful test case.

Currently, a large part of existing similarity coefficients is based on hand-written test cases
[85]. Since the automated crash fault localization approach relies on generated test cases,
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which have different characteristics compared to hand-written test cases (e.g., the crash-
reproducing test cases are purified), we believe that it influences the accuracy of automated
crash fault localization using the existing similarity coefficients.

In our future work, we plan to investigate this phenomenon primarily by examining the
program spectra of crash-reproducing test cases. Secondly, we want to refine the definition
of the existing similarity coefficients to take into account the characteristics of automatically
generated test suites.

7.2 Program spectra biases

As observed in Section 6.3.3, the choice of a target frame for generating the crash-reproduc-
ing test suite can influence the outcome of the fault localization process. In the example, the
outcome significantly changed when targeting frame 3, due to the change in the ratio of test
cases directly invoking the faulty method. However, the diagnostic accuracy can not only
be declined by targeting another frame. It is also possible when targeting the same frame,
as the test case generator can favor particular execution paths.

For instance, for the crash TIME-5b, when targeting frame 3, BOTSING generated 60 crash-
reproducing test cases which have only two different execution paths through the faulty
method. At first sight, this does not seem to be a problem. However, a more detailed
research shows that the distribution of 60 executions among those two execution paths is
not in balance (i.e., 59 for the first path and only 1 for the second path).

In the end, the lack of balance did not affect the diagnostic accuracy for TIME-5b,
because the defective statement is located in the execution path covered by the 59 crash-
reproducing tests. However, it might not always be the case.

In its current implementation, BOTSING generates a test suite containing an unlimited num-
ber of crash-reproducing test cases using three objectives: the minimization of the crash
distance, the main objective that needs to be achieved to reproduce the crash, and two helper
objectives, the maximization of the method sequence diversity and the minimization of the
test length to help the search process. Those three objectives ensure in theory that BOTSING
produced diverse crash-reproducing test cases. However, diversity in the methods called in
the crash-reproducing test cases does not ensure that this diversity will be reflected in the
execution paths towards the underlying fault (as it is the case when targeting the third frame
of the crash TIME-5b).

An example of two test cases generated by BOTSING is shown in Listing 7.1 (assume
the bug in located in the createNumber() method). The test cases test01 and test02
have different execution paths, since test02 has an additional method call in Line 7. How-
ever, when looking at it from the perspective of the underlying fault, the execution paths
through the faulty method are the same, because the additional statement does not change
the execution path through the defective method.
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Listing 7.1: Code example of two test cases that have a diversity in the methods called.
However this diversity is not reflected in the execution paths towards the underlying fault
(assuming that the bug in located in the createNumber() method)
0 @Test(timeout = 4000)
1 public void test01() throws Throwable {
2 NumberUtils.createNumber("hnQf");
3 }
4
5 @Test(timeout = 4000)
6 public void test02() {
7 NumberUtils.isParsable(null);
8 NumberUtils.createNumber("hnQf");
9 }

One way to balance the execution distribution among the different execution paths trough
the faulty method is by using the Density-Diversity-Uniqueness (DDU) metric [64, 65]. The
DDU metric quantifies the test suite diagnosability and maximizing the metric increases the
effectiveness of spectrum-based fault localization [64]. In their work, Perez et al. [65] use
DDU as a (primary) search objective to generate unit tests with EVOSUITE. This may, how-
ever, not be directly possible for crash reproduction as maximizing the DDU metric might
conflict with the crash distance minimization objective (i.e., DDU seeks to cover unique
and diverse execution paths while crash-reproducing is only interested in the ones). In our
future work, we plan to experiment with search-based crash reproduction with the DDU
metric as a primary and secondary objective to improve the effectiveness of the generated
tests for fault localization.

7.3 Test case generation
In Section 6.2, we observed that there is no statistical difference in the fault localization
diagnostic accuracy when using hand-written (Manfail

+) or automatically generated crash-
reproducing test cases (Botfail

1or Botfail
+) as long as those test cases cover the defective

statement.
Furthermore, as illustrated in Figure 6.3, the best EXAM score is achieved by the crash-

reproducing test cases covering a majority of the stack traces (i.e., crash-reproducing test
cases generated for higher frames). This suggests that a crash-reproducing test case will
be useful for automated crash fault localization as long as it covers enough frames, and the
higher, the better. It sends a strong signal to the crash reproduction research community to
aim at reproducing the highest frames possible.

