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Abstract—Software-defined networking (SDN) is a cornerstone
of next-generation networks and has already led to numerous
advantages for data-center networks and wide-area networks,
for instance in terms of reduced management complexity and
more fine-grained traffic engineering. However, the design and
implementation of SDN within wireless sensor networks (WSN)
have received far less attention. Unfortunately, because of the
multi-hop type of communication in WSN, a direct reuse of
the wired SDN architecture could lead to excessive commu-
nication overhead. In this paper, we propose a cluster-based
flow management approach that makes a trade-off between
the granularity of monitoring by an SDN controller and the
communication overhead of flow management. A network is
partitioned into clusters with a minimum number of border
nodes. Instead of having to handle the individual flows of all
nodes, the SDN controller only manages incoming and outgoing
traffic flows of clusters through border nodes. Our proof-of-
concept implementations in software and hardware show that,
when compared with benchmark solutions, our approach is
significantly more efficient with respect to the number of nodes
that must be managed and the number of control messages
exchanged.

I. INTRODUCTION

Software-Defined Networking (SDN), in comparison to

traditional networking, provides improved flexibility and re-

duced complexity when it comes to flow management [1].

Given the advantages and large-scale implementation of SDN

within data-center networks and wide-area networks, a logical

question is whether the same advantages can be expected when

SDN is introduced within wireless sensor networks (WSN).

However, while most SDN research is focusing on wired

networks, only few initiatives have attempted to extend the

benefits of SDN to the wireless domain [2].

Software-Defined Wireless Sensor Networks (SD-WSN) is

proposed with the objective to levarage the benefit of SDN for

WSN [3]. Compared with distributed control of WSN, SDN

controller is able to manage and optimize the WSN pefor-

mance, such as energy consumption, communication flow, etc.,

based on a global view of the entire network. To implement

SD-WSN, the SDN architecture for wired networks must be

mapped to WSN, which involves several difficulties:

• Most existing SDN architectures require frequent data

exchange, such as request and reply messages, between

the data plane and the control plane [4]. This process

involves much communication cost. Although this over-

head is acceptable in wired networks given the plentiful

capacity of wired connections between switches and SDN

controllers, the case for WSN is different. WSN requires

nodes to relay messages from other nodes, while they

have limited resources (e.g., energy and bandwidth).

Frequent requests and replies between nodes and the

SDN controller would consume precious resources, which

would limit the size of SD-WSN.

• Nodes in WSN can not completely decouple the data and

control planes. While nodes are not directly connected

to the SDN controller, they have to obtain routing com-

mands from it. As a result each node still has to maintain

a distributed local routing table for control flow.

To take advantage of the power of SDN within WSN, we

need to balance the benefits and the communication overhead

of SDN control. We propose a cluster-based flow management

approach called CluFlow (Cluster Flow Management in SD-

WSN). The aim of CluFlow is to decrease the number of

nodes that are involved in flow management within an SD-

WSN. CluFlow makes a trade-off between the granularity of

flow management and the communication overhead by SDN

controller. Our solution divides the network into clusters and

defines the flow on the border nodes of clusters through SDN

commands. Within the cluster, a normal routing procedure is

used. The properties of CluFlow are twofold. Firstly, we trade

off granularity of flow management for less data exchange be-

tween the data and control planes. We adopt network clustering

and utilize border nodes of clusters to manage traffic flow on

cluster level instead of by individual nodes. We monitor flows

of only the cluster border nodes, and manage flow on cluster

level by controlling the routing tables of the border nodes.

Secondly, we enable SDN control to work in parallel with

distributed routing.

The key challenges to realize the proposed design are

twofold. Firstly, we need to find a way to partition the

network into clusters by using a minimum number of border

nodes. Secondly, we need to develop a method to install the

cluster-based flow rules in SD-WSN. This paper provides the

following main contributions:

• We take a graph-theoretic approach for clustering the
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Fig. 1. Architecture of software-defined wireless sensor networks (SD-WSN).

network and selecting the border nodes. The SDN con-

troller manages communication flow by monitoring and

controlling these border nodes.

• We propose a priority scheme where cluster-level routing,

performed by the SDN controller, has higher priority than

node-level routing. This hierarchical routing decreases

communication overhead of SDN control in WSN.

• We build an SDN controller to manage the commu-

nication flow in WSN and demonstrate that it works

with traditional distributed routing protocols in a real

deployment.

