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Abstract

In his 2019 article, Kalinichenko proposed an alternative way of doing stochastic integration
in general separable Banach spaces [12]. This way circumvents the usual UMD assumption on
our separable Banach space X, and instead imposes a strict condition on the integrating process
Φ : (0, T ) × Ω → L (H,X). Namely, we require the existence of an X-valued Gaussian g such
that almost surely for all x∗ ∈ X∗,∫ T

0

‖Φ(t, ω)∗x∗‖2H dt ≤ E〈g, x∗〉2.

Most notably, this approach works in any separable Banach space. In this thesis we will take a
closer look at the proofs used in [12], and place his article in the context of the known theory
on stochastic analysis in Banach spaces (as can be read in [23], [25], [28]). We will compare
Kalinichenko’s approach both to the UMD and martingale type 2 situation, and discuss the
advantages and disadvantages of either strategy.

Moreover, we will compare the conditions imposed in [12] on the stochastic process to the
condition of γ-radonification as assumed in the UMD case [25].
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Chapter 1

Introduction

Like so many things in life, a lot of the motivation for studying stochastic differential equations
comes from money. One of the earliest works on the theory of stochastic processes can be traced
back to the Ph.D. thesis of Louis Bachelier from 1900 [1], where he argued that the Paris stock
market could be modeled like a random walk. Around the same time, Albert Einstein wrote his
article [7] on the movement of pollen particles suspended in water, which first was observed by
the biologist Robert Brown in 1827. He argued that the particles moved like a scaled random
walk, due to ricocheting off of other particles in any random direction, with any random strength,
at each small timestep. This random walk theory was a big deal, since at the time matter was
assumed to be continuous instead of made up of small particles.

Going back to the example of mathematical finance, we assume, like Bachelier did in [1],
that some asset follows the Brownian motion W . We now want to investigate different betting
strategies. The following approach is called the martingale transform: given a partition Pn :=
{t0 = 0, t1, . . . , tn = T} of [0, T ], we want to determine how much we want to invest in the asset
at each time point tk, this investing strategy is denoted by σ(t). Our gains over the interval
[tk, tk+1) will be

σ(tk)(W (tk+1)−W (tk)).

Summing all our gains over the time interval [0, T ], we end up with
n−1∑
k=0

σ(tk)(W (tk+1)−W (tk)). (1.1)

One such strategy is as follows. We buy the asset at time t = 0 for W (0) = 0. At each time
point tk, we want to increase our share with tk−1 − tk, until we sell the asset either when the
price hits some predetermined a > 0, so W (t) = a, or at time t = 1 we sell our shares anyway.
In this case σ(t) = t1(0,τ∧1)(t), with τ the stopping time at W (t) = a. The result of this is in

the following figure, where we have taken a =
√

2
π :

Now by taking the limit as mesh(Pn)→ 0, we arrive exactly at the definition of the stochastic
integral as first defined in the groundbreaking work of Kyoshi Itō in [15] and [16]. We then have
the celebrated Itō isometry, given by

E
∣∣∣ ∫ T

0

σ(s) dW (s)
∣∣∣2 = E

∫ T

0

|σ(s)|2 ds.

The theory of Itō allows us to solve real-valued stochastic differential equations, of the form

dX(t) = b(t,X(t)) dt+ σ(t,X(t)) dW (t),
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Figure 1.1: In blue our Browian motion, the red line is the result of the sum in (1.1). As can be
seen, we have made some profit from our asset.

under specific conditions on b and σ. In the theory of stochastic partial differential equations
(SPDEs) however, we work with equations which are, for example, of the form

∂tu(t, x) = −∆u(t, x) +W, t ≥ 0, x ∈ Rd,

where W is space-time white noise. One way to deal with these problems is to transform it to a
stochastic ODE, with values in some function space X. We view U(t) = u(t, ·) as an element of
X for each t ≥ 0, and A = −∆ as an operator on X. The above equation then becomes

d

dt
U(t) = AU(t) +W(t).

In the case where X is a Hilbert space, we are in luck, as the Itō isometry can be readily extended
to the Hilbert-valued case, see for example Theorem 4.23 in Da Prato-Zabcyk [6]. When X is
a Banach space however, the inner product structure of the Hilbert space can obviously not be
applied, and so a different approach is necessary.

One such approach is through the theory of γ-radonifying operators and UMD spaces. This
approach was described in 2005 by Jan van Neerven, Mark Veraar and Lutz Weis in their article
[25] and in its sequel (2008) [26]. The ideas in these articles however, date back to the work of
McConnell (1989) [18], Rosinski and Suchanecki (1980) [33], Garling (1986) [8] and Montgomery-
Smith (1998) [19].

A parallel theory, of stochastic integration in martingale type 2 Banach spaces, was developed
by Neidhardt (1978) [30] and Brzezniak [3, 4]. We will discuss this approach in Chapter 7.

The UMD approach from [25, 26] assumes that the Banach space X has the UMD property.
We will explain in detail what this is in Chapter 2.5, examples of such spaces include Lp-spaces
and Hilbert spaces. Now assume a Brownian motionWH taking values in a separable real Hilbert
space H, and a process Φ : (0, T ) × Ω → L (H,X) such that Φ ∈ Lp(Ω; γ(L2(0, T ;H), X). In
this case we have the following Itō isometry-esque estimate

E‖Φ‖pLp(Ω;γ(L2(0,T ;H),X) hp E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p
X
,

which we will state more rigorously in the Preliminaries section. The theory from [25] and [26]
allows us to solve (in some sense) a large class of stochastic differential equations in a UMD
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Banach space X,

dU(t) = [A+ F (t, U(t))]U(t) dt+B(t, U(t)) dWH(t),

under some additional assumptions on A, B and F . We can now solve these equations in UMD
spaces (see Section 5 for what exactly we mean by “solve”), however the non-UMD case has not
yet been widely studied, mostly because the class of UMD spaces is very large and thus the UMD
assumption is satisfied in most applications. An overview of the theory in type p, martingale
type p and UMD spaces is given in the survey [23] by the same authors.

In some cases however, it is necessary to venture out of the UMD setting. An example of
this is stochastic delay equations, these are stochastic differential equations which depend on the
past of the process. An example is the equationdU(t) =

(∫
[−h,0]

U(t+ s) dµ(s)

)
dt+ dW (t)

U(t) = u(t), t ∈ [−h, 0]

.

Here µ ∈ M [−h, 0], the space of all signed measures on [−h, 0]. As we want the dual pairing to
make sense, we need U(t) ∈ C[−h, 0] for all t ≥ 0, however C[−h, 0] is not a UMD space. The
equation is solved in [20] using semigroup theory and using a weak**-integral.

An entirely different approach to stochastic integration in non-UMD spaces was introduced
by Kalinichenko in 2018 in his articles [12] and [13]. In [12], the stochastic integral is constructed
in a completely new way, under a strict assumption on the process we want to integrate, but in
a general, separable Banach space X.

Using chaining techniques from Talagrand [34], Kalinichenko is able to prove in his Theorem
1 in [12] that for a process σ : [0, T ]× Ω→ L (H,X), the following bound holds for all p(

E
∥∥∥∫ T

0

σ(t) dWH(t)
∥∥∥p
X

)1/p

.p,σ,X
√
p.

Subsequently, we are able to solve, due to Theorem 2 in [12], very basic equations in X in the
weak sense,

dxt = b(t, xt) dt+ σ(t, xt) dWH(t),

where we assume, among other things, that b and σ are bounded.

In this thesis we will take a close look at the proof of Theorem 1 and 2 from [12], where
we repair some inaccuracies as we find them. The technical details, which Kalinichenko puts
away in his Lemma 1 and 2 of the same article, are studied in Chapter 3. The estimate for the
stochastic integral, Theorem 1 in [12], is then proven in Chapter 4. We will also see that in the
Hilbert space case, the result already follows from the well-known theory in [6].

Chapter 5 contains the statement and proof of Theorem 2 from the same article, the proof
follows a more or less standard approach by proving relative compactness and then extracting a
convergent subsequence. In this section, we will also generalize a result on the stochastic abstract
Cauchy problem from [28], which is a new result.

Chapter 6 looks at [12] from a different point of view, namely we assume X to be a UMD−
space, and we find that under this assumption the proof of Theorem 1 can be simplified a lot.
In this section we also construct an example of a process that does not satisfy the assumptions
from Kalinichenko’s article, but is stochastically integrable any way. From this we can conclude
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that Theorem 1 is not an ‘if and only if’ situation. Moreover, we will make an explicit connection
between the theory in [12] and the theory of γ-radonifying operators.

We continue this study in Chapter 7, where we look at the martingale type 2 case. In
contrast to the UMD− case, the proof of Kalinichenko can not be simplified, and there are cases
of functions that satisfy the conditions for stochastic integration in martingale type 2 spaces, but
do not satisfy the conditions of Kalinichenko, and vice versa.

The first section here aims to not only stack definitions on top of each other, but tries to put
the above theory in a context as well. Based on [23], [24], [25], we give an introduction to the
field of stochastic integration in Banach spaces as it is mostly studied now. We treat Banach-
valued Gaussian random variables, reproducing kernel Hilbert spaces, γ-radonifying operators
and finally we define the stochastic integral in UMD spaces.
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Chapter 2

Stochastic Integration in UMD spaces

In this section we will give some first preliminaries for understanding the proofs and concepts in
[12]. We will introduce the concepts of Banach valued Gaussian random variables, γ-radonifying
operators, and stochastic integration in (martingale) type p spaces. We assume knowledge on
the level of a standard master course in functional analysis, and basic knowledge on real valued
stochastic integration. The exposition in this section will primarily be based on the Internet
Seminar notes [24], unpublished lecture notes (1997) by Jan van Neerven on the Feldman-Hajek
theorem, and the survey article [23]. The subsection on UMD spaces is based on the article by
Jan van Neerven, Mark Veraar and Lutz Weis [25].

2.1 Gaussian random variables in a Banach space
In this entire section, we assume (Ω,F ,P) to be a probability space and X a Banach space. We
start with the theory for a Gaussian random variable in X. We introduce the concept of strong
measurability, but before we do this we need the notion of a simple function taking values in X.
Given a measurable space (A,Σ), we say that a function f : (A,Σ)→ X is a Σ-simple function
if it can be written as f =

∑N
n=1 1An

xn, where An ∈ Σ and xn ∈ X for all n = 1, . . . , N .

Definition 2.1. Let (A,Σ) be a measurable space. A function f : A → X is called strongly
Σ-measurable if there exists a sequence (fn)n≥1 of Σ-simple functions converging to f pointwise
on A.

Since this definition is not practical to work with, we usually check measurability via the
Pettis measurability theorem:

Theorem 2.2 (Pettis measurability theorem). Let (A,Σ) be a measurable space and f : A→ X.
The following are equivalent:

1. f : A→ X is strongly Σ-measurable;

2. 〈f, x∗〉 is Σ-measurable for all x∗ ∈ X∗.

Definition 2.3. A Borel measure µ on the Banach space X is called Gaussian if for each
x∗ ∈ X∗ the image measure defined by

〈µ, x∗〉(A) := µ{x ∈ X : 〈x, x∗〉 ∈ A}, A ⊂ R,

is a Gaussian measure on R.
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Now a strongly F-measurable function f : Ω→ X is called a Gaussian random variable if for
every x∗ ∈ X∗, the real-valued random variable 〈f, x∗〉 is Gaussian.

The following theorem is an important one, which essentially states that any X-valued Gaus-
sian random variable has finite p-th moments for all p > 0. We will also use it later on in this
thesis.

Theorem 2.4 (Fernique). Let f be an X-valued Gaussian random variable. Then there exists
a β > 0 such that

E[exp(β‖f‖2X)] <∞.

As a corollary, since for every p > 0, there exists ε > 0 such that εxp < exp(βx2) for all
x ≥ 0, we have E‖f‖pX <∞ for all p > 0.

Recall from finite-dimensional probability theory, that a d-dimensional Gaussian is uniquely
determined by its mean vector and covariance matrix. We have something similar in the X-
valued setting. In this case however, the matrix is replaced by an operator Q : X∗ → X which
serves a similar purpose. This operator is defined in the following way. If µ is the measure on X
associated with the X-valued Gaussian random variablef , then for all x∗ ∈ X∗,

Qx∗ =

∫
X

〈x, x∗〉x dµ(x).

It follows from this definition that, if µ is centered as well, we have,

E[〈f, x∗〉2] =

∫
R
t2 d〈µ, x∗〉(t) =

∫
X

〈x, x∗〉2 dµ(x) = 〈Qx∗, x∗〉.

In fact the above equality uniquely determines the operator Q, as is seen in Proposition 2.6.
Before we state the proposition, we need the following definitions:

Definition 2.5. Let T : X∗ → X be a bounded operator. We call T positive if for every x∗ ∈ X∗,

〈Tx∗, x∗〉 ≥ 0.

We call T symmetric if for all x∗, y∗ ∈ X∗ we have

〈Tx∗, y∗〉 = 〈Ty∗, x∗〉.

We now have the following proposition:

Proposition 2.6. For an X-valued random variable f , the following assertions are equivalent

1. f is Gaussian;

2. there exists a positive, symmetric, bounded operator Q : X∗ → X such that for all x∗ ∈ X∗,

E[exp(−i〈f, x∗〉)] = E[exp(− 1
2 〈Qx

∗, x∗〉)]. (2.1)

The operator Q is uniquely determined by Equation (2.1), moreover,

E[〈f, x∗〉2] = 〈Qx∗, x∗〉, x∗ ∈ X∗.
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We can now define the following bilinear form on the range QX∗:

[Qx∗, Qy∗] = 〈Qx∗, y∗〉.

This bilinear form is well-defined: if Qy∗ = 0, then by the symmetry of Q, we have

[Qx∗, Qy∗] = 〈Qx∗, y∗〉 = 〈x∗, Q∗y∗〉 = 〈x∗, Qy∗〉 = 0.

Moreover, [·, ·] is symmetric, since

[Qx∗, Qy∗] = 〈Qx∗, y∗〉 = 〈x∗, Q∗y∗〉 = 〈x∗, Qy∗〉 = [Qy∗, Qx∗].

By positivity, [Qx∗, Qx∗] = 〈Qx∗, x∗〉 ≥ 0 for all x∗ ∈ X∗. At last, assume [Qx∗, Qx∗] = 0. Then

0 = [Qx∗, Qx∗] = 〈Qx∗, x∗〉 =

∫
X

〈x, x∗〉2 dµ(x).

Thus, by the Cauchy-Schwarz inequality, we have for all y∗ ∈ X∗

|〈Qx∗, y∗〉| ≤
∫
X

|〈x, x∗〉〈x, y∗〉| dµ(x) ≤
∫
X

〈x, x∗〉2 dµ(x)

∫
X

〈x, y∗〉2 dµ(x) = 0.

We can then use Hahn-Banach to conclude Qx∗ = 0. So [Qx∗, Qx∗] = 0 implies Qx∗ = 0. Thus
[·, ·] defines an inner product on QX∗. By taking the closure of QX∗ with respect to this inner
product, we obtain a Hilbert space HQ. We call HQ the reproducing kernel Hilbert space.

This space has several properties which will be of interest later on. We have the following
theorem:

Theorem 2.7. The reproducing kernel Hilbert space HQ has the following properties:

1. The inclusion i : QX∗ → X extends to a compact embedding i : HQ → X;

2. As maps in L (X∗, HQ) we have Q = i∗;

3. HQ is separable.

Proof. We first show that the inclusion map i : QX∗ → X is continuous. For all x∗, y∗ ∈ X∗ we
have

〈Qx∗, y∗〉2 =

(∫
X

〈x, x∗〉〈x, y∗〉 dµ(x)

)2

≤
∫
X

〈x, x∗〉2 dµ(x)

∫
X

〈x, y∗〉2 dµ(x)

≤ ‖Q‖ ‖y∗‖2X∗‖Qx∗‖2HQ
.

Thus i : QX∗ → X is continuous and can be extended to a bounded operator i : HQ → X with
‖i‖L (HQ,X) ≤ ‖Q‖1/2. Now we have for all x∗, y∗ ∈ X∗

[Qx∗, i∗y∗]HQ
= 〈iQx∗, y∗〉X = 〈Qx∗, y∗〉 = [Qx∗, Qy∗].

Since this equality holds for all x∗, y∗ ∈ X∗, and QX∗ is dense in HQ, (2) follows. Moreover, Q
is self-adjoint in the sense that

〈Q∗x∗, y∗〉 = 〈x∗, Qy∗〉 =

∫
X

〈x, x∗〉〈x, y∗〉dµ(x) = 〈Qx∗, y∗〉.
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Since C∗ has dense range in H, the operator i is injective. By (2), it is enough to show Q : X∗ →
HQ is compact. Now let {x∗n}n≥1 be a bounded sequence in X∗. By the separability of X, we
know that {x∗n}n≥1 has a weak*-convergent subsequence {xnj

}j≥1 converging to some x∗ ∈ X∗.
By taking y∗nj

= x∗nj
− x∗ we can, without loss of generality, assume that x∗nj

weak*-converges
to 0. Now we have

lim
j→0
‖Qx∗nj

‖2HQ
=

∫
X

〈x, x∗nj
〉 dµ(x) = 0.

In the last step we have used the dominated convergence theorem, which is allowed due to
Fernique’s theorem. From this, (1) follows.

Now from (2) it follows that Q is weak*-to-weak continuous as an operator from X∗ to HQ.
Since the unit ball BX∗ is separable in the weak*-topology in X∗, it follows that

QX∗ =
⋃
n≥1

n ·QBX∗

is weakly separable in HQ, and by the Hahn-Banach theorem it is then strongly separable. Since
QX∗ is dense in HQ, the separability of HQ follows, thus proving (3).

In this way, we can write every covariance operator Q as the product of an inclusion map and
its adjoint, we have Q = ii∗. As it turns out, the operator i is a γ-radonifying operator, which
will be the key objects in stochastic integration.

2.2 Yor’s counterexample
To see that stochastic integration in general separable Banach spaces requires more machinery
than the real-valued case, and in particular the concept of γ-radonifying operators, we turn to the
counterexample of Marc Yor [35]. This counterexample builds a function ϕ on a real, separable
Banach space (namely `1) such that ϕ is bounded, but not stochastically integrable.

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space with (Mt)t≥0 a real-valued Ft-martingale.
For a real, separable Banach space X we let ϕ : [0, T ]×Ω→ X be an adapted process, and we say
that ϕ is stochastically integrable with respect to M if there exists a process Φ : [0, T ]×Ω→ X
such that

〈Φ(t), x∗〉 =

∫ t

0

〈ϕ(s), x∗〉 dMs, a.s.

For our counterexample, we take X = `1, fix T > 0, and let

ϕ(s) :=
(

1[ T
n+1 ,

T
n )(s)

)
n≥1

.

Note that ϕ in fact maps into `1. Now let (Wt)t≥0 be a real-valued Brownian motion and consider
the integral

Φ(t) :=

∫ t

0

ϕ(s) dWs. (2.2)

Now computing Φ gives
Φ(t) =

(
WT

n
−W T

n+1

)
n≥1

d
= (Xn)n≥1,

with Xn a sequence of independent Gaussian with distribution N
(
0, T ( 1

(n+1)n )
)
, in other words

Xn =
√

1
(n+1)nYn for some sequence of independent standard Gaussians. Now choose any x > 2.

10



We know
e−

x2

2

6x
≤ P(Yn ≥ x) = P

(
Xn ≥ x

√
1

(n+ 1)n

)
.

We can thus use Borel-Cantelli to conclude that Xn ≥ 3
√

1
(n+1)n infinitely often almost surely.

Thus (Xn)n≥1 /∈ `1, so ϕ is not integrable in `1.

2.3 γ-Radonifying operators
As before, X is a separable Banach space, and in this case we let H be a separable Hilbert space.
If h ∈ H and x ∈ X, we write h⊗ x for the operator in L (H,X) defined by

(h⊗ x)h′ = [h, h′]x ∈ X.