However, aiming at higher frames for crash reproduction is easier said than done [72].
Reproducing higher frames requires more advanced search-based crash reproduction ap-
proaches [30, 31] and, potentially, a higher computation power that in practice might not
always be available in a development environment. Future research should investigate ap-
proaches to strike a balance between the computation cost and the frame level to target in
order to produce useful crash-reproducing test cases, for instance, using static analysis [86]
or predictive models [39] to identify potentially faulty frames.
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7.4 Threats to validity
In this section, we describe the threads of the validity of this thesis. Therefore we describe
the internal validity, the external validity, the way to reproduce our results.

7.4.1 Internal validity

We selected 50 crashes from DEFECTS4J that have been previously analysed in JCRASH-
PACK [72] and the fault localization dataset of Pearson et al. [63]. We also used BOTSING,
EVOSUITE, and GZOLTAR with the configuration described in Chapter 4. We cannot guar-
antee that those tools are free of defects, but EVOSUITE and GZOLTAR are long-term estab-
lished state-of-the-art, studied, and used by many users, BOTSING is a fresh and well-tested
implementation of the EVOCRASH [71] approach.

Finally, we choose to execute the automated crash fault localization pipeline as a whole
(end-to-end). Giving the randomness involved in test case generation, future work should
include an extended evaluation of the pipeline by focusing on and repeating the generation
of the crash-reproducing test cases. We believe that this will yield more crash-reproducing
test cases and increase the statistical significance of our conclusions.

7.4.2 External validity

We cannot guarantee that our results are generalizable to all crashes. However, following
Pearson et al.’s [63] recommendations, we used crashes from real-world software faults. Of
course, considering more crashes would increase confidence in our results, but given the
exploratory nature of this study, we believe that using a smaller set of crashes, previously
studied both for crash reproduction and fault localization, would provide us more in-depth
insights on the results.

7.4.3 Replication of the results

A replication package of our empirical evaluation is available at Github1. The repository
contains all the tooling created as described in Chapter 5 in the format of a DOCKER con-
tainer, the scripts to run the automated crash fault localization pipeline, the data described in
this thesis including the test case dataset, and the scripts to reproduce the statistical analysis.

For a detailed description of the components used in the evaluation, we refer to the
documentation provided in the thesis (see Chapter 5). To execute the DOCKER containers
and the scripts used to execute the whole automated crash fault localization pipeline, we
refer to the README.md in the repository.

1https://github.com/svenpopping/acfl-replication-package
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Chapter 8

Conclusion

In this thesis, we presented to the best of our knowledge the first automated crash fault lo-
calization pipeline, in which we combined search-based crash reproduction and spectrum-
based fault localization. The pipeline generates crash-reproducing test cases from the stack
trace included in the crash report. These test cases, combined with the existing or an au-
tomatically generated test suite, are used as input for the spectrum-based fault localization
approach. Using the spectrum-based fault localization approach, the potentially faulty lines
of code are identified, with the primary purpose of reducing debugging efforts for develop-
ers.

The results of our empirical evaluation of 50 real-world faults show that automatically gen-
erated crash-reproducing test cases reduce the number of statements to be investigated by
developers. In the general scenario, however, hand-written test cases remain the most effi-
cient because not all crashes can yet be reproduced for a high enough frame (i.e., at least
containing the defective frame). After all, when considering the best-case scenario, where
the crash-reproducing test cases do indeed cover the fault, we do not observe a statistically
significant difference between the fault localization accuracy between hand-written and au-
tomatically generated test cases.

In addition, our research into the four similarity coefficients shows that there is no
clear winner (no statistically significant difference). However, we can safely claim that
DSTAR is not suitable for automatic crash fault localization, because of the assumption that
a statement should at least be covered by a successful test case. Furthermore, it does not
matter which similarity coefficient (except DSTAR) is applied when using a single crash-
reproducing test case, as in this case, the similarity coefficients have a similar mathematical
behavior.

Our results confirm the feasibility of the automated crash fault localization pipeline and
open up new paths to end-to-end automated crash fault localization and automated program
repair.
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8.1 Future work

We have shown that our automated crash fault localization approach is feasible. Nonethe-
less, there are still improvements that can be made, inspired by the manual analyses con-
ducted for the evaluation and the issues we encountered during this research. In this chapter,
we will present our suggestions for future work on the matter.

8.1.1 ACFL approach

Potential improvements to the automated crash fault localization pipeline can be obtained
by investigating the following alterations:

• The most important aspect of the automated crash fault localization approach is that
a crash-reproducing test case is generated, covering a sufficiently high frame level
(i.e., at least containing the defective frame). However, the higher the frame level,
the more computationally intensive the search process. Therefore, it will be useful
to investigate information retrieval approaches to identify an acceptable frame level
to target for search-based crash reproduction, balancing computation cost and fault
localization accuracy.