The paper is organized as follows. Our system model is

presented in Section II. Cluster-based SDN flow management

is addressed in Section III. Simulations and hardware experi-

ments are presented in Section IV. Related work is discussed

in Section V and we conclude in Section VI.

II. SYSTEM MODEL

WSN typically consists of resource-constrained sensor

nodes for monitoring the physical conditions of the environ-

ment. The SDN paradigm could potentially provide a simple

and flexible control approach to WSN [5]. Fig. 1 illustrates

the general architecture of SD-WSN. In such an architecture,

the sensor nodes only perform packet forwarding and all the

control plane operations, including flow routing, Quality of

Service (QoS) control, load balancing, etc., are performed by

a (logically) centralized controller.

A. Research Aim

One of the challenges in SD-WSN is that the control and

data flows share the same wireless network channel, while in a

typical wired SDN, the control flow relies on a dedicated wired

channel. Given that most WSNs are resource-constrained, the

SDN control flow becomes a high burden to data flow. In

addition, as the topology of a WSN changes or grows, a burst

of control packets requesting new flow table entries could

surpass part of the already limited bandwidth.

To cope with this challenge, some research limits the

flow table request rate [6], and some utilize multiple con-

trollers to build a hierarchical SD-WSN architecture [7].

These approaches alleviate the communication burden caused

by control flows, and increase the scalability of SD-WSN.

Complementary to these existing approaches, we propose a

clustering approach CluFlow to manage SD-WSNs.
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Fig. 2. (a) The communication flow is managed by each nodes. (b) The
SD-WSN controller inserts cluster-level routing rules.

B. Solution Overview of Cluster Flow Control

We represent the network by an undirected graph G =
(V,E) with V = {v1, ...vi, ...vn} representing the set of nodes

with n = |V | and i ∈ [1, n] and E = {e1, ...ej , ...em}
representing the edges with m = |E| and j ∈ [1,m]. Nodes

that share an edge are called neighbors. Suppose the set of

nodes V is partitioned into clusters C = {c1, ...ck, ...cu} with

u = |C| and k ∈ [1, u].
We assume that each node in the WSN reports its neighbor

connectivity to the SDN controller. There is one central SDN

controller that is responsible for partitioning the network.

The routing rules set by SDN controller with CluFlow are

on cluster level, called cluster-level routing. The cluster-level

routing rules have higher priority than local routing rules in

the border nodes. Suppose vi and vj have a linked edge.

vi ∈ ci and vj ∈ cj . If the cluster-level routing rule allows

forwarding packets from ci to cj , and the local routing of vi
is able to forward packets to vj , then we state that the local

routing rule fulfills the cluster-level routing rule and allow vi to

execute local routing. If the cluster-level routing rule prohibits

forwarding packets from ci to cj , then node vi removes the

route to vj from its local routing rules.

An example of cluster-level flow control is shown in Fig. 2.

Suppose the distributed routing protocol sets the traffic flow

route from v1 to the SDN controller as v1 → v2 → v3 → v4 →
v5. The network is partitioned into four clusters c1, c2, c3, c4.

The SDN controller sets the cluster-level routing rules to the

border nodes of each cluster. Traffic flow between c1 and c2,

c1 and c3, c2 and c4 is allowed, while flow between c3 and

c4 is prohibited. Routing from v1 to v2 does not fulfill the

cluster-level routing, hence it is blocked. The border nodes of

c4 and c3 rebuild their local routing tables. Finally, the traffic

flow route from v1 to the SDN controller becomes v1 → v6 →
v7 → v8 → v9 → v5.

III. CLUSTER FLOW MANAGEMENT IN SD-WSN

We present the design of CluFlow in this section, including

an approach to partition the network into clusters with a

minimum number of border nodes, and a protocol for cluster-

based SDN control.



A. Basis for Monitoring Flows Across Clusters

Assume Ei represents the edges incident to node vi. Let

Iie and Oi
e be the incoming and outgoing flows of node vi

on the edge e ∈ Ei. Node vi ∈ ck is named as a border
node of cluster ck if vi has a neighbor not in ck. Denote the

set of border nodes of ck by bk and let Γi denote the set of

border edges of border node vi, viz. the edges in Ei that cross

clusters.

We first assume vi does not generate or consume flows of

packets, i.e. it only forwards traffic generated by other nodes.