We say that an operator in L (H,X) is of finite rank if it is a finite linear combination of operators
of the above form. We denote the set of finite rank operators in L (H,X) by H⊗X. Now assume
that an operator T : H → X has the form

T =

N∑
n=1

hn ⊗ xn,

with the h1, . . . , hN orthonormal and x1, . . . , xN ∈ X arbitrary. Note that we can always write a
finite rank operator T in this way, by using Gram-Schmidt orthonormalization. We now define,
for 1 ≤ p <∞ and γ1, . . . , γN a Gaussian sequence, the following norm

‖T‖pγp(H,X) = E
∥∥∥ N∑
n=1

γnxn

∥∥∥p
X
.

Note that by the Kahane-Khintchine inequality, for all 1 ≤ p < ∞, the above norms are equiv-
alent. Moreover, this norm does not depend on the choice of the orthonormal system (hn)Nn=1

and thus is well-defined. This can be seen in the following way. Let (hn)Nn=1 and (h′n)Nn=1 be the
orthonormal systems in H, and (xn)Nn=1 and (x′n)Nn=1 be two sequences in X such that

T =

N∑
n=1

hn ⊗ xn =

N∑
n=1

h′n ⊗ x′n.

Now let (γn)Nn=1 be a Gaussian sequence and set Γ =
∑N
n=1 γnhn. We can then write

‖T‖pγp(H,X) = E‖TΓ‖pX .

Now if (Y1, . . . YN ) is a Gaussian vector in RN with covariance matrix K : RN → RN and
r : RN → RN is a rotation, then (rY1, . . . , rYN ) is also a Gaussian vector in RN with covariance
matrix rK. In other words, Gaussian distributions on RN are rotationally invariant. Thus we
have for another Gaussian sequence (γ′n)Nn=1 that Γ is equal in distribution to Γ′ =

∑N
n=1 γ

′
nh
′
n.

But then

‖T‖pγp(H,X) = E‖TΓ‖pX = E‖TΓ′‖pX = E
∥∥∥ N∑
n=1

γ′nx
′
n

∥∥∥p
X
.

Thus the norm ‖ · ‖γp(H,X) is well-defined. The space of γ-radonifying operators, denoted by
γ(H,X), is now defined as the closure of H⊗X with respect to the norm ‖·‖γ(H,X) := ‖·‖γ2(H,X).
Each T ∈ γ(H,X) is compact, moreover, the γ-radonifying operators have the following ideal
property:

11



Theorem 2.8. If H ′ is another separable Hilbert space and X ′ another separable Banach space,
and we have S ∈ L (H ′, H), T ∈ γ(H,X) and U ∈ L (X,X ′), then STU ∈ γ(H ′, X ′) and

‖STU‖γ(H′,X′) ≤ ‖S‖‖T‖γ(H,X)‖U‖.

We are now ready to state the following theorem, which draws the connection between
radonifying operators and covariance operators. We let (γn)n≥1 be a Gaussian sequence.

Theorem 2.9. Let Q ∈ L (X∗, X) and R ∈ L (H,X) such that Q = RR∗. The following are
equivalent:

1. Q is the covariance operator of an X-valued Gaussian random variable;

2. R ∈ γ(H,X).

In this situation, if f is an X-valued Gaussian with covariance Q, we have

E‖f‖pX = ‖R‖pγp(H,X).

As we have seen before, if f is an X-valued Gaussian with covariance Q and reproducing
kernel space HQ, we can write Q = ii∗ with i : HQ → X the embedding. Thus we are in the
above setting, and i ∈ γ(HQ, X). Moreover,

E‖f‖2X = ‖i‖2γ(HQ,X).

Finally, we will state a domination result, which is Theorem 9.4.1 in [9].

Theorem 2.10. Let H1 and H2 be separable Hilbert spaces and let R1 ∈ L (H1, X) and R2 ∈
L (H2, X) be such that for all x∗ ∈ X∗,

‖R∗1x∗‖H1 ≤ ‖R∗2x∗‖H2 .

Then R2 ∈ γ(H2, X) implies R1 ∈ γ(H1, X) and for 1 ≤ p <∞,

‖R1‖γp(H1,X) ≤ ‖R2‖γp(H2,X).

The flexibility in the above theorem of allowing two distinct Hilbert spaces, lets us prove
statements like the following. Let f1, f2 be two X-valued Gaussians with covariances Q1 and Q2,
such that for all x∗ ∈ X∗,

E〈f1, x
∗〉2 ≤ E〈f2, x

∗〉2. (2.3)

Write for j = 1, 2, Hj for its reproducing kernel space and ij : Hj → X for the embedding in X.
We know that for j = 1, 2,

E〈fj , x∗〉2 = 〈Qx∗, x∗〉 = 〈iji∗jx∗, x∗〉 = ‖i∗jx∗‖2Hj
.

Thus by Equation (2.3) we have ‖i∗1x∗‖2Hj
≤ ‖i∗2x∗‖2Hj

, and we can use Theorem 2.10 to obtain
‖i1‖γ(H1,X) ≤ ‖i2‖γ(H2,X). Now by the final remark in Theorem 2.9 we find that (2) implies

E‖f1‖2X ≤ E‖f2‖2X .

We are now ready to move on to stochastic integration, where we think of functions taking
values in the space γ(H,X) as the objects to integrate.

12



2.4 Stochastic integration in Banach spaces
We start by defining our integrator, dW , in the Banach space setting. As it turns out, it is useful
to do this via a detour through a separable Hilbert space H.

Definition 2.11. For a separable Hilbert space H, an H-isonormal process is a bounded linear
mapping W : H → L2(Ω) with the following properties:

1. for all h ∈ H, the random variable Wh is Gaussian;

2. for all h1, h2 ∈ H, we have E[Wh1Wh2] = (h1, h2)H .

We can show that this operator W can be constructed for any separable Hilbert space H.
To this end, let (ηn)n≥1 be a sequence of i.i.d. standard Gaussians and let (hn)n≥1 be an ONB
for H. For all n ≥ 1, we set Whn = ηn and we extend linearly, so for h =

∑
n≥1 knhn, we

have Wh =
∑
n≥1 knηn. By Parseval

∑
n≥1 k

2
n <∞, thus Wh converges in L2(Ω) to a Gaussian

random variable with variance
∑
n≥1 k

2
n. Now for a second element h′ =

∑
n≥1 k

′
nhn we have

E
[( N∑

n=1

ηnkn

)( N∑
m=1

ηmk
′
m

)]
=

N∑
n,m=1

knk
′
mE[ηnηm] =

N∑
n=1

knk
′
m.

The converge again holds in L2(Ω). Thus W : H → L2(Ω) is well-defined and satisfies 1 and 2.
The object against which we will integrate in our setting will be an H-cylindrical Brownian

motion:

Definition 2.12. An H-cylindrical Brownian motion W is an L2(R+;H)-isonormal process.

If WH is an H-cylindrical Brownian motion, we will denote for any h ∈ H,

WH(t)h := W (1[0,t] ⊗ h).

We can explicitly construct such an H-cylindrical Brownian motion in the following way. If
(W (n))n≥1 is a sequence of independent Brownian motions on R+, and (hn)n≥1 an orthonormal
basis of H. Then we can define the following operator, for each h ∈ H:

WH(t)h :=
∑
n≥1

W (n)(t)(h, hn)H .

Then WH is an H-cylindrical Brownian motion. The convergence in L2(Ω) for fixed t can be
proven in the same way as above. This construction also ties in with our finite-dimensional
intuition. After all, a d-dimensional standard Brownian motion is just a d-dimensional vector
with an independent Brownian motion for each component. In the Hilbert space setting we have
done the same thing, but then along all of its infinite dimensions.

We can start defining the stochastic integral for deterministic, finite rank step functions
Φ : [0, T ] → H ⊗ X, i.e., Φ is a linear combination of functions of the form 1(s,t]h ⊗ x, where
h ∈ H and x ∈ X. Then we set∫ T

0

1(s,t](h⊗ x) dWH := WH(1(s,t]h)x,

and we extend this linearly. Note that since WH(1(s,t]h) is a real-valued Gaussian, the stochastic
integral of Φ with respect to WH is also an X-valued Gaussian for every finite rank step function

13



Φ : [0, T ]→ H ⊗X. Associated with each simple Φ : [0, T ]→ H ⊗X is a γ-radonifying operator
RΦ : L2(0, T ;H)→ X, which acts on functions f ∈ L2(0, T ;H) in the following way:

RΦf =

∫ T

0

Φ(t)f(t) dt.

We have in this case the following Itō isometry:

Proposition 2.13 (Itō isometry). For any separable Banach space X, and each finite rank
simple function Φ : [0, T ]→ H ⊗X, we have for all 1 ≤ p <∞,

E
∥∥∥ ∫ T

0

Φ(t) dWH(t)
∥∥∥p
X

= ‖RΦ‖pγp(L2(0,T ;H),X).

Thus for each 1 ≤ p < ∞ we can extend the integral operator JWH

T : Φ 7→
∫ T

0
Φ dWH

uniquely to an isometry JWH

T : γp(L
2(0, T ;H), X)→ Lp(Ω;X). We can thus meaningfully define

the stochastic integral for any operator R ∈ γ(L2(0, T ;H), X). However we do not know which
functions Φ : [0, T ] → L (H,X) have such an operator RΦ ∈ γ(L2(0, T ;H), X) associated to it.
We define this in the following way:

Definition 2.14. We say that a function Φ : [0, T ]→ L (H,X) is stochastically integrable with
respect to WH if there exists a sequence of finite rank step functions Φn : [0, T ] → H ⊗X such
that

1. limn→∞Φnh = Φh in measure;

2. there exists an X-valued random variable IT such that

lim
n→∞

∫ T

0

Φn(t) dWH(t) = IT in probability.

The stochastic integral of Φ is then defined as∫ T

0

Φ(t) dWH(t) := lim
n→∞

∫ T

0

Φn(t) dWH(t) in probability.

Before we state equivalent conditions for stochastic integrability, we first need a new definition.

Definition 2.15. We say that a function Φ : [0, T ]→ L (H,X) is H-strongly measurable if for
all h ∈ H, Φh : [0, T ]→ X is strongly measurable.

We now have the following theorem, which is Theorem 6.17 in [24]. Here we have added a
fourth condition, as is done in the proof in [24], which neatly ties into the theory of Kalinichenko
[12].

Theorem 2.16. For an H-strongly measurable function Φ : [0, T ]→ L (H,X) the following are
equivalent:

1. Φ is stochastically integrable with respect to WH ;

2. Φ∗x∗ ∈ L2(0, T ;H) for all x∗ ∈ X∗, and there exists an X-valued random variable IT such
that for all x∗ ∈ X∗, almost surely we have

〈IT , x∗〉 =

∫ T

0

Φ∗x∗ dWH .
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3. Φ∗x∗ ∈ L2(0, T ;H) for all x∗ ∈ X∗, and there exists an operator RΦ ∈ γ(L2(0, T ;H), X)
such that for all f ∈ L2(0, T ;H) and x∗ ∈ X∗ we have

〈Rf, x∗〉 =

∫ T

0

〈Φ(t)f(t), x∗〉 dt.

4. Φ∗x∗ ∈ L2(0, T ;H) for all x∗ ∈ X∗ and there exists a γ-radonifying operator R̃ from a
Hilbert space H̃ to X such that for all x∗ ∈ X∗

‖Φ∗x∗‖2L2(0,T ;H) ≤ ‖R̃
∗x∗‖2

H̃
.

If these equivalent conditions are satisfied, the random variable IT and the operator RΦ are
uniquely determined with IT =

∫ T
0

Φ dWH almost surely and

E
∥∥∥ ∫ T

0

Φ(t) dWH(t)
∥∥∥p
X

= ‖RΦ‖pγp(L2(0,T ;H),X).

We note here that (4) implies the existence of an X-valued Gaussian random variable g such
that for all x∗ ∈ X∗, ∫ T

0

‖Φ(t)∗x∗‖2H dt ≤ E〈g, x∗〉2. (2.4)

Here the covariance of g is given by Q̃ := R̃R̃∗ : X∗ → X. On the other hand, if there exists a
Gaussian g : Ω→ X with covariance Q : X∗ → X such that Equation (2.4) holds, we can simply
take H̃ = HQ with R̃ = i : HQ → X. In this case (4) follows.

2.5 Stochastic integration in UMD spaces
The definition of the stochastic integral can be extended naturally for stochastic finite rank
simple functions Φ : [0, T ]× Ω→ L(H,X). Let Φ := 1(s,t]×Fh⊗ x, with F ∈ Fs. We define∫ T

0

Φ(t) dWH(t) := 1FWH(1(s,t]h)x. (2.5)

Unfortunately trying to adapt the above proofs to the setting where Φ : [0, T ]×Ω→ L(H,X) is
stochastic, is hopeless. The proof of the theorems in the previous subsection rely heavily on the
fact that for functions of the form Φ := 1(s,t]h⊗ x, where h ∈ H and x ∈ X, the integral∫ T

0

1(s,t](h⊗ x) dWH := WH(1(s,t]h)x

is an X-valued Gaussian random variable. If we take Φ = 1(s,t]×Fh⊗ x, with F ∈ Fs, as above,
the stochastic integral will have the form of 2.5. But as we can see, this is not Gaussian anymore.
What we preferably want to do, is evaluate the stochastic integral for each ω ∈ Ω independently,
in this sense we want to look at each stochastic integral of Φ(·, ω̃) : [0, T ] → L (H,X) for any
fixed ω̃ ∈ Ω. In this case, we go from a stochastic process to a deterministic one, and our previous
theory would be directly applicable.

For this type of integration to make sense, we need the notion of a UMD space, where
UMD stands for “unconditional martingale differences”. To make this precise, we first need the
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definition of a Banach valued martingale. Let I be a partially ordered set. A family of σ-algebras
{Fi : i ∈ I} is called a filtration if Fi ⊂ Fj for all i ≤ j. A family {Mi : i ∈ I} of X-valued
random variables is called adapted to the filtration {Fi : i ∈ I} if Mi is strongly Fi-measurable
for all i ∈ I.

Definition 2.17. A family (Mi)i∈I of X-valued random variables is called an X-valued martin-
gale with respect to a filtration (Fi)i∈ if it is adapted to (Fi)i∈I and

E[Mj |Fi] = Mi,

whenever i ≤ j. If, in addition the above, we have for some 1 < p < ∞ that E‖Mi‖p < ∞ for
all i ∈ I, then we call M an Lp-martingale.

Now let (Mn)Nn=1 be an X-valued martingale. The sequence (dn)Nn=1 defined by

dn := Mn −Mn−1,

where we take M0 = 0, is called the martingale difference sequence associated with (Mn)Nn=1.
We now state the definition of a UMD space:

Definition 2.18. A Banach space X is called a UMD space if for some (equivalently, for all)
1 < p < ∞, there exists a constant βp,X > 0 such that for all martingale difference sequences
(dn)Nn=1 in Lp(Ω;X) and every {−1, 1}-valued sequence (εn)Nn=1 we have(

E
∥∥∥ N∑
n=1

εndn

∥∥∥p
X

)1/p

≤ βp,X

(
E
∥∥∥ N∑
n=1

dn

∥∥∥p
X

)1/p

.

Examples of UMD spaces include all Hilbert spaces, and Lp(S) spaces for 1 < p < ∞ and
(S,A, µ) a σ-finite measure space.

The usefulness of the UMD assumption becomes clear with the next proposition. Before we
state it, we let (Ω̃, F̃ , P̃) be an independent copy of the probability space (Ω,F ,P). On this
second probability space we define another H-cylindrical Brownian motion W̃H adapted to the
filtration {F̃t}t≥0. Now let Φ : [0, T ]× Ω→ H ⊗X have the following form

Φ(t, ω) =

N∑
n=1

M∑
m=1

1(tn−1,tn]×Fmn
(t, ω)

K∑
k=1

hk ⊗ xkmn,

where 0 = t0 < . . . < tN = T , the sets Fmn are disjoint and in Ftn−1
for each n ≥ 1, and the

vectors (hk)k≥1 are orthonormal in H. We define the decoupled integral of Φ with respect to W̃H

in the following way:∫ T

0

Φ(t, ω) dW̃H(t, ω̃) =

N∑
n=1

M∑
m=1

1Fmn
(ω)

K∑
k=1

(W̃H(tn, ω̃)hk − W̃H(tn−1, ω̃)hk)xkmn.

This defines an element of Lp(Ω;Lp(Ω̃;X)), and this decoupling essentially turns the stochastic
integral of an adapted process into the stochastic integral of a deterministic one. The definition
of a UMD space has been carefully chosen so this integral can be estimated by the integral with
respect to WH , as is shown in the following proposition.

Proposition 2.19. Let H be a separable Hilbert space and fix p ∈ (1,∞). The following asser-
tions are equivalent:
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1. X is a UMD space;

2. For every finite rank step function Φ : [0, T ]× Ω→ L (H,X) we have

β−pp,XEẼ
∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥p
X
≤ E

∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p
X
≤ βpp,XEẼ

∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥p
X
.

We can now use the above proposition to obtain a similar Itō isometry as before, but this
time for stochastic processes under the assumption that X is UMD. Assume that the function
Φ : [0, T ]× Ω→ H ⊗X is a finite rank step function such that the associated operator RΦ(ω) :
L2(0, T ;H)→ X, defined by

RΦ(ω)f =

∫ T

0

Φ(t, ω)f(t) dt, f ∈ L2(0, T ;H),

is in γ(L2(0, T ;H), X) for all ω ∈ Ω. Moreover we assume that for some 1 < p < ∞ we have
RΦ ∈ Lp(Ω; γ(L2(0, T ;H), X)). We now define the random variable IWH (RΦ) by

IWH (RΦ) =

∫ T

0

Φ(t) dWH(t).

We have IWH (RΦ) ∈ Lp0(Ω,FT ;X), the subspace of Lp(Ω;X) consisting of all mean-zero, FT -
measurable random variables. Now write LpF (Ω; γ(L2(0, T ;H), X)) for the closure of the finite
rank, adapted simple functions in Lp(Ω; γ(L2(0, T ;H), X)). We have the following theorem,
which is one of the main results of [25]:

Theorem 2.20. Let X be a UMD space and 1 < p <∞. The mapping IWH (RΦ) has a unique
extension to a bounded operator

IWH : LpF (Ω; γ(L2(0, T ;H), X))→ Lp0(Ω,FT ;X).

This operator is an isomorphism onto its range and we have the two-sided estimate:

β−pp,X‖RΦ‖pLp(Ω;γ(L2(0,T ;H),X)) ≤ ‖I
WH (RΦ)‖Lp(Ω;X) ≤ βpp,X‖RΦ‖pLp(Ω;γ(L2(0,T ;H),X)).

If {Ft}t≥0 is the augmented Brownian filtration, that is, the filtration generated by WH(t), then
we have an isomorphism of Banach spaces

IWH : LpF (Ω; γ(L2(0, T ;H), X)) h Lp0(Ω,FT ;X).

Finally, we state the main theorem for stochastic integration in UMD spaces:

Theorem 2.21. Let X be a UMD space and 1 < p <∞. Assume that Φ : [0, T ]×Ω→ L (H,X)
is H-strongly measurable and for all x∗ ∈ X∗, we have Φ∗x∗ ∈ L2(0, T ;H). Then the following
assertions are equivalent:

1. There exists a sequence (Φn)n≥1 of elementary adapted processes such that:

(a) for all h ∈ H and x∗ ∈ X∗ we have limn→∞〈Φnh, x∗〉 = 〈Φh, x∗〉 in measure on
[0, T ]× Ω.

(b) there exists a strongly measurable random variable η ∈ Lp(Ω;X) such that

η = lim
n→∞

∫ T

0

Φn(t) dWH(t).
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2. There exists a strongly measurable random variable η ∈ Lp(Ω;X) such that for all x∗ ∈ X∗
we have

〈η, x∗〉 =

∫ T

0

Φ(t)∗x∗ dWH(t).

3. Φ represents an element RΦ ∈ Lp(Ω; γ(L2(0, T ;H), X)).

4. For almost all ω ∈ Ω, the function Φω := Φ(·, ω) is stochastically integrable with respect to
an independent H-cylindrical Brownian motion W̃H , and

ω 7→
∫ T

0

Φ(t, ω) dW̃H(t) ∈ Lp(Ω;Lp(Ω̃;X)).