• To improve the quality of the crash-reproducing test cases, BOTSING can be extended
by including new objectives based on the DDU metric proposed by Perez et al. [64].
With this metric, we hope to increase the fault localization accuracy of the crash-
reproducing test case.

• In our automated crash fault localization approach, we used spectrum-based fault
localization for the fault localization part of the pipeline. However, as stated by Wong
et al. [85], there are many different automated fault localization approaches. It would
be helpful to know which of these approaches is the best suited for the automated
crash fault localization approach (e.g., machine learning-based approaches).

• Currently, the fault localization report is exported as a CSV file, containing the sorted
list of defective statements. Therefore, it would be useful to extend the automated
crash fault localization approach such that in the end, it would visualize the report,
for example, by using the visualization technique proposed by Jones et al. [46].

• Determining the best method to generate the unit test cases. In our evaluation, the
generated test cases also include test cases that might be irrelevant for the underlying
bug (e.g., other methods in the class, which are outside of the stack trace). This
computation time can be better spent on producing test cases that are relevant for the
bug.

8.1.2 Evaluation

To further improve the evaluation of the automated crash fault localization pipeline, we
propose the following points that may be of interest for future work:
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• Our evaluation included an end-to-end evaluation of the automated crash fault local-
ization approach. So, we did not evaluate the effects caused by the randomness of
BOTSING. Therefore, we should investigate the effects of the randomness by repeat-
ing the crash reproduction step and analyzing the fault localization process outcome.

• The extension of the current evaluation with new crashes, for example, with the
XWiki or the Elasticsearch crashes from the JCRASHPACK dataset [72]. In ad-
dition to this, DEFECTS4J [47] has recently been upgraded with the addition of 11
new projects. This applies not only to the pipeline as a whole but also to BOTSING
alone because it is not yet clear whether these crashes can be reproduced.

• With the aim of implementing automated crash fault localization in existing test-
ing and debugging infrastructures in mind, it would be of great value to know the
pipeline’s runtime statistics when executed as a whole.

• EVOCRASH [71], the ancestor of BOTSING, has been evaluated using a controlled
experiment to determine the usefulness for debugging [14]. In our evaluation, we
only look at the automated crash fault localization approach with the diagnostic ac-
curacy determined by the EXAM score. However, it would also be useful to assess
the effectiveness of automated crash fault localization using a controlled experiment.
Especially in case, a random input is generated, by BOTSING, that is useful for local-
izing faults, but where we are not sure if they are useful for the developer.

8.1.3 Other

Now that we have presented our views of interesting future research on the automated crash
fault localization approach and the evaluation of the approach, we present the following
points which can be conducted as future research:

• During the manual analyses, we observed that BOTSING could generate a lot of test
cases (up to 300). These test cases are useful for the automated fault localization
process, but we argue as well that these test cases are useful for the developer when
trying to patch the program. However, determining which of the broad set of test
cases is relevant could be a struggle in itself. A solution is to visualize the test cases
that are the most useful for the developer when investigating a particular statement,
such that the information within the test case can be utilized to patch the underlying
bug.

• Our automated crash fault localization approach is based on frameworks designed
explicitly for Java. However, given the benefits of the approach, it might be useful to
extend the pipeline to support other programming languages.

• As mentioned in Chapter 6, there is an unusual difference between the number of
test cases generated by Botfail

1 and Botfail
+. We could not pinpoint the cause of this

difference during our research, so it might be interesting for the researcher behind
BOTSING to investigate this difference.
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[63] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. Evaluating and improving fault localization.
In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE),
pages 609–620. IEEE, 2017.

[64] Alexandre Perez, Rui Abreu, and Arie van Deursen. A test-suite diagnosability metric
for spectrum-based fault localization approaches. In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE), pages 654–664. IEEE, 2017.

[65] Alexandre Perez, Rui Abreu, and Arie Van Deursen. A theoretical and empirical anal-
ysis of program spectra diagnosability. IEEE Transactions on Software Engineering,
2019. doi: 10.1109/tse.2019.2895640.

[66] Ju Qian and Baowen Xu. Scenario oriented program slicing. In Proceedings of the
2008 ACM symposium on Applied computing, pages 748–752, 2008.

[67] David S. Rosenblum. A practical approach to programming with assertions. IEEE
Transactions on software engineering, 21(1):19–31, 1995.

68



Bibliography
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