The unit of flow is defined as the number of packets forwarded

in a time unit. According to the flow-conservation law [8], the

sum of incoming flows equals the sum of outgoing flows in

node vi, which means
∑

e∈Ei
Oi

e−
∑

e∈Ei
Iie = 0. We extend

the flow-conservation law from a single node to a cluster of

nodes. The sum of incoming flows to the cluster ck (through

border nodes) equals the sum of outgoing flows, which is

denoted as
∑

vi∈bk

∑
e∈Γi Oi

e −
∑

vi∈bk

∑
e∈Γi Iie = 0.

Suppose the cluster ck generates or consumes flows. We

assume the border nodes have the destination and source

addresses of each flow, and the addresses of the nodes

in their clusters. To calculate the flow over clusters, we

name the incoming flow, which is via border node vi and

routed to the sink node inside the cluster, as T i
e ; and the

outgoing flow, which is via border node vi and originated

from source nodes inside the cluster, as Si
e. Then we have∑

vi∈bk

∑
e∈Γi (Oi

e − Si
e) −

∑
vi∈bk

∑
e∈Γi (Iie − T i

e)) = 0.

Based on this formula, the SDN controller could evaluate the

incoming and outgoing flows of the cluster by observing Oi
e,

Si
e, Iie, and T i

e .

B. Minimize the Number of Cluster Border Nodes

Different partitioning of a network into clusters produces

different number of border nodes. Based on our cluster level

flow control, fewer border nodes means less communication

flow of control with the SDN controller. In this section, we

aim to partition a network into clusters with minimum number

of border nodes.

1) Requirements on Clusters: Before partitioning the net-

work into clusters, we assume there exist requirements about

the number, position, the minimum required size and range

of partitioned clusters. We require that the borders of clus-

ters must be selected inside a specified sub-network area

of the graph. We call this sub-network through which the

cluster border can be selected as the border-selection-belt
Θ. Correspondingly, the sub-networks {h1, ...hk, ...hu} are

the areas which must reside within clusters, where u is the

required total number of clusters. We refer to these areas as

cluster-contained-subnets. It is required that {h1, ...hk, ...hu}
are disconnected, which means there are not edges passing

between any pair of nodes belonging to two different cluster-

contained-subnets. These cluster-contained-subnets fulfill the

requirements about the number, position and the minimum size

of partitioned clusters. The size of these pre-specified sub-

network fields depends on the user requirements. As shown

in the example of Fig. 3(a), the WSN is categorized into

h1 h2

h4
h3

(a)

c2c1

c4c3

(b)

c2c1

c4c3

(c)

Network nodes

Cluster-contained-subnets

Nodes in Cluster-contained-subnets

Cluster border nodes

Fig. 3. (a) An example of specifying border-selection-belt and cluster-
contained-subnets. (b) Monitor all the border nodes of every cluster. (c)
Monitor the minimized number of border nodes of selected clusters.

two types of fields {h1, h2, h3, h4} and Θ. The requirement

could specify each cluster-contained-subnet to contain only

one single node or several nodes.
2) Example of Cluster Border Nodes: Suppose the network

is required to be partitioned into four clusters c1, c2, c3 and c4.

We make two types of cluster partitioning patterns. The first

cluster partitioning pattern is shown in Fig. 3(b). All the border

nodes of every cluster are used to monitor the communication

flow. These flows of cluster border nodes are further used

to calculate the flow across clusters. The second partitioning

pattern is shown in Fig. 3(c). This approach partitions the

network in a different cluster pattern, and we only monitor the

flow of the border nodes in clusters c1 and c4. The approaches

in both Fig. 3(b) and Fig. 3(c) can calculate the flow among

clusters, but the approach in Fig. 3(c) uses much less number

of cluster border nodes.
3) Solution to Minimize Cluster Borders Nodes: We for-

mally define the problem as follows. Define R as any set

of nodes in Θ. We require that the network G = (V,E) is

partitioned into clusters {c1, ...ck, ...cu} after removing the

nodes R and the edges connected with R, such that any two

clusters do not have connected edges, and all the flows passing

among clusters completely pass across border nodes R. The

aim is to select R in Θ with minimum number of nodes. We

express the problem as

Objective: Min |R| (1)

Subject to: (hk ⊂ ck) ∧ (R ⊂ Θ)

The problem above is a variant of the k-way node separators

(NS) problem, which is known to be NP-hard for general

graphs [9] and for which heuristic algorithms, e.g. [10], have

been proposed. However, the existing k-way NS algorithms

cannot be used for our variant. Because, to manage the flow

of SD-WSN, besides requiring to minimize the number of sep-

arator nodes, the solution must have the following properties:

• The computing complexity must be small to enable the

SDN controller to quickly find cluster border nodes after

any network changes.