The first two assertions are equivalent even in the non-UMD setting, provided the process
Φ is adapted to the augmented filtration of WH . We will need this later on. The implication
(1)⇒(2) is obvious. We will here prove the implication (2)⇒(1). For K ≥ 1 we let F (K)

T be the
σ-algebra generated by the WH(T )hk, for 1 ≤ k ≤ K. Now let η ∈ Lp(Ω,FT ;X) be as above,
i.e. for all x∗ ∈ X∗ we have

〈η, x∗〉 =

∫ T

0

Φ(t)∗x∗ dWH(t).

Now fix ε > 0. By the martingale convergence theorem, and since the augmented filtration of
WH is defined to be the smallest σ-algebra consisting of all F (K)

T for K ≥ 1, we know

lim
K→∞

E[η|F (K)
T ] = E[η|FT ] = η,

where the convergence holds both almost surely and in Lp(Ω;X). Thus we can find M ≥ 1 such
that ∥∥∥E[η|F (M)

T ]− η
∥∥∥p
Lp(Ω;X)

<
ε

2
.

Now by density and since η has zero mean, we can find a mean zero simple random variable
η(M) ∈ Lp(Ω,F (M)

T ;X) such that∥∥∥η(M) − E[η|F (M)
T ]

∥∥∥p
Lp(Ω;X)

<
ε

2
.

Putting the above together we obtain ‖η− η(M)‖Lp(Ω;X) < ε. Since η(M) is a simple function, it
takes values only in a finite dimensional subspace of W ⊂ X. By the martingale representation
theorem, we can then write for some adapted Φ(M) : (0, T )→ L (span{h1, . . . , hk},W ),

η(M) =

M∑
k=1

∫ T

0

Φ(M)(t)hk dWH(t)hk =

∫ T

0

Φ(M)(t) dWH(t).

In the last equality we have extended Φ(M) to all of H by setting it zero on span{h1, . . . , hk}⊥.
Note that Φ(M) need not be elementary, and in this case we can approximate Φ(M) by a simple
function Φ̃(M) such that∥∥∥∫ T

0

Φ(M)(t) dWH(t)−
∫ T

0

Φ̃(M)(t) dWH(t)
∥∥∥p
Lp(Ω;X)

< ε.
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We now have∥∥∥η − ∫ T

0

Φ̃(M)(t) dWH(t)
∥∥∥p
Lp(Ω;X)

≤ ‖η − η(M)‖pLp(Ω;X) +
∥∥∥η(M) −

∫ T

0

Φ̃(M)(t) dWH(t)
∥∥∥p
Lp(Ω;X)

< 2ε.

This proves the (b) part of Assumption 1 in Theorem 2.21. Now the (a) part of the assumption
follows by the Burkholder-Davis-Gundy inequalities.
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Chapter 3

Kalinichenko’s Lemma 1 and 2

In this section we will carefully reproduce the proofs of Lemma 1 and 2 in [12], and in some cases
repair the proof or add details. Before we begin this section, we need the notion of a Gaussian
process.

3.1 Gaussian processes on a metric space
Let (T, d) be a metric space. We define a Gaussian process on T in the following way:

Definition 3.1. A collection (g(t))t∈T of Gaussian random variables is called a Gaussian process
if for all N ≥ 1 and t1, . . . , tN ∈ T we have that (g(t1), . . . , g(tN )) is a Gaussian random variable
in RN .

In the proofs of [12], it is often useful to go back and forth between viewing g as a continuous
Gaussian process on T and a C(T )-valued Gaussian random variable. This is permitted due to
the following proposition.

Proposition 3.2. Let (Ω,F ,P) be a probability space and {g(t) : t ∈ T} be a collection of
Gaussian random variables. Then g is a continuous Gaussian process on T if and only if g is a
C(T )-valued Gaussian random variable.

Proof. Assume g is a C(T )-valued Gaussian random variable. By the Gaussianity of g, we know
that g has some covariance operator K : C(T )∗ → C(T ). Then, for each t ∈ T , the random
variable 〈g, δt〉 is a real valued Gaussian with mean zero and variance 〈Kδt, δt〉. In particular, for
any selection of points t1, . . . , tN , the vector (〈g, δt1〉, . . . , 〈g, δtN 〉) is a Gaussian vector in RN :
for all 1 ≤ i, j ≤ N we have E[〈g, δti〉〈g, δtj 〉] = 〈Kδti , δtj 〉, so its covariance matrix is given by
(〈Kδti , δtj 〉)1≤i,j≤N . Now since

(g(t1), . . . , g(tN )) = (〈g, δt1〉, . . . , 〈g, δtN 〉),

g is a Gaussian process.
On the other hand, assume that g is a continuous Gaussian process on T . We first show that

g : Ω → C(T ) is strongly F-measurable by using the Pettis measurability theorem. Note that
the set F := span{δt : t ∈ T} is norming for C(T ). Moreover, since g is a continuous process, it
takes values in C(T ), and thus is separably valued.

Fix ω ∈ Ω. Since g is continuous on T , we have g(·, ω) ∈ C(T ), thus it makes sense to look at
〈g, δt〉. Now since g(t) = 〈g, δt〉 is F-measurable, the conditions of Pettis’ measurability theorem
are satisfied and we can conclude that g is strongly F-measurable.
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To prove the Gaussianity, we note that F is weak*-dense in C(T )∗ = M(T ). For any µ ∈
M(T ) we can find a sequence (µn)n≥1 in F such that 〈f, µn〉 → 〈f, µ〉 for all f ∈ C(T ). Thus
〈g(·, ω), µn〉 → 〈g(·, ω), µ〉 for all ω ∈ Ω, so 〈g, µn〉 converges almost surely to 〈g, µ〉. Since
each 〈g, µn〉 is Gaussian by the assumption, 〈g, µ〉 is Gaussian for all µ ∈ M(T ). Thus g is a
C(T )-valued Gaussian random variable.

We will also need the following lemma:

Lemma 3.3. Let (T, d) be a compact metric space and {g(t) : t ∈ T} a continuous Gaussian
process. Then when considered as a function g : (T, d) → L2(Ω) is uniformly continuous. In
other words, for each ε > 0, there exists δ > 0 such that d(s, t) < δ implies (E|g(s)−g(t)|)1/2 < ε.

Proof. To show uniform continuity, we show that g is continuous in each point (s ∈ T . To
this end, let {sn} be a sequence in T converging to s. Then d(sn, s) → 0. We show that
dg(sn, s) = ‖g(sn) − g(s)‖L2(Ω) → 0. We know for almost all fixed ω ∈ Ω we have by the
continuity of g,

lim
n→∞

|g(sn, ω)− g(s, ω)|2 = 0.

Moreover, we have pointwise for ω ∈ Ω,

|g(sn, ω)− g(s, ω)|2 ≤ sup
t∈T
|2g(t, ω)|2 = 4

(
sup
t∈T
|g(t, ω)|

)2

= 4‖g(·, ω)‖2C(T ).

By Fernique’s theorem, we have E‖g‖2C(T ) < ∞, so we can use the dominated convergence
theorem. We have

lim
n→∞

E|g(sn)− g(s)|2 = E
[

lim
n→∞

|g(sn, ω)− g(s, ω)|2
]

= 0.

Now the uniform continuity follows from the pointwise continuity and the fact that (T, d) is
compact.

3.2 Kalinichenko’s Lemma 1
Let (T, d) be a compact metric space, (Ω,F ,P) a probability space and g : Ω→ C(T ) a Gaussian
random variable. That is, g is a continuous Gaussian process indexed by T . Note that as a
function g : Ω×T → R, we have that g is jointly measurable, since it is measurable with respect
to F and continuous on T .

Now consider another metric space (X, ρ) and some measurable x : Ω× T → X. We call the
process {x(t) : t ∈ T} subgaussian with respect to {g(t) : t ∈ T} if the inequality

P(ρ(x(s), x(t)) > u) ≤ K exp

(
− u2

2dg(s, t)2

)
, (3.1)

holds for all s, t ∈ T . Here we define dg : T × T → R≥0 as the pseudometric given by

dg(s, t) :=
(
E|g(s)− g(t)|2

)1/2
.

Lemma 3.4 (Lemma 1 in Kalinichenko [12]). Let {x(t) : t ∈ T} be subgaussian with respect to
{g(t) : t ∈ T}, i.e. (3.1) holds. Then x has a continuous version and for every ε > 0 there is
δ > 0 depending only on ε and g such that for all p ≥ 1(

E sup
d(s,t)<δ

ρ(x(s), x(t))p

)1/p

≤ K1/p√pε.
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Moreover, for some universal constant L,(
E sup
s,t∈T

ρ(x(s), x(t))p
)1/p

≤ LK1/p√p · E sup
t∈T

g(t).

Before proving this lemma, we first need a key definition and theorem from Talagrand [34].

Definition 3.5 (Definition 2.2.17 in Talagrand [34]). Given a set T and a sequence of partitions
(An) of T , we call (An) an admissible sequence if #An ≤ 22n

and (An) is increasing, meaning
that for every A ∈ An+1, there exists a B ∈ An such that A ⊆ B.

Let A := {An}∞n=0 be an increasing sequence of partitions of T , then every set of An+1 is
contained in a set of An, such that An = {A1

n, . . . , A
kn
n } with kn = 1, . . . , 22n

for all n ≥ 1, and
k0 = 1. For any t ∈ T and n ≥ 0, let An(t) be the unique element of An containing t. Using the
above definition, we can define the quantity

γA(T, dg) := sup
t∈T

∑
n≥0

2n/2 sup
s,r∈An(t)

dg(s, r).

We can now state the following theorem:

Theorem 3.6 (Theorem 2.4.1 in Talagrand [34]). Consider a real-valued Gaussian process
{g(t) : t ∈ T}, that is, a collection of jointly Gaussian random variables indexed by T . As-
sume that E supt∈T g(t) < ∞ and equip T with the pseudometric dg. Then there exists some
universal constant L > 0 such that

1

L
inf
A
γA(T, dg) ≤ E sup

t∈T
g(t) ≤ L inf

A
γA(T, dg).

The infimum here is taken over all admissible sequences.

Note that the supremum of g(t) over all of T might not be measurable. Talagrand fixes this
by defining

E sup
t∈T

g(t) := sup{E sup
t∈T̃

g(t) : T̃ ⊂ T is finite}.

Whenever supt∈T g(t) is measurable, so in particular when g is continuous on (T, d′) with d′ any
metric on T , then the above agrees with our usual definition of E supt∈T g(t).

Proof of Lemma 3.4. We first show that {x(t) : t ∈ T} has a continuous version. To this end, we
first note that since g is continuous on (T, d), we actually have that g is a C(T )-valued Gaussian,
so by Fernique, E‖g‖C(T ) <∞. Thus we have

E‖g‖C(T ) = E sup
t∈T
|g(t)| ≥ E sup

t∈T
g(t).

Here the sup is measurable due to the continuity of g. We are now in a position to use Theorem
3.6 to obtain an admissible sequence (An)n≥0 such that for each N ∈ N, the following quantity
is finite:

γA(T, dg) := sup
t∈T

∑
n≥0

2n/2 sup
s,r∈An(t)

dg(s, r).

We now denote the tail of the above by

γA(N) := sup
t∈T

∑
n≥N

2n/2 sup
s,r∈An(t)

dg(s, r).
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Fix a finite set T̃ ⊂ T and for every n ≥ 0 we construct Tn by taking one element in each
T̃ ∩Ajn, whenever this intersection is non-empty. Fix also u > 4 and n ≥ 1 we define the event

Bn := {∃s ∈ Tn−1,∃t ∈ Tn : ρ(x(s), x(t)) > u2n/2dg(s, t)},

and set, for any N ∈ N, B(N) :=
⋃
n≥N Bn. Note that these events are indeed measurable, since

each Bn is the finite union of measurable events, and B is a countable union. We have for each
n ≥ 1

P(Bn) = P

 ⋃
s∈Tn−1

⋃
t∈Tn

{ρ(x(s), x(t)) > u2n/2dg(s, t)}


≤

∑
s∈Tn−1

∑
t∈Tn

P
(
ρ(x(s), x(t)) > u2n/2dg(s, t)

)
≤

∑
s∈Tn−1

∑
t∈Tn

exp

(
−u

2dg(s, t)
22n

2dg(s, t)2

)
≤ 22n−1

· 22n

· exp(−u22n−1).

Now we know 22n−1 · 22n ≤ 22n+1

. Moreover, by the estimate in Equation (3.1), we have

P(Bn) ≤ 22n+1

K exp(−u22n−1) = K exp

(
−2n(u2 − 4)

2

)(
2

e

)2n+1

≤ K exp

(
−u

2

4

)(
2

e

)2n+1

.

Then,

P(B(N)) = P

 ⋃
n≥N

Bn

 ≤ ∑
n≥N

P(Bn) = K exp

(
−u

2

4

) ∑
n≥N

(
2

e

)2n+1

≤ K exp

(
−u

2

4

) ∑
n≥2N+1

(
2

e

)n

≤ K exp

(
−u

2

4

)(
2

e

)2N+1 ∑
n≥0

(
2

e

)n

= K

(
2
e

)2N+1

1− 2
e

exp

(
−u

2

4

)
.

In a similar way we define for any N ∈ N the set

C(N) := {∃s, t ∈ TN : ρ(x(s), x(t)) > u2N/2dg(s, t)},

and we immediately see similarly as for Bn and inequality (3.1) that

P(C(N)) ≤ 22N+1

P
(
ρ(x(s), x(t)) > u2N/2dg(s, t)

)
≤ K exp

(
−u

2

4

)(
2

e

)2N+1

.

Define moreover the (measurable) event

D := {∃s, t ∈ T̃ : ρ(x(s), x(t)) 6= 0, dg(s, t) = 0}.
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By (3.1) we have P(D) = 0. If we denote F (N) := B(N) ∪ C(N) ∪D, then

P(F (N)) ≤ P(B(N)) + P(C(N)) + P(D)

≤ K

(
2
e

)2N+1

1− 2
e

exp

(
−u

2

4

)
+K exp

(
−u

2

4

)(
2

e

)2N+1

≤ K̃ exp

(
−u

2

4

)
,

where we explicitly choose K̃ ≥ K ≥ 1. We now show that on {F (N), for any s, t ∈ T̃ , the
distance between x(s) and x(t) can be bounded by γA(N). Recall the construction of Tn as
above, where we chose one element in each T̃ ∩ Ajn. Let πn(t) be the unique element of Tn in
An(t), if this exists. Since the following uniform convergence holds on (T, dg),∑

n≥1

2n/2 sup
s,r∈An(t)

dg(s, r) <∞,

the terms converge uniformly to zero as n→∞. This can be seen in the following way. For any
N ≥ 1 we have

sup
t∈T

∣∣∣∣∣2N/2 sup
s,r∈AN (t)

dg(s, r)

∣∣∣∣∣ = sup
t∈T

∣∣∣∣∣∣
∑
n≥N

2n/2 sup
s,r∈An(t)

dg(s, r)−
∑

n≥N+1

2n/2 sup
s,r∈An(t)

dg(s, r)

∣∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣∣
∑
n≥N

2n/2 sup
s,r∈An(t)

dg(s, r)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

n≥N+1

2n/2 sup
s,r∈An(t)

dg(s, r)

∣∣∣∣∣∣


≤ sup
t∈T

∑
n≥N

2n/2 sup
s,r∈An(t)

dg(s, r) + sup
t∈T

∑
n≥N+1

2n/2 sup
s,r∈An(t)

dg(s, r)

= γA(N) + γA(N + 1)→ 0.

In the second inequality we have omitted the absolute values, since we are summing only non-
negative terms. The convergence in the end holds since the quantity γA(T, dg) is finite, so its
tails converge to zero. It immediately follows that also

sup
t∈T

[
sup

s,r∈An(t)

dg(s, r)

]
→ 0,

as n→∞. Since T̃ is finite, there is someM ∈ N such that for all t ∈ T̃ , we have dg(πn(t), t) = 0
for all n ≥M . Since we are on the complement of D, it follows that ρ(x(πn(t)), x(t)) = 0 as well
for all n ≥M . Thus, for any N ≥ 1,

ρ(x(s), x(t)) ≤ ρ(x(s), x(πN (s))) + ρ(x(πN (s)), x(πN (t))) + ρ(x(πN (t)), x(t)).

Expanding the first term on the RHS gives, for all N ≥ 1,

ρ(x(s), x(πN (s))) ≤ ρ(x(s), x(πN+1(s))) + ρ(x(πN+1(s)), x(πN (s)))

≤ ρ(x(s), x(πN+2(s))) + ρ(x(πN+2(s)), x(πN+1(s))) + ρ(x(πN+1(s)), x(πN (s))).

Continuing like this, we have for s, t ∈ T̃

ρ(x(s), x(πN (s))) ≤ ρ(x(s), x(πM (s))) +

M−1∑
n=N

ρ(x(πn+1(s)), x(πn(s))). (3.2)
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Now, for all n ≥M we have ρ(x(s), x(πn(s))) = 0, so for all n ≥M ,

ρ(x(πn(s)), x(πn+1(s))) ≤ ρ(x(πn(s)), x(s)) + ρ(x(s), x(πn+1(s))) = 0 + 0 = 0.

Hence we can actually replace the finite sum in Equation (3.2) by the infinite sum. Moreover,
since ρ(x(s), x(πM (s))) = 0, Equation (3.2) becomes

ρ(x(s), x(πN (s))) ≤
∑
n≥N

ρ(x(πn+1(s)), x(πn(s))).

On the next page there is a sketch of what is happening here.
Doing the same thing for ρ(x(πN (t)), x(t)), we can write

ρ(x(s), x(t)) ≤
∑
n≥N

ρ(x(πn+1(s)), x(πn(s))) + ρ(x(πN (s)), x(πN (t))) +
∑
n≥N

ρ(x(πn+1(t)), x(πn(t)))

≤ u

( ∑
n≥N

2n/2dg(πn+1(s), πn(s)) + 2N/2dg(πN (s), πN (t))

+
∑
n≥N

2n/2dg(πn+1(t), πn(t))

)
=: u(I + II + III).

Here the second inequality holds specifically because we are on {F (N). We have for all t ∈ T̃

dg(πN (t), t) ≤ sup
s,r∈AN (t)

dg(s, r) = 2−N/22N/2 sup
s,r∈AN (t)

dg(s, r) ≤ 2−N/2γA(N),

so

(II) = 2N/2dg(πN (s), πN (t)) ≤ 2N/2(dg(πN (s), s) + dg(s, t) + dg(t, πN (t)))

≤ 2N/2(dg(s, t) + 2 · 2−N/2γA(N)) = 2N/2dg(s, t) + 2γA(N).

Moreover, for each t ∈ T̃ we have (recall An+1(t) ⊂ An(t)),

dg(πn+1(t), πn(t)) ≤ dg(πn+1(t), t) + dg(t, πn(t))

≤ sup
s,r∈An+1(t)

dg(s, r) + sup
s,r∈An(t)

dg(s, r) ≤ 2 sup
s,r∈An(t)

dg(s, r).

So it follows that for all N ≥ 1

(III) =
∑
n≥N

2n/2dg(πn+1(t), πn(t)) ≤ 2
∑
n≥N

2n/2 sup
s,r∈An(t)

dg(s, r) = 2γA(N).

Similarly we have (I) ≤ 2γA(N). Putting all of the above together, we obtain the following
bound for all N ≥ 1, and s, t ∈ T̃ ,

ρ(x(s), x(t)) ≤ u
( II︷ ︸︸ ︷

2N/2dg(s, t) + 2γA(N) +

I︷ ︸︸ ︷
2γA(N) +

III︷ ︸︸ ︷
2γA(N)

)
= u

(
2N/2dg(s, t) + 6γA(N)

)
).

25



t

π0(t)

(T, dg)T̃

(a) We approximate t (green) with the
points πn(t) in T̃ ∩An(t). When n = 0 we
just have An(t) = T .

πn(t)

t

(T, dg)
An

Tn

(b) The blue lines represent the borders
of the sets of the partition An.