• The size of partitioned clusters do not need to be bal-

anced. We only require that node separators are inside

the border-selection-belt Θ.
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Therefore, we propose a light-weight k-way node separators

solution, which includes three steps. Step I: we utilize a

Max-Flow-Min-Cut (MFMC) algorithm to solve NS for two

clusters (Section III-B3a). In our implementation, we choose

the Boykov-Kolmogorov MFMC algorithm with a worst-case

complexity of O(mn2|Cost|), in which |Cost| is the sum

of the costs of boundary edges [11]. Step II: we extend the

approach of Step I to multiple clusters (Section III-B3b).

Its complexity is O(|C|2), in which |C| is the number of

clusters. Step III: we reassign the border nodes into minimum

number of clusters, and further reduce some redundant border

nodes (Section III-B3c). In this step, we utilize the solution

of Minimum Vertex Cover (MVC) problem [12] to eliminate

redundant separator nodes. Although it involves an NP-hard

problem, the calculation is only performed on a small number

of cluster border nodes.

a) Step I − Partition to Two Clusters: Suppose a

network is required to be partitioned into two clusters cs
and ct. The border of cs and ct is required to be inside the

border-selection-belt Θ. The cluster-contained-subnets hs and

ht should be a sub-set of clusters cs and ct, respectively. As

shown in Fig. 4(a), hs ⊂ cs, ht ⊂ ct, and hs ∪ ht ∪ Θ = V .

We solve NS for two clusters as follows.

(i) Merge hs into node sm and ht into node tm. We split

each node vg of Θ into two nodes vsg and vtg and connect

them by an edge eg . We use eg as the common notation for

the link edge of each pair of split node. For the traffic flow

from sm to tm, if vg has a previous hop node vf in Θ, we

connect vtf with vsg . If vg has a connection with sm and tm,

we connect sm and vsg , tm and vtg . In this new topology, we

denote each edge except eg as a common notation eb. In our

implementation, we use the hop distance to sm to determine

the relative flow direction between vg and vf . Suppose vg and

vf are two neighbor nodes in Θ. If the hop distance from vg
is smaller than from vf , then vg is the previous hop of vf and

Algorithm 1: Select Border Nodes of Clusters

1 for Each hi in G do
2 for Each hj (j �= i) in G do
3 Merge hi as node sm and hj as node tm.

4 for Each node vg in Θ do
5 Split into two nodes vsg and vtg .

6 Connect vsg to previous hop.

7 Connect vtg to next hop.

8 Set edge weight of eg to wg and others to wb.

9 Make MFMC from sm to tm.

10 Calculate overlapping set ϕi as cluster ci.
11 Remove ϕi from G.

we connect vtg to vsf . Otherwise, we connect vtf to vsg . If the

hop distance from vg equals from vf , we connect vsf to vsg .

(ii) We set the edge weight of each eg to wg , and all the

other edge weights to wb. The value of wg is set to 1. The

value of wb is set to a constant value that is larger than the

number of edges eg . The operation to split nodes and set edge

weights is shown in Fig. 4(b).

(iii) We use Boykov-Kolmogorov MFMC algorithm [11] to

cut the edges of the new topology from sm to tm as Fig. 4(c).

The cut edges eg represent the split nodes, which form the

border R to partition the network into two clusters as shown

in Fig. 4(d). The other nodes are separated into two sets of

nodes S and T . To form clusters cs and ct, the border nodes

R combine with either S or T . If R combines with S, then

cs = S ∪ R and ct = T . If R combines with T , then cs = S
and ct = T ∪R. The border nodes R are used to monitor and

control the flow between the two clusters cs and ct.

b) Step II − Partition to Multiple Clusters: As-

sume we have cluster-contained-subnets {h1, ..., hi, hj , ...hq}
with i, j ∈ [1, q]. First, calculate NS as in Sec-

tion III-B3a between hi and every other cluster-contained-

subnet {hj |j ∈ [1, q], j �= i}. Name cji and cij as the parti-

tioned clusters containing hi and hj respectively. The cluster

border of cluster cji and cij is Rj
i . As explained in Sec-

tion III-B3a, we combine Rj
i into cluster cji , so Rj

i ⊂ cji .

Second, calculate the intersection set of
{
cji |j ∈ [1, q], j �= i

}

as ϕi =
⋂

j∈[1,q],j �=i c
j
i . We use ϕi as the partitioned cluster ci.

Third, remove ϕi from the network G. This three-step process

continues for each cluster-contained-subnet until all clusters

are partitioned. Finally, each node is categorized to a cluster

with a cluster-ID. The operation to select border nodes of

multiple clusters base on Step I and Step II is shown in Alg. 1.

c) Step III − Reduce Redundant Border Nodes: In

Section III-B3b, we select the minimum number of border

nodes between each pair of clusters, while the border nodes

of the intersection set ϕi is not optimized. In this step,

we eliminate some redundant border nodes. For example, as

shown in Fig. 5(a), we make the cluster c1 via Steps I and II

as follows. Firstly, the cluster border nodes between c1 and
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Fig. 5. The network nodes are partitioned into cluster c1, c2 and c3. (a)
The nodes {v2, v3, v4, v5} are the border nodes of cluster c1 after Step II of
Section III-B3b. (b) Node v1 replaces v2 and v3 as the border node.

Algorithm 2: Reduce Redundant Border Nodes

1 for Each cluster ci do
2 Set cluster weight as 1/(|bi ∪ βi|).
3 Calculate MVC on cluster-level topology.

4 if Border node in non-VC cluster then
5 Change to the cluster-ID of neighbor VC cluster.

6 Calculate MVC on bmi ∪ δmi as λi.

7 Select Min{|bmi |, |λi|} as the border nodes of cmi .

c2 are {v3, v5, v8, v9}, and the cluster border nodes between

c1 and c3 are {v2, v3, v4, v6, v7}. Secondly, the intersection

area between c21 and c31 becomes cluster c1 with border nodes

{v2, v3, v4, v5}. Although we select the minimum number of

border nodes for c21 and c31, v1 can replace v2 and v3 as the

border node of c1 as shown in Fig. 5(b) to further decrease the

total number of border nodes. We formalize the approach to

reduce redundant border nodes as follows. The main operation

flow is shown in Alg. 2.

(i) We reset the cluster-ID of all the border nodes selected

in Section III-B3b to a minimum number of clusters. We

convert it to the Minimum Vertex Cover (MVC) problem [12]

as follows. In the first place, we abstract the clusters into a

cluster-level topology as shown in Fig. 6, where each cluster-

level node represents a cluster. If there exists edges between

two clusters as in Fig. 6.(a), we connect the two cluster-level

nodes. Next, we set the weight of each node in the cluster-level

topology. The border nodes in cluster ci are bi after Alg. 1, and

we call all the other border nodes that have edge connections

with cluster ci as βi. The nodes set bi ∪ βi represents the

maximum set of border nodes in ci if re-categorizing the

cluster-ID of βi. To concentrate more border nodes in fewer

clusters using MVC, we set weight value to each cluster. If the

number of all the possible border nodes |bi ∪ βi| is high, we set

a low weight value to the cluster ci. In the implementation, we

set the weight of cluster ci to 1/(|bi ∪ βi|). After that, we run

the MVC algorithm on the cluster-level topology. If a border

node belongs to a non-VC cluster, it changes its cluster-ID to

the neighbor VC cluster. To differentiate with the notations

before this step, ci changes to cmi after re-categorizing the

border nodes, and bi changes to bmi .

(ii) Name δmi as the subset of cmi − bmi , in which each node

C1
C2 C3 C4

C6
C5

C9C7 C8

C10 C11 C12

(a)

C1
C2

C3
C4

C5
C6

C7 C8 C9

C11 C12C10
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Fig. 6. (a) The network nodes are partitioned into clusters with different
colors. (b) The clusters are abstracted into a cluster-level topology. The nodes
in solid blue are vertex cover clusters.

has at least a neighbor in bmi . To simplify the analysis, we

suppose there are not sink nodes at bmi or δmi . The nodes in

bmi and δmi are not in cluster-contained-subnets. Name Φi =
bmi ∪ δmi . Fig. 5(a) illustrates the example Φ1 of c1. Then we

calculate MVC on Φi as λi. We use λi as alternative border

nodes to bmi . Because each edge in Φi has at least one endpoint

in the MVC nodes λi, so monitoring λi can capture all the

flows passing over Φi. The number of λi is not necessarily

smaller than bmi . Therefore, we select Min{|bmi |, |λi|} as the

new border nodes of cmi . If λi are selected as the border nodes

of cluster cmi , the non-VC nodes in bmi do not need to monitor

the flow, and their cluster-ID are set to the neighbor cluster.