πn+1(t)

(T, dg)
An+1

Tn+1

(c) As can be seen in the above picture, we always
eventually have πn(t) = t for some large n.
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Now, from Lemma 3.3 we know that g is uniformly continuous when considered as function
from (T, d) to L2(Ω), hence, we can find a δ(N) > 0 small enough such that d(s, t) < δ(N)
implies dg(s, t) < 2−N/2γA(N). Now by setting β(N) := 7γA(N) and v := β(N)u, we have on
{F (N)

sup
s,t∈T̃ ,d(s,t)<δ(N)

ρ(x(s), x(t)) ≤ v. (3.3)

Using this fact, we can write

P

(
sup

s,t∈T̃ ,d(s,t)<δ(N)

ρ(x(s), x(t)) > v

)
≤ P(F (N)) ≤ K̃ exp

(
− v2

4β(N)2

)
. (3.4)

Recall that we had chosen u > 4, so v > 4β(N). Since δ(N), K̃ and β(N) are independent of u,
it follows from 3.4 that

P

(
sup

s,t∈T̃ ,d(s,t)<δ(N)

ρ(x(s), x(t)) > v

)
≤ K̃ exp

(
− v2

4β(N)2

)
, ∀v ≥ 4β(N).

We will also need the case where v ≤ 4β(N), in which case it holds that

P

(
sup

s,t∈T̃ ,d(s,t)<δ(N)

ρ(x(s), x(t)) > v

)
≤ 1 ≤ K̃ exp

(
(4β(N))2

4β(N)2

)
exp

(
− v2

4β(N)2

)
.

Thus for all v ≥ 0 we can write

P

(
sup

s,t∈T̃ ,d(s,t)<δ(N)

ρ(x(s), x(t)) > v

)
≤ K̃e4 exp

(
− v2

4β(N)2

)
.

We now want to extend this to a countable and dense subset S ⊂ T . To this end, we construct
this set S of T in the following way: since T is compact in the d-metric, it is totally bounded.
For each n ≥ 1, we can cover T with a finite amount of balls with radius 1

n in the d-metric. Now
let An be the centers of these balls and let Sn :=

⋃n
k=1Ak. Then set S :=

⋃
n≥1 Sn, so that S

is countable and dense. We have by continuity of measures and since {Sn}n≥1 is an increasing
sequence of sets,

P

(
sup

s,t∈S,d(s,t)<δ(N)

ρ(x(s), x(t)) > v

)
= P

(
lim
n→∞

sup
s,t∈Sn,d(s,t)<δ(N)

ρ(x(s), x(t)) > v

)

= lim
n→∞

P

(
sup

s,t∈Sn,d(s,t)<δ(N)

ρ(x(s), x(t)) > v

)

≤ K̃e4 exp

(
− v2

4β(N)2

)
= K̃e4 exp

(
− v2

4(7γA(N))2

)
.

We can now choose N ≥ 1 such that γA(N) < ε. Then by choosing the appropriate δ(N) > 0 as
described above,

P

(
sup

s,t∈S,d(s,t)<δ(N)

ρ(x(s), x(t)) > v

)
≤ K̃e4 exp

(
− v2

4(7ε)2

)
, ∀v ≥ 0. (3.5)
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This implies that for all n ∈ N, we can choose δn > 0 such that

P(En) := P

(
sup

s,t∈S,d(s,t)<δn

ρ(x(s), x(t)) > 2−n

)
≤ 2−n.

Since
∑
n≥1 P(En) <∞ we obtain by the Borel-Cantelli lemma that

P

({
sup

s,t∈S,d(s,t)<δn

ρ(x(s), x(t)) > 2−n

}
i.o.

)
= 0.

This means that for large n, then for s, t ∈ S we have d(s, t) < δn implies ρ(x(s), x(t)) ≤ 2−n. But
this is exactly the definition of uniform continuity on S. We can thus continuously extend x to a
process x′ on the whole T . This process is a modification of the original process {x(t) : t ∈ T},
this can be seen in the following way. Let t ∈ T and {tn} be a sequence in T converging to t.
We have for any ε > 0,

P(ρ(x′(t), x(t)) > ε) ≤ P(ρ(x′(t), x(tn)) > ε/2) + P(ρ(x(tn), x(t)) > ε/2).

By definition of x′, x(tn) converges to x′(t) almost surely, so it also converges in probability.
Thus, for any η > 0 we can choose n large enough so P(ρ(x′(t), x(tn)) > ε/2) < η. On the other
hand, x is almost surely uniformly continuous, so almost surely x(tn) → x(t). This converges
also holds in probability, so we can choose an n′ ≥ n such that P(ρ(x(tn), x(t)) > ε/2) < η. Then
P(ρ(x′(t), x(t)) > ε) < η for all η > 0, so

P(ρ(x′(t), x(t)) = 0) = 1, ∀t ∈ T.

We will from now on denote x′ simply by x again, and we have the estimate for δ := δ(N) (by
continuity of x and density of S in T )

P

(
sup

s,t∈T,d(s,t)<δ

ρ(x(s), x(t)) > v

)
≤ K̃e4 exp

(
− v2

4(7ε)2

)
.

Note that the above event is measurable, since by our construction of the modification of x, this
event is exactly the event as in Equation (3.5). Define the modulus of continuity

w(δ) := sup
s,t∈T,d(s,t)<δ

ρ(x(s), x(t)) = sup
s,t∈S,d(s,t)<δ

ρ(x(s), x(t)),

where we switch to a countable, dense subset to deal with any measurability issues. For conve-
nience we now set ξ := 7ε. Then, integrating by parts,

E[w(δ)p] =

∫ ∞
0

P(w(δ) > v)pvp−1 dv

≤ K̃e4p

∫ ∞
0

exp

(
− v2

4ξ2

)
vp−1 dv.

We now substitute z = v2

4ξ2 . Note that dz
dv = v

2ξ2 . Then∫ ∞
0

exp

(
− v2

4ξ2

)
vp−1 dv =

∫ ∞
0

exp

(
− v2

4ξ2

)
vp−2(2ξ2)

(
v

2ξ2
dv

)
=

∫ ∞
0

e−z(2ξ)p−2zp/2−1(2ξ2) dz = 2p−1ξpΓ(p/2).
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Plugging this back into the previous equation and using the estimate (pΓ(p/2))1/p .
√
p, we

obtain
(E[w(δ)p])1/p . K̃1/pp1/pξ(Γ(p/2))1/p . K̃1/p√pξ . K̃1/p√pε.

This finishes the proof of the first assertion. For the second part, we have first of all

dg(s, t) ≤ sup
r,q∈T

dg(r, q) ≤ γA(0).

Consequently, for any δ > 0, in particular δ larger than the diameter of T , we have by Equation
(3.3) on {F (N),

sup
s,t∈T

ρ(x(s), x(t)) ≤ 7γA(0).

Note that taking δ > 0 large and N = 0 does not change the proof of the first part, so we can
write, similarly to Equation (3.5),

P
(

sup
s,t∈S

ρ(x(s), x(t)) > v

)
≤ K̃e4 exp

(
− v2

4(7γA(0))2

)
.

In the same way as before we obtain the estimate for the expectation,

E
(

sup
s,t∈T

ρ(x(s), x(t))p
)1/p

. K1/p√pγA(0).

Since the LHS does not depend on our choice of A, we can take the infimum:

E
(

sup
s,t∈T

ρ(x(s), x(t))p
)1/p

. K1/p√p inf
A
γA(0).

But by Theorem 3.6 we obtain an L such that infA γA(0) ≤ LE supt∈T g(t), so

E
(

sup
s,t∈T

ρ(x(s), x(t))p
)1/p

. LK1/p√pE sup
t∈T

g(t).

We will use this result to prove Lemma 3.7, which is Lemma 2 in [12].

3.3 Kalinichenko’s Lemma 2
Lemma 3.7. Let X be a separable Banach space. For T > 0 consider a collection of random
variables {xt(φ) : φ ∈ X∗, t ∈ [0, T ]}, continuous in t for every fixed φ and linear in φ in the
sense that

xt(αφ+ βψ) = αxt(φ) + βxt(ψ) a.s., φ, ψ ∈ X∗, t ∈ [0, T ], α, β ∈ R. (3.6)

Suppose that for an X-valued centered Gaussian random variable g and a constant K ≥ 1 the
inequality

P(‖x(φ)‖C[0,T ] > u) ≤ K exp

(
− u2

2E〈g, φ〉2

)
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holds for all φ ∈ X∗. Then there exists an X-valued continuous process {yt, t ∈ [0, T ]} such that

〈yt, φ〉 = xt(φ), ∀φ ∈ X∗,∀t ∈ [0, T ], (3.7)

and (
E sup
t∈[0,T ]

‖yt‖pX

)1/p

. K1/p√pE‖g‖X . (3.8)

Before we prove the statement, we first introduce the following Theorem from Kallenberg
[14], in which its proof can also be found.

Given another metric space (S, ρ), and S-valued, continuous processes X, and X1, X2, . . . on
T . Write Xn

uld−−→ X for the convergence in distribution in C(T, S) with respect to the locally
uniform topology. We moreover define finite dimensional convergence in distribution Xn

fd−→ X
by

(Xn
t1 , . . . , X

n
tm)

d−→ (Xt1 , . . . , Xtm), t1, . . . , tm ∈ T, m ∈ N.
Now let KT be the collection of compact subsets of T . For K ∈ KT and h > 0 we define the
local modus of continuity for a function x ∈ C(T, S)

wK(x, h) = sup{ρ(xs, xt) : s, t ∈ K, d(s, t) ≤ h}, h > 0, K ∈ KT .

We can now state the following theorem:

Theorem 3.8 (Corollary 23.5 in Kallenberg [14]). Let X,X1, X2, . . . be continuous S-valued
processes on T , where S and T are separable, complete metric spaces and T is locally compact
with a dense subset T ′ ∈ T . Then Xn

uld−−→ X iff

1. Xn
fd−→ X on T ′;

2. lim
h→0

lim sup
n→∞

E[wK(Xn, h) ∧ 1] = 0.

Using the above theorem, we are now ready to prove Lemma 3.7:

Proof of Lemma 3.7. The Banach-Mazur theorem states that X is isometrically isomorphic to a
closed subspace X̃ ⊂ C[0, 1]. In other words, there exists an isometric isomorphism ι : X → X̃.
Consider ι ◦ g : Ω → X̃ and write g̃ := ι ◦ g. Then we can view g̃ simply as a C[0, 1]-valued
Gaussian random variable, and look at the continuous process {g̃(s) : s ∈ [0, 1]}. The Gaussianity
follows from the Ideal property for γ-radonifying operators.

Since X̃ ⊂ C[0, 1], each functional on C[0, 1] defines a functional on X̃ through restriction,
therefore the functionals δs, defined by the relation δs(f) := f(s), can be viewed as elements in
X̃∗.

Instead of xt we will consider the process {x̃t(φ) : φ ∈ X̃∗, t ∈ [0, T ]}. Note that the continuity
in t and the pointwise a.s. linearity holds for x̃ as in the statement of the theorem, moreover the
following inequality holds, similar to Equation (3.6),

P(‖x̃(φ)‖C[0,T ] > u) = P(‖x(ι∗φ)‖C[0,T ] > u) ≤ K exp

(
− u2

2E〈g, ι∗φ〉2

)
= K exp

(
− u2

2E〈ι ◦ g, φ〉2

)
= K exp

(
− u2

2E〈g̃, φ〉2

)
.
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Now for any s ∈ [0, 1], we denote x̃t(s) := x̃t(δs). We have by the linearity that x̃t(s)− x̃t(s′) =
x̃t(δs − δs′) almost surely, for all t ∈ [0, T ]. In fact this holds for all t ∈ [0, T ] almost surely: this
is because x̃t(s)− x̃t(s′) and x̃t(δs− δs′) are modifications of each other, but since they are both
continuous in t by our assumption on x, they are indistinguishable. We have now, by the above
inequality,

P(‖x̃(s)− x̃(s′)‖C[0,T ] > u) = P(‖x̃(δs − δs′)‖C[0,T ] > u)

≤ K exp

(
− u2

2E|g̃(s)− g̃(s′)|2

)
.

This implies that, when considered as a stochastic process [0, 1]→ C[0, T ], then x̃ is subgaussian
with respect to the Gaussian process g̃ : Ω× [0, 1] → R. We are in the setting of Lemma 1 and
Equation (3.1), so in fact x̃ : [0, 1] → C[0, T ] has a continuous version, which we will denote by
ỹt(s). For this process, we can also use the second bound given in Lemma 3.4, for p ≥ 1,(

E sup
s,s′∈[0,1]

‖ỹ(s)− ỹ(s′)‖pC[0,T ]

)1/p

. K1/p√p · E sup
t∈[0,1]

g̃(t), (3.9)

where again the sup’s are measurable in both cases, since ỹ and g are continuous. We will now
prove that ỹt almost surely takes values in X̃. We do this by a reproducing kernel Hilbert space
construction. Since g̃ : Ω → X̃ is Gaussian, we consider its covariance operator Q : X̃∗ → X̃,
and HQ, the reproducing kernel Hilbert space of X̃ with respect to Q with inner product [·, ·].
Now since HQ is a separable Hilbert space, there exists some orthonormal basis (hk)k≥1 for HQ,
which is contained in the dense subspace QX̃∗. Denote Qek = hk where (ek)k≥1 is a sequence
in X̃∗. We define the finite rank projection operator Pn : X̃ → X̃ by

Pnx :=

n∑
i=1

〈x, ei〉Qei, x ∈ X̃.

The adjoint of this operator is given by P ∗n : X̃∗ → X̃∗ with

P ∗nφ =

n∑
i=1

〈Qei, φ〉ei, φ ∈ X̃∗.

Moreover,

QP ∗nφ =

n∑
i=1

〈Qei, φ〉Qei =

n∑
i=1

[Qφ,Qei]Qei, φ ∈ X̃∗.

So in fact QP ∗n is just the projection of Qφ on the first n basis vectors in HQ. We have by the
above, ‖QP ∗nφ‖HQ

≤ ‖Qφ‖HQ
. We now consider for n ≥ 1 processes ỹn : [0, T ] × Ω → H given

by

ỹnt :=

n∑
i=1

x̃t(ei)Qei.

Note that these processes are measurable, and in fact they are continuous for each n ≥ 1: each
x̃t(ei) is measurable, and ỹnt is just a linear combination of these. We have

〈φ, ỹnt 〉 =

n∑
i=1

x̃t(ei)〈φ,Qei〉 = x̃t

(
n∑
i=1

〈φ,Qei〉ei

)
= x̃t(P

∗
nφ).
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By our RKHS construction,

E〈g, P ∗nφ〉2 = [QP ∗nφ,QP
∗
nφ] = ‖QP ∗nφ‖2HQ

≤ ‖Qφ‖2HQ
= E〈g, φ〉2.

Now,

P(‖ỹn(s)− ỹn(s′)‖C[0,T ] > u) = P(‖x̃(P ∗n(δs − δs′))‖C[0,T ] > u)

≤ K exp

(
− u2

2E〈g, P ∗n(δs − δs′)〉2

)
≤ K exp

(
− u2

2E〈g, δs − δs′〉2

)
= K exp

(
− u2

2E|g(s)− g(s′)|2

)
,

where the RHS does not depend on n. We can now again use Lemma 3.4. Note that for each
n ≥ and each t ∈ [0, T ], ỹn(s) := ỹnt (δs) is already continuous in s ∈ [0, 1] since it takes values in
X̃ ⊂ C[0, 1]. Lemma 3.4 however also gives us a δ > 0 such that

E

[
sup

|s−s′|<δ
‖ỹn(s)− ỹn(s′)‖C[0,T ]

]
≤ ε, ∀n ≥ 1. (3.10)

Now for any s ∈ [0, 1] we have

P(‖ỹ(s)− ỹn(s)‖C[0,T ] > u) = P(‖x(δs − P ∗nδs)‖C[0,T ] > u)

≤ K exp

(
− u2

2E〈g, δs − P ∗nδs〉2

)
≤ K exp

(
− u2

2‖δs − P ∗nδs‖2HQ

)
→ 0.

The convergence here is in n, since ‖δs−P ∗nδs‖HQ
→ 0 as n→∞. This means that ỹn(s)→ ỹ(s)

in probability. We will now use Corollary 23.5 from Kallenberg [14] to show convergence in
distribution of ỹn → ỹ in C([0, 1], C[0, T ]). Note first of all that ỹ ∈ C([0, 1], C[0, T ]) and for any
n ≥ 1, ỹn ∈ C([0, 1], C[0, T ]). Since for each s ∈ [0, 1], ỹn(s) → ỹ(s) in probability, we have for
any finite collection of points {s1, . . . , sk} that

(ỹn(s1), . . . , ỹn(sk))→ (ỹ(s1), . . . , ỹ(sk)), as n→∞

in probability. Therefore the convergence also holds in distribution. The first assumption from
Corollary 23.5 is therefore satisfied. For the second assumption, note that

E

[
sup

|s−s′|<δ
‖ỹn(s)− ỹn(s′)‖C[0,T ] ∧ 1

]
≤ E

[
sup

|s−s′|<δ
‖ỹn(s)− ỹn(s′)‖C[0,T ]

]
.

The latter converges to zero as δ → 0 by Equation (3.10), where we obtained a bound uniformly
in n ≥ 1. So the second assumption of 23.5 holds as well. Then ỹn → ỹ in C([0, 1], C[0, T ]) in
distribution. Since C([0, 1], C[0, T ]) h C([0, T ], C[0, 1]), the convergence in distribution also holds
in this space. Since ỹn ∈ C([0, T ], X̃) almost surely for all n ≥ 1, we have by the convergence in
distribution,

1 = lim
n→∞

P(ỹn ∈ C([0, T ], X̃)) ≤ P(ỹ ∈ C([0, T ], X̃)).
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Thus ỹ almost surely has paths in C([0, T ], X̃). The next step in the proof is now to show that
ỹ satisfies Equation (3.8). To this end, we have

P(‖ỹ(0)‖C[0,T ] > v) = P(‖x(δ0)‖C[0,T ] > v).

Write β :=
√

E|g̃(0)|2. Integrating by parts again gives

E‖y(0)‖pC[0,T ] =

∫ ∞
0

P(‖y(0)‖C[0,T ] > v)pvp−1 dv

≤ Kp

∫ ∞
0

exp

(
− v2

2β2

)
vp−1 dv

≤ Kp

∫ ∞
0

exp

(
− v2

2β2

)
(2β2)p/2−1

(
v2

2β2

)p/2−1

β2 v

β2
dv.

Now substituting u = v2/(2β2), we find du = v
β2 dv and we get that the above is equal to

Kp2p/2−1βp
∫ ∞

0

exp(−u)up/2−1 du = Kp2p/2−1βpΓ(p/2).

We can now take p-th roots to obtain, where we again note the estimate p1/pΓ(p/2) ≤ √p,
resulting in

(E‖ỹ(0)‖pC[0,T ])
1/p ≤ K1/p√pβ.

Since g̃(0) is Gaussian, we can write by Kahane-Khintchine,

β =
√
Eg̃(0)2 . E|g̃(0)| ≤ E‖g̃‖C[0,1].

Combined with Equation (3.9), we get∥∥∥∥∥ sup
t∈[0,T ]

‖ỹt‖C[0,1]

∥∥∥∥∥
p

=

∥∥∥∥∥ sup
s∈[0,1]

‖ỹ(s)‖C[0,T ]

∥∥∥∥∥
p

≤

∥∥∥∥∥ sup
s,s′∈[0,1]

‖ỹ(s)− ỹ(s′)‖C[0,T ]

∥∥∥∥∥
p

+
∥∥‖ỹ(0)‖C[0,T ]

∥∥
p

≤ K1/p√pE‖g̃‖C[0,1].

It remains to prove that for all φ ∈ X̃∗,

〈ỹt, φ〉 = x̃t(φ), ∀t ∈ [0, T ].

By construction, this already holds for φ = δs, s ∈ [0, 1], and thus for all functionals in the linear
span L of {δs, s ∈ [0, 1]}. Now let φ̃ ∈ X̃∗. We can extend this by the Hahn-Banach extension
theorem to a functional φ on all of C[0, 1]. Now, each functional on C[0, 1] is a signed measure,
which we can approximate with functionals in L in the weak* sense. We can do this in the
following way. For a measure µ, we define the sequence

µn(A) =

2n−1∑
j=0

µ([j2n, (j + 1)2n))δj2n(A) + µ({1})δ1(A).
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For every f ∈ C[0, 1] we have∫ 1

0

f(s) dµn(s) =

2n−1∑
j=0

f(j2n)µ([j2n, (j + 1)2n)) + f(1)µ({1})→
∫ 1

0

f(s) ds,

since this is just a Riemann integral of a uniformly continuous function.
To this end, let {φn} ⊂ L be such an approximating sequence for φ. We denote by φ̃n the

restrictions of φn to X̃ ⊂ C[0, 1]. We have

P(‖x̃(φ)− 〈ỹt, φ̃n〉‖C[0,T ] > u) = P(‖x̃(φ− φ̃n)‖C[0,T ] > u)

≤ K exp

(
− u2

2E〈g, φ− φ̃n〉2

)
.