C. Protocol for Cluster based SD-WSN

CluFlow makes the SDN controller estimate flow among

clusters by monitoring the flow at border nodes. The SDN

controller controls traffic flow by injecting cluster-level routing

rules to the border nodes. The management procedure of the

SDN controller and nodes in WSN is shown in Alg. 3.

There are at least two benefits of utilizing SDN control in

cluster-level routing. Firstly, compared with SDN management

for every node in WSN, CluFlow trades granularity of SDN

control for less communication load. Only cluster border

nodes communicate with the SDN controller. The number of

nodes that communicate with the SDN controller decreases.

Secondly, cluster-level routing and local routing are decoupled.

The nodes inside the clusters use only distributed local routing

and do not need to request flow table entries from the SDN

controller. The communication delay caused by requesting

flow table entries therefore decreases.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we test and evaluate CluFlow in simulation

and a real deployed WSN.

A. Benchmark Approaches

To evaluate the performance of CluFlow, three benchmark

approaches are implemented to calculate the communication

flow among clusters.



Algorithm 3: Cluster-based Flow Control in SD-WSN

� Network Nodes:
1 while True do
2 if Discover new neighbor nodes. then
3 Send “local-links” to SDN controller.

4 if Receive “set-border” command. then
5 Set self as border node

6 if Self is border node. then
7 Monitor local traffic flow.

8 if Period of reporting then
9 Send “flow-report” to SDN controller.

10 if Receive “cluster-level rules”. then
11 Reconfigure local routing rules.

� SDN Controller:
1 while True do
2 if Receive “local-links” from nodes. then
3 Build topology of WSN.

4 Partition clusters. � See Sec.III-B
5 Send “set-border” command to border nodes.

6 if Receive “flow-report”. then
7 Calculate flow among clusters.

8 if Update cluster-level route to border nodes. then
9 Send “cluster-level rules”.

1) Minimum Vertex Cover Nodes (MVC): We monitor the

traffic flow belonging to the minimum vertex cover (MVC)

nodes in the network. The flows on all the other nodes are

calculated based on the monitored flows in MVC nodes. The

traffic flow of a cluster is calculated by the sum of the border

nodes flows.

2) Cluster Border Nodes of Voronoi Clustering (CB):
This approach requires cluster-contained-subnets and border-

selection-belt as CluFlow. We first merge all the nodes in each

cluster-contained-subnet as a single header node. Then, the

network is partitioned into Voronoi clusters [13] based on the

header nodes. We monitor the traffic flow of every cluster

border node. The sum of incoming and outgoing flow of cluster

border nodes is the flow of the cluster.

3) Cluster Border Nodes of Minimum Vertex Cover Voronoi
Clustering (MVC-CB): We first partition the network into

Voronoi clusters following the approach of CB. Next, the

clusters are abstracted into a cluster-level topology. Then, we

select the MVC clusters in the cluster-level topology. The

border nodes of MVC clusters are used to monitor and control

the communication flow. Finally, by the flow of MVC clusters,

we calculate the traffic flow between each pair of clusters.

B. Cluster Level Flow Control

We now show the practicality of CluFlow Alg. 3 by con-

trolling the cluster level traffic flow in a case study of Matlab

C1C2

C3C4

(a) Cluster level flow
before cluster level
SDN control.

C1C2

C3C4

(b) Cluster level flow
after cluster level SDN
control.

Fig. 7. Case study of traffic flow control among clusters by CluFlow. The
SDN controller blocks the flow from c3 to c2, and from c4 to c2 in cluster
level route at 600s.
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Fig. 8. (a) Realtime flow from c2 to c1, and from c3 to c1 (Section IV-B).
(b) The number of border nodes of partitioned clusters with different size of
border-selection-belt Θ (Section IV-C).

simulation. The deployment area is 100m×100m, and the

nodes are randomly deployed. The network consists of 200

nodes, and is partitioned into 4 clusters. There are 6.4 nodes

on average within the transmission range. We assume a perfect

wireless channel without packet loss. The sink node resides in

c1. Each node sends packets to the sink by the shortest path

routing. The time interval between the present and the next

sending time is uniformly distributed in (1, 8) seconds. The

cluster level topology and flow without CluFlow control are

shown in Fig. 7(a). The nodes in c1 and c3 send packets of 10

bytes. The nodes in c2 and c4 send packets of 10 bytes before

400s, and packets of 50 bytes after 400s. The SDN controller

sets cluster level routing rules to block the flow between c2
and c3, c2 and c4 after 600s as shown in Fig. 7(b).

The realtime traffic flows from c2 to c1 and from c3 to

c1 are shown in Fig. 8(a). The flow from c2 to c1 increases

significantly from 400s to 600s, while the flow from c3 to c1
keeps at the same level. This is because the traffics generated

by the nodes inside c2 and c4 all pass over c2, which causes

unbalanced flow among clusters. After 600s, by setting the

cluster level routing rule, the traffic generated by the nodes

inside c4 passes over c3. The cluster level SDN control above

makes the flow from c2 to c1 and flow from c3 to c1 more

balanced from 600s to 1000s.

C. Size of Border-Selection-Belt

We test how the size of border-selection-belt Θ affects the

number of cluster border nodes by CluFlow. The number of



60 80 100 120 140
Number of Network Nodes

0

20

40

60

80

100

120

N
um

be
r o

f B
or

de
r N

od
es MVC

CB
MVC-CB
CluFlow

(a)

60 80 100 120 140
Number of Network Nodes

0

20

40

60

80

100

120

N
um

be
r o

f B
or

de
r N

od
es MVC

CB
MVC-CB
CluFlow

(b)

Fig. 9. The number of border nodes using CluFlow and the benchmark
approaches with (a) 6 clusters and (b) 9 clusters.

nodes in different experiments are set to 100, 120, 140, 160

and 180, and the number of partitioned clusters is 4. The other

setups of the network are the same as in Section IV-B. For each

setup, we make 10 rounds of testing. We create Θ as follows.

Firstly, we randomly select cluster header nodes in the network

which have at least 8 hops away from each other. Secondly,

Voronoi clusters are created based on the cluster header nodes.

Name the border nodes set of all the Voronoi clusters as Θb.

Thirdly, we create Θ in three scenarios. Scenario 1: the nodes

set including Θb and the nodes which have 1 hop distance to

Θb form Θ. Scenario 2: the nodes set including Θb and the

nodes which have 2 hop distance to Θb form Θ. Scenario 3:

all the nodes except the cluster header nodes form Θ.

The testing results are shown in Fig. 8(b). As the size of

Θ increases, the number of border nodes decreases. The main

reason is that larger Θ provides more flexibility to partition

clusters, so that the possibility to partition clusters with less

border nodes increases.

D. Number of Cluster Border Nodes

We count the number of cluster border nodes created by

CluFlow and the other benchmark approaches. A smaller

number of cluster border nodes means less requests and replies

between nodes and the SDN controller, which could further

benefit the performance of WSN, such as energy consumption.

In the experiment, the number of nodes in the network are

set to 60, 80, 100, 120 and 140 respectively. The network is

partitioned to 6 and 9 clusters respectively. The other setups of

the network are the same as in Section IV-B. For each setup,

we make 10 rounds of testing.

Our results, as illustrated in Fig. 9, show that the number

of border nodes created by CluFlow is much smaller than the

benchmark approaches. As the total number of network nodes

increases, the percentage of improvement increases. With 140

nodes and 6 headers, CluFlow has 83%, 65%, 34% less border

nodes than MVC, CB and MVC-CB, respectively.

MVC-CB inherits some properties of CluFlow, including

(i) abstracting the network to cluster-level topology and (ii)

controlling the border nodes of MVC clusters. Therefore,

compared with MVC and CB, the number of border nodes

using MVC-CB is reduced. But MVC-CB only uses Voronoi

cluster partition. So CluFlow using cluster partition Alg. 1

Fig. 10. The deployment of the WSN in the building. Orange circles •
represent the positions of the deployed nodes. The node with green diamond
background � is the SDN controller. The nodes with blue square background
� are the headers of clusters.
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Fig. 11. (a) The number of border nodes. (b) The number of sent and
forwarded IP packets in border nodes.

and Alg. 2 has the smallest number of cluster border nodes.