Since we have 〈f, φn〉 → 〈f, φ〉 for every f ∈ C[0, 1], we have

sup
n≥1
〈f, φn〉 <∞, ∀f ∈ C[0, 1],

so the family {φn}n≥1 is uniformly norm-bounded in C[0, 1]∗ by the uniform boundedness prin-
ciple. Now, on all of Ω, we have 〈g̃, φ− φn〉2 ≤ ‖φ− φn‖2C[0,1]∗‖g̃‖

2
C[0,1], so by the DCT:

E〈g̃, φ− φn〉2 → 0.

This means that 〈ỹt, φn〉 → x̃t(φ) in probability. By passing to a subsequence we obtain almost
sure convergence. Since also 〈ỹt, φ̃n〉 → 〈ỹt, φ〉, it follows that 〈ỹt, φ〉 = x̃t(φ).

Now recall that g̃ = ι ◦ g and x̃t(φ̃) = xt(ι
∗φ̃) with φ̃ ∈ X̃∗ and ι : X → X̃ and ι∗ : X̃∗ → X∗

isometric isomorphisms. Note that the dual spaces are isometrically isomorphic as well. Recall
that ỹ ∈ C([0, T ], X̃). Define y := ι−1 ◦ ỹ : [0, T ] → X. Since ι−1 is an isometric isomorphism,
y ∈ C([0, T ], X). Moreover, for any φ ∈ X∗ we have some φ̃ ∈ X̃∗ such that φ = ιφ̃. Now,

xt(φ) = xt(ι
∗φ̃) = x̃t(φ̃) = 〈ỹt, φ̃〉 = 〈ι(yt), φ̃〉 = 〈yt, ι∗φ̃〉 = 〈yt, φ〉.

Moreover, since ‖yt‖X = ‖ỹt‖C[0,1] for all t ∈ [0, T ] and ‖g‖X = ‖g̃‖C[0,1], we have(
E sup
t∈[0,T ]

‖yt‖pX

)1/p

. K1/p√pE‖g‖X .

This concludes the proof.
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Chapter 4

Stochastic Integration

In this section, the ideas of the previous section will be applied to stochastic integration in
separable Banach spaces. In particular, we will define stochastic integration in non-UMD Banach
spaces. The first subsection will be entirely based on [12]. The comparison between the setting
of Kalinichenko and the case where X is a Hilbert space is new. Moreover, Corollary 4.4 is a
new result and an extension of Theorem 3.1 from [27].

4.1 General separable Banach spaces
We start in the usual setting, where X is a separable Banach space, H a separable Hilbert space
and WH an H-cylindrical Brownian motion. The definition for stochastic integrability is given
in [12] as follows:

Definition 4.1. Let Φ : [0, T ]×Ω→ L (H,X) be an adapted process. We say that Φ is stochas-
tically integrable with respect to WH(t) if there exists a continuous X-valued process {It}t≥0 such
that

〈It, x∗〉 =

∫ t

0

Φ(s)∗x∗ dWH(s) a.s.

for all x∗ ∈ X∗, t ∈ [0, T ]. In this case the process It is called the stochastic integral of Φ.

Note that this definition is different than the classical definition of stochastic integrability,
where we approximate with finite rank step functions. However, in the preliminaries section we
have seen that these two definitions are equivalent.

We are now ready to state and prove the main theorem of [12]:

Theorem 4.2. Let X be a separable Banach space, and H a separable Hilbert space. Moreover
we let WH be an H-cylindrical Brownian motion and Φ : [0, T ] × Ω → L (H,X) an adapted
process. Now assume the existence of a centered Gaussian random variable g : Ω→ X such that
for all x∗ ∈ X∗ ∫ T

0

‖Φ(t)∗x∗‖2H dt ≤ E〈g, x∗〉2 a.s.

Then the process Φ is stochastically integrable on [0, T ] and the following inequality holds(
E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p
X

)1/p

.
√
p E‖g‖X .
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Proof. For this proof, we write the H-cylindrical Brownian motion as an infinite sum of one
dimensional Brownian motions. To this end, let {W (k)}k≥1 be a collection of independent Brow-
nian motions on Ω. We write for all h ∈ H,

WH(t)h =

∞∑
k=1

(h, hk)HW
(k)(t).

For any x∗ we now define the (real valued) stochastic integral It(x∗) by

It(x∗) =

∫ t

0

Φ(s)∗x∗ dWH(s) =

∞∑
k=1

∫ t

0

(Φ(s)∗x∗, hk)H dW (k)(s). (4.1)

Note that for all k ≥ 1, we have

E
∫ t

0

(Φ(s)∗x∗, hk)2
H dt ≤ E

∫ T

0

‖Φ(t)∗x∗‖2H dt ≤ E〈g, x∗〉,

by the assumption. So each (Φ(s)∗x∗, hk)H is stochastically integrable with respect to the W (k).
Now since

E
∞∑
k=1

∫ t

0

(Φ(s)∗x∗, hk)2
H dt = E

∫ T

0

‖Φ(t)∗x∗‖2H dt <∞,

we have that It(x∗) is well-defined and exists for all x∗ ∈ X∗. Moreover we also know that it is
a real valued martingale with quadratic variation

E
∫ T

0

‖Φ(t)∗x∗‖2H dt.

We have by the exponential inequality for martingales (Theorem 20.17 in [14])

P(‖I(x∗)‖C[0,T ] > u) = P(‖(E〈g, x∗〉2)−1/2I(x∗)‖C[0,T ] > (E〈g, x∗〉2)−1/2u)

≤ exp

(
− u2

2E〈g, x∗〉2

)
.

Thus we are in the setting of Lemma 3.7. We can use this to obtain an X-valued continuous
process y such that

〈yt, x∗〉 = It(x∗), (4.2)

and the following inequality holds

E

(
sup
t∈[0,T ]

‖yt‖pX

)1/p

. K1/p√p E‖g‖X .

But now by Equation 4.2 we know for all t ∈ [0, T ],

yt =

∫ t

0

Φ(s) dWH(s).

This finishes the proof.
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We can apply the above theory in the Abstract Wiener Space setting. Let g be an X-valued
centered Gaussian random variable. Associated with g is its covariance operator Q : X∗ → X,
and the reproducing kernel Hilbert space HQ. We let i : HQ → X be the embedding. Then
(X,HQ, i) is an Abstract Wiener Space.

Now let Φ take values only in L (HQ), and assume that for some M > 0,∫ T

0

‖Φ(t)‖2L (HQ) dt ≤M a.s.

Then i ◦ Φ : [0, T ]× Ω→ L (HQ, X), and∫ T

0

‖Φ(t)∗i∗x∗‖2HQ
dt ≤

∫ T

0

‖Φ(t)‖2L (HQ)‖i
∗x∗‖2HQ

dt ≤M‖i∗x∗‖2HQ
= ME〈g, x∗〉2

We can then apply Theorem 4.2 to obtain stochastic integrability of i ◦ Φ:

Corollary 4.3. Let (X,HQ, i) be an Abstract Wiener space as above. Let Φ : [0, T ]×Ω→ L (HQ)
be an adapted process. Assume that

sup
ω∈Ω

∫ T

0

‖Φ(t, ω)‖2L (HQ) dt <∞.

Then, if i : HQ → X is the natural embedding, the function i ◦ Φ : [0, T ] × Ω → L (HQ, X) is
stochastically integrable and(

E
∥∥∥∫ T

0

i ◦ Φ(t) dWHQ
(t)
∥∥∥p
X

)1/p

≤ √p

(
sup
ω∈Ω

∫ T

0

‖Φ(t, ω)‖2L (HQ) dt

)1/2

E‖g‖X .

Moreover, we can extend Theorem 3.1 from [27] to the case where X is non-UMD, as long as
one of the functions is deterministic. The result can be formulated as follows:

Corollary 4.4. Let Φ : [0, T ]×Ω→ L (H,X) be an adapted process and Ψ : [0, T ]→ L (H,X)
be H-strongly measurable and assume that Ψ is stochastically integrable with respect to WH . If
for all x∗ ∈ X∗ we have ∫ T

0

‖Φ(t, ω)∗x∗‖2H dt ≤
∫ T

0

‖Ψ(t)∗x∗‖2H dt

for almost all ω ∈ Ω. Then Φ is stochastically integrable with respect to WH and we have

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p
X

.
√
p
p E
∥∥∥ ∫ T

0

Ψ(t) dWH(t)
∥∥∥p
X
.

Proof. We know from Theorem 6.17 in [24] that if Ψ : [0, T ] → L (H,X) is stochastically
integrable with respect to WH , then there exists an X-valued Gaussian G such that for all
x∗ ∈ X∗

〈G, x∗〉 =

∫ T

0

Ψ(t)∗x∗ dWH(t).

Moreover, we have for all x∗ ∈ X∗

E〈G, x∗〉2 = E
∣∣∣ ∫ T

0

Ψ(t)∗x∗ dWH(t)
∣∣∣2 =

∫ T

0

‖Ψ(t)∗x∗‖2H dt.
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Thus we can apply 4.2, since almost surely for all x∗ ∈ X∗,∫ T

0

‖Φ(t, ω)∗x∗‖2H dt ≤ E〈G, x∗〉2.

It follows that Φ is stochastically integrable and we have

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p
X

.

(
√
p E
∥∥∥ ∫ T

0

Ψ(t) dWH(t)
∥∥∥
X

)p

.
√
p
p E
∥∥∥ ∫ T

0

Ψ(t) dWH(t)
∥∥∥p
X
.

4.2 The Hilbert space case
In this subsection we will consider the case where X is a Hilbert space instead of a Banach
space. We will show that Theorem 4.2 can be proven without any advanced techniques, and
even without the theory of γ-radonifying operators. Later, in Section 6, we will extend this
result to UMD− spaces.

To this end, let X and H be separable Hilbert spaces, and WH an H-cylindrical Brownian
motion. By Riesz we can identify X∗ with X and H∗ with H. We assume that the stochastic
process σ : [0, T ] × Ω → L (H,X) is adapted, and that there exists an X-valued Gaussian
G : Ω→ X such that for almost surely for all x ∈ X,∫ T

0

‖σ∗t x‖2H dt ≤ E[G, x]2X . (4.3)

We show that σ is stochastically integrable with respect to WH . To this end, we note that the
covariance operator Q : X → X of G is trace class. This can be seen in the following way. Let
(en)n≥1 be an orthonormal basis of X. Then∫

X

‖x‖2X dµ(x) =
∑
n≥1

∫
X

[x, en]2X dµ(x) =
∑
n≥1

[en, Qen]X = tr(Q).

Now since Q is trace class on X, we know Q1/2 is Hilbert-Schmidt on X. Using this, we can
rewrite Equation 4.3 to

‖σ∗t x‖2L2(0,T ;H) ≤ [x,Qx]X = ‖Q1/2x‖2X , ∀x ∈ X, a.s.

By the above, we have almost surely for every basis (en)n≥1 of X that∑
n≥1

‖σ∗en‖2L2(0,T ;H) ≤
∑
n≥1

‖Q1/2en‖2X <∞. (4.4)

If we denote by L2(H1, H2) the space of Hilbert-Schmidt operastors between two Hilbert spaces
H1 and H2, then σ∗ ∈ L2(X,L2(0, T ;H)), so σ ∈ L2(L2(0, T ;H), X). In order to use the theory
in Da Prato-Zabczyck [6] however, we need that σ ∈ L2(0, T ; L2(H,X)). We have the following
theorem:
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Theorem 4.5. Let X and H be separable Hilbert spaces and 0 < T < ∞. Then we have the
following isomorphisms of Hilbert spaces:

L2(L2(0, T ;H), X) h L2(0, T ; L2(H,X)).

Proof. We recall that for any two separable Hilbert spaces H1 and H2, each Hilbert-Schmidt
operator A ∈ L2(H1, H2) can be approximated in the L2-norm by operators in H1 ⊗H2. Thus
the space L2(0, T )⊗ (H⊗X) is dense in L2(0, T ; L2(H,X)) in its norm, and (L2(0, T )⊗H)⊗X
is dense in L2(L2(0, T ;H), X) in its own norm. Moreover we have

L2(0, T )⊗ (H ⊗X) h (L2(0, T )⊗H)⊗X.

Let now (hn)n≥1 be an orthonormal basis of H and (fk)k≥1 an orthonormal basis of L2(0, T ).
Let A ∈ L2(0, T )⊗H ⊗X be of the form

A =

K∑
k=1

N∑
n=1

fk ⊗ hn ⊗ xkn.

We have

‖A‖2L2(0,T ;L2(H,X)) =

∫ T

0

‖A(t)‖2L2(H,X) dt =

∫ T

0

∑
`≥1

‖A(t)h`‖2X dt

=
∑
`≥1

∫ T

0

‖A(t)h`‖2X dt =
∑
`≥1

∫ T

0

∥∥∥ K∑
k=1

N∑
n=1

fk(t)(hn, h`)Hxkn

∥∥∥2

X
dt

=

N∑
n=1

∫ T

0

∥∥∥ K∑
k=1

fk(t)xkn

∥∥∥2

X
dt =

N∑
n=1

∫ T

0

K∑
k,k′=1

fk(t)fk′(t)[xkn, xk′n]X dt

=

N∑
n=1

K∑
k,k′=1

[xkn, xk′n]X

∫ T

0

fk(t)fk′(t) dt =

N∑
n=1

K∑
k=1

‖xkn‖2X .

On the other hand,

‖A‖2L2(L2(0,T ;H),X) =
∑
`1≥1

∑
`2≥1

‖A(f`1 ⊗ h`2)‖2X

=
∑

`1,`2≥1

∥∥∥ K∑
k=1

N∑
n=1

(f`1 , fk)L2(0,T )(h`2 , hn)Hxkn

∥∥∥2

X
=

K∑
k=1

N∑
n=1

‖xkn‖2X .

Since for any A ∈ L2(0, T ) ⊗ H ⊗ X we have ‖A‖L2(0,T );L2(H,X) = ‖A‖L2(L2(0,T ;H),X). But
because L2(0, T )⊗H ⊗X is dense in both spaces, we conclude that

L2(L2(0, T ;H), X) h L2(0, T ; L2(H,X)).

Equation 4.3, together with the above theorem, implies that σ ∈ L2(0, T ; L2(H,X)). More-
over, we have by Equation 4.4 some M > 0, which depends on Q, such that for almost all
ω ∈ Ω ∫ T

0

‖σt(ω)‖2L2(H,X) dt = ‖σ(ω)‖2L2(0,T ;L2(H,X)) = ‖σ(ω)‖2L2(L2(0,T ;H),X)

= ‖σ(ω)∗‖2L2(X,L2(0,T ;H)) ≤
∑
n≥1

‖Q1/2‖2L2(X) =: M <∞.

39



Then it immediately follows that

P
(∫ T

0

‖σt(ω)‖2L2(H,X) dt <∞
)

= 1.

Thus the conditions for Proposition 4.22 in [6] are satisfied and σ is stochastically integrable
with respect to WH .
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Chapter 5

Applications to Stochastic Differential
Equations

5.1 Weak solutions
We are in the usual setting, where {WH(t) : t ≥ 0} is a cylindrical Brownian motion on a
separable Hilbert space H and a filtered probability space (Ω,F , {Ft}t≥0,P). Moreover we let
X be a separable Banach space. In this chapter we will primarily deal stochastic differential
equations of the form{

dxt = b(t, xt) dt+ σ(t, xt) dWH(t), 0 < t ≤ T
x0 = Z

, (5.1)

where Z is a random variable with probability measure µ0 and b and σ are two adapted L (H,X)-
valued stochastic processes. Before we go into the proofs of solving an equation of the above form,
we need to define what exactly we mean by “solving”. We distinguish between strong solutions
and weak solutions.

Definition 5.1. We call an adapted X-valued process xt a strong solution to Equation 5.1 if it
satisfies the following equation for all t ∈ [0, T ]:

xt =

∫ t

0

b(s, xs) ds+

∫ t

0

σ(s, xs) dWH(s).

In this chapter we will find weak solutions of 5.1 under certain conditions on b and σ. We
give the definition:

Definition 5.2. We call an adapted X-valued process x̃t a weak solution to Equation 5.1 if there
exists a filtered probability space (Ω̃, F̃ , {F̃}t≥0, P̃) and an H-cylindrical Brownian motion W̃H

on Ω̃ such that

x̃t = Z +

∫ t

0

b(s, x̃s) ds+

∫ t

0

σ(s, x̃s) dW̃H(s), t ∈ [0, T ].

Note that the concept of weak solutions for SDEs is entirely different than the concept of
weak solutions for PDEs in Sobolev spaces. Moreover, existence of a strong solution implies
existence of a weak solution, but the other way around is not true. Taking X = R, an example
is given by Theorem 5.4. Before we prove this, we need the notion of quadratic variation:
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Definition 5.3. Assume Yt is a stochastic process on a filtered probability space (Ω,F , {Ft}t≥0,P).
The quadratic variation is defined by

[Y ]t = lim
mesh(P )→0

N−1∑
n=0

(Ytn+1
− Ytn)2,

where P ranges over all partitions of [0, t] with P = {t0, t1, . . . , tN} and the limit is taken in
probability.

We can now construct the following example of an SDE with a weak solution but no strong
solution, which is called Tanake’s equation.

Theorem 5.4. Let (Ω,F , {Ft}t≥0,P) be a filtered probability space and W a Brownian motion
on Ω. Then the SDE

dXt = −sgn(Xt) dWt (5.2)

has a weak solution but no strong solution.

Proof. We first show that 5.2 has a weak solution. To this end, let W̃t be a Brownian motion on
some probability space (Ω̃, F̃ , {F̃}t≥0, P̃). We assume W̃t is adapted to {F̃t}t≥0. Set

Yt := −
∫ s

0

sgn(W̃s) dW̃s.

We have

[Y ]t =

∫ t

0

(−sgn(W̃t))
2 d[W̃ ]s =

∫ t

0

1 d[W̃ ]s = t,

thus by Levy’s characterization of the Brownian motion, Yt is also a Brownian motion on
(Ω̃, F̃ , {F̃}t≥0, P̃). Because

dYt = −sgn(W̃t) dW̃t,

we have
dW̃t = −sgn(W̃t) dYt.

Thus W̃t is a weak solution to 5.2. Next we show that no strong solution to 5.2 exists through a
proof by contradiction.

Suppose that Xt satisfies 5.2. By Levy’s characterization, we again see that Xt must be a
Brownian motion, this time on (Ω,F , {Ft}t≥0,P). Define the local time process Lt by

Lt = lim
ε→0

1

2ε
|{s ∈ [0, t] : Bs ∈ (−ε, ε)}|.

By Tanaka’s formula we have

|Xt| =
∫ t

0

sgn(Xs) dXs + Lt.

The stochastic differential equation 5.2 now implies that

|Wt| = |Xt| − Lt.

But since

Lt = lim
ε→0

1

2ε
|{s ∈ [0, t] : Bs ∈ (−ε, ε)}| = lim

ε→0

1

2ε
|{s ∈ [0, t] : |Bs| ∈ (0, ε)}|,
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Wt is a measurable function only depending on |Xt|. Thus Wt is adapted with respect to the
filtration F |X| generated by |Xt|, so we have Ft ⊆ F |X|t for all t ≥ 0. Now if Xt is a strong
solution to 5.2, then it is adapted to {Ft}t≥0, and thus adapted to {F |X|t }t≥0. However, this is
not possible, since sgn(Xs) is not for all s > 0 measurable on F |X|s , since {F |X|}t≥0 carries no
information on the sign of Xt.