Meanwhile, as the number of clusters increases from 6 to 9,

the number of cluster border nodes becomes larger using CB,

MVC-CB and CluFlow respectively. This means larger number

of clusters has a smaller control granularity, while the cost for

flow management of cluster border nodes will increase.

E. Performance in Real Indoor WSN

We setup a real indoor WSN in a university building to

test CluFlow. We measure the number of border nodes and

the communication cost. The deployed nodes are CC2650STK

SensorTag motes, using Contiki 3.0 OS, IEEE 802.15.4 MAC

standard. We use CSMA/CA collision avoidance, Contiki-Mac

radio duty cycle, and RPL [14] routing protocol. The Tx power

of each node is set to 0dBm, and Rx sensitivity is -100dBm.

32 nodes are deployed in the area of 65m×38m as shown in

Fig. 10. The sink node is attached to a SensorTag Debugger

DevPack, which links to a computer by a USB cable. The

SDN controller runs on the computer, and communicates with

the WSN through the sink node.

In the experiment, each mote reports the connectivity of

neighbor nodes to the SDN controller every 30 seconds. The

controller builds the topology of the network. The network

is partitioned into 3 clusters based on 3 header nodes. The

selected border nodes send monitoring data and routing re-

quests to the controller every 3 seconds. Once the controller

receives a request, it sends a reply back. The controller uses the

monitoring data of all the border nodes to calculate the traffic

flow among clusters. We do not instantiate cluster-level routing

in this test. The border nodes do not change local routing rules

after receiving the reply messages from the SDN controller.



The load size of each packet is 64 bytes. The experiment lasts

for 600 seconds using CluFlow and each benchmark approach.

We count the number of cluster border nodes and the

communication cost, i.e., the number of sent and forwarded IP

packets in the border nodes. The results are shown in Fig. 11.

Compared with the benchmark approaches, CluFlow utilizes

the smallest number of border nodes and communication cost.

V. RELATED WORK

Most existing WSN structures utilize a distributed control

system. They are facing the same difficulties as traditional

wired networks. Existing WSN management does not provide

high-level abstraction. Dynamically changing control policy

in WSN becomes increasingly difficult as the scale of WSN

increases [6]. The research in [15] provides a solution to

utilize OpenFlow in wireless networks. It uses the OpenFlow

centralized controller for routing data traffic. SDN-WISE [16]

designs and implements a complete SDN system in a real

multi-hop wireless network. Its SDN components consist

of SDN controller, topology manager, protocol stacks, and

wireless motes. It provides a stateful solution and reduces

the amount of communication between nodes and SDN con-

trollers. The research in [17] creates an SDN framework

for IoT systems based on SDN-WISE and Open Network

Operating System (ONOS) [18]. To connect IoT and SDN, it

extends the functionality of ONOS as the controller in WSN,

while the communication protocol relies on SDN-WISE. In

these frameworks, the SDN controller must rely on distributed

routing to setup control flow in the nodes that are several

hops away. To update flow table entries, the nodes and the

SDN controller have to exchange request and reply messages

over multiple hops periodically. This process causes much

communication delay and overhead in wireless networks.

Some researches focus on increasing the performance of

WSN, such as energy efficiency, task scheduling, routing,

etc., using SDN structure. SDN-ECCKN [19] proposes an

SDN-based energy management system for WSN. The system

reduces the total transmission time to increase the network

lifetime. [20] minimizes energy comsumption on sensors with

guaranteed quality-of-sensing in multi-task software defined

WSN. It utilizes a centralized SDN to formulate the minimum-

energy sensor activation by jointly considering sensor activa-

tion and task mapping. The work in [21] presents an energy-

efficient routing algorithm based on the framework of software

defined WSN. To minimize the transmission distance and the

energy consumption of sensor nodes, the algorithm partitions

WSN into clusters and dynamically assigns tasks to the intra-

cluster nodes by a cluster control node.

VI. CONCLUSION

We have presented a cluster-based SDN architecture Clu-

Flow to manage communication flow in WSN, by controlling

and monitoring the incoming and outgoing flow of cluster

border nodes. CluFlow minimizes the number of border nodes

and the communication overhead used for SDN control. Based

on the simulations and the experiments in a real network, we

have demonstrated that CluFlow significantly decreases the

number of nodes and communication load needed by the SDN

controller to control and monitor cluster-level communication

flow compared with benchmark solutions.
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