5.2 Tightness
We have the following theorem, which is Theorem 3 in Kalinichenko:

Theorem 5.5. Let I be an index set and σα : Ω× [0, T ] → L (H,X), and bα : Ω× [0, T ] → X
be predictable processes for each α ∈ I. We assume that there is a Gaussian random variable g
on X with the property that

‖(σαt )∗x∗‖2H ≤ E〈g, x∗〉2

〈bαt , x∗〉2 ≤ E〈g, x∗〉2,

almost surely for every x∗ ∈ X∗ and t ≥ 0. Define for each α ∈ I,

xαT =

∫ T

0

bαt dt+

∫ T

0

σαt dWH(t). (5.3)

Then the family {xα}α∈I of C([0,∞), X)-valued random variables is relatively compact in dis-
tribution.

Proof. Note first of all that xαT is well-defined and an element of X for all T ≥ 0 and α ∈ I. We
have for all α ∈ I ∫ T

0

‖(σαt )∗x∗‖2H dt ≤ T · E〈g, x∗〉2.

So the conditions of Lemma 3.4 hold, thus the stochastic integral of σαt exists in X. We have for
each α ∈ I, t ≥ 0, and ω ∈ Ω,

‖bαt (ω)‖X = sup
x∗:‖x∗‖≤1

|〈bαt (ω), x∗〉| ≤ sup
x∗:‖x∗‖≤1

√
E〈g, x∗〉2 ≤

√
E‖g‖2X .

So the Bochner integral of bαt with respect to t exists in X almost surely. Thus {xαt }t≥0 as defined
in Equation (5.3) exists and is continuous. Moreover, {xαt }t≥0 is an X-valued semimartingale
for each α ∈ I, and it has a continuous version. Fix T ≥ 0. By the Banach-Mazur theorem,
we can view X as a closed subspace of C[0, 1]. In this way, xα is a C([0, T ], C[0, 1])-valued
random variable. Since C([0, T ], C[0, 1]) = C([0, 1], C[0, T ]), we can alternatively view xα as a
C([0, 1], C[0, T ])-valued random variable. We write xαt (s) for s ∈ [0, 1] and t ∈ [0, T ]. Since we
embedded X in C[0, 1], we view g as a C[0, 1]-valued Gaussian random variable. Thus it makes
sense to define the metric dg on [0, 1] in the usual way, i.e.

dg(s, t) = (E|g(s)− g(t)|2)1/2.

Now, for any s ∈ [0, 1] the δs is an element in C[0, 1]∗, and since xαt ∈ C[0, 1] for all t ∈ [0, 1], it
makes sense to write, for fixed s, s′ ∈ [0, 1],

〈xαt , δs − δs′〉 =
〈∫ t

0

bατ dτ +

∫ t

0

σατ dWH(τ), δs − δs′
〉

=

∫ t

0

〈bατ , δs − δs′〉 dτ +
〈∫ t

0

σατ dWH(τ), δs − δs′
〉
.
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We have almost surely for u ≥ 1∫ t

0

|〈bατ , δs − δs′〉| dτ ≤ t
√

E〈g, δs − δs′〉2 ≤ Tdg(s, s′) ≤ Tudg(s, s′).

Moreover, by Theorem 5.6 the term〈∫ t

0

σατ dWH(τ), δs − δs′
〉

is a real valued martingale, with quadratic variation given by∫ t

0

‖(σατ )∗(δs − δs′)‖2H dτ.

We have the following estimate,[〈 ∫ ·
0

σατ dWH(τ), δs−δs′
〉]

T
=

∫ T

0

‖(σαt )∗(δs−δs′)‖2H dt ≤ TE〈g, δs−δs′〉2 = Tdg(s, s
′). (5.4)

Using this, we can apply the exponential inequality for martingales which is Theorem 20.17 in
[14], we have for u ≥ 1

P
(
‖〈xα, δs − δs′‖C[0,T ] ≥ 2Tudg(s, s

′)
)

≤ P

(
sup
t∈[0,T ]

∫ t

0

|〈bατ , δs − δs′〉| dτ +

∣∣∣∣〈 ∫ t

0

σατ dWH(τ), δs − δs′
〉∣∣∣∣ ≥ 2Tudg(s, s

′)

)

≤ P

(
Tudg(s, s

′) + sup
t∈[0,T ]

∣∣∣∣〈 ∫ t

0

σατ dWH(τ), δs − δs′
〉∣∣∣∣ ≥ 2Tudg(s, s

′)

)

= P

(
sup
t∈[0,T ]

1

Tdg(s, s′)

∣∣∣∣〈 ∫ t

0

σατ dWH(τ), δs − δs′
〉∣∣∣∣ ≥ u

)
≤ exp(−u2/2) ≤ 2 exp(−u2/2).

On the other hand, when u ≥ 1,

P
(
‖〈xα, δs − δs′〉‖C[0,T ] ≥ 2Tudg(s, s

′)
)
≤ 1 ≤ 2 exp(−u2/2).

Thus xα : ([0, 1], d) → C[0, T ] is subgaussian with respect to 2Tg : ([0, 1], d) → R for all α ∈ I.
Fix ε > 0. We can now use Lemma 1 to find for every n ≥ 1 a δn > 0 such that

E

(
sup

d(s,s′)<δn

‖xα(s)− xα(s′)‖C[0,T ]

)
≤ ε2−2n−2,

for all α ∈ I. Note that this bound holds uniformly in α since by Lemma 1, the δn does not
depend on the process xα itself but only on ε, the process g, and 2−n. Now by Chebyshev’s
inequality,

P

(
sup

d(s,s′)<δn

‖xα(s)− xα(s′)‖C[0,T ] ≥ 2−n

)
≤ 2nE

(
sup

d(s,s′)<δn

‖xα(s)− xα(s′)‖C[0,T ]

)
≤ ε2−n−2.

(5.5)
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Fix s ∈ [0, 1]. Since for all α ∈ I, the process {xαt (s)}t≥0 is a real valued martingale, we also
have that for any t ≥ 0, the shifted process {xατ+t(s)− xαt (s)}τ≥0 is a martingale with quadratic
variation given by, for t′ > t,

[xα·+t(s)− xαt (s)]t′−t =

[〈∫ ·+t
t

σατ dWH(τ), δs

〉
+
〈∫ ·+t

t

bατ dt, δs

〉]
t′−t

=

[〈∫ ·+t
t

σατ dWH(τ), δs

〉]
t′−t

=

[〈∫ ·+t
0

σατ dWH(τ), δs

〉]
t′−t
−
[〈∫ ·

0

σατ dWH(τ), δs

〉]
t

≤ (t′ − t)Eg(s)2.

The last inequality here follows in a similar way to Equation (5.4), where we substract the two
quadratic variations to obtain the (t′ − t) term instead of T . We can now use the Burkholder
inequality in the following way, for t′ > t:

E|xαt′(s)− xαt (s)|4 ≤ E

(
sup

τ∈[0,t′−t]
|xατ+t(s)− xαt (s)|

)4

≤ E
(
xα·+t(s)− xαt (s)]t′−t

)2
≤ |t′ − t|2(Eg(s)2)2.

Note that for each s ∈ [0, 1] and α ∈ I, we have almost surely xα0 (s) = 0, thus trivially {xα0 (s)}α∈I
is tight in X, and by the above estimate

sup
α∈I

E|xαt′(s)− xαt (s)|4 ≤ C|t′ − t|2.

Thus the conditions for Theorem 23.7 in [14] are satisfied with a = 4 and b < 2. Hence the
family {xα(s)}α∈I of C[0, T ]-valued random variables is tight for each s ∈ [0, 1]. Now choose a
dense, countable subset D = {sn}n≥1 of [0, 1]. By the tightness, for every n ≥ 1 we can find a
compact set Kn ⊂ C[0, T ] such that

inf
α∈I

P(xα(sn) ∈ Kn) > 1− ε2−n−2. (5.6)

Now define for all n ≥ 1 the following subsets of C([0, 1], C[0, T ]);

Fn :=

{
sup

d(s,s′)<δn

‖x(s)− x(s′)‖C[0,T ] ≤ 2−n

}
∩ {x(sn) ∈ Kn}.

Note that by Equation (5.5) and (5.6), the above sets are non-empty for all n ≥ 1, moreover we
have the inclusion Fn+1 ⊆ Fn. Set

F :=
⋂
n≥1

Fn.

We use Arzela-Ascoli to show that this is compact. Obviously, F is equicontinuous. Moreover,
{x(s) : x ∈ F} is pre-compact for s ∈ [0, 1] fixed. This can be seen in following way. Let s ∈ D.
Then s = sN for some N ∈ N. By definition of F , we have {x(sN ) : x ∈ F} ⊂ KN ⊂ C[0, T ].
Thus {x(s) : x ∈ F} is pre-compact for all s ∈ D.

Now let s ∈ [0, 1] \D and suppose (sk)k≥1 is a sequence in D such that d(s, sk) < δk for all
k ≥ 1. We have for all x ∈ F

‖x(sk)− x(s)‖C[0,T ] ≤ 2−k.
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Thus for all k ≥ 1

{x(s) : x ∈ F} ⊂ {x(sk) : x ∈ F}+BC[0,T ](0, 2
−k).

Thus {x(s) : x ∈ F} is totally bounded, to see this take ξ > 0. Then let K ∈ N be such that
2−K < ξ. Since we know {x(s) : x ∈ F} is a subset of {x(sK) : x ∈ F} + BC[0,T ](0, 2

−K), and
{x(sK) : x ∈ F} is totally bounded, we can find a net of n points {x1(sK), x2(sK), . . . , xn(sK)}
such that their balls of radius ξ cover {x(sK) : x ∈ F}. Since 2−K < ξ, we have

{x(s) : x ∈ F} ⊂ {x(sK) : x ∈ F}+BC[0,T ](0, 2
−K) ⊂

n⋃
j=1

B(xj(sK), 2ξ).

Then {x(s) : x ∈ F} is totally bounded. Since C[0, T ] is complete, {x(s) : x ∈ F} is complete.
We can thus conclude that {x(s) : x ∈ F} is pre-compact in C[0, T ] for all s ∈ [0, 1].

Once we show F is closed, we can use Arzela-Ascoli. To this end, we define for any n ≥ 1 the
set F ′n ⊂ C([0, 1], C[0, T ]) by

F ′n :=
{
x ∈ C([0, 1], C[0, T ]) : sup

d(s,s′)≤δn
‖x(s)− x(s′)‖C[0,T ] ≤ 2−n

}
.

Then F ′n is closed. This can be seen in the following way. Let {yk}k≥1 be a sequence in F ′n that
converges to some y ∈ C([0, 1], C[0, T ]). We show y ∈ F ′n. For all s, s′ ∈ [0, 1] we have

‖y(s)− y(s′)‖C[0,T ] ≤ ‖y(s)− yk(s)‖C[0,T ] + ‖yk(s)− yk(s′)‖C[0,T ] + ‖yk(s′)− y(s′)‖C[0,T ].

Let again ξ > 0. We can find k ≥ 1 such that ‖y − yk‖C([0,1],C[0,T ]) < ξ. By plugging in this
estimate in the above, and taking the supremum over all s, s′ ∈ [0, 1] such that d(s, s′) < δn, we
find

sup
d(s,s′)≤δn

‖y(s)− y(s′)‖C[0,T ] ≤ 2ξ + sup
d(s,s′)≤δn

‖yk(s)− yk(s′)‖C[0,T ] ≤ 2ξ + 2−n.

But since we can do this for all ξ > 0, it follows that F ′n is closed for all n ≥ 1. Moreover, we
can define for each n ≥ 1 the evaluation map

evsn(x) : C([0, 1], C[0, T ])→ C[0, T ], evsn(x) = x(sn) ∈ C[0, T ].

Since this map is continuous, Kn is compact, and thus closed, for each n ≥ 1 by definition,
and {x(sn) ∈ Kn} = ev−1

sn (Kn), we have that {x(sn) ∈ Kn} is closed. Thus for each n ≥
1, the set F ′n ∩ {x(sn) ∈ Kn} is closed in C([0, 1], C[0, T ]). So their intersection F is also
closed in C([0, 1], C[0, T ]). All three conditions for Arzela-Ascoli are now verified, namely F is
equicontinuous, {x(s) : x ∈ F} is pre-compact for every s ∈ [0, 1], and F is closed. Thus F is
compact in C([0, 1], C[0, T ]).

Now we can explicitly compute

P(xα /∈ F ) = P(xα ∈ {F ) ≤
∑
n≥1

P

(
sup

d(s,s′)<δn

‖xα(s)− xα(s′)‖C[0,T ] ≥ 2−n

)
+
∑
n≥1

P(xα(sn) /∈ Kn)

≤ ε
∑
n≥1

2−n−2 + ε
∑
n≥1

2−n−2 < ε.

Now by Prohorov’s theorem, the relative compactness in distribution of the functions {xα}α∈I
in C([0, T ]× [0, 1]) follows. By Theorem 16.6 in [14] the relative compactness in distribution of
{xα}α∈I in C([0,∞)× [0, 1]) follows.
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5.3 Existence of weak solutions
Before we state the main theorem of this subsection, Theorem 5.7, we first need the following
result, which we will frequently use in the proof of 5.7:

Lemma 5.6. Let 1 < p <∞ and (Ω,F , {Ft}t≥0,P) be a filtered probability space. If the process
Φ : Ω× (0, T )→ L (H,X) is Lp-stochastically integrable, then for each x∗ ∈ X∗,

〈Zt, x∗〉 :=
〈∫ t

0

Φ(s) dWH(s), x∗
〉

is a real-valued martingale with quadratic variation

[〈Z, x∗〉]t =

∫ t

0

‖Φ(s)∗x∗‖2H ds.

Proof. We know from Theorem 13.5 in [24] that the integral of Φ with respect to WH is a
martingale in X. Before showing 〈Z, x∗〉 is a real valued martingale, let f : Ω→ X be a simple
function, so

f =

N∑
n=1

1An
xn,

with An ∈ F disjoint. Now let G ⊂ F be a sub-σ-algebra of F . We have for any x∗ ∈ X∗,

E[〈f, x∗〉|G] = E
[〈 N∑

n=1

1An
xn, x

∗
〉
|G
]

=
〈 N∑
n=1

xnE[1An
|G], x∗

〉
= 〈E[f |G], x∗〉.

Now for all p > 1, we can extend this to general f ∈ Lp(Ω;X) by a density argument. Continuing
now with 〈Z, x∗〉, we have for all t ≥ 0 that Zt is strongly F-measurable. Hence each 〈Zt, x∗〉 is
measurable. Moreover, since Zt ∈ Lp(Ω;X) for some p > 1, we also know Zt ∈ L1(Ω;X). Now
for any s < t we have by the martingale property of Z,

E[〈Zt, x∗〉|Fs] = 〈E[Zt|Fs], x∗〉 = 〈Zs, x∗〉.

Thus, by the above, 〈Z, x∗〉 is a martingale. To compute the quadratic variation, we consider a
simple adapted process Φ, given by

Φ =

N∑
n=1

1(tn−1,tn]

M∑
m=1

1Fmn
⊗

k∑
j=1

hj ⊗ xjmn.

We use the sum representation of the WH , i.e. for each h ∈ H,

WH(t)h =

∞∑
j=1

W (j)(t)[hj , h],

with W (j) independent 1-dimensional Brownian motions. Now,∫ T

0

Φ∗x∗ dWH =

N∑
n=1

M∑
m=1

k∑
j=1

1Fmn
〈xjmn, x∗〉(W (j)(tn)−W (j)(tn−1)).
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Thus we can compute the integral element-wise, in the following sense:∫ T

0

Φ∗x∗ dWH =

k∑
j=1

∫ T

0

(Φ∗x∗)j(t) dW
(j)(t),

where the (Φ∗x∗)j : Ω× (0, T )→ R are given by the formula

(Φ∗x∗)j(t) := [Φ∗(t)x∗, hj ] =

N∑
n=1

M∑
m=1

1Fmn
1(tn−1,tn]〈xjmn, x∗〉.

The quadratic variation can now simply be computed by the Ito isometry on R, we have for all
1 ≤ j ≤ k, [ ∫ ·

0

(Φ∗x∗)j(t) dW
(j)(t)

]
T

=

∫ T

0

|(Φ∗x∗)j(t)|2 dt =

∫ T

0

[Φ(t)∗x∗, hj ]
2 dt.

Summing over j, and using the fact that the Brownian motions W (j) are independent, we can
take the sum out of the covariation to find[ ∫ ·

0

Φ∗x∗ dWH

]
T

=

k∑
j=1

[ ∫ ·
0

(Φ∗x∗)j(t) dW
(j)(t)

]
T

=

k∑
j=1

∫ T

0

[Φ(t)∗x∗, hj ]
2 dt

=

∫ T

0

‖Φ(t)∗x∗‖2H dt.

By a density argument, we can now extend this to general adapted Lp-stochastically integrable
processes Φ : Ω× (0, T )→ L (H,X), and the conclusion follows.

We can now state and prove the folllowing theorem:

Theorem 5.7. Let X and H be a separable Banach and Hilbert space respectively. Consider
functions σ : [0,∞)×X → L (H,X) and b : [0,∞)×X → X satisfying the following

1. The map (t, x) 7→ 〈σ(t, x)σ(t, x)∗x∗, y∗〉 is continuous for all x∗, y∗ ∈ X∗.

2. The map (t, x) 7→ 〈b(t, x), x∗〉 is continuous for any x∗ ∈ X∗.

3. There is an X-valued zero mean Gaussian random variable g such that

‖σ(t, x)∗x∗‖2H ≤ E〈g, x∗〉2

〈b(t, x), x∗〉2 ≤ E〈g, x∗〉2,

for all (t, x) ∈ [0,∞)×X and x∗ ∈ X∗.

Let µ0 be a probability measure on X. Then on some filtered probability space (Ω,F , {Ft}t≥0,P),
there exists an X-valued continuous Ft-adapted process xt and a cylindrical Brownian motion
{WH(t)h : t ≥ 0, h ∈ H} such that

xt = x0 +

∫ t

0

σ(s, xs) dWH(s) +

∫ t

0

b(s, xs) ds a.s., t ≥ 0, (5.7)

and x0 has distribution µ0.
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Proof. Our approach is as follows. We try to solve Equation (5.7) by using an Euler approxima-
tion. In this way, we circumvent the dependence of σ on xt in (5.7), and instead work with the
discretized version of xt, so we can use what we already know about (5.3). To this end, choose a
sequence of partitions πn = {0 = tn0 < tn1 < . . . < tnk < . . .} of R with mesh tending to zero. We
let WH be an H-cylindrical Brownian motion on (Ω,F , {Ft}t≥0,P). For n fixed we define

xnt := xntni +

∫ t

tni

σ(s, xntni ) dWH(s) +

∫ t

tni

b(s, xntni ) ds, t ∈ (tni , t
n
i+1].

This is actually well-defined by the above assumptions and Theorem 4.2. Define the following
processes:

σ̃n(t) :=

∞∑
i=1

1(ti−1,ti]σ(t, xnti−1
), b̃n(t) :=

∞∑
i=1

1(ti−1,ti]b(t, x
n
ti−1

), t ≥ 0.

Note that for each t ≥ 0, the processes σ̃n and b̃n are Ft-measurable, and predictable. By the
assumptions on σ and b, we also have

‖σ̃n(t, xntni )∗x∗‖2H = ‖σ(t, xntni )∗x∗‖2H ≤ E〈g, x∗〉2

〈̃bn(t, xntni ), x∗〉2 = 〈b(t, xntni ), x∗〉2 ≤ E〈g, x∗〉2.

By Theorem 4.2 it makes sense to write the stochastic integral of σ. Now by our definition of
xnt , we have

xnt = x0 +

∫ t

0

σ̃n(s) dWH(s) +

∫ t

0

b̃n(s) ds.

Thus by the assumptions on σ and b, we can apply Theorem 5.5 to the above, to obtain that
the sequence {xn}n≥1 is relatively compact in distribution in C([0,∞), X). Hence there is some
subsequence {xnk}k≥1 that converges in C([0,∞), X) to some process {xt : t ≥ 0} in distribution.
Let µnk

and µ be the probability measures on C([0,∞), X) associated with respectively xnk and
x. Since C([0,∞), X) is separable, we can use Skorohod’s representation theorem to conclude
that there are random variables x̃nk and x̃ with laws µnk

and µ, such that x̃nk → x̃ almost surely.
It follows that for all t ≥ 0 we have x̃nk

t
nk
i

→ x̃t, where tnk
i is the element of the n-th partition

closest below t. From now on we will not distinguish between xnk and x̃nk and x and x̃. Now
fix x∗ ∈ X∗. By Theorem 4.2 it holds that we can find a CT > 0 such that∥∥∥∫ t

0

σ̃n(s) dWH(s)
∥∥∥
L1(Ω;X)

≤ CT , (5.8)

for all n ≥ 1 and t ∈ (0, T ). Moreover, for all x∗ ∈ X∗ and k ≥ 1,

〈xnk
t , x∗〉 − 〈xnk

0 , x∗〉 −
∫ t

0

〈̃bnk(s), x∗〉 ds =
〈∫ t

0

σ̃nk(s) dWH(s), x∗
〉
.

Since the RHS is an L1-martingale by 5.8, so is the LHS. Taking the almost sure limit as n→∞,
we obtain again an L1-martingale. Hence the process 〈xt, x∗〉 is a semimartingale. Denote its
martingale part by mt(x

∗) and its bounded variation part by ct(x∗). We have by the above and
the dominated convergence theorem that

ct(x
∗) = lim

k→∞

∫ t

0

〈̃bnk(s), x∗〉 ds =

∫ t

0

〈
lim
k→∞

b̃nk(s), x∗
〉
ds.
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But since we have the convergence xnk
t → xt almost surely as k → ∞ and b is continuous, it

holds that
lim
k→∞

b̃nk(s) = lim
k→∞

b̃(s, xnk

bsc) = b(s, xs),

almost surely, where we denote bsc as the element in the nk-th partition closest below s. Thus

ct(x
∗) =

∫ t

0

〈b(s, xs), x∗〉 ds.

Similarly we have σ̃nk(s) → σ(s, xs) almost surely for all s ≥ 0. We now have, again by the
dominated convergence theorem and Theorem 5.6,

[m·(x
∗),m·(y

∗)]t =

∫ t

0

(σ(s, xs)
∗x∗, σ(s, xs)

∗y∗)H ds

almost surely. We can now extend the stochastic base to (Ω̃, F̃ , {F̃t}t≥0, P̃) such that Ω̃ sup-
ports another H-cylindrical Brownian motion W ′H , independent of 〈xt, x∗〉 for any x∗ ∈ X∗ in
the following way. Let (Ω′,F ′, {F ′t}t≥0,P′) be another probability space with an H-cylindrical
Brownian motion W ′H living on it. We define the space (Ω̃, F̃ , {F̃t}t≥0, P̃) in the following way

Ω̃ := Ω× Ω′, F̃ := σ(F × F ′), P := P⊗ P′.

We define, with abuse of notation, the following stochastic processes on (Ω̃, F̃ , {F̃t}t≥0, P̃):

〈xt, x∗〉(ω, ω′) := 〈xt, x∗〉(ω), WH(t, ω, ω′) := WH(t, ω), W ′H(t, ω, ω′) := W ′H(t, ω′).

Note that indeed {〈xt, x∗〉 : x∗ ∈ X∗} andWH are independent ofW ′H . We can then use Theorem
2 from [31] to find an H-cylindrical Brownian motion W̃H on (Ω̃, F̃ , {F̃t}t≥0, P̃), such that W̃H

is independent of mt and

mt(x
∗) =

〈∫ t

0

σ(s, xs) dW̃H(s), x∗
〉
.

Here we have defined σ on Ω̃ in the same way as above, σ(t, x, ω, ω′) = σ(t, x, ω). Hence

〈xt, x∗〉 =

∫ t

0

〈b(s, xs), x∗〉 ds+
〈∫ t

0

σ(s, xs) dW̃H(s), x∗
〉
,

for all x∗ ∈ X∗ which finishes the proof.

5.4 Weak solutions for the stochastic abstract Cauchy problem
In the above subsection, we have found weak solutions to the problem{

dxt = b(t, xt) dt+ σ(t, xt) dWH(t), t > 0

x0 = x
.

However, usually we are interested in solving the stochastic abstract Cauchy problem which can
be written in the following way{

dU(t) = AU(t) dt+B dWH(t), t > 0

U(0) = u0

. (5.9)
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Here A : X → X is an unbounded operator which generates a strongly continuous semigroup
(S(t))t≥0 on X, and B can either be a bounded operator or an L (H,X)-valued process.

The problem (5.9) has been extensively studied: in the case where X is a general separable
Banach space and B : H → X is a fixed, deterministic operator, the problem was studied in
[5] and then in [28], where in the latter the approach through γ-radonifying operators was first
used.

In an even more general case, where B is allowed to depend on t and on U(t), and under
the additional assumption that X is a UMD space, the problem (5.9) has been shown by Van
Neerven, Veraar, and Weis in [26] to have a unique mild solution in a suitable function space.

In this subsection, we will consider (5.9) when B : (0, T ) × Ω → L (H,X) is a stochastic
operator valued process, and X is a general separable Banach space X. We will use Theorem
4.2 (which is Theorem 1 in [12]).

Before we do this, we first repeat the theory from [28]. We will use, as is done in [28], a
different notion of weak solution than above.

Definition 5.8. An X-valued process {U(t)}t≥0 is called a weak solution of 5.9 if it is weakly
progressively measurable and for all x∗ ∈ D(A∗) the following two conditions are satisfied

1. Almost surely, the paths t 7→ 〈U(t), A∗x∗〉 are integrable;

2. For all t ∈ [0, T ] we have, almost surely,

〈U(t), x∗〉 = 〈u0, x
∗〉+

∫ T

0

〈U(t), A∗x∗〉 ds+WH(t)B∗x∗.

Note that this notion of weak solution is stronger than what we had in the subsection before,
since here our solution can not be constructed with just any arbitrary W̃H , but rather the WH

from the equation itself.
This definition of weak solution leads us to the following theorem, which is Theorem 7.1 in

[28].

Theorem 5.9. The following assertions are equivalent:

1. The problem 5.9 has a weak solution {U(t)}t≥0;

2. The function t 7→ S(t)B is stochastically integrable on (0, T ) with respect to the H-cylindrical
Brownian motion WH ;

3. The operator R ∈ L (X∗, X) defined by

Rx∗ :=

∫ T

0

S(t)BB∗S(t)∗x∗ dt

is a Gaussian covariance operator;

4. The operator I ∈ L (L2(0, T ;H), X) defined by

If :=

∫ T

0

S(t)Bf(t) dt

is γ-radonifying from L2(0, T ;H) to X.
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In this case, for every t ∈ [0, T ] the function s 7→ S(t − s)B is stochastically integrable with
respect to WH and we have

U(t) = S(t)u0 +

∫ t

0

S(t− s)B dWH(s)

almost surely.

We will from now on assume B to be a continuous stochastic process, that is

B : [0, T ]× Ω→ L (H,X)

is progressively measurable and adapted. We thus consider the following Cauchy problem{
dU(t, ω) = AU(t, ω) dt+B(t, ω) dWH(t, ω)

U(0, ω) = u0(ω)
. (5.10)

We finally state and prove the following theorem. A generalization of Theorem 5.9:

Theorem 5.10. Consider the problem 5.10 in a general separable Banach space X. Assume
that there exists a B̃ : (0, T ) → L (H,X) such that B̃ is stochastically integrable with respect to
WH and the following two assumptions hold:

1. We have
‖B(t, ω)∗x∗‖H ≤ ‖B̃(t)∗x∗‖H , ∀x∗ ∈ X∗.

2. The operator QT : X∗ → X, defined for all x∗ ∈ X∗ by

QTx
∗ :=

∫ T

0

S(T − t)B̃(t)B̃(t)∗S(T − t)∗x∗ dt,

is a Gaussian covariance operator.

Then the problem 5.10 has a weak solution {U(t)}t≥0 given by

U(t, ω) = S(t)u0 +

∫ t

0

S(t− s)B(t, ω) dWH(s). (5.11)

Proof. The proof that 5.11 actually gives a weak solution to 5.10 can be copied mutatis mutandis
from the proof of Theorem 7.1 in [28]. We still need to prove that s 7→ S(t − s)B(s, ω) is
stochastically integrable with respect to the H-cylindrical Brownian motionWH for all t ∈ [0, T ],
under assumption (1) and (2). Note first of all that s 7→ S(t− s)B(s, ω) is strongly continuous.
Moreover, we have for all ω ∈ Ω and t ∈ [0, T ]∫ t

0

‖B(s, ω)∗S(t− s)∗x∗‖2H ds ≤
∫ T

0

‖B(s, ω)∗S(T − s)∗x∗‖2H ds.

By (1) ∫ T

0

‖B(s, ω)∗S(T − s)∗x∗‖2H ds ≤
∫ T

0

‖B̃(s)∗S(T − s)∗x∗‖2H ds.
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Now by assumption (2) there exists an X-valued Gaussian GT with covariance operator QT . We
have ∫ T

0

‖B̃(s)∗S(T − s)∗x∗‖2H ds =

∫ T

0

(B̃(s)∗S(T − s)∗x∗, B̃(s)∗S(T − s)∗x∗)H ds

=

∫ T

0

〈S(T − s)B̃(s)B̃(s)∗S(T − s)∗x∗, x∗〉 ds

=
〈∫ T

0

S(T − s)B̃(s)B̃(s)∗S(T − s)∗x∗ ds, x∗
〉

= 〈QTx∗, x∗〉 = E〈GT , x∗〉2.

We can now use 4.2 to conclude the stochastic integrability of s 7→ S(t− s)B(s, ω), thus 5.11 is
well-defined for almost all (t, ω) ∈ [0, T ]× Ω. This finishes the proof.
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Chapter 6

Kalinichenko in the UMD−-setting

As it turns out, the proof of Kalinichenko’s main theorem is much more immediate when we
assume our Banach space X to be UMD−, and in the case that our integrator is deterministic,
the result was already known. In both cases, no advanced chaining techniques are necessary.

We start with the more complicated case, in which X is UMD− and Φ is an L (H,X)-valued
stochastic process.

First we define a UMD− space as in [21].

Definition 6.1. Let (rn)n≥1 be a Rademacher sequence and let X be a Banach space. We call
X a UMD− space if for some (equivalently, for all) 1 < p < ∞ there exists a constant βp such
that for all finite X-valued martingale difference sequences (dn)n≥1 independent of (rn)n≥1 we
have

E
∥∥∥ N∑
n=1

dn

∥∥∥p ≤ βppE∥∥∥ N∑
n=1

rndn

∥∥∥p.
Now let (Ω,F , {Ft}t≥0,P) be a probability space and H a separable Hilbert space with an

H-cylindrical Brownian motion WH . Assume (Ω̃, F̃ , {F̃t}t≥0, P̃) is an independent copy of this
probability space with H-cylindrical Brownian motion W̃H . Then, in the UMD− setting there
is the following one-sided decoupling lemma, which is similar to Lemma 3.4 from [25]:

Lemma 6.2. Let H be a separable Hilbert space and 1 < p <∞. Then if X is a UMD− space,
there exists some constant βp,X such that the following inequality holds for every elementary
adapted process Φ : [0, T ]× Ω→ L (H,X)

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p ≤ βpp,XEẼ

∥∥∥ ∫ T

0

Φ(t) dW̃H(t)
∥∥∥p.

Here we will not prove the lemma, as its proof is identical to the proof of Lemma 3.4 in [25],
with the only difference being the one-sided UMD property. Similarly, we can prove a version of
Theorem 3.5 from the same article for UMD− spaces using the above. For elementary adapted
Φ ∈ Lp(Ω; γ(L2(0, T ;H), X)) we define the random variable IWH (Φ) ∈ Lp(Ω;X) by

IWH (Φ) =

∫ T

0

Φ(t) dWH(t).

We have IWH (Φ) ∈ Lp0(Ω,FT ;X), the subspace of all mean-zero FT -measurable random vari-
ables in Lp(Ω;X). In the next theorem we will extend IWH to a bounded operator from
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LpF (Ω; γ(L2(0, T ;H), X)) to Lp0(Ω,FT ;X). Here LpF (Ω; γ(L2(0, T ;H), X)) denotes the closure
of elementary adapted elements in Lp(Ω; γ(L2(0, T ;H), X)).

Theorem 6.3. Let X be a UMD− space and fix 1 < p <∞. The mapping Φ 7→ IWH (Φ) has a
unique extension to a bounded operator

IWH : LpF (Ω; γ(L2(0, T ;H), X))→ Lp0(Ω,FT ;X).

Proof. Let Φ ∈ Lp(Ω; γ(L2(0, T ;H), X)) be elementary and adapted. We have by Lemma 6.2
and the Ito isometry (Theorem 5.1 in [23])

E‖IWH (Φ)‖p = E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p ≤ βpp,XE

∥∥∥∫ T

0

Φ(t) dW̃H(t)
∥∥∥p
Lp(Ω̃;X)

= βpp,XE‖Φ‖pγp(L2(0,T ;H),X).

Since we have ‖ · ‖γp(L2(0,T ;H),X) ≤ kp,2‖ · ‖γ(L2(0,T ;H),X) by the Kahane-Khintchine inequalities,
it follows that

‖IWH (Φ)‖pLp(Ω;X) = E‖IWH (Φ)‖p ≤ βpp,Xk
p
p,2E‖Φ‖

p
γ(L2(0,T ;H),X) = βpp,Xk

p
p,2‖Φ‖

p
Lp(Ω;γ(L2(0,T ;H),X)).

Thus the operator IWH extends uniquely to a bounded operator from LpF (Ω; γ(L2(0, T ;H), X))
into Lp0(Ω,FT ;X).

We can now start proving a version of Theorem 1 from [12].

Theorem 6.4. Let X be a UMD− space and H a separable Hilbert space. We moreover define
WH to be an H-cylindrical Brownian motion on a filtered probability space (Ω,F , {Ft}t≥0,P).
Let Φ : [0, T ] × Ω → L(X,H) be a predictable process such that for some X-valued Gaussian
random variable we have ∫ T

0

‖Φ∗tx∗‖2H dt ≤ E〈g, x∗〉2 a.s, x∗ ∈ X∗. (6.1)

Then Φt is stochastically integrable on [0, T ] with respect to WH and we have the following
inequality (

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p)1/p

≤ KpE‖g‖X .

Proof. Let Q : X∗ → X be the covariance operator of g. We start by showing that the process
Φ : [0, T ]×Ω→ L(X,H) actually is an element of γ(L2(0, T ;H), X) for each ω ∈ Ω. To this end,
we use Theorem 9.4.1 from [9] with H1 = L2(0, T ;H) and H2 the reproducing kernel Hilbert
space HQ of g. We know that the embedding i : HQ → X is compact and Q = ii∗. Thus, by
Theorem 5.16 from [24], i ∈ γ(HQ, X).

Moreover we have, by assumption, for almost all ω ∈ Ω,

‖Φ∗(ω)x∗‖2L2(0,T ;H) =

∫ T

0

‖Φ∗t (ω)x∗‖2H dt ≤ E〈g, x∗〉2 = ‖Qx∗‖2HQ
.

As maps in L(X∗, HQ), we have the identity i∗ = Q, and we know i : HQ → X is γ-radonifying,
so by 9.4.1 in [9], we have Φ(ω) ∈ γ(L2(0, T ;H), X) for almost every ω ∈ Ω. We also have the
almost sure estimate

‖Φ(ω)‖2γ(L2(0,T ;H),X) ≤ ‖i‖
2
γ(HQ,X) = E‖g‖2X .
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By now taking p/2 powers and the expectation of the above we have

‖Φ‖pLp(Ω;γ(L2(0,T ;H),X)) = E‖Φ‖pγ(L2(0,T ;H),X) ≤ ‖g‖
p
L2(Ω;X).

Before we can use Theorem 6.3, we still need to show that Φ is F-strongly adapted. Since Φ
is predictable, we have for all t ∈ [0, T ], f ∈ H and x∗ ∈ X∗

〈Φ(1[0,t]f), x∗〉 = [1[0,t]f,Φ
∗x∗]L2(0,T ;H) =

∫ t

0

[f,Φ∗x∗]H dt.

Since Φ is a predictable process, so is [f,Φ∗x∗]H , thus the above integral is in particular Ft-
measurable. From Proposition 2.10 in [25] it follows that Φ is strongly adapted to F . We are
now in the setting of Theorem 6.3. We have

E‖IWH (Φ)‖p ≤ βpp,Xk
p
p,2‖Φ‖

p
Lp(Ω;γ(L2(0,T ;H),X)) ≤ β

p
p,Xkp,2‖g‖

p
L2(Ω;X).

We can now once again use the Kahane-Khintchine inequality to estimate ‖g‖pL2(Ω;X) ≤ k
p
2,1‖g‖

p
L1(Ω;X) =

K(E‖g‖X)p. In conclusion:(
E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p)1/p

≤ βp,Xkp,2k2,1E‖g‖X .

As we have seen from the above proof, the existence of an X-valued Gaussian random variable
g such that (6.1) holds, implies that Φ ∈ L∞(Ω; γ(L2(0, T ;H), X) and that Φ is stochastically
integrable. On the other hand, if Φ ∈ γ(L2(0, T ;H), X) is deterministic, the existence of such
a g already follows. Indeed, assume Φ ∈ γ(L2(0, T ;H), X). Then by Theorem 5.16 in [24], the
operator Q := ΦΦ∗ : X∗ → X is a covariance operator associated with a Gaussian random
variable g : Ω → X. Let again HQ be its reproducing kernel Hilbert space. We have for all
x∗ ∈ X∗,

E〈g, x∗〉2 = ‖Qx∗‖2HQ
= (Qx∗, x∗)X = (Φ∗x∗,Φ∗x∗)L2(0,T ;H) =

∫ T

0

‖Φ∗x∗‖2H dt.

We thus have the following corollary, which sums up the equivalence between Kalinichenko’s
condition and theory of radonifying operators:

Corollary 6.5. Let X be a separable (not necessarily UMD−) Banach space, and Φ : [0, T ] →
L (H,X) be a measurable process. Then Φ satisfies the conditions of Kalinichenko, that is, there
exists an X-valued Gaussian g such that for all x∗ ∈ X∗∫ T

0

‖Φ∗x∗‖2H dt ≤ E〈g, x∗〉2,

if and only if Φ ∈ γ(L2(0, T ;H), X).

In general however (the non-deterministic case), such g need not exist for all processes Φ ∈
L∞(Ω; γ(L2(0, T ;H), X). We take a look at the following example.
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Example 6.6. Let Ω = [0, 1] with the Lebesgue measure. We set X = c0 and write H1 =
L2(0, T ;H). Let (hn)n≥1 be an ONB of H and set gn := (2nT−1)1/21(2−nT,2−n+1T ] ⊗ hn for
every n ≥ 1. Note that (gn)n≥1 is an orthonormal system in H1. Let (en)n≥1 be the canonical
basis for c0. We define Φ in the following way:

Φ(ω) =
∑
n≥1

Φn1An
(ω), ω ∈ Ω,

with each Φn = gn ⊗ en, and where (An)n≥1 is a partition of Ω. By starting the filtration with
F0 := σ(An : n ≥ 1), this process is adapted. Essentially, at time t = 0 we roll an ‘infinite
dice’ to determine which process Φn we will take as a path. Note that for each n ≥ 1, we have
‖Φn‖2γ(H1,X) = 1 and thus Φ ∈ L∞(Ω; γ(H1, X)). Fix ε > 0. Now let g be any X-valued Gaussian
with covariance Q : X∗ → X and let HQ denote its reproducing kernel Hilbert space. Let (h′n)n≥1

denote the ONB of HQ and choose any Ψ ∈ γ(HQ, X). Then there exists Ψ̃ ∈ γ(HQ, X) such
that ‖Ψ̃−Ψ‖2γ(HQ,X) < ε of the form

Ψ̃ =

K∑
k=0

h′k ⊗ xk.

Since each xk ∈ c0, there is an N ∈ N such that |x(n)
k | ≤ ε/(K + 1) for all n ≥ N , for all

k ∈ {0, 1, . . . ,K}. With some abuse of notation, we denote the canonical basis of (c0)∗ = `1 by
(e∗n)n≥1. Now,

‖Ψ̃∗e∗N‖2HQ
=
∥∥∥ K∑
k=0

(xk, e
∗
N )h′k

∥∥∥2

HQ

≤
∥∥∥ K∑
k=0

ε

K + 1
h′k

∥∥∥2

HQ

= ε2.

Where this last equality is due to Plancherel. Now,

‖Ψ∗e∗N‖HQ
≤ ‖Ψ̃∗e∗N‖HQ

+ ‖(Ψ− Ψ̃)∗e∗N‖HQ

≤ ε+ ‖Ψ− Ψ̃‖L(HQ,X)‖e∗N‖X∗

≤ ε+ ‖Ψ− Ψ̃‖γ(HQ,X)‖e∗N‖X∗ < 2ε.

On the other hand, if we take ω ∈ AN we have Φ(ω) = gN ⊗ eN , so

‖Φ(ω)∗e∗N‖2H1
= ‖(eN , e∗N )gN‖2H1

= 1.

In conclusion, for each Ψ ∈ γ(HQ, X), we can find an x∗ ∈ X∗ and N ∈ N such that for all
ω ∈ (2−N , 2−N+1],

‖Ψ∗x∗‖2HQ
< ‖Φ(ω)∗x∗‖2H1

.

In particular, if we let i ∈ γ(HQ, X) be the embedding i : HQ → X, we have

E〈g, x∗〉2 = ‖Qx∗‖2HQ
= ‖i∗x∗‖2HQ

< ‖Φ(ω)∗x∗‖2H1
=

∫ T

0

‖Φ(ω)∗x∗‖2H dt.

So for each X-valued Gaussian g, there exists some x∗ ∈ X∗ such that on a set A ⊂ Ω with
P(A) > 0, Equation (6.1) does not hold for our Φ.

Despite all of this, our process Φ is stochastically integrable anyway. To prove this, we let
{WH(t) : t ∈ [0, T ]} be an H-cylindrical Brownian motion, which we construct in the following
way. Let W (n) be independent Brownian motions on Ω. We set for any h′ ∈ H,

WH(t)h′ =
∑
n≥1

W (n)(t)[h′, hn].
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Using the definition of stochastic integral, we find for each ω ∈ Ω,∫ T

0

Φ(ω) dWH(ω) =
∑
n≥1

1An
(ω)

∫ T

0

ΦndWH(ω)

=
∑
n≥1

1An
(ω)(WHgn)en

=
∑
n≥1

(2nT−1)1/21An
(ω)(W (n)(2−nT )−W (n)(2−n+1T ))en.

Note that for each n ≥ 1, we have that Xn := (2nT−1)1/2(W (n)(2−nT ) −W (n)(2−n+1T )) is a
standard Gaussian. Since the W (n) are all independent Brownian motions, the Xn are indepen-
dent as well. So the above integral exists and takes values in c0, and for p ≥ 1,

E
∥∥∥∫ T

0

Φ dWH

∥∥∥p
c0

= E
[
E
[∥∥∥ ∫ T

0

Φ dWH

∥∥∥p
c0
|F0

]]
.

Computing now the conditional expectation gives

E
[∥∥∥ ∫ T

0

Φ dWH

∥∥∥p
c0
|F0

]
= E

[∥∥∥∑
n≥1

1An
(ω)Xnen

∥∥∥p
c0
|F0

]
≤
∑
n≥1

1An
(ω)E[‖Xnen‖pc0 |F0].

Note that since each Xn is independent of F0, we have for each n ≥ 1,

E[‖Xnen‖pc0 |F0] = E[|Xn|p|F0] = E|Xn|p = E|N(0, 1)|p.

In conclusion,

E
[
E
[∥∥∥ ∫ T

0

Φ dWH

∥∥∥p
c0
|F0

]]
≤ E

[∑
n≥1

1An
(ω)E|N(0, 1)|p

]
= E|N(0, 1)|p.

58



Chapter 7

Kalinichenko in the martingale type 2
setting

The attentive reader may have noticed that in this thesis, we have not discussed the setting where
X is a Banach space with martingale type 2 at all, and we have even omitted the martingale
type 2 spaces from the preliminaries section. The reason for this is that, unlike in the UMD(−)
situation, there is no natural way to compare the conditions from Kalinichenko’s article [12] with
the setting where X is a martingale type 2 space. Before we explain this more rigorously, we
need to set up some definitions and theorems.

7.1 Type p and martingale type p spaces
In this section we will mainly use theory from the survey [23] and the 2005 article by Jan van
Neerven and Lutz Weis [29]. We let (rn)n≥1 be a sequence of independent Rademacher random
variables, that is, P(rn = 1) = P(rn = −1) = 1/2 for all n ≥ 1.

Definition 7.1. Let p ∈ [1, 2]. A Banach space X has type p if there exists a constant τ > 0
such that for all finite sequences (xn)Nn=1 in X we have

E
∥∥∥ N∑
n=1

rnxn

∥∥∥p
X
≤ τp

N∑
n=1

‖xn‖pX .

On the other hand, we say that X has cotype q ∈ [2,∞] if there exists a constant c > 0 such that
for all finite sequences (xn)Nn=1 in X we have

N∑
n=1

‖xn‖q ≤ cqE
∥∥∥ N∑
n=1

rnxn

∥∥∥q
X
.

We denote the least admissible constants in the above with τp,X and cp,X respectively. We
also define martingale type p spaces:

Definition 7.2. Let p ∈ [1, 2]. A Banach space X is has martingale type p if there exists a
constant µ > 0 such that for all finite X-valued martingale difference sequences (dn)Nn=1 we have

E
∥∥∥ N∑
n=1

dn

∥∥∥p
X
≤ µp

N∑
n=1

E‖dn‖pX .
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We denote the least admissible constant with µp,X . Some examples of martingale type 2
spaces are Hilbert spaces, and Lp(S) spaces for p ≥ 2. In fact Lp(S) has martingale type p ∧ 2.
Moreover, we can immediately see that every Banach space with martingale type p also has type
p, since the sequence (rndn)Nn=1 can be viewed as a martingale difference sequence. As it turns
out, martingale type 2 spaces are the appropriate setting for integrating stochastic processes
Φ : (0, T )× Ω→ γ(H,X) with

E
∫ T

0

‖Φ(t)‖2γ(H,X) dt <∞.

We have the following theorem, which is Theorem 4.6 in the survey [23]:

Theorem 7.3. Let X be a Banach space with martingale type 2 and assume we have a pro-
gressively measurable stochastic process Φ ∈ Lp(Ω;Lp(0, T ; γ(H,X))). Then Φ is stochastically
integrable with respect to any H-cylindrical Brownian motion WH and

E
∥∥∥∫ T

0

Φ(t) dWH(t)
∥∥∥p
X
≤ µpp,XE

∫ T

0

‖Φ(t)‖pγ(H,X) dt.

Thus, if X is a martingale type 2 space, the appropriate space for our Φ to live in would
be Lp(Ω;L2(0, T ; γ(H,X))). This in contrast to the case when X is a UMD space, where we
require Φ ∈ Lp(Ω; γ(L2(0, T ;H), X)). The assumption on Φ in the UMD case is weaker than the
assumption in the martingale type 2 case, meaning every function Ψ ∈ L2(0, T ; γ(H,X)) defines
an operator in γ(L2(0, T ;H), X). We can see this in the following way: let Ψ ∈ L2(0, T ; γ(H,X))
be of the form Ψ = 1[a,b]⊗R with R ∈ γ(H,X) and [a, b] ⊂ (0, T ), then we can define the operator
IΨ by

IΨf :=

∫ T

0

R(f, 1[a,b])L2(0,T ) dt, f ∈ L2(0, T ;H).

Since R is γ-radonifying, then so is IΨ by the ideal property. We can then extend by linearity.
Note that this argument works for general Banach spaces. It turns out that in the type 2 case,
the above mapping is actually a continuous embedding. The following theorem is from [29]:

Theorem 7.4. Let X be a Banach space with type 2. Then the mapping

I : L2(0, T ; γ(H,X)) ↪→ γ(L2(0, T ;H), X)

given by I : Ψ 7→ IΨ has a unique extension to a continuous embedding with norm ‖I‖ ≤ τ2,X .

The above theorem has another version when X has cotype 2, where we can look at I−1.

Theorem 7.5. Let X be a Banach space with cotype 2. Then

I−1 : γ(L2(0, T ;H), X) ↪→ L2(0, T ; γ(H,X))

has a unique extension to a continuous embedding with norm ‖I−1‖ ≤ c2,X .

We repeat the conditions for stochastic integration from Kalinichenko [12]. We need some
X-valued Gaussian g such that for all x∗ ∈ X∗∫ T

0

‖Φ(t)∗x∗‖2H dt ≤ E〈g, x∗〉2, a.s. (7.1)

As we have seen in the previous section, this condition implies that Φ ∈ L∞(Ω; γ(L2(0, T ;H), X)),
however the other way around does not hold, as was showcased with a counterexample.
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From now on assume that X is a martingale type 2 space. Take any φ ∈ L2(0, T ; γ(H,X))
and let ξ be a real valued standard Gaussian random variable. Set Φ = ξ ⊗ φ. Then

‖Φ‖2L2(Ω;L2(0,T ;γ(H,X))) = E‖ξ ⊗ φ‖2L2(0,T ;γ(H,X)) = ‖φ‖2L2(0,T ;γ(H,X)) <∞.

Now since X is a martingale type 2 space, by Theorem 7.3, we have that Φ is stochastically
integrable. However, this conclusion can not be drawn from Kalinichenko. Note that by
Theorem 7.4 we have Φ(·, ω) ∈ γ(L2(0, T ;H), X), but by the Gaussianity of ξ, we also have
Φ /∈ L∞(Ω; γ(L2(0, T ;H), X)). Thus Equation 7.1 does not hold for any X-valued Gaussian.

On the other hand if X does not have cotype 2, we can choose a ψ ∈ γ(L2(0, T ;H), X)
such that ψ /∈ L2(0, T ; γ(H,X)), and thus does not satisfy the conditions of Theorem 7.3. If
ζ ∈ L∞(Ω) is any non-constant random variable, then we can set Ψ = ζ ⊗ ψ. We have∫ T

0

‖Ψ(t)∗x∗‖2H dt ≤
∫ T

0

‖ζ‖2L∞(Ω)‖ψ
∗(t)x∗‖2H dt = ‖ζ‖2L∞(Ω)‖ψ

∗x∗‖2L2(0,T ;H).

Since we assumed ψ : L2(0, T ;H) → X is γ-radonifying, the operator Q = ψψ∗ is a covariance
operator of some X-valued Gaussian G. Then∫ T

0

‖Ψ(t)∗x∗‖2H dt ≤ E〈‖ζ‖L∞(Ω)G, x
∗〉2.

Thus the conditions in Kalinichenko are satisfied.

7.2 Comparing UMD and martingale type p spaces
In this section we will briefly go over the differences between UMD spaces and martingale type
2 spaces, which are the two main settings for stochastic integration in Banach spaces. The class
of UMD spaces and the martingale type 2 class are different, for example the space L3/2(S) is
UMD, since all Lp-spaces for 1 < p <∞ are UMD, but it has martingale type 3/2. Finding an
example the other way around, of a Banach space which is martingale type 2 but not UMD, still
seems to be an open problem. A proof of existence for a type 2 space that is not UMD was given
by R.C. James in 1978 [10]. In fact, he constructed an example of a non-reflexive Banach space
having type 2; since UMD space are reflexive, this proves the existence of a non-UMD type 2
space. Then in 1983, Bourgain proved in [2] that for each p ∈ (1, 2) there exists a martingale
type p space that is not UMD. We will briefly go over the theorem in this section. The definitions
here are taken from Lindenstrauss and Tzafriri [17], and Theorem 7.8 is from [2].

Bourgain works with Banach lattices, which is a special type of Banach space:

Definition 7.6. A partially ordered Banach space X over the real number field is called a Banach
lattice provided

1. x ≤ y implies x+ z ≤ y + z for all x, y, z ∈ X;

2. for all x ∈ X such that x ≥ 0 and a ∈ R+ we have ax ≥ 0;

3. for all x, y ∈ X there exist x ∧ y ∈ X and x ∨ y ∈ X;

4. |x| ≤ |y| implies ‖x‖ ≤ ‖y‖, where we have defined |x| = x ∨ (−x).

An example of a Banach lattice would be C[0, 1], with f ≤ g if f(x) ≤ g(x) for all x ∈ [0, 1].
We say that x, y ∈ X are disjoint if |x| ∧ |y| = 0.
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Definition 7.7. Let 1 < p <∞. We say that a Banach lattice X satisfies an upper, respectively
lower, p-estimate if there exists an M > 0 such that for every choice of pairwise disjoint elements
{xj}nj=1 in X we have ∥∥∥ n∑

j=1

xj

∥∥∥ ≤M( n∑
j=1

‖xj‖p
)1/p

,

respectively, ∥∥∥ n∑
j=1

xj

∥∥∥ ≥M−1
( n∑
j=1

‖xj‖p
)1/p

.

We are now ready to state the following result by Bourgain [2]:

Theorem 7.8. For 1 < p < q < ∞ there exists a Banach lattice X such that X satisfies an
upper p− and lower q-estimate, but is not UMD.

We say that a Banach space has p-smoothness for p ∈ [1, 2] if for some D > 0

‖x+ y‖p + ‖x− y‖p ≤ 2‖x‖p + 2Dp‖y‖p.

Now the following theorem, which is Theorem 1.f.10 in [17] says that the upper p-estimate implies
p-smoothness:

Theorem 7.9. Let 1 < p < 2 < q and assume X is a Banach lattice with upper p-estimate and
lower q-estimate. Then there exists a norm ‖ · ‖′ on X which is equivalent to the original norm
of X such that (X, ‖ · ‖′) with the original order is a p-smooth Banach space. Moreover X has
type p and cotype q.

It is a result by Pisier [32] (see also [22]) that for any p ∈ [1, 2] a Banach space has p-
smoothness if and only if it is a martingale type p space, up to equivalent norms. Hence by
7.8, there exists for all 1 < p < q < ∞ a non-UMD Banach lattice X such that X has upper
p-estimate and lower q-estimate. Now by 7.9, if 1 < p < 2 < q, we have that this X has an
equivalent norm ‖ · ‖′ such that (X, ‖ · ‖′) is p-smooth. By [32], we have that there exists a norm
‖ · ‖′′ equivalent to ‖ · ‖′ (and thus to ‖ · ‖) such that (X, ‖ · ‖′′) has martingale type p. Now since
equivalent norms preserve the UMD property, (X, ‖ · ‖′′) is a Banach space with martingale type
p, for some p ∈ (1, 2), but it is not UMD.

However, the above approach can not be used to prove existence of a space with martingale
type 2 which is not UMD. Whether such a space actually exists still seems to be an open problem.
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Chapter 8

Conclusion

In this thesis we have set up the theory to read and understand the proof for stochastic integration
in general separable Banach spaces, by Kalinichenko [12]. Although mostly a literature study,
at times we have fixed some inaccuracies in the proofs of [12]. We have also generalized a few
results from the known theory to non-UMD cases, or extended some results from deterministic
to stochastic cases. We extended Theorem 3.1 from [27] to the case where one of the functions is
stochastic in the non-UMD case in Corollary 4.4. Moreover, we considered the stochastic abstract
Cauchy problem in non-UMD spaces and extended Theorem 7.1 from [28] to the stochastic case.

The thesis started out with a section on the current setting in which stochastic integration
in Banach spaces is usually done, where we look at γ-radonifying operators and our Banach
space X is assumed to be a UMD space. The advantage of this theory is the minimal and
natural assumptions we need on our stochastic process Φ. However, the theory has its limits,
for example when trying to do stochastic integration in the space of continuous functions C(X ),
with (X , d) any metric space. In this case the theory set up for UMD spaces falls short, since
C(X ) is not a UMD space, and it does not have martingale type 2 either.

This is where the theory of [12] can be used. Under a very strict assumption on the integrating
process, we achieve stochastic integrability in general separable Banach spaces. The conditions,
stated in Theorem 4.2, can be roughly compared to the radonifying assumption from [25]. In
fact we have seen the following chain of one-sided implications in Section 6 (where we write Φ ∈
Kal if Φ satisfies the assumption from Theorem 4.2):

Φ ∈ γ(L2(0, T ;H), X) =⇒ Φ ∈ Kal =⇒ Φ ∈ L∞(Ω; γ(L2(0, T ;H), X)).

The question is thus whether we are willing to exchange an assumption on our Banach space
X for an assumption on our process Φ. In practice, the assumptions from Kalinichenko [12] are
difficult to work with, and can be simplified significantly in the Hilbert space case, as can be
seen in 4, and in the UMD− case in 6. From where we stand now, the only situation in which
it is easy to confirm the condition is when Φ ∈ γ(L2(0, T ;H), X), and this is precisely when we
have the Itō isometry in general Banach spaces already.

To solve stochastic differential equations in non-UMD Banach spaces, we can now use Theo-
rem 2 from [12], or more generally Theorem 5.10, the last one being a direct extension of Theorem
7.1 from [28]. Note that the complicated conditions from Kalinichenko still work through to the
conditions of this theorem, and that it is therefore mostly an academic result.

After this, we looked at Theorem 4.2 in the context of the UMD setting and the martingale
type 2 setting. We have seen in that in both cases, the proof simplifies. We have also seen that
Theorem 4.2 does not necessarily generalize any of these theories, as we can find examples of
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processes in both the UMD and the martingale type 2 case which do not satisfy the conditions
of 4.2, but do satisfy the conditions for stochastic integrability in their respective spaces.

Even though Kalinichenko has brilliantly used the techniques from Talagrand [34] to propose
a new way of doing stochastic integration in general separable Banach spaces, it only further
seems to solidify that the theory from Van Neerven, Veraar and Weis [25] is indeed the correct
way to do stochastic integration in Banach spaces.

64



Bibliography

[1] Bachelier, Louis. "Théorie de la spéculation." Annales scientifiques de l’École normale
supérieure. Vol. 17. 1900.

[2] Bourgain, Jean. "Some remarks on Banach spaces in which martingale difference sequences
are unconditional." Arkiv för Matematik 21.1 (1983): 163-168.

[3] Brzeźniak, Zdzisław. "On stochastic convolution in Banach spaces and applications."
Stochastics: An International Journal of Probability and Stochastic Processes 61.3-4 (1997):
245-295.

[4] Brzeźniak, Zdzisław. "Stochastic partial differential equations in M-type 2 Banach spaces."
Potential Analysis 4.1 (1995): 1-45.

[5] Brzezniak, Zdzislaw, and Jan van Neervan. "Stochastic convolution in separable Banach
spaces and the stochastic linear Cauchy problem." University of Warwick. Mathematics In-
stitute, 1999.

[6] Da Prato, Giuseppe, and Jerzy Zabczyk. Stochastic equations in infinite dimensions. Cam-
bridge university press, 2014.

[7] Einstein, Albert. "On the motion of small particles suspended in liquids at rest required by
the molecular-kinetic theory of heat." Annalen der physik 17.549-560 (1905): 208.

[8] Garling, David John Haldane. "Brownian motion and UMD-spaces." Probability and Ba-
nach spaces. Springer, Berlin, Heidelberg, 1986. 36-49.

[9] Hytönen, Tuomas, Jan Van Neerven, Mark Veraar, and Lutz Weis. Analysis in Banach
Spaces: Volume II: Probabilistic Methods and Operator Theory. Vol. 67. Springer, 2018.

[10] James, R. C. "Nonreflexive spaces of type 2." Israel Journal of Mathematics 30.1 (1978):
1-13.

[11] Jarrow, Robert, and Philip Protter. "A short history of stochastic integration and mathe-
matical finance: The early years, 1880–1970." A festschrift for Herman Rubin. Institute of
Mathematical Statistics, 2004. 75-91.

[12] Kalinichenko, Artem Alexandrovich. "An approach to stochastic integration in general sep-
arable Banach spaces." Potential Analysis 50.4 (2019): 591-608.

[13] Kalinichenko, Artem Alexandrovich. "Construction of diffusions on current groups."
Sbornik: Mathematics 209.1 (2018): 71.

[14] Kallenberg, Olav. Foundations of modern probability. Vol. 2. New York: springer, 1997.

65
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